
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Motion Planning for Multi-Agent Systems with Obstacles based on Buffered Voronoi Cell

Permalink
https://escholarship.org/uc/item/7sb01199

Author
MA, MENG

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution
License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sb01199
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,

IRVINE

Motion Planning for Multi-Agent Systems with Obstacles based on Buffered Voronoi Cell

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Meng Ma

Thesis Committee:
Assistant Professor Quoc-Viet Dang, Chair

Assistant Professor Yanning Shen
Professor Terry Sanger

2024

© 2024 Meng Ma

ii

TABLE OF CONTENTS

LIST OF FIGURES ... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT OF THE THESIS ... v

1. Introduction .. 1

2. Problem formulation and Preliminaries ... 4

3. Method ... 9

4. Simulation .. 18

5. Conclusion and Future Work ... 21

References .. 23

iii

LIST OF FIGURES

FIGURE 2. 1: VORONOI DIAGRAM AND BUFFERED VORONOI CELL FOR 7 ROBOTS 7

FIGURE 3. 1: THE LARGEST RECTANGLE USED IN THE PROPOSED ALGORITHM 11

FIGURE 3. 2: THE CHOICE OF SUBGOAL GS AND WAYPOINT G*
T 12

FIGURE 3. 3: THE PROCESS OF CHANGE THE RECTANGLE ... 13

FIGURE 3. 4: DEADLOCK WITHOUT OBSTACLE .. 14

FIGURE 3. 5: DEADLOCK WITH OBSTACLE ... 15

FIGURE 3. 6: THE PROCESS OF DEADLOCK RECOVERY. THE LEFT ONE SHOWS THE

DEADLOCK RECOVERY, THE RIGHT ONE IS THE RECOVERY SUCCESS. 18

FIGURE 4. 1: THE DEADLOCK DETECTION AND RECOVERY PROCESS 19

FIGURE 4. 2: THE TRAJECTORY OF THE ROBOTS IN SIMULATION. THE NUMBER OF THE

ROBOTS IN THESE FOUR CASES ARE 5, 10, 15 AND 20. .. 20

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to Professor Quoc-Viet Dang,

my master thesis advisor. His support and encouragement have played an indelible role

throughout my master’s journey and the completion of my thesis. Without his guidance and

perseverance, this thesis would not have come into existence.

I would also like to thanks the two professors in my thesis committee. I am grateful for their

help and guidance in my courses, which has broadened my knowledge and was invaluable in

completing my thesis. I deeply appreciate their taking time out of their busy schedules to

guide my work.

Additionally, I must thank Professor Sun Lei in Nankai University, who guided me into the

field of robotics and research. His influence has been fundamental in shaping my academic

path.

In the end, I would like to thank University of California Irvine for providing me with an

excellent platform to complete my master, which is crucial to my academic career.

v

ABSTRACT OF THE THESIS

Motion Planning for Multi-Agent Systems with Obstacles based on Buffered Voronoi

Cell

by

Meng Ma

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2024

Assistant Professor Quoc-Viet Dang, Chair

This paper presents a decentralized motion planning algorithm for multi-robot

systems in the environment with static obstacles. In the proposed algorithm, the

environment is divided into several obstacle-free convex spaces to make sure tools

like convex programming to be used and robots won’t be stuck in local minimum. In

each time step, the robot finds the largest obstacle-free convex area containing its

current position and builds a buffered Voronoi cell, within which the robot can move

freely without collision, based on the position information of the robots in its

obstacle-free convex area. A prediction and recovery mechanism is also employed to

solve the deadlock caused between robots and obstacles. The simulation results show

that the proposed algorithm can solve the problem effectively for robots with single

integrator dynamics and which do not have non-holonomic constraints in 2D

dimension. The idea of the algorithm can also be extended into 3D dimensions for

Unmanned Aerial Vehicles (UAV).

1

1. Introduction

With the development of automation technology, an increasing number of robots are

becoming visible in various aspects of human life. Robot navigation has emerged as a

significant area of focus within the field of robotics. In this domain, motion planning for

multi-robot systems is one of the basic problems. Motion planning in multi-robot systems

necessitates not only the safe and collision-free trajectory for each robot, but also requires the

fast and accurate decision-making mechanism based on the possible limited information of

the system. Besides, deadlock may also occur when several robots are crowded into a narrow

space or need to pass the same area at the same time.

