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Cyclo[18]carbon including Zero-Point Motion: Ground
State, First Singlet and Triplet Excitations, and Hole
Transfer†

Konstantinos Lambropoulos,∗a Antonios M. Alvertis,b,c, Andreas Morphisa and Constantinos
Simseridesa

Recent synthesis of cyclo[18]carbon has spurred increasing interest in carbon rings. We focus on a
comparative inspection of ground and excited states, as well as of hole transfer properties of cumulenic
and polyynic cyclo[18]carbon via Density Functional Theory (DFT), time-dependent DFT (TD-DFT)
and real-time time-dependent DFT (RT-TDDFT). Zero-point vibrations are also accounted for, using
a Monte Carlo sampling technique and a less exact, yet mode-resolved, quadratic approximation.
The inclusion of zero-point vibrations leads to a red-shift on the HOMO-LUMO gap and the first
singlet and triplet excitation energies of both conformations, correcting the values of the ‘static’
configurations by 9% to 24%. Next, we oxidize the molecule, creating a hole at one carbon atom.
Hole transfer along polyynic cyclo[18]carbon is decreased in magnitude compared to its cumulenic
counterpart and lacks the symmetric features the latter displays. Contributions by each mode to
energy changes and hole transfer between diametrically opposed atoms vary, with specific bond-
stretching modes being dominant.

1 Introduction
More than half a century since the first report on the possi-
bility to stabilize specific carbon rings with n = 4q + 2 (q ≥ 2)
atoms1, and 30 years after the first evidence for the generation
of cyclo[18]carbon in gas phase2, its synthesis, stabilization, and
characterization was achieved in 20193, adding it to the fam-
ily of experimentally relevant carbon allotropes. This develop-
ment has drawn significant scientific attention to the study of
cyclo[18]carbon. Its electronic structure4–8, mechanical proper-
ties9, intermolecular interactions10,11, reaction mechanisms12,
doped structures13,14 and analogues15,16 are currently subjects
of extensive research, aiming to understand its characteristics
and potential applications. Our goal is to contribute to these ef-
forts, by performing a comparative study on the –experimentally
observed– polyynic conformation of cyclo[18]carbon and its more
symmetric –albeit elusive, based on current knowledge– cumu-
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lenic counterpart, including zero-point motion.

In this work, we focus on the effect of zero-point vibrations on
the ground state (using Density Functional Theory, DFT), first sin-
glet and triplet excitation energies (using time-dependent DFT,
TDDFT), and hole transfer properties (using real-time TDDFT,
RT-TDDFT) of cumulenic and polyynic cyclo[18]carbon. Vibra-
tions are taken into account using two methods. The first one is
a Monte Carlo sampling technique. Some of the first descriptions
of such a formalism can be found in the early works by Williams
and Lax17,18, who showed that one can make a semi-classical ap-
proximation by assuming vertical transitions between electronic
states to accurately sample vibrational averages of the dielectric
function of a system. Within our treatment, zero-point vibrations
are taken into account using the Bose-Einstein distribution. This
goes beyond the introduction of a thermal broadening or classi-
cal Molecular Dynamics simulations, which can be employed to
get a classical approximation of the density of the initial vibra-
tional states19. The second one is a less exact, yet mode-resolved,
method, called below the quadratic method. This approach has
been successfully applied recently to calculate the exciton ener-
gies of solid state organic semiconductors20, and the Thiel21 set
of molecules plus anthracene, tetracene and pentacene22, lead-
ing to improved agreement with experiment. Also, some of us
have recently employed RT-TDDFT to study hole transfer in linear
cumulenic and polyynic chains23,24.

The rest of the paper is organized as follows: In Section 2,
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we describe how we employ DFT, TDDFT and RT-TDDFT to study
cumulenic and polyynic cyclo[18]carbon as well as and the meth-
ods used to account for zero-point motion. In Section 3, we
present our results. Specifically, we discuss the ground states of
the frozen, ‘static’, cumulenic and polyynic conformations as well
as the effect of zero-point vibrations on the HOMO-LUMO gaps,
first singlet and triplet excitation energies, and hole transfer along
them. Finally, in Section 4 we state our conclusions. Additional
figures and a video of RT-TDDFT simulations for hole transfer can
be found in the Supporting Information.

