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ABSTRACT OF THE THESIS 

 

Motion Planning for Multi-Agent Systems with Obstacles based on Buffered Voronoi 

Cell 

by 

Meng Ma 

Master of Science in Electrical and Computer Engineering 

University of California, Irvine, 2024 

Assistant Professor Quoc-Viet Dang, Chair 

 

This paper presents a decentralized motion planning algorithm for multi-robot 

systems in the environment with static obstacles. In the proposed algorithm, the 

environment is divided into several obstacle-free convex spaces to make sure tools 

like convex programming to be used and robots won’t be stuck in local minimum. In 

each time step, the robot finds the largest obstacle-free convex area containing its 

current position and builds a buffered Voronoi cell, within which the robot can move 

freely without collision, based on the position information of the robots in its 

obstacle-free convex area. A prediction and recovery mechanism is also employed to 

solve the deadlock caused between robots and obstacles. The simulation results show 

that the proposed algorithm can solve the problem effectively for robots with single 

integrator dynamics and which do not have non-holonomic constraints in 2D 

dimension. The idea of the algorithm can also be extended into 3D dimensions for 

Unmanned Aerial Vehicles (UAV). 
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1. Introduction 

With the development of automation technology, an increasing number of robots are 

becoming visible in various aspects of human life. Robot navigation has emerged as a 

significant area of focus within the field of robotics. In this domain, motion planning for 

multi-robot systems is one of the basic problems. Motion planning in multi-robot systems 

necessitates not only the safe and collision-free trajectory for each robot, but also requires the 

fast and accurate decision-making mechanism based on the possible limited information of 

the system. Besides, deadlock may also occur when several robots are crowded into a narrow 

space or need to pass the same area at the same time.  

Two primary categories of algorithms are utilized to address motion planning in multi-

robot systems: centralized algorithms and decentralized algorithms. Centralized algorithm [1, 

2] has a central planner that has the global knowledge of all environments and robots, such as 

positions, velocities, and objectives of all robots. It uses this information to generate the 

control signals for all robots to optimize one or multiple performance parameters. Centralized 

algorithms are often favored in scenarios where heightened performance standards or precise 

control accuracy are imperative. However, as the number of robots increases and the 

environment becomes complex, the computational complexity of planning for all robots 

centrally can be challenging. Contrary to the centralized algorithm, in decentralized 

algorithms [3, 4, 5], which are also known as distributed algorithms, each robot has its own 

planner and only makes decisions according to the information it has. Due to its scalability 

and low computational complexity compared with centralized algorithms, decentralized 
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algorithms are widely used in robot swarms or unmanned aerial vehicles which have a large 

number of robots. Nevertheless, many decentralized algorithms fail to account for obstacles 

or deadlock problems, or they only provide simple solutions. 

This paper presents a decentralized motion planning algorithm with deadlock prediction 

and recovery mechanism for multi-robot systems with static obstacles. The algorithm can 

generate collision-free paths and control inputs real time for robots and has an extended 

version of the deadlock handling mechanism proposed by Abdullhak et al. in [6], which has 

been proven to drastically reduce the occurrence of deadlock. To solve the collision 

avoidance, the algorithm uses the definition of buffered Voronoi cell (BVC) proposed by 

Zhou et al. in [7], and extends it into environments with static obstacles. In each time step, the 

robot needs to: (1) calculate a convex area, which is the largest rectangular area within the 

environment in this paper, containing its positions; (2) calculate the buffered Voronoi cell in 

the convex area based on the position information of other robots; (3) calculate the shortest 

path from its current position to the goal, choose the subgoal in the convex area and the 

waypoint in the BVC; (4) check if the waypoint may cause a deadlock; if yes, choose another 

waypoint based on deadlock recovery mechanism. 

