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ABSTRACT 
Content-based publish / subscribe (CBPS) systems are a natural 
substrate for context-aware applications because they provide the 
right separation of concerns, efficient event distribution, extensi-
bility, and scalability.  However, the separation of concerns af-
forded by CBPS middleware precludes publishers from collabo-
rating with each other to efficiently detect context-aware condi-
tions for publication as events. We overcome this problem with an 
open implementation approach, which enables subscribers to at-
tach a domain-specific implementation strategy to their context-
aware subscriptions. Strategies are supported by first-class active 
subscriptions that can deploy lower-order dynamic publisher / 
publisher cross-subscriptions where events enter the CBPS sys-
tem.  By exchanging data on an as-needed basis, event traffic can 
be dramatically reduced.  Our algorithm for detecting the prox-
imity of mobile buddies reduces event traffic from O( |events| ) to 
O( |movement| ) worst case, O( lg2|movement| ) expected.  Ex-
periments reveal an 82% reduction with current positioning tech-
nologies. 

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architectures – dis-

tributed processing, separation of concerns. D.3.3 [Distributed 

Systems]: Publish-subscribe. 

General Terms 
Performance, Design, Languages. 

Keywords 
Context-aware computing, content-based publish / subscribe, 
distributed event-based systems. 

1. INTRODUCTION 
Context-aware computing takes data from a highly dynamic envi-
ronment and synthesizes it into information and knowledge for 
decision-making.  Of particular interest are the relationships be-
tween changing data.  Simple examples include: your location 
with respect to mine, when my objective is to speak with you in 
an impromptu hallway meeting; or stock price with respect to 
earnings, i.e., P/E ratio, when the task is to increase retirement 
investments.  Specific context of interest depends on individual 
users and their current tasks and objectives.  Tarasewich provides 
a useful context-awareness survey [14]. 

In a sensor network composed of low-powered components de-
ployed in an ecological preserve, we might tag animals of interest 
with a battery-powered GPS receiver, CPU, and wireless network-

ing. Scientists wish to monitor, throughout the year, the interac-
tions between various animals.  To preserve power, communica-
tions need to be minimized.  The scientists are initially interested 
to learn when the proximity of certain of animals is less than 10 
meters (e.g., (X1-X2)

2 + (Y1-Y2)
2 < 102).  As these relationships 

are observed, the system must be able to support measurement for 
new hypotheses that are generated by the scientists.  Also, multi-
ple researchers may observe the same environment with different 
goals.  For reasons of cost and feasibility, the sensor network’s 
resources need to be shared. 

Generally, we can anticipate that contextual data will ultimately 
derive from “billions of users connected to millions of services 
using trillions of devices” [5].  Myriad sensors reporting poten-
tially interesting raw data at high data rates will be as widely dis-
tributed as an equally diverse set of consumers, who may them-
selves be information providers.  To effectively support context-
aware computing in this environment requires efficient, extensi-
ble, and scalable data distribution and processing. 

Content-based publish / subscribe (CBPS) systems hold the po-
tential for such a solution.  In publish / subscribe systems, pub-
lishers publish events and subscribers subscribe to events, with the 
CBPS middleware doing event matching and routing. Hence, 
publishers and subscribers do not need to know about each other, 
enabling new publishers, subscribers, event types, and subscrip-
tions to be freely added to the milieu. 

Not only does the middleware provide separation, but also effi-
ciency: it filters out new events against subscriptions at the pub-
lisher’s event broker, exploits overlapping subscriptions, and 
employs multicast-like routing of events to subscribers. Efficient 
filtering at the publisher’s event broker is achieved by content-
based pattern matching against a publisher’s event in a series of 
independent filters, e.g., {(e.x < 10) & (e.y > 30)}. Sequences of 
events can be similarly pattern matched [1,2]. Context-aware rela-
tionships like the proximity relationship entail comparing event 
attributes to each other. This requires subscribers to subscribe to 
raw location and compute the distance themselves, and the 
efficiencies of evaluating at the publisher’s event broker are lost. 

Recent work enables the aggregation of attributes from multiple 
data streams with more complex processing and filtering per-
formed within the network [3,11].  Common aggregations and 
transformations can also be shared [3].  It is possible, then, to 
evaluate the proximity relationship at the first common event bro-
ker node (1stCN) that connects the publishers with the subscriber. 

When publishers are distant from the 1stCN, each intervening 
event broker node must process and forward all events, which is 
costly. To get the best possible performance requires evaluating 
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context-aware relationships at the publisher’s event broker.  To do 
so efficiently requires knowledge of the modeled relationship as 
well as how it will be used.  Only the subscriber has this domain 
knowledge, and has no way of sharing it with the middleware. 

The open implementation software design technique [12,13] was 
developed for just such situations.  In the open implementation 
approach, a module’s interface is designed to allow a client to 
assist in the selection of the module’s implementation strategy.  
The module’s auxiliary interface may allow a client to describe its 
usage patterns, to specify an implementation (e.g., hash table), or 
even to provide its own implementation – adhering to well de-
fined interface specifications.  This allows the client to tailor the 
module's implementation strategy to better suit their needs, while 
retaining the advantages of closed implementation modules (i.e., 
the traditional black box).  

Following the open implementation paradigm, Fulcrum creates an 
efficient substrate for context-aware publish / subscribe (CAPS). 
For the example of tracking deer proximity, Fulcrum enables a 
reduction in the event traffic from O( |events| ) to O( lg2 

|movement| ) expected, using domain-specific optimizations that 
filter events at the publishers’ event brokers (called entry nodes).  
Fulcrum provides this facility as a three-part extension to CBPS 
while preserving its anonymous, asynchronous, and loosely cou-
pled nature: 

1. A subscriber can subscribe directly to a derived relationship, 
such as the distance between two entities.  A derived relation-
ship has no publisher, per se. 