2 Theory

2.1 DFT, TDDFT, RT-TDDFT

DFT25,26 is among the most well-established and widely-used
methods to investigate the ground state properties of many-body
systems, e.g., molecules or solids. The ground state of the sys-
tem is obtained by the self-consistent solution of the Kohn-Sham
equations, which represent an assumed system of non-interacting
electrons that produces the same density as the real system of
interacting electrons. Two decades after its establishment, DFT
was extended27 to time dependent systems (TDDFT). Today,
TDDFT is mainly applied to obtain the energies of excited states
of molecules. The time-dependent Kohn-Sham (TDKS) equations
with an effective potential energy vKS(⃗r, t), uniquely described by
the time-dependent charge density, ρ(r, t), are, in atomic units,

i
∂

∂ t
Ψ j (⃗r, t) =

[
−1

2
∇

2 + vKS(⃗r, t)
]

Ψ j (⃗r, t), (1)

where
vKS(⃗r, t) = vext(⃗r, t)+ vH(⃗r, t)+ vxc[ρ](⃗r, t). (2)

vext(⃗r, t) includes the external fields and nuclear potentials,
vH(⃗r, t) is the Hartree potential, and vxc[ρ](⃗r, t) includes the ex-
change and correlation effects. The total charge density of the
system is

ρ (⃗r, t) =
Nocc

∑
j=1

∣∣Ψ j (⃗r, t)
∣∣2, (3)

i.e., the sum of the density of all occupied orbitals j =

1,2, . . . ,Nocc. Within TDDFT, the system of equations (1) is com-
monly solved using the linear response method, which is not ac-
tually a time-resolved method; instead, it solves TDKS equations
in the frequency domain to obtain the excitation energies of a
system subject to a small perturbation. In contrast, RT-TDDFT28

is based on a direct numerical integration of Eq (1). The TDKS
equations are solved and the electron density is obtained at each
time step. The density is then used to calculate the Hamiltonian
in the next cycle of the self-consistent process. Our DFT, TDDFT,
and RT-TDDFT calculations were performed using NWChem29.

For our RT-TDDFT simulations of hole transfer, we initially per-
formed a ground-state DFT calculation on the neutral molecule,
found the charge at each atom via Löwdin population analy-
sis30, and then created the initial state with Constrained Density
Functional Theory (CDFT), putting everywhere the previously ob-
tained charges, apart from atom 1 [see Fig. 1(a) below], which
was oxidized: Its charge was increased by +1, i.e., a hole was

created. The charge constraints were obtained with Löwdin pop-
ulation analysis30, which was also used in the subsequent RT-
TDDFT simulation. Löwdin population analysis was integrated
into the RT-TDDFT module of NWChem for the calculation of
each fragment’s charge at each time step. It is much less basis-
set dependent and does not suffer from the ultrafast charge oscil-
lations that Mulliken analysis (the default scheme in NWChem’s
RT-TDDFT implementation) artificially introduces in charge trans-
fer simulations, thus giving a clearer picture of charge transfer. In
a Gaussian basis set, it is most natural to use the single parti-
cle reduced density matrix, whose time evolution is governed by
the von Neumann equation. The Magnus propagator is used in
NWChem’s RT-TDDFT implementation, which is both stable and
conserves the density matrix idempotency28. At the end of each
time step, the charge is calculated at each atom, along with the
dipole moment. We used a time step of 0.5 a.u..

Our DFT, TDDFT, and RT-TDDFT calculations were carried
out at the same level of theory. Specifically, we used the cc-
pVTZ31 basis-set, i.e., the smallest one for which vibrational anal-
ysis showed no imaginary frequencies for both cumulenic and
polyynic cyclo[18]carbon. Basis sets 6-31G⋆ 32,33 and cc-pVDZ31