Decentralized motion planning algorithms in multi-robot systems have been widely 

studied. In [8], Fiorini et al. introduced a definition named “Velocity Obstacle”, which gives a 

first-order approximation of the robot’s velocities that would cause a collision in a period of 

time in future. Collision can be avoided by selecting velocity that is not inside Velocity 

Obstacle. The concept was then extended into “Reciprocal Velocity Obstacle (RVO)” by Jur 

van den Berg et al. in [9], which simply assumes that other agents make similar decisions to 



3 

 

avoid the obstacles. Optimal Reciprocal Collision Avoidance (ORCA) is another velocity-

based algorithm proposed by Jur van den Berg et al. In ORCA, each robot is inferred a half-

plane in velocity space that is allowed to be selected by other robots to guarantee collision 

avoidance. It was then expanded to robots with non-holonomic constraints by J. Alonso-Mora 

in [11] and Javier Alonso-Mora et al. in [12]. Besides, there are also Acceleration-velocity 

obstacles (AVO) which takes into account acceleration constraints [13]; Hybrid Reciprocal 

Velocity Obstacle (HRVO) which counters the oscillation issue in RVO [14]; and 

Generalized Velocity Obstacles (GVO) which extends the velocity obstacles to handle 

nonholonomic kinematic constraints [15]. However, all of these VO-variant algorithms need 

both position and velocity information.  

In [7], Zhou et al. presents the definition of buffered Voronoi cells and introduces the 

BVC algorithm that only needs the position information for robots. They proved that the BVC 

algorithm has the same computational complexity and similar empirical performance as the 

ORCA algorithm. Sensor and localization uncertainty was then added into BVC by Wang et 

al. in [16] and Zhu et al. in [17], taking the sensor and odometry error into account. The 

probabilistic buffered Voronoi cell was then used in environments with obstacles in [18], but 

they still use the simple heuristic right-hand rule to deal with deadlock problems. In [6], a 

novel deadlock prediction and recovery method was introduced by Abdullhak et al., but do 

not consider obstacles. The algorithm presented in this paper not only accounts for 

environmental obstacles but also incorporates the mechanism for deadlock recovery. 

The rest of the paper is organized as follows. Section 2 is the problem formulation and 

some preliminary definitions about BVC. In section 3, a detailed explanation of the algorithm 
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is presented. Section 4 provides the simulation and the result analysis of the algorithm. And 

section 5 is the discussion. 

 

2. Problem formulation and Preliminaries 

 In this section, I will provide a formulation of the motion planning problem for multi-

robot systems in an environment with static obstacles and some preliminary definitions. 

 Consider a system with 𝑛 robots in a 2D plane 𝑅ଶ denoted by 𝑅ଵ, 𝑅ଶ, … , 𝑅௡, the start 

position for the robots is 𝑆ଵ, 𝑆ଶ, … , 𝑆௡, the goal position is 𝐺ଵ, 𝐺ଶ, … , 𝐺௡, and the obstacles in 

the environment is 𝑂ଵ, 𝑂ଶ, … , 𝑂௠ for 𝑚 obstacles. For robot 𝑅௜, I denote the current center 

position at time 𝑡 as 𝑝௜,௧. Each robot has the same size with a safety radius 𝑟௦. 

 The motion planning problem for multiple robots can be formulated as: in the system 

above, finding the input controls 𝑢௜ for 𝑅௜ so that 𝑅௜ can move form 𝑆௜ to 𝐺௜ without 

any collision with other robots and any obstacle. 

 

A. Assumption 

In this thesis, we assume: 1) All the robots have a same size with a safety radius 𝑟௦; 2) 

The robot knows the positions of all robots and the obstacles without communication loss or 

error; 3) Robots are able to execute the control inputs calculated by the algorithm without 

delay or error; 4） All obstacles are rectangular, and can be determined by four vertices. 
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B. Kinematic Constraints 

We simply assume that the robot used in this thesis is an omnidirectional mobile robot, 

which does not have non-holonomic constraints. For omnidirectional mobile robots, there are 

three degrees of freedom: X-axis, Y-axis and a rotation axis Z-axis. But we only need to 

consider X-axis and Y axis because of the absence of non-holonomic constraints. 

The kinematic constraints can be represented as follows. 

For robot 𝑅௜ at time 𝑡, there are: 

𝑝௜,௧ାଵ = 𝐴𝑝௜,௧ + 𝐵𝑢௜,௧ , 

ฮ𝑢௜,௧ฮ ≤ 𝑢௠௔௫, 

where 𝐴, 𝐵 are kinematic matrices of the robot and 𝑢௠௔௫ is the maximum line speed. 

