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Abstract

A Hybrid Finite Difference Level Set—Implicit Mesh Discontinuous Galerkin Method for
Multi-Layer Coating Flow Problems

by
Luke Pernal Corcos
Doctor of Philosophy in Applied Mathematics
University of California, Berkeley

Professor James A. Sethian, Chair

Industrial painting operations consume significant amounts of energy, owing in part to the
individual application and curing of multiple layers of paint. Energy-efficient manufacturing
lines that co-cure (i.e., simultaneously bake) multiple film-layers have the potential to reduce
energy consumption by 30%. However, achieving a smooth, defect-free film of paint is often
the biggest technical hurdle to commercializing these energy-efficient coating systems. In
this thesis, we develop high-fidelity mathematical and numerical frameworks to model the
complex multi-physics underlying multi-layer coating flow dynamics, with applications to
the leveling of multi-layer paint films, i.e., the coupled evaporation, solidification, fluid flow,
and settling dynamics of multiple layers of liquid paint.

Our mathematical model captures a coupled set of multi-physics that includes multi-phase
quasi-Newtonian fluid dynamics; the transport, diffusion, and mixing of multiple dissolved
species; mass transfer and interface recession from solvent evaporation; intricate interfacial
forces of surface tension and Marangoni stresses on paint-gas and paint-paint interfaces
and their coupling; and substrate roughness and the pull of gravity. Using this model, we
study the highly complex and intricate dynamics of “watching paint dry”, capturing several
experimental findings and studying the formation of Marangoni plumes and Bénard cells, the
impact of long-wave deformational surface modes on immersed interfaces, and the emergence
of the final multi-layer film profile.

This thesis presents a hybrid numerical framework for the multi-layer coating flow prob-
lem that consists of: finite difference level set methods and high-order accurate sharp-
interface implicit mesh discontinuous Galerkin methods; newly developed local discontin-
uous Galerkin solvers for Poisson problems with Robin boundary and jump conditions on
implicitly-defined domains, to capture solvent evaporation; state-of-the-art Stokes solvers
that integrate concentration-dependent rheological parameters for quasi-Newtonian interface



dynamics; high-order accurate methods to couple the transport, diffusion, and evaporation
of multiple dissolved species while also tracking interface recession; a tailored finite difference
projection algorithm that calculates surface gradients, to robustly and accurately incorporate
Marangoni stresses; and a coupled multi-physics time stepping approach that incorporates
all the different solvers at play, among a host of additional numerical algorithms. Several
components of our hybrid numerical framework are high-order accurate and the algorithm
is applicable to an arbitrary number of layers and dissolved species. Our particular imple-
mentation of the fully coupled numerical algorithm for the multi-layer coating flow problem
is 274 order accurate in space and 1% order in time. A new high-order accurate local discon-
tinuous Galerkin formulation for Stokes problems with Navier-slip boundary conditions on
implicitly-defined domains is also presented in the appendix.

The framework is designed, in part, to predict the ultimate surface roughness of the multi-
layer system; here, we apply it to a variety of settings, including multi-solvent evaporative
paint dynamics, the flow and leveling of multi-layer automobile paint coatings in both 2D
and 3D—presenting the results of a 2D parametric study performed at industrially-relevant
conditions, and an examination of “interfacial turbulence” within a multi-layer matter cas-
cade. This work revealed many of the driving mechanisms underlying multi-layer coating
flow dynamics, including: the creation, characteristics, and impact of short- and long-wave
Marangoni hydrodynamic instabilities; the impact of basecoat deformation and telegraphing
of substrate roughness on the clearcoat surface profile; conjectures concerning the role of
interfacial forces exhibited by the immersed paint-paint interface; and the overall dynamic’s
significant sensitivity to mass diffusion coefficients. The model and the developed numerical
framework presented in this thesis provide opportunities to develop new coating formulas
that can be co-cured with a single, lower-temperature bake and to identify specific features
critical to achieving a smooth paint surface.
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Chapter 1

Introduction

1.1 Coating flows

Thin liquid films covering a solid surface are ubiquitous in nature and industrial applications,
ranging from nanofluidics and the macroscale flow of lava to lacquer spin coatings for compact
discs and industrial paint lines. Understanding the coupled fluid flow and settling of multiple
liquid film-layers is of particular interest for the control and design of modern coating systems.

For example, the high energy consumption of the automobile painting industry has garnered
great interest in energy-efficient coating procedures. In typical automotive coating opera-
tions, a single film-layer (or coat) of paint is applied, the layer is then baked (or cured) in
an oven, and the process is repeated for subsequent layers. The curing stages are partic-
ularly energy-intensive; automotive coating operations use 10,000s of gigawatt-hours each
year in the U.S. alone [1], accounting for roughly 0.05% of the country’s energy usage.
Energy-efficient manufacturing lines that co-cure multiple layers of paint have the poten-
tial to eliminate curing stages and reduce energy consumption by 30% when compared to
traditional coating methods [2]. However, the final film profile must adhere to the automo-
bile industry’s high standard for paint smoothness in order to provide the proper shine and
color while also acting as a strong protective barrier. Figure 1.1 illustrates two seemingly
similar paint coatings, but on closer inspection, the letters of the eye chart on the right are
faded, the shine deadened, and the colors lack vibrancy when compared to the left. The left
is acceptable while the right is not. Achieving a smooth, defect-free film of paint is often
the biggest technical hurdle to commercializing energy-efficient multi-layer coating systems.
In current practice, controlling the flow and leveling process is achieved through chemical
means, and optimizing the process is done empirically for each new coating system. A high-
fidelity mathematical and numerical framework that captures the complex physics driving
fluid flow and leveling within the multi-layer system would provide opportunities to develop
new coating formulas that can be co-cured with a single, lower temperature bake as well
as identify specific features critical to achieving a smooth film surface, potentially leading
towards the widespread adoption of these energy-efficient coating techniques.
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Figure 1.1: Achieving a smooth paint surface is critical to the automotive industry. The crispness
of the left side is acceptable while the right is not.

The multi-layer coating flow problem has a range of coupled multi-physics, including multi-
phase non-Newtonian fluid dynamics, mass transfer and interface recession from solvent
evaporation, strong destabilizing surface forces such as Marangoni stresses, and intricate
couplings between paint films. The final paint appearance is also impacted by many addi-
tional variables, including a constantly-evolving coating rheology as solvents evaporate and
the coating cures, the orientation of pigment particles in the film, and the nature of the sub-
strate and its orientation against the pull of gravity. The interplay between the layers and
their multi-physical effects during the initial “flash” period has been shown experimentally
by PPG Industries, Inc. to significantly impact the final appearance of the film after cure.
The flash is the time, often at ambient temperature, between when the coating is applied
and the time when the coating is heated and cured.

The focus of this thesis is the development of high-fidelity mathematical models and numer-
ical methods to simulate the multi-layer coating flow problem, specifically in the micro-flow
regime during the initial flash phase. A computational fluid dynamics (CFD) model that
solves this problem must, among other aspects, accurately track interface motion and the
flow of multiple phases of quasi-Newtonian fluid; the transport, diffusion, mixing, and evap-
oration of multiple solvents; and incorporate intricate boundary conditions and couplings
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between paint layers. The complex multi-physics of the problem occur over vastly different
length and time scales. Surface roughness has an amplitude of sub-microns to microns and a
wavelength of millimeters, coating thickness is on the order of microns, and flash and cure are
on the time scale of minutes to an hour. Additionally, the framework must adequately resolve
the micro-scale solutal boundary layer dynamics crucial to capturing the Marangoni-driven
flow of the multi-layer coating problem. To accurately solve the equations of motion necessi-
tates the use of state-of-the-art high-order accurate numerical methods, and to fully resolve
the various scales involved in the problem requires the use of high-performance computing
and supercomputing resources.

The numerical methods presented in this thesis include hybrid finite difference level set
methods and high-order accurate sharp-interface implicit mesh discontinuous Galerkin (DG)
methods, newly developed local discontinuous Galerkin (LDG) solvers for Poisson problems
with Robin boundary and jump conditions on implicitly-defined domains, and a finite dif-
ference surface gradient formulation for Marangoni stress calculations, as well as extensions
of recently developed operator coarsening multigrid methods. Additionally, a new high-
order accurate LDG formulation for Stokes problems with Navier-slip boundary conditions
on implicitly-defined domains is presented in the appendix. Several components of our nu-
merical framework are high-order accurate, while other components, whose dynamics do not
require high-order methods, benefit from a simpler lower-order implementation. Our partic-
ular implementation choices lead to a fully coupled numerical algorithm for the multi-layer
coating flow problem that is 2°¢ order accurate in space and 1% order in time.

The model is designed to predict the ultimate surface roughness of the multi-layer system.
Results are presented in both 2D and 3D at industrially-relevant conditions, motivated in
part by automotive paint coating applications. A high-fidelity 2D parametric study is per-
formed to identify the key features impacting the surface profile and shows the formation of
Marangoni vortices and plumes, long-wave deformational oscillatory surface modes, as well
as structures resembling trees and flowers. Preliminary small-scale 3D results are presented,
observing the formation of Marangoni sheets along with physically-consistent hexagonal
surface patterns and Benard cells. Several exploratory studies are also performed, examin-
ing multi-solvent evaporation, a Marangoni-driven drilling phenomenon within a multi-layer
coating, and, lastly, a multi-layer interfacially turbulent matter cascade.

This work was performed in part with the Department of Energy’s HPC/Mfg program and
in collaboration with PPG Industries, Inc., who provided experimentally determined consti-
tutive laws for how the film’s rheological properties (viscosity, surface tension, etc.) evolve
over time as solvents evaporate, as well as the roughness profiles of different substrates. The
majority of the simulations were performed on the National Energy Research Scientific Com-
puting Center’s (NERSC’s) Cori supercomputer. We continue this chapter by introducing
the key physical processes present in the multi-layer coating flow problem.
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1.2 Physical background

A multi-layer coating consists of several layers of liquid paint covering a solid surface. The
motion of the paint films is intricately coupled and strong interfacial forces along the paint-
paint and paint-gas surfaces drive fluid flow, during which solvents mix between paint layers
and evaporate along the paint-gas interface, resulting in the solidification of all paint layers.
Two of the key driving forces within the multi-layer coating flow problem are mass transfer
from evaporation and Marangoni forces; these effects are discussed below. An illustration of
the physics driving fluid flow within the multi-layer coating flow problem can be found in
Figure 2.1.

1.2.1 The Marangoni effect and hydrodynamic instability

Marangoni forces are tangential surface forces brought on by surface tension gradients, most
commonly caused by variations in surface temperature or species concentration. Put simply,
fluid will flow from areas of low surface tension to areas of high surface tension since the higher
surface tension pulls on the fluid more strongly. First reported by James Thomson while
studying tears of wine [3] and later attributed to Carlo Marangoni [4], Marangoni forces
are powerful interfacial phenomena prominent in many heat and mass transfer processes,
including crystal growth [5][6], inkjet printing [7], the motion of bubbles [8], and thin film
and paint coatings [9]-[12]. The dynamics of the tears of wine phenomena can be seen
in Figure 1.2(b), where the evaporation of alcohol at the thin liquid layer along the glass
results in a higher concentration of water in that region than in the bulk of the fluid. Water
has a higher surface tension than alcohol, so wine is pulled up the glass by the Marangoni
forces, and then driven down by gravity, resulting in the tears. Figure 1.2(c) illustrates the
Marangoni effect in a similar setting, here a droplet of alcohol breaks itself apart due to the
stronger surface tension forces at its perimeter [13].

The Marangoni effect was studied by Bénard in the context of thermally-driven flows heated
from below [14], notably capturing the emergence of hexagonal-shaped circulation cells within
the fluid. These cells can be seen in Figure 1.2(a). Later, the experiments of Block [15]
and the mathematical analysis of Pearson [16] demonstrated that the flow patterns arise
due to gradients in surface tension caused by variations in surface temperature. Pearson’s
analysis shows a fundamental stationary hydrodynamic instability in thermal Marangoni
flows that produces cellular convection when the system’s dimensionless Marangoni number
exceeds a critical threshold. This became known as Bénard-Marangoni (or thermocapillary)
convection. These are short-wave Marangoni instability modes that, for thin films, have a
wavelength on the order of the film thickness [10]. Scriven and Sternling provided analysis for
the case of these instabilities arising from a species concentration-dependent surface tension
[17] and attributed the Marangoni effect as a mechanism for the spontaneous agitation of
an interface between two fluids undergoing mass transfer, known as “interfacial turbulence”
[18]. Scriven and Sternling showed the various regimes of stability for different rheological
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Figure 1.2: Examples of the Marangoni effect. (a) Hexagonal-shaped thermal Rayleigh-Bénard
cells. (b) Tears of wine. (c) Alcohol droplet scattering, figure modified from [13].

parameters, such as viscosity and mass diffusivity, and for the direction of mass transfer,
with some systems being unstable in one direction of mass transfer and stable in the reverse
direction. These short-wave Marangoni instabilities are highlighted in the experimental
results of Sherwood and Wei [19], where the transfer of hydrochloric acid from a solution
of isobutyl alcohol across an interface into water containing ammonia produces spontaneous
emulsification of the two solutions and droplets develop without the presence of any chemical
reactions. Here the Marangoni effect also accelerates the rate of mass transfer when compared
to pure diffusion, an effect first observed by Langmuir and Langmuir [20].

A second type of Marangoni hydrodynamic instability is the long-wave instability described
by Scriven and Sternling in [21]; this phenomena appears when a free surface undergoing
Marangoni-driven flow is allowed to deform. While Pearson’s analysis in [16] assumes a
flat free surface, Scriven and Sternling found that the presence of surface deformations per-
mits oscillatory long-wave instabilities for which there is no critical Marangoni number, the
strength of which is dependent on the mean value of surface tension. These modes were
examined experimentally and numerically by van Hook in the context of thermal Marangoni
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forces [22] and were found to induce significant deformation of the free surface, resulting in
areas of local depression and elevation. These long-wave oscillatory deformational instabil-
ities also exist in evaporating flows; the oscillatory nature of paint drying is described by
Overdiep in [23] and is studied numerically in the context of lubrication theory in [24][25].

The presence of both instability types is well-established in the drying of thin films of paint
[9][10][26]-[29], affecting the final paint smoothness and potentially leading to film defects,
holes, tears, and surface corrugations. For reviews on the thermal Marangoni effect, see
[6][30][31] and for reviews of the Marangoni effect specific to thin films, see [11][12][32]. The
Marangoni effect is captured within our numerical algorithm for the multi-layer coating flow
problem through the use of a tailored finite difference projection algorithm that calculates
surface gradients along a height function to high-order accuracy, presented in section 4.3.2.

1.2.2 Evaporation and mass transfer

Evaporation is an endothermic vaporization process wherein the surface molecules of a liquid
break from their bonds and transform into a gas. Evaporation causes mass to leave the liquid
phase, corresponding to a loss of volume and inducing a downward recession of the liquid-gas
interface. Within the multi-layer coating flow problem, the evaporation of solvent results
in a high solute-concentration boundary layer along the paint-gas interface, the thickness
of which depends on the solvents’ mass diffusion coefficients. The thin boundary layer,
in turn, leads to strong solutal concentration gradients along the surface, which produce
strong Marangoni forces within the system. As previously mentioned, Marangoni forces may
produce hydrodynamic instabilities [16][21], generate circulating Bénard cells [14], transport
material, and act to replenish the evaporation process [20]. Therefore within the multi-layer
coating flow problem, the degree of mass diffusion, the rate of solvent evaporation, and the
strength of the Marangoni forces are all intricately coupled. The numerical framework for
the multi-layer coating flow problem accurately handles the evaporation of multiple solvents
through the use of a newly developed high-order accurate local discontinuous Galerkin solver
for Poisson problems with Robin boundary conditions, presented in section 3.3, and captures
the corresponding interface recession via the level set method.

1.3 Previous work

A large body of work has been performed to numerically model evaporating flows, as well
as solve the associated Robin boundary problem along a moving interface. These include
arbitrary Euler-Lagrange (ALE) finite element methods [33]-[35], where the computational
mesh is deformed to align with the interface and the Robin boundary condition is naturally
handled by the finite element method’s weak formulation. Finite volume methods combined
with level set methods [36][37] and ghost fluid methods [38] have been applied to vaporizing
two-phase flows [39][40]. In this setting, boundary conditions are applied along an implicitly-
defined interface via extrapolation onto fictitious cells or nodes, with the cut-cell Robin solver
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of Papac [41] being one of the first methods for applying Robin boundary conditions within
the level set framework. Ghost-cell finite difference methods [42]-[44] have recently been
developed and applied to similar flow problems. Here extrapolation onto ghost nodes is
combined with a cell-wise calculation of the normal derivative to impose Robin boundary
conditions along interfaces implicitly defined by the level set method.

In recent years, a number of numerical studies on the Marangoni effect have been performed,
particularly in the context of thermocapillary convection. Interface tracking finite element
methods have widely been used to model the Marangoni effect within evaporating micro-
droplets [45]-[47], with these and other boundary-fitting methods [48] allowing for accurate
implementation of the Marangoni effect along surfaces with limited deformation. An al-
ternative approach is to capture the interface implicitly in a fully-Eulerian framework. For
example, a common technique used in the volume of fluid (VOF) [49][50] and level set frame-
works [51]-[53] is to apply a diffuse-interface approach, whereby interfacial jump conditions
are replaced by locally-smoothed Dirac delta forcing terms added to the right-hand-side of
the Navier-Stokes momentum equations. Another notable work is that of Kollner et al. [54],
which examines the behavior of short-wave solutal Marangoni instabilities and the onset
of interfacial turbulence using pseudo-spectral methods along a fixed flat interface. Their
work, in collaboration with experiments [55], classifies the various complex patterns arising
from short-wave Marangoni instabilities into different hierarchical spatial structures, includ-
ing associated merging/coarsening processes. These results were replicated in the work of
Yiantsios [35], in which an ALE finite element method captures the formation and merger
of solutal Marangoni plumes/roll cells during the drying of polymer solutions.