displayed two and one imaginary frequencies, respectively. This
is a straightforward way to confirm the energy minimum, albeit,
in principle, optimization of a true minimum can be achieved
with any given basis set, e.g. by elongating the atomic posi-
tions along the coordinates of negative frequencies. Regarding
the exchange-correlation functional, it has been established that
the weight of the exact (Hartree-Fock, HF) exchange in the DFT
functional determines the minimum energy structure predicted
for cyclo[18]carbon: specifically, functionals with less amount of
HF exchange lead to the cumulenic conformation, while larger
amounts of HF exchange induce bond length alternation (BLA),
thus leading to the polyynic conformation4,8,34–36. Thus, in or-
der to be as consistent as possible in our comparison between the
two structures, we recruited the popular B3LYP37–40 functional,
as follows: the B3LYP exchange-correlation energy is defined by a
combination of HF, Slater (S), and Becke 198841 (B88) exchange
terms, as well as Lee-Yang-Parr38 (LYP) and Vosko-Wilk-Nusair39

(VWN) correlation terms, using three parameters. Namely,

Exc = α0EHF
x +(1−α0)ESlater

x +αxEB88
x +αcELYP

c +(1−αc)EVWN
c ,

(4)
where ET

x(c) is the exchange (correlation) term T, and α0 = 0.2,
αx = 0.72, αc = 0.81. Using these values of the parameters, i.e.,
the original B3LYP with 20% exact exchange, we obtained a cu-
mulenic structure, while, setting α0 = 0.6, i.e., 60% exact ex-
change, and leaving the rest parameters unchanged, we were led
to a polyynic structure.

2.2 Inclusion of Vibrations

The contributions of the molecular vibrations of a system to a
quantum mechanical observable at temperature T , Ô(T ), can be
expressed in terms of the standard quantum mechanical expecta-
tion value

O(T ) =
1
Z ∑

s
⟨χs(⃗u)|Ô(⃗u)|χs(⃗u)⟩e−

Es
kBT , (5)
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where u⃗ is the nuclear displacement vector, |χs(⃗u)⟩ is a vibrational
eigenstate on the ground state potential energy surface with en-

ergy Es, Z = ∑s e−
Es

kBT is the partition function, and Ô(⃗u) is the
observable of interest once the system is displaced by u⃗. Within
the harmonic approximation for the ground state potential, we
can substitute |χs(⃗u)⟩ with the wavefunctions of the quantum har-
monic oscillator, thus obtaining42

O(T ) =
∫

du⃗|Φ(⃗u,T )|2O(⃗u). (6)

|Φ(⃗u,T )|2 is the harmonic density at temperature T , given by the
expression

|Φ(⃗u,T )|2 = ∏
ν

exp
(
− u2

ν

2σ 2
ν (T )

)
√

2πσν (T )
, (7)

where

σ
2
ν (T ) =

1
2ων

coth
(

ων

2kBT

)
. (8)

The index ν runs over the vibrational modes of the system, and
ων is the frequency of mode ν . Atomic units and mass-weighted
coordinates have been used.

It is worth noting that the harmonic approximation to the
molecular vibrations which was made above can lead to errors,
particularly when studying molecular properties at room tem-
perature, where highly anharmonic low-frequency modes can be
strongly activated. Here, we focus on the case of 0 K, hence vi-
brations are only active with their zero-point energy h̄ω

2 , so it is
the harmonic high-frequency modes that dominate, and this is not
generally an issue. The anharmonic effects that arise at room tem-
perature can be captured by approaches such as classical molec-
ular dynamics, however these would entirely miss the impact of
nuclear quantum fluctuations, which is significant and even dom-
inant for smaller molecules20,22. Ab initio molecular dynamics
at finite temperatures have been implemented attempting to de-
scribe excited state properties43, optical spectroscopy44 and ex-
cited state dynamics45, while, path integral molecular dynamics
have been implemented attempting to describe nuclear quantum
and anharmonic effects46,47. Finally, while our technique focuses
on describing the effect of equilibrium nuclear configurations at a
chosen temperature, excited state spectroscopy simulations have
been implemented to provide information on the effect of vibra-
tions that have been displaced due to electronic excitation48, or
even on peculiarly displaced vibrational configurations that can
lead to non-adiabatic transitions49,50.

