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ABSTRACT OF THE DISSERTATION
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The last decade has seen bacteria at the forefront of biotechnological innovation, with

applications including biomolecular computing, living therapeutics, microbiome engineering

and microbial factories. These emerging applications are all united by the need to precisely

control complex microbial dynamics in spatially extended environments, requiring tools that

can bridge the gap between intracellular and population-level coordination. Therefore, in this

thesis we propose genetic circuits for predictable control of microbial communities with potential

applications in both healthcare and industry, ranging from therapeutics and drug delivery, to

bioproduction and bioremediation. In Chapter 1 we focus on intra-population dynamics control
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by designing a genetic circuit which merges the benefits of the synchronization capabilities of

quorum sensing to the advantages of external control of chemical inducers. This circuit design

can provide more fine-tuned control of cargo release from bacterial carriers by enabling time

and space regulation. Subsequently, in Chapter 2 we engineer and characterize inter-species

dynamics of a three-strain bacterial community which interacts through cyclic competition,

demonstrating the emergence of non-trivial dynamics. In particular, we found that intrinsic

differences in the bacterial competitive strength lead to an unbalanced community that was,

counterintuitively, dominated by the weakest strain. We used computational tools to model

the three strains dynamics in 2D, providing a tool which accurately simulates the competition

outcome of the community for any chosen parameter set. Finally, in Chapter 3 we focus on

single cell dynamics and developed a bioinformatics pipeline to analyze dynamic transcriptomics

data obtained using an innovative high throughput microfluidic device developed in our lab.
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Chapter 1

Design of an inducible quorum sensing
system

1.1 Introduction

Synthetic biology has the potential to revolutionize both healthcare and industry, with

applications ranging from therapeutics[51, 76, 52, 98] and drug delivery[29, 89, 22], to bio-

production and bioremediation[91]. These emerging applications have uncovered the need to

engineer spatially extended complex multi-cellular populations, requiring new tools that can

bridge the gap between single cell, population, and community level engineering[13, 47, 11, 71].

To achieve this, significant research efforts have been focused on engineering and characterizing

a variety of cell-to-cell communication systems, with a particular focus on bacterial quorum

sensing[110, 20, 109, 64]. Currently, the majority of quorum sensing systems used in syn-

thetic biology rely on self-produced small molecules that result in spatially and temporally

self-organized systems, which can not be easily externally regulated[128, 20, 27, 5, 108]. In

this study, we propose a tool which combines two pillars of population control: inducibility and

cell-to-cell communication. To design this inducible quorum sensing system (iQS), we took

inspiration from the native components of the photosynthetic bacterium Rhodopseudomonas

palustris, which relies on a plant derived organic compound for the production of its signaling

molecule[106]. This inducer, p-coumaric acid, is a ubiquitous molecule present in most fruits

and vegetables[12] and has proven to be safe for both bacteria[62, 81] and human cells[90, 17]

1



at relevant concentrations.

The iQS can be coupled with any gene of interest to enable tunable population density-

dependent gene expression. We first demonstrated this principle by coupling the iQS system

to the production of a fluorescent reporter protein in order to characterize the inducible circuit

dynamics. Next, as a proof of concept, we coupled the iQS to a lysis gene, creating a tunable

platform for cargo release. In direct comparison to non-inducible quorum sensing system, we

demonstrate that the iQS significantly expands the range of population dynamics, allowing for

temporal and spatial control of cargo release and population death. Finally, we exploit the orthog-

onality properties of the iQS system to demonstrate the ability to scale up inducibility from the

population to the community level. In fact, it has been shown that the quorum sensing molecule

produced by the bacterium R. palustris is orthogonal to the majority of well-characterized quo-

rum sensing systems (Lux, Las,Tra, Rhl, Cin), providing a communication channel that can

propagate information with minimal signal interference[109, 64]. By co-culturing a two strain

community, we demonstrate the ability to control population composition and dynamics by

varying inducer concentrations. Overall, the iQS system combines many desirable characteristics

into a single genetic circuit: inducibility, tunability, population-level coordination, inducer safety

and orthogonality.

1.2 Results

1.2.1 Design and characterization of the iQS system

To design the iQS system, we genetically reconstructed the two-step pathway which

converts pCA into p-coumaroyl-HSL (pC-HSL) through the production of the intermediate

molecule p-coumaroyl-CoA[57] (Fig. 1.1a) . The first conversion is catalyzed by the p-coumaric

acid-CoA ligase encoded by the 4CL2nt gene from the plant Nicotiana tabacum[66] while

the second step is catalyzed by the RpaI synthase. Additionally, we added superfolder green

fluorescent protein (sfGFP) to be able to monitor the inducible dynamics. All genes, with
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the exception of 4CL2nt, are driven by the pLux promoter which has been shown to perform

better than the native promoter of R. palustris when heterologously expressed[109]. We chose

Escherichia Coli as the host chassis for our double plasmid circuit (Table 1.1).

We predicted that inducibility would expand the range of population dynamics by includ-

ing an ‘OFF’ state at low inducer concentration and an ‘ON’ state at high inducer concentrations

which are both independent of population density. On the other hand, for a range of intermedi-

ate concentrations the iQS would behave like a standard QS system by exhibiting the typical

population density dependent activation (Fig. 1.1b). To investigate how the engineered iQS

strain would relate to these expected dynamics, we used microfluidic devices which enabled the

simultaneous exposure of varying pCA concentrations to different subgroups of cells. Time-lapse

fluorescence microscopy was used to observe fluorescence expression as a function of population

size and inducer concentration. The data matched the expected dynamics of an inducible quorum

sensing system when exposed to zero, medium (15 nM) or high (1 µM) inducer concentrations

(Fig. 1.1c). Additionally, we further characterized the iQS response over a broader range of

pCA concentrations using a microwell plate reader. Zero inducer resulted in the circuit being

OFF except for a baseline of leaky expression. Intermediate levels (1 nM and 10 nM) induced

the typical population-dependent switch-like behavior with a steep increase in fluorescence

signal at an optical density threshold of around 0.3. Finally, high concentrations (100 nM to 10

µM) resulted in a linear relationship between fluorescence expression and population density,

confirming the assumption of a population independent ‘ON’ state (Fig. 1d). As a control, we

repeated the same experiment with a wild type E. Coli strain and observed that the growth curves

were unaffected, confirming pCA is not toxic within the characterized range[62, 81] (Fig. 1.1e).

1.2.2 Characterization of the iSLC in microfluidics

To demonstrate the usefulness of the iQS over non-inducible quorum sensing based

circuits, we coupled the iQS with the expression of a lysis gene[29, 15, 53, 22] to create a
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platform for inducible population dependant bacterial cargo delivery (Fig. 1.2a). To qualitatively

predict the dynamics of this iSLC strain (induced synchronized lysis circuit), we developed a

deterministic model (see details in the section “Methods”). A bifurcation plot was obtained

by simulating the steady state values of cell population as a function of pCA concentration,

predicting the emergence of three main population regimes (Fig. 1.2b). Small amplitude lysis

events followed by steady growth are predicted at low inducer concentrations. Intermediate

pCA concentrations result in sustained oscillations in population density. Finally, high inducer

concentrations lead to a single lysis event with zero survivors. Therefore, we expected the iSLC

to considerably expand the range of possible population dynamics by adding a quiescent state

of circuit inactivation and a termination state in which all cells undergo lysis, regardless of

population density (Fig. 1.2c).

A preliminary test using a microwell plate reader showed an inverse correlation between

the population OD (optical density) at lysis and the inducer concentration (Figure 1.5). Interest-

ingly, we noticed the presence of a lysis event at zero pCA concentration which we proved to

be caused by leaky expression of the pLux promoter in the sole presence of RpaR (Figure 1.6).

To fully visualize the dynamics of the iSLC strain over time, we used microfluidic devices with

an upstream serpentine of branching channels to generate a gradient of eight different inducer

concentrations (Fig. 1.2d and Fig. 1.7).

Using fluorescence microscopy to monitor population dynamics, we observed the same

three emerging population behaviors predicted by the mathematical model (Fig. 1.2e, f and

Supplementary Video 1, 2). With zero inducer, we observed constant cell growth with sporadic

asynchronous lysis due to promoter leakiness. Intermediate inducer concentrations (15 nM)

resulted in sustained synchronized oscillations with an average period of approximately 200 min-

utes. Finally, high pCA concentrations (110 nM to 1 µM) caused universal cell lysis regardless

of population density, with only a small fraction (< 3% of all microfluidics traps) able to survive.

(Fig. 1.8).
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1.2.3 Characterization of the iSLC kill switch

Next, we hypothesized that modulating the inducer concentration in time would enable

switching between states of constant growth (circuit quiescence), synchronized oscillations

in population density (cyclic cargo release) and inducible population death (kill switch). To

confirm this principle, we investigated the ability to drive the population dynamics from state

one (population growth) to state three (population death) through pCA induction (Fig. 1.3a).

We tested this hypothesis in microfluidic devices by initially growing the cells with zero inducer

concentration (circuit quiescence). Following complete saturation of all traps, we induced with
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500 nM pCA. We observed a synchronized lysis event throughout the entire device which resulted

in cell death in more than 97% of the 406 microfluidic traps present (Fig. 1.3b, c). To test

the reproducibility of this property in larger volumes, we grew the iSLC strain in 3 mL culture

tubes with and without inducer for a period of eight hours. In the presence of p-coumaric acid,

we observed a several order of magnitude decrease in cell survival which was independent of

inducer concentration (Fig. 3d and Supplementary Video 3). This ability to bypass population

dependency and intentionally decimate the population, regardless of its density, may serve as an

integrated kill switch to regulate strain removal in space and time.
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are provided as a Source Data file.

1.2.4 Characterization of tunable multi-strain dynamics

Finally, we investigated the orthogonal properties[109, 64] of the iQS circuit by co-

culturing the iSLC with a non-inducible SLC strain based on the Lux QS system, one of the

most commonly used and well understood QS systems in synthetic biology [32, 27](Fig. 1.4a).

First, we demonstrated the absence of crosstalk between p-coumaric acid and the Lux QS system
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by growing the iSLC strain in a range of different pCA concentrations (Fig. 1.9). Next, we used

the previously described microfluidic chip (Fig. 1.4d and Fig. 1.7) to co-culture the iSLC and

SLC strains (starting at 1:1 ratio) under a gradient of inducer concentrations. Interestingly, we

observed that by varying pCA concentration, we could precisely control the community compo-

sition of the microfluidic traps. Without inducer, the quiescent iSLC strain was able to displace

the SLC strain due to an advantage in population growth rate. At intermediate concentrations

(15 nM), we were able to maintain stable co-culture of both strains with independently sustained

oscillations for more than 40 hours. High pCA concentrations (110 nM) resulted in the death of

all iSLC cells, allowing the SLC strain to fully take over (Fig. 1.4b, c and Supplementary Video

4). For inducer values higher than 340 nM, the dynamics were unanimously characterized by

iSLC death and SLC takeover (Fig. 1.10). As demonstrated, the absence of cross-talk between

the pCA derived signaling molecule and the majority of well-characterized quorum sensing

systems, enables the simultaneous use of multiple quorum sensing in co-culture, providing

exciting new possibilities for microbial community engineering.