2. The derived relationship is realized through active subscrip-

tion support.  An active subscription, like a Solar operator [3], 
is a first-class pub/sub Java applet; it can be both a publisher 
and subscriber.  In particular, an active subscription is respon-
sible for: 

a. subscribing to the event data comprising the relationship; 
b. instantiating a publisher of the derived relationship. 

3. A separate implementation strategy can be attached to the 
relationship subscription to exploit the domain’s semantics to 
improve efficiency. In particular, it can push the subscription 
to the entry nodes and establish a secondary set of subscrip-
tions and publications that permit the relationship to be com-
puted in a distributed, collaborative fashion, thus reducing 
event traffic. 

Note that the same property can be implemented by different 
strategies as appropriate to the context of use.  Similarly, the same 
implementation strategy can be reused among properties with 
similar semantics (e.g., the notion of distance). 

The remainder of this paper is organized as follows.  Section 2 
discusses the state of the art capabilities of CBPS and their appli-
cability to context-aware computing.  Section 3 describes our 
design of Fulcrum.  Using buddy proximity as an example, Sec-
tion 4 details how an implementation strategy is deployed to 
achieve efficiencies. Section 5 evaluates the system as built.  Sec-
tion 6 discusses the tradeoffs with our approach, and Section 7 
concludes. 

2. CONTENT-BASED PUB / SUB 
In the current state of the practice, as exemplified by Siena [1,2], 
CBPS systems are composed of three components.  One, a pub-

lisher provides events (messages), each in the form of a tuple 
sequence {(name1, type1, value1), (name2, type2, value2),…}. Two, 
a subscriber requests events of interest by using subscription fil-
ters of the form {(name1, operator1, value1), (name2, operator2, 

value2),...}, where each operator will be a relational operation like 
<, =, etc.  Three, event brokers mediate between publishers and 
subscribers, providing an application-level overlay network for 
efficiently matching and routing events, providing independence 
of publishers and subscribers. 

In particular, publishers advertise their event types with brokers, 
and subscribers register their interest in events through their con-
tent subscription filters.  Abstractly, the brokers then check every 
published event against every filter, passing on those events that 
satisfy a filter.  Concretely, the brokers set up a “switching fabric” 
between publishers and subscribers by pre-matching filters to the 
advertised event types (i.e., a publisher’s event type promises to 
contain all the required names of a subscriber’s filter). 

This switching fabric has two performance benefits for the bro-
kers.  One, filters are only applied to events that have a chance of 
satisfying the filter.  Two, it is possible to avoid redundant filter-
ing for overlapping subscriptions, as well as send only one copy 
of each event between brokers when multiple subscribers share 
parts of the same pathway from the publisher to an intermediate 
broker.  Subscription filters are pushed upstream from the sub-
scriber toward the information producer to quickly suppress in-
formation at broker nodes for which no downstream subscriber is 
currently interested.  This eliminates unnecessary network traffic 
and excess computation at internal event brokers and at the end 
client.  Consequently, the client application is, in effect, being 
pushed into the network via the middleware of the CBPS system.  

CBPS systems seem ideal for supporting extensible, scalable con-
text-aware systems.  The brokered publish/subscribe paradigm 
makes publishers and subscribers largely independent from each 
other, while providing economies of scale through sharing in the 
overlay network.  Publishers and subscribers can be readily added, 
accommodating new application functionalities, and new event 
brokers can be added to improve the efficiency of the network, 
thus providing Internet-level scalability [1,2]. 

2.1 Context-Awareness Requirements 
At its core, a context-aware system needs to detect and react to 
situations, that is, the moment-to-moment circumstances of the 
entities it supports, tracks, or models.  This includes awareness of 
the changing relationships amongst entities. In exploring the de-
centralization of ActiveCampus into a federation of cooperating 
peer servers, our first challenge was efficiently detecting relation-
ships amongst users.  In the federated model, each ActiveCampus 
user would be logged into a “home” server that is responsible for 
reporting (publishing) that user’s context, thus making CBPS a 
natural substrate.  An example relationship would be when a per-
son moves into the vicinity of a buddy, which should result in 
notifying them of their proximity.  This might motivate either 
person to seek the other out or contact them by instant messaging 
[8].  A more general example would be the ability of a user to 
detect when a critical mass of friends are gathering at a location. 
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The buddy relationship situation is naturally described with a 
formula1 like (XR-XW)2 + (YR-YW)2 < D2.  However, the core 
capabilities of CBPS do not allow for a subscription to compare 
event attribute values coming from two different publishers.  As a 
consequence, the subscriber must issue separate subscriptions for 
Robert’s location and William’s location.  This results in their 
location events being pushed all the way through the network to 
the subscriber, which computes their distance itself, likely learn-
ing that the friends are no where near each other.  Network cycles 
and bandwidth and subscriber cycles are wasted. 

To directly and efficiently support the detection and reporting of 
relationships, then, a CBPS system must: 

1. Enable intra- and inter-event attribute-to-attribute computations 
(e.g., to compare X and Y attributes from Robert’s position event 
with X and Y attributes from William’s position event). 

2. Enable a new event type to be advertised and subsequently 
published from within the CBPS middleware. Such an event ei-
ther aggregates attributes from other “sub-events” into a new uni-
fied event or abstractly represents the satisfaction of a relationship 
subscription like (XR-XW)2 + (YR-YW)2 < D2) in a form like 
“Robert is close to William.” 

3. Maintain state information at event brokers to support data 
aggregation.  In particular, two events contributing to an aggre-
gate event (e.g., William’s new position and Robert’s new posi-
tion) may not arrive at the same time, so an event broker will need 
to store events until all the required events are present. 

4. Suppress the propagation of sub-events at the publisher’s event 
broker if it could not satisfy an aggregate event.  Suppressing at a 
common node can be wasteful for many broker network configu-
rations.  For example, if Robert and William are far apart, and 
moving slowly, it would be best if their respective position reports 
were not pushed through the broker network. 

5. Provide mechanisms to atomically query on, and subscribe for, 
an event. Akin to fetch-and-add, such a feature prevents race con-
ditions when the contents of a subscription depend on dynamic 
data.  For example, in adjusting a “suppression limit” based on an 
event’s current attribute value, the value could change between 
the time of query and time of subscription, causing the desired 
event to not be propagated, thus missing a key state transition. 