Two primary categories of algorithms are utilized to address motion planning in multi-

robot systems: centralized algorithms and decentralized algorithms. Centralized algorithm [1,

2] has a central planner that has the global knowledge of all environments and robots, such as

positions, velocities, and objectives of all robots. It uses this information to generate the

control signals for all robots to optimize one or multiple performance parameters. Centralized

algorithms are often favored in scenarios where heightened performance standards or precise

control accuracy are imperative. However, as the number of robots increases and the

environment becomes complex, the computational complexity of planning for all robots

centrally can be challenging. Contrary to the centralized algorithm, in decentralized

algorithms [3, 4, 5], which are also known as distributed algorithms, each robot has its own

planner and only makes decisions according to the information it has. Due to its scalability

and low computational complexity compared with centralized algorithms, decentralized

2

algorithms are widely used in robot swarms or unmanned aerial vehicles which have a large

number of robots. Nevertheless, many decentralized algorithms fail to account for obstacles

or deadlock problems, or they only provide simple solutions.

This paper presents a decentralized motion planning algorithm with deadlock prediction

and recovery mechanism for multi-robot systems with static obstacles. The algorithm can

generate collision-free paths and control inputs real time for robots and has an extended

version of the deadlock handling mechanism proposed by Abdullhak et al. in [6], which has

been proven to drastically reduce the occurrence of deadlock. To solve the collision

avoidance, the algorithm uses the definition of buffered Voronoi cell (BVC) proposed by

Zhou et al. in [7], and extends it into environments with static obstacles. In each time step, the

robot needs to: (1) calculate a convex area, which is the largest rectangular area within the

environment in this paper, containing its positions; (2) calculate the buffered Voronoi cell in

the convex area based on the position information of other robots; (3) calculate the shortest

path from its current position to the goal, choose the subgoal in the convex area and the

waypoint in the BVC; (4) check if the waypoint may cause a deadlock; if yes, choose another

waypoint based on deadlock recovery mechanism.

Decentralized motion planning algorithms in multi-robot systems have been widely

studied. In [8], Fiorini et al. introduced a definition named “Velocity Obstacle”, which gives a

first-order approximation of the robot’s velocities that would cause a collision in a period of

time in future. Collision can be avoided by selecting velocity that is not inside Velocity

Obstacle. The concept was then extended into “Reciprocal Velocity Obstacle (RVO)” by Jur

van den Berg et al. in [9], which simply assumes that other agents make similar decisions to

3

avoid the obstacles. Optimal Reciprocal Collision Avoidance (ORCA) is another velocity-

based algorithm proposed by Jur van den Berg et al. In ORCA, each robot is inferred a half-

plane in velocity space that is allowed to be selected by other robots to guarantee collision

avoidance. It was then expanded to robots with non-holonomic constraints by J. Alonso-Mora

in [11] and Javier Alonso-Mora et al. in [12]. Besides, there are also Acceleration-velocity

obstacles (AVO) which takes into account acceleration constraints [13]; Hybrid Reciprocal

Velocity Obstacle (HRVO) which counters the oscillation issue in RVO [14]; and

Generalized Velocity Obstacles (GVO) which extends the velocity obstacles to handle

nonholonomic kinematic constraints [15]. However, all of these VO-variant algorithms need

both position and velocity information.

In [7], Zhou et al. presents the definition of buffered Voronoi cells and introduces the

BVC algorithm that only needs the position information for robots. They proved that the BVC

algorithm has the same computational complexity and similar empirical performance as the

ORCA algorithm. Sensor and localization uncertainty was then added into BVC by Wang et

al. in [16] and Zhu et al. in [17], taking the sensor and odometry error into account. The

probabilistic buffered Voronoi cell was then used in environments with obstacles in [18], but

they still use the simple heuristic right-hand rule to deal with deadlock problems. In [6], a

novel deadlock prediction and recovery method was introduced by Abdullhak et al., but do

not consider obstacles. The algorithm presented in this paper not only accounts for

environmental obstacles but also incorporates the mechanism for deadlock recovery.

The rest of the paper is organized as follows. Section 2 is the problem formulation and

some preliminary definitions about BVC. In section 3, a detailed explanation of the algorithm

4

is presented. Section 4 provides the simulation and the result analysis of the algorithm. And

section 5 is the discussion.

2. Problem formulation and Preliminaries

 In this section, I will provide a formulation of the motion planning problem for multi-

robot systems in an environment with static obstacles and some preliminary definitions.

 Consider a system with 𝑛 robots in a 2D plane 𝑅ଶ denoted by 𝑅ଵ, 𝑅ଶ, … , 𝑅௡, the start

position for the robots is 𝑆ଵ, 𝑆ଶ, … , 𝑆௡, the goal position is 𝐺ଵ, 𝐺ଶ, … , 𝐺௡, and the obstacles in

the environment is 𝑂ଵ, 𝑂ଶ, … , 𝑂௠ for 𝑚 obstacles. For robot 𝑅௜, I denote the current center

position at time 𝑡 as 𝑝௜,௧. Each robot has the same size with a safety radius 𝑟௦.

