
UC San Diego
Technical Reports

Title
Fulcrum -- An Open-Implementation Approach to Context-Aware Publish / Subscribe

Permalink
https://escholarship.org/uc/item/7sb3s217

Authors
Boyer, Robert T
Griswold, William G

Publication Date
2004-06-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sb3s217
https://escholarship.org
http://www.cdlib.org/

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 1

Fulcrum – An Open-Implementation Approach to
Context-Aware Publish / Subscribe

Robert T. Boyer William Griswold
University of California, San Diego

La Jolla, CA 92039-0114
+011.858.442.1322

{ rboyer, wgg }@cs.ucsd.edu

ABSTRACT
Content-based publish / subscribe (CBPS) systems are a natural
substrate for context-aware applications because they provide the
right separation of concerns, efficient event distribution, extensi-
bility, and scalability. However, the separation of concerns af-
forded by CBPS middleware precludes publishers from collabo-
rating with each other to efficiently detect context-aware condi-
tions for publication as events. We overcome this problem with an
open implementation approach, which enables subscribers to at-
tach a domain-specific implementation strategy to their context-
aware subscriptions. Strategies are supported by first-class active
subscriptions that can deploy lower-order dynamic publisher /
publisher cross-subscriptions where events enter the CBPS sys-
tem. By exchanging data on an as-needed basis, event traffic can
be dramatically reduced. Our algorithm for detecting the prox-
imity of mobile buddies reduces event traffic from O(|events|) to
O(|movement|) worst case, O(lg2|movement|) expected. Ex-
periments reveal an 82% reduction with current positioning tech-
nologies.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures – dis-

tributed processing, separation of concerns. D.3.3 [Distributed

Systems]: Publish-subscribe.

General Terms
Performance, Design, Languages.

Keywords
Context-aware computing, content-based publish / subscribe,
distributed event-based systems.

1. INTRODUCTION
Context-aware computing takes data from a highly dynamic envi-
ronment and synthesizes it into information and knowledge for
decision-making. Of particular interest are the relationships be-
tween changing data. Simple examples include: your location
with respect to mine, when my objective is to speak with you in
an impromptu hallway meeting; or stock price with respect to
earnings, i.e., P/E ratio, when the task is to increase retirement
investments. Specific context of interest depends on individual
users and their current tasks and objectives. Tarasewich provides
a useful context-awareness survey [14].

In a sensor network composed of low-powered components de-
ployed in an ecological preserve, we might tag animals of interest
with a battery-powered GPS receiver, CPU, and wireless network-

ing. Scientists wish to monitor, throughout the year, the interac-
tions between various animals. To preserve power, communica-
tions need to be minimized. The scientists are initially interested
to learn when the proximity of certain of animals is less than 10
meters (e.g., (X1-X2)

2 + (Y1-Y2)
2 < 102). As these relationships

are observed, the system must be able to support measurement for
new hypotheses that are generated by the scientists. Also, multi-
ple researchers may observe the same environment with different
goals. For reasons of cost and feasibility, the sensor network’s
resources need to be shared.

Generally, we can anticipate that contextual data will ultimately
derive from “billions of users connected to millions of services
using trillions of devices” [5]. Myriad sensors reporting poten-
tially interesting raw data at high data rates will be as widely dis-
tributed as an equally diverse set of consumers, who may them-
selves be information providers. To effectively support context-
aware computing in this environment requires efficient, extensi-
ble, and scalable data distribution and processing.

Content-based publish / subscribe (CBPS) systems hold the po-
tential for such a solution. In publish / subscribe systems, pub-
lishers publish events and subscribers subscribe to events, with the
CBPS middleware doing event matching and routing. Hence,
publishers and subscribers do not need to know about each other,
enabling new publishers, subscribers, event types, and subscrip-
tions to be freely added to the milieu.

Not only does the middleware provide separation, but also effi-
ciency: it filters out new events against subscriptions at the pub-
lisher’s event broker, exploits overlapping subscriptions, and
employs multicast-like routing of events to subscribers. Efficient
filtering at the publisher’s event broker is achieved by content-
based pattern matching against a publisher’s event in a series of
independent filters, e.g., {(e.x < 10) & (e.y > 30)}. Sequences of
events can be similarly pattern matched [1,2]. Context-aware rela-
tionships like the proximity relationship entail comparing event
attributes to each other. This requires subscribers to subscribe to
raw location and compute the distance themselves, and the
efficiencies of evaluating at the publisher’s event broker are lost.

Recent work enables the aggregation of attributes from multiple
data streams with more complex processing and filtering per-
formed within the network [3,11]. Common aggregations and
transformations can also be shared [3]. It is possible, then, to
evaluate the proximity relationship at the first common event bro-
ker node (1stCN) that connects the publishers with the subscriber.

When publishers are distant from the 1stCN, each intervening
event broker node must process and forward all events, which is
costly. To get the best possible performance requires evaluating

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 2

context-aware relationships at the publisher’s event broker. To do
so efficiently requires knowledge of the modeled relationship as
well as how it will be used. Only the subscriber has this domain
knowledge, and has no way of sharing it with the middleware.

The open implementation software design technique [12,13] was
developed for just such situations. In the open implementation
approach, a module’s interface is designed to allow a client to
assist in the selection of the module’s implementation strategy.
The module’s auxiliary interface may allow a client to describe its
usage patterns, to specify an implementation (e.g., hash table), or
even to provide its own implementation – adhering to well de-
fined interface specifications. This allows the client to tailor the
module's implementation strategy to better suit their needs, while
retaining the advantages of closed implementation modules (i.e.,
the traditional black box).

Following the open implementation paradigm, Fulcrum creates an
efficient substrate for context-aware publish / subscribe (CAPS).
For the example of tracking deer proximity, Fulcrum enables a
reduction in the event traffic from O(|events|) to O(lg2

|movement|) expected, using domain-specific optimizations that
filter events at the publishers’ event brokers (called entry nodes).
Fulcrum provides this facility as a three-part extension to CBPS
while preserving its anonymous, asynchronous, and loosely cou-
pled nature:

1. A subscriber can subscribe directly to a derived relationship,
such as the distance between two entities. A derived relation-
ship has no publisher, per se.