1.4 New contributions

This thesis presents a new multi-physics mathematical framework tailored to multi-layer
coating flows, in combination with a hybrid numerical framework consisting of finite differ-
ence level set methods and high-order accurate sharp-interface implicit mesh discontinuous
Galerkin methods. Our mathematical model captures a coupled set of multi-physics that
includes multi-phase quasi-Newtonian fluid dynamics; mass transfer and interface recession
from solvent evaporation; and intricate interfacial forces of surface tension and Marangoni
stresses. The numerical methods developed in this work include local discontinuous Galerkin
solvers for Poisson problems with Robin boundary and jump conditions on implicitly-defined
domains, to capture solvent evaporation; a tailored finite difference projection algorithm that
calculates surface gradients, to robustly and accurately incorporate Marangoni stresses; and
a coupled multi-physics time stepping approach that incorporates all the different solvers
at play. Additionally, the numerical framework uses state-of-the-art Stokes solvers that
integrate concentration-dependent rheological parameters for quasi-Newtonian interface dy-
namics. Using this model and numerical framework, we capture several experimental findings
and study the formation of Marangoni plumes and Bénard cells, the impact of long-wave
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deformational surface modes on immersed interfaces, and the emergence of the final multi-
layer film profile. Parts of this thesis have been adapted from the following jointly-authored
article, currently under review:

e L. P. Corcos, R. I. Saye, & J. A. Sethian, A hybrid finite difference level set—implicit
mesh discontinuous Galerkin method for multi-layer coating flows, Journal of Compu-
tational Physics

The presentation here includes an expanded discussion of the physics of multi-layer coat-
ings, our hybrid numerical framework, and of the LDG Robin solvers, as well as additional
numerical studies. Included are studies on multi-solvent evaporative paint dynamics, the
flow and leveling of multi-layer automobile paint coatings in both 2D and 3D—presenting
the results of a parametric study performed at industrially-relevant conditions, the forma-
tion of tree-like Marangoni plumes, and an examination of interfacial turbulence within a
multi-layer matter cascade. Through the developed mathematical model and accompanying
numerical framework, this work revealed many of the driving mechanisms underlying multi-
layer coating flow dynamics. We also present a novel high-order accurate LDG method for
Stokes problems with Navier-slip boundary conditions on implicitly-defined domains in the
appendix.

1.5 Outline

The outline of this thesis is as follows: In Chapter 2, we introduce the relevant background
information for the multi-layer coating flow problem, including the domain of interest, the
equations of motion, and a brief description of the level set method. In Chapter 3, we
describe discontinuous Galerkin methods (DG) and operator coarsening multigrid methods
for Poisson problems with Robin boundary and jump conditions. In Chapter 4, the hybrid
numerical methods for solving the multi-layer coating flow problem are presented, including
the results of a convergence study. The results of our simulations of multi-layer coatings are
shown in Chapter 5. In Chapter 6, we conclude the discussion of the multi-layer coating
flow problem and examine future directions. In Appendix A, an LDG method for Stokes
problems with Navier-slip boundary conditions is presented. The rheological parameters used
in the numerical simulations can be found in Appendix B. Additional images of evaporative
Marangoni flow are shown in Appendix C.
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Background
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Figure 2.1: The two-layer coating flow problem in 2D, consisting of four subdomains separated by
three interfaces. Highlighted are the key physical effects driving the dynamics of the multi-layer
coating flow problem.

In the setting of multi-layer coating flow, one or more film-layers of basecoat paint are applied
onto a plastic or metallic substrate. The basecoats provide the color, pigment particles, and
shine of the automobile. Afterwards, a final transparent clearcoat layer is sprayed on top of
the basecoats to provide a protective coating. Our focus in this work is the case when all
film-layers are cured simultaneously. The multi-layer coating flow problem therefore has a
domain of interest consisting of four subdomains—the substrate, the basecoats, the clearcoat,
and the air—separated by the following interfaces:

I'sur  The top of the substrate.
I';;  The middle embedded paint-paint surfaces separating the coats of paint.
I, The evaporative surface between the clearcoat and the air.

The partial differential equations (PDEs) describing the multi-layer coating flow problem
are relevant within the fluid phases. In this model, the dynamics of the air are assumed



CHAPTER 2. BACKGROUND 10

to have a negligible effect. Therefore, the computational domain is restricted to the layers
of liquid paint and a free-surface model is used for the evaporative surface I'.. We define
the d-dimensional multi-phase liquid domain Q C R? as 2 = U, s, where Q; represents the
region of paint layer i, with I';; = ©;( ;. The domain is taken to be periodic along all
horizontal dimensions (z in 2D; z,y in 3D) and we make the simplifying assumption that the
interfaces never cross. Together these two assumptions alleviate the numerical difficulties
of contact line and triple point dynamics; the extension of this framework to more general
situations is discussed in the conclusion. An example domain for the case of two paint layers
is shown in Figure 2.1.

The coating flow problem is in the micro-flow regime, i.e., the coats of paint are very thin.
The initial thicknesses of the basecoats range from 30 —50um and that of the clearcoat ranges
from 50 — 100pum, about the width of two human hairs. The length scale in the horizontal
direction spans the entirety of the automobile and the typical “roughness” wavelengths along
the surface of a dried paint film range from 1 — 10mm. To properly capture these long-wave
modes, we take the maximum horizontal length of our computational domain in 2D to be
25.6mm, which results in simulations on long, skinny domains with aspect ratios up to
256 x 1.

2.1 Equations of motion

The model for the multi-layer coating flow problem must incorporate numerous physi-
cal effects, including quasi-Newtonian fluid dynamics; transport, diffusion, and mixing of
multiple dissolved species; mass transfer and interface recession from solvent evaporation;
a constantly-evolving coating rheology; intricate interfacial forces of surface tension and
Marangoni stresses on paint-gas and paint-paint interfaces and their coupling; and substrate
roughness and the pull of gravity. The model developed in this work is purely isother-
mal, however, the effects of temperature could be incorporated. Additionally, the pigment
flakes/particles within the basecoat paints are ignored as the large size of the flakes with
respect to the film thickness would necessitate the use of fluid-structure interaction models,
which were determined to be outside the scope of this work.

To determine the equations of motion, first consider a single film-layer of liquid paint com-
posed of multiple solvents dissolving an underlying resin (also known as the solid or solute).
As the paint dries, the solvents evaporate into the air, thereby causing the liquid volume to
shrink, the liquid-gas interface to recess, and eventually the paint to solidify. When the paint
is fully dry, only the resin remains and any imprints or irregularities caused by, or occurring
during, the drying process will become permanent. The dynamics of the single-layer coating
flow problem therefore requires solving for:

(i) The motion of each of the solvents within the paint, as well as their evaporation at the
paint-gas interface. This describes the conservation of species within the system.
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(ii) The motion and downward recession of the paint-gas interface. The degree of recession
is dictated by conservation of volume.

iii) The fluid dynamics of the liquid paint, capturin both conservation of mass and mo-
g
mentum.

(iv) The solidification of the paint as a function of resin concentration. This introduces
non-Newtonian dynamics to the fluid.

The effect of buoyancy is small in the micro-flow regime and, therefore, a constant paint
density is assumed in this model. The fluids are considered quasi-Newtonian, governed by
the incompressible Navier-Stokes equations (2.1,2.2) with the viscosity varying with respect
to resin concentration. Should the densities of the components comprising the paints not be
equal, the paints could be modeled as quasi-incompressible fluids, however, the boundary
conditions associated with conservation of mass and volume become more intricate in such a
setting. In our model, the solidification process is captured by the exponential nature of the
viscosity profile with respect to resin concentration, described in Appendix B. We consider
PPG-provided viscosity curves, typically setting the higher viscosities to the basecoats and
the lower to the clearcoat. Species and energy transfer are modeled by the convection-
diffusion equations (2.3,2.4), where the convection is driven by the underlying fluid. The
initial flash phase of drying occurs at ambient room temperature and our model is purely
isothermal. The equations of motion, boundary, and jump conditions describing conservation
of energy are included for presentation and the effects of temperature could be incorporated.
The following conservation laws hold in the bulk of the liquid paint (in §2) for both the
single-layer and multi-layer coating flow problems:

pr+V-(pu) =0 Mass (2.1)
(pu); + V- (puu) = =Vp + V- (u(cg)(Vu + VuTl)) + pg Momentum  (2.2)
(pck)e + V- (pexu) = V- (pD V) Species (2.3)
(PCpT)e +V - (pCpTu) =V - (AVT) Energy/Heat (2.4).

The variables and material properties of the multi-layer coating flow problem are shown
in Table 2.1. Note that our equations of motion demonstrate a direct coupling between
the motion of the solvents and the fluid dynamics within the bulk of the paint. The resin
mass concentration is a function of the solvents, with cg = 1 — ), ¢, and the rheological
parameters of viscosity and surface tension are scalar functions of the resin concentration.
Our framework is capable of handling multiple solvents and an arbitrary number of paint
layers; the numerical studies performed in this work consider up to three-solvent paints and
up to three film-layers. The solvents may differ in both their mass diffusion coefficients as
well as their evaporation rates. For simplicity, we assume that each solvent’s mass diffusion
coefficient is constant within each paint layer, but allow for different values in different layers.
Both the variables and material properties may exhibit jumps at a material boundary, i.e.,
at the paint-gas or paint-paint surfaces. Therefore, to ensure conservation, we must examine
the boundary and jump conditions present at these interfaces.
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Symbol Property SI Units
P) Fluid density kg m—3
u Fluid velocity m s !

P Pressure Pa

7 Dynamic viscosity Pa s

y Surface tension coefficient Nm!
CR Resin mass concentration Unitless
Cr, Mass concentration of solvent k Unitless
Dy, Mass diffusion coefficient for solvent k m? s~!
m Total mass transfer rate kg m—2 st
my Mass transfer rate for solvent k kg m=2 st
T Temperature K

Cp Specific heat Jkg ! K
A Thermal conductivity Wm! K!
g Gravity kg m s72

Table 2.1: Variables and coefficients of the multi-layer coating flow problem.

2.1.1 Interfacial jump conditions

In this section, interfacial jump conditions across a moving surface are first derived for a
general conservation law and then applied to the conservation laws of the multi-layer coating
flow problem. Similar derivations can be found in [56][57]. Consider a d-dimensional domain
Q C R? consisting of two separate phases i and j, with Q = Q;(JQ;. Take I' = Q; (N,
to be the orientable codimension-one surface separating the two phases. Assume that I is
sufficiently smooth. Consider the general conservation law for quantity a with flux F'(a, Va)

and source f:
a+V-F=f inQ. (2.5)

Now consider a subset U C () that contains a simple smooth section of the interface T
Denote this section as ( and assume that ¢ divides U into two simply connected regions
Ui C Q; and U; C ;. The total time derivative of quantity a over U is found using the

Leibniz integral rule!
d
—/ a—/ at+/ av - n, (2.6)
dt Ju U) oU (1)

where v is the velocity of surface OU and n is the outward-facing normal vector. Plugging
(2.5) into (2.6) and applying the divergence theorem gives

d
— a:/ av -n — F-n+/f. (2.7)
dt Ji ou ou U

IFor brevity, we drop the measure of integration, which should be clear from the specified domain of
integration. i.e., volume or surface.
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Also, splitting U into U; and U; transforms (2.6) into

dt(/ />a_(/ /)/ N R

where a; and a; are the limiting values of a restricted from phases 1 and j respectively.
Again, plugging in the conservation law (2.5) and applying the divergence theorem gives

%(/Ujr/U)a:/an(aiu—Fi)-n+/8Uj(aju—F})~n+/Uf/+/Cfs7 (2.9)

where f’ is a modified volumetric source and fg is a surface source with support on surface
I'. Expanding the right-hand side of (2.9) sans source terms gives

([ f)ormrms ([ f) By

Note that oU = (0U; \ ¢) J(9U; \ ¢) so the above is equal to

/aU(W_F)'n+/(ai”_Fi)'"— (a;v — Fj) - m, (2.10)

¢
where we’ve modified the definition of the normal vector m on ( to point from phase i into
phasej Plugging (2.10) into (2.9) gives

a—/aUaV— n+/( aj)v-n — (F, — Fy) n—l—/f+/fg (2.11)

Subtracting (2.7) from (2.11) results in

/C[av~n—F~n1=/U<f—f'>—/Cfs, (2.12)

where [a] = a; — a; denotes the jump in a across surface (. Take the limit of U smoothly
collapsing into . As a result, the volume terms vanish, giving the following interfacial jump

condition on ¢
/[F-n—au-n]—/fs. (2.13)
¢ ¢

Since the choice of ¢ C I' is arbitrary, we may drop the integrals. Therefore (2.5) has the
following jump condition of Rankine-Hugoniot type at interface I"
[F-n—dV]=fs, (2.14)

where V' = v - n is the interface velocity in the normal direction, and again fg is a surface
force or source term. For problems where quantity a is transported by velocity field wu,
F(a,Va) = au+ J(a,Va) and the following bulk conservation law and associated Rankine-
Hugoniot jump condition hold:

a+V-(au)+V-J=f inQ (2.15)
a(u-n—V)+J -n|=fs onl. (2.16)
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2.1.2 Mass conservation

Applying (2.16) to conservation of mass and the continuity equation of the Navier-Stokes
equations (2.1) dictates that
plu-n—-V) =0 (2.17)

along a general moving surface and implies that the total mass flux m across the interface
is given by
m=pu-n—-"V). (2.18)

Here, the values of p and w may be determined by their restriction to either phase. Rearrang-
ing (2.18) provides an expression for the interface velocity that includes the fluid velocity
and the motion induced by mass transfer

V=u-n—m/p. (2.19)

As solvents leave the domain at the free evaporative surface I';, the effect of (2.19) is to
produce a recession of the interface, thereby reducing the bulk liquid volume while also
ensuring conservation of mass. Equation (2.19) is also applicable to the motion of the
embedded paint-paint surfaces I';;, where mass transfer between two paints causes one film-
layer to shrink while the other swells. Paint cannot pass through the substrate, therefore
(2.18), combined with a no-slip assumption sets w = 0 on I'yyp.

In general, when there is mass transfer across an interface and the densities of the two phases
differ, (2.17) and (2.18) produce a discontinuity in the fluid’s normal velocity at the interface
as a consequence of Stefan flow. The jump in the tangential velocity can be taken to be zero
under a no-slip assumption; the jump in the fluid velocity field across a surface dictated by
conservation of mass is then

1
[u] = [—} mn, (2.20)

p
therefore when the densities of the two phases are equal, the fluids stick together and there
is no jump in the velocity field. Our assumption of a constant paint density sets [u] = 0

on the embedded paint-paint surfaces I';;. Lastly, since the fluids are incompressible and
their density constant, the conservation of mass equation (2.1) within the incompressible
Navier-Stokes equations reduces to the divergence-free constraint

V-u=0. (2.21)

2.1.3 Momentum conservation

The conservation condition (2.16) for the incompressible Navier-Stokes momentum equation
(2.2) produces the following jump in stress

[pu(u-n—V)+pn —pu(Vu+Vu') -n| = fs. (2.22)
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The first term on the left-hand side of (2.22) is the stress caused by mass transfer and the
latter two terms represent the stress-tensor (defined as: o = —pl + u(Vu + Vu®)) acting
on the surface normal. Here, the right-hand side fg captures the surface forces within the
system. Using (2.18) and (2.20) gives an expression for the stress caused by mass transfer

1
pu(u-n—V)| =mu] = [—] m’n. (2.23)
p
This term is negligible in the micro-flow regime due to the quadratic nature with respect to m
and is included only for presentation. Plugging (2.23) into (2.22) gives a general expression
for the jump in stress

o on] = [+ it g (2.24)

The surface forces within the multi-layer coating flow problem are the forces of surface
tension and Marangoni stresses, respectively setting fs = —yxn + Vg along the embedded
paint-paint surfaces I';; and free evaporative surface I'.. These forces produce the following

stress jump condition

1
- n] = [;] m’n — vykn + Vg7, (2.25)

where 7 is the coefficient of surface tension, x is mean curvature of the interface, and Vg =
(I — n ®n)V is the surface gradient operator. As motivated in the introduction, surface
tension gradients, or Marangoni forces, are powerful tangential forces that may produce
short-wave and long-wave hydrodynamic instabilities within the system. In the multi-layer
coating flow problem, Marangoni forces are caused by species concentration variations along
the surface, with the surface tension coefficient being a function of resin mass concentration,
i.e., v = v(cg). Therefore by the chain rule, Marangoni forces are of the form Vgy =
(Z—LVSCR. A simple high-order accurate finite difference method for calculating the surface
gradients within our problem is presented in section 4.3.2. Along free evaporative surface I,
the stress from the gas phase is negligible and (2.25) reduces to the following stress boundary

condition

1
O N = —PextT + |:_:| an — VKM + VS’% (226)
P

where peyt is an external pressure, here set to atmospheric.

2.1.4 Species conservation

Applying (2.16) to the solvent convection-diffusion equations (2.3) and assuming that the
system is free of chemical reactions gives the following expression for conservation of species
across a general moving interface

mlci] — [pDxVey - m] = 0. (2.27)
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Expanding for each phase gives an equivalent Robin boundary condition for the solvent mass
concentration cy,
my = mcg — pDi Ve - n, (2.28)

where my, is the mass flux for solvent k and m = ), my. In the multi-layer coating flow
problem, the solvent mass loss from evaporation is captured by (2.28) along the free evapo-
rative surface I',. The specific value for evaporative mass flux mj—which is dependent on
the solvent mass concentration at the interface—is explained in more detail in section 4.2.1.
Section 3.3 presents newly developed LDG solvers for Poisson problems with Robin bound-
ary conditions that calculate high-order accurate solutions on implicitly-defined domains in
a dimension-independent fashion, for a wide range of variable diffusion and Robin coeffi-
cients. Meanwhile, the level set method captures the interface recession from evaporation by
embedding the computed evaporation rate values into its speed law (2.19). Jump condition
(2.27) also holds along the embedded paint-paint surfaces I';;, however here we simplify? by
enforcing continuity of the solvent mass concentration profile, setting [cx] = 0 and reducing
(2.27) to the standard jump condition [Dy V¢, -m| = 0, noting again a constant paint density
p. Summing (2.28) for each solvent gives the following expression for the total mass flux
between paints at the embedded surfaces I';;

p
m=—— DV - n. 2.29
L nive 220

Using (2.29) in the interface velocity equation (2.19) ensures that the resins of the basecoat
and clearcoat paints do not mix and that conservation of mass, volume, and species is
respected between paint layers. The solvent convection-diffusion system (2.3) is closed by
applying the no-penetration condition V¢ - n = 0 along the substrate I'gyp.

2.1.5 Energy conservation

In this work, the evaporative process is isothermal and the effects of temperature are not
included, however for completeness, using (2.16) for energy conservation (2.4) gives

pCyT(u-n—V)—=AVT -n]=0
Lm +[AVT -n] =0, (2.30)

where L is the latent heat of evaporation. Equation (2.30) is the classic Stefan condition. A
reasonable assumption is that the temperature is continuous across the interface ([7'] = 0)
and equal to the saturation temperature Ty,;, which may depend on species concentration.
Along the substrate, a Neumann or Dirichlet boundary condition may be applied to close
the energy system.