The integral of Eq. (6) can by approximated using the Monte
Carlo method by generating a sample of configurations u⃗, accord-
ing to the harmonic distribution at a specific temperature T , so
that the expectation value of the observable O(T ) can be com-
puted as a simple average of the sample values. This method
relies on no adjustable parameters, apart from the choice of DFT
functional and basis set, which are fixed throughout the entire
series of calculations. Alternative methods have been proposed
in the past, such as the nuclear ensemble approach used within
the quantum chemistry community51,52 or methods that gener-
ate initial nuclear configurations from a Boltzmann distribution
to sample vibrational averages of observables53,54, although the

latter would not capture the effects of zero-point motion.

In practice, in order to sample the integral of Eq. (6), we gener-
ate 100 displaced configurations for both cumulenic and polyynic
cyclo[18]carbon at T = 0 K and obtain the renormalized HOMO-
LUMO gaps (using DFT), first singlet (S1) and first triplet (T1) ex-
citation energies (using TDDFT within the Tamm-Dancoff approx-
imation55), as well as quantities related to hole transfer (using
RT-TDDFT), versus those of their ‘static’, frozen, conformations.

Eq. (6) can be simplified by expanding the observable O(⃗u) in
the vibrational coordinates u⃗ as

O(⃗u) = O(⃗0)+∑
ν

∂O(⃗0)
∂uν

uν +
1
2 ∑

ν

∑
ν ′

∂ 2O(⃗0)
∂uν ∂uν ′

uν uν ′ + . . . , (9)

yielding

O(T )≈ Ostatic +∑
ν

1
2ων

∂ 2O(⃗u)
∂u2

ν

[
1
2
+nBE(ων ,T )

]
+O(u4

ν ). (10)

Ostatic = O(⃗0) is the value of the observable in the static geometry
and nBE(ων ,T ) is the Bose-Einstein distribution of the vibrational
quanta. The odd terms vanish, since |Φ(⃗u,T )|2 is a product of
even, Gaussian, functions. Hence, this quadratic approximation
is fourth-order accurate in u⃗. We have used Eq. (10) in our calcu-
lations, estimating the second derivative involved with the finite
difference formula

∂ 2O(⃗u)
∂u2

ν

=
O(δuν )+O(−δuν )−2Ostatic

δu2
ν

. (11)

Hence, apart from the static value, two values of the observable
are needed for each mode at displacements ±δuν , resulting in
a total of 2(3N − 6) + 1 calculations, where N is the number of
atoms. Although, in principle, δuν is an infinitesimal quantity,
in practice, a finite value needs to be chosen to avoid numerical
divergence issues. In our case of cyclo[18]carbon, the computa-
tional cost of the quadratic approximation is comparable to the
Monte Carlo method described above (a comparison of the two
methods in terms of computational cost can be found in Ref.22).
Although the quadratic method is less accurate than the Monte
Carlo method, since it involves an expansion of the observable
and a finite-difference estimation of its second derivative, it has
a significant advantage: in Eq. (10), the correction to the ob-
servable is expressed as a sum over the vibrational modes, the
contribution of each of which can be isolated, allowing for addi-
tional microscopic insights. Moreover, it has been shown for the
specific case of computing excited state energies at a temperature
T , the quadratic approximation may be written in the equivalent
form22,56

E(T ) = Estatic −
1
4 ∑

ν

ω2
ν −ω2

Eν

ων

[
1
2
+nB(ων ,T )]+O(u4

ν ), (12)

where ωEν denotes the frequency of vibrational mode ν on the ex-
cited state. In organic molecules, the excited state surface gener-
ally has a smaller curvature than the ground state one, due to con-
tributions from anti-bonding molecular orbitals, giving ων > ωEν

in most cases. This in turn means that molecular vibrations will
lead to a red-shift of excited state energies and HOMO-LUMO gaps
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in these systems, apart from perhaps limited special cases. As
seen in our Results section, this intuitive picture is validated by
our first-principles Monte Carlo sampling in every case.

3 Results

3.1 Ground States of Static Conformations

(a)

(b)

-1.942 eV

-1.957 eV

-8.320 eV

-8.428 eV

-3.478 eV

-3.481 eV

-6.585 eV

-6.679 eV

Fig. 1 Ground-state details of cyclo[18]carbon. (a) Structure and charge
density for the cumulenic (left) and polyynic (right) case, optimized using
the functional of Eq. (4) with α0 = 0.2 and α0 = 0.6, respectively, and the
cc-pVTZ basis-set. The colors in the polyynic case correspond to regions
where its density is larger (green) or smaller (purple) than the cumulenic
one. (b) Shape and energy of the frontier orbitals from HOMO−1 to
LUMO+1.