2. The derived relationship is realized through active subscrip-

tion support. An active subscription, like a Solar operator [3],
is a first-class pub/sub Java applet; it can be both a publisher
and subscriber. In particular, an active subscription is respon-
sible for:

a. subscribing to the event data comprising the relationship;
b. instantiating a publisher of the derived relationship.

3. A separate implementation strategy can be attached to the
relationship subscription to exploit the domain’s semantics to
improve efficiency. In particular, it can push the subscription
to the entry nodes and establish a secondary set of subscrip-
tions and publications that permit the relationship to be com-
puted in a distributed, collaborative fashion, thus reducing
event traffic.

Note that the same property can be implemented by different
strategies as appropriate to the context of use. Similarly, the same
implementation strategy can be reused among properties with
similar semantics (e.g., the notion of distance).

The remainder of this paper is organized as follows. Section 2
discusses the state of the art capabilities of CBPS and their appli-
cability to context-aware computing. Section 3 describes our
design of Fulcrum. Using buddy proximity as an example, Sec-
tion 4 details how an implementation strategy is deployed to
achieve efficiencies. Section 5 evaluates the system as built. Sec-
tion 6 discusses the tradeoffs with our approach, and Section 7
concludes.

2. CONTENT-BASED PUB / SUB
In the current state of the practice, as exemplified by Siena [1,2],
CBPS systems are composed of three components. One, a pub-

lisher provides events (messages), each in the form of a tuple
sequence {(name1, type1, value1), (name2, type2, value2),…}. Two,
a subscriber requests events of interest by using subscription fil-
ters of the form {(name1, operator1, value1), (name2, operator2,

value2),...}, where each operator will be a relational operation like
<, =, etc. Three, event brokers mediate between publishers and
subscribers, providing an application-level overlay network for
efficiently matching and routing events, providing independence
of publishers and subscribers.

In particular, publishers advertise their event types with brokers,
and subscribers register their interest in events through their con-
tent subscription filters. Abstractly, the brokers then check every
published event against every filter, passing on those events that
satisfy a filter. Concretely, the brokers set up a “switching fabric”
between publishers and subscribers by pre-matching filters to the
advertised event types (i.e., a publisher’s event type promises to
contain all the required names of a subscriber’s filter).

This switching fabric has two performance benefits for the bro-
kers. One, filters are only applied to events that have a chance of
satisfying the filter. Two, it is possible to avoid redundant filter-
ing for overlapping subscriptions, as well as send only one copy
of each event between brokers when multiple subscribers share
parts of the same pathway from the publisher to an intermediate
broker. Subscription filters are pushed upstream from the sub-
scriber toward the information producer to quickly suppress in-
formation at broker nodes for which no downstream subscriber is
currently interested. This eliminates unnecessary network traffic
and excess computation at internal event brokers and at the end
client. Consequently, the client application is, in effect, being
pushed into the network via the middleware of the CBPS system.

CBPS systems seem ideal for supporting extensible, scalable con-
text-aware systems. The brokered publish/subscribe paradigm
makes publishers and subscribers largely independent from each
other, while providing economies of scale through sharing in the
overlay network. Publishers and subscribers can be readily added,
accommodating new application functionalities, and new event
brokers can be added to improve the efficiency of the network,
thus providing Internet-level scalability [1,2].

2.1 Context-Awareness Requirements
At its core, a context-aware system needs to detect and react to
situations, that is, the moment-to-moment circumstances of the
entities it supports, tracks, or models. This includes awareness of
the changing relationships amongst entities. In exploring the de-
centralization of ActiveCampus into a federation of cooperating
peer servers, our first challenge was efficiently detecting relation-
ships amongst users. In the federated model, each ActiveCampus
user would be logged into a “home” server that is responsible for
reporting (publishing) that user’s context, thus making CBPS a
natural substrate. An example relationship would be when a per-
son moves into the vicinity of a buddy, which should result in
notifying them of their proximity. This might motivate either
person to seek the other out or contact them by instant messaging
[8]. A more general example would be the ability of a user to
detect when a critical mass of friends are gathering at a location.

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 3

The buddy relationship situation is naturally described with a
formula1 like (XR-XW)2 + (YR-YW)2 < D2. However, the core
capabilities of CBPS do not allow for a subscription to compare
event attribute values coming from two different publishers. As a
consequence, the subscriber must issue separate subscriptions for
Robert’s location and William’s location. This results in their
location events being pushed all the way through the network to
the subscriber, which computes their distance itself, likely learn-
ing that the friends are no where near each other. Network cycles
and bandwidth and subscriber cycles are wasted.

To directly and efficiently support the detection and reporting of
relationships, then, a CBPS system must:

1. Enable intra- and inter-event attribute-to-attribute computations
(e.g., to compare X and Y attributes from Robert’s position event
with X and Y attributes from William’s position event).

2. Enable a new event type to be advertised and subsequently
published from within the CBPS middleware. Such an event ei-
ther aggregates attributes from other “sub-events” into a new uni-
fied event or abstractly represents the satisfaction of a relationship
subscription like (XR-XW)2 + (YR-YW)2 < D2) in a form like
“Robert is close to William.”

3. Maintain state information at event brokers to support data
aggregation. In particular, two events contributing to an aggre-
gate event (e.g., William’s new position and Robert’s new posi-
tion) may not arrive at the same time, so an event broker will need
to store events until all the required events are present.

4. Suppress the propagation of sub-events at the publisher’s event
broker if it could not satisfy an aggregate event. Suppressing at a
common node can be wasteful for many broker network configu-
rations. For example, if Robert and William are far apart, and
moving slowly, it would be best if their respective position reports
were not pushed through the broker network.

5. Provide mechanisms to atomically query on, and subscribe for,
an event. Akin to fetch-and-add, such a feature prevents race con-
ditions when the contents of a subscription depend on dynamic
data. For example, in adjusting a “suppression limit” based on an
event’s current attribute value, the value could change between
the time of query and time of subscription, causing the desired
event to not be propagated, thus missing a key state transition.

Of course, in satisfying these requirements we desire that the
transparency and separation of concerns provided by CBPS, such
as the decoupling of producers and consumers, be retained.