2A closure condition specifying the jump [cx] is required for the Robin-style jump condition (2.27). The
specific value of this jump is, in general, unknown for multi-layer coatings and set to zero in this work. A new
high-order accurate LDG method for solving Poisson problems with Robin jump conditions on implicitly-
defined domains is presented in section 3.3.
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2.1.6 Summary of equations

In summary, here are the equations of motion, boundary, and jump conditions for the multi-
layer coating flow problem:

In Q
(pu); + V- (puu) = =Vp+ V - (u(cr)(Vu + Vu')) + pg
V-u=0
(Ck)t + V- (cku) =V. (Dchk)
Cr — 1-— ch.
k
On Fe OH FZ] On Fsub
V:u‘n—lm V:u-n—lm u=
P P Vep -n =

O "N = —PegtM — VRN + VSIV
mg = mc — pDpVeg - n

m:ka. ck] =0
1%
- - 2N"pv
m CRZ kVCL T

2.2 The level set method

Key to the multi-layer coating flow problem is capturing the motion of the embedded paint-
paint surfaces I';; and the free evaporative surface I'.. The level set method of Osher and
Sethian [36][37] provides a robust, powerful, and accurate technique for capturing the motion
of evolving interfaces. In the level set framework, interfaces are defined implicitly as the zero
isosurfaces of a higher dimensional level set function—typically a signed distance function—
and the evolution of the level set function under a specified speed law defines the motion of the
interfaces. The level set method has many advantages over traditional front-tracking methods
including naturally handling topological changes, avoiding the bunching of interface-defining
particles, and a simple dimension-independent implementation. The level set method has
been used in numerous physical applications [37][58] and is an ideal framework for capturing
surface evolution in the multi-layer coating flow problem. In this section, we highlight the
basics of the level set method, including our specific implementation choices, and discuss the
role of finite difference methods within our hybrid numerical framework for the multi-layer
coating flow problem.

To illustrate the fundamentals of the level set method, consider the trajectory z(t) of a
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particle on an interface I'(t), which is moving with speed F' in the normal direction mn.
Assume T is a sufficiently smooth orientable codimension-one surface in R?. Define the Level
Set Function ¢ : R? x [0,T] — R such that ¢(z(t),t) = 0 for all time ¢ € [0,7]. Take the
total temporal derivative of the level set function and apply the chain rule to get

¢ +i(t) - Vo =0,

where the trajectory’s temporal derivative & is equal to the velocity field F'n. Using n =
V¢/|V¢| gives the Level Set Evolution Equation:

¢+ FIVo| =0. (2.31)

With (2.31), we have recast the problem of interface motion into the evolution of a PDE of
Hamilton-Jacobi type under Speed Function F', which may be solved in an Eulerian frame-
work with simple standard finite difference methods [37]. The level set function implicitly de-
fines the interface I'(t) = {x € R? | ¢(z,t) = 0}, the two regions Q™ (t) = {x € R? | ¢(z,t) <
0} and QF(t) = {x € R? | ¢(z,t) > 0}, and their subsequent evolution under speed F.
The speed function F may be coupled to the underlying physics driving the motion of the
interface. For example, in the multi-layer coating flow problem, the motion of the embedded
paint-paint surfaces I';; and the free evaporative surface I, is determined by (2.19), evolving
under the paints’ fluid velocity field and the motion induced by mass transfer.

An example of the level set method is shown in Figure 2.2; here a circular front in 2D (on the
left) is expanding at a constant speed. The front is captured by the intersection of a higher
dimensional surface (the cone on the right) and the zy plane. In this example, the cone is the
level set function, the zy plane is the set of points with zero height, and their intersection
is the zero level curve. The motion of the circular front is captured entirely through the
evolution of the cone-shaped level set function and its interaction with the zy plane, e.g.,
the downward motion of the cone widens its intersection with the plane, corresponding to
the expansion of the circular front. It is important to note here that the level set method
is spatially dimension-independent and applicable to more intricate surface motion than
this simple example. The level set method naturally handles geometric surface motion and
motions determined by external physics, as well as topological changes—i.e., the mergers
and separations of fronts.

The level set method is often referred to as an Initial Value Formulation for interface motion,
i.e., the initial interface location I'(¢ = 0) provides the data for an initial level set function
¢o; the ensuing motion of the front is then captured by the evolution equation (2.31). Note
that while the initial level set function specifying I'(t = 0) is not unique, the evolution of the
surface under speed F' is independent of ¢q. In practice, a well-behaved level set function
is the Signed Distance Function. A signed distance function ensures that |V¢| = 1 for all
x € R?, i.e., the different level curves of ¢ are evenly spaced and not bunched together. The
level set method requires all level sets—or at least all level sets in a given Narrow Band
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Figure 2.2: An example of the level set method. The red circle on the left is the front of interest.
Its motion is determined by the evolution of the zero isosurface of the cone-shaped level set function
on the right. Image reproduced from [59].

[60]—to evolve under the same speed law, not just the zero curve. Some choices of speed
functions, such as ones taken directly from the velocity field of a fluid, may over time produce
shearing of the level curves and degrade the accuracy of the method. Additionally, some
speed laws are only physically defined on the interface itself. A careful choice of Eztension
Velocity F.,; can build a speed function away from the interface that ensures the level set
function remains a signed distance function for all time [61]. At finite difference node z, take
F..t = F(z.,) where z, is the closest point on the interface with respect to x. This extension
velocity is constant along straight lines radiating in the direction of the interface normal and
ensures that VF,,; - V¢ = 0 when ¢ is a signed distance function. An efficient, high-order
accurate algorithm for determining the closest point on an implicit interface defined by the
level set method is presented in [62]. This algorithm generates a polynomial representation
of the level set function and applies Newton’s method, initialized at a point within a cloud
of seed points, to determine the closest point on the interface. For interface dynamics with
large deformations, it is advantageous to periodically Reinitialize the level set function back
to a signed distance function. A simple technique of reinitialization is to use the above-
mentioned closest point method to determine the distance of the finite difference nodes to
the interface. For more information on the level set method, narrow banding, extension
velocities, and reinitialization see the book [37], and for recent advancements in the field of
level set methods see [58][63].

2.2.1 Height function and finite difference methods

In typical flow leveling problems, there is no self-folding of paint layers nor situations in
which the paints develop significant profile steepness. For this reason, the surfaces within
the multi-layer coating flow problem (Igyp,, I';;, I'e) are each represented by a Height Function
h: R % [0,7] — R, from which the level set function ¢ is constructed. Using a height
function simplifies the mechanics of interface evolution. A height function does not need to
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be reinitialized, nor does it need the construction of extension velocities—evolving only under
the speed defined at the height function itself. The trade-off is that height functions cannot
capture more intricate interfacial phenomena such as paint layers folding or intersecting
with each other. In the multi-layer coating flow problem, the height function describing the
substrate is held fixed and those capturing paint-paint and paint-gas surfaces evolve under
the advection equation

hi+v-Vh—vé; =0, (2.32)

where v and v are the horizontal and vertical components respectively of the interface velocity
vector, incorporating the motion of the fluid and the motion induced by mass transfer (2.19).
Here ¢4 represents the vertical dimension, while along the horizontal dimensions, Vh is
computed by high-order ENO schemes [64]. The temporal evolution of the height functions
is captured simply via forward Euler. We note that if the surfaces (I'sup, [';j,I'e) intersect,
the simulation is halted; further comments on this aspect are discussed later.

Within the hybrid numerical framework, a level set function ¢ is constructed from the height
functions and used to generate numerical quadrature schemes for the implicit mesh DG
methods [65][66]. The zero isosurfaces of ¢ align with the location of the height functions
and interfaces, and the level set function together with a phase indicator defines the multi-
phase liquid domain €2. The level set function is defined at finite difference nodes located
within the DG cells of the background quad/octree, as illustrated in Figure 2.3(right). In this
work, the DG cells and finite difference nodes are uniformly spaced, with each cell containing
two finite difference nodes per dimension®. The level set function is used within the hybrid
numerical framework for the multi-layer coating flow problem for the following two purposes:

(i) The creation of level set polynomials for the generation of the numerical quadrature
rules for the implicitly-defined elements and surfaces of the implicit mesh DG methods
[65][66]. To couple the finite difference methods to the implicit mesh DG formulation,
a piecewise polynomial representation of ¢ is constructed; specifically, the values of the
level set function are bi-linearly or tri-linearly interpolated onto the Gauss-Lobatto
nodes of the background DG cells, from which a bi-quadratic or tri-quadratic polyno-
mial on each cell is naturally defined (see section 3.2). This process is highlighted in
Figure 2.3(right). The level set polynomials are then used in the algorithms of [65]
to generate the quadrature schemes. We note that this specification of the level set
polynomials ensures interface continuity between the DG cells and that its cell-wise
nature is amenable to parallelization.

(ii) The computation of interfacial curvature for surface tension calculations. Mean Cur-
vature k of the level set function ¢ is given by

m:V-n:V-(%). (2.33)

3We found this to strike a good balance between the resolution of the finite difference grid and the
piecewise polynomial bi-quadratic/tri-quadratic DG methods.
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Figure 2.3: Left: The calculation of V¢ in 2D. Values of ¢ are averaged from the finite difference
nodes @ onto fictitious cell edges x in each dimension. Then second-order finite differences compute
the values of V¢ at cell center O. Right: The finite difference nodes O located within the DG
cells of the background quadtree. The level set function ¢ is interpolated from the finite difference
nodes onto the cells’” Gauss-Lobatto nodes ® and used in the generation of numerical quadrature
schemes for implicitly-defined elements and surfaces [65].

To compute (2.33), consider a group of fictitious cells with the finite difference nodes
as their vertices. Values of ¢ are averaged onto the center of cell edges and standard
second-order centered finite differences are used to compute V¢ at cell centers, which
is then normalized to compute the normal vector m. This process is illustrated in
Figure 2.3(left). The normal vector is then averaged back onto cell edge centers and
second-order centered finite differences are used to determine the value of x at the finite
difference nodes. Values of curvature are then available via bi/tri-linear interpolation.
This method for computing curvature is robust, second-order accurate, dimension-
independent, and provides a suitable amount of averaging for smooth surface tension
calculations.

Additionally, the finite difference methods discussed in section 4.3.2 are employed to com-
pute surface gradients for Marangoni stresses. In summary, the finite difference methods
within the hybrid numerical framework for the multi-layer coating flow problem provide a
mechanism to robustly and accurately calculate the interface evolution as well as interfa-
cial forces, whereas the implicit-mesh DG methods, discussed in the next chapter, provide
a high-order accurate, sharp-interface method for computing fluid velocity fields, pressure,
and solvent mass concentration profiles.
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Chapter 3

Discontinuous Galerkin Methods

The discontinuous Galerkin finite element method (DG) is an increasingly popular numerical
method for solving partial differential equations. Through the use of a piecewise polynomial
solution space defined on a collection of discrete elements, DG methods produce high-order
accurate PDE solutions while maintaining a compact stencil. Originally introduced by Reed
and Hill for modeling neutron transport [67], DG methods have been applied to a range of
problems, including hyperbolic conservation laws [68], parabolic convection-diffusion prob-
lems [69][70], and elliptic problems such as the Stokes equations [71][72]. A unified theory of
discontinuous Galerkin methods that captures these various DG formulations is presented by
Arnold et al. in [73]. DG is applicable to a variety of geometries and element shapes due to
its weak formulation and has been applied on simplicial and rectangular meshes, as well as
on meshes defined by polygons [74] and on those implicitly-defined by the level set method
[75]. DG naturally extends to higher dimensions and its block sparse structures result in
computations with high arithmetic intensity, which in combination with its natural locality
makes DG highly amenable to parallelization [76]. For an introduction to discontinuous

Galerkin methods see [77].

This chapter begins by introducing discontinuous Galerkin methods; then the implicit mesh
DG methods used in our hybrid numerical framework for the multi-layer coating flow problem
are discussed, including the notion of implicitly-defined meshes and their evolution, as well
as the numerical quadrature schemes for implicitly-defined elements and surfaces; then new
high-order accurate local discontinuous Galerkin methods (LDG) for Poisson problems with
Robin boundary and jump conditions on implicitly-defined domains are presented; extensions
of the recently developed operator coarsening multigrid methods [78] that solve the discrete
linear systems are described; and lastly, convergence results and multigrid performance of
the LDG methods for Poisson problems with Robin conditions are examined.
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3.1 Introduction

Consider a d-dimensional domain Q@ C R? The domain geometry is discretized into a
collection of elements £ on which the DG methods are applied. This work uses the implicit
mesh DG framework of Saye [66][75], which defines meshes implicitly through a combination
of the level set method with a structured background quadtree or octree. These implicitly-
defined meshes contain both rectangular and interface-conforming curved elements. Owing
to the use of a background quad/octree grid, it is natural to adopt a tensor-product piecewise
polynomial space for the DG methods, including for the fluid velocity field w, pressure p, and
solvent mass concentration ¢, within the multi-layer coating flow problem. Define Q,(FE)
to be the space of d-dimensional tensor product polynomials of degree p > 1 on element
E € £. Now define the discontinuous piecewise polynomial spaces Vj,, V¢, and Vthd for
scalars, vectors, and rank-2 tensors respectively:

Vi={u: Q=R |ulg € Q,(F) for every E € £}
Vi={u: Q=R | (u-e)|g € Q,(E) for every E € £ and 1 < i < d}
V=10 . Q — R> | (e;-U - ej)|p € Q,(F) for every E € £ and 1 <i,j < d},

where e; denotes the standard basis vector in the direction of the ¢-th dimension. V}, Vhd,
and Vthd are square integrable L? spaces, with the natural inner product of Vj, defined as
(u,v) = [uv for u,v € Vj and the L? norm defined as [[u||* = (u,u), with analogous
definitions for V;¢ and Vthd. In our particular implementation of these methods, we are free
to choose the polynomial degree; for the multi-layer coating flow problem, we found degree
p = 2 (i.e., bi-quadratic and tri-quadratic polynomial spaces in 2D and 3D, respectively)
provided a suitable balance between speed and high-order accuracy.

We now specify a basis for V},, specifically a nodal basis, examining first the local element-
wise definition of Q,, then expanding to all of 2. For each element £ € &, the space
Q,(F) has a dimension of (p+1)? meaning that (p+ 1)¢ nodal interpolation points/degrees
of freedom are required to represent the solution on that element. Both rectangular and
curved elements define their DG polynomials on the set of tensor product Gauss-Lobatto
nodes located within the cells of the background quad/octree (see Figure 2.3(right)). Gauss-
Lobatto nodes have the advantage of improved numerical conditioning when compared to
evenly spaced nodes and have nodes located on the cell’s boundary. For each element £ € £
and for each element’s local Gauss-Lobatto node i, 1 < i < (p + 1)%, define the local basis
function ¢; of space Q,(E) as a p-th order d-dimensional Lagrange interpolating polynomial,
such that ¢;(z;) = §;; for local node z;. Here ¢;; is the Kronecker delta function, meaning
that the local basis function ¢; equals 1 on node ¢ and 0 on all other nodes. For numerical
conditioning reasons, the Lagrange interpolating polynomials are constructed from a linear
combination of d-dimensional Legendre polynomials. For example, the basis functions in 1D
are such that

pilx) = Y clPy(x),
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where P; is the 1D Legendre polynomial of degree j. The coefficients cf can be found by
solving the following linear system:

FPo(zo) Pi(wo) -+ Py(xo) o Cg 1
Po(x1) Pi(z1) -+ By(z) | | a ol 1
Po(xp) Py (mp) T Pp(xp) Cg Czlj T Cg 1

So for u € V), and element E € &, the restriction u|g € Q,(F) can be expanded into its local

basis functions
(p+1)?

ulp =Y (ulg)ipi, (3.1)
i=1
where here we abuse notation and view the polynomial function u|g as either (a) a polynomial
in Q,(F) and an L? function, or (b) a vector of coefficients relative to the local nodal basis.
Now define the (p + 1)¢ x (p + 1)? Elemental Mass Matriz Mg relative to the nodal basis
such that

ME,ij:/SOiSOj- (3.2)
E

The elemental mass matrix is symmetric positive-definite and for rectangular elements is a
scalar multiple of the tensor product of 1D mass matrices defined on a reference element,
typically [—1,1] or [0,1]. For curved elements, elemental mass matrices are computed via
the numerical quadrature schemes of [65]. The L? Projection of function f : E — R onto

Q,(E) is defined as

Py(f) = arg min / (u— f)? = arg min ||u — |,
E

u€Qp(F) u€Qp(E)

i.e., as the best polynomial in Q,(E) matching f in an L? sense. This minimization problem
is convex and therefore a solution exists and is unique. The minimum occurs at the zero
of the Fréchet derivative D(||u — f||*)v = (u — f,v) = 0, for all test functions v € Q,(F).
Therefore the L* projection onto element F is defined by u € Q,(E) such that

UTMEu:/fv, (3.3)

for all v € Q,(FE). The right-hand side of (3.3) is computed by appropriate numerical
quadrature rules and the elemental mass matrices are inverted via pre-computed Cholesky
factorizations for curved elements and by an exact inverse for rectangular elements.

With the local element-wise definitions in place, the global bases, mass matrices, and L?
projections are defined for V}, using the global piecewise polynomial basis across the entire
domain €. Define the entire mesh Mass Matriz M as M = diag(M;, ..., Mjg|) for some
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ordering of the elements in £. The mass matrix is block-diagonal and symmetric positive-
definite. Additionally, denote the global L? projection of f : Q — R onto V}, as Py, (f). This
projection is simply the local projection performed on each element of £ and also extends
to V@ and V. Just as we abused notation in the local definition (3.1), we refer to the
global DG piecewise polynomial function u as either (a) a function in V} or (b) as a vector
of coefficients relative to the nodal basis, the choice of which should be clear by the context.

3.2 Implicit mesh DG

The implicit mesh discontinuous Galerkin method was first introduced by Saye [75] in the con-
text of high-order accurate fluid interface dynamics. The framework was developed further
in the two-part paper [66][79]. In part one, Saye introduces the notion of implicitly-defined
meshes, presents local discontinuous Galerkin methods for scalar and vector Poisson prob-
lems on multi-phase implicitly-defined domains, develops advection and projection operators
for incompressible flow problems and geometric multigrid solvers for elliptic problems, and
further introduces additional material essential for mesh evolution, with optimal high-order
accuracy demonstrated in both 2D and 3D. In part two, the implicit mesh DG framework
is applied to several problems, including unsteady flows in complex geometries, two-phase
surface tension-driven flows, soap bubble dynamics, rigid body fluid-structure interaction
problems, and free surface flows such as Plateau-Rayleigh instability. The accuracy of jump
condition implementations is improved through the use of viscosity-upwinded weighted nu-
merical fluxes [80] and, in [72], the framework is extended to solve multi-phase Stokes prob-
lems. The methods are made fast through the use of operator coarsening multigrid methods
[78], which maintain PDE consistency throughout the multigrid hierarchy. The implicit mesh
DG framework has recently been applied to the problems of wave propagation in elastic solids
[81] and to rotary bell atomization [1]. The realization of fast high-order accurate solutions
of sharply-captured evolving interface dynamics in a dimension-independent fashion makes
the implicit mesh DG method an ideal framework for solving the multi-layer coating flow
problem.