 The motion planning problem for multiple robots can be formulated as: in the system

above, finding the input controls 𝑢௜ for 𝑅௜ so that 𝑅௜ can move form 𝑆௜ to 𝐺௜ without

any collision with other robots and any obstacle.

A. Assumption

In this thesis, we assume: 1) All the robots have a same size with a safety radius 𝑟௦; 2)

The robot knows the positions of all robots and the obstacles without communication loss or

error; 3) Robots are able to execute the control inputs calculated by the algorithm without

delay or error; 4） All obstacles are rectangular, and can be determined by four vertices.

5

B. Kinematic Constraints

We simply assume that the robot used in this thesis is an omnidirectional mobile robot,

which does not have non-holonomic constraints. For omnidirectional mobile robots, there are

three degrees of freedom: X-axis, Y-axis and a rotation axis Z-axis. But we only need to

consider X-axis and Y axis because of the absence of non-holonomic constraints.

The kinematic constraints can be represented as follows.

For robot 𝑅௜ at time 𝑡, there are:

𝑝௜,௧ାଵ = 𝐴𝑝௜,௧ + 𝐵𝑢௜,௧ ,

ฮ𝑢௜,௧ฮ ≤ 𝑢௠௔௫,

where 𝐴, 𝐵 are kinematic matrices of the robot and 𝑢௠௔௫ is the maximum line speed.

In this thesis, the state vector 𝑝 is [𝑥, 𝑦]், which is the position of the robot, the control

vector is [𝑣௫, 𝑣௬]், which is the velocity of the robot. The State Transition Matrix 𝐴 can be a

2 × 2 identity matrix:

ቂ
1 0
0 1

ቃ

 The control input matrix 𝐵 is:

൤
∆௧ 0
0 ∆௧

൨

where ∆௧ is the time step of a control loop.

C. Collision-free Constraints

For each robot 𝑅௜, I formulate the collision free constraints as follows:

6

ฮ𝑝௜,௧ − 𝑝௝,௧ฮ > 2𝑟௦, ∀𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, 𝑖 ≠ 𝑗

ฮ𝑝௜,௧ − 𝑂௝
∗ฮ > 𝑟௦, ∀𝑗 ∈ {1,2, … , 𝑚}

where 𝑂௝
∗ is the nearest point of obstacle 𝑂௝ to 𝑝௜,௧, and ‖∙‖ denotes the Euclidean

distance. The first constraint is the collision-free constraint between robots and the second

constraint is the constraint between robots and obstacles.

D. Voronoi Diagram

Voronoi Diagram is a method of segmenting a plane into parts based on several points.

During segmenting, all the points in the plane that is closest to one given point were

segmented in an area, which is called the Voronoi Cell of this point. Suppose we have a set of

points: 𝑥ଵ, 𝑥ଶ, … , 𝑥௡, the Voronoi cell of the point 𝑥௜ is defined as:

𝑉௜ = {𝑥 ∈ 𝑅ଶ| ‖𝑥 − 𝑥௜‖ ≤ ฮ𝑥 − 𝑥௝ฮ, ∀𝑗 ≠ 𝑖},

where ‖∙‖ denotes the Euclidean distance. The Voronoi diagram is defined as 𝑉 = 𝑉ଵ ∪

𝑉ଶ ∪ … ∪ 𝑉௡. The point set 𝑋 is defined as the Seed for this Voronoi diagram. In this

proposed motion planning algorithm for a multi-robot system, we use robots’ positions as

seeds to build a Voronoi diagram.

7

Figure 2. 1: Voronoi diagram and buffered Voronoi cell for 7 robots

E. Buffered Voronoi Cell

To make sure each robot can move without collision in its own Voronoi cell, the actual

moving area for robot’s center is smaller than the Voronoi cell. Suppose we have 𝑛 robots

𝑅ଵ, 𝑅ଶ, … , 𝑅௡, with Voronoi cell 𝑉ଵ, 𝑉ଶ, … , 𝑉௡. For robot 𝑅௜, the buffered Voronoi cell is

defined as the area formed by moving each edge of Voronoi cell 𝑉௜ to robot 𝑅௜’s position 𝑝௜

by a distance of safety radius 𝑟௦. Thus, the collision-free constraint between robots must be

satisfied if each robot’s position is within its buffered Voronoi cell.