2.2 CBPS State of the Art – Related Work
A growing number of CBPS systems are being developed with
extensions on the core set of capabilities described above. Gry-
phon [11] and Solar [3] are exemplary.

Gryphon aims to improve overall system performance of CBPS
with stateful, relational subscriptions where the middleware be-
comes responsible for computing derived state instead of the end
client [11]. Relational subscriptions enable aggregating events
from multiple publishers in the form of a composite event. Such
an event can be filtered based on the attributes of two publishers

1 Subscripts are used here to denote separate events from possibly

different publishers.

{(X1 < 10) and (Y2 > 30)}, thereby suppressing the event at the
1stCN.

Their approach is akin to a database view across multiple tables,
say from multiple publishers. A “publisher topic is a ‘source’
relation representing an event history, where each tuple corre-
sponds to an event.” A “subscription is a request to receive in-
cremental updates to a derived view defined by a relational ex-
pression on one or more base relations or other views.” The ca-
pabilities for the SQL-like behavior are directly built into the
overlay network. The middleware capabilities “incrementally
maintain the states and deliver the updates.” [11]

In the Gryphon approach, the proximity of Robert and William
would be computed by specifying a join of their location views at
the 1stCN, followed by a select on the one-row table with a predi-
cate like {(XR-XW)2 + (YR-YW)2 < D2}. The authors acknowledge
that squelching at the 1stCN is inadequate, and proffer an idea
they are working on called “selective curiosity”, which makes the
aggregation node responsible for pushing event reduction clues
back to the information providers.

Solar extends CBPS with operators to filter, aggregate, or trans-
form event data [3]. “Applications describe their desired event
stream as a tree of operators that aggregate low-level context in-
formation published by existing sources into the high-level con-
text information needed by the application.” [4] The Solar mid-
dleware, with the help of a centralized manager node, deploys a
subscription in the form of Java operator objects, placing the ob-
jects to maximize sharing subscribers and minimize network traf-
fic (i.e., placement at 1stCNs). In essence, the result is an acyclic
dataflow program. In the Solar approach, the proximity of Robert
and William would be determined with operators that aggregate
their location events into a single event at the 1stCN, transform it
into distance, and then apply a filter for the distance constraint.

Gryphon and Solar provide essential characteristics for context-
aware computing, both increasing expressiveness and increasing
efficiency through operator re-use. With either of these systems,
subscribing to the proximity relationship requires the 1stCN to
separately subscribe to all position reports from each subject of
interest, {NAME=Robert and X=ANY and Y=ANY} and
{NAME=William and X=ANY and Y=ANY} in order to aggre-
gate, evaluate, and report on the satisfaction of the relationship.
As shown in Figure 1, the location reports are passed through and
processed at every intermediate event broker until the common

Figure 1. Relationship detection requires all data to pass

through all event brokers until a common node is reached.

Letters indicate processing occurring at the event brokers.
Diamonds are used to represent publishers; circles are event

brokers; and hexagons are subscribers or subscriber based

processing. The solid lines represent overlay network con-

nectivity while the dashed arrows represent event movement.

Sub1

PubR

PubW
B

A A A A

C

B B

A: Sub: {NAME=Robert & X=ANY & Y=ANY}

B: Sub: {NAME=William & X=ANY & Y=ANY}

C: Sub: { (XR – XW)2 + (YR – YW)2 < 102 }

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 4

node receives and processes the event to determine satisfaction of
the relationship. This succeeds in off-loading the subscriber, but
still loads the network with O(|events|) event traffic and process-
ing at every intervening node between the publishers and the
1stCN, and additionally burdens the 1stCN with frequent (and
perhaps fruitless) proximity computations.

3. FULCRUM
“Give me a place to stand and a lever long enough and a fulcrum

on which to place it, and I shall move the world.” – Archimedes,

220 B.C.

These costs are unacceptable in context-aware environments,
where there can be thousands of publishers (devices) publishing
events at high rates. Ideally, the middleware would permit sup-
pressing location events at their entry nodes, only forwarding
those that could satisfy a derived relationship event.

Fulcrum is a context-aware publish / subscribe (CAPS) system
that employs open implementation to give subscribers the ability
to efficiently and transparently subscribe to relationships. That is,
in addition to the ability to subscribe to relationships like Gry-
phon and Solar, the subscriber can specify an implementation

strategy for the subscription. Because the subscriber is specifying
the implementation strategy, the strategy can exploit domain-
specific properties that the middleware could not know.

An implementation strategy is nothing less than a distributed algo-
rithm for evaluating the subscription. The strategy itself is im-
plemented with publish / subscribe amongst the brokers in the
network. A strategy is kept separate from a subscription through a
strategy design pattern and a factory for instantiating the subscrip-
tion-strategy pair [6]. The separation provides several benefits,
including the ability to:

1. parametrically substitute different implementation strategies
for different environments;

2. permit non-expert programmers to specify an implementation
strategy written by an expert programmer;

3. prototype an application’s behavior by writing only its sub-
scriptions, followed later by declaratively attaching an appro-
priate optimizing implementation strategy;

4. reuse an implementation strategy for subscriptions that are
similar in structure.

Because the subscriber is specifying the implementation strategy,
the strategy can exploit domain-specific properties of the sub-
scription that the middleware could not know. Consider our
buddy proximity relationship. The first domain-specific property
of note is that the given rate of location reporting is only a sam-
pling of the actual locations. Second, if Robert is reported at
location A and next at B, then he must have traveled a continuous
line between those points, with time progressing smoothly over
the interval. Third, there are a range of expected rates of travel:
people walk at about 5 km per hour, travel in cars at 100 km per
hour, and fly in planes at 800 km per hour. Fourth, the use of the
proximity subscription itself, in our case, is to enable striking up a
conversation.

How might these be used to improve efficiency? The distance of
two people (200 km), compared against their current rate of

movement (5 km per hour) implies that they could not be proxi-
mate for 20 hours. Hence, an implementation strategy could sup-
press location reports at an entry node until that time has passed,
either’s rate of movement changes, or either moves half the origi-
nal distance between them.

