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ABSTRACT OF THE DISSERTATION

Thermal Conductivity Measurements Across a Pressure-Induced Phase Transition:

Application to Heat Flow in Earth's Interior

by

Christopher McGuire

Doctor of Philosophy in Geology

University of California, Los Angeles, 2018

Professor Abby Kavner, Chair

The thermal conductivity of minerals in Earth's lowermost mantle is important for the ther-

mal and chemical evolution of Earth. In the thermal boundary layer separating the core and

mantle, the bulk thermal conductivity helps determine the heat flux out of the core. The

core heat flux is an important unknown, which has implications for the energy available to

power the core geodynamo, the age of the solid inner core, and the style of mantle convec-

tion. Measurements of thermal conductivity at high pressure and temperature conditions

do not agree on the value at CMB conditions, and estimates range from about 5 W/mK to

15 W/mK. Recent experiments have helped constrain the pressure dependence of thermal

conductivity at constant temperature. However, phase transitions in mantle minerals, such

as the spin transition in ferropericlase, could complicate the extrapolation of lower pressure

and temperature measurements to the conditions at the core-mantle boundary (CMB).

In this dissertation, I build on a new method to measure thermal conductivity at high

pressures and temperatures using continuous wave laser heating in the diamond anvil cell
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and apply it to pressure induced phase transitions. I test the method using the face-centered-

cubic (B1) to body-centered-cubic (B2) phase transition in NaCl. This study produced the

first measurement of NaCl thermal conductivity across the B1-B2 phase transition.

I use the method developed for ionic salts and apply it to the mantle mineral, ferroper-

iclase, (Mg,Fe)O, over the pressure range of 22 GPa to 61 GPa. This range of pressure

includes the reported spin transition of octahedrally coordinated iron, from the high spin

state to the mixed spin state. Material properties such as the bulk modulus and sound veloc-

ity decrease sharply with pressure in the mixed spin state. I measure a correlative reduction

of thermal conductivity with pressure. This measurement is consistent with independent

thermo-reflectance measurements of ferropericlase thermal diffusivity.

Combining new ferropericlase thermal conductivity measurements with those of bridg-

manite, and accounting for the spin transition, an updated thermal conductivity profile for

the mantle can be calculated. The spin transition reduction has only a minor effect on the

depth dependence of mantle thermal conductivity. This is due to the dominant modal per-

centage of bridgmanite, which is about 80% of the mantle by volume. Including the spin

transition effect, I find an increase in thermal conductivity of the mantle by a factor of about

2 from the top of the lower mantle to the core-mantle boundary. These results are consistent

with other recent studies, which use different measurement techniques.

The thermal conductivity depth dependence of ferropericlase and bridgmanite using the

methods in this dissertation result in a CMB bulk thermal conductivity of 5.2 W/mK. Ac-

counting for uncertainty in the thickness and temperature change across the CMB, this

thermal conductivity maps to a total heat flux of 5.1 to 9.3 TW. This range is consistent
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with an old inner core, the crystallization of which has has been integral to powering the

geodynamo for a significant portion of Earth's history. Future work to bring existing mea-

surements of thermal conductivity at CMB pressures into agreement will need to resolve

questions about the temperature dependence at the extreme conditions of the lowermost

mantle.

In a separate study, I use an analogous application of the heat equation to model the

mass transport of sediment on hillslopes. Hillslope processes are important for understand-

ing how surface landforms evolve over time. The application of linear diffusion to describe

the transport of grains down slope is used to date geomorphic surfaces. However, several

lines of evidence, from theoretical considerations, to laboratory experiments and field obser-

vations suggest that the linear diffusion equation has limited predictive power for modelling

of scarp degradation. Here we use high resolution elevation data and optically stimulated

luminescence dates of sediment from a set of terrace risers in New Zealand and show that

those degraded terrace risers are better explained by nonlinear diffusion.

iv



The dissertation of Christopher McGuire is approved.

Jonathan M Aurnou

Seulgi Moon

Stuart Brown

Abby Kavner, Committee Chair

University of California, Los Angeles

2018

v



For Allison, my love

vi



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Earth's Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Earth's Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Earth's Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Measurements of NaCl Thermal Conductivity Across the B1-B2 Phase

Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Heat flow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Radiative heat transport . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Thermal conductivity temperature dependence . . . . . . . . . . . . . 27

2.5 Heat flow modeling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Thermal conductivity of ferropericlase from the high spin to mixed spin

state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Heat flow modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

vii



3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Isothermal equation of state and phase stability of Fe5Si3 up to 96 GPa

and 3000 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Experiment and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Phase Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Isothermal equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Evidence for non-linear sediment transport on terrace riser hillslopes,

South Island, New Zealand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Field Site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Spin state model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



6.3 Mantle Radiative thermal conductivity . . . . . . . . . . . . . . . . . . . . . 108

6.4 Mantle thermal conductivity depth dependence . . . . . . . . . . . . . . . . 111

6.5 Core-mantle boundary heat flux . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



LIST OF FIGURES

1.1 Mantle seismic tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Thermal structure of the deep Earth . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Thermal conductivity measurement P-T conditions . . . . . . . . . . . . . . . . 13

1.4 Density deficit in the core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Experimental and model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 KCl temperature measurements with iron laser absorber . . . . . . . . . . . . . 36

2.3 KCl temperature measurements with stainless steel laser absorber . . . . . . . . 37

2.4 NaCl temperature measurements with iron laser absorber . . . . . . . . . . . . . 38

2.5 Thermal conductivity temperature dependence of solid and liquid NaCl . . . . . 39

2.6 Power law description of NaCl thermal conductivity temperature dependence . . 40

2.7 Normalized thermal conductivity density dependence, dlnk
dlnρ

, for KCl . . . . . . . 41

2.8 Normalized thermal conductivity density dependence, dlnk
dlnρ

, for NaCl . . . . . . . 42

2.9 Model sensitivity tests for normalized thermal conductivity density dependence,

dlnk
dlnρ

, for NaCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Experimental and model setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 (Mg,Fe)O temperature measurements . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 g-values plotted against measurement pressures for (Mg,Fe)O . . . . . . . . . . 62

3.4 Normalized thermal conductivity density dependence, dlnk
dlnρ

, for (Mg,Fe)O . . . 63

3.5 Thermal conductivity pressure dependence of (Mg,Fe)O and MgSiO3 at 300 K 64

x



4.1 High-pressure (18 GPa), room-temperature diffraction pattern of Fe5Si3 . . . . 80

4.2 High-pressure (18 GPa), high-temperature diffraction pattern of Fe3Si and FeSi

reaction products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 High-pressure (> 95GPa), high-temperature reactions products B2 FeSi and an

unidentified phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Room temperature diffraction patterns of Fe5Si3 used to calculated volumes for

isothermal equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Volume-pressure data and isothermal equation of state for Fe5Si3 . . . . . . . . 84

4.6 Normalized pressure (F) plotted versus Eulerian strain (f) for Fe5Si3 . . . . . . 85

4.7 Density of solids in the Fe-FeSi system at 137 GPa calculated from equations of

state for each material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Map of Saxton River field site . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Terrace riser data smoothing example . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Linear and nonlinear flux laws as a function of hillslope gradient . . . . . . . . . 102

5.4 Diffusivity as a function of height for linear and nonlinear forward models . . . . 103

6.1 Phase diagram of spin state fraction, with existing mantle mineral thermal con-

ductivity measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Ferropericlase high spin fraction along a geothermal temperature profile . . . . . 117

6.3 Lattice thermal conductivity of ferropericlase in the mantle, accounting for spin

transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Blackbody radiation intensity derivative for mantle temperatures . . . . . . . . 119

xi



6.5 Absorption coefficient for ferropericlase, interpolated between measurement pres-

sures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Radiative thermal conductivity for ferropericlase and bridgmanite . . . . . . . . 121

6.7 Thermal conductivity profile of the mantle . . . . . . . . . . . . . . . . . . . . . 122

xii



LIST OF TABLES

2.1 Starting values for heat flow model . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Thermal equation of state parameters for NaCl and KCl . . . . . . . . . . . . . 33

2.3 Sensitivity test values for heat flow model . . . . . . . . . . . . . . . . . . . . . 34

3.1 Temperature and laser power data for (Mg1−x, Fex)O, where x = 0.24, with

modeling laser power inputs and thermal conductivity results, for 22 GPa to 42

GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Temperature and laser power data for (Mg1−x, Fex)O, where x = 0.24, with

modeling laser power inputs and thermal conductivity results, for 52 GPa to 62

GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Pressure-Volume equation of state parameters for iron-silicon compounds and alloys 79

xiii



ACKNOWLEDGMENTS

I thank my advisor, Abby Kavner, for helpful guidance throughout my PhD, in particular,

for your patience in helping me find successful avenues of inquiry in mineral physics. Also,

thanks for going above and beyond to introduce me to your many friends and colleagues at

conferences.

Thanks to David Santamaria-Perez, who provided samples of the mineral xifengite and

gave valuable help with analysis of diffraction patterns. Thanks also to Steve Jacobsen,

who provided the single-crystal samples of ferropericlase. Martin Kunz and Andrew Do-

ran provided essential support at ALS beamline 12.2.2, including updating software to our

specifications. Thanks to Krista Sawchuk for help running experiments and for being a

great colleague. I thank my committee members for their guidance throughout the project.

Thanks to Seulgi Moon for spending time sharing your knowledge of quantitative geomor-

phology. Thanks to Jon Aurnou for helpful advice about framing my ideas and for bringing

me along in your geodynamo class. Thanks to Stuart Brown for introducing me to excellent

reading in solid-state physics. I also would like to thank Ed Rhodes, who enthusiastically

accepted me at UCLA, even though I had little formal training, and who introduced me to

field geology and luminescence dating.

I am also thankful for the support I have had from friends and colleagues. Thanks to

Nathan Brown for our many interesting discussions and help learning LaTeX. Thanks to

Adam Makhluf for guidance learning crystal chemistry and for enjoyable discussions about

geochemistry. Thanks also to Daniel Fineman and Ellen Alexander for many enjoyable

discussions in classes and around the department. Thanks to Ilan Goldstein and Joe Viana,

who were always willing to talk about research with me.

I thank my parents and brother for their endless and loving support, and for accepting

my plan to return to undergraduate schooling, which was instrumental in my somewhat

xiv



unusual path to the study of geology.

Thanks to my wife, Allison, for your patience, kindness and support. I love you!

A version of Chapter 4 was published as: “Isothermal equation of state and phase stabil-

ity of Fe5Si3 up to 96 GPa and 3000 K.” by C. McGuire, D. SantamariaPerez, A. Makhluf,

& A. Kavner, (2017), Journal of Geophysical Research: Solid Earth.

Chapter 2 has been submitted to Journal of Applied Physics as: “Measurements of NaCl

thermal conductivity across the B1-B2 phase transition.” by C. McGuire, K. L. Sawchuk, &

A. Kavner.

A version of Chapters 3 and 6 is being prepared for submission to Science as: “Thermal

conductivity depth profile of Earth’s mantle” by C. McGuire, K. L. Sawchuk, Rainey, E. &

A. Kavner.

A version of Chapters 5 is being prepared for submission to Geology as: “Evidence for

non-linear sediment transport on terrace riser hillslopes, South Island, New Zealand” by C.

McGuire, S.G. Moon, R. Zinke, E. J. Rhodes, J. Dolan, A. Hatem, & N. Brown.

xv



VITA

2017 C.Phil (Geology), UCLA, Los Angeles, California.

2009 B.A. (Anthropology), Duke University, Durham, North Carolina.

2015–2018 Graduate Student Researcher. Measurements of thermal conductivity in

the diamond anvil cell. Experiments performed at the Advanced Light

Source, Lawrence Berkeley National Lab. NSF EAR 1522560

2013–2015 Graduate Student Researcher. Luminescence dating, and fault slip rate de-

termination. Fieldwork in South Island, New Zealand. NSF EAR 1321912

2013–2017 Teaching Assistant, Earth, Planetary, and Space Sciences Department,

UCLA. Taught lab sections of mineralogy and igneous petrology.

PUBLICATIONS

McGuire, C., Santamaria-Perez, D., Makhluf, A., Kavner, A. (2017). Isothermal equation

of state and phase stability of Fe5Si3 up to 96 GPa and 3000 K. Journal of Geophysical

Research: Solid Earth.

Santamaria-Perez, D., Marqueo, T., MacLeod, S., Ruiz-Fuertes, J., Daisenberger, D., Chulia-

Jordan, R., ... & McGuire, C., Mahkluf, A. (2017). Structural evolution of CO2-filled pure

silica LTA zeolite under high-pressure high-temperature conditions. Chemistry of Materials,

29(10), 4502-4510.

xvi



Zinke, R., Dolan, J. F., Rhodes, E. J., Van Dissen, R., McGuire, C. (2017). Highly

Variable Latest PleistoceneHolocene Incremental Slip Rates on the Awatere Fault at Saxton

River, South Island, New Zealand, Revealed by Lidar Mapping and Luminescence Dating.

Geophysical Research Letters, 44(22).

Gray, H. J., Tucker, G. E., Mahan, S. A., McGuire, C., & Rhodes, E. J. (2017). On extract-

ing sediment transport information from measurements of luminescence in river sediment.

Journal of Geophysical Research: Earth Surface, 122(3), 654-677.

Santamaria-Perez, D., McGuire, C., Makhluf, A., Kavner, A., Chulia-Jordan, R., Jorda,

J. L., ... & Munoz, A. (2016). Correspondence: Strongly driven Re+ CO2 redox reaction at

high-pressure and high-temperature. Nature Communications, 7, 13647.

Santamaria-Perez, D., McGuire, C., Makhluf, A., Kavner, A., Chulia-Jordan, R., Jorda,

J.L., Pellicer-Porres, J., ... & Munoz, A. (2016). Exploring the Chemical Reactivity between

Carbon Dioxide and Three Transition Metals (Au, Pt, and Re) at High-Pressure, High-

Temperature Conditions. Inorganic chemistry, 55(20), 10793-10799.

McGuire, C., & Rhodes, E. J. (2015). Determining fluvial sediment virtual velocity on

the Mojave River using K-feldspar IRSL: Initial assessment. Quaternary International, 362,

124-131.

McGuire, C., & Rhodes, E. J. (2015). Downstream MET-IRSL single-grain distributions

in the Mojave River, southern California: Testing assumptions of a virtual velocity model.

Quaternary Geochronology, 30, 239-244.

xvii



CHAPTER 1

Introduction

1.1 Overview

Physical processes that transfer heat and mass are the fundamental working parts of the

study of geology. Many processes unique to Earth among terrestrial planets in the solar

system are caused by the dynamic transport of heat and mass on a global scale. Accord-

ingly, geology can be framed as applied thermodynamics and, when thought of this way, the

field is furthered by advances in measurement. In this dissertation, I present several novel

measurements and measurement techniques that provide new understanding of heat transfer

in the deep interior and mass transport on the surface of Earth.