Starting from a carbon ring of 18 atoms in a cumulenic con-
formation with bond length 1.282 Å as an initial guess, we opti-
mized the geometry using the functional of Eq. (4), for α0 = 0.2
(the default B3LYP value) and α0 = 0.6, and the cc-pVTZ ba-
sis set, without symmetry constraints, arriving at cumulenic and
polyynic conformations, respectively. We have also checked (for
α0 = 0.2, which is possible within NWChem) that the inclusion
of D3 dispersion corrections57 did not produce any significant
changes to the properties studied in this work. Our results are
summarized in Fig. 1. The cumulenic structure (α0 = 0.2) be-
longs to the D18h point group with a bond length of 1.276 Å
(BLA= 0 Å), while the polyynic structure belongs to the D9h

point group with alternating bond lengths of 1.203 Å and 1.350
Å (BLA= 0.147 Å). The BLA of the latter conformation is in very

good agreement with the reported values for higher levels of
theory (0.1447 Å within CCSD/cc-pVDZ58 and 0.147 Å within
DLPNO-CCSD(T)/Def2-TZVP8). The ground-state density of the
cumulenic configuration has a toroidal shape; on the contrary,
the polyynic case exhibits density maxima (minima) in the mid-
dle of the distance between short (long) bonds. In Fig. 1(a),
the green (purple)-colored regions of the polyynic density show
where it is larger (smaller) than the cumulenic one. Vibrational
analysis confirming the minimum of energy in each case is pro-
vided in Fig. S1. The frontier orbitals of both structures, namely
HOMO−1, HOMO, LUMO, LUMO+1, all of which have a π char-
acter, are presented in Fig. 1(b), together with their energies.
These orbitals are doubly degenerate, have 8, 8, 10, and 10 nodes,
and are out-of-plane, in-plane, out-of-plane, and in-plane, respec-
tively. In the cumulenic case (left column), for HOMO−1 (−6.679
eV) and HOMO (−6.585 eV), a C2 rotation leaves the orbitals
unchanged, while an additional phase-flip is needed for LUMO
(−3.481 eV) and LUMO+1 (−3.478 eV). In the polyynic case (right
column), for each of the HOMO−1 (−8.428 eV), HOMO (−8.320
eV), LUMO (−1.957 eV), LUMO+1 (−1.942 eV) orbitals, there is
one reflection plane plus a phase-flip or just one reflection plane
that leaves the orbitals unchanged. We note that differences in
the symmetry of the frontier orbitals have been described as con-
sequence of spontaneous symmetry breaking, driven by the sec-
ond order Jahn-Teller effect, which leads to the stabilization of the
polyynic structure7. Additional orbital energies for both cases are
provided in Fig. S2.

3.2 HOMO-LUMO gaps as well as first singlet and triplet ex-
citation energies, including zero-point vibrations

In Fig. 2(a)-(c) we present the HOMO-LUMO gaps, obtained
via DFT, as well as the first singlet (S1) and triplet (T1) excita-
tion energies, obtained via TDDFT, of cumulenic and polyynic
cyclo[18]carbon, comparing their static values with the renor-
malized ones due to zero-point vibrations, using the Monte Carlo
method. Further results and details on the sample-convergence
of these values can be found in Figs. S3–S4. As expected, the
cumulenic conformation has a smaller HOMO-LUMO gap than
the polyynic one. Additionally, in both cases, the lowest excita-
tion energy corresponds to a triplet state, while for both T1 and
S1 the excitation energy is lower in the cumulenic conformation.
Furthermore, it is clear that the inclusion of zero-point motion
leads to a reduction of the static values in all cases, to an extent
ranging from ≈ 9% to ≈ 24% of the static values. This reduction
(red-shift) of excitation energies can be explained through the
difference between the curvatures of the potential energy surface
of the ground and excited states (see Eq. (12) and the relevant
discussion), and is in accordance with the recent attribution of
the red-shift in the absorption maxima of molecules compared to
their, ‘static’, vertical excitation energies to contributions from the
vibrational modes, using the nuclear ensemble method combined
with CCSD calculations52. Of course, an accurate and complete
description of absorption spectra in their entirety would require
the inclusion of Franck-Condon progression59.