F. Decentralized Motion planning based on Buffered Voronoi Cell

The buffered Voronoi cell guarantees that when robots move in their buffered Voronoi

cell, there will be no collision between robots. At each time step, the robot just repeats the

following steps: 1) generate the buffered Voronoi cell; 2) choose a waypoint in its buffered

Voronoi cell; 3) calculate the control input for the robot to move to the waypoint; until each

robot reaches their goal. In the previous work [7], Zhou et al. have demonstrated the

feasibility of using BVC for multi-robot path planning in an environment without obstacles.

8

In their work, they use Receding Horizon Path Planning and regard the motion control of

robots as a quadratic problem. At each time step, the robot calculates a QP problem and

follows the control to move within its BVC.

Like other decentralized motion planning algorithms for multi-robot systems, deadlock is

a problem that cannot be ignored. Deadlock happens when robots block the way of other

robots due to the fact that they do not know the control decision made by others and at least

one robot cannot reach its goal. In [7], Zhou et al. solve deadlock by a simple heuristic

method, the right-hand side rule: when robots encounter deadlock, they all choose their right-

hand side to move. But this kind of method becomes inefficient when the number of robots is

large. In [6], Abdullhak et al. propose a new deadlock prediction and recovery mechanism,

with which the success rate for robots to reach their goals is ideal even with a large number of

robots.

However, both of these algorithms do not consider obstacles and cannot be used in an

environment with obstacles. There are several reasons: (1) Adding obstacles in the

environment introduces non-convex polygon in Voronoi diagram, the QP receding horizon

path planning cannot apply because the problem is not a convex problem; (2) The non-convex

optimization is both computationally expensive and unpracticable, robots may get stuck in

local minimum; (3) Neither the right-hand rule by [7] and the deadlock recovery by [6] cannot

be directly used in environment with obstacles because they do not consider deadlock caused

between robots and obstacles, which sometimes may cause collision.

9

3. Method

 In this section, I will first propose the overview of the algorithm, then divide the

algorithm into several stages to explain it in detail.

A. Overview of Algorithm

The basic idea for the proposed algorithm is dividing the non-convex environment filled

with obstacles into multiple convex areas for robots to move in their BVC, which guarantees

collision-free constraints during the entire movement. The deadlock prediction and recovery

mechanism in [6] by Abdullhak et al. is extended and used to reduce the loss on algorithm’s

performance caused by deadlock.

The proposed algorithm can be divided into several stages: (1) Find the convex area,

calculate the buffered Voronoi cell for the robot in this convex area; (2) Use shortest path

algorithm to find the nearest point in this convex area, set it as the subgoal 𝑔௦; (3) Choose the

nearest point in the BVC as the waypoint 𝑔௧ to subgoal; (4) If the robot encounters deadlock,

go to deadlock recovery; (5) If the robot reaches the subgoal, choose a new subgoal.

The overview is given in Algorithm 1.

10

B. Get the Convex Area

To ensure that robots can move without collision within its BVC and the problem does

not deviate from convex optimization, the buffered Voronoi diagram must be generated in an

environment having no obstacles. In the proposed algorithm, I choose the largest horizontal

rectangular area in the map that contains the coordinates of the robot as the convex area

because all obstacles can be represented by rectangles. However, it is still a good choice to

11

choose the largest convex area that contains the point. In [19], Deits et al. presented IRIS

(Iterative Regional Inflation by Semidefinite programming), which is an algorithm that can

quickly compute the large polygon of collision-free space in a computation time which is

linear in the number of obstacles.

There are two reasons why I choose the rectangle as the convex area. (1) The map only

has rectangle obstacles; it is more straightforward to compute the rectangle than a convex

polygon. (2) The robot needs to compute the convex area at each time step to track the new

subgoal. A map with rectangular obstacles has only a limited number of obstacle-free

rectangles. The algorithm only needs to find all the rectangles in the beginning of the

algorithm, so that the robot can traverse these rectangles once, instead of running the whole

algorithm at each time step.

Figure 3. 1: The largest rectangle used in the proposed algorithm

C. The Shortest Path Algorithm

When there are no obstacles, the robot can directly select the point closest to the goal in

BVC as the waypoint and directly calculate the control input. However, this strategy cannot

be used in an environment with obstacles since robots may be stuck in the local minimum. To

12

make sure the robot is moving on the right direction, the shortest path algorithm is used to

choose the subgoal 𝑔௦.

There are many shortest path algorithms, such as Dijkstra’s algorithm [21] and A*

algorithm [20]. In this algorithm, A * is used to generate the shortest path.

At each time step, the robot finds a shortest path from its current position 𝑝௧ to its final

goal 𝑔, then choose the last point in the rectangle 𝐶 as the subgoal 𝑔௦ in this time step. The

current position 𝑝௧ and the subgoal 𝑔௦ is in one collision-free rectangle 𝐶, so that robot can

move from 𝑝௧ to 𝑔௦ using normal nearest waypoint 𝑔௧
∗ in its BVC.