At the planetary scale, dynamic processes are directly related to the cooling of Earth

over geologic time. As the planet cools, the temperature difference between the top and

the base of the mantle promotes solid-state convection (Lay et al., 2008). Mineral thermal

conductivity plays an important at Earth's thermal boundary layers. In the deep interior,

the core-mantle boundary (CMB) heat flux is directly related to the thermal conductivity

of the minerals stable there.The core's geodynamo, which is responsible for the magnetic

field, is directly related to the thermal conductivity of minerals in the core-mantle boundary,

where heat is transported principally by conduction (Buffett, 2002). The style of mantle

convection can be affected by the depth dependence of mineral thermal expansion and con-
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ductivity (Tosi et al., 2013). The shape and extent of mantle plumes can be affected by the

spatial pattern of thermal conductivity at the base of the mantle (Ammann et al., 2014).

I focus my experiments on the thermal conductivity depth dependence of ferropericlase, a

major mantle mineral, with implications for mantle convection and for heat flow across the

core-mantle boundary.

The chemistry and physical properties of Earth's core is related to planetary cooling.

Earth's core formation likely results in a core and mantle that are not in chemical equilib-

rium (Karato and Murthy, 1997). Furthermore, as the planet cools, the equilibrium state

of the core can change, namely by the growth of the solid, inner core, by reactions between

the core and mantle, and by changes in solubility of minor elements in the liquid metal core

(Knittle and Jeanloz, 1989; Stixrude et al., 1997; ORourke and Stevenson, 2016). In order

to evaluate the composition of the core and how it changes with time, it is important to

measure the equilibrium properties of iron alloys and compounds at extreme pressure and

temperature conditions (Jeanloz, 1990). I present measurements of the isothermal equation

of state of the inter-metallic compound Fe5Si3, the mineral xifengite, and its high temper-

ature stability at high pressures.

Planetary cooling is also broadly important for the long term evolution of the Earth's

surface. Plate tectonics is the surface expression of a hot interior (> 5000K), driven out of

equilibrium with a cold boundary condition (300K). Plate tectonics is responsible for forcing

rock out of chemical equilibrium, where weathering creates sediment, leading to erosion and

transport (Burbank and Anderson, 2011). The mass flux of sediment describes the process

by which landscapes form and evolve over time. I present evidence for a non-linear mass

flux law on hillslopes from a high resolution topography dataset on the South Island, New

Zealand.

2



1.2 Earth's Heat

Earth can be thought of as a heat engine, which converts the loss of primordial and ra-

diogenic heat into mechanical energy, driving mantle convection and plate tectonics, which

recycle elements from the crust to the core-mantle boundary (Lay et al., 2008). The rate of

heat loss from the core helps determine the power available to drive the geodynamo, which

is responsible for Earth's long-lived intrinsic magnetic field (Stevenson et al., 1983). These

planetary scale processes are related to the ability of the terrestrial minerals and metals to

conduct heat (Manga and Jeanloz, 1997).

In order to link the structures observed by seismic tomography (French and Romanow-

icz, 2015) to the physical properties of the rocks present in Earths mantle, it is important

to know the depth profile of thermal conductivity. The large low shear velocity provinces

(LLSVP's; red colors in Fig. 1.1) in the lower mantle provide a snapshot of the heat and

mass transfer that occurs over billions of years (McNamara and Zhong, 2005). Geochemical

evidence shows that LLSVP's bring to the surface chemically primordial (e.g. unmixed)

regions from the lowermost mantle (Jackson et al., 2017). Likewise, crustal material may

descend as subducted slabs all the way to the core-mantle boundary, as evidenced by phase

relations of oceanic lithosphere at high pressures and temperatures (Hirose et al., 1999).

This planetary scale cycling of heat and mass has fundamental consequences for how and

why Earth has plate tectonics and has maintained an atmosphere and oceans. Dynamical

simulations of mantle convection have shown that the depth dependence of thermal conduc-

tivity can have profound effects on the structures that emerge in the mantle and the fate of

subducted oceanic crust (Tosi et al., 2013). The depth profile of thermal conductivity in the
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mantle requires in-situ measurements of mineral thermal conductivity at high pressure and

temperature conditions.

The thermal conductivity of at the very base of the lower mantle, in the core-mantle

boundary (CMB) region, plays a major role in the thermal evolution of Earth. The CMB

is the thermal and chemical boundary layer that separates the solid silicates and oxides of

Earth's mantle from the liquid, iron-rich fluid in Earth's outer core. Heat is transported

by conduction in the CMB, according to boundary layer theory (Bejan, 2013). The flux

of heat across the CMB is proportional to the temperature gradient, as given by Fourier's

law, q = −κ∇T , where κ is the bulk thermal conductivity (Fig. 1.2). Uncertainty in the

thermal gradient and material properties of the CMB result in a total heat flux between 4

TW to 20 TW (Kavner and Rainey, 2016). Between these bounds exist a remarkable set of

planetary thermal histories. A high heat flux, significantly above 10 TW implies a young

crystallization age (< 1Ga) of the inner core and requires exotic mechanisms, such as MgO

crystallization, to maintain the magnetic field for most of Earth's history (Lay et al., 2008;

Olson, 2016; ORourke and Stevenson, 2016). A low heat flux significantly less than 10 TW

implies an older inner core, the crystallization of which has played a significant long-term

role in producing the magnetic field.

The thermal conductivity of simple dielectric materials, such as minerals in Earth's man-

tle, can be described as the sum of lattice, electrical and radiative components (Klemens,

1969). In the upper mantle, the radiative and electrical components are negligible, and ther-

mal conductivity is determined by the lattice component. At lower mantle conditions, the

high temperatures may result in a significant contribution of radiative heat transport, which

increases with temperature (Hofmeister, 1999), though there is considerable discrepancy in

the magnitude of the radiative component to the total thermal conductivity (Keppler et al.,
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2008; Goncharov et al., 2008; Rainey, 2014). In this dissertation, I focus measurements and

on the lattice component of thermal conductivity.

The lattice component can be estimated by Debye theory,

κlat = Cvvl (1.1)

where Cv is the constant volume heat capacity, v is the group velocity, and l is the mean

free path (Klemens, 1969). For minerals in the mantle, acoustic phonons are the major

carriers of heat, so that κlatcan be approximated as the average sound speed (Roufosse and

Klemens, 1973). At high pressures and temperatures, thermal conductivity can be quanti-

fied by extrapolating from ambient condition values using Liebfried-Schlomann (LS) theory

(de Koker, 2010). Even without deriving LS theory, inspection of Eq. 1.1 reveals that the

thermal conductivity should increase with pressure, because the speed of sound of dielec-

tric materials increases with pressure. Conversely, as temperature is raised, the mean free

path, l, decreases, so the thermal conductivity should decrease with increasing temperature

(Roufosse and Klemens, 1974). The result for a single phase in the mantle is that the lattice

thermal conductivity should moderately increase as pressure and temperature increase with

depth in the Earth.

Measurements of lattice thermal conductivity at high pressures are of two types. Tran-

sient techniques use pump-probe pulsed laser heating to make time-resolved measurements,

typically of thermo-reflectance, and calculate thermal diffusivity using the time-dependent

heat equation (Kang et al., 2008; Ohta et al., 2012; Dalton et al., 2013). Thermal conductiv-

ity is calculated from the diffusivity measurements using the heat capacity and density of the

material. Steady state techniques use continuous wave laser heating, make measurements
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of temperature, and calculate thermal conductivity using steady-state heat flow modeling

(Rainey and Kavner, 2014). The thermal conductivity of the mantle is determined by the

conductivity of the minerals stable there. In a pyrolitic lower mantle, the minerals present are

(Mg,Fe)SiO3 bridgmanite (75%), (Mg,Fe)O ferropericlase (20%) and Ca-perovskite (5%),

where percentages are by volume (Mattern et al., 2005; Cottaar et al., 2014) . The high

pressure thermal conductivity of MgSiO3 bridgmanite has been measured at lower mantle

pressures, but over a limited range of temperatures (Osako and Ito, 1991; Manthilake et al.,

2011; Ohta et al., 2012). At room temperature, MgSiO3 bridgmanite thermal conductivity

increases with pressure dependence, dlnk
dlnρ

= 5.6, increasing to 30 W/mK at 120 GPa (Ohta

et al., 2012). Along a mantle temperature profile (e.g. Fig. 1.2), the thermal conductivity of

MgSiO3 bridgmanite increases from about 5 W/mK to 12 W/mK at core-mantle boundary

conditions (Osako and Ito, 1991; Ohta et al., 2012).

The addition of iron to the structure reduces the thermal conductivity of brigmanite

and may also reduce the pressure dependence (Manthilake et al., 2011; Rainey, 2014; Hsieh

et al., 2017). The pressure dependence of thermal conductivity of Fe-bearing bridgmanite

has been measured by the steady state method to be significantly lower than the pure-Mg

bridgmanite, with dlnk
dlnρ

= 3.4 (Rainey, 2014). A similar pressure dependence was obtained

using ab initio calculations of Fe-bearing bridgmanite thermal conductivity (Tang and Dong,

2010).

The thermal conductivity of periclase (MgO) has been measured at high pressures and

temperatures (Dalton et al., 2013; Rainey and Kavner, 2014; Manthilake et al., 2011). At

ambient pressure conditions and 300 K, MgO thermal conductivity is 50 W/mK (Hofmeister,

2014). As pressure increases at constant temperature, the thermal conductivity increases,
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with a pressure dependence dlnk
dlnρ

= 5.0 (Dalton et al., 2013). Along a mantle temperature

profile (e.g. Fig. 1.2), the thermal conductivity increases from 12 W/mK at the top of

the lower mantle to about 20 W/mK at the core-mantle boundary, depending on the choice

of CMB thermal gradient. MgO thermal conductivity has been extensively modeled using

ab initio techniques, which are generally in agreement with experiments (de Koker, 2010;

Stackhouse et al., 2010; Tang and Dong, 2010).

The addition of Fe into the structure of (Mg,Fe)O reduces the thermal conductivity sig-

nificantly (Goncharov et al., 2015a; Ohta et al., 2017). Additionally, (Mg,Fe)O undergoes

a spin transition between 40 and 60 GPa from high spin to low spin configuration of iron

(Badro et al., 2003). The spin transition has been shown to reduce thermal diffusivity as

a function of pressure, at constant temperature (Ohta et al., 2017). The range of pressures

and temperatures over which measurements have been made of ferropericlase is shown in

Figure 1.3.

Existing measurements of lattice thermal conductivity of the major mantle minerals indi-

cate an increase of a factor of between 1.5 and 3 over the pressure range of the lower mantle.

The discrepancy between measurements depends on how iron is accounted for and on the

measurement technique. In general, though, thermal conductivity increases with depth in

the lower mantle, based on existing measurements. However, phase transitions in the lower

mantle have not been accounted for in depth profiles of thermal conductivity, and could

introduce discontinuities in thermal conductivity with depth in the lower mantle.

High-pressure phase transitions in the lower mantle complicate modeling of thermal con-

ductivity of the mantle. Ferropericlase undergoes a phase transition from high spin to low
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spin, with a broad mixed spin state throughout most of the lower mantle (Badro et al., 2003;

Tsuchiya et al., 2006; Holmström and Stixrude, 2015). It is therefore important to make

in-situ measurements of thermal conductivity for bridgmanite and ferropericlase at the pres-

sure and temperature conditions of the lower mantle. In Chapter 2, I develop a technique

to measure thermal conductivity across a phase transition, using the method of Rainey and

Kavner (2014) and the ionic salt NaCl as a test material. In Chapter 3, I apply this method

to measure thermal conductivity from the high spin to mixed spin state of ferropericlase and

show that thermal conductivity decreases significantly in the mixed spin state.

1.3 Earth's Core

The Earth's present-day core is divided into a liquid outer core and solid inner core. The

composition of the core is uncertain, but it is known from seismic observations that the outer

core is 8% less dense than pure liquid iron, and the inner core is about 5% less dense than

pure solid iron (Jeanloz, 1990; Poirier, 1994) (see Figure 1.4). The density difference is con-

sistent with the presence of light alloying elements, which are preferentially partitioned into

the liquid as the inner-core freezes out. The identity of plausible light elements in the core

depends on their pressure-temperature-density relationship (Campbell, 2016). The equilib-

rium phase diagrams at high pressure and temperature for iron alloys are also necessary to

identify light element candidates (Fischer et al., 2013; Campbell, 2016). Silicon has long

been considered a candidate for a major light element in the core due to its abundance in

the bulk Earth the solubility of Si in solid Fe alloy at ambient conditions (Poirier, 1994; Lin

et al., 2003; Kubaschewski, 2013). Geochemical and cosmochemical isotopic fractionation

evidence suggests that a significant amount of Si (6 weight %) may be sequestered in the

core (Georg et al., 2007). In Chapter 4, I report the isothermal equation of state of an
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inter-metallic iron-silicon compound, Fe5Si3, the mineral xifengite. Additionally, I show

that xifengite is not stable at high temperatures > 1200K, confirming previous work that

there is a miscibility gap in the Fe-FeSi system at high pressures (Lin et al., 2009; Fischer

et al., 2013).

1.4 Earth's Surface

Sediment mass flux on the surface of Earth is typically parameterized as the movement of

particles due to forces exerted by a fluid, namely air or water (Anderson and Anderson,

2010). Sand grains are being transported in bedload or suspension in rivers and along shore-

lines, and by saltation under the effect of strong winds in desert and coastal environments.

But for the majority of the terrestrial surface area of Earth, and other solar system bodies,

sediments are transported by stochastic motion in a gravitational field (Tucker and Bradley,

2010). This process is broadly termed hillslope transport.

The transport of sediment on hillslopes is important for understanding the shape of the

landscape, the flux of sediment over long timescales and for geo-engineering applications

(Tucker and Bras, 1998). It has long been known, from observations in the field, that the

shape of hillslopes is convex, and that this shape is broadly consistent with solutions to

the diffusion equation (Culling, 1960, 1963, 1965). It has been inferred, then, that linear

diffusion, analogous to the heat equation, explains the bulk transport of sediment grains

over time, with a characteristic hillslope diffusivity, which may depend on variables such

as sediment grain size and climate. However, though linear diffusion may describe hillslope

transport in many cases, studies suggest that nonlinear transport laws may be more appro-

priate for steep landscapes (Roering et al., 1999; Heimsath et al., 2005; Tucker and Bradley,

2010). Non-linear transport laws are difficult to prove directly in part because of the lack of
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combined datasets of high-resolution topography and geochronology. Using a LiDAR digital

elevation dataset from New Zealand, in conjunction with unprecedented sampling density

with luminescence-based age control, I show in Chapter 5 that a non-linear mass flux law

is consistent with observations of degraded terrace risers ranging in height from 2m to 14m

and in age from 4.2 ka to 7.5 ka.
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Figure 1.1: Seismic tomography inversion (Figure adapted from French and Romanowicz

(2015)) provides evidence for global mantle structures extending from the core-mantle bound-

ary to the upper mantle. 3D mantle structures of large low shear velocity provinces (LLSVPs)

are interpreted from the large (red) reduced velocity region. Major phase transitions in the

upper mantle are marked by the dotted lines.
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Figure 1.2: The temperature in the Earth from the lower mantle to the inner core boundary.