3.1 Implementation Approach
Fulcrum is built on portions of Siena and Jabber [9]. To support
relationship subscriptions and implementation strategies, Fulcrum
employs active subscriptions–deployed code in the form of Javatm
class files. They are integrated with Siena’s subscription and
notification components. To permit interoperation with the
UCSD ActiveCampus project [7], the overlay network is built on
Jabber using the XML-based J-XMPP java client [10]. This al-
lows Fulcrum to leverage the presence features of XMPP (“Robert
is logged in”), enhanced with location information as detected
though ActiveCampus. Support for active subscriptions and the
Jabber integration required replacing Siena’s event brokers with
our own. Fulcrum consists of 81 Java classes, comprising about
7,000 non-comment source lines of code.

3.2 Event Broker Architecture
Active subscriptions may take on the role of publisher, subscriber,
or both. For example, our proximity subscription subscribes to
the location events of two people and publishes a new event re-
garding proximity. In order for multiple such subscriptions to
aggregate and transform events, there is a need for statefulness
and multi-threading in the event broker. Our broker architecture
is shown in Figure 2. There are two significant pieces as follows:

1. The primary event broker (large circle) and its associated mes-
sage (event) buffer are like those from traditional CBPS systems.
The primary event broker handles the normal advertisement, sub-
scription, and publication processing. It forwards arriving events
to the appropriate active subscription or another event broker. It
also provides additional hooks to plug-in active subscriptions.

2. A wrapper (smaller box) provides both a sandbox and support-
ing interfaces for an active subscription (hexagon). It provides a

miniature broker environment, including a message buffer and
event router (small circle).

3.3 Subscription Management
As part of our support for suppressing events at entry nodes, we
make a distinction between local and global subscriptions. A
global subscription is the normal subscription found in CBPS
systems. We added local subscriptions to enable an active sub-
scription to live only immediately adjacent to a data producer of
interest and not have its subscription be delivered to remote pub-

Figure 2. Event broker high-level architecture.

Msg Buffers

Active Subscription

Event Brokering

Wrapper

Input Msgs

Output Msgs

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 5

lishers that might generate similar information. These are used
only by implementation strategies, not by normal subscriptions.
Both local and global subscriptions receive any data that arrives at
a broker node. However, when a new publisher advertisement is
received then only global subscriptions are propagated to broker
reporting advertisement.

3.4 Active Subscription Deployment
Two things need to happen in deploying an active subscription.
One, similar to Siena subscriptions, the relationship subscription
needs to be deployed to every broker in the network between the
subscriber and contributing publishers. Two, the implementation
strategy needs to be instantiated at the appropriate brokers. Ful-
crum manages deployment of an active subscription as follows.

First, the active subscription is packaged to appear as just its rela-
tionship subscription, that is, with the implementation strategy
hidden inside it. Consequently, the existing subscription routing
mechanisms are used. In particular, based on the registered adver-
tisements at each event broker, the subscription follows the path
for every advertisement of interest upstream until the edges of the
network are reached, with the subscription being left at each in-
termediary node for forwarding purposes.

Second, the subscription’s implementation strategy is evaluated
(instantiated) at each node. For non-entry nodes, the strategy is
simply discarded, and the subscription merely functions to for-
ward events back to the subscriber. For each entry node, instanti-
ating the strategy results in the following actions:

1. The strategy determines which events are to be subscribed to
with local subscriptions. Our proximity subscription {(XR – XW)2
+ (YR – YW)2 < 102} implies two constituent subscriptions:

A. {NAME=Robert & X=ANY & Y=ANY}
B. {NAME=William & X=ANY & Y=ANY}

At entry nodes advertising Robert’s location, the strategy makes a
local subscription for A. At entry nodes advertising William’s
location, the strategy makes a local subscription for B. This con-
figuration is shown in Figure 3a2. Note that, after this step, the
entry node for Robert (or William) will have insufficient data
about William’s (Robert’s) location to evaluate the relationship
subscription.

2. The strategy advertises new event types and makes additional
global subscriptions that exchange data with the same strategy on

2 The configuration with a third party subscriber was chosen to

simplify the presentation, to demonstrate the possibility, and to
avoid shortcut attempts when one buddy is also the subscriber.

the other entry nodes. The data from this sub-protocol is used in
two ways. One, to evaluate the relationship subscription to possi-
bly forward an event to the originating subscriber. Two, to col-
laboratively schedule the evaluation of the relationship subscrip-
tion. That is, the strategy is normally evaluating ancillary sub-
scriptions locally and only occasionally forwarding data between
the entry nodes. This is how efficiencies are achieved with rela-
tional subscriptions. An example sub-protocol is shown in Figure
3b (described in full in the next subsection), and the relationship
evaluation itself is shown in Figure 3c.

Note that the strategy running on each entry node does not need to
know where the other strategies lie. They merely advertise their
new events, and the others subscribe to them. The middleware
marries them in the normal publish / subscribe fashion.

Using buddy proximity explanation, the next section gives a de-
tailed explanation of how Fulcrum can be used to achieve efficient
yet transparent context-aware publication / subscribe. Section 5
describes an experiment using Fulcrum to track buddy proximity
for the ActiveCampus system, revealing the efficiencies that are
possible with this approach.

4. EXAMPLE – BUDDY PROXIMITY
Evaluating relationship subscriptions at entry nodes is a necessary
but not sufficient condition for the most efficient evaluation of
relationship subscriptions. In particular, an efficient distributed
algorithm for detection of the relationship must be implemented at
the entry nodes. This section describes such an algorithm and its
implementation for the proximity of two buddies. Interestingly
the same approach is the most efficient solution to multiple buddy
relationships, but best implemented in a single active subscription.

The essential idea is that the proximity of two distant entities can-
not be achieved unless points between them are crossed: Robert
cannot be co-located with William unless one or both of them first

Figure 3a. Only entry nodes receive original events.

Figure 3b. A sub-protocol is used to minimize updates, e.g.,

O(lg distance), between collaborating active subscriptions.

Figure 3c. Only a single event representing the satisfaction of

the relationship is passed down to the subscriber.