The contribution of each vibrational mode to the renormal-
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Fig. 2 (a) HOMO-LUMO gap, (b) T1 excitation energy, and (c) S1 excitation energy of static cumulenic and polyynic cyclo[18]carbon, compared
with their corresponding renormalized values due to zero-point motion, using the Monte Carlo method. The values for each Monte Carlo sample are
also shown. (d) Contribution of each vibrational mode to the energy correction of the HOMO-LUMO gap (circles), T1 excitation (squares), and S1
excitation (triangles) of cumulenic cyclo[18]carbon due to vibrations within the quadratic method. The displacement patterns of the modes with major
contribution to the overall renormalization values are also shown. Dotted lines are just guides to the eye. (e) Same as (d), for polyynic cyclo[18]carbon.

Table 1 Comparison of the ‘static’ and renormalized (due to zero-point
motion using the quadratic and Monte Carlo methods) values, of the
HOMO-LUMO gaps as well as of the T1 and S1 excitation energies of
cumulenic and polyynic cyclo[18]carbon. All values are given in eV. Stan-
dard errors are shown in parentheses.

Cumulenic LUMO-HOMO T1 S1
Static 3.104 1.742 2.215
Quadratic 2.819 1.678 2.101
Monte Carlo 2.728(18) 1.551(15) 1.911(17)
Polyynic LUMO-HOMO T1 S1
Static 6.363 2.533 2.930
Quadratic 5.942 1.671 2.706
Monte Carlo 5.805(37) 1.927(25) 2.588(29)

ization of the ‘static’ values, obtained by the quadratic method,
is shown in Fig. 2(d)-(e). This method, albeit less exact due
to its approximate character and the finite difference approach
undertaken (a displacement step of δuν = 4σν was needed to
start reaching convergence), follows the trend of the Monte Carlo
method in terms of differences from the static values (see Ta-
ble 1, where we present a comparison between the energies of
the HOMO-LUMO gap, T1, and S1 for the static cases versus the
ones obtained via the quadratic and Monte Carlo methods). In
both conformations, there is one (doubly degenerate) mode with
a major contribution towards the overall reduction of the ‘static’
values for the HOMO-LUMO gaps, and T1 and S1 excitations (in

the T1 excitation of the polyynic case, there are also several low-
frequency modes that contribute rather significantly). This is a
bond stretching mode, at ≈ 2004 cm−1 for the cumulenic confor-
mation and at ≈ 2317 cm−1 for the polyynic one. Additionally,
in all calculations for the cumulenic case, there is another bond-
stretching mode, at ≈ 638 cm−1, which contributes to the other
end, i.e., towards an increase of the static value. This can be ex-
plained through the displacement pattern of this specific mode,
that, at each snapshot, leads to a D9h–symmetric, polyynic con-
figuration, for which all values in Table 1 are larger compared
to the respective ones for the cumulenic configuration. In other
words, this mode tends to shift the cumulenic HOMO-LUMO gap
and S1 and T1 energies towards the polyynic ones. Using HF-rich
functionals (BMK, M06-2X, BHandHLYP and wB97XD, which sta-
bilize the polyynic conformation), a mode of the cumulenic con-
formation with the same displacement pattern has been found to
correspond to an imaginary frequency, hinting that the cumulenic
conformation is a transition state between two polyynic confor-
mations with inverted bond lengths4. We have checked that the
displacement pattern of this mode [shown in Fig. 2(d)] is the
same as the one discussed in Ref.4 by performing calculations at
the M06-2X/6-311++G** level (as in Ref.4) using the Nudged
Elastic Band method60–63 to find the minumum energy path be-
tween two polyynic conformations with inverted bond lengths,
and a subsequent saddle point optimization and vibrational anal-
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Fig. 3 Hole transfer in cumulenic (first row) and polyynic (second row) cyclo[18]carbon. (Left column) Time evolution of the dipole moment of the
static configuration. (Middle column) FFT spectra of the dipole moment of the static configuration and averaged FFT spectra of the Monte Carlo
sample (with standard errors, not visible in this scale), accounting for molecular vibrations. (Right column) Mean excess charge distribution at each
atom for the static configuration versus the averaged mean excess charge distribution of the Monte Carlo sample (with standard errors), accounting
for molecular vibrations. Dotted lines are guide for the eye.