The temperature gradient in the core-mantle (CMB) boundary region is determined by a

conduction profile appended to the lower mantle temperature profile (Wolf et al., 2015) with

a lower tie point at the temperature at the top of the outer core. The core temperature is

determined by the melting temperature of iron at the inner-core boundary (Jackson et al.,

2013).
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Figure 1.3: The pressure and temperature conditions of thermal conductivity measurements

of iron-bearing ferropericlase are shown in the symbols. Ambient temperature measurements

of (Ohta et al., 2017) are shown with upward triangles, and the blue squares are from

(Goncharov et al., 2015b). High temperature measurements of (Manthilake et al., 2011) are

shown in circles. A lower mantle geotherm is shown with the solid red line (Wolf et al.,

2015).
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Figure 1.4: The density of the outer and inner core of Earth from the preliminary reference

earth model (PREM) is shown in the green symbols. The density of solid, pure iron, along

the core geotherm shown in Fig. 1.2 is shown as the solid orange line.
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CHAPTER 2

Measurements of NaCl Thermal Conductivity Across

the B1-B2 Phase Transition

2.1 Introduction

The pressure dependence of transport properties is of interest for design of electronic ma-

terials under strain and for deep Earth geophysics (Lyeo et al., 2006; Lay et al., 2008; Li

et al., 2010). For dielectric materials, theoretical work based on Liebfried-Schlomann (LS)

theory predicts an increase in the lattice thermal conductivity with pressure (Roufosse and

Klemens, 1973; de Koker, 2010). These predictions are in good agreement with experimen-

tal results (Chen et al., 2011). A pressure-induced phase transition, however, can introduce

discontinuities in transport properties of solids, including thermal conductivity (Roufosse

and Jeanloz, 1983). In Earth's solid, rocky mantle, high pressure (> 25 GPa) structural

and electronic phase changes may significantly affect the transport of heat in the interior of

terrestrial planets (Ohta et al., 2012, 2017).

KCl and NaCl ionic salts undergo a structural phase transition from face-centered cubic

(B1) to body-centered cubic (B2) at 1.9 GPa and 27 GPa respectively (Li and Jeanloz,

1987; Walker et al., 2002). The thermal conductivity of ionic salts across the B1-B2 phase

transition has been explored experimentally and theoretically (Roufosse and Jeanloz, 1983;

Andersson, 1985; Slack and Ross, 1985). For salts that undergo the B1-B2 transition at
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pressures below 5 GPa, the thermal conductivity has been measured for both phases and

can be described by LS theory (Andersson, 1985; Slack and Ross, 1985).

However, at such small compression, it is difficult to test the efficacy of LS theory to

describe the experiments (Chen et al., 2011). The B1-B2 phase transition for NaCl occurs

at 27 GPa (Li and Jeanloz, 1987), and the thermal conductivity has not previously been

measured across the phase boundary for this material. Existing measurements of bulk ther-

modynamic properties of NaCl (Decker, 1971; Whitfield et al., 1976; Prencipe et al., 1995;

Brown, 1999), allows the description of thermal conductivity using LS theory and can be

compared with measurements in the diamond anvil cell (DAC).

2.2 Experiments

Here we measure the lattice thermal conductivity of ionic salts KCl and NaCl at extreme

conditions of pressure and temperature in the DAC. Our approach combines experimental

laser-heated DAC methods with a 3-D numerical heat flow model of the sample and cell

components to interpret the measurements (Rainey et al., 2013). In the experiment, a

sample consisting of a salt medium surrounding a transition metal infrared laser-absorber

is loaded into a gasketted sample chamber in the DAC. The sample is heated from one side

using an infrared laser. The sample temperature is measured as a function of laser power

yielding a series of temperature - laser power curves (Fig. 2.1a,b). The heat flow model

delineates the relationship between input laser power and temperature for a given sample

configuration and set of material properties (Fig. 2.1c,d).

A series of measurements of temperature as a function of laser power were performed

at the ALS 12.2.2 beamline. Experiments were performed on multiple materials (KCl and

NaCl) and at several pressure steps. A thin (5 − 10µm) Fe metal absorber, surrounded

by either KCl or NaCl salt pressure media, was loaded in a diamond cell equipped with
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300µm culets, within a 100µm hole drilled in a pre-compressed spring-steel gasket. For each

sample loading, the initial gasket thickness was measured using a micrometer. Pressure was

calibrated using ruby fluorescence (Mao et al., 1986) with a small piece of ruby placed on

the diamond culet opposite from the heating side. The crystal structure of the salt layer was

determined at each pressure step in-situ by x-ray diffraction (Brown, 1999; Walker et al.,

2002; Dorogokupets and Dewaele, 2007). High temperatures were generated using variable

power from a 100 W fiber-based laser source operating at 1.07µm. The temperature was

measured using spectroradiometry techniques that obtain an average temperature for the

entire hotspot, combined with a two-dimensional map of the hotspot intensity radial profile

(Kavner and Nugent, 2008; Rainey and Kavner, 2014).

At each pressure step, the laser power was increased in 0.5 W steps. The threshold laser

power for coupling was noted, and then increased by steps of 0.5 W. At each laser power,

2-5 separate temperature measurements were obtained. In all cases, as laser power was

increased, a threshold occurred where additional laser power no longer resulted in a temper-

ature increase. After the threshold was released, the temperature-laser power relationship

showed significant hysteresis. This threshold is observed in most experiments and for a broad

variety of materials, including metals, salts, oxides, silicates, and fluid noble gas environ-

ments. However, its origin is uncertain, though it can be modeled by assuming a linear

relation between power and absorber reflectivity (Geballe and Jeanloz, 2012). Therefore, in

all cases, we analyze only the points on the increasing temperature-laser power curve, where

a plateau is defined as two or more sequential points of constant or decreasing temperature

with increasing laser power. Following a heating cycle, the pressure in the cell was increased,

and an additional temperature-laser power curve was measured, using the same protocol.
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2.3 Results

Temperature-laser power (T-LP) curves were measured for KCl medium surrounding an Fe

foil (Fig. 2.1 b) and show the curves shifted to the right, indicating progressively lower

temperatures for a given laser power as pressure increases. Figure 2.2 shows T-LP curves of

KCl between 15 GPa and 24 GPa, with the temperature plateau data not plotted for clarity.

Between 15 GPa and 19 GPa, the T-LP curves shift to the right and the temperature

decreases by 260 K . Between 19 and 24 GPa, the temperature decreases by 190 K (Fig.

2.2).

An additional experiment on B2 KCl was carried out using stainless steel (316L) foil as

a laser absorber, instead of iron. The T-LP curves over the pressure range 5.6 GPa to 22

GPa is shown in Figure 2.3. The temperature decreases by 310 K between 5.6 and 13.2

GPa and by 430 K between 13.2 and 22 GPa. For comparison, the Fe absorber temperature

decreases by 457 K between 15 GPa and 24 GPa. These results are consistent, for both laser

absorbers, and for different diamond anvil cell loadings.

Results for an Fe foil surrounded by NaCl (Fig. 2.4) show a more complicated pattern

with pressure increase. The measured T-LP curve shifts to the right and decreases by 160 K

between 14 and 18.6 GPa. But between 18.6 and 29.2 GPa, the measured T curve shifts to

the left and increases by 475 K. The sign of temperature shift changes again between 29.2

and 43.2 GPa, where the curve shifts to the right and decreases by 280 K.

2.4 Heat flow model

The finite element heat flow model calculates the relationship between laser power and

measured temperature. The sample and cell assembly geometry, absorption properties, and

thermal conductivity and its temperature dependence are explicitly parameterized. The heat
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flow model solves the steady state heat equation:

∇ · κ(T )∇T +H = 0 (2.1)

Details of the numerical model and applications to measuring thermal conductivity of

MgO are in (Rainey and Kavner, 2014). We assume the metal foil is opaque so that heating

(H in Eq. 2.1) occurs by laser coupling at the surface of the foil only.

The thinning of the materials in the cell, including the gasket, sample and metal foil, can

affect the peak temperature measured. Figure 2.1d shows the temperature versus laser power

output of a set of heat flow model runs describing a hypothetical sample undergoing pressure-

induced changes in geometry and thermal conductivity. For a given sample geometry and

thickness, an increase in thermal conductivity of 10% causes the temperature at a given power

to decrease by 200 K. When thinning (5% reduction in thickness) due to deformation of the

gasket is included in addition to thermal conductivity increase (Fig. 2.1d), the temperature

decreases by a further 50 K.

2.4.1 Radiative heat transport

Heat transport in dielectric materials at high temperatures requires consideration of radiative

as well as conductive heat transport, but in the DAC, the length scale of the sample and the

temperature gradient in the cell limits radiative transport to a negligible value (Manga and

Jeanloz, 1997). Radiative heat flux can be approximated as:

Qrad = n2εσT 4 (2.2)

where n is the index of refraction, set to 1.5, ε is the emissivity, approximated as a blackbody

(ε = 1), and σ is the Stephan-Boltzmann constant. The conductive heat flux is simply:

Qcond = −κ∇T (2.3)
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where κ is the thermal conductivity. In a cell with a 10µm layer dielectric material, with

κ = 10 W/mK, and at our maximum temperatures of 2500 K, where radiative transport

of heat would be highest, Qrad = 4.98 ∗ 106 W/m2 and Qcond = 2.22 ∗ 109 W/m2, meaning

that radiative transport is, at most, 0.23% of total heat transport in our experiments. This

calculation demonstrates the validity of considering only the lattice component of thermal

conductivity in our heat flow model of the DAC.

2.4.2 Thermal conductivity temperature dependence

The thermal conductivity of materials in our experiments is strongly temperature dependent,

and since our measurements are at simultaneous high pressure and temperature, a temper-

ature dependence for each material must be assigned in the heat flow model. The thermal

conductivity of each material is referenced to an ambient temperature value and assumed

to follow a T0
T

m
functional form at elevated temperature (de Koker, 2010). In the simplest

case, m =1, and the thermal conductivity follows a 1/T form. This assumption is based on

semi-classical anharmonic three-phonon scattering being responsible for thermal resistance

(Roufosse and Klemens, 1974). However, high-temperature, ambient-pressure thermal con-

ductivity data for NaCl fits a
(
T0/T

)m
power law, with m = 1.2 (Birch and Clark, 1940;

Kleiner et al., 2017). The thermal conductivity of solid NaCl decreases faster than predicted

by the simplest model. This can be seen in Figure 2.5.

A possible explanation for this behavior is the the non-trivial interaction of optical

phonons with acoustic phonons, which has been shown to be present for NaCl (Tiwari,

1978). Another possible explanation is that higher order scattering contributes significantly

to thermal conductivity at high temperature (Feng et al., 2017). At constant pressure, (i.e.

at each pressure step), we use (κ)P = κ0

(
Tref
T

)m
, where m = 1.2 is fit to NaCl data. As

a check, the use of m = 1.2 does not reduce the crystalline thermal conductivity below the
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measured liquid thermal conductivity (Nagasaka et al., 1992), as shown in Figure 2.5.

Another assumption implied by this temperature model is that the thermal conductivity

continues to decrease with temperatures above 1200 K. This assumption should be valid until

the phonon mean-free path approaches the inter-atomic spacing of the material, at which

point the perturbational method used to derive the T0/T thermal conductivity dependence is

no longer valid (Roufosse and Klemens, 1974; de Koker, 2010). This condition likely occurs

at high enough temperature for most dielectric materials that the functional form of thermal

conductivity does not saturate over the experimental temperatures reported here (Roufosse

and Klemens, 1974).

2.5 Heat flow modeling results

To interpret the experimental results in terms of pressure-induced changes in sample thermal

conductivity, we ran a series of numerical models representing each experiment. For a set of

measurements on a single sample as a function of pressure, the first and lowest-pressure T-LP

curve is used to tune the laser power input in the numerical model required to reproduce the

observed temperature versus power relationship. Then the numerical models are rerun using

the calibrated laser powers, incorporating calculations of the pressure-dependent changes in

sample thickness. The model is run iteratively, changing sample thermal conductivity using

Newton's method of optimization until the modeled changes in temperature as a function of

laser power reproduce the observed offsets (quantified as ∆T ) in the T-LP curve.

Note that because we use the first T-LP curve in a set of measurements to tune the laser

power in the numerical code, this means that we do not make a measurement of an abso-

lute value of thermal conductivity. However, the measurement of the pressure dependence

of thermal conductivity is robust (Rainey and Kavner, 2014). The numerical calculations

require an assumed set of physical properties of the metallic laser absorber, including the
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pressure and temperature dependence of its thermal conductivity. The starting values used

in the numerical calculations are shown in Table 2.1. The absolute value for the thermal

conductivity of iron at these pressure conditions is uncertain, but estimates range between

50 and 70 W/m/K (Deng et al., 2013; Seagle et al., 2013; Konôpková et al., 2016). On the

other hand, fairly good agreement exists on the value of dlnk
dlnρ

(Seagle et al., 2013; Konôpková

et al., 2016; Ohta et al., 2016). For our models, the initial thermal conductivity of hcp iron at

14 GPa and 300 K is approximated as 60 W/mK and the thermal conductivity is increased

to the experimental pressure according to the average pressure slope of 1%GPa−1 for iron.

The results of heat flow modeling are reported as relative values, normalized to a reference

thermal conductivity and density, where (g ≡ dlnκ
dlnρ

). This form is convenient for analysis

because g describes the density dependent exponential increase of thermal conductivity in

LS theory. For KCl, from 14 to 24 GPa, with iron laser absorber, the heat flow model and

temperature data require that dlnk
dlnρ

= 3.9.

The results for NaCl give dlnk
dlnρ

= 1.8, in the B1 phase, and dlnk
dlnρ

= 2.2. The thermal con-

ductivity increases with increasing density (or pressure) as expected. But across the B1-B2

phase boundary, from 19 GPa to 29 GPa, the thermal conductivity decreases. The tempera-

ture measurements require a reduction of 37% over this pressure range, or dlnk
dlnρ

= −9.4. This

result is consistent with other ionic salts, such as KCl, for which thermal conductivity has

previously been observed to decrease across the B1-B2 phase transition.

2.6 Discussion

LS theory predicts the lattice thermal conductivity of a dielectric material will increase with

density corresponding with (de Koker, 2010):

κ = κ0

(
ρ

ρ0

)g(
T0
T

)m

(2.4)
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where g = 3γ + 2q − 1/3. The thermo-elastic properties of KCl, including the equation of

state of KCl and volume-dependent values for the Gruneisen parameter, γ = 1.48, and its

pressure derivative, q = 1.04, (Decker, 1971; Walker et al., 2002) are used to inform Eq. 2.4

(Table 2.2).