3.2.1 Implicitly-defined meshes

An implicitly-defined mesh is constructed from two objects: (i) a background quadtree or
octree depending on whether the problem is in 2D or 3D respectively, and (ii) an implicit
representation of the interfaces—the zero isocontour of a level set function in this work—
which either defines the domain’s boundary, the embedded surfaces within the domain, or
both. The zero level set cuts through the cells of the background quad/octree, resulting in
a collection of rectangular and cut cells for each phase of the domain, which are denoted as
Phase-cells. Each phase-cell is then classified as empty, small, large, or entire by the volume
fraction of that phase within the cell, with small and large classifications demarcated by a
user-defined volume fraction threshold, taken to be 40% in this work. Empty phase-cells are
discarded and small phase-cells are merged with neighboring large or entire phase-cells of the
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B Large . B Curved, merged
BB Entire B B Rectangular

Figure 3.1: The construction of an implicit mesh for a two-phase (red and blue) domain in 2D with
an embedded surface. Left: The zero isocontour of the level set function cuts through the cells
of the background quadtree, resulting in phase-cells that are classified as empty, small, large, or
entire. Right: The elements of the implicitly-defined mesh after cell merging. The mesh consists
of mostly standard rectangular elements with a collection of curved interface-conforming elements,
which may or may not be merged and extend outside of their cell.

same phase (known as the Parent phase-cell) to avoid the numerical conditioning issues and
time step restrictions caused by arbitrarily-small cut cells. In [66], a general cell-merging
algorithm is described, wherein a small phase-cell searches its neighboring phase-cells in the
order of sharing a cell face, edge, and then vertex; the neighboring phase-cell with the largest
volume fraction is then used for the cell merging procedure. In the multi-layer coating flow
problem, we note the geometry allows for a simpler approach: small phase-cells are merged
with the large or entire phase-cells directly above or below. Other cell-merging classifiers
and procedures are also possible.

This process defines a collection of mesh elements that are mostly rectangular with a small
number of interfacial curved elements that may or may not extend outside of their parent cell.
In the context of DG, element identifiers, local basis functions, and elemental mass matrices
of both element types are defined with respect to the parent cell and its tensor-product
Gauss-Lobatto nodes. Curved interfacial elements are interface-conforming and the resulting
mesh sharply captures the interfaces, allowing for the high-order accurate imposition of
boundary and jump conditions and the capturing of thin solutal boundary layers present in
evaporating Marangoni flows. Note that the interface is never explicitly constructed as a
discretized mesh; instead, the geometry of interfacial elements and corresponding surfaces
are determined solely by means of numerical quadrature in the weak formulation of the DG
methods. The cell merging construction process is just a simple grouping of the quadrature
rules for each phase-cell defining a curved element. An example of an implicit mesh and its
cell merging procedure for a two-phase domain with an embedded surface is demonstrated
in Figure 3.1.
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Figure 3.2: An example of the numerical quadrature rules for implicitly-defined volumes (far-left,
center-right) and surfaces (center-left, far-right), for both 2D and 3D. Figures adapted from [65].

The elements then define a collection of faces on which the DG surface integrals are computed.
The faces of the implicitly-defined meshes are classified as follows:

(i) Intraphase faces are shared between elements of the same phase, the collection of which
is denoted as I'g. These faces are always flat and the normal vector is defined in the
coordinate direction orthogonal to that face, taken to point from “left” to “right”, i.e.,
n = 7 for vertical faces in 2D.

(ii) Interphase faces are defined implicitly and lie between elements of differing phases.
These faces are where interfacial jump conditions are applied. In the multi-layer coating
flow problem, interphase faces are situated on I';;, whose normal vector points in the
direction defined by the level set function.

(iii) Boundary faces are situated on the boundary of the domain and are the faces on which
boundary conditions are applied, e.g., the free evaporative surface I', and the substrate
['sup in the multi-layer coating flow problem. The normal vectors for boundary faces
are taken to be outwards pointing.

We note that in all numerical studies of the multi-layer coating flow problem, the interfaces
remain smooth at all times and a unique normal vector is always well-defined. Now define
the jump across a face as [u] = v~ — u™, taken to align with the normal vector. Here u~
and u" represent either (a) the solution of a PDE restricted from the left and right phases
respectively, or (b) the trace of the DG polynomials from the left and right elements, the
choice of which should be clear by the context. Along boundary faces, define u~ to represent
the PDE solution or trace of the DG polynomials from the interior element.

3.2.2 Numerical quadrature

The computation of volume and surface integrals arising from the variational forms of the
DG methods requires appropriate numerical quadrature rules for the mesh elements and
faces. Integrals along rectangular elements and faces use tensor-product Gauss-Legendre
quadrature rules while the curved interfacial elements, implicit interfaces, and cell edges cut
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by the zero level set use the high-order quadrature algorithms of [65]. An example of such
schemes can be seen in Figure 3.2 and an open-source C++ implementation of this algorithm
is available at [82].

3.2.3 Temporal evolution

We now briefly discuss the notion of temporal evolution within the implicit mesh DG
framework—with the end goal of modeling time-dependent interface problems. At every
time step n = 0, 1, ..., the level set function ¢ (defined in this work via the height functions)
combined with the background quad/octree generates an implicitly-defined mesh as well as
its elemental and surface quadrature rules. The DG polynomial space V;* (as well as the
space of vectors and rank-2 tensors) and its corresponding nodal basis are defined specifically
for the corresponding time step’s implicit mesh. The polynomial space then generates the
LDG operators specific to each mesh and interface configuration. As the level set function—
the interfaces—evolves to the next time step ¢"!, the previously defined implicit mesh no
longer aligns with the interfaces, meaning that numerical quadrature rules, DG polynomial
spaces, and LDG operators must be recreated for the new interface locations. State variables
that were defined in the polynomial space of the previous mesh are then transferred onto the
polynomial space of a new implicit mesh that captures the updated interface locations, i.e.,
a state variable in V)" is transferred to one appropriate in the new space Vh"+1. In the general
setting, this can be done via a general kind of L? projection. In fact, because the interface
usually moves only a small fraction of the mesh spacing, it is possible to create time-evolving
implicit meshes which, for the most part, use the same cell-merging decisions as prior time
steps. Using this approach, it is often the case that a one-to-one correspondence exists be-
tween the elements of one mesh and the next, which simplifies the state transfer operation
to a very simple injection procedure. The general state transference procedure is triggered
when it is no longer possible to maintain the same cell-merging decisions and the one-to-one
correspondence between meshes; for example, when a previously small phase-cell must now
be classified as large (in this situation, we use a “fuzzy-threshold” on the small-large demar-
cation when determining the classification change; this is done to reduce the frequency of
the general state transfer). For more details on this approach, and time-stepping implicit
mesh DG methods in general, see [66].

3.3 Poisson problems with Robin boundary and jump
conditions

A key driving force in the multi-layer coating flow problem is mass transfer at the free
evaporative surface I'c and across the embedded paint-paint surfaces I';;. As motivated
in section 2.1, the motion of the dissolving solvents within the paints is described by the
convection-diffusion equations (2.3); the species mass transfer through a surface is described,
in general, by a Robin-style jump condition (2.27) and, in our free-surface evaporative model,
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by a Robin boundary condition (2.28). Recall these equations of motion:

(Ck)t + V- (C].{LL) =V- (Dchk)
mlck) — [pDxVeg -m] =0

mcg — pDpVer - mo=my.

Note that the Robin conditions involve a linear combination of the solvent mass concentration
and its diffusive flux. The mixed explicit-implicit time stepping method employed within
the evaporative mass transfer system of the multi-layer coating flow problem leads to a
heat operator! problem (4.1) with domain boundary conditions of Robin type. In turn, this
requires the development of tailored local discontinuous Galerkin (LDG) methods [70][73]
specifically targeting Robin conditions. In this section, we present the derivation of LDG
methods for Poisson problems with Robin conditions, examining;:

(i) Robin boundary conditions: Robin conditions along a domain boundary.

(ii) Robin jump conditions: Robin conditions across an embedded interface separating two
volumetric regions.

The resulting LDG discretization has several favorable properties: for example, it is optimally
high-order accurate, dimension independent, and applicable to a wide range of variable
diffusion and Robin coefficients. In situations considering only Robin boundary conditions,
the final linear system is symmetric positive-definite and, moreover, the LDG discretization is
amenable to straightforward, fast, multigrid-preconditioned conjugate gradient solvers [78].
The inclusion of Robin jump conditions may break the symmetry of the Poisson system,
however the choice of consistent numerical fluxes, derived in section 3.3.1, in the direction
determined by viscosity-impedance upwinding (discussed in section 3.5.2), leads to LDG
schemes that produce high-order accurate solutions to this problem.

Consider a two-phase, d-dimensional domain Q = €2; | J§2;, consisting of phases ¢ and j. Let
I'r denote the section of 92 on which Robin boundary conditions are applied, and let Ff} be
the section of €; () €2; where Robin jump conditions are applied. Assume that both I'g and
Fﬁ- are sufficiently smooth and, for the sake of presentation, that neither is empty. We wish
to find u : €2 — R such that

-V - (uVu) = f in
lau] + [uVu-n] =7r; onTf

au+ (buVu) -m=r  on g,

IThe heat operator equation involves finding u : Q — R such that (I/§ — V - (DV))u = f, where I is the
identity operator, J is a constant (typically describing a discrete time step), D is the diffusion coefficient,
and f:Q — R is a source function, subject to suitable boundary conditions.
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where p, o, a,b : RY — R* are functions mapping onto the space of positive real numbers.
Here p takes the role of the diffusion coefficient and «, a,b are Robin coefficients. Assume
f, 9ij, rij, and r are sufficiently smooth. Here [u] denotes the jump in u across FR in the
direction of the normal vector m. To close the system, we specify a jump Condltlon on u
of the form [u] = ¢;;. The LDG methods for (3.4) presented in section 3.3.2 consist of four
steps [66]:

(i) Introduce the gradient n € V4 such that n = Vu weakly via the strong-weak form.
(ii) Define g € V}¢ as the L? projection of un.
(iii) Compute the divergence w € Vj, such that w = V - g weakly via the weak-weak form.
)

(iv) Require that —w equals the L? projection of f, while also incorporating penalty sta-
bilization to enforce continuity, boundary, and jump conditions.

To approximate the solution of (3.4) on element F € £, we multiply the gradient Vu and
divergence V- q by a test function and integrate by parts to get the following weak equations:

/En-w:/EVu-ij/aE(u*—u)w-n, (3.5)
/va:—/Eq-Vv—l—/aqu*-n, (3.6)

for all test functions w, v on element E. Here u* and q* are Numerical Fluxes, which arise
since the values of u and g are discontinuous along element faces. The numerical fluxes
may depend on the traces of the DG polynomials, and on boundary or jump data. Key to
this work is the choice of PDE consistent numerical fluxes, which are described in the next
section. This choice of numerical fluxes results in LDG schemes that solve (3.4) to high-order
accuracy, on implicitly-defined domains, in both 2D and 3D, for a variety of diffusion and
Robin coefficients.

3.3.1 Numerical flux motivation

We wish to motivate the choice of numerical fluxes used in equations (3.5) and (3.6), begin-
ning with the Robin jump conditions. Without loss of generality, set ;1 = 1 in (3.4); also let
v~ and u' denote the restrictions of u from €; and €; respectively. Multiply the PDE by
test function v and integrate by parts, then

/ Auv = —/ Vu - Vv +/ (Vu™ -m)v™ — / (Vu® -n)ot. (3.7)
Q Q rf rf
Add and subtract [ (Vu® -n)v~ from (3.7) to get

/ Aup = /F — (Vut -n))v™ + /FR.(VUJF n)v” — (Vu' -n)ot
—l—/ [Vu - njv~ —|—/F5(Vu+-n)[v]. (3.8)
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Plugging the Robin jump condition [Vu - n] = 7;; — [au] into (3.8) gives rise to a term of
form:
/ riv” — [aujv” —I—/ (Vu™ - n)[v]. (3.9)
I rf

To remain consistent with (3.9), the numerical flux ¢* along the Robin jump interface is
taken to be

(3.10)

q; =q"+ryn—|oun
g =q,

where g; and gj are the numerical fluxes for phases ¢ and j respectively. Similarly, one could
instead add and subtract [.r(Vu™ -m)vT from (3.7) to get a contribution of
ij

/F?[vu.n]uw/ (Vu™ -n)[v). (3.11)

r
Plugging the Robin jump condition [Vu - n] = r;; — [au] into (3.11) gives
/ rivt — [au]o™ +/ (Vu™ - n)v]. (3.12)
rft rf

To remain consistent with (3.12), the numerical flux g* is taken to be

{qf -1 (3.13)

g =q —ryn+|oun.

Note that (3.10) and (3.13) are multivalued, one-sided fluxes—in the opposite directions.
Here, when an element has to “reach across” the interface, the Robin jump condition con-
tributes to the numerical flux. It may be advantageous to vary the flux direction, so we
choose a linear combination of (3.10) and (3.13) as our Robin jump numerical fluxes for g

{q; = \g" +riyn — [ouln) + (1 — \g~

q; =A™+ (1-N(g™ - T + [au|n), (3.14)

where A € [0,1] is a directional weighting parameter. In LDG, the numerical flux for w is
taken in the opposite direction of that for q. A similar calculation on the weak definition of
Vu gives the following numerical fluxes v* along Ffj

ul = AuT + (1 — )\)(u+ + gij)
© A — )+ (1= At

The choice of PDE consistent numerical fluxes for the Robin boundary condition is straight-
forward. Take the numerical fluxes to be a simple modification of the LDG fluxes for the

(3.15)

finite element method’s “natural” Neumann boundary condition, setting: «* = u~ and
qg = %(T — au”)n. The numerical flux for u is taken from the trace of the interior element

DG polynomials and the numerical flux of q incorporates the boundary data.
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3.3.2 Local discontinuous Galerkin methods
With the choice of numerical fluxes determined, we now present the LDG method for (3.4)

in the four steps previously stated:

(i) Define auxiliary variable n € V¢ such that n = Vu weakly for element £ € £ via the

strong-weak form (3.5)
/n-w:/Vu-w—i-/ (" —u)w - n,
E E OF

for all test functions w on element E. Summing over all elements gives

/Qn~w:Z/EVu'w+/Fo(u*—u)w-n—/ro(u*—u+)w+~n (3.16)

—i—/ (uf—u)w-n—/ (u?—u*)w*-n—i—/ (v —u )w™ - n.
Ik rf Tr

Define the interfacial numerical flux «* as motivated in section (3.3.1). In LDG methods,
the numerical fluxes for the collection of intraphase faces I'y are often one-sided [70][73]. For
simplicity of presentation, the numerical flux for the collection of intraphase faces I'y is set
to u~ (from the left), therefore

U on I'y
. _ Jaum + (1= A)(u" +gi;) for phase i on rf

AMu~ = gij) + (1 = Aut  for phase j on I'f}

(3.17)

U on 'p.

Plugging this numerical flux into (3.16) eliminates the Robin boundary contribution to the
gradient and gives

/Qn.w:zE:/Evu.er/Fo(Qﬁ_u—)w+'n

+ / 1=Nu"—uw)w n+Aut —u)w' n
r
r

e Define the Broken Gradient operator V}, : Vi, — V4 and the Lifting operator L : Vj, —
V4 such that, respectively,

/QVhww:;/EVu'w, (3.18)
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/Qwa :/Fo(u+—u)w+~n+éﬁ(1—A)(u+—u)w‘n+)\(u+—u)w+~n, (3.19)

for all w € V;&. The broken gradient operator defines the gradient of polynomial u € V},
on an element-wise basis and the lifting operator incorporates the jumps in u across
faces in each dimension, effectively taking the surface integrals and “lifting” them into
the domain. Now, define the Gradient operator G : V;, — V& as G = V;, + L.

e Take J; € V)¢ such that
/ Jy(gij) - w = / (1= Ngijw™ -n+Agw'  n, (3.20)
Q Fﬁ

for all w € V4.
Together, the weak gradient is defined by n = Gu + J,.

(ii) Now define ¢ € V& as the L? projection of un. In terms of DG operators, this is
equivalent to ¢ = M~*M,n, where M is the mass matrix and M, is the p-weighted mass
matrix such that v" M,u = fQ vpu for all u,v € Vj. So the k-th component of q is equal to

k. = MﬁlMu(Gku + Jgk)- (3.21)

(iii) Next we seek to define the divergence of q. For element E € &, let w € V}, be such that
w = V - q weakly via the weak-weak form (3.6)

/wv:—/q-Vv—i-/ vq* - n,
E E OF

for all test functions v on element E. Summing over all elements results in

/wU:—Z/CI'VU-i-/ (v‘—v+)q*-n+/ v‘qf-n—v+q§'"+/ v g . (3.22)
Q L JE Ty TR I'r

)

Define the numerical flux ¢* as motivated in section 3.3.1, in the opposite direction as that
for u, incorporating Robin jump and boundary data:

q" on Iy

. J Mgt +riyn—[aun)+ (1 —X)g~ for phase i on I'}} (3.23)
7= Agt + (1 =N (g~ —riyn + [aun) for phase j on I'}} '
1

3(r—au”)n on I'g.
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Plugging these numerical fluxes into (3.22) gives

/Qwv:—g/Eq-Vv—/Fo(vJ“—v_)q+-’n, (3.24)

e e A TR

1
+ / (1 - )\)U+T’ij + /\U_Tij +/ V=T
Fg I'r b

_/Fﬁ(l—)\)v+[au]+)\v_[au}—/ v_%au_.