1.3 Discussion

Given the importance of dynamic gene expression in nature[97, 42] and the increasing

availability of tools for modular and robust design of genetic circuits[11, 64], synthetic biologists

have been attracted towards systems that can achieve tunable complex behaviors, such as the

iQS, as opposed to simple steady state dynamics. Our results demonstrate the broad potential

of the iQS platform to enable a wide range of new functionality for synthetic circuits that rely

on cell-to-cell communication systems for population-level coordination. In particular, we

show how inducibility broadly expands the functionality of quorum sensing based circuits by

enabling switching between states of circuit quiescence, quorum-dependent circuit activation

and population wide constitutive expression. As a proof-of-principle, we created the inducible
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synchronized lysis circuit (iSLC) which enables spatial and temporal modulation of inducer-

dependent cargo release for single or multi-strain communities. In particular, we demonstrate

the ability to temporally and spatially control transitions between inactivated population growth,

quorum enabled cyclic cargo release and global population death (kill switch). This precise

control of circuit activation, the ability for timed strain elimination and the non-toxic nature of

p-coumaric acid make this system particularly attractive for potential therapeutic applications in

vivo. Finally, we exploited the orthogonality of the iQS system to demonstrate precise control

of multi-strain dynamics which has potential to become a key tool for engineering synthetic

bacterial communities. Although the circuit functionalities of the iQS were demonstrated in

the E.Coli strain MG1655, we believe that the circuit could potentially be extended to other

bacterial species. We expect the main challenge to be the functional expression of the p-coumaric

acid-CoA ligase enzyme (encoded by the 4CL2nt gene) due to its heterologous plant origins.

Possible solutions to this challenge might include species specific codon-optimization techniques

or the use of homologous proteins.

Looking ahead, the modularity and simplicity of the iQS genetic parts make it straight-

forward for coupling to any gene of choice, enabling precise spatial and temporal control over

population level gene expression. This may open up new possibilities for sophisticated, and safe,

biotechnological applications. Overall, this work demonstrates the translation of more than a

decade of circuit design into microbiological organization, from molecular regulatory mecha-

nisms (synthetic promoters), to single cell protein expression (enzyme catalysis), multi-cellular

population coordination (cell-to-cell communication) and multi-species interaction (orthogonal

quorum sensing).

Chapter 1 contains material originally published as Miano, A., Liao, M.J. Hasty, J.

Inducible cell-to-cell signaling for tunable dynamics in microbial communities. Nature Com-

munications 11, 1193 (2020). The dissertation author was one of the primary researchers and is

the first author of this paper.
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1.4 Methods

1.4.1 Plasmids and strains

Our iSLC and SLC strains were both cultured in lysogeny broth (LB) media with 50 µg

ml-1 kanamycin, 34 µg ml-1 chloramphenicol and 0.2% glucose for strains containing ColE1

origin and p15A origin plasmids in a 37◦ shaking incubator. Plasmid pTD103 RpaR-RpaI-LAA-

sfGFP[108], ptD103-CFP[27] and pZA35-X174E(+LuxR)[29] were constructed by our group in

previous studies (Fig. 1.11). Both plasmids pAM014 and pAM021 were obtained by inserting

the gene 4CL2nt[57] under the constitutive promoter J23106 from the Anderson promoter library.

The 4CL2nt gene and the promoter were synthesized with overlapping PCR of long oligos (IDT).

All plasmids were constructed by Gibson assembly followed by transformation into DH5α

(Thermofisher) chemically competent E.coli. All plasmids were verified by Sanger sequencing

before transformation into E.coli strain MG1655.

1.4.2 Microfluidics and Microscopy

The microscopy and microfluidics techniques used in this study are similar to those

previously reported by our group[92]. Our microfluidic devices were constructed from PDMS

(poly-dimethylsiloxane) which was molded and baked on a silicon wafer with micron-scale

features formed by cross-linked photoresist. Once the PDMS hardened, it was peeled off, and

individual devices were cut out. In order to connect fluid lines to the device, holes where punched

in correspondence of the inlets and outlets of the device. Afterwards, the devices were bonded

onto glass slides using plasma activation. Before each experiment, the devices were left for 30
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minutes in a vacuum chamber. Meanwhile, 1 ml of overnight cell culture was spun down by

centrifugation and re-suspended in 10 µ l of fresh media with appropriate antibiotics. After taking

the device out of the vacuum chamber, a single droplet of resuspended cells was positioned in

correspondence of the outlet opening. Similarly, droplets of sterile fresh media were placed

in correspondence of the inlets openings[33]. In all cases 0.075% Tween20 was added to the

medium to prevent cells from sticking to the PDMS walls. After all chip features were wetted,

the fluids lines were plugged in and the height of the inlet was raised 10 to 40 cm above the

device. The outlet syringe was instead placed at the same height of the device. For co-culturing

experiments in Fig. 4, cells were cultured individually overnight and eventually spun down

and re-suspended together (1:1 ratio) allowing for a single droplet to be loaded on the device.

All experiments shown in Fig. 2 and Fig. 4 were performed in a side-trap array device with

bacteria growth chambers approximately 100 x 80 µm in area and approximately 1.2 µm in

height. The upstream channels consists of a series of dividing serpentine branches which allow

for sequential dilutions of the two input media, generating a gradient of eight different inducer

concentrations (Fig. 1.7). On the other hand, for the kill switch experiments, reported in Fig. 3,

we used a simpler device with a single input and an ordered array of traps[92]. The dimensions

of the traps are the same as the ones described for the gradient device. Experiments in Fig. 2

and 4 where carried out by connecting a syringe with LB + antibiotics + 0.075% Tween20 as

inlet 1 and and a syringe with LB + antibiotics + 0.075% Tween20 + 1µM of p-coumaric acid

as inlet 2. P-coumaric acid inductions for microfluidic experiments in Fig. 3b were performed

by unplugging the syringe with pure media and substituting it with a second syringe containing

media plus the appropriate acid concentration. For microscopy we used the same system as

described in our previous work[92]. In brief, images were acquired with a Nikon TI2 using

a Photometrics CoolSnap cooled CCD camera. The scope and accessories were programmed

using the Nikon Elements software. The microscope was housed in a plexiglass incubation

chamber maintained at 37◦ by a heating unit. Phase-contrast images were taken at 4x and 10x

magnification at 50-100 µs exposure times. At 4x magnification fluorescence exposure times
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were 2s at 30% intensity for both gfp and cfp while at 10x magnification they were 200 µs at

30% intensity for both gfp and cfp. Images were taken every 6 minutes for each experiment. For

induction experiments, imaging was paused while syringes were swapped.

1.4.3 Data Analysis

Fluorescence intensity profiles were obtained by analyzing frames from the fluorescent

channels. The mean fluorescence values were calculated by drawing a rectangle surrounding

each trap individually and extracting the z-axis profile on ImageJ. Fluorescence values shown

in Figure 2 were normalized by dividing all data by a constant factor. In addition, the subset of

traps for each column was normalized by subtracting the minimum value among the traps within

the subset. Transmitted light data from Fig. 3b was normalized by subtracting the minimum

value for each time trace. Fluorescence data shown in Figure 4 was normalized by first dividing

the subsets of traps by their overall maximum values and subsequently subtracting the respective

minimum values. In addition, the data in Figure 4 was smoothed with the command smoothdata()

in Matlab. Heatmaps were generated in Matlab using the function heatmap(). For the co-culture

experiments, when overlap between the gfp and cfp channels was observed, values were corrected

taking into consideration the image frames in order to subtract overlapping signal.

1.4.4 Plate reader experiments

For plate reader experiments, the appropriate strains were seeded from a -80◦ glycerol

stock into 3 ml LB with 0.2% glucose and appropriate antibiotics and incubated in a 37◦ shaking

incubator. The following day, 2 µ l of overnight culture were added to 200µ l of fresh media with

appropriate antibiotics in a standard Falcon tissue culture 96-well flat bottom plate. Cells were
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incubated at 37◦ shaking in a Tecan Infinite M200 Pro. Cells were grown for about 12 hours.

The optical density at 600 nm absorbance was measured every 10 min.

1.4.5 Cells survival assay

Cell viability assay to test the efficacy of iQS as a kill switch was done measuring colony

forming units (CFUs), following a protocol found in the literature[18]. Cells were grown under

survival conditions in LB with 0.2% glucose which inhibits the LuxI promoter thanks to the

presence of a binding site for the CAP-cAMP activating complex[78]. In the morning, they were

transferred into four liquid cultures of fresh LB medium with 0.2% glucose, 300 nM p-coumaric

acid, 500 nM p-coumaric acid and 1 µM p-coumaric acid respectively. Samples were collected

every 2 hours and serially diluted in PBS over a 7-log range and spotted (2µL) onto LB agar

plates with 0.2% glucose. The equations used are: CFU/ml = (number of colonies) x (dilution

factor)/0.002 mL, survival ratio (log10) = log(CFU/ml with glucose)/(CFU/ml with p-coumaric

acid).

1.4.6 Modeling

We constructed a deterministic model to qualitatively describe the dynamic behavior

of the iSLC strain. The model is based on a set of six ODEs which track the evolution of

the following six variables: the cell number into a single microfluidic trap (N), the external

concentration of p-coumaroyl-HSL (pH), the intracellular concentration of lysis protein (L), the

intracellular concentration of the pC-HSL synthase RpaI (I), the intracellular concentration of

p-coumaric acid-CoA ligase (E) and the intracellular concentration of the intermediate compound

p-coumaroyl-CoA (pA). The inducer concentration is defined as a fixed parameter.

A non-zero p-coumaric acid concentration induces the production of the intermediate molecule
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p-coumaroyl-CoA (pA) through the conversion mediated by the p-coumaric acid-CoA ligase

(encoded by gene 4CL2nt) (E). The production term of the latter is defined as a constant

variable according to the constitutive promoter which drives it. The intermediate product

(pA) is eventually transformed into the quorum sensing molecule pC-HSL through the RpaI

synthase enzyme (I). Once a threshold value of extracellular pC-HSL is reached, the intracellular

production of the pLux promoter driven genes (RpaI, RpaR and E) are brought to the ON state.

The same promoter also drives the lysis gene, therefore positive feedback also results in cell lysis.

We assume that the quorum sensing molecule diffuses quickly through the membrane, therefore

we do not distinguish between intracellular and extracellular HSL concentration. In addition,

we assume that the pC-HSL-RpaR complex binding is instantaneous, so that the model can be

simplified by ignoring the dynamics of the binding complex. Degradation of all proteins (L, I,

E) is associated to dilution due to cell growth (µG) as well as basal intracellular degradation (γL

and γI). In addition to those terms, RpaI (I) is also actively degraded by ClpXP proteases (γC).

Overall, our model can accurately predict the three main dynamics of the bacterial population

as the inducer concentration is varied. With zero inducer concentration, the population grows

reaching a steady state value. Similarly, at very small inducer concentrations, the population

undergoes small amplitude lysis events followed by steady state. We observed a finite range of

intermediate inducer values which resulted in sustained oscillations of population density. Finally,

we observed total population death with no survivors for high concentrations (Fig. 1.12). We

can visualize the non-linear dynamics of this system using phase portraits obtained by plotting

N (cell number) against L (lysis protein) (Fig. 1.13). As the p-coumaric acid concentration

is increased, the simulations show a first transition from a stable spiral to a limit cycle which

indicates sustained oscillations. A further increase in the inducer parameter causes the limit

cycle to disappear in favor of a stable fixed point. All plots were generated in MATLAB.

dN
dt

= µG ∗N ∗ (N0 −N)−N ∗ k ∗Ln

(L0)n +Ln (1.1)

d pA
dt

= µ4 ∗ inducer ∗E − γCoA ∗ pA−µG ∗ pA (1.2)
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d pH
dt

= µH ∗N ∗ I ∗ pA− u∗ pH
1+ N

N0

(1.3)

dL
dt

=Cl ∗
(

α0 +
αH ∗ ( pH

H0
)4

1+( pH
H0

)4

)
− γL ∗L−µG ∗L (1.4)

dI
dt

=Ci ∗
(

α0 +
αH ∗ ( pH

H0
)4

1+( pH
H0

)4

)
− γI ∗ I −µG ∗ I (1.5)

dE
dt

=Cl ∗Pconst − γ4 ∗E −µG ∗E − γC ∗E (1.6)

We chose model parameters based on a similar model previously published [29]. Compared to

the Lux quorum sensing system, the iSLC showed higher promoter leakiness which was taken

into account by increasing the basal production term (α0). The parameter values used in the

model are µG = 0.2 (dilution due to cell growth), N0 = 20 (cell capacity of a single trap ), k = 10

(maximum rate of cell lysis), L0 = 1 (concentration of lysis protein resulting in half maximum

lysis ), n = 2 (Hill’s coefficient), Cl = 0.5 (copy number of the lysis gene), Ci = 1 (RpaI gene copy

number), Pconst = 20 (strength constitutive promoter driving gene 4CL2nt), γ4 = 2 (degradation

of enzyme p-coumaric acid-CoA ligase ), α0 = 1 (pLux basal leakiness), αH = 20 (Lux promoter

pC-HSL-RpaR induced production), H0 = 4.5 (pC-HSL-RpaR binding affinity to pLux), γL = 2

(lysis protein basal degradation), γI = 2 (RpaI protein basal degradation), γC = 12 (RpaI protein

degradation due to ClpXP), γCoA = 2 (p-coumaroyl-CoA basal degradation), µ4 = 30 (conversion

rate of p-coumaric acid into p-coumaroyl-CoA), µH = 15 (pC-HSL production rate) and µ = 12

(maximum AHL clearance rate due to flow).