Of course, in satisfying these requirements we desire that the 
transparency and separation of concerns provided by CBPS, such 
as the decoupling of producers and consumers, be retained. 

2.2 CBPS State of the Art – Related Work 
A growing number of CBPS systems are being developed with 
extensions on the core set of capabilities described above.  Gry-
phon [11] and Solar [3] are exemplary. 

Gryphon aims to improve overall system performance of CBPS 
with stateful, relational subscriptions where the middleware be-
comes responsible for computing derived state instead of the end 
client [11].  Relational subscriptions enable aggregating events 
from multiple publishers in the form of a composite event.  Such 
an event can be filtered based on the attributes of two publishers 

                                                                 
1 Subscripts are used here to denote separate events from possibly 

different publishers. 

{(X1 < 10) and (Y2 > 30)}, thereby suppressing the event at the 
1stCN. 

Their approach is akin to a database view across multiple tables, 
say from multiple publishers.  A “publisher topic is a ‘source’ 
relation representing an event history, where each tuple corre-
sponds to an event.”  A “subscription is a request to receive in-
cremental updates to a derived view defined by a relational ex-
pression on one or more base relations or other views.”  The ca-
pabilities for the SQL-like behavior are directly built into the 
overlay network.  The middleware capabilities “incrementally 
maintain the states and deliver the updates.” [11] 

In the Gryphon approach, the proximity of Robert and William 
would be computed by specifying a join of their location views at 
the 1stCN, followed by a select on the one-row table with a predi-
cate like {(XR-XW)2 + (YR-YW)2 < D2}.  The authors acknowledge 
that squelching at the 1stCN is inadequate, and proffer an idea 
they are working on called “selective curiosity”, which makes the 
aggregation node responsible for pushing event reduction clues 
back to the information providers. 

Solar extends CBPS with operators to filter, aggregate, or trans-
form event data [3]. “Applications describe their desired event 
stream as a tree of operators that aggregate low-level context in-
formation published by existing sources into the high-level con-
text information needed by the application.” [4]    The Solar mid-
dleware, with the help of a centralized manager node, deploys a 
subscription in the form of Java operator objects, placing the ob-
jects to maximize sharing subscribers and minimize network traf-
fic (i.e., placement at 1stCNs).  In essence, the result is an acyclic 
dataflow program.  In the Solar approach, the proximity of Robert 
and William would be determined with operators that aggregate 
their location events into a single event at the 1stCN, transform it 
into distance, and then apply a filter for the distance constraint. 

Gryphon and Solar provide essential characteristics for context-
aware computing, both increasing expressiveness and increasing 
efficiency through operator re-use. With either of these systems, 
subscribing to the proximity relationship requires the 1stCN to 
separately subscribe to all position reports from each subject of 
interest, {NAME=Robert and X=ANY and Y=ANY} and 
{NAME=William and X=ANY and Y=ANY} in order to aggre-
gate, evaluate, and report on the satisfaction of the relationship. 
As shown in Figure 1, the location reports are passed through and 
processed at every intermediate event broker until the common 
 

 

 

 

 

 

 

Figure 1. Relationship detection requires all data to pass 

through all event brokers until a common node is reached.  

Letters indicate processing occurring at the event brokers. 
Diamonds are used to represent publishers; circles are event 

brokers; and hexagons are subscribers or subscriber based 

processing.  The solid lines represent overlay network con-

nectivity while the dashed arrows represent event movement. 
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A: Sub: {NAME=Robert & X=ANY & Y=ANY} 

B: Sub: {NAME=William & X=ANY & Y=ANY} 

C: Sub: { (XR – XW)2 + (YR – YW)2 < 102  } 
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node receives and processes the event to determine satisfaction of 
the relationship.  This succeeds in off-loading the subscriber, but 
still loads the network with O( |events| ) event traffic and process-
ing at every intervening node between the publishers and the 
1stCN, and additionally burdens the 1stCN with frequent (and 
perhaps fruitless) proximity computations. 

3. FULCRUM 
“Give me a place to stand and a lever long enough and a fulcrum 

on which to place it, and I shall move the world.” – Archimedes, 

220 B.C. 

These costs are unacceptable in context-aware environments, 
where there can be thousands of publishers (devices) publishing 
events at high rates.  Ideally, the middleware would permit sup-
pressing location events at their entry nodes, only forwarding 
those that could satisfy a derived relationship event. 

Fulcrum is a context-aware publish / subscribe (CAPS) system 
that employs open implementation to give subscribers the ability 
to efficiently and transparently subscribe to relationships.  That is, 
in addition to the ability to subscribe to relationships like Gry-
phon and Solar, the subscriber can specify an implementation 

strategy for the subscription. Because the subscriber is specifying 
the implementation strategy, the strategy can exploit domain-
specific properties that the middleware could not know. 

An implementation strategy is nothing less than a distributed algo-
rithm for evaluating the subscription.  The strategy itself is im-
plemented with publish / subscribe amongst the brokers in the 
network. A strategy is kept separate from a subscription through a 
strategy design pattern and a factory for instantiating the subscrip-
tion-strategy pair [6].  The separation provides several benefits, 
including the ability to: 

1. parametrically substitute different implementation strategies 
for different environments; 

2. permit non-expert programmers to specify an implementation 
strategy written by an expert programmer; 

3. prototype an application’s behavior by writing only its sub-
scriptions, followed later by declaratively attaching an appro-
priate optimizing implementation strategy; 

4. reuse an implementation strategy for subscriptions that are 
similar in structure. 