ysis of the resulting intermediate cumulenic structure. Hence,
although within our treatment the cumulenic configuration is a
minimum energy structure as is the polyynic one, the quadratic
method catches the tendency of the former to shift towards the
latter.
3.3 Oxidation and subsequent hole transfer

For our RT-TDDFT simulations for hole transfer, the cy-
clo[18]carbon molecules are placed in the xy-plane, so that two
diametrically opposed C atoms [atoms 1 and 10, cf. Fig 1(a)] lie
on the y axis. We oxidize atom 1, i.e., we create a hole on atom
1, and examine its time-evolution. For the ‘static’ configurations,
the simulation was carried out for ≈ 72.6 fs (i.e., 3000 a.u.) and
the time-convergence of the time-averaged excess charge distri-
bution was checked to obtain the maximum simulation time for
the Monte Carlo sample (in the cumulenic case we found that 400
a.u. were adequate, while in the polyynic case 3000 a.u. were
needed; cf. Fig. S5). The main results of our RT-TDDFT simula-
tions for hole transfer are summarized in Fig. 3 and in Table 2.

Table 2 Comparison of ‘static’ and renormalized (due to zero-point mo-
tion using the Monte Carlo method) values of the maximum value of
excess charge, p, at the atom diametrically opposed to the one the hole
was initially placed, and the pure mean transfer rate, k. Standard errors
are shown in parentheses.

p (e) k (PHz)
cumulenic polyynic cumulenic polyynic

Static 0.2753 0.1516 0.2546 0.2212
Monte Carlo 0.2142(34) 0.1320(27) 0.2300(86) 0.2010(77)

Let us first comment on Fig. 3. As evident by comparing the
panels in the left column, hole transfer is enhanced in the cumu-
lenic case, while the waveforms of the time evolution of dipole
moment are distinct between the two conformations. In the cu-
mulenic case (first row of Fig. 3), deviations of the dipole moment
in the static configuration occur solely on the y-axis, in the form

of a fast oscillation (≈ 1.35 PHz, cf., the FFT spectrum in the top
middle panel), since contributions on the x-axis cancel each other
out due to the D18h symmetry of the molecule. The inclusion
of molecular vibrations has only a slight effect on the frequency
content of the y-dipole moment oscillations; however, a weaker
x-component with approximately the same frequency content is
induced, due to distortions. Additionally, the time-averaged dis-
tribution of excess charge has a symmetric shape, with diametri-
cally opposed atoms having the same amount of average excess
charge. Moreover, atoms 1 (the atom at which the hole was ini-
tially placed) and 10 (its diametrically opposed one) possess the
largest amount of excess charge, since the charge density initially
located on atom 1 splits into two equivalent paths along the two
semicircles defined by the y axis which interfere onto atom 10.
Although the inclusion of molecular vibrations tends to shift the
mean excess charge values towards 1/18 (i.e., towards equidis-
tribution, cf., the horizontal line in the right column), the shape
of the overall distribution remains the same. In the polyynic case
(second row of Fig. 3), the situation is rather different. Deviations
of the dipole moment in the static configuration occur on both
the x− and y-axes. The magnitude of the deviations is smaller
and their frequency content is richer than in the cumulenic case,
having one dominant peak in the THz regime (at ≈ 227 THz and
240 THz, for the x- and y- axis, respectively), and a secondary
frequency band in the range ≈ 1.2 - 2 PHz (cf., the FFT spectra in
the top middle panel). The inclusion of molecular vibrations has
a significant effect on the frequency content of the x- and y- dipole
moment oscillations; the dominant peak of the static case is re-
duced in intensity and widened into a sub-PHz frequency band,
the FFT amplitude of which is now comparable to the one of the
band at ≈ 1.2 - 2 PHz. Furthermore, in the static polyynic case,
the time-averaged distribution of excess charge does not display
any symmetry. Atom 10 gains, on average, a significant amount
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of excess charge. It is clear that the path of the semicircle that
starts with a short bond (i.e., from atom 1 to atom 2) is favored
over the one that starts with a long bond (from atom 1 to atom
18). The inclusion of molecular vibrations significantly reduces
the amount of excess charge at atom 10, while, although the
aforementioned path starting with the short bond is still generally
favored, the hole tends to be mostly distributed among atoms that
lie closer to atom 1. We also note that the splitting of the charge
into two equivalent paths (dominance of the path starting with
short bonds) in the cumulenic (polyynic) case reported here has
also been observed in the context of charge transport calculations
on cyclo[18]carbon attached between atomic-carbon chain elec-
trodes64. The above mentioned features are also demonstrated in
the Supplementary Video. There we visualize the time evolution
of the excess charge density for the first 92.5 au (2.23 fs) of our
simulations. We compare both the static cumulenic and polyynic
cases with relevant representative Monte Carlo configurations.