Figure 2.7 shows the calculated pressure dependent changes in thermal conductivity

required to explain the observed ∆T data for B2 KCl up to 24 GPa. Also shown in Figure

2.7, is independent data for the thermal conductivity of B1 and B2 KCl (Andersson, 1985).

The low pressure data (Andersson, 1985) and our higher pressure results agree very well,

with LS theory for B1 and B2 KCl.

The thermo-elastic properties of NaCl (γ = 1.5, q = 1.4) (Brown, 1999) are likewise used

with Eq. 2.4 (Table 2.2). Following measurements and analysis from (Dorogokupets and

Dewaele, 2007), the values for γ and q are constant across the B1-B2 phase transition (Table

2.2). Plots of Eq. 2.2 calculated for NaCl are shown as solid lines in Fig. 2.8. Our measured

B1 phase g ≡ dlnk
dlnρ

= 1.8 is less than half the slope calculated by LS theory (g = 4.0) while

the measured g = 2.2 is about 1
3

lower than the B2 phase calculated slope. The value of g,

which is extrapolated from ambient pressure using the thermal equation of state, could be

lowered from the theoretical value of 4.0 to 1.8 to match our observations of NaCl thermal

conductivity in the B1 phase from 14 to 18.6 GPa. Alternatively, additional scattering mech-

anisms could be important in NaCl, as indicated by the ambient pressure, high-temperature

thermal conductivity data (Birch and Clark, 1940; Feng et al., 2017; Kleiner et al., 2017).

Additional scattering processes are not accounted for by LS theory and may contribute to

the pressure dependence of thermal conductivity.

The implications of our assumptions about material properties can be explored using the

heat flow model. We set up a series of runs in which we change the temperature dependence

of thermal conductivity. Here we demonstrate the sensitivity of our results to changes in
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our model assumptions. We use four cases, varying properties and methods, labeled S1 –

S4, and shown in 2.3. In Case S1, NaCl has a temperature dependence of T−1 instead of

T−1.2. In Case S2, the laser power calibration curve is changed to the first T-LP curve in

the B2 phase (i.e. the P = 29 GPa curve). In Case S3, we consider that the iron thermal

conductivity does not change with pressure, and is fixed at a constant value of 60 W/mK.

In Case S4, we consider that the iron thermal conductivity and the gasket thickness remain

fixed to the 14 GPa values (60 W/mK and 36.48µm). The results of these cases are shown in

Figure 2.9 The largest change occurs for considering that iron thermal conductivity does not

change with pressure which causes the reduction in thermal conductivity across the B1/B2

transition to become smaller (37% reduction and 31% reduction, for pressure dependent and

constant iron thermal conductivity, respectively).

We conclude that over the pressure range of the B1-B2 phase transition, a description

of thermal conductivity using the assumptions of Liebfried & Schlomann and the Gruneisen

parameter volume dependence can, in general, explain the thermal conductivity pressure

dependence of salts in the B1 and B2 phase, though for NaCl, a more detailed treatment

may be necessary. The experimental methods developed and described here have been shown

to measure the pressure dependence of thermal conductivity in a single phase and measure

the decrease in thermal conductivity across the B1-B2 phase transition of NaCl.
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P (GPa) τtot (µm) τFe (µm) κFe0 (Wm−1K−1)

14 36.48 9.86 60

19 36.19 9.782 63

29 35.7 9.649 69

43 35.16 9.502 78

Table 2.1: Starting values for heat flow model

32



Material V0(cm
3mol−1) K0(GPa) K ′0 γ q θD(K)

NaCl B1 27.015 23.74 5.32 1.5 1.4 270

NaCl B2 24.53 29.72 5.4 1.5 1.4 270

KCl B1 37.57 17.1 5.32 1.48 1.04 236

KCl B2 32.25 17.2 5.89 1.48 1.04 236

Table 2.2: Thermal equation of state parameters for NaCl and KCl

33



Case Calib. Press. m KFe
0 τgasket

Init. P2 1.2 κFe0 (P ) τ(P )

S1 P2 1.0 κFe0 (P ) τ(P )

S2 P3 1.0 κFe0 (P ) τ(P )

S3 P2 1.0 κFe0 fixed τ(P )

S4 P2 1.0 κFe0 fixed τ fixed

Table 2.3: Sensitivity test values for heat flow model
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Figure 2.1: (a) Schematic of the sample geometry. An IR laser heats a metal foil surrounded

by a salt insulating medium (either NaCl or KCl), loaded in a diamond anvil cell. (b)

a typical series of temperature measurements as a function of laser power, shown at two

different pressures. (c) A schematic of the geometry for the numerical heat flow code. (d)

Calculated temperature as a function of laser power for a series of numerical models with

changing thermal conductivity and thickness of insulation layer.
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Figure 2.2: Measured temperature versus laser power is shown for KCl with Fe absorber

from 15 Gpa to 24 GPa.
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Figure 2.3: Measured temperature versus laser power is shown for KCl with stainless steel

absorber from 5.6 Gpa to 22 GPa.
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Figure 2.4: Measured temperature versus laser power is shown for NaCl from 14 GPa to 43

GPa. Circles and squares indicate the B1 and B2 phases, respectively.
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Figure 2.5: Comparison of the temperature dependence of thermal conductivity of NaCl

with the T−1 dependence and T−1.2 dependence.
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Figure 2.6: The logarithmic derivative of thermal conductivity as a function of temperature

at ambient pressure shows that
(
Tref
T

)m
, where m = 1.2. Also shown is liquid NaCl, which fol-

lows m = 0.5. The liquid NaCl κ0 is defined at the first liquid data point (K = 0.497W/mK)

at 1170K.
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Figure 2.7: Normalized density dependence of of log thermal conductivity of KCl up to 24

GPa with the dlnk
dlnρ

results required by our temperature data, plotted with LS calculation

using thermo-elastic parameters for KCl from Walker et al. (2002) and Decker (1971).
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Figure 2.8: Measurements and models of thermal conductivity as a function of pressure for

NaCl across the B1-B2 phase transition. The solid orange and blue lines show calculated

NaCl thermal conductivity for B1 and B2 phases, respectively, according to LS theory.
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Figure 2.9: Log thermal conductivity, normalized to the ambient pressure and temperature

is plotted against log normalized density with the results for each case, along with the initial

case assumed in the text.
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CHAPTER 3

Thermal conductivity of ferropericlase from the high

spin to mixed spin state

3.1 Introduction

The thermal conductivity of the mantle mineral assemblage is important for understanding

the long term thermal and chemical evolution of Earth. The core-mantle boundary (CMB)

region is a thermal boundary layer, where heat is transported primarily by conduction. The

bulk thermal conductivity of the mineral assemblage present at the CMB helps determine

the heat flow out of the core (Lay et al., 2008). The globally averaged CMB heat flux has

wide-ranging implications for (1) the thermal history of the planet, (2) the maintenance of

the geodynamo, and (3) the age of the inner core (Buffett, 2000; Olson, 2016). Throughout

the mantle, the depth dependence of thermal conductivity is an important parameter for

models of mantle convection, and has been shown to influence the structures that result

from parameterized convection models (Tosi et al., 2013). A detailed understanding of the

thermal conductivity of the major lower mantle minerals can help elucidate the mechanisms

behind the emergence of 3D thermo-chemical structures in the mantle, which are known

from seismic tomography (French and Romanowicz, 2015).

In a solid dielectric materials, such as the major minerals present in Earth's lower mantle,

the thermal conductivity can be described as the sum of lattice, electrical and radiative
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components (Klemens, 1969). The dominant transport terms for the oxides and silicates in

Earth's mantle are the lattice and radiative components. The lattice component for a single

phase increases with pressure, along an isotherm (Dalton et al., 2013). As temperature is

increases, the thermal conductivity of mantle oxides and silicates decreases (Roufosse and

Klemens, 1974). Assuming that there are no phase transitions, the competing effects of

pressure and temperature lead to moderately increasing thermal conductivity as pressure

and temperature increase with depth in the Earth's mantle.

Phase transitions can complicate models of the pressure dependence of thermal conduc-

tivity. A volume reduction and structural change due to the B1-B2 phase transition in ionic

salts has been associated with a decrease in thermal conductivity (Roufosse and Jeanloz,

1983). Experiments detailed in Chapter 2 confirm this theoretical prediction. Recent mea-

surements of thermal diffusivity of (Mg,Fe)O show a decrease across the mixed spin state

pressure range at ambient temperature (Ohta et al., 2017; Hsieh et al., 2018). This leads us to

ask whether phase transitions in Earth's mantle can cause a decrease in thermal conductivity

with pressure.

In this work, we use a finite element heat flow model of the diamond anvil cell in con-

junction with high pressure, high temperature measurements to determine thermal conduc-

tivity as a function of pressure across a phase transition. Our approach is developed and

tested using NaCl across the B1-B2 phase transition, described in Chapter 2. We apply this

method to ferropericlase (Mg.76Fe.24O), over a pressure range consistent with the high-spin

to mixed-spin transition, from 22 GPa to 61 GPa.

3.2 Heat flow modeling

The finite-element 3D heat flow model is used to simulate temperature distributions in

the laser-heated diamond anvil cell (Fig. 3.1). The model solves the steady-state heat
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equation in three dimensions using a full approximation storage grid method. (Rainey et al.,

2013; Rainey and Kavner, 2014) The model is benchmarked to an analytical solution to

the nonlinear heat equation in a cylinder, with temperature dependent thermal conductivity

(Panero and Jeanloz, 2001).

Heat flow in the diamond anvil cell is dominated by the high thermal mass of the dia-

monds. The time to thermally equilibrate the sample is on the order of 10−6s (Rainey et al.,

2013; Geballe and Jeanloz, 2012). For continuous wave laser heating, we assume a steady

state heating model:

∇ · κ(T )∇T +Q = 0 (3.1)

Heat transport is assumed to be by conduction. Radiative heat transport will occur

in the diamond anvil cell as well; however, the length scale of the sample is small enough

(30µm), that radiative heat transport across the sample is negligible (Manga and Jeanloz,

1997; Rainey et al., 2013).

The model assigns material properties to the diamonds, gasket, pressure transmitting

medium and absorber, and allows flexible inputs for the gasket thickness and the radius of the

gasket hole. The sample contained by the gasket may be a single material or a combination

of an absorbing and transparent material, with both parameterized as a cylinder. Each

element in the model is assigned a thermal conductivity with a temperature dependence

k0(
T0
T

)m, were m is assumed to be 1 for pure materials, but may be as low as 0.5 if impurity

scattering is significant. Heat is input to each cell based on the shape of the laser beam

profile, an adjustable parameter, so that:

Q = αI beam-present

Q = 0 otherwise
(3.2)
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If the absorber is opaque, as is the case for a metal foil, then the power input is simply

the incident laser power. In the case of a partially absorbing sample, such as ferropericlase,

the heat absorbed in each cell is governed by the Beer-Lambert law:

dQ = αI

Q = P
(
1− e(αI)

) (3.3)

where P, the laser power, is delivered to each cell and decays with depth in the sample.

Model simulations show that the peak temperature in the cell is primarily controlled

by the geometry, sample thermal conductivity and heat input due to laser heating (Rainey

et al., 2013). Compression will change the thickness of the gasket in addition to the thermal

conductivity of the materials in the cell. We explicitly model gasket thickness changes

using the equation of state of iron and ferropericlase for the gasket and sample, respectively.

This assumes that our experiments are in the thin gasket regime, where the pre-compressed

gasket is thin enough that plastic deformation of the gasket does not dominate the change in

thickness with compression (Dunstan, 1989). The reduction in thickness due to compression

results in a reduction in peak temperature of less than 10 percent. Considerations of modeling

sample absorption specific to ferropericlase is discussed in the results section.

3.3 Experiments

Experiments were conducted at beam line 12.2.2 at the Advanced Light Source (ALS) at

Lawrence Berkeley National Lab. High temperatures in the diamond anvil cell (DAC) were

achieved by single-sided laser heating (λ = 1.07µm). Temperature was measured by spectro-

radiometry with a wide-slit spectrometer and 2D high dynamic range camera (Fig 3.1).

Details of the laser heating system and temperature measurement are described elsewhere

(Kunz et al., 2005; Rainey and Kavner, 2014).
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The experiment was carried out on (Mg,Fe)O single crystal sample synthesized by in-

terdiffusion of Fe and Mg with pure MgO single crystal, on loan from Jacobsen et al. (2002).

Chemical composition, (Mg.76Fe.24O), and oxidation state, Fe3+/
∑
Fe < 0.01, was deter-

mined by microprobe analysis and Mössbauer spectroscopy, respectively (Jacobsen et al.,

2002). A spring steel gasket was pre-compressed to 33 µm in a DAC aligned with 300µm

diamonds. A gasket hole was laser milled with 100µm hole in diameter. A small amount of

ruby power, as a pressure calibrant, was loaded onto the piston side diamond. The ferroper-

iclase sample was loaded on top of the ruby powder and then gas loaded with neon, which

serves as both the pressure transmitting medium and insulator.

A heating cycle was conducted at a series of pressures. The heating cycle constructs a

temperature versus laser power (T-LP) curve by increasing the laser power until blackbody

radiation is observed in the 2D imaging spectrometer. A temperature measurement is made

at 0.5 watt increments as the laser power is increased (Fig. 3.1). In all T-LP cycles, the

peak temperature increases with laser power until reaching a plateau. The plateau cannot

be uniquely assigned to physical properties of the materials in the cell (Geballe and Jeanloz,

2012). We collect T-LP curves until the plateau is observed, and then reduce power, until

blackbody radiation is no longer observable. T-LP curves were measured at 22, 32, 42, 52

and 61 GPa.

3.4 Results

The peak temperature versus laser power results for ferropericalse are shown in Figure 3.2.

The temperature curve for one pressure is compared to the temperature curve at a higher

pressure. A curve that shifts to the right with a pressure increase indicates that the thermal

conductivity has increased. A simple way to understand this result is that for a curve that

shifts to the right, the temperature at the same laser power decreases, which is consistent with
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more efficient heat removal (i.e. higher thermal conductivity). The temperature difference

at the same laser power indicates both the sign and magnitude of the change in thermal

conductivity of the sample. If the temperature increases as pressure is increased, then heat

is less effectively removed, and the thermal conductivity of the sample has decreased. With

this basic framework in mind, Figure 3.2 shows that the thermal conductivity increases from

22 to 32 GPa and again up to 42 GPa. But from 42 to 52 GPa, and again to 61 GPa, the

thermal conductivity decreases.