T'r

We now break (3.24) into three components. Notice that the first two lines are equivalent to
—(Vyv,q) — (Lv,q) = —(Gv, q), where (-, -) is the standard inner product. This component
of the divergence operator is equivalent to the negative adjoint of the gradient operator.
Secondly, define Ji € V}, such that

1
/JR(T’, Tij)V :/ (1= Nvry 4+ M ry +/ (T (3.25)
Q 1"3 Tk b

for all v € V},. Now define the block-sparse matrix Ag(u) such that

o A (u)u = /

R
5

(1= XNvtau] + M~ [au] + /r v%au, (3.26)

for all v € V}. Note that the Robin jump terms in Ag (v'|au] and v~ [au]) will break
symmetry of the discrete Laplacian when the values of « differ across phases. This is con-
sistent with the underlying PDE and jump conditions; in any case, the diagonal blocks of
the discrete Laplacian will remain symmetric. Note the Robin boundary component of Ag
is akin to penalization methods for weakly imposing Dirichlet boundary conditions in finite
element methods [83][84]. Combining these terms gives the following weak definition of V- g
incorporating the Robin boundary and jump data

w=—> M 'GI Mg, — M Ap(u) + Jg. (3.27)
k

Plugging in the definition of q (3.21) gives

w=—> M 'GIM,(Gru+ Jor) — M~ Ag(u) + Jg. (3.28)
k

(iv) Additionally, LDG methods employ penalty stabilization to ensure the wellposedness
of the discrete problem. For the Robin problem, penalization is added to weakly impose
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continuity between intraphase elements and to impose the Robin jump condition in u. The
penalty is of the form

/FO Uolu][v] + /FR 955 ([u][v] — g[v]),

where ¥y and 9;; are positive penalty parameters. Define the block-sparse penalty matrix £
and polynomial ar € V} such that

o B — / Sofu][] + /F Dl (3.29)

To
/aRv:/ Yi59[v], (3.30)
Q Fg

for all v € Vj. In general for Poisson problems, the penalty parameters should vary pro-
portionally to the local diffusion coefficient ;1 and in inverse proportion to the mesh spac-
ing h. Additionally, the penalty parameters are scaled with respect to polynomial degree
p. For the tests in section 3.5, the penalty parameters are taken as vy = 0.5up/h and
Y;; = 8min(pu~, p")p/h, where p~ and p* are the local diffusion coefficients for the left
and right elements respectively. In the simulations of multi-layer coating flows presented
in Chapter 5, a higher degree of penalty stabilization is employed within the mass transfer
system, with ¥g = Sup/h and f ranging from 15-30.

Summary

The Poisson problem with Robin conditions (3.4) is solved via LDG by finding u € V}, such
that the following block-sparse matrix equation holds:

(Z GE MGy + Ag(u) + E> u=MPy,(f) =Y GiM,Jy,+ MJp+ Map,  (3.31)
k k

where Py, (f) is the L? projection of f onto Vj. Note that both sides of the equation
have been multiplied by the mass matrix M. For problems concerning only Robin bound-
ary conditions, this results in a symmetric positive-definite linear system when the Robin
coefficients are positive and the linear system (3.31) is solved by the fast operator coarsen-
ing multigrid-preconditioned conjugate gradient methods of [78], discussed next. The LDG
methods developed in this section are demonstrated to be optimally high-order accurate in
section 3.5. Rapid multigrid performance is also demonstrated for the Robin boundary prob-
lem in which the iteration count remains bounded as the background mesh spacing tends
towards zero.

3.4 Operator coarsening multigrid

To solve the linear system (3.31), we extend the recently developed operator coarsening
geometric multigrid methods of [78] to Poisson problems with Robin boundary conditions.
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We note that, as discussed in section 3.3.2, the inclusion of Robin jump conditions may break
the symmetry of the continuum and discrete Laplacian. Therefore, in section 3.5, the linear
system (3.31) is solved via multigrid methods for symmetric Robin boundary problems and
via a direct method from the parallel ScaLAPACKE library [85] for asymmetric problems
involving Robin jump conditions.

Geometric multigrid methods are powerful solvers that act by reducing high-frequency eigen-
modes in the error along a hierarchy of successively coarsened meshes. The operator coars-
ening multigrid paradigm maintains PDE consistency throughout each level of the hierarchy
and sharply preserves the interfaces, while also avoiding the explicit construction of coarse
meshes, making it an ideal solver for our problem. To illustrate a basic multigrid algorithm,
consider a two-level mesh hierarchy consisting of a fine and coarse mesh. Given an initial
fine-mesh approximate solution, geometric multigrid methods then perform the following:

1. First a relaxation method, or Smoother, is applied to the fine-mesh approximation.
Smoothers quickly damp out high-frequency eigenmodes in the error but act slowly on
low-frequency errors. Typically, the smoother is a stationary iterative method, such as
the Jacobi or Gauss-Seidel methods.

2. The fine-mesh approximation is then transferred onto the coarse mesh. Here, the
low-frequency errors appear higher-frequency due to the lower resolution of the coarse
mesh. The smoother is then applied on the coarse mesh to damp out these modes.

3. The coarse-mesh correction is transferred back onto the fine mesh and the approximate
solution updated.

This loose description of a multigrid V-Cycle illustrates that our geometric multigrid method
requires the following three components: (a) a mesh hierarchy, (b) mesh-to-mesh transfer
operators, and (c) a smoother. For a review of multigrid methods, see [86].

(a) In the implicit mesh DG framework, a mesh hierarchy is naturally defined by the struc-
ture of the background quad/octree. Fine-mesh elements are coarsened up the tree hierarchy
onto their tree nodes’ parents, creating a collection of coarse-mesh elements on which coars-
ened DG polynomials and LDG operators are defined. The interfaces are sharply preserved
throughout the hierarchy and the coarse meshes are not explicitly constructed, with move-
ment between meshes handled solely by the interpolation and restriction operators.

(b) To transfer quantities along the mesh hierarchy, we define the following Interpolation
and Restriction operators. First, let V; and V. represent the fine- and coarse-mesh piecewise
polynomial spaces respectively. The interpolation operator I/ : V., — V; defines a mapping
from the coarse mesh onto the fine mesh via injection, i.e., a polynomial defined in V, has its
value preserved on Vy, with [ Cf u. = uy for u. € V, and uy € Vy. We note that this choice of
interpolation operator preserves constants. The restriction operator Rj : Vy — V. is defined
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as the adjoint of the interpolation operator, with

(R;iuf,uc)vc = (uf,lcfuc)vf,
¢ = M (1])" My,

where My and M, are the fine- and coarse-mesh mass matrices respectively, with M, =
(I7YT M IJ. The restriction operator may also be interpreted as the L? projection of the fine-
mesh polynomials onto their coarse-mesh parents. Using the interpolation and restriction
operators, we now compute the LDG operators on each level of the mesh hierarchy. For
fine-mesh operator A : Vy — V}, define a Coarsening Operator C(A) : V. — V. such that

(ve, C(A)uc)v, = ([chCaAIZUC)va
C(A) = M (I))" My AI] = RGAI, (3.32)

for all v.,u. € V.. This is often referred to as “RAT” form and the coarsened operators
are computed with simple block-sparse linear algebra. In [78], it was demonstrated that
coarsening the discrete Laplacian in its primal form (its entirety) leads to poor multigrid
performance. Instead, to maintain consistency with the underlying PDE at each level of
the multigrid hierarchy, the operator coarsening paradigm states that LDG operators should
be coarsened individually, then recombined to form the coarse-grid discrete Laplacian. The
coarse-mesh LDG operators for the Poisson problem with Robin boundary conditions are
therefore:

A, = M (Z G M, Gep + A + E> .
k

Note that a factor of a half has been added to the coarsened penalty operator E,. in order
to maintain the penalty’s 1/h behavior throughout the multigrid hierarchy [80].

(c) The final key component of our multigrid method is the smoother, which is used to damp
high-frequency errors. For our problem, we use a simple damped block Gauss-Seidel (block
SOR) algorithm as our smoother. For all tests in section 3.5, v = 3 pre- and post-smoothing
steps are applied for each V-cycle. The SOR damping parameter is set to w = 0.9.

The following is the algorithm for a single multigrid V-cycle: V (A, z,b,1)
Goal: Solve Ax = b, starting with an initial guess Z
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If | = bottom level, solve Ax = b directly. Return z.
Smooth AZ = b via v block Gauss-Seidel iterations.

Restrict the residual onto the next coarsest mesh: r. = (I/)T (b — AZ).

=W D=

Recursively run the V-cycle on the residual at the next level, with initial guess zero:
xe = V(A 0,701+ 1).

5. Interpolate the coarse-grid correction back onto the fine mesh and correct the solution:
T=1+1/x,.

6. Smooth AZ = b via v reverse-order block Gauss-Seidel iterations.

7. Return z.

To further accelerate performance, the multigrid algorithms are used as preconditioners
for Krylov subspace methods. Krylov subspace methods work well to weakly impose the
boundary and jump conditions, while multigrid solves the interior elliptic problem. This
results in a fast, robust solver capable of solving Poisson problems with Robin boundary
conditions in 6-12 iterations. The linear system (3.31) generated by the LDG methods for
the Robin boundary problem is symmetric positive-definite and, for this problem, a single
V-cycle is applied as a preconditioner for the conjugate gradient algorithm. Details on
preconditioned conjugate gradient methods can be found in [87].

3.5 Convergence and multigrid tests

In this section, we test the order of accuracy of the LDG methods of section 3.3.2 for the
Poisson problem with Robin boundary and jump conditions separately, in both 2D and 3D,
as well as examine the performance of the multigrid algorithm developed in section 3.4 for
the Robin boundary conditions. In particular, we demonstrate both high-order accuracy as
well as rapid bounded multigrid performance for the challenging case of variable diffusion
and Robin coefficients spanning several orders of magnitude on a curved implicitly-defined
domain. Recall the Poisson problem with Robin conditions (3.4) is given by

-V - (uVu) = f in
[U] = Gij on Fg
lau] + [uVu-n] =r; onT[

au+ (buVu) -mn=r  onIg.

We test convergence by comparing against an exact offset sinusoid solution, setting v : 2 — R
to

u(x) = Hsin 27 (z; — 0.05(x — 1)), (3.33)



CHAPTER 3. DISCONTINUOUS GALERKIN METHODS 39

08k

.
nE L

S\.‘l. I
0.0 Cu 1 1 L L I S‘<.;:/J
0.0 0.2 0.4 0.8 0.8 10 10

Figure 3.3: The implicitly-defined amoeba domain in 2D and 3D.

where x represents the phase containing x. The exact solution is used to generate the source
data f, Robin boundary data r, and interfacial Robin jump data g;;, 7;;. Multigrid efficiency
is assessed by using the average residual reduction factor per iteration of the multigrid-
preconditioned conjugate gradient algorithm, which is defined by

1 [|VAzNy — V|2
=exp | —lo , 3.34
’ p(N g(HVAxO—VbHQ (3:34)
where N is the number of iterations needed to reduce the residual by a factor of 10'° from
its initial value. Here V represents the multigrid V-cycle preconditioner while A represents
the discrete Laplacian. All multigrid tests use a homogeneous b = 0 and a random initial
guess xg, thereby assessing performance across the full spectrum of eigenmodes. We test our

formulation within an irregular “amoeba” domain embedded within a [0, 1]¢ box, defined by
the zero level set of

r? — 0.1 — (y* 4+ 1023y, — 2022y?)/(2r?) in 2D

Pe,9,(2)) = r? — 0.1 — (yp + 1023y, — 2022y? + z2)/(2r?) n 3D,

where (z¢, Ye, 2.) = (2,9, 2) —0.5 and r? = 22 +y?(+22). The amoeba is shown in Figure 3.3.
For Poisson problems with Robin boundary conditions, the interior of the amoeba defines
domain 2 and the interface/zero level set defines I'g. For Poisson problems with Robin jump
conditions, take €); to be the interior of the amoeba and 2; the exterior, with Q = €, [J ;.
The Robin jump conditions are applied on Ff-jf =, €, and Poisson problems with Robin
jump conditions are closed by applying Dirichlet conditions along the domain boundary.
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3.5.1 Poisson problems with Robin boundary conditions

Test 1: Constant diffusion and Robin coefficients

We begin with perhaps the simplest nontrivial Robin boundary condition, setting unit diffu-
sion coefficient 1 = 1, with equal unit weighting between the Robin coefficients, a = b = 1.
Figure 3.4 presents the computed L errors against the exact solution along with the multi-
grid convergence rate p, in both 2D and 3D. For each polynomial order p, optimal p + 1
order accuracy is achieved, as indicated by the fitted lines. Good multigrid performance is
demonstrated in which the iteration count remains bounded as background mesh spacing h
tends towards zero. The multigrid algorithm has a convergence rate of p < 0.15 in all cases,
indicating 6-12 multigrid-preconditioned conjugate gradient iterations are needed to reduce
the residual by a factor of 10°.

Test 2: Variable diffusion and Robin coefficients spanning several orders of magnitude
Next, we examine a challenging case with variable coefficients, where the diffusion coefficient
varies by four orders of magnitude and the Robin coefficients by eight orders of magnitude
throughout the domain, setting

in 2D: in 3D:

= 102sin(27r(3670.1)) sin(27(y+0.1)) = 102sin(27r(170.1)) sin(27(y+0.1)) sin(27(2—0.1))
a = 10744’88111(#:)3/2) sin(my/2) a = 1074+851n(7r:1:/2) sin(7ry/2) sin(m(240.5)/2)
b= 10478 sin(7mrz/2) sin(7ry/2) b= 10478 sin(rz/2) sin(7wy/2) sin(ﬂ(z+0.5)/2)’

which gives a diffusion coefficient ranging from 1072 to 10? and a spectrum of Robin coef-
ficient ratios a/b ranging from 107® to 2 x 10° for both 2D and 3D. Figure 3.5 illustrates
that the LDG method produces high-order accurate solutions and the multigrid algorithm
performs well even in this challenging setting, achieving optimal p + 1 order accuracy and
good bounded multigrid performance with p < 0.15 for each polynomial order.

In the Limits

The Robin boundary condition, au+ (buVu)-n = r on ', can be viewed as a weighted com-
bination of Dirichlet and Neumann boundary conditions. As a — 0 with b nonzero, the Robin
boundary condition approaches a pure Neumann condition, which for Poisson problems re-
quires appropriate treatment of the kernel, being in that case the span of globally-constant
functions. Note that this trivial kernel is not present within the heat operator (4.1) for the
mass transfer system and the limit @ — 0, which represents the limit of zero evaporation
in the multi-layer coating flow problem, poses no added difficulty to our hybrid numerical
framework. In the limit a — oo or b — 0, the Robin boundary condition approaches a pure
Dirichlet condition, whose LDG implementation requires additional penalty stabilization to
ensure a well-conditioned discrete Laplacian. It is possible to incorporate this limit and its
requirements into our LDG formulation—for example, one could adapt the Nitsche’s finite
element method of [88] for general Robin boundary conditions to our problem—but this limit
is not relevant to the multi-layer coating flow problem and therefore not explored here.
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Figure 3.4: Convergence rates and multigrid performance for the Poisson problem with Robin
boundary conditions on an implicitly-defined curved domain with u,a,b = 1. h denotes the back-
ground mesh spacing and polynomial degrees are represented by @ . ¢, A for p = 1,2, 3, 4 respec-
tively, with the slopes of the lines indicating asymptotic convergence rates.

3.5.2 Poisson problems with Robin jump conditions

We begin the analysis of our LDG methods for Poisson problems with Robin jump condi-
tions by first recalling that our choice of interphase numerical fluxes along the Robin jump
interface (3.14,3.15) has a directional weighting parameter A € [0, 1] and that the numerical
consistency of the discrete Laplacian with respect to the Robin jump conditions may depend
on the flux direction. In [80], the direction of the interphase numerical fluxes was found
to strongly affect both the multigrid performance and solution accuracy for the Poisson
equation with standard jump conditions, particularly in cases exhibiting large jumps in the
diffusion coefficient across the interface. For illustration, the Poisson equation with standard
jump conditions is given by:

=V (uVu) = f
[u] = gs (3.35)
[WVu - n] = hij,
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Figure 3.5: Convergence rates and multigrid performance for the Poisson problem with Robin
boundary conditions on an implicitly-defined curved domain with variable u, a,b spanning several
orders of magnitude. h denotes the background mesh spacing and polynomial degrees are repre-
sented by @ . ¢, A for p = 1,2, 3,4 respectively, with the slopes of the lines indicating asymptotic
convergence rates.

where f, g;;, and h;; are sufficiently smooth functions. In this setting, when there are large
jumps in diffusivity across the surface, the phase with the smaller diffusion coefficient will,
put simply, “see” the jump conditions as an almost Dirichlet boundary condition, while the
phase with higher diffusion “sees” an almost Neumann condition. The Viscosity- Upwinded
Weighting strategy of [80] biases the direction of the interphase numerical fluxes of the LDG
discretization for (3.35)—equivalent to the numerical fluxes (3.14,3.15) without the Robin
term [ou]n within ¢*—to align with this effect. Specifically, viscosity-upwinded weighting
sets A such that
0 if = < pt
A=<¢1/2 ifpu =put (3.36)
1 if u= > put,
where = and ™ are the local diffusion coefficients along the jump interface from the left
and right elements’ respectively. This choice of interphase numerical flux direction was
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demonstrated to produce good multigrid performance and accurate solutions to (3.35) in
situations with jumps in diffusion coefficient spanning several orders of magnitude. Note in
particular that one-sided numerical fluxes (3.36) were found to produce optimal results [80].

We now examine the effect of biasing the directionality coefficient A for the Robin jump
conditions. Recall the Poisson equation with Robin jump conditions:

=V (uVu) = f
lau] + [pVu - n] = 1.

and our choice of numerical fluxes (3.14,3.15) for the Robin jump interface I'}F:

=+ (1= Nt +giy), @ =MNg"+riyn—|aun)+ (1-Ngq,
T=AMuT =)+ (A= Nut, g = AT+ (1= ) (g —ryn + [au)n).

The term [au] in the (3.37) introduces a source of Impedance to the flow of information across
the interface, and we show that the direction of the interphase numerical fluxes for the Robin
jump surface must take into account the values of the Robin coefficient « in addition to the
values of diffusivity p. To illustrate further, expanding the Robin jump condition gives the
following value for v~

1
U= (rij— (W Vu -n—atu® —p*Vu' -n)).

Plugging this into the other jump condition ([u] = g;;) gives

1 ot + 1 1 -7,,— +x7,,+
( —a—_)u _a_—rij_gij_a_—(u Vu  -n—p"Vut-n). (3.38)
Consider the limit &~ — oo, then (3.38) approaches a Dirichlet boundary condition for
the right phase? Q7 and, from a physical perspective, this limit represents a steep wall of
impedance to the flow of information in Q. Therefore, in situations where o™ > o, u=, u*,
the interphase numerical fluxes (3.14,3.15) developed in section 3.3.1 for the Robin jump
conditions should bias towards a Dirichlet condition for QF. Specifically, the numerical
flux ¢* should bias towards ¢* to maintain consistency with the specification of Dirichlet
boundary conditions within the LDG framework and, to do so, one may set the directionality
coefficient A = 1. Similarly, if a™ > o=, u~, ", then the interphase numerical fluxes for
the Robin jump conditions should bias towards a Dirichlet condition for 2~ and g* should
be biased towards ¢, setting A = 0. If either of the diffusion coefficients p~, u* outweighs
the Robin coefficients, then the flow of information is most strongly specified by diffusion
and the viscosity-upwinded numerical fluxes should be used. Combining all cases gives the

?In terms of the previous notation: Q= = ;, QT = Q.
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following Viscosity-Impedance Upwinded weighted numerical fluxes for the Poisson equation
with Robin jump conditions, defined by

(0 ifat >a ,pu,put

ifa= >at, p,pu"

A=10 ifut>p ,a,af (3.39)
1/2 ifut=p >a ,at

1 if pyo > pt,a,at.