In this thesis, the state vector 𝑝 is [𝑥, 𝑦]், which is the position of the robot, the control 

vector is [𝑣௫, 𝑣௬]், which is the velocity of the robot. The State Transition Matrix 𝐴 can be a 

2 × 2 identity matrix: 

ቂ
1 0
0 1

ቃ 

 The control input matrix 𝐵 is: 

൤
∆௧ 0
0 ∆௧

൨ 

where ∆௧ is the time step of a control loop. 

 

C. Collision-free Constraints 

For each robot 𝑅௜, I formulate the collision free constraints as follows: 
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ฮ𝑝௜,௧ − 𝑝௝,௧ฮ > 2𝑟௦, ∀𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, 𝑖 ≠ 𝑗 

ฮ𝑝௜,௧ − 𝑂௝
∗ฮ > 𝑟௦, ∀𝑗 ∈ {1,2, … , 𝑚} 

where 𝑂௝
∗ is the nearest point of obstacle 𝑂௝ to 𝑝௜,௧, and ‖∙‖ denotes the Euclidean 

distance. The first constraint is the collision-free constraint between robots and the second 

constraint is the constraint between robots and obstacles. 

 

D. Voronoi Diagram 

Voronoi Diagram is a method of segmenting a plane into parts based on several points. 

During segmenting, all the points in the plane that is closest to one given point were 

segmented in an area, which is called the Voronoi Cell of this point. Suppose we have a set of 

points: 𝑥ଵ, 𝑥ଶ, … , 𝑥௡, the Voronoi cell of the point 𝑥௜ is defined as: 

𝑉௜ = {𝑥 ∈ 𝑅ଶ| ‖𝑥 − 𝑥௜‖ ≤ ฮ𝑥 − 𝑥௝ฮ, ∀𝑗 ≠ 𝑖}, 

where ‖∙‖ denotes the Euclidean distance. The Voronoi diagram is defined as 𝑉 = 𝑉ଵ ∪

𝑉ଶ ∪ … ∪ 𝑉௡. The point set 𝑋 is defined as the Seed for this Voronoi diagram. In this 

proposed motion planning algorithm for a multi-robot system, we use robots’ positions as 

seeds to build a Voronoi diagram. 
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Figure 2. 1: Voronoi diagram and buffered Voronoi cell for 7 robots 

 

E. Buffered Voronoi Cell 

To make sure each robot can move without collision in its own Voronoi cell, the actual 

moving area for robot’s center is smaller than the Voronoi cell. Suppose we have 𝑛 robots 

𝑅ଵ, 𝑅ଶ, … , 𝑅௡, with Voronoi cell 𝑉ଵ, 𝑉ଶ, … , 𝑉௡. For robot 𝑅௜, the buffered Voronoi cell is 

defined as the area formed by moving each edge of Voronoi cell 𝑉௜ to robot 𝑅௜’s position 𝑝௜ 

by a distance of safety radius 𝑟௦. Thus, the collision-free constraint between robots must be 

satisfied if each robot’s position is within its buffered Voronoi cell. 

 

F. Decentralized Motion planning based on Buffered Voronoi Cell 

The buffered Voronoi cell guarantees that when robots move in their buffered Voronoi 

cell, there will be no collision between robots. At each time step, the robot just repeats the 

following steps: 1) generate the buffered Voronoi cell; 2) choose a waypoint in its buffered 

Voronoi cell; 3) calculate the control input for the robot to move to the waypoint; until each 

robot reaches their goal. In the previous work [7], Zhou et al. have demonstrated the 

feasibility of using BVC for multi-robot path planning in an environment without obstacles. 
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In their work, they use Receding Horizon Path Planning and regard the motion control of 

robots as a quadratic problem. At each time step, the robot calculates a QP problem and 

follows the control to move within its BVC. 

Like other decentralized motion planning algorithms for multi-robot systems, deadlock is 

a problem that cannot be ignored. Deadlock happens when robots block the way of other 

robots due to the fact that they do not know the control decision made by others and at least 

one robot cannot reach its goal. In [7], Zhou et al. solve deadlock by a simple heuristic 

method, the right-hand side rule: when robots encounter deadlock, they all choose their right-

hand side to move. But this kind of method becomes inefficient when the number of robots is 

large. In [6], Abdullhak et al. propose a new deadlock prediction and recovery mechanism, 

with which the success rate for robots to reach their goals is ideal even with a large number of 

robots. 