In order to quantify changes in thermal conductivity with pressure, we use the 3D heat

flow model, in an iterative fashion. The model laser power (LP*) is tuned to the lowest

pressure measurements using approximate ambient temperature thermal conductivity (a)

(κ0) of the partially absorbing (Mg,Fe)O sample, (b) (κ0) of the Ne pressure medium and (c)

the measured thickness of the gasket after pre-compression. A complication with the partially

absorbing sample is the treatment of laser power absorption as a function of depth through

the sample. The absorption coefficient for (Mg1−x, Fex)O, with x = .24, has been measured

at high pressure and room temperature conditions (Goncharov et al., 2006). We use this

data as an approximation of the absorption coefficient at high pressure, high temperature

conditions. The thermal conductivity of the neon pressure transmitting medium is not

known precisely, but a model based on the equation of state of neon can constrain the

pressure dependence of its thermal conductivity (Weston and Daniels, 1984).

The thermal conductivity change for the first pressure step, from 22 to 32 GPa, is solved

for iteratively using LP* from the 22 GPa temperature curve. The pressure steps from 42

GPa to 52 GPa use a new LP*, re-calculated to the 42 GPa curve. This LP* is also used

for the 52 GPa to 61 GPa pressure step. The modeling results for each pressure step and

laser power are given in Tables 3.1 and 3.2. As a check, the LP* from 42 GPa is also used

to calculate 22 and 32 GPa curves and gives similar results.
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The results presented in Figure 3.3 show the log-normalized thermal conductivity as

a function of normalized density (dlnκ
dlnρ

) for (Mg,Fe)O. The values in Figure 3.3 are the

change in thermal conductivity required by the heat flow model to reproduce experimentally

observed temperatures at the higher of two pressure steps, normalized to ambient tempera-

ture and 1 bar condition values. Thermal conductivity increases from 22 to 32 GPa. This

pressure range is consistent with the high spin state of ferropericlase (Badro et al., 2003).

The pressure slope of thermal conductivity is positive from 22 to 32 Gpa and up to 42 Gpa,

where (dlnκ
dlnρ

) = 4.0, and (dlnκ
dlnρ

) = 14.2, at each pressure step respectively. Over the pressure

range of 22 to 42 GPa, a linear regression to the heat flow model results gives a g-value,

dlnκ
dlnρ

= 8.5± 1.8. At higher pressures, the thermal conductivity decreases from 42 to 52 GPa

(dlnκ
dlnρ

) = −4.6 and again from 52 to 61 GPa (dlnκ
dlnρ

) = −11.2. The cause of the decrease with

pressure is explored below.

3.5 Discussion

The thermal conductivity in a dielectric material can be described by the Boltzmann trans-

port equation (Ziman, 1972; Tang and Dong, 2010):

κlat =
1

VBZ

[∫
BZ

∑
i

Cv(i, k)v(k, i)l(k, i)/3

]
dk (3.4)

where Cv is the phonon heat capacity, v is the group velocity, l is the mean free path,

summed over the phonon modes (i) and k-points in the Brillouin zone (BZ). In general,

thermal conductivity of a single phase increases with pressure, since the majority of heat is

transported by acoustic phonons, and since the sound speed in most materials increases with

pressure (Roufosse and Klemens, 1973). LS theory makes this observation quantitative, and

the thermal conductivity as a function of pressure is given by the following set of equations
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(de Koker, 2010):

κ = κ0

(
ρ

ρ0

)g(
T0
T

)m

(3.5)

The exponent, g = 3γ+2q−1/3, is related to the Gruneisen parameter (γ) and its volume

derivative (q = −( dlnγ
dlnV

)T ). The g parameter can be determined from the thermal equation

of state of the material. The exponent, m, in Eq. 5 allows the temperature dependence to

depart from the 1/T ideal relationship, due, for example, to the effects of impurity scattering

(Manthilake et al, 2011).

The prediction of the thermal conductivity pressure dependence from Eq. 5 matches

measurements from 22 to 32 GPa using the thermal equation of state of (Mg,Fe)O. Over

this same pressure range, the theoretical value of g is 5.6 for ferropericlase (compared with our

experimental value of 4.0) (Jacobsen et al., 2005). Including the 42 GPa results significantly

increases the g-value, to 8.5 ± 1.8, higher than the theoretical, equation-of-state-derived

value of 5.6. This result is consistent with thermal conductivity measurements of a similar

composition, (Mg.81, Fe.19)O, by time-resolved methods (Goncharov et al., 2015). However,

Eq. 5 does not predict the reduction in thermal conductivity at higher pressures that is

observed in our data set. Using the same underlying assumptions (e.g. Liebfried-Schlomann)

it is possible to reformulate Eq. 5 in terms of more useful quantities:

κlat = A
v3ρ

3γ2T
(3.6)

where v is the phonon wave speed, ρ is density, γ is the Gruneisen parameter, and A

is a constant that does not depend on pressure (Roufosse and Jeanloz, 1983). A model for

mixed spin reduction in thermal conductivity can be constructed using the thermal equation

of state with Eq. 6. We use published KS values across the spin transition to calculate
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the bulk sound velocity

(√
KS
ρ

)
and substitute these values directly into Eq. 6 (Lin et al.,

2013). The constant A is calculated using ambient pressure and temperature values. This

calculation is shown with our measurements in Fig. 3.4.

The results are consistent with previous measurements of thermal diffusivity at high

pressure and ambient temperature (Ohta et al., 2017). The magnitude of the reduction

in thermal conductivity required by our data is larger and over a broader pressure range

than that previously reported by (Ohta et al., 2017), possibly due to the fact that our

measurements are at high temperatures, where the mixed spin state extends over a wider

phase space (Tsuchiya et al., 2006; Holmström and Stixrude, 2015).

3.6 Conclusion

The thermal conductivity of minerals across phase transitions has important implications for

the thermal evolution of the planet. We have shown that (Mg,Fe)O exhibits an anomalous

lattice thermal conductivity decrease with pressure in the mixed spin state. This decrease

could produce an unusual depth profile of thermal conductivity through the Earth's mantle.

In order to investigate this further, we calculate a simple mixture model of the thermal con-

ductivity of major lower mantle phases. The thermal conductivity of Fe-bearing bridgmanite,

(Mg,Fe)SiO3, has been previously measured up to 58 GPa using the techniques describe

here (Rainey, 2014). We use a Voigt-Reuss-Hill averaging scheme, with 20% ferropericlase

and 80% bridgmanite, by volume, to calculate the thermal conductivity of the lower mantle.

This calculation is shown in Figure 3.5. The thermal conductivity as a function of pressure

levels off over the pressure range of 45 to 60 GPa.

This result suggests that thermal conductivity may not be a strong function of depth

for a significant portion of the lower mantle, especially given that the mixed spin state of

56



ferropericlase occupies a broader phase space at high temperatures and may even extend to

the core-mantle boundary (Holmström and Stixrude, 2015). A weakly pressure dependent

thermal conductivity in the mantle could have profound implications for the style of mantle

convection, the shape of plumes, and the stagnation of downwelling slabs (Tosi et al., 2013).

A model for thermal conductivity of ferropericlase through the mantle, accounting for spin

transition is presented in Chapter 6.
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P (GPa) τ Temp (K) LPdata (W) LPmodel (W) K0 (W/mK)

22 4.3002 1367 5.8 1.70014 11.4

1684 7.2 1.85582 9.9

1767 8.0 1.94694 10.3

1837 8.6 2.01903 10.3

1916 9.5 2.12278 10.7

32 4.5689 1192 7.4 1.70014 13.8

1367 8.1 1.85582 11.9

1478 8.55 1.94694 11.1

42 5.3117 1055 12.5 2.45945 21.8

1124 13.1 2.52209 20.4

1181 13.8 2.61092 20

1274 14.6 2.69861 18.7

Table 3.1: Temperature and laser power data for (Mg1−x, Fex)O, where x = 0.24, with

modeling laser power inputs and thermal conductivity results, for 22 GPa to 42 GPa.

58



P (GPa) τ Temp (K) LPdata (W) LPmodel (W) K0 (W/mK)

52 7.4300 1186 5.8 2.29573 17.4

1232 7.2 2.42066 18.0

1274 8.0 2.46692 17.7

1337 8.6 2.51805 17.0

62 7.9692 1177 5.8 2.00286 12

1313 7.2 2.20151 12 (set)

1381 8.0 2.29456 12 (set)

1443 8.6 2.37775 12 (set)

1479 8.6 2.42526 12 (set)

Table 3.2: Temperature and laser power data for (Mg1−x, Fex)O, where x = 0.24, with

modeling laser power inputs and thermal conductivity results, for 52 GPa to 62 GPa.
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Figure 3.1: Experimental and model setup. (a) The the ferropericlase sample (Mg.76Fe.24O)

is loaded in neon (shown in blue) pressure transmitting medium. Ruby power (orange

squares) is added on culet, opposite side of laser heating. (b) Example of a 2D temperature

measurement using the peak scaling method at ALS beamline 12.2.2, with a peak tempera-

ture of 1705 K. (c) Heat flow model finite element parameterization, with flexible inputs for

geometry and material properties. (d) Example of a 2D slice of the model output, converged

to 1705 K by iteratively changing the thermal conductivity of the sample.
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Figure 3.2: Measured peak temperature is plotted versus laser power for Mg.76Fe.24O. Error

bars represent the standard deviation of 3-5 measurements at the same laser power. Filled

symbols show T-LP curves before plateau, open symbols show the plateau, which is not

considered in modeling.
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Figure 3.3: The logarithmic slopes (g-values) of thermal conductivity with respect to density

if plotted against pressure. From 22 to 42 GPa, the slopes are positive, and from 42 to 64

GPa, the slopes are negative, indicating that the pressure dependence of thermal conductivity

has flipped sign starting at 42 GPa.
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Figure 3.4: The log-normalized thermal conductivity required by our temperature data is

plotted given assumptions about the temperature dependence of thermal conductivity. The

model based on LS theory and bulk sound velocity is shown in the solid orange line.
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Figure 3.5: Thermal conductivity of ferropericlase (solid green line) and Fe-bearing bridg-

manite (solid orange line), at 300 K with the Voigt-Reuss-Hill volumetric average of the

lower mantle, assuming pyrolite composition.
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CHAPTER 4

Isothermal equation of state and phase stability of

Fe5Si3 up to 96 GPa and 3000 K

4.1 Introduction

The light element(s) in the core play important roles in our understanding of Earth's cur-

rent state, chemical evolution and core formation process. The coupled core-mantle thermal

and chemical evolution depends on light element concentrations in the core. In addition,

the light elements' ability to alter the electronic structure of liquid iron helps determine

the thermal and electrical properties of the outer core that are responsible for the Earth’s

geodynamo (de Koker et al., 2012; Pozzo et al., 2012; Vočadlo, 2015). However, the identity

of the primary alloying element is not certain (see Vočadlo (2015) for a review). Silicon is a

candidate for the major light element in the core based on its geochemical abundance and

alloying properties with iron at high pressures and temperatures (Ringwood, 1977; Poirier,

1994; Allègre et al., 2001; Lin et al., 2003). Recent estimates of the thermoelastic proper-

ties of Fe-Si alloys at high pressures and temperatures provide an improved match to the

geophysically observed properties of the core, compared with other light elements (Badro

et al., 2007; Antonangeli et al., 2010). Modeling the physical and chemical behavior of the

core at the relevant high pressures and temperatures requires thermodynamic data of the

candidate iron alloys, including the phase stability diagram of alloys and compounds, and

their equations of state at high pressures and temperatures.
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Here we present measurements of the high pressure and high temperature phase stability

and isothermal (room temperature) equation of state of an intermetallic Fe-Si compound,

Fe5Si3, and the mineral xifengite, at pressures up to 96 GPa under hydrostatic conditions.

We also make measurements of the stable structures at high temperature and at room tem-

perature after quenching, providing new high pressure phase diagram information.

At ambient conditions, the Fe-FeSi phase diagram is complex, with known stoichiomet-

ric phases Fe2Si, Fe5Si3, FeSi, and FeSi2 (Brandes and Brook, 2013). High pressure

and temperature experimental studies of the Fe-FeSi system suggest that it may simplify

at core conditions relative to ambient pressure, due to a lack of compositional intermediate

phases with distinct crystal structures Kuwayama et al. (2008); Fischer et al. (2013); Tateno

et al. (2015). Theoretical work on the Fe-FeSi phase diagram has shown that the inter-

mediate stoichiometric phase Fe5Si3 is not stable with respect to the ordered alloy phase

(DO3, isostructural with Fe3Si) and FeSi at the pressures and temperature conditions of

the Earth’s core (Brosh et al., 2009; Zhang and Oganov, 2010; Caracas, 2016). Experimental

work on the Fe-FeSi system provides support for this prediction, but the stability of Fe5Si3

at high pressure and high temperature has not been experimentally determined.

The crystal structure and pressure–volume equation of state for Fe5Si3 has been mea-

sured at room temperature to 75 GPa using NaCl and silicone oil as pressure transmitting

media (Santamarıa-Pérez et al., 2004; Errandonea et al., 2008). The use of NaCl and silicone

oil as pressure transmitting media has been shown to result in nonhydrostatic conditions at

room temperature, which may cause an overestimation of volume as a function of pressure,

biasing the equation of state to a stiffer bulk modulus (Kinsland and Bassett, 1976; Shen
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et al., 2004). In the present study, the pressure range is extended to 96 GPa using noble gas

(Ne and Ar) as pressure transmitting medium, to achieve improved hydrostatic conditions

in the diamond anvil cell.

Our revised quasihydrostatic equation of state for Fe5Si3 can be combined with existing

data on the equation of state of alloys and compounds within the Fe-FeSi system (Dobson

et al., 2002; Santamaŕıa-Pérez and Boehler, 2008; Geballe and Jeanloz, 2014; Fischer et al.,

2013) to help constrain thermodynamic models of the mixing behavior of Si substitution

within Fe metal.

4.2 Experiment and Methods

Samples of Fe5Si3 were synthesized by solid-state reaction using the method detailed in

(Errandonea et al., 2008). Two diamond cells with 100 µm culet diamonds were prepared

with precompressed Re metal gaskets and a 50 µm hole centered on the culet. The cells

were loaded with polycrystalline Fe5Si3 compressed into a foil and ruby chips for pressure

calibration (Mao et al., 1986). KCl was used in both cells to thermally isolate the laser-

absorbing Fe5Si3 from the diamond surface and as an internal pressure calibrant (Walker

et al., 2002).

Both samples were loaded with noble gas pressure media to maintain a hydrostatic envi-

ronment. The first sample was loaded with Ar, and room temperature diffraction patterns

were collected at three pressure steps up to 18 GPa. At this pressure, the cell was laser

heated to 2800 K, quenched, and then increased to 38 GPa. The diamonds failed during a

second heating attempt. The second sample was loaded with Ne as a pressure medium, and
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Xray diffraction patterns were made in pressure steps of about 5 GPa up to 96 GPa before

laser heating at that pressure. Two laser heating and temperaturequenched runs were com-

pleted at 96 GPa, with a maximum temperature of 3600 K. The diamonds failed during the

first decompression step, so we were unable to collect Xray diffraction data during decom-

pression. The sample was preserved in the gasket, and ambient pressure and temperature

patterns were taken to determine the stable phase at these conditions. Additional pressure

calibration was obtained using the equation of state of solid Ne (Dewaele et al., 2008).