We focus now on charge transfer at the atom diametrically op-
posed to the one that the hole was initially placed (i.e., charge
transfer from atom 1 to atom 10) by obtaining the maximum value
of excess charge at atom 10, p, and the pure mean transfer rate,
which is defined as k = ⟨C10(t)⟩

t10mean
, where t10mean is the time it takes for

the excess charge at atom 10 to reach its mean value, ⟨C10(t)⟩, for
the first time. Our results are summarized in Table 2 (details on
the sample-convergence of these values can be found in Fig S6).

Table 2 reaffirms that hole transfer between diametrically op-
posed atoms is enhanced in the cumulenic case, in terms of both
p and k, while the inclusion of vibrations leads to a reduction of
their values. The reduction of p is more significant in the cumu-
lenic case, with its renormalized value due to vibrations being
≈ 22.2% smaller than the static one, compared to an ≈ 12.9% de-
crease in the polyynic case. On the contrary, k displays a less
significant decrease, of ≈ 9.7% and 9.1%, respectively. Finally, us-
ing the quadratic method, we checked whether the bond stretch-
ing modes that have major contributions to the zero-point cor-
rections in the HOMO-LUMO gaps as well as the T1 and S1 ener-
gies (see above) remain significant for hole transfer in terms of
p and k. To this end, for the cumulenic (polyynic) case, we fo-
cused on the mode at ≈ 2004 cm−1 (≈ 2317 cm−1) and the mode
at ≈ 1350 cm−1 (≈ 1280 cm−1) which display major and minor
contributions on the aforementioned properties, respectively [cf.,
Fig. 2(d)-(e)]. Indeed, the contributions of the former modes are
much more significant than of the latter, contributing to the re-
duction of the absolute ‘static’ values from three times to three
orders of magnitude more than the latter modes (cf. Fig. S7).

4 Conclusion
In summary, we comparatively studied the ground state, S1

and T1 excitations, and hole transfer properties of cumulenic and
polyynic cyclo[18]carbon, focusing on the significant changes in-
duced by zero-point motion. The Monte Carlo sampling technique
accounting for zero-point corrections showed that the HOMO-
LUMO gap and excitation energies are reduced in both cases. The
contribution of vibrations amounts to at least 9% of the frozen,
‘static’ energy values, making them significant for more accu-
rate predictions. The less exact, quadratic approximation, reveals

that there are specific bond-stretching modes with very significant
contributions towards changes in energy. While the zero-point
renormalization of the HOMO-LUMO gap and excited state ener-
gies is inherent to a material, it would still be possible to probe
it experimentally through the substitution of the carbon atoms of
the studied system by heavier isotopes (e.g. Carbon-13, which is
also stable). This would result to a reduction of the zero-point
energy, h̄ω

2 , of the vibrational modes, potentially leading to a sub-
stantial blue-shift of the excited state energies, something which
has also been proposed in the case of metallic hydrogen65. Hole
transfer in the cumulenic case is faster and displays enhanced and
highly symmetric features which are preserved by the inclusion
of vibrations, while, in the polyynic case, the semicircular path
starting with the short bond is favored. Our treatment can be ex-
tended to study several additional properties of cyclo[18]carbon
and other carbon rings and, of course, can also be recruited to the
study of other relevant systems.
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