1.5 Supplementary Videos

Supplementary Movie 1

Description: iSLC strain subject to multiple concentrations of pcoumaric acid in the gradient mi-

17



crofluidic device with traps of dimensions 100 x 80 x 1.2 µm. Images taken at 10x magnification.

Multiple inducer concentrations results in different population dynamics.

Supplementary Movie 2

Description: SLC strain subject to three concentrations of pcoumaric acid in the gradient mi-

crofluidic device with traps of dimensions 100 x 80 x 1.2 µm. Images taken at 60x magnification.

Zero p-coumaric acid results in circuit quiescence with low level expression due to promoter

leakiness. Intermediate inducer concentration (15 nM) corresponds to circuit activation with

sustained oscillations in population density. High concentration (110 nM) results in total strain

killing with no survivors left.

Supplementary Movie 3

Description: iSLC strain kill switch response to 500 nM pcoumaric induction at time zero in

microfluidic device with traps of dimensions 100 x 80 x 1.2 µm. Images taken at 4x magnification.

Number of culture regions in the chip is 406.

Supplementary Movie 4

Description: Co-culture of iSLC (green) and SLC (blue) strain (seeded at 1:1 ratio) subject to

multiple concentrations of p-coumaric acid in the gradient microfluidic device with traps of

dimensions 100 x 80 x 1.2 µm. Images taken at 10x magnification. Different inducer concentra-

tions result in three emerging multi-population dynamics.

1.6 Supplementary Data
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Table 1.1. The strains used in this study.

Strain
name

Strain # Host
Strain

Plasmids

AM15 iQS MG1655 pTD103-RpaR-sfGFP + pAM21
AM09 LEAKY MG1655 pTD103-RpaR-sfGFP + pZA35

X714E (+RpaR)
AM010 iSLC MG1655 pTD103-RpaR-RpaI-LAA-sfGFP +

pAm014
AM013 SLC MG1655 pTD103-LuxR-LuxR-LAA-CFP +

pZA35 X714E (+LuxR)
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Chapter 2

Characterisation of a three-strain non-
transitive asymmetric ecology

2.1 Introduction

Inter-species interactions form a complex web that drives ecological dynamics[67, 73,

123, 21, 113]. Competition, in particular, has been hypothesized as a driving force for the

evolution and maintenance of biodiversity within various ecosystems[19, 49, 4]. As opposed to a

hierarchical competitive structure, previous theoretical studies have shown that species diversity

may be promoted by cyclical non-transitive interactions, which describe interactions where

there is no single best competitor, but rather the network of species competition resembles a

loop[45, 96, 26, 111, 54, 80, 100]. The most simplified example of this system can be described

as a basic game of rock-paper-scissors. In this system, rock beats scissors, scissors cuts paper,

and paper beats rock, resulting in cyclic competition with no hierarchical organization. Ecologies

based on this type of interaction have been observed in various natural settings, ranging from

desert lizards[111], and costal reef invertebrates[14] to bacterial communities[59, 26, 60].

Of particular interest within this field of ecology is to better understand the underlying

mechanisms that contribute to the stability of these ecosystems[59, 60, 48, 9]. While the ap-

plication of theory in ecology is still limited, the principles of a non-transitive ecology were

first demonstrated experimentally using three isolated bacterial strains consisting of a toxin
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producing, toxin sensitive, and toxin resistant strain[59]. In this natural rock-paper-scissors

ecology, the toxin producer could kill the toxin sensitive strain, the toxin sensitive strain could

outgrow the toxin resistant strain, likewise the toxin resistant strain could outgrow the toxin

producing strain. This simple, non-transitive triplet demonstrated that when interactions among

the strains remained local, cyclic competition could maintain species diversity. However, because

this study only focused on a short observation duration of seven days, the ability of non-transitive

competition to maintain biodiversity over a ecologically relevant duration remains unclear. Addi-

tionally, because this previous study did not provide a characterization of the relative competitive

advantages of each strain, it is difficult to relate this system with other non-transitive ecologies.

Intuitively, one would expect competitive asymmetry within such an ecology. For example, a

toxin producing strain might outcompete a toxin-sensitive strain at a faster rate than a toxin sensi-

tive strain could outgrow a toxin resistant strain. Due to this potential asymmetry of competitive

advantages within this system, it is unlikely that coexistence would be maintained over a longer

experimental duration.

In this work, we investigate how asymmetric competitive advantages affect a three

strain non-transitive ecology, expanding upon the previous experimental work using rationally

engineered and well characterized strains of E. coli. Specifically, we engineer three strains of E.

coli to produce and release three different toxins that kill other members of the same species that

lack the production of the corresponding immunity protein. In order to create a one directional

rock-paper-scissors competition dynamic, each strain is engineered to produce an additional

second immunity protein, providing immunity to one other strain in the ecology. The competitive

relationships between each of the strain pairs are characterized in pairwise competition in order to

establish relative competitive advantages and identify competitive asymmetry within the system.

Using this characterized model microbial system, we explore the outcome of non-transitive

competition in a solid growth medium environment (agar) where competitive interactions remain

local. We find that given equal starting fractions among the three strains, the strain with the
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Figure 2.1. Cyclic non-transitive dynamics enable biodiversity a) Diagram of the engineered
ecology strains including one toxin and two immunity genes. Each toxin produced targets a
different essential biological component of E. Coli cells. b) The three strains were combined
at an equal ratio and immediately plated on agar. Each day corresponds to a passage obtained
through replica plating. Image stills were obtained by fluorescence imaging. This experiment
was executed one time at this density, but it was repeated at multiple densities as shown in
Supplementary Figure 2.

weakest competitive advantage consistently dominates the ecosystem. Additionally, we develop

a computational model to investigate the relationship between asymmetric competition and

parameter space. In particular, we examine the effect of varying the relative competitive strengths

among the three strains and find that within a certain parameter space, a steady state three strain

equilibrium can be reached by the ecology, albeit at different fractional occupancies. Finally, we

demonstrate that there are initial conditions such as different patterns of initial distributions that

can contribute to, or prevent, the establishment of steady state coexistence.

2.2 Results

We created a synthetic ecology of three bacterial populations which compete with each

other through cyclic non-transitive interactions[71]. In order to create this three-strain ecology
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where each E. coli strain possesses a competitive advantage over another, we used a class of

naturally occurring peptide toxins called colicins. These peptides are lethal to certain E. coli

strains and provide the producing strain with the ability to inhibit growth of competing strains[16].

Among colicins, the mechanisms of action fall within three major categories: disruption of protein

production, degradation of DNA, and disruption of the cell membrane[16]. In order to mimic

this natural competition diversity, we designed each strain to produce a different colicin that acts

through each of the three mechanisms. Additionally, in order to establish a cyclic rock-paper-

scissors competitive relationship, each strain was given a second immunity to the toxin produced

by the targeted strain (Fig. 2.1a). In this system, Strain Red (R), contains a plasmid producing

colicin E3 and E3 immunity protein, a fluorescence reporter protein, a lysis protein (for toxin

release), and a secondary E7 immunity protein. Strain Green (G) contains the same plasmid

structure expressing colicin E7, and the E7 immunity protein, and a secondary Col V immunity

protein. Strain Blue (B) contains the wild-type Col V operon consisting of the toxin (cvaC),

immunity (cvi), as well as export proteins (cvaA and cvaB)[38], and a secondary E3 immunity

protein (Fig. 2.5). Due to their different mechanisms of action, inadvertent cross immunity due

to structural or functional homology between related colicins was minimized.

The first experiment we carried out to investigate our three strain ecology consisted of

mixing the strains, from liquid cultures, at an equal ratio and plating them on a static agar plate

environment. The choice to carry out all our experiments on solid media was based on the

previously reported observation that local interactions and dispersal promote diversity within a

community[59]. After incubation, the bacteria lawn on the agar plate was passaged by replica

plating every 24 hours to guarantee a constant source of fresh nutrients and uncolonized space to

invade (Fig. 2.1b). We tested a range of initial plating densities spanning a 104 fold change (

Fig. 2.5a). We found that the duration of coexistence was inversely proportional to the initial

plating densities (Fig. 2.5b). This outcome is attributed to the ability of the lower density cells

to establish larger colonies due to the higher availability of free space surrounding them. In this

scenario, cells at the colony boundary are able to shield cells in the interior from toxin exposure.
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Figure 2.2. Characterization of the ecology and causes of asymmetry. a) Schematic diagram of
the method used to create an ordered grid of RGB colonies on agar plate through the use of a
liquid handling robot. On the right, images corresponds to passages of the lowest density grid
(384). Passaging of plates was done by replica plating. This experiment was executed one time
at this density and it was repeated at a higher density as shown in Figure 2.7. b) Quantification of
strain coexistence as a function of time for three different initial densities plated in grid format.
c) Quantification of strain coexistence as a function of time for five different initial densities
plated in a random distribution. d) Paired competition on agar plates starting from an initial
grid at 1536 density. e) Quantification of time to takeover for each competing pair. f) Diagram
illustrating asymmetry in toxin strength in the RPS ecology. Strain R produces strong inhibition
of Strain G, Strain G produces intermediate inhibition of Strain B, and Strain B produces weak
inhibition of Strain R.

Interestingly, we observed one scenario (1 to 1000 dilution) in which all three strains coexisted

for the entire duration of the 30 day experiment (Fig. 2.5c and Supplementary Video 1). In

this scenario, Strain B was nearly able to completely colonize the agar plate, however a small

patch of Strain G cells managed to survive the initial attack from Strain R. As a result, Strain G

was able to invade into space colonized by Strain B, and Strain R could invade into the newly

acquired area of Strain G. Nevertheless, in the four other scenarios we tested, the system always

converged to a single winner, Strain B (Supplementary Video 2). We wondered whether the

survival of Strain G in the 1 to 1000 dilution was an outlier that occurred because of random

distributions in the initial plating, or whether coexistence of this system of 3 strains was an
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Figure 2.3. Characterization of reversed RPS ecology and computational model.a) Diagrams
of RPS (RPS-1) and RPS reversed (RPS-2) in comparison. The numbers represent the relative
toxin strength obtained from kill curve experiments. b) Pseudocode illustrates the rules behind
the lattice model simulations. c) Comparison of model simulations of RPS-1 (left) to model
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All lattice simulations plots were simulated in a square lattice grid and subsequently trimmed
into circular shapes to ease the comparison with experimental results. This experiment was
executed one time at this density and it was repeated at a lower density as shown in Figure 2.7
and 2.12.

expected outcome under these conditions. Therefore, we designed an experimental protocol

which could guarantee the sequential placement of the three strains in individual colonies which

are equally spaced from each other like the intersections of a grid.

2.2.1 Enemy of the strongest or predominance of the weakest?

In order to achieve precise control of our experimental conditions we used a liquid

handling robot to array the three strains into equally spaced grids of varying initial densities.