Laser heating and X-ray diffraction experiments were performed at the GSECARS 13

IDD beamline at the Advanced Photon Source (Prakapenka et al., 2008). High tempera-

tures were generated using an 1.07µm fiber laserbased doublesided heating system (Shen

et al., 2004), and temperature was measured using the installed spectrometer systems and

the gray body approximation. The alignment of the 3 x 3 µm Xray beam and the 20 µm

laserheated spot was checked before and after each heating cycle by examining for agreement

between the position of Xray fluorescence and the position of the hotspot.

Xray diffraction patterns of the sample were obtained using monochromatic radiation

λ = 0.3344Å. Patterns were measured before, during, and after heating at each pres-

sure step and collected on a two-dimensional MAR 345 image plate, with the sample-to-

detector distance calibrated by a CeO2 standard. The software package Dioptas (Prescher

and Prakapenka, 2015) was used to integrate the two-dimensional diffraction images into

one-dimensional intensity–2θ data. Diffraction pattern indexing at each pressure and tem-

perature step was carried out using the PowderCell (Kraus and Nolze, 1998) and FullProf

(Rodŕıguez-Carvajal, 1993) program packages.
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4.3 Phase Stability

The preheat diffraction pattern is compared with the high temperature and quench patterns

at 18 GPa in Figure 4.1. Prior to heating, diffraction patterns corresponding to the Fe5Si3

structure, KCl, and Ar are present. At high temperature, diffraction peaks corresponding

with Fe5Si3 structure (P63/mcm) disappear as soon as the laser couples with the sample.

Figure 1b shows a representative diffraction pattern at 18 GPa and 1800 K. We are able

to fit the diffraction peaks present (that are not KCl and Ar) with two cubic structures:

Fm3m (a = 5.548Å) and P213 (a = 4.405Å), compatible with Fe3Si and the B20 phase of

FeSi, respectively (Fig. 4.2). It is important to note that ordered Fe–Si alloy with the DO3

structure is indistinguishable from stoichiometric Fe3Si, from Xray diffraction (XRD) data

alone. When the laser is turned off, peaks corresponding to the P63/mcm structure Fe5Si3

reappear. Diffraction peaks from the Fm3m and P213 structures remain after laser heating

is turned off.

A second cell was compressed to 96 GPa before laser heating at that pressure. Peaks

from Fe5Si3 disappear as soon as the laser begins to couple (Figure 4.3). When heated to

temperatures below 2500 K, new peaks immediately appear; however, these could not be

indexed with a cubic Fm3m phase nor does a body-centered tetragonal distortion of the

cubic phase match the peaks (I4/mmm subgroup of Fm3m). The existence of a Fe-rich,

hcp-structured alloy was also ruled out. A satisfactory indexing can be achieved with the

Pm3m (B2) structure (a = 2.605Å), consistent with the B2 unit cell of FeSi. As the sample

was laser heated to temperatures above 2500 K, additional diffraction peaks appeared that

could not be identified from diffraction alone. A reaction with the Re gasket is plausible,

given the high temperatures and pressures reached during this run.

73



These results show that Fe5Si3 is not stable at high temperatures and pressures. While

X-ray diffraction alone, as used here, cannot unequivocally demonstrate the stability of

phases, the evidence presented in this study is consistent with theoretical predictions that

intermediate silicides are unstable at core conditions with respect to a Fe3Si-like Fe-Si alloy

structure and B2 FeSi (Brosh et al., 2009; Zhang and Oganov, 2010; Caracas, 2016). Ex-

perimental studies have shown that at pressures above 60 GPa, DO3 FeSi alloys decompose

into Si-poor hcp FeSi alloy and Si-rich B2 phase (Lin et al., 2002, 2009; Fischer et al., 2012;

Tateno et al., 2015). The reappearance of Fe5Si3 diffraction peaks at room temperature

provides evidence that the P63/mcm structure of Fe5Si3 is stable at ambient temperature

and high pressure.

Combined with previous theory and experiment, the present study shows that the Fe-

FeSi T-X phase diagram is simpler at high pressure than at ambient pressure (Brandes and

Brook, 2013; Fischer et al., 2013). Previous experiments, which have used FeSi alloys and

B2 FeSi as end-members to investigate the T-X phase diagram, are justified in ignoring

compositional intermediates, since these phases are not stable at the relevant pressures and

temperatures (Lin et al., 2002; Fischer et al., 2013).

4.4 Isothermal equation of state

The isothermal equation of state of Fe5Si3 was measured at room temperature up to 96

GPa. Integrated powder X-ray diffraction patterns taken at room temperature and elevated

pressure were indexed based on the Fe5Si3 structure (Fig. 4.4), and the best fit volume was

calculated for the diffraction pattern at each pressure (Fig. 4.5). A nonlinear least squares fit

of our Fe5Si3 volume as a function of pressure to the third-order Birch-Murnaghan equation
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of state (EOS) was done using the LevenbergMarquardt algorithm. The value for V0 was de-

termined from XRD of the quenched sample, from the run that went to 96 GPa. Our fits for

both isothermal compression runs together (Ne and Ar pressure media) give KT,0 = 167(8)

GPa and K '
T,0 = 5.1(2) .

Our new EOS for Fe5Si3 has a lower bulk modulus than those obtained in previous

experiments, as shown in Figure 4.5 and Table 4.1 (Errandonea et al., 2008; Santamarıa-

Pérez et al., 2004). The difference between our bulk modulus and previous experiments is

about 25% when compared with silicone oil pressure medium results and about 40% when

compared with NaCl pressure medium results. One possible explanation for this discrepancy

is that the earlier experiments were run using silicone oil and NaCl as pressure media, and

their first pressure derivative, K '
T,0 < 4 (see Table 4.1). Both of these media can retain

significant differential stress during compression at room temperature, thus biasing the X-

ray determined lattice parameter values upward due to the combined effects of an excess

uniaxial stress component in the diamond cell and the diamond cell normal X-ray geometry

(Kinsland and Bassett, 1976). The Ar and Ne noble gas pressure media employed in our

study helps guarantee a more quasihydrostatic environment.

A plot of the data using normalized pressure (F) versus Eulerian strain coordinates (Fig.

4.6) highlights the deviation of the data from the thirdorder Birch-Murnaghan functional

form (Heinz and Jeanloz, 1984). Uncertainties in normalized pressure and strain are calcu-

lated according to propagation of errors (Heinz and Jeanloz, 1984). A linear fit to the data

set on the F-f plot gives the y intercept (KT,0 = 167 GPa) and the slope of 290 GPa/f which

implies a K '
T,0 of 5.1, indicating departure from KT,0 = 4 (i.e., if slope = 0, KT,0 = 4; if slope

> 0, KT,0 > 4). The F-f plot (Fig. 4.6) shows some departure from a straight line, at low

strain values. Such a shape for an F-f plot can indicate an error in V0. As a visual example,
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V0 was increased and decreased by 0.2% and a synthetic F-f curve was recalculated (Fig.

4.6, red lines), keeping other parameters the same. The shape of the data suggests that our

measured V0 is too large. Correlation of errors between the isothermal bulk modulus, its

pressure derivative, and the initial volume are well known (Wolf et al., 2015).

It is noteworthy that our best fit EOS indicates that the compressional elastic behavior

of Fe5Si3 is similar to that of pure iron (Table 4.1). To examine the mixing trends between

iron and silicon, we calculate two end-member substitutional ideal mixing scenarios in the

Fe-FeSi system at pressures corresponding to the outer core. For one end-member, the crys-

tal structure of FeSi (B2 structure) is used as a starting point, and the volume is calculated

at 137 GPa from the equation of state of FeSi (Fischer et al., 2014). The corresponding

density as a function of iron content is calculated, assuming ideal iron substitution for sil-

icon, without change in lattice parameter. For the other end-member, the volume of hcp

iron is calculated at 137 GPa (and room temperature) using the values in Table 4.1, and the

corresponding Fe end-member density is used as a starting point for ideal Si substitution

in the iron lattice (again, without changing in the lattice parameters). The results of these

calculations are shown as parallel ideal mixing trends in Figure 4.7.

A comparison of measured Fe-Si alloy and iron silicide compound density data (calcu-

lated at 137 GPa and room temperature) with the trends provided by the ideal mixing

relationships gives an indication of the thermodynamic mixing activity coefficients and their

deviation from ideality (Fig. 4.7). The density of FeSi alloys plot below the mixing line

determined by adding Si to Fe, by δρ = 2.0% (Hirao et al., 2004; Fischer et al., 2014). This

corresponds to an effective expansion of the Fe lattice as Si is incorporated; alternatively,

this can be interpreted as an increase in bulk modulus for the Fe-alloy as Si is added. The

DO3 structure alloy and compounds Fe5Si3 and FeSi plot below the hcp Fe-Si ideal mixing
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line by δρ = 3.6%. This deviation is expected since the intermediate structures are not close

packed and a change in crystal structure is, de facto, evidence of nonideality. Surprisingly,

the DO3 structure alloy and Fe–Si compounds plot nearly along a mixing line from the FeSi

end-member.

The deviations in density due to lattice contraction/elastic stiffening of the Fe-Si alloys

and a change in phase are on the same order. This observation may explain why Fischer et

al. obtain very consistent values for the maximum Si content in Earth’s core, centered at

11.3± 0.6 wt % Si, regardless of whether stoichiometric B2 FeSi or alloy phases are used in

the linear mixing scheme. Since Fe5Si3 and FeSi plot on the same mixing line, a hypothetical

mixing model of either of these phases with pure iron would arrive at the same maximum

for Si in the core to match seismic observations.

Currently, there are significant efforts to produce accurate, predictive models for multi-

component systems of iron, with the goal of understanding the diversity of planets in our

solar system and around other stars (Unterborn et al., 2016). A significant challenge for

such models is incorporating solid solution and predicting the formation of an alloy versus a

compound. Our measurements will, more broadly, provide experimental evidence for future

modeling efforts of planetary formation thermodynamics. The addition of Si in the Fe-FeSi

system contributes only small changes to the molar volume, even in the case of different

crystal structures. This result, coupled with our observation that Fe5Si3 is stable at high

pressure and room temperature, provides important information for thermodynamic and

first-principles models of the mixing of Fe and Si.

In summary, the investigation of Fe5Si3 at high pressures and high temperatures shows
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that this stoichiometric compound is not stable at Earth’s core conditions. The present

study provides evidence that the B2 FeSi and the Fe3Si structures are the preferred phases,

as predicted by previous theoretical and experimental work on the Fe-FeSi phase diagram

(Brosh et al., 2009; Zhang and Oganov, 2010; Fischer et al., 2013; Tateno et al., 2015). The

stability of Fe5Si3 at high pressure and ambient temperature indicates a new point on the

highpressure phase diagram. The revised isothermal EOS of Fe5Si3 in the present study re-

veals similar compressibility as pure iron. Our revision significantly lowers the bulk modulus

of Fe5Si3 from previous measurements. Broadly for the Fe-FeSi system, the addition of Si in

hcp alloys increases molar volume, while the addition of Si in ordered alloys (DO3 structure)

and compounds has little effect on molar volume. The implications of these results are that

differences in crystal structures in the Fe-FeSi system play a minor role in density changes at

high pressure, meaning that linear mixing of endmembers can reasonably approximate the

maximum Si that can satisfy observations from seismology.
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Material ρ0(g/cm
3) V0(cm

3/mol) KT,0(GPa) K '
T,0

Fe5Si3 (this study) 6.46 56.29 167(8) 5.1(2)

Fe5Si3 (Errandonea et al., 2008) 6.45 56.35 215(14) 3.6(6)

Fe5Si3 (Santamarıa-Pérez et al., 2004) 6.45 56.35 249(9) 3.4(9)

Fe (Boehler et al., 2008) 8.26 56.35 161(6) 5.6(2)

Fe (Dewaele et al., 2006) 8.27 6.76 163(8) 5.38(16)

Fe (Brown and McQueen, 1986) 7.85 7.11 172(3) 5.14(7)

Table 4.1: Pressure-Volume equation of state parameters for iron-silicon compounds and

alloys
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Figure 4.1: Diffraction patterns at 18 GPa are shown at room temperature, prior to heating.
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Figure 4.2: At high temperature, the Fe5Si3 diffraction lines are no longer present. Highly

textured diffraction intensity corresponds well with Fe3Si (Fm3m, a = 5.548Å), and FeSi

(P213, a = 4.405Å). No elemental iron is observed in the high-temperature diffraction pat-

tern.
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Figure 4.3: Diffraction pattern at 96 GPa and 2900 K shows that the B2 phase of FeSi is

present, but Fe5Si3 is not. Another, larger unit cell material is also present but could not

be identified unequivocally. Re is present in this diffraction pattern, since the sample was

close to the gasket edge.
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Figure 4.4: Room temperature diffraction patterns of Fe5Si3. The Fe5Si3 peaks used to

calculate unit cell volume are labeled with their miller indices.
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Figure 4.5: Volume versus pressure data for Fe5Si3. Solid line shows the best fit Birch-Mur-

naghan isothermal equation of state through the data. Error bars are smaller than marker

size.
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Figure 4.6: Normalized pressure (F) plotted versus Eulerian strain (f) with uncertainty

in pressure and Eulerian strain propagated according to propagation of errors (Heinz and

Jeanloz, 1984). The best fit equation of state parameters from the nonlinear fit of the

pressure-volume data in Figure 4.5 are plotted as the blue line. Red lines above and below

show the effect of perturbing the V0 by 0.2%.
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Figure 4.7: Density of solids in the Fe-FeSi system at 137 GPa calculated from equations of

state for each material. Error bars are calculated using a Monte Carlo scheme which incorpo-

rates reported Birch-Murnaghan EOS parameter errors. The trend suggests linear changes

in density, independent of structure, for increasing mole fraction of silicon. A hypothetical

ideal mixing of hcp iron with substitutional silicon is shown with dashed line.
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for shocked iron between 77 gpa and 400 gpa. Journal of Geophysical Research: Solid

Earth 91, 7485–7494.

Caracas, R., 2016. Crystal structures of core materials. Deep Earth: Physics and Chemistry

of the Lower Mantle and Core 217, 57.

87



Dewaele, A., Datchi, F., Loubeyre, P., Mezouar, M., 2008. High pressure–high temperature

equations of state of neon and diamond. Physical Review B 77, 094106.

Dewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P.I., Torrent, M., 2006.

Quasihydrostatic equation of state of iron above 2 mbar. Physical Review Letters 97,

215504.