A

B

Sub1

PubR

PubW

B

A

A: Sub:{NAME=Robert & X=ANY & Y=ANY}

B: Sub:{NAME=William & X=ANY & Y=ANY}

Sub1

PubR

PubW

C C C C

C C: Sub: { (XR – XW)2 + (YR – YW)2 < 102 }

D

E

Sub1

PubR

PubW
E

D D,E D,E D,E

D,E

D,E D,E

& _X=ANY & _Y=ANY}

E: Sub: {Msg=RangeRing & _Name=Robert

D: Sub: {Msg=RangeRing & _Name=William

& _X=ANY & _Y=ANY}

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 6

reduces the distance separating them in half, and so on. In our
Range-Ring Strategy, these halfway points are the only events
communicated between collaborating active subscriptions at the
entry nodes. All other event traffic can be suppressed.

Returning to our example of Robert and William, the idea is that
when the initial active subscription is deployed, the distance be-
tween the two is computed by the strategies running at William’s
node and Robert’s node. Each strategy then computes a “range
ring” around its user’s position (Figure 4a), that if crossed by the

user, results in the strategy publishing the user’s location and
computing a new range ring (Figure 4b). Because we are inter-
ested in whether either person crosses half the distance, any newly
computed range ring is sent to the other by publishing a range ring
event. When a user leaves its ring by approaching its buddy, the
range rings shrink; when the user leaves its ring while receding
from its buddy, the range rings grow.

To preserve consistency, a couple of things are necessary. First,
the user’s new location and the new range ring are published as an
aggregate event. This permits the receiver to detect what data was
used in computing the range ring. Second, when the other user’s
strategy receives the event, the strategy not only modifies its sup-
pression filter to the new range, but also runs the filter against the
user’s current location to see if the user has already moved be-
yond the new ring. If so, it publishes a new location/range-ring
event to preserve the invariant that users are inside range rings.

In the case where one user moves directly towards the other, who

is stationary, each successive range ring would be half the size,
representing the fact that a smaller movement is required to bring

the two into proximity. For this scenario, with initial separation S
and proximity bound of D, there are log2(2(S-D)) range ring
events sent before the proximity event itself is sent. In a scenario
where both users are moving at velocity V and remain at a con-
stant separation S, the range-ring event rate is 2V/(S-D). The
publication rate of location events does not matter in either sce-
nario because only the significant events—those that represent
leaving a range ring—are sent. Thus, the algorithm has a desir-
able “pay for what you use” property, and its suppression of loca-
tion events has greater value as the reporting rate of the deployed
positioning technology increases.

We present the following scenario for the algorithm.3 The sce-
nario assumes that the publishers for Robert and William are al-
ready advertising their events. Figures 1 and 3a-c diagram the
overlay network, publishers, and subscribers, while Figures 4a-d
diagrams the algorithm’s model of the users’ behavior.

4.1 Scenario

4.1.1 Deployment:
1. To instantiate the active subscription for the proximity relation-

ship f(A,B,D) = {(A.x-B.x)2 + (A.y-B.y)2 < D2}, Subscriber 1:

a. binds A, B, and D to Robert, William, and 10 respectively;
b. identifies constituent subscription filters for Robert’s and

William’s location as shown in Section 3.4;
c. selects the Range-Ring Strategy.

2. Fulcrum pushes the active subscription through the network to
the event brokers adjacent to PubR and PubW respectively
where it is instantiated as ASRW and ASWR respectively. Also,
as a side effect of normal subscription deployment, the relation-
ship subscription filter is left at each intervening node.

3. ASRW publishes the range-ring event type {Msg=RangeRing,
_name=A.name, _x=ANY, _y=ANY, range=ANY}, and sub-
scribes to the event {Msg=RangeRing, _name=B.name,
_x=ANY, _y=ANY, range=ANY}.4

4. ASWR publishes the range-ring event type {Msg=RangeRing,
_name=B.name, _x=ANY, _y=ANY, range=ANY} and sub-
scribes to the event {Msg=RangeRing, _name=A.name,
_x=ANY, _y=ANY, range=ANY}.

Steps 3 and 4 are setting up a sub-protocol between Robert’s and
William’s entry nodes to efficiently share each other’s location, as
outlined in the following. The active subscription uses the lexi-
graphically smaller named instance to report success to avoid a
race condition that would otherwise lead to two notifications.

4.1.2 Runtime
5. PubR publishes Robert’s position, which is received by the

adjacent entry broker and handed off to ASRW only. ASRW rec-
ognizes this as the first event and publishes a range ring event
{Msg=RangeRing, _name=A.name, _x=A.x, _y=A.y,

3 The full algorithm and its proof of correctness are beyond the

scope of this paper.
4 Note that an underscore has been prepended to the attribute

names that overlap with those of location events. This is to pre-
vent subscribers to user location events from getting range ring
events. A general solution to this problem would employ a
scoping mechanism like namespaces.

Figure 4b. Range-rings are reset when a subject moves out-

side its assigned area. New range-rings have solid lines.

Figure 4a. Range-Ring Strategy creates range rings sepa-

rated by desired proximity and suppresses all events until

one buddy moves at least half the distance, such that the po-

tential for the proximity relationship to be satisfied exists.

Robert William

Robert William

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 7

range=MAXINT}, ensuring it will not report again until it re-
ceives information about William).

6. ASWR receives the range ring event from ASRW and saves it.

7. PubW publishes William’s position, which is received by the
adjacent entry broker and handed off to ASWR only. ASWR
computes the distance between the two, and publishes the range
ring event {Msg=RangeRing, _name=B.name, _x=B.x, _y=B.y,
range=(distance-D)/2)}.

8. ASRW receives the range ring event from ASWR, saves the data,
and takes the range ring as its own. At this point Robert and
William both now have range rings as shown in Figure 4a.

9. PubR and PubW continue to generate location events that are
processed by ASRW and ASWR until such time as either Robert
or William exits the assigned range ring. During this period,
neither strategy is notified of the other’s location, due to the
event suppression imposed by the range ring strategy.

10. William moves outside the ring first, following the arrow on
the right in Figure 4a. PubW thusly reports William’s position;
ASWR receives the event and recognizes it is outside the range
ring. (The formula for the range-ring test is coincidentally the
same as that for proximity.) Before computing a new range
ring, it checks whether the proximity relationship itself has
been satisfied. In this case, it has not. It then computes a new
range ring based on William’s current location and the loca-
tion it has saved for Robert, and sends it as an event.