Because the subscriber is specifying the implementation strategy, 
the strategy can exploit domain-specific properties of the sub-
scription that the middleware could not know.  Consider our 
buddy proximity relationship.  The first domain-specific property 
of note is that the given rate of location reporting is only a sam-
pling of the actual locations.  Second, if Robert is reported at 
location A and next at B, then he must have traveled a continuous 
line between those points, with time progressing smoothly over 
the interval.  Third, there are a range of expected rates of travel: 
people walk at about 5 km per hour, travel in cars at 100 km per 
hour, and fly in planes at 800 km per hour.  Fourth, the use of the 
proximity subscription itself, in our case, is to enable striking up a 
conversation.   

How might these be used to improve efficiency?  The distance of 
two people (200 km), compared against their current rate of 

movement (5 km per hour) implies that they could not be proxi-
mate for 20 hours.  Hence, an implementation strategy could sup-
press location reports at an entry node until that time has passed, 
either’s rate of movement changes, or either moves half the origi-
nal distance between them. 

3.1 Implementation Approach 
Fulcrum is built on portions of Siena and Jabber [9].  To support 
relationship subscriptions and implementation strategies, Fulcrum 
employs active subscriptions–deployed code in the form of Javatm 
class files.  They are integrated with Siena’s subscription and 
notification components.  To permit interoperation with the 
UCSD ActiveCampus project [7], the overlay network is built on 
Jabber using the XML-based J-XMPP java client [10].  This al-
lows Fulcrum to leverage the presence features of XMPP (“Robert 
is logged in”), enhanced with location information as detected 
though ActiveCampus.  Support for active subscriptions and the 
Jabber integration required replacing Siena’s event brokers with 
our own.  Fulcrum consists of 81 Java classes, comprising about 
7,000 non-comment source lines of code. 

3.2 Event Broker Architecture 
Active subscriptions may take on the role of publisher, subscriber, 
or both.  For example, our proximity subscription subscribes to 
the location events of two people and publishes a new event re-
garding proximity.  In order for multiple such subscriptions to 
aggregate and transform events, there is a need for statefulness 
and multi-threading in the event broker.  Our broker architecture 
is shown in Figure 2. There are two significant pieces as follows: 

1. The primary event broker (large circle) and its associated mes-
sage (event) buffer are like those from traditional CBPS systems. 
The primary event broker handles the normal advertisement, sub-
scription, and publication processing.  It forwards arriving events 
to the appropriate active subscription or another event broker.  It 
also provides additional hooks to plug-in active subscriptions. 

2. A wrapper (smaller box) provides both a sandbox and support-
ing interfaces for an active subscription (hexagon).  It provides a 

miniature broker environment, including a message buffer and 
event router (small circle). 

3.3 Subscription Management 
As part of our support for suppressing events at entry nodes, we 
make a distinction between local and global subscriptions.  A 
global subscription is the normal subscription found in CBPS 
systems.  We added local subscriptions to enable an active sub-
scription to live only immediately adjacent to a data producer of 
interest and not have its subscription be delivered to remote pub-

 

 

 

 

 

 

 

 

 

Figure 2. Event broker high-level architecture. 
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lishers that might generate similar information.  These are used 
only by implementation strategies, not by normal subscriptions. 
Both local and global subscriptions receive any data that arrives at 
a broker node.  However, when a new publisher advertisement is 
received then only global subscriptions are propagated to broker 
reporting advertisement. 

3.4 Active Subscription Deployment 
Two things need to happen in deploying an active subscription.  
One, similar to Siena subscriptions, the relationship subscription 
needs to be deployed to every broker in the network between the 
subscriber and contributing publishers.  Two, the implementation 
strategy needs to be instantiated at the appropriate brokers.  Ful-
crum manages deployment of an active subscription as follows. 

First, the active subscription is packaged to appear as just its rela-
tionship subscription, that is, with the implementation strategy 
hidden inside it.  Consequently, the existing subscription routing 
mechanisms are used. In particular, based on the registered adver-
tisements at each event broker, the subscription follows the path 
for every advertisement of interest upstream until the edges of the 
network are reached, with the subscription being left at each in-
termediary node for forwarding purposes. 

Second, the subscription’s implementation strategy is evaluated 
(instantiated) at each node.  For non-entry nodes, the strategy is 
simply discarded, and the subscription merely functions to for-
ward events back to the subscriber.  For each entry node, instanti-
ating the strategy results in the following actions: 

1. The strategy determines which events are to be subscribed to 
with local subscriptions.  Our proximity subscription {(XR – XW)2 
+ (YR – YW)2 < 102} implies two constituent subscriptions: 

A. {NAME=Robert   & X=ANY & Y=ANY} 
B.    {NAME=William & X=ANY & Y=ANY} 

At entry nodes advertising Robert’s location, the strategy makes a 
local subscription for A.  At entry nodes advertising William’s 
location, the strategy makes a local subscription for B.  This con-
figuration is shown in Figure 3a2. Note that, after this step, the 
entry node for Robert (or William) will have insufficient data 
about William’s (Robert’s) location to evaluate the relationship 
subscription. 

2. The strategy advertises new event types and makes additional 
global subscriptions that exchange data with the same strategy on 

                                                                 
2 The configuration with a third party subscriber was chosen to 

simplify the presentation, to demonstrate the possibility, and to 
avoid shortcut attempts when one buddy is also the subscriber. 

the other entry nodes.  The data from this sub-protocol is used in 
two ways.  One, to evaluate the relationship subscription to possi-
bly forward an event to the originating subscriber.  Two, to col-
laboratively schedule the evaluation of the relationship subscrip-
tion.  That is, the strategy is normally evaluating ancillary sub-
scriptions locally and only occasionally forwarding data between 
the entry nodes.  This is how efficiencies are achieved with rela-
tional subscriptions. An example sub-protocol is shown in Figure 
3b (described in full in the next subsection), and the relationship 
evaluation itself is shown in Figure 3c. 

Note that the strategy running on each entry node does not need to 
know where the other strategies lie.  They merely advertise their 
new events, and the others subscribe to them.  The middleware 
marries them in the normal publish / subscribe fashion. 