Dobson, D.P., Vocadlo, L., Wood, I.G., 2002. A new high-pressure phase of fesi. American

mineralogist 87, 784–787.
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Santamarıa-Pérez, D., Nuss, J., Haines, J., Jansen, M., Vegas, A., 2004. Iron silicides and

their corresponding oxides: a high-pressure study of fe5si3. Solid state sciences 6, 673–678.

Shen, Y., Kumar, R.S., Pravica, M., Nicol, M.F., 2004. Characteristics of silicone fluid as a

pressure transmitting medium in diamond anvil cells. Review of scientific instruments 75,

4450–4454.

Tateno, S., Kuwayama, Y., Hirose, K., Ohishi, Y., 2015. The structure of fe–si alloy in

earth’s inner core. Earth and Planetary Science Letters 418, 11–19.

90



Unterborn, C.T., Dismukes, E.E., Panero, W.R., 2016. Scaling the earth: a sensitivity

analysis of terrestrial exoplanetary interior models. The Astrophysical Journal 819, 32.
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CHAPTER 5

Evidence for non-linear sediment transport on terrace

riser hillslopes, South Island, New Zealand

5.1 Introduction

The movement of granular material in the landscape has been recognized as a diffusive

transport process for over a century (Davis, 1892; Gilbert, 1909). However, the applicability

of the diffusion equation to specific morphology and processes has been debated for nearly

as long (Pierce and Colman, 1986; Tucker and Bradley, 2010). Two key assumptions are

made in the derivation of the diffusion equation for sediment transport. First, the sediment

flux per unit length, qs, must be proportional to the gradient of the hillslope. Symbolically,

this statement can be written for 2 dimensions:

qs = −κ∇z (5.1)

where κ is diffusivity
[
L2/T

]
that characterizes the magnitude and frequency of disturbances,

z is elevation
[
L
]
, and the negative sign is convention so that the downslope direction is pos-

itive. The slope-dependent transport processes include rain splash, creep, and bioturbation

(Culling, 1963; Carson and Kirkby, 1972). The second assumption is a conservation of mass

statement:
∂z

∂t
= ∇qs (5.2)
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Combining equations 1 and 2 gives the linear diffusion equation:

∂z

∂t
= −κ∇2z (5.3)

where change in elevation is dependent on the curvature of landscapes. The linear diffusion

equation has been used to model the degradation of geomorphic surfaces of fault scarps and

marine and stream terrace risers (Rosenbloom and Anderson, 1994; Martin, 2000; Hilley and

Arrowsmith, 2008; Wei et al., 2015). The morphologic age of hillslope scarps derived from

linear diffusion can be applied to a variety of problems, including studies of active fault slip

rates and spatio-temporal deformation patterns (Avouac, 1993; Hilley et al., 2010).

Despite the wide applicability of linear diffusion in describing landscape morphology, pre-

vious studies suggest that linear diffusion may not accurately capture hillslope degradation

processes in certain cases (Pierce and Colman, 1986; Roering et al., 1999; Heimsath et al.,

2005; Tucker and Bradley, 2010). A nonlinear formulation of the sediment flux, given by:

qs = − κ∇z
(1− |∇z|

Sc
)2

(5.4)

where Sc is a critical slope, which is formally defined by the shear strength of the sediment

(Roering et al., 1999). If Sc is very large, the nonlinear sediment flux in Eq. 5.4 approaches

the linear flux in Eq. 5.1. However, for Sc values approaching landscape slopes, the linear

and nonlinear sediment fluxes can be significantly different.

Pierce and Colman (1986) suggest the importance of nonlinear transport based on obser-

vations of a height dependence of terrace riser hillslope diffusivity. Other work has argued

that the height dependence may be due to the use of the maximum hillslope gradient, rather

than the full profile, to determine diffusivity (Pelletier et al., 2006). However, a statistically

significant height dependence of terrace riser hillslope diffusivity has also been found in other
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studies, using full profile diffusion modeling (Clarke and Burbank, 2010). Assessing the im-

portance of linear or nonlinear diffusion process in degradation of scarp and terrace risers

is often complicated by the unknown age of the geomorphic features and by limited terrace

sampling at a single field site (Clarke and Burbank, 2010). In this study, we examine the

profiles for a fleet of six terrace risers, on South Island, New Zealand, using models of linear

and nonlinear diffusion. The ages of terrace risers are constrained by infra-red stimulated

luminescence (IRSL) ages of feldspar sand grains sampled from the terrace treads. We find

that though the linear diffusion model produces a strong height dependence of terrace riser

hillslope diffusivity, nonlinear models produce much less height dependence of slope diffusiv-

ity. This observation suggests that nonlinear transport plays an important role in degrading

fluvual terrace risers.

5.2 Field Site

The field site is a fleet of six terraces, located on South Island, New Zealand. The terrace

treads are progressively offset by the Awatere Fault, a dextral 150 km long fault strand of

the Marlborough Fault System (MFS) (Mason et al., 2006; Zinke et al., 2015). The terraces

are located at the confluence of the Saxton River and the Awatere River, and are incised into

valley wide last-glacial maximum age alluvial fill (Lensen, 1973; Knuepfer, 1992; Mason et al.,

2006; Zinke et al., 2017). There are six terraces above the modern river, labelled T1-T6, from

oldest to youngest. The terrace fleet at Saxton River is shown in Figure 5.1. The terraces

are comprised of coarse gravel with interstitial sand and sparse sand lenses. Terrace treads

are capped with fine grained loess, approximately 10 cm to 50 cm thick, and a soil horizon,

approximately 5-15 cm thick. The loess deposits are not necessarily syn-depositional with

the terrace gravels. The terrace riser is defined as the scarp between terrace treads. After

incision and terrace tread abandonment, the risers will degrade over time.
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5.3 Data Collection and Analysis

High resolution topography data was collected by aircraft in collaboration with the National

Center for Airborne Laser Mapping (NCALM). The data processed by NCALM produce

a digital elevation model (DEM) with a pixel resolution of 0.33 m with an areal coverage

of 305 km2. Ages of the terraces were determined using infra-red stimulated luminescence

(IRSL) of potassium-rich feldspar sand grains (175 µm to 200 µm diameter). IRSL dates

the time elapsed since sediment last was exposed to light. K-feldspar is suitable for sediment

dating using infra-red stimulated luminescence (IRSL) because of the bright (high photon

count) luminescence signal and ubiquitous distribution in the landscape (Rhodes, 2015). A

potential drawback of using K-feldspar is signal fading over the timescale of interest. This

problem is mitigated using the pIR-IRSL method, modified for single-grain dating (Buylaert

et al., 2009; Rhodes, 2015). Ages are determined by luminescence single grain pIR-IRSL

for a series of samples from each terrace tread gravel deposit. The ages are input into a

Bayesian stratigraphic model, using OxCal. The details of the age model are described else-

where (Zinke et al., 2017).

The terrace treads are labeled T1-T6, in order of oldest to youngest, following Mason

et al. (2006) and Zinke et al. (2017). The terrace riser is defined as the scarp between two

terrace treads, and is denoted, for example, as T1/T2. The terrace riser data was collected

using one-dimensional profiles extracted from the DEM along steepest descent. We collected

profiles from the T1/T2, T2/T3, T2/T5, and T4/T5 terrace risers. Profiles which had a

channel intersecting the terrace tread and the riser, which could complicate modeling, were

eliminated prior to analysis. A total of 20 risers were analyzed. The one dimensional profiles
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were drawn from locations indicated by hatch marks shown on Figure 5.1. The initiation

of terrace degradation is given by the abandonment age of the lower terrace tread, when

river flow no longer undercuts the base of the terrace riser. This age is assigned as the

luminescence-derived age of the lower terrace.

Analysis of hillslope profiles derived from the DEM can sometimes suffer from noisy data

that can bias misfit between data and models (Clarke and Burbank, 2010). In order to miti-

gate this problem, the data was smoothed by convolution, with an averaging filter of 1.65 m

(e.g. 5-cell) in length. The gradient of the raw data and smoothed data of an example profile

across the T4/T5 terrace riser is shown in Figure 5.2. The gradient of the smoothed data

is used to locate the inflection point of the terrace and construct an initial terrace riser profile.

Using the initial profiles of terrace risers, we model the degradation of terraces using

linear and nonlinear models. The linear diffusion equation can be solved numerically or

analytically, for certain initial and boundary conditions. The nonlinear diffusion, equation,

however, can only be solved analytically in special cases, and for a restricted set of flux laws.

We use numerical solvers to forward model both linear and nonlinear diffusion. The numerical

models are benchmarked to an analytical solution for linear diffusion. The analytical solution

for 1-D diffusion of a terrace riser is given by (Hanks and Andrews, 1989):

h(x, t) = θ

√
κt

π

[
exp(−

(x+ a
θ
)2

4κt
)− exp(−

(x− a
θ
)2

4κt
)]

+
θ

2

[
(x+

a

θ
)erf(

x+ a
θ√

4κt
)− (x− a

θ
)erf(

x− a
θ√

4κt
)]

(5.5)

where θ is the initial gradient, a is half the height of the terrace riser, κ is the diffusivity, and

t is time. Linear diffusion is solved numerically by finite difference method, using forward-

time, centered-space (FTCS). The nonlinear diffusion equation is solved using an implicit

method, following Perron (2011). The nonlinear numerical model is also benchmarked to
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the analytical solution, under the condition that the nonlinear sediment flux approaches the

linear flux in Eq. 5.1. This occurs where |∇z| << Sc so that the denominator in Eq. 5.6

is close to 1 (Fig. 5.3). Both the linear and nonlinear numerical models successfully recover

diffusivities of synthetic riser profiles generated by the analytical diffusion equation.

The initial scarp slope is determined from terrace riser profiles that intersect the modern

river, shown in black lines in Fig. 5.1. The risers have a mean slope of 36◦ ± 2◦, which is

taken to be the angle of repose. An initial profile with θ0 = 36◦ is run forward in time, using

the linear or nonlinear numerical diffusion model, for the age of the lower terrace. Misfit

between model and data are calculated from the gradient of forward model outputs for the

full terrace riser profile. The model outputs from a grid of κ values (and Sc values for the

nonlinear model) are compared with each full terrace riser pofile and the misfit is calculated

by the root mean square error (RMS). The method of RMS calculation is by the gradient of

the model and data, following Wei et al. (2015).:

RMS =

(
1

n

n∑
i=1

[
∇zi −∇zmodel(xi)]2

) 1
2

(5.6)

where ∇zi is the riser gradient of the data, and ∇zmodel(xi) is the numerical model output

gradient, evaluated at xi. The minimum RMS value for each terrace riser defines the best fit

κ and Sc value for that terrace riser profile. The error in κ is given by the RMS minimum

value +1σ, which is defined by the resolution of the DEM as 5cm.

5.4 Results

The results for hillslope diffusivity, given linear diffusion of terraces of different ages, are

shown in Figure 5.4. There is a strong height dependence of κ for linear diffusion. The

height dependence persists for a terrace riser intersecting the same lower terrace, but with a
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variation in height along the scarp, as evidenced by risers that intersect 4.3 ka T5 tread (Fig

5.4). In other words, a change in κ through time, with the linear diffusion equation, cannot

explain the height dependence in the data set. The nonlinear model was run over a series of

critical slope Sc values and κ values. The minimum misfit between model and data at each

Sc value is calculated for a range of κ values. With decreasing critical slopes, the height

dependence of diffusivity is significantly reduced. For Sc = 0.8, the diffusivity approaches a

constant value, as shown in Fig. 5.4.

5.5 Discussion

The use of luminescence dates of terrace treads allows the determination of κ for nonlinear

and linear models across a range of terrace ages and heights. The dates of terrace material

derived from luminescence ages are depositional, so they do not strictly date the abandon-

ment. However, geomorphic analysis of terrace tread fluvial features offset by the Awatere

fault demonstrate that the lower terrace age marks the beginning of slip accrual (Cowgill,

2007; Zinke et al., 2017). This corroborating evidence from a slip rate study at this site

(Zinke et al., 2015) supports lower terrace ages to represent initiation of terrace riser degra-

dation, since the Awatere fault exposes the offset riser edge directly to the flow of the Saxton

River, making preservation prior to abandonment unlikely (Zinke et al., 2017).

A height dependence of κ for linear diffusion of terrace scarps has been observed before at

multiple field sites, and in different climates (Pierce and Colman, 1986; Clarke and Burbank,

2010). Several physical mechanisms can account for height dependence of κ. One possibility

is that there is advection of material, due to small channels, called rills, forming on the ter-

race scarp (Pierce and Colman, 1986). Rills may become more significant with larger scarps.
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A second possibility is that grain cascading occurs (Tucker and Bradley, 2010). This process

involves rare departures from slope dependent mass flux that can disturb additional grains

down slope. The further the grains can fall, the more significant these cascades become,

leading to greater mass transport with height of the scarp. These processes involve some

violation of linear diffusion since the mass flux does not scale linearly with slope.

The nonlinear diffusion model produces a reduced height dependence of κ as Sc ap-

proaches the angle of repose gradient, in contrast to the linear diffusion results. At values

of Sc below 0.9, the height dependence approaches the error bounds on the nonlinear dif-

fusivity. This suggests that a general hillslope diffusivity and critical slope can explain the

degradation of terrace riser form at this field site, over the height (2 to 12 m) and age (4.2 to

7.2 Ka) range sampled. This highlights the importance of the nonlinear transport to explain

the degraded topographic profiles in fluvial terrace risers.

5.6 Conclusion

We applied hillslope diffusion models to a fleet of six terrace risers with varying heights and

ages. Our results show a strong height dependence of κ for linear diffusion models of terrace

risers that are the same age. However, the nonlinear diffusion equation for sediment flux can

remove the height dependence of κ. Using a best fit for the entire data set, for all heights

and ages, we calculate κ = 1.9 ± 0.7 ∗ 10−3m2/yr with Sc = 0.80 for the terrace riser fleet.

The ability to describe the terrace riser elevation data set with a single κ value suggests that

nonlinear diffusion plays an important role in degrading slopes on fluvial terrace risers. The

linear diffusion equation has limited predictive power of the age of terrace risers with steep

slopes or a large range in heights, and should be used with caution when attempting to date

the geomorphic surfaces in the landscape.
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Figure 5.1: Saxton River terrace fleet with terraces labelled from oldest to youngest. Hatch

marks indicate cross sections across terrace scarps. Black hatch marks indicate scarps that

intersect the modern river.
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Figure 5.2: The T4/T5 terrace riser profile is shown for raw data (open squares) and

smoothed data (filled squares) in the top panel. The gradient of the terrace riser is shown

in the middle panel. The curvature is shown in the bottom panel.
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Figure 5.3: The sediment flux as a function of hillslope gradient for linear (Eq. 5.1) and non-

linear (Eq. 5.6) transport laws is shown, with different critical slopes (Sc) for the nonlinear

model.
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Figure 5.4: The diffusivity is shown for a series of terraces, of different ages and heights for

linear and nonlinear numerical models, determined by minimizing RMS between the DEM

profile and the models.
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CHAPTER 6

Conclusion

6.1 Overview

The thermal conductivity of minerals across phase transitions has important implications

for the thermal evolution of the interior of Earth. We have shown that (Mg,Fe)O exhibits

an anomalous lattice thermal conductivity decrease with pressure in the mixed spin state.