11. ASRW receives and saves range ring event from ASWR, and
takes the range ring as its own. Robert and William both now
have range rings around their last reported locations, as shown
in Figure 4b. Even though Robert has moved (as shown on
the left in Figure 4a), because that location had been sup-
pressed, ASRW establishes the new range ring around the posi-
tion it last published. This ensures that ASRW and ASWR have
a consistent view of each other’s state.

12. Location events continue to be suppressed until William again
moves outside the range ring, as shown in Figure 4b by the
second arrow on the right. Robert in the meantime has fol-
lowed the second arrow on the left. PubW publishes William’s
position; ASWR receives the event and recognizes the location
as outside of the range ring. As in step 10, a new range ring is
computed and published as an event, in effect creating the
smaller range rings shown in Figure 4c.

13. ASRW receives the event data with the new range ring. This
time, it recognizes that Robert’s most recent location is out-
side the smaller range ring that ASWR created for it. If taken
as-is, ASRW would never see Robert leave the ring. Conse-
quently, it computes a new range ring and sends it as an event,
creating the small range rings in Figure 4d.

14. This pattern repeats until the proximity relationship is satis-
fied, at which time ASRW (the smaller named applet) publishes
the proximity event, which is routed back to Sub1.

4.2 Discussion
In summary, active subscriptions replace numerous user location
events with a few self-regulating range-ring events, thus substan-
tially reducing the event traffic for computing buddy proximity.

The use of range rings to indicate when to next publish positional
information is only one possible implementation strategy. We
could have identified the perpendicular line between the two posi-
tions and then created a pair of parallel lines 5 meters on either
side of the center as shown in Figure 5. Then the active subscrip-

tions would monitor for events revealing that their subject has
crossed the line. Again the positions and distances would re-sync.
If one of the actors was known to move faster than the other, the
parallel lines or the range rings could be skewed in position or
size to account for the additional context.

If a subscriber wishes to use the same concept of proximity, but
across different dimensions, such as temporal or financial, then
perhaps an existing strategy could be used. Consequently, a li-
brary of strategies could be a useful resource in an open publish /
subscribe system.

5. EXPERIMENTAL EVALUATION
In theory, the Fulcrum open implementation approach permits
users to apply domain knowledge and evaluate context-aware
relationships at entry nodes, while suppressing useless events.
However, the efficiencies achieved by the Fulcrum approach are

Figure 4c. Updates use most recently reported position of

each subject, resulting in concentric rings for slow movers.

Figure 4d. Range-rings are reset when a subject is discovered

outside a newly assigned area.

Figure 5. Parallel-line strategy bisects space

 Robert William

 Robert William

 Robert William

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 8

dependent on properties of the supported applications, the way
people use them, the state of the underlying technology, and the
structure of the event broker network.

This section describes an experiment of Fulcrum supporting a
federated architecture for ActiveCampus and compares those re-
sults to the basic and enhanced CBPS approaches. We perform
this evaluation in two parts. First, how much suppression of
original events does Fulcrum achieve? Second, what overall effi-
ciencies are achieved?

5.1 Experiment
ActiveCampus user positions are automatically generated via
triangulation based on 802.11 signal strength and automatically
reported to the system. On ActiveCampus’s “buddy page”, the
user display shows all buddies with an indicator of nearby or far,
mirroring the proximity relationship that we have used in our
examples. Consequently, we took a week’s worth of data from
ActiveCampus and “replayed” it through Fulcrum, using a con-
servative broker configuration.

5.1.1 Setup
The ActiveCampus test data is comprised as follows:

 643 users (anonymized for privacy).
 2,165 buddy relationships
 604,800 seconds = 168 hours = 1 week
 1-6 events per logged-in user per minute
 360,067 location reports

The overlay network was configured with 5 event broker nodes in
a crossbar configuration with one internal “routing” node (Figure
6). Such a configuration might be used geographic coverage (e.g.,
one node per city plus the crossbar) or to mediate different com-

mercial providers (e.g., AIM, MSN, ICQ, and Yahoo connected
through a crossbar). Different configurations would change the
number of hops that an event has to travel. This configuration has
a maximum hop count of 2, minimizing the penalty for an event
not being suppressed.

The 643 users were randomly distributed across the 4 edge bro-
kers, resulting in 149, 158, 165, and 171 users at each respective
node. Each user was configured as a publisher of its location as
well as a subscriber to the proximity of each buddy.

This configuration resulted in the distribution of proximity sub-
scriptions as shown in Table 1. Users attached to node 0 have
proximity relationships with the number buddies on nodes 0 to 3
as 125, 155, 165, and 112 respectively. This resulted in 2,165
active subscriptions being deployed. Each was instantiated on two
nodes, yielding 4330 instances.

Nodes 0 1 2 3
0 125 155 165 112
1 131 140 167 115
2 125 171 224 126
3 85 110 122 92

Table 1. Proximity relationship distribution.

5.1.2 Results
Of the original 360,067 location reports, 11,955 were associated
with users not participating in a buddy relationship, leaving
348,112 location reports that were subject to the proximity sub-
scription.

Many users were not logged in to ActiveCampus at the same time
as their buddies during the one-week period. Of the 2,165 active
subscriptions, then, only 1,028 received data from both buddies.
This means, effectively, that the 348,112 location reports were
concentrated on half of the users. The range ring strategy resulted
in 57,348 published range-ring events and 4,626 proximity rela-
tionship events (i.e., reports of a buddy moving into proximity) –
16.5% and 1.3% of the original event count respectively, for a
cumulative reduction of 82%. The breakdown of event reduction
for each user’s buddy is shown in Figure 7.

Comparing the number of original events to the number resulting
from the active subscriptions yields an average event savings of
82% (a factor of 5.6). The average savings factor does not tell the
whole story, however. Due to the centralized architecture of Ac-
tiveCampus at the time of data capture, user events were rate lim-
ited to 1 to 6 events per minute. In the wild, it is not unreasonable
to expect 1-second (standard GPS reporting rate on naval ships)
or better update rates – a 10-times increase. Because the number
of range-ring events is based on distance, not the number of re-
ports, the average event savings factor would then be 56. Also,
user activity plays a significant role in event reduction as shown
by a few sample data points displayed in Table 2.