Figure 3. 2: The choice of subgoal 𝑔௦ and waypoint 𝑔௧
∗

D. The Area Change Procedure

When the robot reaches the subgoal 𝑔௦, it goes into another procedure of the algorithm:

Area Change Procedure. In order for the robot to leave the current rectangle and enter the

13

next area, a new subgoal needs to be selected. In the proposed algorithm, the new subgoal 𝑔௦
ᇱ

is set to the first point on the shortest path that is not within the current collision-free

rectangle 𝐶. And to make sure the collision-free constraints of the robot when moving from

the current position 𝑝௧ to the new subgoal𝑔௦
ᇱ , robot will choose another collision-free

rectangle 𝐶′ that contains both 𝑝௧ and 𝑔௦
ᇱ and build a new buffered Voronoi cell.

Figure 3. 3: The process of change the rectangle

 Then the robot will move to the new subgoal 𝑔௦
ᇱ . When reaching 𝑔௦

ᇱ , the robot goes back

to normal state and continues moving in the new rectangle and BVC.

E. Deadlock Prediction.

Deadlock constitutes a significant challenge in decentralized algorithms, occurring when

one or more robots are unable to progress towards their designated goals solely through the

use of their independent decentralized planning mechanisms.

14

Figure 3. 4: Deadlock without obstacle

When the robots move in the environment without obstacles, the deadlock caused by two

robots can be easily solved by right-hand rules: the robots both choose its right-hand side or

left-hand side to move, then the deadlock can be broken. Thus, an unsolvable deadlock can

only happen when the number of robots is larger than 2.

Suppose at time step 𝑡, the robot chooses the closest point 𝑔௧
∗ as the waypoint to the

goal 𝑔, 𝑅௜ and 𝑅௝ are two robots in neighbor robot group 𝑁, which satisfies

𝑁 = {𝑅௜|‖𝑔௧
∗ − 𝑝௜‖ < 𝑘𝑟௦, 𝑘 ≥ 2, 𝑖 = 1, 2, … , 𝑛}

 In [6], when the closest waypoint 𝑔௧
∗ and the goal 𝑔 are on the different sides of the

line between all neighbor robot pairs 𝑅௜ and 𝑅௝ in 𝑁, whose distance is smaller than 4𝑟௦, a

deadlock is detected.

15

This prediction strategy works well when there are no obstacles. However, it fails to

predict the deadlock caused between other robots and obstacles. When robots are moving in

an environment with obstacles, deadlock may occur with only two robots.

 To deal with the deadlock caused between robots and obstacles, we not only consider

neighbor robot pairs, but also consider the point pair between the neighbor’s position 𝑝௜ and

the projection 𝑔௣௧
∗ of 𝑔௧

∗ on the obstacles.

Figure 3. 5: Deadlock with obstacle

Suppose the deadlock happens when robot 𝑅 is at 𝑔௧
∗, the neighbor robot 𝑅௜ who

shares the edge between 𝑅 and 𝑅௜ is at 𝑝௜. The projection of waypoint 𝑔௧
∗ on the obstacle

𝑂 is 𝑔௣௧
∗ , which is also the nearest point of obstacle 𝑂 to 𝑔௧

∗.

Since the deadlock must happens when the robot is at the vertex of BVC (by [6]), there

must be:

‖𝑔௧
∗ − 𝑝௜‖ = 2𝑟௦

16

ฮ𝑔௧
∗ − 𝑔௣௧

∗ ฮ = 𝑟௦

Proposition 1: For above condition to be satisfied, the distance between 𝑝௜ and 𝑔௣௧
∗

must be equal or less than 3𝑟௦:

ฮ𝑝௜ − 𝑔௣௧
∗ ฮ ≤ 3𝑟௦

Proof: Assume ฮ𝑝௜ − 𝑔௣௧
∗ ฮ > 3𝑟௦, for any point 𝑥 that is not on the line segment

between 𝑝௜ and 𝑔௣௧
∗ , there are:

‖𝑥 − 𝑝௜‖ + ฮ𝑥 − 𝑔௣௧
∗ ฮ > ฮ𝑝௜ − 𝑔௣௧

∗ ฮ > 3𝑟௦

If we choose 𝑥 as a point where ‖𝑥 − 𝑝௜‖ = 2𝑟௦, then there must be

ฮ𝑥 − 𝑔௣௧
∗ ฮ > 𝑟௦

Which contradicts the above condition.

 Thus, we can extend the deadlock prediction condition.