The lattice thermal conductivity decreases between 42 and 61 GPa, which can be attributed

to a reduction in bulk sound speed, due to the mixed spin state of iron in an octahedral

coordination environment. This decrease could produce an unusual depth profile of thermal

conductivity through the Earth's mantle. Furthermore, some fraction of high spin state

iron may persist all the way to the core-mantle boundary, making the mixed spin state of

ferropericlase important for CMB heat flow (Holmström and Stixrude, 2015).

The thermal conductivity results from Chapter 3 can be extended throughout the lower

mantle, using a simplified model, which I describe here. Extension to high pressure and

temperature conditions is complicated by the broadening of the P-T phase space occupied

the mixed spin state (Tsuchiya et al., 2006; Mao et al., 2011; Holmström and Stixrude, 2015).

Figure 6.1 shows the pressure and temperature conditions of this work and others, plotted

over the ab initio spin fraction phase diagram of (Holmström and Stixrude, 2015). Presently,

it is not possible to make measurements in situ of thermal conductivity at the core-mantle
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boundary pressure and temperature conditions.

6.2 Spin state model

In order to extrapolate our measurements, I make three general assumptions. First, taking

the phase diagram of (Holmström and Stixrude, 2015), I estimate the high spin state fraction

along the geothermal profile (Wolf et al., 2015), the results of which are shown in Figure 6.2.

Second, I assume that the minimum in mixed spin thermal conductivity is associated with

the minimum in bulk sound speed, as was done in Chapter 3. Lastly, I assign the minimum

bulk sound speed as the mean of a normal distribution, with a spin fraction of 0.5 mapped

to the mean. Using this framework, a thermal conductivity reduction from a hypothetical

purely high spin state can be assigned at each point along the pressure and temperature pro-

file of the lower mantle, with the spin fractions from Figure 6.2. At each point, the thermal

conductivity is calculated using a temperature dependence of (T0/T )0.5, and the results are

shown in Figure 6.3. The reduction in thermal conductivity of ferropericlase is over a broad

depth range in the lower mantle, due to the fact that the mixed spin phase is broad. A

different calculated spin state phase diagram, such as that of (Tsuchiya et al., 2006), would

result in a different depth dependence, but the general result of a broad reduced thermal

conductivity profile is robust.

6.3 Mantle Radiative thermal conductivity

The thermal conductivity of mantle minerals is the sum of lattice, radiative and electrical

components. So far in this dissertation, only the lattice component has been discussed, but
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radiative thermal conductivity is important to consider in order to describe the thermal

conductivity at mantle conditions, particularly in the core-mantle boundary region where

temperatures rise significantly. Radiative heat transport by photons is important for op-

tically thick dielectric materials at high temperatures. These conditions are met for the

silicates and oxides of the lower mantle, but uncertainty exists in the value of radiative ther-

mal conductivity of the major minerals (Rainey, 2014).

Radiative thermal conductivity at high pressure and temperature remains controversial

for several reasons. First, there is a fundamental question of whether it is possible to measure

absorption in the diamond anvil cell, even at room temperature, due to the limited volume

of the sample (Hofmeister, 2014). Secondly, absorption properties could change at high tem-

peratures. Recent experiments show a large increase in absorption at high temperature that

could limit radiative heat transport at lower mantle conditions (Lobanov et al., 2017). The

problem with measuring absorption is significant enough that calculations of the radiative

component of thermal conductivity in the mantle vary by orders of magnitude, from low val-

ues of 0.5 W/mK to values as high as 10 W/mK (Goncharov et al., 2008; Keppler et al., 2008).

Absorption coefficient values depend on both the methods used for measurement and

on sample iron content. The absorption coefficient for mantle oxides and silicates increases

with iron content. To first order, then, the radiative conductivity should decrease with in-

creasing iron content. Accordingly, ferropericlase should be lower than bridgmanite, due to

the higher iron content of ferropericlase than bridgmanite (Mg# = 0.83 for ferropericlase,

Mg# = 0.93 for bridgmanite) (Cottaar et al., 2014). I reproduce calculations of radiative

thermal conductivity as a function of depth in the mantle given a set of absorption coefficient

measurements with different iron contents (Goncharov et al., 2006, 2008).
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The radiative contribution to thermal conductivity can be calculated by the Rosseland

mean approximation. Inherent in this formulation is the assumption that the transport

of heat by photons in the mantle is diffusive in nature, due to the optically thick condi-

tions of the material (Hofmeister, 1999; Rainey, 2014). For these conditions, the radiative

conductivity is given as:

krad =
16n2σT 3

3BR

(6.1)

where
n2

BR

=
π

4σT 3

∫ ∞
0

n2

Bλ

dIb,y
dT

dλ (6.2)

and where nλ is the wavelength-dependent index of refraction, σ is the Stephan-Boltzman

constant, Bλ is the extinction coefficient, and Ib,λ is the blackbody radiation intensity (Kep-

pler et al., 2008; Rainey, 2014). The blackbody intensity derivative, with respect to temper-

ature,
dIb,λ
dT

is given by:

dIb,λ
dT

=
2hc2

λ5
hc

λkBT 2

e
hc

λkBT(
e

hc
λkBT − 1

)2 (6.3)

where Ib,λ is the intensity, h is the Planck constant, c is the speed of light, λ is wave-

length, and kB is the Boltzmann constant. The temperature derivative intensity spectral

dependence is evaluated at a series of wavelengths and shown in Figure 6.4. The spectral

range shown here covers existing measurements of the absorption coefficient. While the inte-

gral is technically evaluated over [0, ∞], Figure 6.4 shows that the peak intensity falls off by

orders for temperatures in the Earth's mantle outside the spectral data range. Therefore, we

make the assumption that the spectral range shown in Figure 6.4 is sufficient for radiative

conductivity calculations.

The extinction coefficient, BR, is a summation over scattering and absorption terms, but

only absorption is considered in Eq. 6.2. Ignoring scattering can be justified by assum-
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ing that the mean free path of absorption is much smaller than the scattering length scale

(Rainey, 2014). The wavelength dependent absorption coefficient has been measured for

(Mg,Fe)O at a range for iron contents and pressures (Goncharov et al., 2006, 2008, 2010;

Keppler et al., 2008).

The absorption coefficient data was chosen from two studies (Goncharov et al., 2006,

2008). These studies used the same techniques and equipment, and their results illustrate

the dependence of κrad on iron. The third study demonstrates differences between mea-

surement techniques. To calculate κrad through the mantle, the absorption coefficients were

interpolated between measured pressures. The radiative conductivity was calculated along

geothermal profile (Wolf et al., 2015) using Eq. 6.1, over the spectral range [0.25, 3]µm. In

some cases, the absorption coefficient measurements do not extend over the lower end of the

proscribed spectral range, and a linear extrapolation of the data was applied.

The results of the Krad are shown in Figure 6.6. In general, ferropericlase Krad increases

by about a factor of about 3 through the lower mantle. Reducing the iron content from

atomic fraction x = 0.25 to x = 0.15 results in a radiative thermal conductivity that is twice

as large. However, the contribution to the total thermal conductivity of ferropericlase is still

likely small (about 10%), due to the high iron content of this mantle mineral (Mattern et al.,

2005).

6.4 Mantle thermal conductivity depth dependence

The thermal conductivity of the lower mantle depends on the the depth profile of ther-

mal conductivity of the major minerals ferropericlase and bridgmanite. The total thermal
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conductivity of ferropericlase is shown in Figure 6.7. The lattice and radiative thermal con-

ductivity of bridgmanite is calculated from measurements and modeling, using the same

techniques (Rainey, 2014). A mixture model of the two minerals' thermal conductivity is

carried out by two methods. The Voigt-Reuss-Hill model imagines a volumetric average be-

tween end members of the minerals arranged in series and in parallel. The Maxwell-garnet

approximation imagines a volumetric average of a minor phase randomly included in a major

phase. Both averaging schemes give similar results.

Pressure dependent thermal conductivity in the mantle could have profound implications

for the style of mantle convection, the shape of plumes, and the stagnation of downwelling

slabs (Tosi et al., 2013). A moderate increase in thermal conductivity with depth, as con-

firmed by the analysis in this chapter, would enhance slab stagnation at 660 km and limit

the lateral extent of sources for plumes at the base of the mantle (Tosi et al., 2013). While

the presence of a sharp reduction in thermal conductivity of ferropericlase will cause thermal

conductivity to increase less rapidly in the lower mantle, the effect is likely minor due to

the broadening of the spin transition phase space at high pressures and temperatures. This

analysis suggests that thermal conductivity increases by a factor of about 2 from the top

of the lower mantle to the core-mantle boundary. This result is consistent among different

measurement techniques and mixture models (Ohta et al., 2017; Hsieh et al., 2018).

The reduction of thermal conductivity across the spin transition leads to a reduced total

thermal conductivity in the CMB region. However, the effect is only modest on the total

thermal conductivity because ferropericlase is 20% by volume. Accounting for the spin tran-

sition using the simple model described here reduces the CMB thermal conductivity from 5.5

W/mK to 5.2 W/mK, all other variables kept constant. There is uncertainty in the thermal

conductivity temperature dependence for iron-bearing phases. The temperature dependence
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of ferropericlase and Fe-bearing bridgmanite κlat at transition zone pressures was found to

be m = 0.24 and 0.22, respectively (Manthilake et al., 2011). If these values are extrapo-

lated to core-mantle boundary pressures, using our measured thermal conductivity pressure

dependence, the CMB value doubles from 5.2 W/mK to 10.6 W/mK. This value could be

thought of as an upper bound for the dataset presented here.

6.5 Core-mantle boundary heat flux

The globally averaged thermal conductivity of the core-mantle boundary region helps set the

heat flux leaving the core. Since heat is transported by conduction in a thermal boundary

layer (Bejan, 2013), the thermal conductivity of the layer sets the heat flux according to

Fourier's law:

q = −κ∇T (6.4)

For a given thermal conductivity and temperature gradient, Eq. 6.4 can be globally

averaged to calculate the heat flux. Using a model for thermal conductivity temperature

dependence of m = 0.5, and the mantle temperature profile of (Wolf et al., 2015), and an

average thickness of 150 km, the total CMB heat flux is estimated to be 8.4 TW. The

temperature profile used throughout the dissertation implies a CMB thermal gradient of 10

K/km, which is on the higher end of estimates. Estimates of the thermal gradient in the

CMB from post-perovskite phase transition seismic reflections range from 6 to 11 K/km

(Hernlund et al., 2005). Using a CMB thermal conductivity of 5.6 W/mK, the heat flux is

between 5.1 and 9.3 TW. This range of values is lower than other recent estimates of heat

flux (Ohta et al., 2017; Hsieh et al., 2018). Our work suggests that the inner core is older
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than 1.5 Ga, which implies that preferential crystallization of an iron-rich solid inner core

has played a significant role in compositional convection of the outer core. Compositional

convection is more efficient than pure thermal convection in providing power to the geody-

namo. This work supports a view of a long term contribution of inner core growth to the

maintenance of Earths intrinsic magnetic field.

In this dissertation, I have presented new measurements of lattice thermal conductivity

across pressure-induced phase transitions. The method was developed using ionic salts and

NaCl thermal conductivity was measured across the B1/B2 transition for the first time. This

method could be applied to other materials, including those with engineering applications to

thermal management, such as rare-earth oxide insulators. Measurements of thermal conduc-

tivity from the high spin to mixed spin state of ferropericlase show a significant reduction

across the spin transition. This result has now been reproduced by two other labs, using

different, time-resolved techniques (Ohta et al., 2017; Hsieh et al., 2018). The reduction

of thermal conductivity with pressure is an anomalous and interesting result, and is pre-

dicted by a simple model for the bulk sound speed of the material. Ferropericlase likely

has only a minor impact on the depth profile of thermal conductivity through the Earth's

mantle. The CMB total thermal conductivity, likewise, is relatively insensitive to anomalous

behavior of ferropericlase due to the dominant contribution of brigmanite. New results pub-

lished recently on the compressional wave speed of bridgmanite shows a significant reduction

across the spin transition (Fu et al., 2018). This anomalous result could significantly affect

transport properties, and further experiments on Fe-bearing bridgmanite, across the spin

transition, are necessary.

Experimental results for the thermal conductivity of the lower mantle show increasingly

good agreement on the pressure dependence of iron-bearing bridgmanite and ferropericlase.
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The significant reduction across the spin transition, a major perturbation to ferropericlase

thermal conductivity, does not alter the general conclusion that thermal conductivity ap-

proximately doubles from the top of the lower mantle to the CMB region. The largest

discrepancies in the value of CMB thermal conductivity are due to uncertainty in the tem-

perature dependence and radiative contribution to the total conductivity. Future work, pos-

sibly combining experiments with ab initio calculations, will be required to measure thermal

conductivity at the combined pressure and temperature conditions of the lowermost mantle.
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Figure 6.1: Phase diagram of the high spin state fraction of ferropericlase by ab initio sim-

ulation is reproduced here (Holmström and Stixrude, 2015) with pressure and temperature

conditions of measurements of thermal conductivity, including this work.
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Figure 6.2: The fraction of high spin versus depth along a geothermal gradient (Wolf et al.,

2015) using the calculated phase diagram of (Holmström and Stixrude, 2015), shown in Fig.

6.1
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Figure 6.3: The lattice thermal conductivity of high spin ferropericlase, throughout the

entire lower mantle is shown in the solid green line. The calculated mixed spin thermal

conductivity profile, with a broad reduction though the lower mantle, as described in the

text.
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Figure 6.4: The blackbody intensity derivative with respect to temperature is plotted against

wavelength for a series of temperatures between 1500 K and 4500 K. The wavelength range

is over existing high pressure absorption coefficient data.
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Figure 6.5: The measured absorption coefficient for (Mg1−xFexO), with x = 0.25 from

(Goncharov et al., 2006) is reproduced between 26 GPa and 74 GPa, with interpolation

between each measurement along evenly spaced pressure steps.
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Figure 6.6: Radiative thermal conductivity of ferropericlase, (Mg1−xFexO), with x = 0.25,

and x = 0.15, calculated from the absorption data (Goncharov et al., 2006, 2010), along a

mantle geotherm (Wolf et al., 2015).
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Figure 6.7: Combined lattice and radiative thermal conductivity along a geothermal profile

as a function of depth in the mantle is shown for Fe-bearing bridgmanite, ferropericlase, and

their volumetric average, with 80% bridgmanite and 20% ferropericlase.
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