\

To illustrate the role of the directionality coefficient A and to further motivate the viscosity-
impedance upwinding strategy, we test the computed LDG solutions for the Poisson problem
with Robin jump conditions (3.37) as a function of A, using a similar sweeping strategy as
in [80]. In this sweep, the directionality coefficient is varied from A = 0 through A = 0.5 to
A = 1, representing varying the interphase numerical fluxes through a convex-combination
of flux directions: starting from a one-sided formulation onto a central flux, and finishing
with a one-sided flux in the opposite direction. Additionally, between these values, A is set
toA=10""and A =1 — 107%, where k = 10.5,10,9.5, ..., 1.5, 1. These tests are performed
in a unit square in 2D with Robin jump conditions applied on an embedded circle separating
the two phases. A 16 x 16 DG background mesh is employed and Dirichlet conditions are
applied on the domain boundary to close the Poisson system.

Figure 3.6(i) shows the L errors against the exact offset sinusoidal solution (3.33) for the A
sweep. Here the diffusion coefficients are set to unity 4~ = ut = 1, and two different sets of
Robin coefficients are considered: (1) o= = 10*, o™ = 10% and (2) = = 10%, o™ = 10*. The
figure clearly illustrates the effect of biasing the direction of the interphase numerical fluxes
on solution accuracy, with the direction given by viscosity-impedance upwinding resulting
in accurately computed solutions. For further motivation, recall the definition of the block
sparse Robin matrix Ag(u) (3.26), which when restricted to the Robin jump conditions is
given by
vl Ap(u)u = / A [au] + (1 = AN)vT[au),
o

for all v € V},. The term Apg breaks the symmetry of the Laplacian and allows it to sup-
port complex eigenvalues. Figure 3.6(ii) shows the maximum imaginary eigenvalue of the
discrete Laplacian for a given value of A. The blank regions in the figure indicate that
there are no complex eigenvalues, and we note that these regions align with the direction
given by viscosity-impedance upwinding. Consider, for example, when o~ > at, =, u*,
then the viscosity-impedance upwinding strategy sets A = 1 and the resulting term in Ag is
frg v~ [au]. The term v~ u~ has a larger value than that of v~ atu™, with the former term

being along the matrix diagonal. Therefore, the choice of viscosity-impedance upwinding
results in a discrete Laplacian that is more diagonally dominant and, in this test, contains
all real eigenvalues. From a physical point of view, the complex eigenvalues arising from a
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non-optimal choice of numerical flux direction may indicate reflection waves caused by the
impedance of the Robin jump surface.

Figure 3.6(iii) highlights a case where the optimal flux direction given by viscosity-upwinding
for the Poisson problem with standard jump conditions reverses in the presence of Robin
jump conditions. This figure presents the L> errors of the computed solution for two cases:
(1) pm =105 ut =10%,a” =a™ =0and (2) p= = 1075 u™ = 10*,a= = 10%,a™ = 0.
The impedance forces a reversal of the optimal flow of information and, in this situation, the
numerical flux direction given by viscosity-impedance upwinding is optimal.

Figure 3.6(iv) shows the results of a convergence study for the Poisson problem with Robin
jump conditions (3.37) using the viscosity-impedance upwinding strategy. This test considers
a challenging case where the diffusion coefficients vary by six orders of magnitude and the
Robin coefficients eight orders of magnitude, setting

- _ 103 sin(27(z—0.1)) sin(27(y+0.1))

1
/~L+ — 103sin(27r(:c+0.2))sin(27r(y—0.2))
o~ = 10—4+85in(7rac/2) sin(wy/2)
O{+ — 104—85in(7m:/2) sin(7ry/2)‘

The test is performed in 2D within the two-phase amoeba domain (see Figure 3.3) and
the PDE is closed with Dirichlet boundary conditions. The figure illustrates slightly better
convergence rates than the optimal p + 1 order accuracy, for both the L? and L° norms.
This is likely due to the mesh resolutions considered here not fully reaching the asymptotic
limit, noting that here the asymmetric discrete linear system (3.31) is inverted through a
dense solver. Also, for this reason, tests of the LDG method for Poisson problems with Robin
jump conditions are only presented in 2D. As with the Robin boundary problem, the LDG
framework for Poisson problems with Robin jump conditions is constructed in a manner that
naturally extends to 3D.
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Figure 3.6: The test results for Poisson problems with Robin jump conditions. In (iv), h denotes
the background mesh spacing and polynomial degrees are represented by @ l. ¢ for p = 1,2,3
respectively, with the slopes of the lines indicating asymptotic convergence rates.
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Chapter 4

Numerical Methods for Coating Flow
Dynamics

In Chapter 2, a multi-physics model for the multi-layer coating flow problem is presented.
The model includes multi-phase interfacial quasi-Newtonian fluid dynamics, driven primarily
by Marangoni forces, coupled to the transport, mixing, and evaporation of multiple dissolved
species. To solve the set of coupled multi-physics equations outlined in section 2.1.6, in this
chapter, we develop a hybrid numerical framework for the multi-layer coating flow problem
consisting of finite difference level set methods [36][37] and high-order accurate multi-phase
implicit mesh discontinuous Galerkin methods [66][75][79]. These methods use an implicit
level set representation of the paint surfaces combined with a structured background quadtree
or octree to create a collection of rectangular and interface-conforming curved elements on
which high-order accurate DG methods are applied. The methods sharply capture evolving
interface dynamics to high-order accuracy in a dimension-independent fashion. The numeri-
cal methods discussed in this chapter were developed in conjunction with the jointly-authored
article

e L. P. Corcos, R. I. Saye, & J. A. Sethian, A hybrid finite difference level set—implicit
mesh discontinuous Galerkin method for multi-layer coating flows, Journal of Compu-
tational Physics (under review).

The preliminaries of our hybrid numerical framework for the multi-layer coating flow problem
are discussed in Chapters 2 and 3. In section 2.2, we describe the finite difference level set
methods that capture surface motion; specifically, the height function representation for the
surfaces gy, ['ij, I'e that is used to create a level set function that generates the numerical
quadrature rules for the implicit mesh DG methods. Additionally, in section 2.2.1, finite
difference methods for calculating surface mean curvature within surface tension calculations
are discussed. In section 3.2, the implicit mesh DG framework is discussed, including the
notion of implicitly-defined meshes and their evolution, the definition of the DG polynomial
spaces, and a discussion of numerical quadrature schemes for implicitly-defined elements
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and surfaces. Tailored high-order accurate LDG methods for Poisson problems with Robin
boundary conditions are developed in section 3.3.

In this chapter, we present the numerical methods for the multi-layer coating flow prob-
lem, capturing the couplings between the evaporative solvent mass transfer system and the
multi-phase interfacial quasi-Newtonian fluid dynamics. First, we combine the new LDG for-
mulation of section 3.3 for Poisson problems with Robin boundary conditions and the level
set method to capture solvent evaporation. Next, the methods for solving quasi-Newtonian
fluid flow are discussed, including the application of recently developed fast multigrid Stokes
solvers [72] and the presentation of a finite difference projection algorithm for surface gradient
calculations for Marangoni stresses. Lastly, the fully coupled algorithm for the multi-layer
coating flow problem is presented and its convergence properties assessed.

4.1 Algorithm outline

We now outline the basic structure of our numerical algorithm for the multi-layer coating
flow problem. In the present setting, it is especially important to capture spatial charac-
teristics with sufficiently high-order accuracy, such as thin boundary layers. All simulations
of multi-layer coatings use p = 2 order DG polynomials (i.e., bi-quadratic and tri-quadratic
polynomial spaces in 2D and 3D, respectively), together with 2°¢ order accurate finite differ-
ence methods. On the other hand, temporal accuracy is less important. Consequently, and
for ease of implementation, we here describe a simple 1% order mixed explicit-implicit time
stepping method, where advective terms are treated explicitly and the diffusive and viscous
terms are solved implicitly via backward Euler. Together, our particular implementation
choices lead to a fully coupled numerical algorithm for the multi-layer coating flow problem
that is 2" order accurate in space and 1% order in time, demonstrated in section 4.5.1.

The developed numerical methods for approximating the multi-phase incompressible Navier-
Stokes equations (2.2,2.21) and the convection-diffusion equations (2.3) treat advective terms
explicitly-in-time, with numerical fluxes given by standard upwinding [66]. The viscous and
diffusive terms are solved implicitly-in-time via backward Euler, requiring solutions to the
Stokes and heat operator problems respectively. The algorithm for the multi-layer coating
flow problem proceeds as follows:

1. At time step 0, initialize the height functions I'syp, I';;, and I'c to create the initial in-
terface configuration; construct the associated implicitly-defined mesh, DG polynomial
spaces, and LDG operators; and set the initial DG state variables for the solvent mass
concentrations ¢, paint velocity field w, and pressure p.

2. Begin time stepping: For n =0,1,2, ...

(i) Compute the concentration and velocity field advection terms via an upwinding
scheme.
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(ii) Evolve the height functions under (2.32) to find ¢"**. Create a new implicit mesh,
transfer state variables onto the new mesh’s DG polynomial spaces, and create
LDG operators.

(iii) Update the solvent mass concentrations cZ“ by solving the mass transfer
convection-diffusion equations (2.3), use this to determine the new concentration-
dependent rheological parameters.

(iv) Update the velocity field u™*! and pressure p"*! by solving the incompressible
Navier-Stokes equations (2.2,2.21) for quasi-Newtonian fluid dynamics.

(v) Repeat until the final time is reached.

The numerical methods for the evaporative mass transfer system (step (iii)) and the
Marangoni-driven multi-phase quasi-Newtonian fluid dynamics (step (iv)) are presented in
the upcoming sections. These methods are coupled together in the full numerical algorithm
for the multi-layer coating flow problem, described in section 4.5.

4.2 Numerical methods for the mass transfer system

As motivated in section 2.1, the motion of solvent within the multi-layer coating flow problem
is described by the convection-diffusion equations (2.3) coupled to evaporation and mixing at
the paint-gas and paint-paint surfaces. Applying the mixed explicit-implicit time stepping
scheme to (2.3) gives the following heat operator system for the mass transfer problem,
solving for ¢! such that

vt —en
S TV (e = V- (Dt (4.1)
together with the Robin boundary condition m; = ch“ — pDch’,;”rl -n along T, as

well as continuity and zero diffusive flux jump conditions along I';;. The advective term
V - (cpu)™ is treated explicitly via an upwinding scheme and the Robin boundary problem
is solved by the LDG schemes discussed in section 3.3. As previously demonstrated, these
LDG methods calculate high-order accurate solutions on implicitly-defined domains in a
dimension-independent fashion, for a wide range of variable Robin coefficients. Solving
the heat operator equation (4.1) with Robin boundary condition requires only a simple
modification of the LDG schemes of section 3.3 for the Poisson equation (see equation (3.31)),
setting the LDG heat operator to

M
~+ (zk: GIM, Gy + Ag + E) : (4.2)

where M is the mass matrix. The heat operator linear system is symmetric positive-definite
and equation (4.1) is solved via the fast multigrid-preconditioned conjugate gradient algo-
rithms discussed in section 3.4.
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4.2.1 Solvent mass flux

The solvent evaporative mass flux m;, through surface I', accounts for two aspects: first, the
evaporation rate should be proportional to the amount of the solvent at the interface and
tend towards zero as the solvent mass concentration goes to zero; second, in multi-solvent
cases, the solvent with the largest species concentration is preferential to evaporation. The
following solvent evaporation rate my takes into account both considerations:

e ()

where ¢ is the coefficient of evaporation, a tunable, application-defined parameter that can
incorporate additional physics if necessary. In all case studies in this work, this coefficient
is taken to be a constant whose value is chosen to match experimental data. Note that
(4.3) is normalized by the number of solvents C' to ensure equivalent dynamics between the
single solvent case and the case where multiple solvents all have equal mass diffusion and
evaporation coefficients. Also note that the evaporative process introduces a fully non-linear
constraint to the mass transfer system. This nonlinearity is treated in our model by using
the solvent mass concentration values from the previous time step (i.e., from the traces of
c}) in the definition of the solvent mass flux my (4.3) and total evaporation rate m. The
remaining description of the evaporation process is then the linear Robin boundary condition
(2.28).

Additionally, for the inter-paint mixing rate (2.29), normal derivatives of the solvent mass
concentration are computed directly from the DG polynomials c!. The computed evaporation
and mixing rates are embedded within the level set speed law (2.19) and used in the advection
equation (2.32). After the solvent mass transfer system is advanced to the next time step,
an updated value of resin mass concentration ™' = 1 — Y, ™' is computed to define
the concentration-dependent rheological parameters (viscosity and surface tension) for the

quasi-Newtonian fluid dynamics.

4.3 Numerical methods for quasi-Newtonian fluid dy-
namics

To capture the flow and leveling of the quasi-Newtonian liquid paint films, we wish to
solve the multi-phase incompressible Navier-Stokes equations (2.2,2.21) wherein the viscosity
varies with respect to resin mass concentration, while also incorporating the various boundary
and jump conditions that capture the effects of surface tension, Marangoni forces, and the
couplings between film-layers. To do so, we use the LDG Stokes solver of [72] in conjunction
with finite difference methods for computing interfacial curvature and surface gradients for
the calculations of surface tension and Marangoni stresses respectively.
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In more detail, our mixed first-order explicit-implicit time stepping scheme applied to (2.2,

2.21) results in the following Stokes system for updating the fluid velocity ™! and pressure
n+1.
pth

n+l _ n
p <%) + V- (puw)” = =V + V- (u(cgt) (Vur™ + (Vurt)T)) + g,
(4.4)
V- un-i—l - Oa

including the stress conditions (2.25,2.26) along the embedded paint-paint surfaces I';; and
free evaporative surface I'., as well as the no-slip conditions on I';; and substrate I'y,,. These
conditions are repeated below:

OnT., o™ n=—pun—yEE"n+ Vey(cpt)

On F,‘j [u”*l] =0
[o.n+1 n] — —V(C%H)/{”Hn + VS’Y(C%H)

On Fsub 'l,l,n-i_1 =0.

In (4.4), the advection term V - (puwu)™ is discretized by an upwinding scheme and the
viscous components via backward Euler. The term x"*! represents the mean curvature of
the interface at time step n + 1, which is calculated using the second-order finite difference
methods discussed in section 2.2.1. The concentration-dependent rheological parameters of
viscosity p and surface tension « are scalar functions of the updated resin mass concentration
5. The Marangoni stresses Vgy(cls™) are computed via a second-order accurate version
of the finite difference projection algorithm for surface gradient calculations presented in

section 4.3.2.

The time-dependent Stokes system (4.4) is solved by LDG schemes that provide high-order
accurate solutions on multi-phase implicitly-defined domains while seamlessly incorporating
the paint layer couplings, varying viscosity profile, and the boundary and jump conditions.
This formulation enforces the divergence constraint without an intermediate projection step
and, in [72], rapid multigrid performance is achieved when the proper pressure penalty pa-
rameter is chosen, with performance matching that of classical geometric multigrid methods
applied to Poisson problems. In the remainder of this section, we summarize the LDG meth-
ods for solving the time-dependent Stokes system (4.4) and then present our finite difference
surface gradient formulation for Marangoni stress calculations. For full details on the LDG
Stokes solver, the reader is referred to [72]; also a detailed derivation of a new LDG method
for Stokes problems with Navier-slip boundary conditions is presented in Appendix A.

4.3.1 LDG for the Stokes equations

The LDG methods of [72] for the Stokes equations are constructed similarly as that for the
Poisson equation [66]; see section 3.3 for details on LDG methods for Poisson problems with
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Robin boundary and jump conditions. For illustration, recall the time-dependent Stokes
equations:

(p/ot)u —V - (u(Vu +Vul)) + Vp = f (4.5)
—V-u = fq,

where 0t is a constant often associated with a discrete time-step. The LDG methods for the
Stokes equations (4.5), as well as the new LDG methods for Stokes problems with Navier-slip
boundary conditions presented in Appendix A, follow five steps:

(i) Introduce the gradient i € Vthd such that n = Vu weakly via the strong-weak form.
(ii) Define the stress-tensor o € V,**? as the L? projection of u(n +n") — pl.

(iii) Compute the divergence of the stress-tensor w € V;¢ such that w = V - o weakly via
the weak-weak form.

(iv) Enforce the divergence constraint w € Vj, such that w = V - u via the strong-weak
form.

(v) Require that ((p/dt)u —w, —w) equals the L? projection of (f, faiv), while also incor-
porating penalty stabilization to enforce continuity, boundary, and jump conditions.