After arraying the cells into grid format on agar plates, the strains were grown for 24 hours, then

passaged every subsequent 24 hours by replica plating (Fig. 2.1a). The results of this experiment

were in agreement with our previous observations. As before, the initial density was inversely

related to the duration of coexistence of the three strains, and Strain B was able to take over the
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agar plate (Fig. 2.1b and Fig. 2.7). Because competition within microbial communities may

be affected by differences in growth rate, we first measured the growth rate of each RPS strain

and found that the strains had similar growth rates (Supplementary Fig. 2.8a). Therefore, we

hypothesized that the reason Strain B was consistently winning was due to asymmetry among the

potency of the toxins produced by the three competing strains. In order to determine the source

of this asymmetry, we characterized the interactions between each pair of competing strains

using the same grid pattern arrangement (Fig. 2.1d). We found that Strain R produced the most

lethal toxin, as it was able to completely eliminate Strain G prior to day 5. The next strongest

toxin produced by Strain G was able to completely eliminate the Strain B by day 6. Finally, we

found Strain B to be the weakest toxin producer, taking 7 days to completely eliminate Strain R

(Fig. 2.1e). The resulting ranking of relative toxin strengths was also demonstrated in kill curve

experiments conducted in liquid culture ( Fig. 2.8b, c). Therefore, we confirmed the asymmetry

in the system, whereby Strain R was shown to be the strongest and Strain B the weakest (Fig.

2.1f).

Following this observation, our hypothesis was that since Strain R was the strongest toxin

producing strain, it was quickly, and completely, eliminating Strain G. As a result, when Strain

B and Strain R were the only two left competing, Strain B was eventually able to win due to its

immunity and toxicity to Strain R. In this first hypothesis, Strain B would win due to its position

as the enemy of the strongest strain ( Fig. 2.9a). However, we also considered the counterintuitive

possibility that Strain B was consistently winning because it was producing the weakest toxin (

Fig. 2.9b). In order to test this theory, we created a new three strain ecology (RPS-2) in which we

reversed the order of the rock-paper-scissors competitive relationship by swapping the secondary

immunity genes for each strain. With these new constructs, Strain R2 now attacked Strain B2,

Strain B2 attacked Strain G2, and Strain G2 attacked Strain R2. Although we reversed the order

of competition by reversing the secondary immunity, the relative toxin strengths remained the

same (Fig. 2.3a and Fig. 2.10). Therefore, while Strain B2 remained the weakest strain, the

enemy of the strongest then became Strain G2. If our initial hypothesis of the winner being the
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enemy of the strongest were correct, we would expect Strain G2 to eventually take over the plate.

Alternatively, if “predominance of the weakest” were the driving force, then we would expect

Strain B2 to win in RPS-2 as well (Fig. 2.9b). Simultaneously, we developed a lattice-based

computational model to simulate competition of the three strains in a 150x150 square grid (Fig.

2.3b). With the parameter values established in our kill curve experiments, simulations of our

computational model agreed with our previous experimental results demonstrating that Strain B

should outcompete the other strains (Supplementary Video 3).

The simulations also confirmed our observation regarding the relationship between

duration of coexistence and initial density (Fig. 2.11). Furthermore, when simulating the RPS-2

system, the model predicted that the eventual winner of the RPS ecology would still be Strain B,

confirming the idea of “predominance of the weakest” (Fig. 2.3c and Supplementary Video

4), a theory that had been hypothesized by previous theoretical works[34, 46, 75, 114, 2, 79].

As predicted, we found experimentally that the final winner of the RPS-2 ecology was indeed

Strain B2 (Fig. 2.3d, Fig. 2.12 and Supplementary Video 5). This outcome occurs because the

weakest strain allows its target (Strain R in RPS-1 and Strain G2 in RPS-2) to rapidly expand and

eliminate the third strain in the system (Strain G in RPS-1 and Strain R in RPS-2). When only

two strains are left, the “weakest” strain is then able to slowly take over due to the rock-paper-

scissors dynamics (Fig. 2.13). While we were enthusiastic to experimentally demonstrate the

theory of “predominance of the weakest”, we still wondered about the scenario we observed in

which all three strains were not fully eliminated, and seemed to have developed stable existence.

We therefore hypothesized that there must be alternate possible outcomes that arise based on

probability for a given set of toxin parameters.

2.2.2 Spatial patterns and parameter space

To further explore this concept, we investigated the relationship between toxin strength

and the system steady state. We used our computational model to do a parameter sweep of

toxin production strengths. For each combination of parameters, we ran 100 simulations. We
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Figure 2.4. Model simulations exploring spatial patterns and parameter space.a) In this simu-
lation the starting condition is an ordered array of alternating strains. The bar plots shows the
outcome of 100 trials for multiple parameters of Pb (Probability of death of strain B). For all
simulations, the probability of death of strain R (0.1) and strain G (0.5) are kept constant. b)Time
series representing the possible scenario where strain G wins (left-hand side of bar plot in part
a). Below, the corresponding image stills at multiple time points. c) Time series representing
the possible scenario where strain R B G coexist (left-hand side of bar plot in part a). Below,
the corresponding image stills at multiple time points. d) Time series representing the possible
scenario where strain B wins (right-hand side of bar plot in part a). Below, the corresponding
image stills at multiple time points. e) We generated the same bar plots described in part a
with different geometries as initial conditions.The bar plots shows the outcome of 100 trials for
multiple parameters of Pb (Probability of death of strain B). For all simulations, the probability
of death of strain R (0.1) and strain G (0.5) are kept constant.

found that “predominance of the weakest” was not always the most probable outcome. When

keeping the toxin strength of both the weakest and strongest toxins fixed while varying the toxin

strength of the intermediate strain, the most probable steady state outcome was dependent on

the intermediate toxin strength (Fig. 2.4a). The model shows that if the toxin strength of the

intermediate strain (Strain G) is close in value to the toxin production strength of the weakest

toxin producer (Strain B), the most probable outcome is that the intermediate wins (strain G)

(Fig. 2.4b). On the other hand, when the toxin production strength of the intermediate strain falls
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within an intermediate range, the model predicts the possibility of stable coexistence between

the three strains at different fractional occupancies (Fig. 2.4c and Supplementary Video 6).

Finally, if the toxin production strength of the intermediate strain is close in value to the strength

of the strongest toxin producer (Strain R), then the weakest strain (Strain B) always wins as

predicted by the hypothesis of “predominance of the weakest” (Fig. 2.4d). Interestingly, we did

not observe any case in which the strongest strain (Strain R) won.

When compared to our previous experimental results, our experimental parameter values

fall within the parameter space that predicts two possible outcomes. The most probable scenario

is that Strain B wins, but there is also a small probability of the establishment of coexistence. In

agreement with the model, we observed that on the plate that established coexistence, the three

strains maintained different fractional occupancies, with Strain B having the highest fractional

occupancy. These results highlight the value of the computational model for examining a wide

variety of scenarios that would be too difficult or time consuming to cover experimentally. To

this end, we wanted to investigate how different initial fractional occupancies would effect the

steady state outcome. We found that, in grid format, the final outcome is highly influenced by the

abundance of the weak strain, where an inverse relationship exists between the starting fractional

occupancy of the weakest strain and its probability to takeover (Fig. 2.14). We also explored

how different patterns of initial strain distribution would affect the steady state outcome of the

competition in relation to toxin strength. Using the computational model, we simulated multiple

scenarios with common spatial patterns such as stripes, isolated clusters, and concentric circles

(Fig. 2.4e).

We found that stripes led to similar results compared to the previously discussed case

with the grid pattern in which the weakest strain is able to mostly dominate the system

(Supplementary Video 7). On the contrary, having the strains separated in three different

clusters resulted in a significant increase in the parameter ranges that could lead to coexistence

(Supplementary Video 8). As before, in both scenarios we did not observe any case in which

the strongest strain (Strain R) could win. On the other hand, when initially distributed in the
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pattern of concentric rings, it was possible for the strongest strain (Strain R) to take over the

plate (Supplementary Video 9). This only occurs when the strongest strain is placed in the inner

circle, shielded from the weakest strain (Strain B). This way, if the intermediate strain in the

middle manages to kill off the outer strain before Strain R reaches it, then the strongest strain can

win. As expected, we also demonstrate that this outcome is dependant upon the ratio between

the ring dimensions and the rate of takeover of each strain (Supplementary Video 10).

2.3 Discussion

Bacterial communities occupy a myriad of diverse niche environments, playing im-

portant roles in processes ranging from nutrient recycling[118, 74] to the regulation of hu-

man health[25, 24, 35]. While the ability to engineer robust bacterial communities could

lead to major advancements in fields such as recycling, sustainability, and healthcare, the

mechanisms underlying species diversity and stability are still not yet well understood. Al-

though cooperative interactions between the species comprising such communities contribute

to ecological stability[122, 31, 95], it is generally accepted that competition is the guiding

force[99, 25, 48, 69, 119]. However, due to the complexity of natural ecologies, these types of

competitive interactions are difficult to isolate or quantify in nature. Our study demonstrates the

feasibility of using an engineered synthetic ecology to simplify complex community relation-

ships in order to study underlying mechanisms that may lead to community stability and the

maintenance of diversity.

Due to the immense species diversity and wide range of competitive strategies organisms

employ in nature[48, 129, 119], we hypothesized that natural competitive dynamics are likely

to be unbalanced[112, 28]. Unlike a perfectly balanced game of rock-paper-scissors in which

each of the three species could kill each other at an equal rate, we focus on characterizing an

asymmetric system in which the relative competitive advantages among each predator-prey pair

varies. While previous studies focused on the coexistence of non-transitive communities over
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a relatively short timeframe[59], they do not allow the system to reach steady state, in which

case it is likely that only one species would remain. Here, we demonstrate that intransitivity fails

to promote biodiversity over a long time horizon when the relative competitive advantages are

imbalanced [39]. Therefore, we believe that an asymmetric non-transitive ecology is a useful

base model to study complex interactions among competing bacterial species.

Using our three-strain ecology we experimentally demonstrate that a uniformly distributed

asymmetric game of rock-paper-scissor is most likely to be won by the weakest species[34, 46,

75, 114, 2, 79]. Interestingly, we show that an asymmetric ecology can develop steady state

coexistence, and that the relative toxin strengths among the three species dictate the extent of the

coexistence space. Counterintuitively, under the same initial conditions of uniform distribution,

our models predict that the producer of the most lethal toxin never wins. As opposed to pairwise

competition, where the producer of the strongest toxin has a competitive advantage[19], the

producer of the strongest toxin in non-transitive communities are at an evolutionary disadvantage.

This could be an important selective force against continuous evolution of ever-more lethal

warfare chemicals in microorganisms, resulting in increased diversity of chemicals that are

constrained to a specific toxin strength parameter space. The role that toxin mediated competition

plays in community stability may also explain the observed relative abundance of membrane

targeting, DNA, or ribosome targeting bacterial toxins among bacterial communities[72].

Finally, we also observe that the steady-state outcomes of the system can be altered by

changing the initial strain distribution patterns. For example, we find that separate blocks in a

triangular conformation can greatly expand the parameter space for coexistence, supporting the

idea that spatially separated niches are more likely to sustain biodiversity[68, 50, 6]. On the other

hand, strains initially distributed in concentric circles can enable the strongest toxin producer to

win. These results demonstrate that many factors need to be considered if the goal is to design

stable synthetic ecologies in an environment where interactions are local[19]. Overall, this study

provides a mathematical model and engineering framework to study competitive interactions,

gain mechanistic insight, and ultimately, predictive power that can be used as a guide to design
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stable communities.

Chapter 2 contains material originally published as Liao, M.J., Miano, A., Chao, L.,and

Hasty, J., 2020. Survival of the weakest in non-transitive asymmetric ecologies. Nature

Communications, 11 (1), 1-8. The dissertation author was one of the primary researchers and is

the first author of this paper.