However, both of these algorithms do not consider obstacles and cannot be used in an 

environment with obstacles. There are several reasons: (1) Adding obstacles in the 

environment introduces non-convex polygon in Voronoi diagram, the QP receding horizon 

path planning cannot apply because the problem is not a convex problem; (2) The non-convex 

optimization is both computationally expensive and unpracticable, robots may get stuck in 

local minimum; (3) Neither the right-hand rule by [7] and the deadlock recovery by [6] cannot 

be directly used in environment with obstacles because they do not consider deadlock caused 

between robots and obstacles, which sometimes may cause collision. 
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3. Method 

 In this section, I will first propose the overview of the algorithm, then divide the 

algorithm into several stages to explain it in detail. 

 

A. Overview of Algorithm 

The basic idea for the proposed algorithm is dividing the non-convex environment filled 

with obstacles into multiple convex areas for robots to move in their BVC, which guarantees 

collision-free constraints during the entire movement. The deadlock prediction and recovery 

mechanism in [6] by Abdullhak et al. is extended and used to reduce the loss on algorithm’s 

performance caused by deadlock. 

The proposed algorithm can be divided into several stages: (1) Find the convex area, 

calculate the buffered Voronoi cell for the robot in this convex area; (2) Use shortest path 

algorithm to find the nearest point in this convex area, set it as the subgoal 𝑔௦; (3) Choose the 

nearest point in the BVC as the waypoint 𝑔௧ to subgoal; (4) If the robot encounters deadlock, 

go to deadlock recovery; (5) If the robot reaches the subgoal, choose a new subgoal.  

The overview is given in Algorithm 1. 
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B. Get the Convex Area 

To ensure that robots can move without collision within its BVC and the problem does 

not deviate from convex optimization, the buffered Voronoi diagram must be generated in an 

environment having no obstacles. In the proposed algorithm, I choose the largest horizontal 

rectangular area in the map that contains the coordinates of the robot as the convex area 

because all obstacles can be represented by rectangles. However, it is still a good choice to 
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choose the largest convex area that contains the point. In [19], Deits et al. presented IRIS 

(Iterative Regional Inflation by Semidefinite programming), which is an algorithm that can 

quickly compute the large polygon of collision-free space in a computation time which is 

linear in the number of obstacles.  

There are two reasons why I choose the rectangle as the convex area. (1) The map only 

has rectangle obstacles; it is more straightforward to compute the rectangle than a convex 

polygon. (2) The robot needs to compute the convex area at each time step to track the new 

subgoal. A map with rectangular obstacles has only a limited number of obstacle-free 

rectangles. The algorithm only needs to find all the rectangles in the beginning of the 

algorithm, so that the robot can traverse these rectangles once, instead of running the whole 

algorithm at each time step. 

 

Figure 3. 1: The largest rectangle used in the proposed algorithm 

 

C. The Shortest Path Algorithm 

When there are no obstacles, the robot can directly select the point closest to the goal in 

BVC as the waypoint and directly calculate the control input. However, this strategy cannot 

be used in an environment with obstacles since robots may be stuck in the local minimum. To 
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make sure the robot is moving on the right direction, the shortest path algorithm is used to 

choose the subgoal 𝑔௦. 

There are many shortest path algorithms, such as Dijkstra’s algorithm [21] and A* 

algorithm [20]. In this algorithm, A * is used to generate the shortest path.  

At each time step, the robot finds a shortest path from its current position 𝑝௧ to its final 

goal 𝑔, then choose the last point in the rectangle 𝐶 as the subgoal 𝑔௦ in this time step. The 

current position 𝑝௧ and the subgoal 𝑔௦ is in one collision-free rectangle 𝐶, so that robot can 

move from 𝑝௧ to 𝑔௦ using normal nearest waypoint 𝑔௧
∗ in its BVC. 