User Activity # orig events # range ring events
Stationary 22,657 6
Stationary 11,743 2
Mobile 1,008 127
Mobile 4,746 145

Table 2. User activity affects event reduction.

In many cases we find that users are relatively stationary. Their
usage model is to go somewhere, turn their device on, remain in a

Figure 6. Crossbar event broker overlay network.

Figure 7. Range-ring events generated per original event. A

line is overlaid to show an O(lg2 movement) expectation.

149 users

158 users

165 users

171 users

0

1 2

3

4

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 9

confined space for a time, and finally to turn off their device and
repeat the cycle. Thus, almost all events are suppressed at the
source. Conversely, when people are in motion, there is usually
much less suppression because buddies frequently exit their as-
signed range rings yet seldom walk directly toward each other.

5.2 Analysis
Although we have achieved an 82% reduction in events, any effi-
ciency gained must be evaluated from a systems perspective. In
particular, the question is how much processing the whole system
has to perform for all the events communicated.

Due to difficulties in running live Siena, Gryphon, and Solar
CBPSs on the ActiveCampus data, we measured system efficien-
cies in terms of analytically accessible properties. The core costs
are the processing of an event at an event broker and any subse-
quent forwarding of the event through the broker network. We
use the number of hops per original event, or event hops, as our
common unit of measure to evaluate the efficacy of Fulcrum. We
discuss the cost per hop in the next section.

To simplify the calculation of effectiveness we assume a uniform
distribution of publishers, subscribers, and active subscriptions
across all edge nodes. To verify that this simplification would not
bias our results, we compared Fulcrum’s empirical aggregate hop
count based on the random distribution to the analytically derived
one. The empirical aggregate count based on the configuration in
the previous subsection is 94,334 hops. Analytically, it computes
as 94,260, less than 0.1% smaller. We have confidence, then, that
the analysis here is accurate.

Basic CBPS like Siena requires the subscribers to evaluate all
relationships. Consequently, ¼ of the events coming into entry
nodes and are immediately returned to subscribers attached to the
same node, resulting in 1 event hop apiece (we only count proc-
essing and output, not the input). ¾ of the events will come into
an entry node and get passed to the center node, on to one of the
remaining three edge nodes, and finally to the subscriber, yielding
3 event hops. The subscriber itself evaluates the relationship
requiring 0 event hops. On average this is

¼ * 1 + ¾ * (3 + 0.0133 * 0) = 2.5 event hops.

Aggregation enhanced CBPS like Gryphon or Solar allows rela-
tionships to be computed at the first common node (1stCN). For
the given broker configuration, ¼ of the events come into an entry
node that also acts as a common node and the proximity relation-
ship “success” event can be generated and sent to the subscriber
in 1 event hop. ¾ of the events come in through their entry nodes
and are passed to the center node that is consequently the first
common node, yielding 1 event hop. Success events generated at
the center node must be communicated with the subscriber for 2
more event hops. On average, this is

¼ * (0.0133 * 1) + ¾ * (1 + 0.0133 * 2) = 0.773 event hops.

Open-implementation CAPS like Fulcrum’s reduces original
events into potentially significant events at the entry nodes. In
this case, ¼ of the events come into an entry node that possesses
both parts of an active subscription, yielding 1-hop success
events. ¾ of the events come into an entry node hosting an active
subscription that collaborates with a distant entry node. Empirical
data from the previous sub-section shows that 6.07 original events
will become one collaboration event (range ring). These events

travel through the center node and out to an associated active
subscription. This yields 0.165 event hops for such events. Suc-
cess events are then passed to the subscriber, which half the time
will be local (1 hop) and the other half will be remote (3 hops) for
an average of 2 hops. The net event hops per original event are

¼ * (0.0133*1) + ¾ (0.165 * 2 + 0.0133 * 2) = 0.27 event hops.

When location sensor reporting is increased to 1 report per sec-
ond, a 10-times increase, then basic CBPS will experience a 10x
increase in location events at 2.5 event hops apiece. Gryphon and
Solar would experience a 7.5 times increase in location events to
the 1stCN, and maintain their 0.773 event-hop count. In Fulcrum,
because forwarded events are driven by user behavior, not event
rate, the overlay network sees no increase in traffic, which yields a
corresponding 10-times effective suppression, resulting in 0.027
event hops per original event. Solar could achieve similar reduc-
tions by adding a transformation operator that rate-limits original
location events, but would sacrifice the added accuracy of the
increased reporting rate unless the rate-limiter made inferences
over all the events.

6. DISCUSSION
Filtering is the lifeblood of CBPS. Our ability to reduce event
traffic by filtering relational events at entry nodes is our key effi-
ciency measure. We now discuss some of the tradeoffs that arise
in achieving this reduction.

One concern is the large number of subscriptions that might be
deployed as Java code. For our experiment, there were 2,165 rela-
tionship subscriptions for 643 users with 3.37 average buddies. It
should be noted, first of all, that there is intrinsic sharing. The
Java class loader only loads unique classes, so only the first such
subscription at a node results in transmitting code and configuring
the class. Second, open implementation allows the subscriber to
achieve higher-levels of sharing by plugging in a new strategy.
For example, a user could attach a strategy that tracks multiple
buddies for a user, resulting in a sharing of range rings and event
subscriptions behind the scenes.

Another question is whether subscribers could, with an existing
CBPS like Solar or Gryphon, write collaborative subscriptions
like those realized through our open implementation approach.
Indeed, for our example, a subscriber could put out subscriptions
for range ring events on each publisher. The subscriber itself
would have to act as the clearinghouse that receives the events.
Upon doing so, it would create new range ring subscriptions and
retract the old ones. There are three problems. For one, this added
level of indirection would increase the hop count unless the sub-
scriber was attached to the 1stCN. Two, there is not a clear sepa-
ration between the relational property of interest and its efficient
implementation, increasing complexity and reducing the opportu-
nities for reuse. Three, there is a race condition, at least with this
straightforward adaptation. Our algorithm avoids the race condi-
tion by updating the existing subscription on the other entry node,
and before doing so checks that the other user has not already
moved outside the new range ring. This kind of atomic check is
not possible in normal CBPS when placing a new subscription; a
subscription filter simply waits for the arrival of the next event.