2.4 Methods

2.4.1 Strains and plasmids

Our strains were cultured in lysogeny broth (LB) media with 50µg ml-1 spectinomycin

for the WT and TP strains, in a 37◦ shaking incubator. The plasmids used in this study are

described in (Supplementary Fig. 1). The colicin E3, Im3, colicin E7, Im E7, and E1 lysis

genes were taken from previously used plasmids[71] using PCR and assembled with Gibson

assembly[37]. The 4.5kb colicin V expression cassette comprising CvaA, CvaB, CvaC and cvi

was isolated from the pHK11 plasmid from the wild type colicin V strain ZK503 by PCR[38].

All plasmids were transformation into DH5α (Thermofisher) chemically competent E.coli and

verified by Sanger sequencing before transformation into E.coli strain MG1655. The strains used

in this study are described in (Supplementary Table 1). The gene sequences used in this study

are described in (Supplementary Table 2).

2.4.2 Growth rate

For growth rate experiments, the appropriate E.coli strains were seeded from a -80◦

glycerol stock into 2ml LB and the appropriate antibiotics and incubated in a 37◦C shaking

incubator. After cells reached an OD600 of 0.1, 1ml culture was added to a 125ml erlenmeyer

37



flask containing 25ml fresh media with appropriate antibiotics and left shaking at 270 rpm. Once

the samples reached an OD600 of 0.1 samples were taken every 20 minutes and measured at

OD600 using a DU 740 Life Science Uv/vis spectrophotometer.

2.4.3 Toxin validation

To prepare colicin lysate, the colicin E3 E.coli strain was seeded from a -80◦ glycerol

stock into 2ml LB and incubated in a 37◦C shaking incubator. After cells reached an OD600

between 0.4-0.6, 1ml of the grown culture was collected in a 2 ml eppendorf tube and two cycles

of incubation at 98◦C for 5 minutes followed by 10 minutes at -80◦C were performed. The

resulting media was then filtered and collected using a 0.22µm syringe filter. For toxin co-culture

experiments, wild type MG1655 E.coli strains were seeded from a -80◦ glycerol stock into 2ml

LB and incubated in a 37◦C shaking incubator. After cells reached an OD600 between 0.2-0.4,

5µl culture was added to 200µl fresh media in a standard Falcon tissue culture 96-well flat

bottom plate. Additionally, 5µl of the purified colicin lysate was added to each well. Cultures

were grown at 37◦ shaking for 19 hours and their optical density at 600nm absorbance was

measured every 5 min with a Tecan Infinite M200 Pro.

2.4.4 Plate passage experiments

Each E.coli strain was seeded from a -80◦ glycerol stock into 5ml LB with 50µg ml-1

spectinomycin. After growth for 8-12 h at 37◦ in a shaking incubator, the culture was diluted

100-fold into 25ml of the same medium in a 50ml erlenmeyer flask and grown until reaching

an OD of 0.4 (Plastibrand 1.5 ml cuvettes were used). Strains were then diluted 1:10, 1:100,

1:1000, and 1:10000. 20uL of each strain was then plated into separate regions of 100x15mm
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petri dishes containing LB agar and 50µg ml-1 spectinomycin. The strains were then mixed

using 10 glass beads and incubated overnight at 37◦ for 24 hours. Plates were passaged every 24

hours by replica plating onto a fresh agar plate containing the appropriate antibiotics.

2.4.5 Liquid handling robot

As before, each E.coli strain was seeded from a -80◦ glycerol stock into 5ml LB with

50µg ml-1 spectinomycin. After growth for 8-12 h at 37◦ in a shaking incubator, the culture

was diluted 100-fold into 25ml of the same medium in a 50ml erlenmeyer flask and grown until

reaching an OD of 0.75. Upon reaching this OD, 5% glycerol was added to each culture and

45µ l of each prepared culture was then transferred into a single 384 well labcyte plate. To plate

the grid array we used a Labcyte Echo liquid handling robot to transfer 2.5 nL volume from the

source well on the labcyte well plate onto SBS-format PlusPlates containing 42mL LB agar and

50µg ml-1 spectinomycin. The transferred cells were arrayed according to 384, 1536 and 6144

well plate formats in order to create varying densities. The cells were then incubated overnight

at 37◦ for 24 hours. Colonies were transferred by replica plating from the SBS-format PlusPlates

onto a standard 100x15mm petri dish containing LB agar and 50µg ml-1 spectinomycin. Plates

were passaged every 24 hours by replica plating onto a fresh agar plate containing the appropriate

antibiotics.

2.4.6 Kill Curve

To prepare colicin lysate for each strain, the appropriate strains were seeded from a -80◦

glycerol stock into 5ml LB and incubated in a 37◦C shaking incubator overnight. The overnight

cultures were then passaged 1:100 into 2mL LB and incubated in a 37◦C shaking incubator until
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reaching an OD600 of 1.0. 1mL of the culture was then collected in a 2 ml eppendorf tube,

centrifuged at 21130 rcf for 10 minutes and the supernatant was passed through a 0.22um syringe

filter. For the kill curve assay, the appropriate strains were grown in a 37◦C shaking incubator to

an OD600 between 0.3 and 0.4 in 5mL LB in a 25mL flask. 500uL of the corresponding colicin

lysate was then added to the flask. CFU measurements were taken by plating serial dilutions

(n=3) and counting colonies. The first time point was taken immediately before each colicin was

added, then every 10 minutes afterwards. For analysis, we took the difference of 5 time points

(40 minutes) that corresponded to the maximum change in total alive cell count divided by the

initial CFU count of the initial time point in order to calculate the percent cell death. The relative

toxin strengths were then found by taking the ratios between the percent cell deaths for each

strain pair.

2.4.7 Image Processing

For plate imaging a Syngene PXi fluorescent imager was used. Strains producing sfGFP

were captured using the Blue LED Module for excitation and SW032 emission filter, and strains

producing mKate2 were captured using the Red LED Module excitation source and Filt 705

emission filter. Images were processed using Image J. Images were converted to 8-bit and

background subtracted. In order to assign the false color blue, we inverted the fluorescence

values of the sfGFP image using the math function v=-v+v(mean). We then took the difference

from the mKate2 image in order to create a mask of the negative space from both GFP and RFP.

This image was assigned as the “Blue” channel for composite images.
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2.4.8 Modeling

We developed a lattice-based model in Matlab to simulate the competition dynamics

between the three strains RGB. The model was based on similar principles previously described

in the literature [59]. The lattice is a 150 x 150 regular square lattice with zero boundary condi-

tions. This means that the edges of the lattice are set to zero (absorbing boundary conditions),

simulating the physical boundary of the petri dish that prevents cells from expanding beyond it as

well as the effect of disregarding cells beyond the boundary of the replica plating. Therefore, the

four edges of the square are kept at a value of zero (no cells can grow/expand in that direction)

and the grid is updated only for the internal pixel (pixel 2 to N-1 on all sides).The simulations

in Figure 2 and 3 were obtained by starting the lattice with a grid array of alternating strains.

The remaining lattice points are classified as “empty space”. The probability of death for each

competing strain is associated to the relative potency of its enemy’s toxin. pR, pG and pB

refer to the maximum probability of death of strain R, G and B respectively. For each time

loop, the lattice array is scanned pixel by pixel (ignoring boundary pixels which have a fixed

value of 0) and is updated according to two main rules as shown in Figure 3b. If the pixel

considered is empty, the algorithm takes into account the relative occupancy of the 8 neighboring

pixels for the three strains R,G, or B. Three probabilities are calculates as the sum of locations

occupied by each strain divided by the total neighboring locations (8). Finally, the Matlab

function randsample is used to choose how to fill the spot according to the previously calculated

probabilities. This process simulates expansion due to growth. On the other hand, if a given

location is full, the strain is killed with a thresholded probability that is dependent on the number

of surrounding enemies present. If the number of enemies is below 4 (corresponding to being ≤

half surrounded), the probability of death is capped at half the maximum probability of death for

the given strain. On the other hand, if the number of surrounding enemies is greater than 4, the

probability of death corresponds to the maximum probability associated to the given strain. In

addition, we set a baseline probability of death equal to 0.05 which cumulatively represents the
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random death of cells and their removal due to the replica plate passaging. For the simulations

shown in Figure 4, each simulation was run for t=10000 and each parameter set was simulated

100 times. Each time point corresponds to a reproduction event (around 25 minutes). Therefore,

the time chosen to investigate steady state dynamics corresponds to about 170 days, which we

established to be a long enough interval both computationally and biologically. In terms of

spatial parameters, the distance between two consecutive pixels represents roughly 1 mm on

the agar plate. Therefore the entire grid represents a square with a side of about 10 cm. The

relationship between grid densities on the agar plates compared to the model are illustrated in

Supplementary Fig. 7.

2.5 Supplementary Videos

Supplementary Movie 1

Image sequence of fluorescent agar plate images for RPS-1 at a 1:1000 dilution. Strains were

initially seeded at a 1:1:1 ratio of Strain R, G, B randomly mixed. Images were taken every 24

hours.

Supplementary Movie 2

Image sequence of fluorescent agar plate images for RPS-1 at a 1:10000 dilution. Strains were

initially seeded at a 1:1:1 ratio of Strain R, G, B randomly mixed. Images were taken every 24

hours.

Supplementary Movie 3

Lattice model simulation of RPS-1 in a medium density grid. Toxin strength parameters derived

from liquid kill curve experimental results. Probability of death of Strain R, B, G was 0.1, 0.28,

and 0.417 respectively.

Supplementary Movie 4

Lattice model simulation of RPS-2 in a medium density grid. Toxin strength parameters derived
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from liquid kill curve experimental results. Probability of death of Strain R, B, G was 0.153,

0.512, and 0.1 respectively.

Supplementary Movie 5

Image sequence of fluorescent agar plate images for RPS-1 (left) and RPS-2 (right) initially

spotted in a grid format. The top row shows low density initial seeding. The bottom row shows

medium density initial seeding. Images were taken every 24 hours.

Supplementary Movie 6

Lattice model simulation of RPS-1 in a medium density grid. Toxin strength parameters derived

from liquid kill curve experimental results. Probability of death of Strain R, B, G was 0.1, 0.2,

and 0.5 respectively.

Supplementary Movie 7

Lattice model simulation demonstrating one of the possible scenarios with RPS-1 initially dis-

tributed in vertical stripes. Toxin strength parameters derived from liquid kill curve experimental

results. Probability of death of Strain R, B, G was 0.1, 0.28, and 0.417 respectively.

Supplementary Movie 8

Lattice model simulation demonstrating one of the possible scenarios with RPS-1 initially dis-

tributed in separate blocks. Toxin strength parameters derived from liquid kill curve experimental

results. Probability of death of Strain R, B, G was 0.1, 0.28, and 0.417 respectively.

Supplementary Movie 9

Lattice model simulation demonstrating one of the possible scenarios with RPS-1 initially dis-

tributed in concentric circles with the strongest strain in the middle. In this example, the central

circle has a smaller radius compared to the thickness of the other rings. Toxin strength parameters

derived from liquid kill curve experimental results. Probability of death of Strain R, B, G was

0.1, 0.28, and 0.417 respectively.

Supplementary Movie 10

Lattice model simulation demonstrating one of the possible scenarios with RPS-1 initially dis-

tributed in concentric circles with the strongest strain in the middle. Toxin strength parameters
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derived from liquid kill curve experimental results. Probability of death of Strain R, B, G was

0.1, 0.28, and 0.417 respectively.