 

Figure 3. 2: The choice of subgoal 𝑔௦ and waypoint 𝑔௧
∗ 

 

D. The Area Change Procedure 

When the robot reaches the subgoal 𝑔௦, it goes into another procedure of the algorithm: 

Area Change Procedure. In order for the robot to leave the current rectangle and enter the 
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next area, a new subgoal needs to be selected. In the proposed algorithm, the new subgoal 𝑔௦
ᇱ  

is set to the first point on the shortest path that is not within the current collision-free 

rectangle 𝐶. And to make sure the collision-free constraints of the robot when moving from 

the current position 𝑝௧ to the new subgoal𝑔௦
ᇱ , robot will choose another collision-free 

rectangle 𝐶′ that contains both 𝑝௧ and 𝑔௦
ᇱ  and build a new buffered Voronoi cell.  

 

Figure 3. 3: The process of change the rectangle 

 

 Then the robot will move to the new subgoal 𝑔௦
ᇱ . When reaching 𝑔௦

ᇱ , the robot goes back 

to normal state and continues moving in the new rectangle and BVC. 

 

E. Deadlock Prediction. 

Deadlock constitutes a significant challenge in decentralized algorithms, occurring when 

one or more robots are unable to progress towards their designated goals solely through the 

use of their independent decentralized planning mechanisms. 
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Figure 3. 4: Deadlock without obstacle 

When the robots move in the environment without obstacles, the deadlock caused by two 

robots can be easily solved by right-hand rules: the robots both choose its right-hand side or 

left-hand side to move, then the deadlock can be broken. Thus, an unsolvable deadlock can 

only happen when the number of robots is larger than 2. 

Suppose at time step 𝑡, the robot chooses the closest point 𝑔௧
∗ as the waypoint to the 

goal 𝑔, 𝑅௜ and 𝑅௝ are two robots in neighbor robot group 𝑁, which satisfies 

𝑁 = {𝑅௜|‖𝑔௧
∗ − 𝑝௜‖ < 𝑘𝑟௦, 𝑘 ≥ 2, 𝑖 = 1, 2, … , 𝑛} 

 In [6], when the closest waypoint 𝑔௧
∗ and the goal 𝑔 are on the different sides of the 

line between all neighbor robot pairs 𝑅௜ and 𝑅௝ in 𝑁, whose distance is smaller than 4𝑟௦, a 

deadlock is detected. 
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This prediction strategy works well when there are no obstacles. However, it fails to 

predict the deadlock caused between other robots and obstacles. When robots are moving in 

an environment with obstacles, deadlock may occur with only two robots.  

 To deal with the deadlock caused between robots and obstacles, we not only consider 

neighbor robot pairs, but also consider the point pair between the neighbor’s position 𝑝௜ and 

the projection 𝑔௣௧
∗  of 𝑔௧

∗ on the obstacles. 

 

Figure 3. 5: Deadlock with obstacle 

 

Suppose the deadlock happens when robot 𝑅 is at 𝑔௧
∗, the neighbor robot 𝑅௜ who 

shares the edge between 𝑅 and 𝑅௜ is at 𝑝௜. The projection of waypoint 𝑔௧
∗ on the obstacle 

𝑂 is 𝑔௣௧
∗ , which is also the nearest point of obstacle 𝑂 to 𝑔௧

∗. 

Since the deadlock must happens when the robot is at the vertex of BVC (by [6]), there 

must be: 

‖𝑔௧
∗ − 𝑝௜‖ = 2𝑟௦ 
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ฮ𝑔௧
∗ − 𝑔௣௧

∗ ฮ = 𝑟௦ 

Proposition 1: For above condition to be satisfied, the distance between 𝑝௜ and 𝑔௣௧
∗  

must be equal or less than 3𝑟௦: 

ฮ𝑝௜ − 𝑔௣௧
∗ ฮ ≤ 3𝑟௦ 

Proof: Assume ฮ𝑝௜ − 𝑔௣௧
∗ ฮ > 3𝑟௦, for any point 𝑥 that is not on the line segment 

between 𝑝௜ and 𝑔௣௧
∗ , there are: 

‖𝑥 − 𝑝௜‖ + ฮ𝑥 − 𝑔௣௧
∗ ฮ > ฮ𝑝௜ − 𝑔௣௧

∗ ฮ > 3𝑟௦ 

If we choose 𝑥 as a point where ‖𝑥 − 𝑝௜‖ = 2𝑟௦, then there must be  

ฮ𝑥 − 𝑔௣௧
∗ ฮ > 𝑟௦ 

Which contradicts the above condition. 