 Suppose we have a neighbor robot group 𝑁:

𝑁 = {𝑅௜|‖𝑔௧
∗ − 𝑝௜‖ < 𝑘𝑟௦, 𝑘 ≥ 2, 𝑖 = 1, 2, … , 𝑛}

and an obstacle 𝑂 within 𝑟௦ of 𝑔௧
∗. The projection of waypoint 𝑔௧

∗ on the obstacle 𝑂 is

𝑔௣௧
∗ . A deadlock between robots and obstacles is detected when: the closest waypoint 𝑔௧

∗ and

the goal 𝑔 are on the different sides of the line between robot’s position 𝑝௜ and the

waypoint 𝑔௧
∗’s projection 𝑔௣௧

∗ on the obstacle 𝑂, for all robots whose distance from 𝑝௜ to

𝑔௣௧
∗ is smaller than 3𝑟௦.

17

 At each time step before moving, the robot detects the deadlock between robots and the

deadlock between robot and obstacle. As long as one deadlock is detected, the robot enters the

deadlock recovery.

F. Deadlock Recovery and recovery success prediction

When a deadlock is detected at waypoint 𝑔௧
∗, the robot goes to Deadlock Recovery

procedure, abandon waypoint 𝑔௧
∗ , and choose another recovery point in its BVC to bypass

the deadlock location 𝑔௧
∗.

In [6], Abdullhak et al. choose the point that is furthest from the line between the robot’s

current position 𝑝௧ and the robot’s goal 𝑔 in robot’s BVC at time step 𝑡, which is called

outermost point 𝑜௧. In the proposed algorithm, we still use the same way to choose the

recovery point, however, with some little changes.

First, the line between 𝑝௧ and 𝑔 needs to be changed into the line between 𝑝௧ and the

subgoal 𝑔௦. Second, if the deadlock occurs between the obstacles and the robots, the

outermost point 𝑜௧ should not be on the same side with the obstacle.

As the robot moves toward the recovery point, when all the robot in the neighbor robot

group 𝑁 and the projection 𝑔௣௧
∗ of waypoint 𝑔௧

∗ are on one side of the line between the

robot current position 𝑝௧ and the subgoal 𝑔௦, the deadlock recovery is considered

successful, the robot goes back to normal state and choose new a waypoint to move to the

subgoal.

18

Figure 3. 6: The process of deadlock recovery. The left one shows the deadlock recovery, the right one

is the recovery success.

 In the deadlock recover procedure, the robot keeps moving to the recovery point 𝑜௧ until

one of these conditions satisfies: (1) The recovery success give the true result; (2) The

recovery point 𝑜௧ outside the new BVC, the algorithm finds a new recovery point then

continues recovering; (3) The robot reaches the recovery point, checks the recovery success

result: if the result is true, goes back to normal state, else finds a new recovery point then

continues recovering.

 Although this kind of deadlock prediction and recovery mechanism cannot eliminate

deadlock, it significantly reduces the occurrence of deadlock.

4. Simulation

 In this section, I will provide the simulation result using the proposed buffered Voronoi

cell collision avoidance algorithm with obstacles. The analysis of the computational

complexity is also provided.

 The simulation is executed on a laptop running Windows 10 with Intel Core i7-11800H

@2.30GHz and 16G RAM. In the simulation, the robots are running in a 10*10 map with 10

19

square obstacles with side length 10. The safety radius 𝑟௦ is set as 0.1. The maximum linear

velocity of the robots is also 0.1.

 The simulation program is based on Python 3.8. To build the Voronoi cell, I used the

Voronoi Library in scipy.

 I first demonstrate the feasibility of the deadlock prediction and recovery between robots

and obstacles.

Figure 4. 1: The deadlock detection and recovery process

 As shown in Figure 4.1, the two robots are represented as points in purple and yellow.

The two trapezoids are the buffered Voronoi cells of them. The trajectory of the robot is

represented as small dots with the same color as robots, and the goal of the robot is

represented as a square with same color. In this simulation, Robot 1 comes from the right side

of the map and goes to the goal at the left side. Robot 2 is a robot that already reached the

goal and stay there. The distance between robot 2 and the obstacle is smaller than 3 𝑟௦, which

is not enough for a robot to go through. The left figure in Figure 4.1 shows the moment when

robot 1 detected the deadlock. It then goes to the deadlock recovery process. The right figure

20

shows the trajectory of the deadlock recovery. When robot 1 avoids robot 2 and meets the

condition of recovery success, it goes to normal state and goes directly to the goal.

 Next, I test the feasibility of the algorithm running in the environment with 10 obstacles.

Figure 4. 2: The trajectory of the robots in simulation. The number of the robots in these four cases are

5, 10, 15 and 20.