2.6 Supplementary Data
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Figure 2.5. The plasmids used in this study
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Figure 2.6. Replica plates of all serial dilution densities tested (a,) Images of combined three
strain plate passages across a range initial starting densities. (b,) Duration of three strain
coexistence for each starting density. (c,) Closeup images of the highlighted regions on day 4,
day 12, day 20, and day 28 of the 1 to 1k dilution demonstrating the maintenance of coexistence.
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Figure 2.7. Image stills corresponding to the RPS spotted grid passage experiments for 1536
and 384 density starting conditions.
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Figure 2.8. (a,) Time course results for the liquid kill curve. (b,) Toxin strengths of RPS-1
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Figure 2.9. Enemy of the strongest or Predominance of the weakest? (a,) Schematic representa-
tion of “enemy of the strongest”. 1) Strain R is the strongest strain, causing strong inhibition
of Strain G. 2) As a result of the strong inhibition, Strain G is eliminated faster relative to the
other strains. 3) As Strain G is fully eliminated, Strain B can begin to expand. 4) Strain B
slowly outcompetes Strain R. 5) Strain B is the final winner. (b,) Schematic representation of
“predominance of the weakest”. 1) Strain B has very weak inhibition of strain R. 2) As a result,
Strain R is able to expand faster relative to the other strains. 3) In response to rapid expansion of
Strain R, inhibition of Strain G increases. 4) Eventually, Strain G is fully eliminated, enabling
Strain B to grow unchecked. 4) Strain B slowly outcompetes Strain R. 5) Strain B is the final
winner.
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simulation (on the right). (b,) The model was simulated with RPS1 parameters (pR= 0.1, pB=
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Figure 2.12. Image stills corresponding to the RPS-2 spotted grid passage experiments for 1536
and 384 density starting conditions.
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Figure 2.13. Predominance of the weakest for RPS-1 and RPS-2 (a,) Schematic representation
of “predominance of the weakest” for RPS-1. 1) Strain B has very weak inhibition of strain R.
2) As a result, Strain R is able to expand faster relative to the other strains. 3) In response to
rapid expansion of Strain R, inhibition of Strain G increases. 4) Eventually, Strain G is fully
eliminated, enabling Strain B to grow unchecked. 4) Strain B slowly outcompetes Strain R. 5)
Strain B is the final winner. (b,) Schematic representation of “predominance of the weakest”
for RPS-2. 1) Strain B2 has very weak inhibition of Strain G2. 2) As a result, Strain G2 is able
to expand faster relative to the other strains. 3) In response to rapid expansion of Strain G2,
inhibition of Strain R2 increases. 4) Eventually, Strain R2 is fully eliminated, enabling Strain B2
to grow unchecked. 4) Strain B2 slowly outcompetes Strain R2. 5) Strain B2 is the final winner.
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Figure 2.14. Model simulations explore multiple initial conditions in grid format. Pie charts
represent the fractional occupancies of the starting allocation of the three strains. The bar
charts show the steady state outcomes of multiple simulations for a range of different toxin
strength parameters. The bar plots shows the outcome of 100 trials for multiple parameters of Pb
(Probability of death of strain B). For all simulations, the probability of death of strain R (0.1)
and strain G (0.5) are kept constant.
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Strain Name Host Bacterium Plasmid Referenced in Figure

Strain R

Strain G

Strain B

Strain R2

Strain G2

Strain B2

MG1655

MG1655

MG1655

MG1655

MG1655

MG1655

pML0004 - Colicin E3 + Col E3 Immunity + mKate2
+ Col V Immunity + Col E1 Lysis Protein

pML0002 - Colicin E3 + Col E3 Immunity + mKate2
+ Col E7 Immunity + Col E1 Lysis Protein

pML0003 - Colicin E7 + Col E7 Immunity + sfGFP 
+ Col V Immunity + Col E1 Lysis Protein

pML0001 - Colicin E7 + Col E7 Immunity + sfGFP 
+ Col E3 Immunity + Col E1 Lysis Protein

pML0146 - Colicin V + Colicin V Immunity + Colicin V 
secretion protein (CvaA) + Colicin V secretion/processing 
ATP-bindingn protein (CvaB) + Col E7 Immunity

pML0137 - Colicin V + Colicin V Immunity + Colicin V 
secretion protein (CvaA) + Colicin V secretion/processing 
ATP-bindingn protein (CvaB) + Col E3 Immunity

1a, 1b, 2a-f, 3a-c, 4a-e,
Extended Data Figs 1-4

1a, 1b, 2a-f, 3a-c, 4a-e,
Extended Data Figs 1-4

1a, 1b, 2a-f, 3a-c, 4a-e,
Extended Data Figs 1-4

3a-c, Extended Data 
Figs 6,8

3a-c, Extended Data 
Figs 6,8

3a-c, Extended Data 
Figs 6,8

Figure 2.15. The strains used in this study.
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E1 Lysis MRKRFFVGIFAINLLVGCQANYIPDVQGGTIAPSSSSKLTGIAVQ*

Colicin E3 MSGGDGRGHNTGAHSTSGNINGGPTGLGVGGGASDGSGWSSENNPWGGGSGSGIHWGGGSGHGNGGGNGNSGGGSGTGGNL
SAVAAPVAFGFPALSTPGAGGLAVSISAGALSAAIADIMAALKGPFKFGLWGVALYGVLPSQIAKDDPNMMSKIVTSLPADDITESPVSS
LPLDKATVNVNVRVVDDVKDERQNISVVSGVPMSVPVVDAKPTERPGVFTASIPGAPVLNISVNNSTPAVQTLSPGVTNNTDKDVRPA
GFTQGGNTRDAVIRFPKDSGHNAVYVSVSDVLSPDQVKQRQDEENRRQQEWDATHPVEAAERNYERARAELNQANEDVARNQER
QAKAVQVYNSRKSELDAANKTLADAIAEIKQFNRFAHDPMAGGHRMWQMAGLKAQRAQTDVNNKQAAFDAAAKEKSDADAAL
SSAMESRKKKEDKKRSAENNLNDEKNKPRKGFKDYGHDYHPAPKTENIKGLGDLKPGIPKTPKQNGGGKRKRWTGDKGRKIYEWDS
QHGELEGYRASDGQHLGSFDPKTGNQLKGPDPKRNIKKYL*

Col E3 
Immunity 

MGLKLDLTWFDKSTEDFKGEEYSKDFGDDGSVMESLGVPFKDNVNNGCFDVIAEWVPLLQPYFNHQIDISDNEYFV
SFDYRDGDW*

Colicin E7 MSGGDGRGHNSGAHNTGGNINGGPTGLGGNGGASDGSGWSSENNPWGGGSGSGVHWGGGSGHGNGGGNSN
SGGGSNSSVAAPMAFGFPALAAPGAGTLGISVSGEALSAAIADIFAALKGPFKFSAWGIALYGILPSEIAKDDPNMMSK
IVTSLPAETVTNVQVSTLPLDQATVSVTKRVTDVVKDTRQHIAVVAGVPMSVPVVNAKPTRTPGVFHASFPGVPSLTVS
TVKGLPVSTTLPRGITEDKGRTAVPAGFTFGGGSHEAVIRFPKESGQKPVYVSVTDVLTPAQVKQRQDEEKRLQQEWN
DAHPVEVAERNYEQARAELNQANKDVARNQERQAKAVQVYNSRKSELDAANKTLADAKAEIKQFERFAREPMAAGH
RMWQMAGLKAQRAQTDVNNKKAAFDAAAKEKSDADVALSSALERRKQKENKEKDAKAKLDKESKRNKPGKATGKG
KPVNNKWLNNAGKDLGSPVPDRIANKLRDKEFKSFDDFRKKFWEEVSKDPELSKQFSRNNNDRMKVGKAPKTRTQD
VSGKRTSFELHHEKPISQNGGVYDMDNISVVTPKRHIDIHRGK*

Col E7 
Immunity

MELKNSISDYTEAEFVQLLKEIEKENVAATDDVLDVLLEHFVKITEHPDGTDLIYYPSDNRDDSPEGIVKEIKEWRAANG
KPGFKQG*

CvaC MRTLTLNELDSVSGGASGRDIAMAIGTLSGQFVAGGIGAAAGGVAGGAIYDYASTHKPNPAMSPSGLGGTIKQKPEGI
PSEAWNYAAGRLCNWSPNNLSDVCL*

Cvi MDRKRTKLELLFAFIINATAIYIALAIYDCVFRGKDFLSMHTFCFSALMSAICYFVGDNYYSISDKIKRRSYENSDSK*

CvaA MKWQGRAILLPGIPLWLIMLGSIVFITAFLMFIIVGTYSRRVNVSGEVTTWPRAVNIYSGVQGFVVRQFVHEGQLIKKGD
PVYLIDISKSTRNGIVTDNHRRDIENQLVRVDNIISRLEESKKITLDTLEKQRLQYTDAFRRSSDIIQRAEEGIKIMKNNMEN
YRYYQSKGLINKDQLTNQVALYYQQQNNLLSLSGQNEQNALQITTLESQIQTQAADFDNRIYQMELQRLELQKELVNT
DVEGEIIIRALSDGKVDSLSVTVGQMVNTGDSLLQVIPENIENYYLILWVPNDAVPYISAGDKVNIRYEAFPSEKFGQFSA
TVKTISRTPASTQEMLTYKGAPQNTPGASVPWYKVIATPEKQIIRYDEKYLPLENGMKAESTLFLEKRRIYQWMLSPFYD
MKHSATGPIND*

CvaB MTNRNFRQIINLLDLRWQRRVPVIHQTETAECGLACLAMICGHFGKNIDLIYLRRKFNLSARGATLAGINGIAEQLGMA
TRALSLELDELRVLKTPCILHWDFSHFVVLVSVKRNRYVLHDPARGIRYISREEMSRYFTGVALEVWPGSEFQSETLQTRI
SLRSLINSIYGIKRTLAKIFCLSVVIEAINLLMPVGTQLVMDHAIPAGDRGLLTLISAALMFFILLKAATSTLRAWSSLVMSTL
INVQWQSGLFDHLLRLPLAFFERRKLGDIQSRFDSLDTLRATFTTSVIGFIMDSIMVVGVCVMMLLYGGYLTWIVLCFTT
IYIFIRLVTYGNYRQISEECLVREARAASYFMETLYGIATVKIQGMVGIRGAHWLNMKIDAINSGIKLTRMDLLFGGINTFV
TACDQIVILWLGAGLVIDNQMTIGMFVAFSSFRGQFSERVASLTSFLLQLRIMSLHNERIADIALHEKEEKKPEIEIVADMG
PISLETNGLSYRYDSQSAPIFSALSLSVAPGESVAITGASGAGKTTLMKVLCGLFEPDSGRVLINGIDIRQIGINNYHRMIA
CVMQDDRLFSGSIRENICGFAEEMDEEWMVECARASHIHDVIMNMPMGYETLIGELGEGLSGGQKQRIFIARALYRKP
GILFMDEATSALDSESEHFVNVAIKNMNITRVIIAHRETTLRTVDRVISI*

Protein/Gene AA Sequence

Figure 2.16. The amino acid sequences for the proteins and genes used in this study.
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Chapter 3

Machine learning analysis of temporal
genome-wide bacterial response to heavy
metals

3.1 Introduction

Over the past decades several technologies have been developed to decode the transcrip-

tional regulatory network that guides cells’ response to environmental perturbations[55, 87].

These technologies generate large sets of data which usually require sophisticated data analysis

techniques to be interpreted[126]. Independent component analysis (ICA) is an unsupervised

machine learning technique which was originally developed to deconvolute mixed signals into

their individual sources with their relative strengths[23]. ICA has been shown to be particularly

successful at extracting biologically relevant transcriptional modules from a wide variety of

transcriptomics datasets, particularly obtained via RNA-seq[101, 104]. The main limitations

of these datasets is that they can usually only offer a snapshot of the cell’s state by providing

binary data of the pre and post induction period. In order to address this limitation, we previously

developed a microfluidic platform capable of culturing and monitoring over 2000 bacterial strains

simultaneously[41]. This technology allows to record the cells response to any environmental

perturbation with a time resolution of 10 minutes and for a period of time which can extend up

to 14 days.
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Figure 3.1. Dynomics experimental set up a Illustration of the differences between omics
technologies (left) and the Dynomics experimental set up consisting of a 2,176-strain microfluidic
device. b Diagram to illustrate the experiment steps. In chronological order the steps are: growth
on rich media to let the cells grow and completely fill the traps, downshift to minimal media for
48 hours, induction with the heavy metal of choice for 4 hours, recovery with minimal media.
After 20 hours on minimal media another cycle of induction and recovery can be performed.