Using buddy proximity explanation, the next section gives a de-
tailed explanation of how Fulcrum can be used to achieve efficient 
yet transparent context-aware publication / subscribe.  Section 5 
describes an experiment using Fulcrum to track buddy proximity 
for the ActiveCampus system, revealing the efficiencies that are 
possible with this approach. 

4. EXAMPLE – BUDDY PROXIMITY 
Evaluating relationship subscriptions at entry nodes is a necessary 
but not sufficient condition for the most efficient evaluation of 
relationship subscriptions.  In particular, an efficient distributed 
algorithm for detection of the relationship must be implemented at 
the entry nodes.  This section describes such an algorithm and its 
implementation for the proximity of two buddies.  Interestingly 
the same approach is the most efficient solution to multiple buddy 
relationships, but best implemented in a single active subscription. 

The essential idea is that the proximity of two distant entities can-
not be achieved unless points between them are crossed:  Robert 
cannot be co-located with William unless one or both of them first 

 

 

 

 

 

 

 

 

Figure 3a. Only entry nodes receive original events. 

 

 

 

 

 

 

 

 

Figure 3b. A sub-protocol is used to minimize updates, e.g., 

O( lg distance ), between collaborating active subscriptions. 

 

 

 

 

 

 

Figure 3c. Only a single event representing the satisfaction of 

the relationship is passed down to the subscriber. 
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reduces the distance separating them in half, and so on.  In our 
Range-Ring Strategy, these halfway points are the only events 
communicated between collaborating active subscriptions at the 
entry nodes.  All other event traffic can be suppressed. 

Returning to our example of Robert and William, the idea is that 
when the initial active subscription is deployed, the distance be-
tween the two is computed by the strategies running at William’s 
node and Robert’s node.  Each strategy then computes a “range 
ring” around its user’s position (Figure 4a), that if crossed by the 

user, results in the strategy publishing the user’s location and 
computing a new range ring (Figure 4b).  Because we are inter-
ested in whether either person crosses half the distance, any newly 
computed range ring is sent to the other by publishing a range ring 
event.  When a user leaves its ring by approaching its buddy, the 
range rings shrink; when the user leaves its ring while receding 
from its buddy, the range rings grow. 

To preserve consistency, a couple of things are necessary.  First, 
the user’s new location and the new range ring are published as an 
aggregate event. This permits the receiver to detect what data was 
used in computing the range ring. Second, when the other user’s 
strategy receives the event, the strategy not only modifies its sup-
pression filter to the new range, but also runs the filter against the 
user’s current location to see if the user has already moved be-
yond the new ring.  If so, it publishes a new location/range-ring 
event to preserve the invariant that users are inside range rings. 

In the case where one user moves directly towards the other, who 

is stationary, each successive range ring would be half the size, 
representing the fact that a smaller movement is required to bring 

the two into proximity. For this scenario, with initial separation S 
and proximity bound of D, there are log2( 2(S-D) ) range ring 
events sent before the proximity event itself is sent.  In a scenario 
where both users are moving at velocity V and remain at a con-
stant separation S, the range-ring event rate is 2V/(S-D). The 
publication rate of location events does not matter in either sce-
nario because only the significant events—those that represent 
leaving a range ring—are sent.  Thus, the algorithm has a desir-
able “pay for what you use” property, and its suppression of loca-
tion events has greater value as the reporting rate of the deployed 
positioning technology increases. 

We present the following scenario for the algorithm.3 The sce-
nario assumes that the publishers for Robert and William are al-
ready advertising their events.  Figures 1 and 3a-c diagram the 
overlay network, publishers, and subscribers, while Figures 4a-d 
diagrams the algorithm’s model of the users’ behavior.  

4.1 Scenario 

4.1.1 Deployment: 
1. To instantiate the active subscription for the proximity relation-

ship f(A,B,D) = {(A.x-B.x)2 + (A.y-B.y)2 < D2}, Subscriber 1: 

a. binds A, B, and D to Robert, William, and 10 respectively; 
b. identifies constituent subscription filters for Robert’s and 

William’s location as shown in Section 3.4; 
c. selects the Range-Ring Strategy. 

2. Fulcrum pushes the active subscription through the network to 
the event brokers adjacent to PubR and PubW respectively 
where it is instantiated as ASRW and ASWR respectively.  Also, 
as a side effect of normal subscription deployment, the relation-
ship subscription filter is left at each intervening node. 

3. ASRW  publishes the range-ring event type {Msg=RangeRing, 
_name=A.name, _x=ANY, _y=ANY, range=ANY}, and sub-
scribes to the event {Msg=RangeRing, _name=B.name, 
_x=ANY, _y=ANY, range=ANY}.4 

4. ASWR  publishes the range-ring event type {Msg=RangeRing, 
_name=B.name, _x=ANY, _y=ANY, range=ANY} and sub-
scribes to the event {Msg=RangeRing, _name=A.name, 
_x=ANY, _y=ANY, range=ANY}. 

Steps 3 and 4 are setting up a sub-protocol between Robert’s and 
William’s entry nodes to efficiently share each other’s location, as 
outlined in the following.  The active subscription uses the lexi-
graphically smaller named instance to report success to avoid a 
race condition that would otherwise lead to two notifications. 

4.1.2 Runtime 
5. PubR publishes Robert’s position, which is received by the 

adjacent entry broker and handed off to ASRW only.  ASRW rec-
ognizes this as the first event and publishes a range ring event 
{Msg=RangeRing, _name=A.name, _x=A.x, _y=A.y, 

                                                                 
3 The full algorithm and its proof of correctness are beyond the 

scope of this paper. 
4 Note that an underscore has been prepended to the attribute 

names that overlap with those of location events.  This is to pre-
vent subscribers to user location events from getting range ring 
events. A general solution to this problem would employ a 
scoping mechanism like namespaces. 

 

 

 

 

 

 

 

 

 

 

Figure 4b. Range-rings are reset when a subject moves out-

side its assigned area.  New range-rings have solid lines. 