 Thus, we can extend the deadlock prediction condition. 

 Suppose we have a neighbor robot group 𝑁: 

𝑁 = {𝑅௜|‖𝑔௧
∗ − 𝑝௜‖ < 𝑘𝑟௦, 𝑘 ≥ 2, 𝑖 = 1, 2, … , 𝑛} 

and an obstacle 𝑂 within 𝑟௦ of 𝑔௧
∗. The projection of waypoint 𝑔௧

∗ on the obstacle 𝑂 is 

𝑔௣௧
∗ . A deadlock between robots and obstacles is detected when: the closest waypoint 𝑔௧

∗ and 

the goal 𝑔 are on the different sides of the line between robot’s position 𝑝௜ and the 

waypoint 𝑔௧
∗’s projection 𝑔௣௧

∗  on the obstacle 𝑂, for all robots whose distance from 𝑝௜ to 

𝑔௣௧
∗  is smaller than 3𝑟௦. 
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 At each time step before moving, the robot detects the deadlock between robots and the 

deadlock between robot and obstacle. As long as one deadlock is detected, the robot enters the 

deadlock recovery. 

 

F. Deadlock Recovery and recovery success prediction 

When a deadlock is detected at waypoint 𝑔௧
∗, the robot goes to Deadlock Recovery 

procedure, abandon waypoint 𝑔௧
∗ , and choose another recovery point in its BVC to bypass 

the deadlock location 𝑔௧
∗. 

In [6], Abdullhak et al. choose the point that is furthest from the line between the robot’s 

current position 𝑝௧ and the robot’s goal 𝑔 in robot’s BVC at time step 𝑡, which is called 

outermost point 𝑜௧. In the proposed algorithm, we still use the same way to choose the 

recovery point, however, with some little changes. 

First, the line between 𝑝௧ and 𝑔 needs to be changed into the line between 𝑝௧ and the 

subgoal 𝑔௦. Second, if the deadlock occurs between the obstacles and the robots, the 

outermost point 𝑜௧ should not be on the same side with the obstacle. 

As the robot moves toward the recovery point, when all the robot in the neighbor robot 

group 𝑁 and the projection 𝑔௣௧
∗  of waypoint 𝑔௧

∗ are on one side of the line between the 

robot current position 𝑝௧ and the subgoal 𝑔௦, the deadlock recovery is considered 

successful, the robot goes back to normal state and choose new a waypoint to move to the 

subgoal. 
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Figure 3. 6: The process of deadlock recovery. The left one shows the deadlock recovery, the right one 

is the recovery success. 

 

 In the deadlock recover procedure, the robot keeps moving to the recovery point 𝑜௧ until 

one of these conditions satisfies: (1) The recovery success give the true result; (2) The 

recovery point 𝑜௧ outside the new BVC, the algorithm finds a new recovery point then 

continues recovering; (3) The robot reaches the recovery point, checks the recovery success 

result: if the result is true, goes back to normal state, else finds a new recovery point then 

continues recovering.  

 Although this kind of deadlock prediction and recovery mechanism cannot eliminate 

deadlock, it significantly reduces the occurrence of deadlock. 

4. Simulation 

 In this section, I will provide the simulation result using the proposed buffered Voronoi 

cell collision avoidance algorithm with obstacles. The analysis of the computational 

complexity is also provided. 

 The simulation is executed on a laptop running Windows 10 with Intel Core i7-11800H 

@2.30GHz and 16G RAM. In the simulation, the robots are running in a 10*10 map with 10 
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square obstacles with side length 10. The safety radius 𝑟௦ is set as 0.1. The maximum linear 

velocity of the robots is also 0.1.  

 The simulation program is based on Python 3.8. To build the Voronoi cell, I used the 

Voronoi Library in scipy.  

 I first demonstrate the feasibility of the deadlock prediction and recovery between robots 

and obstacles.  

 

Figure 4. 1: The deadlock detection and recovery process 

 

 As shown in Figure 4.1, the two robots are represented as points in purple and yellow. 