In this study, we show how applying ICA to our temporal genome-wide data can lead

to unique insights into the temporal patterns of activation of bacterial promoters in response to

external perturbations. In order to demonstrate the power of this platform combined with the ICA

analysis, we apply this approach to study bacterial response to heavy metals exposure. Heavy

metals contamination due to industrial wastewater discharge has become one of the biggest

threats to the environment [85]. Many microorganisms have adapted to coexist and resist heavy

metals in highly contaminated areas. In addition, some microorganisms can reduce heavy metal

ions, lowering their harmfulness[10]. Therefore, bacteria have naturally become great organisms

for engineering heavy metal detection systems[41] as well as bioremediation strategies[58]. This

is why we focused on expanding our current knowledge of bacterial response mechanism to the

exposure of multiple types of heavy metals by investigating a dataset generated by recording the

variation over time of the gene expression levels of thousands of different promoters in E. coli.

Overall, our results confirm patterns of promoter activation previously known from the literature

while also identifying new surprising correlations which show the potential of this approach as a

hypothesis-generating tool.

3.2 Results
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3.2.1 Transcriptional response to heavy metals exposure

Standard omics technologies such as RNA-seq, proteomics and metabolomics can provide

accurate quantitative measurements of the cell’s behaviour but they usually provide limited or

absent temporal information. In fact, most omics datasets are characterized by binary information

of the cell status before and after exposure to the inducer of interest. On the other hand, several

studies suggest that dynamics is key in how the cells respond to external stimuli and encode

information[44, 93], suggesting that there is a need for technologies that are able to capture

the real-time response over an extended period of time. In order to address this need, we

previously developed a high-throughput platform called Dynomics which can collect genome-

wide information of the cells real-time response to a variety of external stimuli. The Dynomics

microfluidic device is designed to simultaneously culture 2,176 individual strains in 4 µm tall

traps which are continously supplied with fresh media.

For the experiments presented in this study, the strains used belonged to a previously

developed E. coli library where each strain was engineered with a plasmid containing one of

1,807 native promoters followed by a GFP reporter (Fig. 3.1a). Experiments lasted an average

of 7 to 14 days during which the cells were exposed to a different heavy metal every 24 hours

(Fig. reffig1MLb). The duration of the induction was 4 hours and it was followed by a period of

recovery in minimal media that lasted 20 hours. The average fluorescence expression from each

trap was recorded with a time resolution of 10 minutes. The raw fluorescence data collected

during the experiment was further processed with background subtraction, smoothing algorithm

and normalised by subtraction of the control (promoterless) strains. Furthermore, the data was

processed by calculating the log2 of the fold change defined as the ratio of the fluorescence

values during the induction window divided by the fluorescence value at the beginning of the

induction. For each induction window, we selected six time points spaced every forty minutes in

order to minimise noise while retaining temporal information. The data was then organized into

a single matrix where each row represented a different promoter and the columns represented the
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log2 of the fold change for the six time points considered for each heavy metal induction. We

therefore performed ICA (Independent Component Analysis) on this matrix, obtaining the M

matrix (promoter coefficients) and the A matrix (activity coefficients) respectively (Fig. 3.2a).

We obtained a total of 14 iModulons whose activity profiles and corresponding gene weights are

provided in the Supplementary information (Fig 3.5 to 3.19).

Overall, we selected eight biologically significant independently modulated sets of pro-

moters. These sets are referred to as iModulons. Each iModulon was named according to

the shape and the predominant condition which characterised the activity profile associated

to it (Fig. 3.1b). In particular, we found that the ICA analysis was able to differentiate three

main activation patterns associated to the zinc inductions. These patterns were classified as

steady activation for promoters whose activation was characterised by a steady increase over

the induction window, fast activation for promoters that were activated quickly after the be-

ginning of induction and intermediate activation for the promoters that were the most active

in the middle of the activation window. The remaining heavy metals were characterised by

the steady state type of activation profile. Each iModulon contains a weighting for each of

the promoters in the dataset. Most promoters in each iModulon have a value that is close to

zero, therefore in order to extract only the most significant promoters a thresholding method

is applied (See Methods). After applying the calculated cut offs, we were able to extract and

analyse the most significant promoters for each iModulon (Fig. 3.3). In order to better under-

stand the overall bacterial response to each heavy metal, the promoters were classified according

to the phenotypic response they are associated to in the literature as well as their activation profile.

3.2.2 Zinc iModulons

We found out that the significant promoters associated to the zinc iModulons were be

associated to four main phenotypic responses: envelope stress response, oxidative stress response,

zinc resistance and the dissimilatory nitrate reduction to ammonium pathway (Fig. 3.3a). Our
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Figure 3.2. Independent Component Analysis (ICA) to analyse heavy metal inductions data from
Dynomics experiments. a Illustration of the different steps of our data analysis pipeline. The
analysis starts with raw fluorescence data which are processed with background signal removal
algorithm, normalization by the promoterless strains and smoothing through median filtering.
The data is therefore converted to the log2 of the fold change and formatted as a matrix of genes
versus conditions (heavy metal inductions). ICA is eventually applied to this matrix obtaining
the M (ipromoter coefficients) and A (activity coefficients) matrixes respectively. b iModulons
activity plots representing different response dynamics to the heavy metals investigated.

results confirm previous findings from the literature while uncovering new associations that were

previously unknown. In particular, the ICA analysis applied to our unique Dynomics dataset

is able to provide information on the timing of promoter activation, giving us insights on how

bacteria dynamically respond to heavy metal exposure over time.

In particular, we find that a set of promoters directly related to the envelope stress response

(yfeY, bacA, ropE) and to peptoglycan stress are present in the fast and steady activation profiles

as predicted from the literature[86, 125, 82]. Interestingly, we find that the genes that belong to

the steady activation profile are associated to peptoglycan synthesis (mipA, cysQ). In addition,

we report the activation of glnW which transcribes for glutamine tRNA. Glutamine is a key

amino acid in the synthesis of fatty acids, therefore we hypothesise that the expression of this

gene is involved in the cells attempt to restore the membrane damage caused by zinc exposure.

Furthermore, the ICA analysis detected several genes involved in the oxidative stress
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response, as previously reported in the literature[3], and it was able to distinguish between fast

activation (yedY, yfcG, selC) and steady activation (katE, lipA, aldH, nupG). Our results also

confirm the activation of the zntA gene which is associated to zinc export as a detoxification

mechanism when excess levels of zinc are detected[7]. Interestingly, our analysis is also able to

detect the activation of two genes (narZ and nrfE) belonging to the dissimilatory nitrate reduction

to ammonium pathway (DNRA)[7]. In particular, we were able to observe the temporal dynamics

of the pathway activation since narZ (nitrate reductase) was associated to the fast activation

iModulon and nrfE (nitrite reductase) was associated to the intermediate activation profile. To

our knowledge, this is the first time that the activation of DNRA pathway in E. Coli is linked to

the presence of excess zinc concentrations. We hypothesize that in this context DNRA activation

can be beneficial to the cells due to the generation of an electron sink that can be used for NADH

re-oxidation into NAD+ which is a key metabolites in counteracting DNA damage and oxidative

stress[117, 124].

3.2.3 Cadmium iModulons

The cadmium iModulon was characterized by a steady state activation profile and in-

cluded promoters which are mainly associated to cadmium resistance and oxidative stress. As

expected from the literature[7], we find the expression of the zntA which confers cadmium

tolerance as well as zinc tolerance as previously described. Furthermore, we detect the activation

of the sodB promoter encoding for a superoxide dismutase which is a key in defending the cell

against oxidative stress through decomposition of superoxide radical. This finding confirms

previous results reported in the literature which showed that superoxide dismutases (SODs) can

protect E. coli from heavy metal toxicity, particularly from cadmium exposure[36].

We also find that the iModulon reports the cell’s response to two of the main effects

of oxidative stress: lipid peroxidation and DNA damage response. In particular, we report the

activation of promoter mipA which encodes for a scaffolding protein for murein synthesizing
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machinery[120] and promoter exfK (also known as bamA) which is involved in of beta-barrel

proteins assembly and insertion in the outer membrane[43]. Additionally, we identify three

promoters which are known to be involved in nucleotide catabolism repression (deoR[84]), DNA

replication (yejK[65]) and DNA recombination and repair respectively (yhcG[61]). Finally, we

detect the activation of the phoA promoter which is responsible for the breakdown of organic

phosphate esters[1]. We hypothesize that the activation of phoA could be related to the detoxyfi-

cation of heavy metals through polyphosphates[63].

3.2.4 Copper iModulons

Similarly to the cadmium iModulon, the copper iModulon was also characterized by a

steady state activation profile. As confirmed in the literature, we report the activation of the cueO

promoter which encodes for a multicopper oxidase involved in copper tolerance under aerobic

conditions[30]. Furthermore, we detect the activation of promoters known to be linked to the

oxidative stress response (nrdH[83], ytfE[56]) and to the envelope stress response (yoaE[94]).

Interestingly, we also detect the activation of promoter mgsA which is known to be activated

during phosphate starvation and glycolysis restriction[102]. Similarly, we report the activation

of promoter prpR which is part of the Pho regulon[127]. Therefore, we hypothesize that the

activation of these two promoters is part of the cells’ attempt to maximize the availability of

phosphate to produce polyphosphates as a detoxyfication strategy as previoulsy reported for the

cadmium response.

3.2.5 Iron iModulons

The iron iModulon is characterized by a steady state activation profile. Interestingly,

we found that three enriched promoters (ugpB, phnC and phoB) which all belong to the Pho

regulon[116]. In particular, phoB is the response regulator in two component regulatory system
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with PhoR (or CreC) and regulates Pi uptake. The gene phnC is part of the ABC transporter

complex PhnCDE involved in phosphonates, phosphate esters, phosphite and phosphate import.

Finally, gene ugpB codes for a binding protein-dependent sn-glycerol-3-phosphate transport

system which is under the control of the Pho regulon. In particular, ugp-dependent G3P transport

activity is present only after growth at limiting concentrations of Pi[107]. From the literature, we

know that excess of iron can cause the formation of toxic reactive oxygen species (ROS) through

Fenton chemistry. Both iron stress and oxidative DNA damage are successfully prevented

by polyposphates which are polymers formed by covalently linked inorganic phosphates[8].

Therefore, we hypothesize that the genes enriched in the Iron iModulons reflect the need for

the cell to import additional phosphate in order to form polyphosphates which can be used as a

defense mechanism against iron.

3.2.6 Transcriptional response of the recovery post-induction

One of the main advantages of the Dynomics technology is the possibility to track the

cells response over an extended period of time. This enabled us to analyse not only the effect

of the heavy metal exposure during the induction window but also to explore how the bacteria

responded during the recovery period post-induction. In this case, we calculated the logarithm

base 2 of the fold change with respect to the end of the induction window(Fig. ??a). We took

into consideration 20 time points spaced 40 minutes apart. Applying the ICA algorithm to this

dataset we found 35 iModulons (Fig. 3.20 to 3.54). We focus our analysis on a subset of iModu-

lons whose activity seemed particularly interesting and biologically significant (Fig 4b, Methods).

We report four iModulons whose activity profiles show activation post zinc exposure.