After performing these five steps, the LDG discretization for the time-dependent Stokes
equations (4.5) describing the quasi-Newtonian fluid dynamics within the multi-layer coating
flow problem results in the following symmetric block-form linear system

(o 25) ()= (o) (45)

where M is the mass matrix, 4 = —M 'GTM is a discrete gradient operator!, ¥47 is
a discrete divergence operator that enforces the divergence constraint, F, is the pressure
penalty operator, and A is the d x d block operator containing the temporal and viscous
components of the momentum equation, with

d
Aij = 6y (% +> GEM,Gi + Eu) +GTM,G, (4.7)
k=1
where 0;; is the Kronecker delta function, M, and M, are the p and y-weighted mass matrices
respectively such that v Myu = [, vpu and v" M,u = [, vpu for all u,v € Vj, and E, is the
velocity penalty operator?. The right-hand side (b, bqi,) of linear system (4.6) combines the
source, jump, and boundary data present within the Stokes system. The degrees of freedom
for u and p are blocked together on an element-wise basis and the block-sparse linear system
may be written as &/x = b, where x = (u, p). The resulting Stokes operator &7 is symmetric

indefinite and the system (4.6) is solved via operator coarsening multigrid-preconditioned
GMRES methods [72]. A few notes are in order:

I The lifting operator is modified from its form in Appendix A to impose Dirichlet boundary and interfacial
jump conditions.
2The penalty operator F,, is similarly modified.
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e Key to rapid multigrid performance is the choice of pressure penalty stabilization
parameter 7, within the discrete pressure penalty operator £,, which is defined over
all intraphase faces such that

= [ 50l (4.5)
1)
for all v € V},, where
-1
po hp
_ ([~ 4.9
TP <7’h + 7'0515) (4.9)

harmonically averages the penalty weightings between the viscous and temporal com-
ponents of the Stokes operator. Here 7 and 7y are user-defined penalty parameters;
optimal values of 7 that lead to superior multigrid performance are given in [72]. This
work uses the optimal pressure penalty parameter for the viscous-stress form Stokes
operator and polynomial order p = 2: setting 7 = 0.046 in 2D and 7 = 0.039 in 3D,
with the temporal penalty parameter set to 7o = 0.5p.

e Additional speedups in multigrid performance can be achieved by a suitable rescaling
of the discrete Stokes operator, effectively so that it has unit viscosity and unit length
scale. Here we apply diagonal pre- and post-scalings of the Stokes operator, replacing

(4.6) with
G0 )6

where « and [ are diagonal matrices with entries equal to \/L/u and +/pu/L respec-
tively, with L being the characteristic length scale of the problem (L = 100um in the
multi-layer coating flow problem). The scaled problem /% = b is then solved, where
o/ is the scaled Stokes operator and b = diag(a, B)b, after-which the original unscaled
solution x = diag(«, §)Z is computed. We note that this scaling is applied at each level
of the multigrid hierarchy in the operator coarsening framework.

e Jumps in viscosity across phases are accurately handled by the application of the
viscosity-weighted upwinding strategy of [80], which biases the direction of the inter-
phase numerical fluxes based on the liquids’ local viscosity coefficients.

4.3.2 Finite difference Marangoni formulation

To properly capture the Marangoni forces present within the multi-layer coating flow prob-
lem, which occur as a consequence of surface tension variations caused by solutal concen-
tration gradients along the paint-gas and paint-paint surfaces, we have developed a finite
difference algorithm for calculating surface gradients along an implicit interface defined via
a height function. The algorithm can be stated in two equivalent manners, either as an
extension (from interfacial values into the volumetric region) or a vertical projection (from
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(C) Vise = Vet — (VCCxt : ’I’L)’I’L
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Figure 4.1: A 2nd-order example of the finite difference projection algorithm for surface gradient
calculations in 2D. (a) Concentration values are projected downwards onto the finite difference
nodes @ of the height function along the d — 1 dimensional plane. (b) On this plane, the projected
surface gradients are approximated through standard central finite differences. (c) The surface
gradient approximation at point O along the height function is then the interpolated projected
surface gradient lifted upwards from the horizontal plane.

interfacial values down onto a fictitious d — 1 dimensional flat plane). We present both for-
mulations, examining the surface gradient Vgc of a general species mass concentration in
2D, with 3D needing only a simple modification of the following presentation. The extension
formulation extends the concentration values vertically from the height function, via the
function cex(x,y) := c(x, h(x)). It is clear that

V¢ = Veexs — (Veext - m)N, (4.10)

where n is the normal vector of the interface. The goal of the projection formulation is
to approximate (4.10) via a finite difference method in the d — 1 dimensional horizontal
plane, specifically at the finite difference nodes on which the height function is defined. The
projection formulation proceeds following the steps outlined in Figure 4.1.

(a) Project the values of ¢ downwards from the height function onto the d — 1 dimensional
plane, setting ¢; = ¢(x;, h(x;)). Here ¢; represents the projected value at finite difference
node z; € R4 and the height function values c(z;, h(z;)) are computed from the traces
of the DG polynomials. Additionally, the normal vector n is projected onto the d — 1
dimensional plane, where

1 1
D n=——o(—hy,1), 3D m=—o(—h,,—h,, 1),

NES N R RS
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setting 1, = n(z;, h(z;)), with the derivatives of the height function calculated via
central finite differences.

(b) Next the projected gradient %1 is computed via central finite differences. For example,
a 2" order formulation in 2D is given by

- Civ1 — Ci1
Ve = (%21 411
o= (M5 ) (111)

(c¢) The projected surface gradient is then calculated at each finite-difference node, with
Vs = Ve, — (Ve - 7). (4.12)

The values of the projected surface gradient are now available along the d — 1 dimen-
sional plane through interpolation. The surface gradient approximation Vgc =~ Z(Vgc)
is therefore the interpolated value projected vertically back onto the height function.

Figure 4.1 illustrates a 2"¢ order accurate formulation of the surface gradient projection

algorithm in 2D. The extension to 3D is straightforward, requiring only an additional di-
mension to the definitions of the normal vector and projected gradient. Figure 4.2(right)
shows the results of a convergence study examining the finite difference projection algorithm
for computing surface gradients within the Marangoni stress calculations. The L*° errors
in the computed solutions against the surface gradient of an exact offset sinusoidal solution
(3.33) are presented for both 2" and 4" order formulations. 3D tests are performed along
the surface of Figure 4.2(left) and 2D tests are performed along a central slice of this surface.
The surface is embedded within a [0, L]¢ box, with L = 100um to match the micro-fluidic
domains of interest. The 2" order formulations use 2"¢ order central differences with p = 2
DG polynomials and the 4" order formulations use 4" order central differences with p = 3
DG polynomials; the former are used in the simulations of multi-layer coatings. We have
opted to use the 2nd order method in the remainder of the results presented in this work;
this is simply for reasons of consistency, e.g., our finite difference curvature calculation (see
section 2.2.1) is also second-order. This choice renders the full algorithm for the multi-layer
coating flow problem spatially 2" order accurate.

4.4 A note on time step restrictions

In the micro-flow regime of coating flow dynamics, strong surface tension forces impose
a severe constraint on the numerical time step size. Fully resolving small-scale capillary
wave dynamics requires limiting the numerical time step within our hybrid framework to
At < Chpu/y, for some constant C, with h being the mesh spacing®. Typical simulations

3We note our time step restriction’s linear O (h) dependence, as opposed to the O (h3/2) restriction
commonly seen in capillary wave dynamics.
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Figure 4.2: Convergence tests of the finite difference surface gradient calculation. Left: The 3D
surface on which the tests are performed; 2D tests are performed along a central slice of this surface.
Right: L> errors and convergence rates of the finite difference surface gradient calculation for 27¢
and 4*" order formulations, with @, M representing 2D and 3D calculations respectively, with the
slopes of the lines indicating asymptotic convergence rates.

require a time step size around 10~ seconds, which in conjunction with the long time scales
relevant to the coating flow problem—on the order of hundreds of seconds—necessitates
millions of time steps. Fortunately, the dynamics of paint drying itself provides a source
of time step speedup. Typical paints used in industrial applications have a viscosity that,
roughly speaking, increases exponentially as a function of resin concentration. Since the
time step constraint is directly proportional to p/7v, and p tends to increase as solvent
evaporates, it follows that we can increase the time step size as a simulation progresses. In
our implementation, we update the time step size every 100 time steps, according to the

formula (cn)
. H(CR) Mo
At = min — | Aty, 4.13
oin (L) o 413)

where Atg is the initial stable time step size required for the initial ratio of viscosity to
surface tension /7. Here, the minimum value of resin concentration (i.e., cg) is taken
from the values of the DG polynomials at the Gauss-Lobotto nodes. This adaptive time
stepping approach is a straightforward yet effective means to take advantage of the fact the
capillary number is rapidly monotonically increasing: by the end of a typical simulation, the
final time step can be more than 100 times larger than the initial time step.

Even with this large speedup, further mitigation of the capillary wave time step constraint
was necessary in the present work: one of our objectives here is to explore several aspects of
multi-layer coating flow, requiring a multitude of parametric studies. To help facilitate this,
in addition to the above adaptive time stepping, we also damp the force of surface tension
whereby the terms in (2.25,2.26) involving x are multiplied by 0.1. This ad-hoc alteration is
simply so that we can take time steps ten times larger, representing a modest but beneficial
speedup. This alteration has little effect on the framework’s ability to capture short-wave
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Marangoni instabilities and plume structures; however the extent of the surface deformation
patterns—caused primarily by the long-wave Marangoni instabilities—will be exaggerated.
Nevertheless, we believe the insights drawn from our numerical simulations on multi-layer
coatings, presented in Chapter 5, remain physically relevant.

The net effect of the procedures outlined in this section is to reduce the total number of time
steps from millions to around 30,000-100,000 for the presented results.

4.5 Numerical algorithm for the multi-layer coating
flow problem

Combining the numerical methods developed in the previous sections, the fully coupled
numerical algorithm for the multi-layer coating flow problem is:

1. Set up the background quad/octree.

2. Define the initial height functions for surfaces Iy, 1%;,1e and construct the initial
level set function ¢°.

3. Use ¢ to define the initial implicit mesh, DG polynomial spaces, and LDG operators.
4. Initialize the DG state variables u’, p°, and ¢} at time ¢ = 0.
5. For time stepn =0, 1, 2, ...

(i) Every 100 time steps, update the time step size At.

(ii) Compute advection terms: V - (czu)™, V - (puu)™.

(iii) Calculate inter-paint mixing rates m = _Z% > . DiVe -moon Iy,
: € (62)2
solvent evaporation rates my = § - S~ On re,
J

and total evaporation rate m =, my.
(iv) Determine the interfacial speed functions (2.19): V =u-n — %m.

Advect the height functions (2.32) and update the level set function ¢"*1.
(v) Use ¢"*! to create a new implicit mesh for time step n + 1.

(vi) Transfer all necessary quantities onto the new mesh’s DG polynomial spaces and
define LDG operators.

(vii) Solve the solvent mass transfer heat operator problem (4.1) for each ¢} such

that
(L -V (D)t =% — V. (gu)" inQ
VCZH n=20 on I'yup
(i =0 on I';;
[DyVertt - m] =0 on I';;

W mcpt™t — pDp Vet - n onT..
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(viii) Calculate the updated resin mass concentration ¢y =1 — 3, ¢f*'.

(ix) Determine concentration-dependent rheological parameters: viscosity u(cpt),
surface tension y(cj;), and Marangoni forces Vgy(ch™) = n+1Vsc”+1.

(x) Solve the time-dependent Stokes system (4.6) for w"™! p"*! such that

( A”tu’”rl V- (w(Vu™™ + (Vu"th)T)) + Vprt! = Lu™ — V- (puu)” + pg  in Q
V-u"" =0 in (2
u"tt =0 on Daup

< [u™] =0 on I';;
[(Vu™t + (Vum™T) . n — p"n] = —ykn + Vgy on I';;
(w4 (Tur )T 1~ i = pn — i+ Vsy on T,

4.5.1 Convergence study

We test convergence of the coupled multi-layer coating flow framework via grid-convergence,
using a reference solution computed on the finest mesh and smallest time step. In designing
a convergence test, complications arise from the Marangoni-driven dynamics. As discussed
in the introduction, some surface tension profiles lead to hydrodynamic instabilities, which
naturally complicate a grid convergence study. For example, Figure 5.1 in the results section
illustrates the evolution of a single-layer coating in 2D with a surface tension value that
increases with respect to resin concentration. The corresponding Marangoni-driven evapo-
rative flow produces the short-wave hydrodynamic instabilities discussed in the introduction
and perturbations in solutal concentration along the free evaporative surface grow to form
Marangoni plumes, or roll-cells. Despite the physical significance of this Marangoni-driven
flow regime, it is not suitable for a grid-convergence study as the instability naturally gives
rise to grid-dependent dynamics, very similar in character to, e.g., the well-known Kelvin-
Helmholtz instability.

It is instead appropriate to examine a regime in which the Marangoni forces play not only
a pivotal role, but also one in which stable dynamics ensue. Such flows arise when the
surface tension value decreases with respect to a resin concentration, placing the system into
a short-wave-stable regime. One could view this as taking the unstable regime, but “flipping
the sign” on the Marangoni forcing term within the simulation code. Doing so therefore
stress tests each part of the implementation, in a physically-motivated set of parameters,
but yields stable dynamics for the purposes of a grid convergence study.

Specifically, we examine convergence for both the single and two-layer coating flow problems
in 2D within a 400umx100pm domain. The specified mesh sizes (e.g., 32 X 32) represent
the number of DG cells of the background mesh within an L x L block, where L = 100um is
the characteristic length scale in this and all remaining studies. The initial height function
values and rheological parameters are as specified in Table B.1 in the appendix and the initial
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Figure 4.3: The evolution of the solvent mass concentration profile of a 128 x 128 mesh for the
two-layer coating flow convergence test. The Marangoni effect drives flow along the top surface
from regions of low surface tension (white) to regions of high tension (dark blue) while evaporation
creates a low-solvent boundary layer. Marangoni plumes do not form as in Figure 5.1 since this
test is in the short-wave-stable regime. The solvent mass concentration values are indicated by the
color bar.

fluid velocity is set to zero. A single solvent is considered with its initial mass concentration
profile set to ¢ = 0.2540.025 cos(rz/2L) in order to produce smooth Marangoni forces along
the free evaporative surface that are resolvable by the coarsest (16 x 16) mesh. Boundary
and jump conditions that are not compatible with the initial conditions (i.e., specifically the
Robin and stress conditions) are “slowly turned on” via a ramping method?. In this study,
we set the time step size small enough so that the spatial errors dominate. Figure 4.3 shows
the evolution of the solvent mass concentration profile of the two-layer problem for T'= 5
seconds, during which fluid is pulled along the free evaporative surface by the Marangoni
forces while the evaporation quickly forms a solutal boundary layer, noting a heightened
evaporation coefficient ¢.

The computed solutions are tested against a reference solution wu,; computed on a fine
256 x 256 (h = L/2®) mesh, with comparison performed using a maximum norm metric.
Since the interface locations will differ slightly for different background grid sizes, the error

4For example, an interfacial jump condition of the form [u] = f is replaced by [u] = R(t)f, where R(t) is
a piecewise linear ramping function defined by R(t) = t/Tr when t < Ty and R(t) = 1 when t > Tr. Here
TR is the time at which ramping is complete, equal to 50% of the final time in our convergence tests.
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Figure 4.4: The L* errors and convergence rates of the multi-physics coating flow problem with
short-wave-stable parameters. Here @, M represent single-layer and two-layer calculations respec-
tively, with the slopes of the lines indicating 2% order asymptotic convergence rates.

metric for the computed DG polynomial values is calculated according to

max sup ||U - uref| |L°°, <4'14)
t€(07T] IGUi(QinQref,i)

where ,.e¢; represents phase ¢ of the reference mesh. This metric calculates the L* errors
between points that have the same phase identifier for both meshes and establishes conver-
gence of the DG polynomial solutions when the interface location is convergent. Using this
metric, Figure 4.4 demonstrates the results of this convergence test. We observe second-order
spatial accuracy in the L* norm for the height function locations, solvent mass concentration
profile, and fluid velocity field, for all time ¢ € (0, T7.
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Chapter 5

Results

In the previous sections, a mathematical model and several numerical methods are devel-
oped for the multi-layer coating flow problem. The framework solves the evolution equations,
boundary, and jump conditions of this multi-physics problem and captures the coupling be-
tween the evaporative mass transfer system and the multi-phase interfacial quasi-Newtonian
fluid dynamics. In this section, several results from the hybrid numerical framework are pre-
sented. These include numerical tests of well-known experimentally observed phenomena,
specifically:

e Short-wave stationary Marangoni instabilities and the development of Marangoni
plumes, which are described mathematically by Pearson [16] and examined experi-
mentally in [19][55].

e 3D two-layer coating flows illustrating the formation of hexagonal-shaped Bénard cells
[14][15].

e The long-wave oscillatory deformational modes of Scriven and Sternling [21] and their
impact on immersed interfaces; these modes are highlighted in the experimental results
of [10][22].

We examine these short- and long-wave Marangoni modes in a 2D parametric study on the
flow and leveling of two-layer automobile paint coatings, presented in section 5.2. This study
is performed at industrially-relevant conditions and identifies some key features impacting
the final surface profile. Additionally, we apply our numerical framework to study several
flow regimes not easily assessed through laboratory experiments, exploring:

e Multi-solvent evaporative paint dynamics, specifically single-layer coatings that are
composed of multiple solvents each with different evaporation rates or diffusion coeffi-
cients.

e A Marangoni-driven drilling phenomena within a multi-layer coating, with links to
experimentally observed “cratering” within automotive paint films [89].

e “Interfacial turbulence” within a multi-layer matter cascade.
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Figure 5.1: The evolution of the solvent mass concentration profile illustrating the formation and
merger of Marangoni plumes/roll cells within a single paint film with short-wave-unstable parame-
ters, at the indicated times. The DG background mesh has 32 x 32 cells per 100pumx100um block
and the 400pumx100um computational domain is repeated along its periodic axis for presentation.
The solvent mass concentration values are indicated by the color bar.
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The physical parameters of the liquid paints are chosen to match industrially-relevant con-
ditions and are motivated by experiments on automobile paint coatings. The specific rheo-
logical parameters for each study are given in Table B.1 in the appendix. All results assume
a uniform initial coating and that the initial solvent mass concentrations are constant in
each phase. All embedded paint-paint surfaces I';; are initially flat while the initial free
evaporative surface I'. includes a small perturbation to induce Marangoni flow.

5.1 Short-wave Marangoni instabilities

Figure 5.1 illustrates the evolution of a single-layer coating in 2D. The Marangoni-driven
evaporative flow produces the short-wave hydrodynamic instabilities discussed in the intro-
duction and perturbations in solutal concentration along the free evaporative surface grow
to form Marangoni plumes/roll-cells. The initial small-scale plumes quickly merge together
and coalesce into larger structures, with new plumes continuing to form and merge through-
out the evaporative process. This result is consistent with that of [54][55], which classifies
this phenomenon as the coarsening of low-order Marangoni roll cells into larger high-order
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Figure 5.2: Left: Shadowgraph imagery illustrating the formation and merger of short-wave
Marangoni plumes in an evaporating n-heptane/ether mixture, over 10s. Center/Right:
Marangoni-induced hexagonal-shaped Bénard cells from an aluminum can coating and an auto-
mobile top coat. Images reproduced with permission from [90] and [89] respectively.

cells. Our numerical results are also in good qualitative agreement with the experimental
results of Zhong et al. [90], which capture a side profile of the formation and merger of
short-wave Marangoni plumes in an evaporating n-heptane/ether mixture through the use
of shadowgraph imagery. These images are reproduced in Figure 5.2(left).