 

 

 

 

 

 

 

 

Figure 4a. Range-Ring Strategy creates range rings sepa-

rated by desired proximity and suppresses all events until 

one buddy moves at least half the distance, such that the po-

tential for the proximity relationship to be satisfied exists. 
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range=MAXINT}, ensuring it will not report again until it re-
ceives information about William). 

6. ASWR receives the range ring event from ASRW  and saves it. 

7. PubW publishes William’s position, which is received by the 
adjacent entry broker and handed off to ASWR only.  ASWR 
computes the distance between the two, and publishes the range 
ring event {Msg=RangeRing, _name=B.name, _x=B.x, _y=B.y, 
range=(distance-D)/2)}. 

8. ASRW receives the range ring event from ASWR, saves the data, 
and takes the range ring as its own.  At this point Robert and 
William both now have range rings as shown in Figure 4a. 

9. PubR and PubW continue to generate location events that are 
processed by ASRW and ASWR until such time as either Robert 
or William exits the assigned range ring. During this period, 
neither strategy is notified of the other’s location, due to the 
event suppression imposed by the range ring strategy. 

10. William moves outside the ring first, following the arrow on 
the right in Figure 4a. PubW thusly reports William’s position; 
ASWR receives the event and recognizes it is outside the range 
ring.  (The formula for the range-ring test is coincidentally the 
same as that for proximity.)  Before computing a new range 
ring, it checks whether the proximity relationship itself has 
been satisfied.  In this case, it has not. It then computes a new 
range ring based on William’s current location and the loca-
tion it has saved for Robert, and sends it as an event.  

11. ASRW receives and saves range ring event from ASWR, and 
takes the range ring as its own. Robert and William both now 
have range rings around their last reported locations, as shown 
in Figure 4b.  Even though Robert has moved (as shown on 
the left in Figure 4a), because that location had been sup-
pressed, ASRW establishes the new range ring around the posi-
tion it last published.  This ensures that ASRW and ASWR have 
a consistent view of each other’s state. 

12. Location events continue to be suppressed until William again 
moves outside the range ring, as shown in Figure 4b by the 
second arrow on the right. Robert in the meantime has fol-
lowed the second arrow on the left.  PubW publishes William’s 
position; ASWR receives the event and recognizes the location 
as outside of the range ring.  As in step 10, a new range ring is 
computed and published as an event, in effect creating the 
smaller range rings shown in Figure 4c. 

13. ASRW receives the event data with the new range ring. This 
time, it recognizes that Robert’s most recent location is out-
side the smaller range ring that ASWR created for it.  If taken 
as-is, ASRW would never see Robert leave the ring. Conse-
quently, it computes a new range ring and sends it as an event, 
creating the small range rings in Figure 4d. 

14. This pattern repeats until the proximity relationship is satis-
fied, at which time ASRW (the smaller named applet) publishes 
the proximity event, which is routed back to Sub1.  

4.2 Discussion 
In summary, active subscriptions replace numerous user location 
events with a few self-regulating range-ring events, thus substan-
tially reducing the event traffic for computing buddy proximity. 

The use of range rings to indicate when to next publish positional 
information is only one possible implementation strategy.  We 
could have identified the perpendicular line between the two posi-
tions and then created a pair of parallel lines 5 meters on either 
side of the center as shown in Figure 5.  Then the active subscrip-

tions would monitor for events revealing that their subject has 
crossed the line.  Again the positions and distances would re-sync.  
If one of the actors was known to move faster than the other, the 
parallel lines or the range rings could be skewed in position or 
size to account for the additional context. 

If a subscriber wishes to use the same concept of proximity, but 
across different dimensions, such as temporal or financial, then 
perhaps an existing strategy could be used.  Consequently, a li-
brary of strategies could be a useful resource in an open publish / 
subscribe system. 

5. EXPERIMENTAL EVALUATION 
In theory, the Fulcrum open implementation approach permits 
users to apply domain knowledge and evaluate context-aware 
relationships at entry nodes, while suppressing useless events. 
However, the efficiencies achieved by the Fulcrum approach are 

 

 

 

 

 

 

 

 

 

 

Figure 4c. Updates use most recently reported position of 

each subject, resulting in concentric rings for slow movers. 

 

 

 

 

 

 

 

Figure 4d. Range-rings are reset when a subject is discovered 

outside a newly assigned area. 

 

 

 

 

 

 

 

Figure 5. Parallel-line strategy bisects space 
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dependent on properties of the supported applications, the way 
people use them, the state of the underlying technology, and the 
structure of the event broker network. 

This section describes an experiment of Fulcrum supporting a 
federated architecture for ActiveCampus and compares those re-
sults to the basic and enhanced CBPS approaches.  We perform 
this evaluation in two parts.  First, how much suppression of 
original events does Fulcrum achieve? Second, what overall effi-
ciencies are achieved? 

5.1 Experiment 
ActiveCampus user positions are automatically generated via 
triangulation based on 802.11 signal strength and automatically 
reported to the system.  On ActiveCampus’s “buddy page”, the 
user display shows all buddies with an indicator of nearby or far, 
mirroring the proximity relationship that we have used in our 
examples.  Consequently, we took a week’s worth of data from 
ActiveCampus and “replayed” it through Fulcrum, using a con-
servative broker configuration. 

5.1.1 Setup 
The ActiveCampus test data is comprised as follows: 

        643 users (anonymized for privacy). 
     2,165 buddy relationships 
 604,800 seconds = 168 hours = 1 week 
 1-6 events per logged-in user per minute 
 360,067 location reports 

The overlay network was configured with 5 event broker nodes in 
a crossbar configuration with one internal “routing” node (Figure 
6).  Such a configuration might be used geographic coverage (e.g., 
one node per city plus the crossbar) or to mediate different com-

mercial providers (e.g., AIM, MSN, ICQ, and Yahoo connected 
through a crossbar).  Different configurations would change the 
number of hops that an event has to travel.  This configuration has 
a maximum hop count of 2, minimizing the penalty for an event 
not being suppressed.  

The 643 users were randomly distributed across the 4 edge bro-
kers, resulting in 149, 158, 165, and 171 users at each respective 
node.  Each user was configured as a publisher of its location as 
well as a subscriber to the proximity of each buddy.  