The two trapezoids are the buffered Voronoi cells of them. The trajectory of the robot is 

represented as small dots with the same color as robots, and the goal of the robot is 

represented as a square with same color. In this simulation, Robot 1 comes from the right side 

of the map and goes to the goal at the left side. Robot 2 is a robot that already reached the 

goal and stay there. The distance between robot 2 and the obstacle is smaller than 3 𝑟௦, which 

is not enough for a robot to go through. The left figure in Figure 4.1 shows the moment when 

robot 1 detected the deadlock. It then goes to the deadlock recovery process. The right figure 
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shows the trajectory of the deadlock recovery. When robot 1 avoids robot 2 and meets the 

condition of recovery success, it goes to normal state and goes directly to the goal. 

 Next, I test the feasibility of the algorithm running in the environment with 10 obstacles. 

 

Figure 4. 2: The trajectory of the robots in simulation. The number of the robots in these four cases are 

5, 10, 15 and 20. 

 

 Figure 4.2 shows the simulation result of 5, 10, 15 and 20 robots. In each case, in order 

to test the algorithm’s ability to handle multi-robot systems, the starting and goal points of 

robots are set on different sides of the map, or at the opposite corners, so that all the robots 

need to cross the central area of the map and will encounter each other. According to the 

simulation, the proposed algorithm can handle the case with at least 20 robots and solve the 

problem in 125 iterations of the algorithm. The actual time for most robots meeting at the 
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center area, then leaving each other and going to their own destination is only 50 iterations. In 

these 50 iterations, more than 15 robots are moving without collision in the 2.5*2.5 center 

area of the map, and then generating their control signal only by the position information of 

other robots and solve the problem. 

 The computational complexity of this algorithm highly depends on the complexity of the 

map. In each time step, the robot needs to generate the buffered Voronoi cell, calculate the 

shortest path by A*, finding the nearest point in BVC. Constructing a Voronoi diagram 

typically takes 𝑂(𝑛𝑙𝑜𝑔𝑛) times by using divide-and-conquer algorithm, where 𝑛 is the 

number of the robots. To find the nearest point in a convex area to an outside point, the time 

complexity is 𝑂(𝑘), where 𝑘 is the number of the vertices of this convex area. The worst 

case for A* algorithm is without useful information from the heuristic and becomes a 

Dijkstra's algorithm. The time complexity of Dijkstra's algorithm is 𝑂((𝑉 + 𝐸)𝑙𝑜𝑔𝑉), where 

𝑉 is the number of vertices, 𝐸 is the number of edges. For a grid map in A* algorithm, the 

number of edges is linear to the number of vertices, so the computational complexity of A* 

can be represented as 𝑂(𝑉𝑙𝑜𝑔𝑉), where V is the number of the nodes in the map. Therefore, 

the total computational complexity of the proposed algorithm is 𝑂(𝑉𝑙𝑜𝑔𝑉), where V is the 

number of the nodes in the map. 

5. Conclusion and Future Work 

 The paper introduces a decentralized motion planning algorithm for multi-robot systems 

with obstacles based on the buffered Voronoi cell. The algorithm guarantees collision 

avoidance between robots, and can not only handle the deadlock caused between robots, but 
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also deadlock caused between robots and obstacles. There are still some improvements that 

can be made. 

 First, the algorithm can be extended into environments with more complex obstacles by 

changing the rectangle area used in the algorithm to the largest convex area. Second, although 

A* is a simple and fast algorithm, the path it calculated has the problem that is not smooth 

and the robot is too close to obstacles. Third, the robot in the paper is first-order integrator 

robot without non-holonomic constraints. To implement the algorithm in reality, more 

constraints need to be considered. 

 In future work, I will attempt to solve the above problems. First, the IRIS algorithm by 

[19] is a fast algorithm to get a collision-free area within large numbers of irregular obstacles 

that only takes a few seconds to get a convex region in an environment containing one million 

obstacles. By combining this algorithm, the BVC algorithm can be used in more cluttered 

environments with complex obstacles. Second, there are many other global path planning 

algorithms that can generate paths that are in the middle among obstacles, such as Vector 

Field Histogram methods [22]. Another way is, instead of using Voronoi cells, using the 

edges of the Voronoi diagram as the path, which may have some similar points with the BVC 

algorithm used in this paper. Third, the kinematic model of this algorithm needs to add more 

constraints to generate velocity consistent with more complicated robots. The corresponding 

control signal can be calculated by optimization method.  
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