 Figure 4.2 shows the simulation result of 5, 10, 15 and 20 robots. In each case, in order

to test the algorithm’s ability to handle multi-robot systems, the starting and goal points of

robots are set on different sides of the map, or at the opposite corners, so that all the robots

need to cross the central area of the map and will encounter each other. According to the

simulation, the proposed algorithm can handle the case with at least 20 robots and solve the

problem in 125 iterations of the algorithm. The actual time for most robots meeting at the

21

center area, then leaving each other and going to their own destination is only 50 iterations. In

these 50 iterations, more than 15 robots are moving without collision in the 2.5*2.5 center

area of the map, and then generating their control signal only by the position information of

other robots and solve the problem.

 The computational complexity of this algorithm highly depends on the complexity of the

map. In each time step, the robot needs to generate the buffered Voronoi cell, calculate the

shortest path by A*, finding the nearest point in BVC. Constructing a Voronoi diagram

typically takes 𝑂(𝑛𝑙𝑜𝑔𝑛) times by using divide-and-conquer algorithm, where 𝑛 is the

number of the robots. To find the nearest point in a convex area to an outside point, the time

complexity is 𝑂(𝑘), where 𝑘 is the number of the vertices of this convex area. The worst

case for A* algorithm is without useful information from the heuristic and becomes a

Dijkstra's algorithm. The time complexity of Dijkstra's algorithm is 𝑂((𝑉 + 𝐸)𝑙𝑜𝑔𝑉), where

𝑉 is the number of vertices, 𝐸 is the number of edges. For a grid map in A* algorithm, the

number of edges is linear to the number of vertices, so the computational complexity of A*

can be represented as 𝑂(𝑉𝑙𝑜𝑔𝑉), where V is the number of the nodes in the map. Therefore,

the total computational complexity of the proposed algorithm is 𝑂(𝑉𝑙𝑜𝑔𝑉), where V is the

number of the nodes in the map.

5. Conclusion and Future Work

 The paper introduces a decentralized motion planning algorithm for multi-robot systems

with obstacles based on the buffered Voronoi cell. The algorithm guarantees collision

avoidance between robots, and can not only handle the deadlock caused between robots, but

22

also deadlock caused between robots and obstacles. There are still some improvements that

can be made.

 First, the algorithm can be extended into environments with more complex obstacles by

changing the rectangle area used in the algorithm to the largest convex area. Second, although

A* is a simple and fast algorithm, the path it calculated has the problem that is not smooth

and the robot is too close to obstacles. Third, the robot in the paper is first-order integrator

robot without non-holonomic constraints. To implement the algorithm in reality, more

constraints need to be considered.

 In future work, I will attempt to solve the above problems. First, the IRIS algorithm by

[19] is a fast algorithm to get a collision-free area within large numbers of irregular obstacles

that only takes a few seconds to get a convex region in an environment containing one million

obstacles. By combining this algorithm, the BVC algorithm can be used in more cluttered

environments with complex obstacles. Second, there are many other global path planning

algorithms that can generate paths that are in the middle among obstacles, such as Vector

Field Histogram methods [22]. Another way is, instead of using Voronoi cells, using the

edges of the Voronoi diagram as the path, which may have some similar points with the BVC

algorithm used in this paper. Third, the kinematic model of this algorithm needs to add more

constraints to generate velocity consistent with more complicated robots. The corresponding

control signal can be calculated by optimization method.

23

References

[1] G. Lionis and K. J. Kyriakopoulos, "Centralized Motion Planning for a Group of Micro Agents

Manipulating a Rigid Object," Proceedings of the 2005 IEEE International Symposium on,

Mediterrean Conference on Control and Automation Intelligent Control, 2005., Limassol,

Cyprus, 2005, pp. 662-667, doi: 10.1109/.2005.1467093.

[2] L. Aguilar, R. Alami, S. Fleury, M. Herrb, F. Ingrand and F. Robert, "Ten autonomous mobile

robots (and even more) in a route network like environment," Proceedings 1995 IEEE/RSJ

International Conference on Intelligent Robots and Systems. Human Robot Interaction and

Cooperative Robots, Pittsburgh, PA, USA, 1995, pp. 260-267 vol.2, doi:

10.1109/IROS.1995.526170.

[3] Lumelsky, V., Harinarayan, K. Decentralized Motion Planning for Multiple Mobile Robots:

The Cocktail Party Model. Autonomous Robots 4, 121–135 (1997).

[4] Dit-Yan Yeung and G. Bekey, "A decentralized approach to the motion planning problem for

multiple mobile robots," Proceedings. 1987 IEEE International Conference on Robotics and

Automation, Raleigh, NC, USA, 1987, pp. 1779-1784, doi: 10.1109/ROBOT.1987.1087768.