This configuration resulted in the distribution of proximity sub-
scriptions as shown in Table 1.  Users attached to node 0 have 
proximity relationships with the number buddies on nodes 0 to 3 
as 125, 155, 165, and 112 respectively.  This resulted in 2,165 
active subscriptions being deployed. Each was instantiated on two 
nodes, yielding 4330 instances. 

 

Nodes 0 1 2 3 
0 125 155 165 112 
1 131 140 167 115 
2 125 171 224 126 
3 85 110 122 92 

Table 1. Proximity relationship distribution. 

5.1.2 Results 
Of the original 360,067 location reports, 11,955 were associated 
with users not participating in a buddy relationship, leaving 
348,112 location reports that were subject to the proximity sub-
scription. 

Many users were not logged in to ActiveCampus at the same time 
as their buddies during the one-week period.  Of the 2,165 active 
subscriptions, then, only 1,028 received data from both buddies.  
This means, effectively, that the 348,112 location reports were 
concentrated on half of the users.  The range ring strategy resulted 
in 57,348 published range-ring events and 4,626 proximity rela-
tionship events (i.e., reports of a buddy moving into proximity) – 
16.5% and 1.3% of the original event count respectively, for a 
cumulative reduction of 82%. The breakdown of event reduction 
for each user’s buddy is shown in Figure 7. 

Comparing the number of original events to the number resulting 
from the active subscriptions yields an average event savings of 
82% (a factor of 5.6).  The average savings factor does not tell the 
whole story, however.  Due to the centralized architecture of Ac-
tiveCampus at the time of data capture, user events were rate lim-
ited to 1 to 6 events per minute.  In the wild, it is not unreasonable 
to expect 1-second (standard GPS reporting rate on naval ships) 
or better update rates – a 10-times increase.  Because the number 
of range-ring events is based on distance, not the number of re-
ports, the average event savings factor would then be 56.  Also, 
user activity plays a significant role in event reduction as shown 
by a few sample data points displayed in Table 2.   

User Activity # orig events # range ring events 
Stationary 22,657     6 
Stationary 11,743     2 
Mobile   1,008 127 
Mobile   4,746 145 

Table 2. User activity affects event reduction. 

In many cases we find that users are relatively stationary.  Their 
usage model is to go somewhere, turn their device on, remain in a 

 

 

 

 

 

 

Figure 6. Crossbar event broker overlay network. 

 

Figure 7. Range-ring events generated per original event. A 
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confined space for a time, and finally to turn off their device and 
repeat the cycle.  Thus, almost all events are suppressed at the 
source.  Conversely, when people are in motion, there is usually 
much less suppression because buddies frequently exit their as-
signed range rings yet seldom walk directly toward each other. 

5.2 Analysis 
Although we have achieved an 82% reduction in events, any effi-
ciency gained must be evaluated from a systems perspective.  In 
particular, the question is how much processing the whole system 
has to perform for all the events communicated. 

Due to difficulties in running live Siena, Gryphon, and Solar 
CBPSs on the ActiveCampus data, we measured system efficien-
cies in terms of analytically accessible properties. The core costs 
are the processing of an event at an event broker and any subse-
quent forwarding of the event through the broker network.  We 
use the number of hops per original event, or event hops, as our 
common unit of measure to evaluate the efficacy of Fulcrum.  We 
discuss the cost per hop in the next section. 

To simplify the calculation of effectiveness we assume a uniform 
distribution of publishers, subscribers, and active subscriptions 
across all edge nodes.  To verify that this simplification would not 
bias our results, we compared Fulcrum’s empirical aggregate hop 
count based on the random distribution to the analytically derived 
one.  The empirical aggregate count based on the configuration in 
the previous subsection is 94,334 hops.  Analytically, it computes 
as 94,260, less than 0.1% smaller.  We have confidence, then, that 
the analysis here is accurate. 

Basic CBPS like Siena requires the subscribers to evaluate all 
relationships.  Consequently, ¼ of the events coming into entry 
nodes and are immediately returned to subscribers attached to the 
same node, resulting in 1 event hop apiece (we only count proc-
essing and output, not the input).  ¾ of the events will come into 
an entry node and get passed to the center node, on to one of the 
remaining three edge nodes, and finally to the subscriber, yielding 
3 event hops.  The subscriber itself evaluates the relationship 
requiring 0 event hops.  On average this is 

¼ * 1 + ¾ * (3 + 0.0133 * 0) = 2.5 event hops. 

Aggregation enhanced CBPS like Gryphon or Solar allows rela-
tionships to be computed at the first common node (1stCN).  For 
the given broker configuration, ¼ of the events come into an entry 
node that also acts as a common node and the proximity relation-
ship “success” event can be generated and sent to the subscriber 
in 1 event hop.  ¾ of the events come in through their entry nodes 
and are passed to the center node that is consequently the first 
common node, yielding 1 event hop.  Success events generated at 
the center node must be communicated with the subscriber for 2 
more event hops.  On average, this is 

¼ * (0.0133 * 1) + ¾ * (1 + 0.0133 * 2) = 0.773 event hops. 

Open-implementation CAPS like Fulcrum’s reduces original 
events into potentially significant events at the entry nodes.  In 
this case, ¼ of the events come into an entry node that possesses 
both parts of an active subscription, yielding 1-hop success 
events.  ¾ of the events come into an entry node hosting an active 
subscription that collaborates with a distant entry node.  Empirical 
data from the previous sub-section shows that 6.07 original events 
will become one collaboration event (range ring).  These events 

travel through the center node and out to an associated active 
subscription.  This yields 0.165 event hops for such events.  Suc-
cess events are then passed to the subscriber, which half the time 
will be local (1 hop) and the other half will be remote (3 hops) for 
an average of 2 hops.  The net event hops per original event are 

¼ * (0.0133*1) + ¾ ( 0.165 * 2  + 0.0133 * 2 ) = 0.27 event hops. 