Although hop counts are reduced by our approach, event process-
ing is slower than in a basic CBPS like Siena. In providing the
ability to perform attribute-to-attribute comparisons, efficient

3/30/2004 Fulcrum – An Open Implementation Approach to Context-Aware Publish / Subscribe 10

structuring of subscription evaluations by event brokers (e.g.,
exploiting overlaps, like X > 10 is subsumed by X > 5) is ham-
pered. Solar and Gryphon share this problem. To mitigate this, we
take a cue from database query optimization and reorganize sub-
scriptions to evaluate the “normal” part of a subscription first, and
only perform the attribute-attribute comparisons if it succeeds.
More aggressive optimization is a subject of future work. It
should be noted however, that reducing the hop count through
open implementation is scalable with respect to increasing sensor
reporting rate, whereas as basic CBPS is not.

The Java code of an active subscription could be inefficient,
buggy, or malicious. This problem is mitigated by sandboxing the
computation in a separate thread and using mechanisms akin to
Jabber’s karma, which reduces the resources available to “greedy”
subscriptions. Still, the question remains why a publisher would
run code for a subscriber. In the deer proximity example, the deer
do not get a say. For buddy proximity, they have explicitly agreed
to trust each other through a mutual buddying subscription.

7. CONCLUSION
The commoditization of networked sensors is fueling the emer-
gence of internet-based context-aware applications. Content-based
publish / subscribe (CBPS) systems are a natural substrate for
supporting context-aware application development because they
provide for separation of publishers and subscribers, efficient
event distribution, extensibility, and scalability. Yet, the CBPS
notion of subscribing to a publisher’s content does not capture the
data relationships across publishers that drive context-awareness.
Recent advances in aggregation-enhanced CBPS permit subscrib-
ing to these relationships, but the relationships are computed at
intervening nodes in the CBPS middleware, resulting in poten-
tially large amounts of raw data being routed to those nodes.

The problem is that the separation of concerns afforded by the
middleware precludes publishers’ event brokers from collaborat-
ing with subscribers and each other to implement algorithmically
efficient application-specific context-aware inferences. It is possi-
ble to dramatically reduce the number of events processed and
forwarded through the middleware by using open implementation
to permit subscribers to enhance the middleware with the ability
to deploy a distributed algorithm to where events enter the system.
Open implementation provides for separation of subscriptions and
implementation strategies, allowing for separate, modular devel-
opment and reuse of relationship subscriptions and implementa-
tion strategies.

Fulcrum supports open-implementation context-aware publish /
subscribe (CAPS). It employs active subscriptions in the form of
Java applets. They are first-class entities that both subscribe to
events and publish new events, enabling event-based collabora-
tion amongst copies of the strategy deployed where raw sensor
events enter the system.

We evaluated the Fulcrum approach by implementing a buddy-
proximity relationship and accompanying strategy. The resulting
strategy’s performance is tied to the amount of user movement,
not to the number of events reported. We then federated the Ac-
tiveCampus context-aware infrastructure and replayed a week’s
worth of its user data. For a conservative broker network configu-
ration and current sensor technology, we found an 82% net event
reduction and a 64% reduction in event hops compared to aggre-

gation-enhanced CBPS, which uses similar underlying technol-
ogy. These factors increase proportionally with increased report-
ing rates, naturally insulating against advances in sensor technol-
ogy. The data curve-fits to O(lg2|movement|) expected event
processing.

8. REFERENCES
[1] Carzaniga, A., Architectures for an Event Notification Ser-

vice Scalable to Wide-area Networks, PhD. Thesis, Com-
puter Science, University of Colorado, Boulder, 1998.

[2] Carzaniga. A., Rosenblum, D. S., and Wolf, A. L., Achieving
Scalability and Expressiveness in an Internet-Scale Event
Notification Service, 19th ACM Symposium on Principles of

Distributed Computing, pp 219-227, 2000.

[3] Chen, G. and Kotz, D., Solar: Toward a Flexible and Scal-
able Data-Fusion Infrastructure for Ubiquitous Computing,

UbiComp 2001 UbiTools Workshop, 2001.

[4] Chen, G. and Kotz, D., Solar: A Pervasive-Computing Infra-
structure for Context-Aware Mobile Applications, Dartmouth
Technical Report, TR2002-421, 2002.

[5] Cohen, N., Purakayastha, A., Turek, J., Wong, L., Yeh, D.,
Challenges in Flexible Aggregation of Pervasive Data, IBM
T.J. Watson Research Center, Tech Report RC21942, 2000.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design

Patterns: Elements of Reusable Object-Oriented Software
Reading, MA, Addison-Wesley, 1995.

[7] Griswold, W., Boyer, R., Brown, S., and Truong, T., A
Component Architecture for an Extensible, Highly Integrated
Context-Aware Computing Infrastructure, 2003 Interna-

tional Conference on Software Engineering, May 2003.

[8] Griswold, W., Shanahan, P., Brown, S., Boyer, R., Ratto, M.,
Shapiro, R., and Truong, T., ActiveCampus – Experiments in
Community-Oriented Ubiquitous Computing, Technical Re-
port CS2003-0750, Computer Science and Engineering, UC
San Diego, June 2003.

[9] Jabber Software Foundation. 2004. Jabber: Open Instant
Messaging and a Whole Lot More, Powered by XMPP.
[Online] Available: http://www.jabber.org/ [2/22/04]

[10] JabberStudio. 2003. J-XMPP Project Information, [Online]
Available: http://www.jabberstudio.org/projects/j-
xmpp/project/view.php [2/22/04]

[11] Jin, Y. and Strom, R., Relational Subscription Middleware
for Internet-Scale Publish-Subscribe, Proceedings Second

International Workshop on Distributed Event-Based Systems

(DEBS ’03), 2003.

[12] Kiczales, G., Beyond the Black Box: Open Implementation,
IEEE Software, January 1996.

[13] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mend-
hekar, A., Murphy, G., Open Implementation Design Guide-
lines, 1997 International Conference on Software Engineer-

ing (ICSE), May 1997.

[14] Tarasewich, P., Toward a Comprehensive Model of Context
for Mobile and Wireless Computing, Proceedings of Amer-

ica’s Conference on Information Systems (AMCIS) 2003,
2003.