Similarly to the induction response, we identify several promoters associated to stress responses

such as the SOS response (recX), peptoglycan stress (yjfQ, helD, skp) and oxidative stress

(katE). On the other hand, we report the activation of promoters which are related to transcription
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and translation processes such us maturation of rRNAs and tRNAs (rne), purine metabolism

(yneF), proline tRNAs (proL), methionine synthesis (metF), DNA ligase (ligB). We believe that

the activation of this type of promoters suggest a diversion of the cells resources from defense

against environmental stressors to growth and repair processes. Interestingly, we find that one

of the zinc-related iModulons transcribes for monothiol glutaredoxin which is involved in the

biogenesis of iron-sulfur clusters. This confirms previous studies that have shown how excess

zinc is associated with the disruption of the iron-sulfur clusters in E. coli[70].

The ICA analysis also identifies two iModulons whose activity profiles are mostly active

post cadmium exposure (Fig ??b). Similarly to the trend we observed for the zinc iModulons, we

find that there are several promoters associated to biosynthesis and protein translation processes.

This further confirms our prediction that the cells mainly activate stress response processes during

the induction itself and switch to recovery and growth processes when the inducer is removed.

In particular, for the post-induction cadmium iModulon we report the activation of promoter

asd which is involved in L-lysine, L-methionine and L-threonine biosynthesis, promoter tufB

which codes for an elongation factor for protein biosynthesis and ykgM which transcribes for

a ribosomal protein. Interestingly, ykgM was previously found to be upregulated upon zinc

starvation[88, 40]. This physiological response is further supported by the activation of promoter

znuC which transcribes for a zinc import ATP-binding protein. Our results therefore align with

previous studies based on the analysis of genome-wide temporal gene expression data which

suggested that the molecular mechanisms of cadmium toxicity could be partially explained

by the disruption in the transcription of genes encoding ribosomal proteins and zinc-binding

proteins[121].

Furthermore, we report two iModulons whose activation profiles are active post iron

induction. We find that one of the promoters enriched in these iModulons is ompW which

transcribes for an outer membrane protein whose expression has been previously observed to be

downregulated in iron limitation conditions[130]. Our results show that the expression of ompW

is greatly increased post-induction when the toxin is removed from the media. Furthermore, we
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Figure 3.3. Illustration of significant promoters enriched by the ICA analysis. a Significant
promoters associated to the induction of zinc. Promoters are classified according to the physio-
logical response they are associated to. b Significant promoters associated to the induction of
cadmium. c Significant promoters associated to the induction of copper. d Significant promoters
associated to the induction of iron.

find that the genes LsrR (associated to quorum sensing regulation) and pppA (part of the type II

secretion system). Furthermore, we find a second iron iModulon with a steeper activation profile

which is associated with the activation of two genes: rfbB (involved in biogenesis of the bacterial

outer membrane) and ydcL (uncharacterized lipoprotein). Finally, we report a copper iModulon

linked to the activation of five genes, two of which are involved into amino acid biosynthesis

(metF) and DNA replication/transcription processes (helD).

3.3 Discussion

In this study, we combine the power of a genome-scale platform to monitor temporal gene

expression[41] with the analytical capabilities of ICA[104]. ICA had been previously shown to

be able to extract transcriptional modules with biological significance from a variety of datasets.

These datasets generally didn’t contain any information on the time-dependent activation of

genes under different conditions. Instead, the majority of previous studies were based on binary
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data obtained from RNA-seq, proteomics and metabolomics experiments[105, 77, 115, 101].

Here we propose the application of ICA on a dataset obtained from monitoring promoter

activation from a library of 1807 unique strains of E. Coli that grow continously in a large-scale

microfluidic device. These experiments generate unique datasets where promoter activation

is tracked for several days with a resolution of 10 minutes, capturing the genome-wide time-

dependent response instead of just the expression level pre and post induction. Therefore, in this

study we show how ICA can be applied to our unique dataset to extract information on the timing

of promoter activation in response to heavy metals inductions. By first applying our analysis

pipeline to the induction window, we observe the richest response for the zinc inductions. In

this context, we observe three different iModulons which differentiate fast responders (genes

that are activated at the start of the induction window) from intermediate responders (genes that

are maximally active in the middle of the induction window) and late responders (genes whose

expression steadily increases throughout the induction window).

In particular, we report that our platform is able to resolve the sequence of activation

between promoters beloning to the same metabolic pathway. We detect the activation of promoter

narZ as an early responder and promoter nrfE as a late responder which are involved in the first

and second step of dissimilatory nitrate reduction to ammonium metabolic pathway. This result

is a clear example of the power of this platform when used for pathways reconstruction which is

a topic of great interest in the scientific community[103]. Therefore, we suggest future studies

which are specifically targeted to the investigation of metabolic responses whose pathways are

currently unknown or incomplete.

Chapter 3, in part is currently being prepared for submission for publication of the

material. Arianna Miano, Anand Sastry, Kevin Rychel, Bernard Palsson Jeff Hasty. The

dissertation author was the primary investigator and author of this material.
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3.4 Methods

3.4.1 Data collection

Detailed description of the experiments set up can be found in the literature from the

original study[40]. In brief, data was obtained from fluorescence values extraction from flat-field

corrected images gathered using a custom optical set up. The first step of the experimental set up

consisted in arraying the cells using a Singer ROTOR robot so that they could be spotted onto

the microfluidic device before glass bonding. Once the device was ready, it was set up inside a

custom box kept constant temperature at 37°C for imaging. For media flow, the inlet and outlet

were connected to 140mL syringes.

3.4.2 Data processing

The data was first processed by subtracting the local background signal and then di-

viding the result by the background signal again in order to create a measure of the amplifi-

cation of the signal over the background. Then, the data were passed through a median filter

(scipy.signal.medfilt, kernel size = 11) and normalised by subtracing and dividing the average

expression values of the promoterless strains. The data was further processed by calculating the

log 2 of the fold change of the ratio of six time points (spaced 40 minutes apart) with respect to

the start of the induction window for the data plotted in Figure 3.2 and 3.2. On the other hand,

for the dataset used to produce the results shown in Figure 4 the data was converted in the log 2

of the fold change of the ratio between 20 points (spaced 40 minutes apart) with respect to the

end of the induction window. The final dataset which was fed to the ICA algorithm consisted of

a matrix where the rows represented all the different promoters (1807) and the columns all the

different conditions. Therefore, for the analysis in Figure 1 and 2 the final dataset had a total of

36 columns representing 6 heavy metal inductions, each with 6 time points. Similarly, the dataset

behind the results of Figure 4 had dimensions of 1807 rows and 100 columns representing 6

heavy metal inductions, each with 20 points.
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3.4.3 Independent component analysis

We used a pipeline for ICA implementation which was previously proposed in other

studies[104]. In brief, we run the Scikit-learn70 (v0.19.2) implementation of the FastICA al-

gorithm 100 times with random seeds. The number of components in each iteration was set

to the number of components that reconstruct 99% of the variance as calculated by principal

component analysis. The resulting source components (M) from all runs were clustered using

the Scikit-learn implementation of the DBSCAN algorithm. Therefore, the number of clusters

calculated by DBSCAN estimated the dimension of the dataset.

3.4.4 Determination of the gene coefficient threshold

The dataset M contains all the genes coefficients associated to each iModulon. Most of

these coefficients have values close to zero which indicates they are not significantly enriched

for that iModulon. In order to extract the genes that belong to each iModulon we computed the

D’Agostino K2 test statistic which is a measure of the skew and kurtosis of a sample distribution.

As described in previous studies[104], genes with the largest absolute value were iteratively

removed and the D’Agostino K2 test statistic was computed for the resulting distribution. The

statistic cutoff was kept fixed at 800 for the entire analysis. We only considered positively

correlated genes in this analysis.
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Figure 3.5. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 0. Bottom: Genes weights above threshold for IModulon 0.

Figure 3.6. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 1. Bottom: Genes weights above threshold for IModulon 1.
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Figure 3.7. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 2. Bottom: Genes weights above threshold for IModulon 2.

Figure 3.8. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 3. Bottom: Genes weights above threshold for IModulon 3.
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Figure 3.9. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 4. Bottom: Genes weights above threshold for IModulon 4.

Figure 3.10. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 5. Bottom: Genes weights above threshold for IModulon 5.
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Figure 3.11. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 6. Bottom: Genes weights above threshold for IModulon 6.

Figure 3.12. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 7. Bottom: Genes weights above threshold for IModulon 7.
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Figure 3.13. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 8. Bottom: Genes weights above threshold for IModulon 8.

Figure 3.14. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 9. Bottom: Genes weights above threshold for IModulon 9.
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Figure 3.15. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 10. Bottom: Genes weights above threshold for IModulon
10.

Figure 3.16. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 11. Bottom: Genes weights above threshold for IModulon
11.
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Figure 3.17. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 12. Bottom: Genes weights above threshold for IModulon
12.

Figure 3.18. ICA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 13. Bottom: Genes weights above threshold for IModulon
13.

75



Figure 3.19. CA results from running the algorithm on the induction window time points. Top:
Activation profile plot of iModulon 14. Bottom: Genes weights above threshold for IModulon
14.
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Figure 3.20. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 0. Bottom: Genes weights above threshold for IModulon 0.

Figure 3.21. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 1. Bottom: Genes weights above threshold for IModulon 1.
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Figure 3.22. CA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 2. Bottom: Genes weights above threshold for IModulon 2.

Figure 3.23. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 3. Bottom: Genes weights above threshold for IModulon 3.
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Figure 3.24. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 4. Bottom: Genes weights above threshold for IModulon 4.

Figure 3.25. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 5. Bottom: Genes weights above threshold for IModulon 5.
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Figure 3.26. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 6. Bottom: Genes weights above threshold for IModulon 6.

Figure 3.27. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 7. Bottom: Genes weights above threshold for IModulon 7.
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Figure 3.28. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 8. Bottom: Genes weights above threshold for IModulon 8.

Figure 3.29. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 9. Bottom: Genes weights above threshold for IModulon 9.
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Figure 3.30. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 10. Bottom: Genes weights above threshold for IModulon 10.

Figure 3.31. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 11. Bottom: Genes weights above threshold for IModulon 11.
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Figure 3.32. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 12. Bottom: Genes weights above threshold for IModulon 12.

Figure 3.33. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 13. Bottom: Genes weights above threshold for IModulon 13.
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Figure 3.34. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 14. Bottom: Genes weights above threshold for IModulon 14.

Figure 3.35. CA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 15. Bottom: Genes weights above threshold for IModulon 15.
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Figure 3.36. CA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 16. Bottom: Genes weights above threshold for IModulon 16.

Figure 3.37. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 17. Bottom: Genes weights above threshold for IModulon 17.
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Figure 3.38. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 18. Bottom: Genes weights above threshold for IModulon 18.

Figure 3.39. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 19. Bottom: Genes weights above threshold for IModulon 19.
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Figure 3.40. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 20. Bottom: Genes weights above threshold for IModulon 20.

Figure 3.41. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 21. Bottom: Genes weights above threshold for IModulon 21.
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Figure 3.42. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 22. Bottom: Genes weights above threshold for IModulon 22.

Figure 3.43. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 23. Bottom: Genes weights above threshold for IModulon 23.
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Figure 3.44. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 24. Bottom: Genes weights above threshold for IModulon 24.

Figure 3.45. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 25. Bottom: Genes weights above threshold for IModulon 25.
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Figure 3.46. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 26. Bottom: Genes weights above threshold for IModulon 26.

Figure 3.47. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 27. Bottom: Genes weights above threshold for IModulon 27.
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Figure 3.48. CA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 28. Bottom: Genes weights above threshold for IModulon 28.

Figure 3.49. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 29. Bottom: Genes weights above threshold for IModulon 29.
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Figure 3.50. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 30. Bottom: Genes weights above threshold for IModulon 30.

Figure 3.51. CA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 31. Bottom: Genes weights above threshold for IModulon 31.

92



Figure 3.52. CA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 32. Bottom: Genes weights above threshold for IModulon 32.

Figure 3.53. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 33. Bottom: Genes weights above threshold for IModulon 33.
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Figure 3.54. ICA results from running the algorithm on the data post induction. Top: Activation
profile plot of iModulon 34. Bottom: Genes weights above threshold for IModulon 34.
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