[5] Yi Guo and L. E. Parker, "A distributed and optimal motion planning approach for multiple

mobile robots," Proceedings 2002 IEEE International Conference on Robotics and Automation

(Cat. No.02CH37292), Washington, DC, USA, 2002, pp. 2612-2619 vol.3, doi:

10.1109/ROBOT.2002.1013625.

[6] M. Abdullhak and A. Vardy, "Deadlock Prediction and Recovery for Distributed Collision

Avoidance with Buffered Voronoi Cells," 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Prague, Czech Republic, 2021, pp. 429-436, doi:

10.1109/IROS51168.2021.9636609.

[7] Zhou, Dingjiang, et al. "Fast, on-line collision avoidance for dynamic vehicles using buffered

voronoi cells." IEEE Robotics and Automation Letters 2.2 (2017): 1047-1054.

[8] Fiorini P, Shiller Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. The

International Journal of Robotics Research. 1998;17(7):760-772.

doi:10.1177/027836499801700706

[9] J. van den Berg, Ming Lin and D. Manocha, "Reciprocal Velocity Obstacles for real-time multi-

agent navigation," 2008 IEEE International Conference on Robotics and Automation,

Pasadena, CA, 2008, pp. 1928-1935, doi: 10.1109/ROBOT.2008.4543489.

[10] J. Alonso-Mora, A. Breitenmoser, P. Beardsley and R. Siegwart, "Reciprocal collision

avoidance for multiple car-like robots," 2012 IEEE International Conference on Robotics and

Automation, Saint Paul, MN, USA, 2012, pp. 360-366, doi: 10.1109/ICRA.2012.6225166.

[11] van den Berg, J., Guy, S.J., Lin, M., Manocha, D. (2011). Reciprocal n-Body Collision

Avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer

Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg.

[12] Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., & Siegwart, R. (2013). Optimal

reciprocal collision avoidance for multiple non-holonomic robots. In Distributed autonomous

robotic systems: The 10th international symposium (pp. 203-216). Springer Berlin Heidelberg.

[13] J. van den Berg, J. Snape, S. J. Guy and D. Manocha, "Reciprocal collision avoidance with

acceleration-velocity obstacles," 2011 IEEE International Conference on Robotics and

Automation, Shanghai, China, 2011, pp. 3475-3482, doi: 10.1109/ICRA.2011.5980408.

24

[14] J. Snape, J. v. d. Berg, S. J. Guy and D. Manocha, "The Hybrid Reciprocal Velocity Obstacle,"

in IEEE Transactions on Robotics, vol. 27, no. 4, pp. 696-706, Aug. 2011, doi:

10.1109/TRO.2011.2120810.

[15] D. Wilkie, J. van den Berg and D. Manocha, "Generalized velocity obstacles," 2009 IEEE/RSJ

International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009, pp.

5573-5578, doi: 10.1109/IROS.2009.5354175.

[16] M. Wang and M. Schwager, "Distributed Collision Avoidance of Multiple Robots with

Probabilistic Buffered Voronoi Cells," 2019 International Symposium on Multi-Robot and

Multi-Agent Systems (MRS), New Brunswick, NJ, USA, 2019, pp. 169-175, doi:

10.1109/MRS.2019.8901101.

[17] H. Zhu and J. Alonso-Mora, "B-UAVC: Buffered Uncertainty-Aware Voronoi Cells for

Probabilistic Multi-Robot Collision Avoidance," 2019 International Symposium on Multi-

Robot and Multi-Agent Systems (MRS), New Brunswick, NJ, USA, 2019, pp. 162-168, doi:

10.1109/MRS.2019.8901092.

[18] Zhu, Hai, Bruno Brito, and Javier Alonso-Mora. "Decentralized probabilistic multi-robot

collision avoidance using buffered uncertainty-aware Voronoi cells." Autonomous Robots 46.2

(2022): 401-420.

[19] Deits, Robin, and Russ Tedrake. "Computing large convex regions of obstacle-free space

through semidefinite programming." Algorithmic Foundations of Robotics XI: Selected

Contributions of the Eleventh International Workshop on the Algorithmic Foundations of

Robotics. Cham: Springer International Publishing, 2015.

[20] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the heuristic

determination of minimum cost paths." IEEE transactions on Systems Science and Cybernetics

4.2 (1968): 100-107.

[21] Dijkstra, Edsger W. "A note on two problems in connexion with graphs." Edsger Wybe Dijkstra:

His Life, Work, and Legacy. 2022. 287-290.

[22] J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobile

robots," in IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-288, June

1991,