When location sensor reporting is increased to 1 report per sec-
ond, a 10-times increase, then basic CBPS will experience a 10x 
increase in location events at 2.5 event hops apiece.  Gryphon and 
Solar would experience a 7.5 times increase in location events to 
the 1stCN, and maintain their 0.773 event-hop count.  In Fulcrum, 
because forwarded events are driven by user behavior, not event 
rate, the overlay network sees no increase in traffic, which yields a 
corresponding 10-times effective suppression, resulting in 0.027 
event hops per original event.  Solar could achieve similar reduc-
tions by adding a transformation operator that rate-limits original 
location events, but would sacrifice the added accuracy of the 
increased reporting rate unless the rate-limiter made inferences 
over all the events. 

6. DISCUSSION 
Filtering is the lifeblood of CBPS.  Our ability to reduce event 
traffic by filtering relational events at entry nodes is our key effi-
ciency measure.  We now discuss some of the tradeoffs that arise 
in achieving this reduction. 

One concern is the large number of subscriptions that might be 
deployed as Java code. For our experiment, there were 2,165 rela-
tionship subscriptions for 643 users with 3.37 average buddies.  It 
should be noted, first of all, that there is intrinsic sharing.  The 
Java class loader only loads unique classes, so only the first such 
subscription at a node results in transmitting code and configuring 
the class.  Second, open implementation allows the subscriber to 
achieve higher-levels of sharing by plugging in a new strategy.  
For example, a user could attach a strategy that tracks multiple 
buddies for a user, resulting in a sharing of range rings and event 
subscriptions behind the scenes. 

Another question is whether subscribers could, with an existing 
CBPS like Solar or Gryphon, write collaborative subscriptions 
like those realized through our open implementation approach.  
Indeed, for our example, a subscriber could put out subscriptions 
for range ring events on each publisher.  The subscriber itself 
would have to act as the clearinghouse that receives the events.  
Upon doing so, it would create new range ring subscriptions and 
retract the old ones. There are three problems. For one, this added 
level of indirection would increase the hop count unless the sub-
scriber was attached to the 1stCN.  Two, there is not a clear sepa-
ration between the relational property of interest and its efficient 
implementation, increasing complexity and reducing the opportu-
nities for reuse. Three, there is a race condition, at least with this 
straightforward adaptation. Our algorithm avoids the race condi-
tion by updating the existing subscription on the other entry node, 
and before doing so checks that the other user has not already 
moved outside the new range ring.  This kind of atomic check is 
not possible in normal CBPS when placing a new subscription; a 
subscription filter simply waits for the arrival of the next event. 

Although hop counts are reduced by our approach, event process-
ing is slower than in a basic CBPS like Siena.  In providing the 
ability to perform attribute-to-attribute comparisons, efficient 
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structuring of subscription evaluations by event brokers (e.g., 
exploiting overlaps, like X > 10 is subsumed by X > 5) is ham-
pered. Solar and Gryphon share this problem. To mitigate this, we 
take a cue from database query optimization and reorganize sub-
scriptions to evaluate the “normal” part of a subscription first, and 
only perform the attribute-attribute comparisons if it succeeds. 
More aggressive optimization is a subject of future work. It 
should be noted however, that reducing the hop count through 
open implementation is scalable with respect to increasing sensor 
reporting rate, whereas as basic CBPS is not. 

The Java code of an active subscription could be inefficient, 
buggy, or malicious.  This problem is mitigated by sandboxing the 
computation in a separate thread and using mechanisms akin to 
Jabber’s karma, which reduces the resources available to “greedy” 
subscriptions. Still, the question remains why a publisher would 
run code for a subscriber.  In the deer proximity example, the deer 
do not get a say.  For buddy proximity, they have explicitly agreed 
to trust each other through a mutual buddying subscription. 

7. CONCLUSION 
The commoditization of networked sensors is fueling the emer-
gence of internet-based context-aware applications. Content-based 
publish / subscribe (CBPS) systems are a natural substrate for 
supporting context-aware application development because they 
provide for separation of publishers and subscribers, efficient 
event distribution, extensibility, and scalability.  Yet, the CBPS 
notion of subscribing to a publisher’s content does not capture the 
data relationships across publishers that drive context-awareness.  
Recent advances in aggregation-enhanced CBPS permit subscrib-
ing to these relationships, but the relationships are computed at 
intervening nodes in the CBPS middleware, resulting in poten-
tially large amounts of raw data being routed to those nodes. 

The problem is that the separation of concerns afforded by the 
middleware precludes publishers’ event brokers from collaborat-
ing with subscribers and each other to implement algorithmically 
efficient application-specific context-aware inferences. It is possi-
ble to dramatically reduce the number of events processed and 
forwarded through the middleware by using open implementation 
to permit subscribers to enhance the middleware with the ability 
to deploy a distributed algorithm to where events enter the system. 
Open implementation provides for separation of subscriptions and 
implementation strategies, allowing for separate, modular devel-
opment and reuse of relationship subscriptions and implementa-
tion strategies. 

Fulcrum supports open-implementation context-aware publish / 
subscribe (CAPS).  It employs active subscriptions in the form of 
Java applets.  They are first-class entities that both subscribe to 
events and publish new events, enabling event-based collabora-
tion amongst copies of the strategy deployed where raw sensor 
events enter the system. 

We evaluated the Fulcrum approach by implementing a buddy-
proximity relationship and accompanying strategy. The resulting 
strategy’s performance is tied to the amount of user movement, 
not to the number of events reported. We then federated the Ac-
tiveCampus context-aware infrastructure and replayed a week’s 
worth of its user data. For a conservative broker network configu-
ration and current sensor technology, we found an 82% net event 
reduction and a 64% reduction in event hops compared to aggre-

gation-enhanced CBPS, which uses similar underlying technol-
ogy. These factors increase proportionally with increased report-
ing rates, naturally insulating against advances in sensor technol-
ogy. The data curve-fits to O( lg2|movement| ) expected event 
processing. 
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