5.1.1 3D Results

Figures 5.3 and 5.4 show the solvent mass concentration profile from two 3D simulations on
two-layer coatings within a 100um cube; the clearcoat solvent mass diffusion coefficients are
5x 1072 m? s7! and 4 x 10712 m? s~ respectively. A notable feature in this result is that the
short-wave Marangoni plumes of the 2D simulations become sheets in 3D that are rooted to
filaments on the free evaporative surface I'.. These filaments merge in a variety of patterns,
including a hexagonal diamond pattern within the first few seconds of the simulation and
later hexagonal reticulated patterns. Hexagons are a common shape found in Marangoni-
driven flows and are often seen in thermally driven Rayleigh-Bénard convection cells [14].
Eventually, the system reaches a “steady-state” arrangement of circulating Bénard cells that
impact and deform the basecoat. Here the cells form a square shape; this is, however, likely
due to the enforcement of periodic boundary conditions on a small domain. Examples from
[89] of hexagonal Bénard cells within paint coatings can be seen in Figure 5.2(center/right).
The progression of the 3D Marangoni sheet structures is illustrated in Figs. 5.5 and 5.6,
which capture the evolution of solvent mass concentration isocontours (for ¢ = 0.31 and
¢ = 0.29, resp.) for the 4 x 107'% m? s7! mass diffusion simulation (related to Figure 5.4).
The isocontours highlight the Marangoni-induced flow patterns within the clearcoat over the
first 20 seconds of the simulation.
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Figure 5.3: Snapshots of the solvent mass concentration profile in 3D with a clearcoat mass diffusion
coefficient of 5 x 10712 m? s~!, at the indicated times. Hexagonal-shaped cells form on the top
evaporative surface and Marangoni plumes form in a sheet-like structure. The system then develops
steady-state Bénard cells. Note the separate color bars in each row specifying the solvent mass
concentration.

5.1.2 Multi-solvent evaporation

Typical paints contain multiple solvents, each with their own material properties—density;,
diffusion coefficient, evaporation rate, etc. To demonstrate the motion and evaporation of
coatings with multiple dissolved species, Figure 5.7 shows the mass concentration profile
of a single-layer paint composed of three solvents that each evaporate at a different rate.
The initial mass concentration is constant and equal for each solvent, the mass diffusion
coefficients are set to 5 x 10712 m? s, and the ratio of the solvents’ evaporation coefficients
are 1, 1.5, and 2.3 times a base value of ¢ = 3.33x10™* kg m~2 s~!. The effect of the different
evaporation rates is clear, e.g., with more material ejected in the bottom case, while each
solvent has the same dynamical plume structure driven by the overall fluid flow and the

short-wave Marangoni instabilities.

Figure 5.8 illustrates the evaporation of a single-layer paint composed of three solvents
each with different mass diffusion coefficients. The mass diffusion coefficients are taken to
be 1.25 x 1072 m? s7!, 2.5 x 1072 m? s !, and 5 x 1072 m? s7!, and the evaporation
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Figure 5.4: Snapshots of the solvent mass concentration profile in 3D with a clearcoat mass diffusion
coefficient of 4 x 10712 m? s7!, at the indicated times. Hexagonal-shaped cells again form on the
top evaporative surface and more filaments form in this lower diffusion case than in Figure 5.3.
Note the separate color bars in each row specifying the solvent mass concentration.

coefficient is set to 3.33 x 10~* kg m~2 s~! for each solvent. This test illustrates the dramatic
impact of the diffusion coefficient on the Marangoni plume structures within the coating
flow problem. The low diffusion solvent exhibits tighter formations and thinner boundary
layers; the vortices are almost “tree” like in nature, with the smaller forming plumes merging
to form “branches” of the tree; whereas the higher diffusion solvents have smoothed-out
features and thicker boundary layers. In general, larger Marangoni forces are present in low
diffusion liquids, owing to the sharper/thinner solutal boundary layers forming at the free
evaporative surface. Additional images of low diffusion Marangoni tree structures can be
found in Appendix C.

5.2 2D parametric study: long-wave deformational
modes in multi-layer automobile coatings

The mathematical model and numerical methods developed in this work are designed, in part,

to predict the ultimate surface roughness of multi-layer automobile paint coatings. To this
end, we present the results from a high-fidelity 2D parametric study on two-layer coatings
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Figure 5.5: The evolution of solvent mass concentration isosurfaces for ¢ = 0.31, illustrating the
Marangoni-driven fluid flow within the bulk of the clearcoat, at the indicated times. For illustration,
the z-axis is inverted so that the base of the figures is the free evaporative surface I';.

t = 10s t=12.5s t =158

t=17.5s t = 20s t=22.5s

Figure 5.6: The evolution of solvent mass concentration isosurfaces for ¢ = 0.29, illustrating the
Marangoni-driven fluid flow within the bulk of the clearcoat, at the indicated times. For illustration,
the z-axis is inverted so that the base of the figures is the free evaporative surface I';.
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Figure 5.7: The solvent mass concentration profile of three solvents evaporating at different rates.
The solvent evaporation rate (4.3) has Top: 1, Middle: 1.5, Bottom: 2.3 times a base evaporation
coefficient € of 3.3 x 1074 kg m~2 s~!. These results are taken 20 seconds into the simulation.
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Figure 5.8: The solvent mass concentration profile of three solvents with different mass diffusion
coefficients. The coefficients are Top: 1.25 x 10712 m? s~!, Middle: 2.5 x 1072 m? s~!, Bottom:
5 x 1072 m? s7!. These results are taken 20 seconds into the simulation.

that identifies some key features impacting the final surface profile. There is a range of
physics and many possible parameters to study within the multi-layer coating flow problem.
We identified a few key physical parameters and regimes to study, these include: the strength
of embedded paint-paint surface tension, the values of clearcoat viscosity, the substrate profile
as well as its direction against the pull of gravity, and the effect of different Marangoni forces.
The results present a collage of the impact of these different physical effects; an in-depth
study of individual parameters would also be possible. These studies introduce a notion
of paint compatibility, demonstrate the telegraphing of substrate roughness, and illustrate
the impact of the Marangoni effect and long-wave surface modes on the final paint surface
smoothness.
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To properly capture the long-wave surface modes found along dried paint films, the wave-
lengths of which range from 1 — 10mm, the 2D simulations in this section are performed
on long-skinny domains with a horizontal length of 25.6mm and an aspect ratio of 256 x 1.
Each 100p4mx100um block of the domain is discretized by 32 x 32 background cells of the
implicit mesh DG method—leading to computations with 250,000-400,000 elements and 9
to 14 million spatial degrees of freedom.

To eliminate variables and simplify our study, only single-solvent paints are considered and
the following physical parameters are fixed throughout the parametric study unless otherwise
specified:

(i) The fluid density and initial resin mass concentrations are as stated in Appendix B.

(i) The basecoat mass diffusion coefficient is taken to be 1 x 1072 m? s~* and the clearcoat

mass diffusion coefficient is 5x 1072 m? s7!. We note that the mass diffusion coefficients
for different materials can range over four orders of magnitude, anywhere from 10~ —
1071 m? s~!; our choice of mass diffusion coefficients puts the simulations in the middle
of this range. We conjectured this was of main physical relevance to the objectives of
the parametric study; in addition, as shown in Figure 5.8, this choice of clearcoat mass
diffusion provides smooth Marangoni dynamics.

(iii) The basecoat viscosity is taken from the high range of the PPG-provided viscosity
values.

(iv) The evaporation coefficient is taken to be ¢ = 3.33 x 107 kg m =2 s~ 1.

(v) Additionally, we note that since little is known about the values of surface tension of
the embedded paint-paint surface, the Marangoni effect is not considered along I';; in
this section.

5.2.1 Embedded paint-paint surface tension studies

We begin our parametric study by examining the effect of different values of surface tension
along the embedded paint-paint surface I';;. Since this is one of the key couplings between
the two paint layers, and since the exact values of embedded paint-paint surface tension
coefficients for specific paints are in general unknown, it is a natural starting choice for our
parametric study.

{ Study 1 — Very low embedded surface tension J

We begin our study of embedded surface tension on the low end of the expected range of
coefficient values, setting v;; = 0.0015 N m~'. We take the clearcoat viscosity to be the PPG
provided experimental data and employ a flat, horizontal substrate Sg.;. We note that the
linear surface tension profile used in this test along the free evaporative surface I', leads to
relatively weak Marangoni forces. Figure 5.9 shows a close-up view of the solvent dynamics
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Figure 5.9: Study 1 - 1mm slices of the solvent mass concentration profile at the indicated times—
providing a closer view of the Marangoni plumes and basecoat deformation.
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Figure 5.10: Study 1 - The solvent mass concentration profile at time 360s of the entire domain
with the horizontal z-direction scaled by 1/20. This demonstrates the full extent of the basecoat
deformation pattern.

within a 1mm slice, illustrating the progression of the short-wave Marangoni plumes towards
steady-state Bénard cells and highlighting their uniformity throughout the clearcoat. During
the initial stages of drying, the Marangoni effect drives the formation, merger, and coarsening
of plumes of various sizes, as seen in Figure 5.1. Over time, the plumes reach the bottom of
the clearcoat and larger individual circulation cells form. The geometry and position of these
cells are approximately steady and the cells have a width on the order of the film height,
in agreement with the experiments of [10]. Fluid flow persists within these cells and the
circulation helps replenish the evaporative process. The circulating Bénard cells then act to
deform the basecoat, both pushing downwards and pulling upwards on the embedded paint-
paint surface I';;, which quickly gives way due to its weak surface tension. The wavelengths
imparted on the basecoat are about equal to the width of the Marangoni plumes—around
100pm. Figure 5.10 shows the entirety of the domain with the horizontal x-direction scaled
by a factor of 1/20—where the sharpness of the deformed basecoat is evident.

Study 2 — Low embedded surface tension

The second study of embedded surface tension uses a potential formula found at [91]. The
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formula utilizes each paint’s surface tension coefficient and is

Vij = YBC + Yoo — 2(Vhevde)

Y

where v is the coefficient of surface tension between the basecoat and air and y¢¢ is similar
for the clearcoat. Here, the superscript d indicates the component of surface tension caused
by dispersion—the values of which are unknown for the paints. Instead the formula
_ 1/2
Vi = VBC + Yoo — 2a(YBcYec)

is used, where a is a multiplier that approximates the dispersion. In this study, we take the
clearcoat surface tension to be the PPG standard value and the basecoat’s to be the PPG
low value. With a = 0.9, this gives an embedded surface tension value around yo¢ /5, which
provides a range on 7;; of 0.04 - 0.08 N m~'. However, we note that the Marangoni stresses
along I';; are fixed to zero in this test.

Figure 5.11(top) shows the evolution of the solvent mass concentration within a 1.6mm win-
dow of a two-layer coating. This test highlights the coupling between the paint films within
the multi-layer system and captures an irregularity not seen in the single-layer case. Around
45 seconds into the simulation, two large Marangoni plumes merge together and drill into the
basecoat, causing a wide deformation that raises the basecoat and drags down the clearcoat
along the edges of the plume. About 90 seconds in, the embedded paint-paint surface and
the free evaporative surface are close to intersecting such that the clearcoat recedes and ex-
poses the basecoat to air. In industrial operations and laboratory experiments, multi-layer
paints sometimes develop holes while drying. A conjecture is that these holes form when the
interfaces I'. and I';; intersect, exposing the basecoats to air, and the recession progresses
further such that substrate is exposed and the system undergoes dewetting. The drilling
phenomena may be the first phase of this process. Additionally, this result is reminiscent of
the “cratering” irregularity that sometimes occurs in automotive paint coatings [89], i.e., the
rapid collapse of a coating caused by the Marangoni effect in the presence of a low surface
tension impurity.

We now examine the fluid velocity field within the multi-layer coating flow problem. Fig-
ure 5.11(middle) shows the vertical component of the fluid velocity, where the presence of the
Marangoni plumes corresponds with a downward (blue) motion of the fluid. The downward
motion is matched by an upward (red) current adjacent to the plume. The eventual forma-
tion of steady-state Bénard cells can be seen through the progression of this figure. Note the
basecoat has a higher viscosity than the clearcoat and subsequently its fluid velocity is much
smaller. However, a subtle note is that at time 90s the red upward velocity extends more
prominently into the basecoat at the deformed drilled component of the paint-paint surface
than at the other steady-state cells, indicating an increased motion of the interface at that
region. In the horizontal direction, the Marangoni forces pull fluid towards the plume, pro-
viding regions near the evaporative surface of leftwards (blue) and rightwards (red) motion,
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Figure 5.11: Study 2 - short-wave instability causing deformation of the basecoat - Top: A 1.6mm
window of the solvent mass concentration profile at the indicated times. Here two large Marangoni
plumes (near center of images) merge together and drill into the basecoat—setting the two surfaces
on a collision course. Middle: The vertical component of the fluid velocity field within the same
window at the same times. Blue represents a downward negative velocity and red an upwards
positive velocity. Bottom: The horizontal component of the velocity field, which has an almost
lattice structure within the clearcoat. The blue indicates a leftwards velocity and the red rightwards.
The values of the solvent mass concentration and fluid velocity are indicated by the color bars.

the direct intersection of which results in the vortex. This, along with an almost lattice
structure of the horizontal velocity component, is seen in Figure 5.11(bottom).

Study 3 — High embedded surface tension

For the final study examining the embedded paint-paint surface tension, we set the values
of the surface tension for the free evaporative surface I'. and embedded paint-paint surface
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Figure 5.12: Study 3 - Long-wave instability causing deformation. Illustrated is the solvent mass
concentration profile at the indicated times for a 25.6mmx0.1mm domain with the horizontal z-
direction scaled by 1/20. The left side of the images illustrates the oscillatory nature of paint
drying, with peaks becoming troughs, and vice versa. Here, the long-wave Marangoni instabilities
grow and compound, and eventually the paint layers tear.

I';; to equal the PPG standard value, i.e., 7;; = 7. All other parameters are as in Study 2.
The higher surface tension provides greater resistance to basecoat deformation caused by the
short-wave Marangoni modes than in the previous studies, however as shown in Figure 5.12,
long-wave Marangoni modes also imprint on the paint films. This figure shows the evolution
of the solvent mass concentration profile along the entire 25.6mmx0.1mm domain, with the
horizontal z-axis scaled by 1/20. Around 60 seconds into the simulation, long-wave surface
modes become noticeable along the free evaporative surface. As described mathematically in
[21][23] and captured experimentally in [10][22], these modes deform the evaporative surface
and are oscillatory, e.g., the troughs on the left side of the figure at ¢ = 60 seconds become
peaks at around 120 seconds. Fourier frequency data (see Figure 5.15) shows that, in this
regime of coating flow dynamics, the peak amplitude wavelength is roughly 1mm and that
the oscillations grow in amplitude each cycle. The Fourier data also shows an impression of
the long-wave frequencies of the paint-gas surface onto the paint-paint surface.

The embedded paint-paint surface tension studies have all shown Marangoni forces push and
pull on the paint-paint surface I';; and deform the basecoat, leading to misshaped clearcoats
and a rough surface profile. One possibility is that low embedded surface tension and the
resulting overall lack of force between the film-layers allows the paints to be malleable to any
external force, including the intrinsic Marangoni forces. It is clear that increasing the coef-
ficient of embedded surface tension will help to keep the paint-paint surface flat—indicating
that paints that impart a higher force on each other and work to mitigate, or provide resis-
tance to, the Marangoni forces are more likely to be “compatible” and perhaps paints which
tear apart do so due to an incompatibility.
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Figure 5.13: Study 3 - The shear rates (s~!) within a 1lmm slice. Note the logarithmic scale.

A note on shear rates

Typical liquid paints are non-Newtonian shear-thinning fluids, meaning the effective viscosity
decreases under shear strain. Figure 5.13 examines the shear rates in the present study,
corresponding to a 1mm slice at multiple time stamps; note the logarithmic scale. Rates
up to 20 s~! are observed during the chaotic initial phase of Marangoni plume formation.
The majority of the shearing occurs within the solutal concentration boundary layer at the
evaporative surface, with the highest values at the base of the Marangoni plumes. The shear
rates within the remainder of the paint are several orders of magnitude lower and, overall,
the rates decrease over time as the paints dry.

5.2.2 Substrate profile

Study 4 — Bumpy substrate

The previous studies all used a completely flat substrate Sga¢. In practice, the substrate will
have a microscopic bumpy profile. In the numerical framework, this can be modeled easily by
changing the stationary height function that defines I'y,,. This study uses the same param-
eters as Study 3 and uses the PPG-provided smooth horizontal substrate Sgmootn(described
in Appendix B). We note that this and all remaining studies use the high value of embedded
surface tension. Figure 5.14 shows that this new slightly bumpy substrate profile quickly
provides perturbations in the basecoat—and subsequently the clearcoat. As in the previous
study, these perturbations build the Marangoni instabilities which lead to a rougher paint
profile.
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Figure 5.14: Study 4 - The solvent mass concentration profile on the PPG provided smooth sub-
strate Sgmooth, at the indicated times. The entire domain is shown with the horizontal z-direction
scaled by 1/20. The slightly bumpy nature of the smooth substrate quickly impacts the basecoat
and clearcoat—resulting in higher wave amplitudes than in the flat substrate case of Study 3 and
in Figure 5.12.

For a more detailed comparison, the exact interface roughness profile of both the free evapo-
rative surface I'c and the embedded paint-paint surface I';; is analyzed via Fourier transforms
for both this and the previous study, the results of which are shown in Figure 5.15. At each
time stamp, the modes of the evaporative surface have a larger amplitude in the case of the
smooth substrate Sgnootnwhen compared to the flat substrate Sg.e. Both support roughly
the same wavelengths, and the frequency profile is Gaussian-shaped in logarithmic frequency
space. The peak-amplitude wavelength hovers around Imm and the half-width half-max of
the Gaussian is roughly at 0.5 and 1.5mm. The amplitudes steadily increase over time,
consistent with the idea that the long-wave Marangoni modes grow in size each oscillation
cycle. At the early stages of the simulation, the paint-paint surface supports a range of
shorter wavelengths when compared to the evaporative surface. The frequencies are again in
the shape of a Gaussian with the prominent mode shifting from 250um to 150um over time
as the surface is further impacted by the Bénard cells. At later times, modes around 1mm
appear as the modes of the evaporative surface and paint-paint surface couple together. As
seen with the modes of the evaporative surface, the modes of the paint-paint surface have a
larger amplitude in the case of the smooth substrate when compared to the flat substrate at
all time stamps. Note the outlier at 100pm on the paint-paint surface of the completely flat
run is likely due to an imprinting of the evaporative surface’s initial condition, which con-
tains this mode. This mode is damped out in the case of smooth substrate Sqnootn, perhaps
further indicating the telegraphing of substrate profile onto the paints.

Study 5 — Vertical substrate

Under certain conditions, vertical substrates, for which the pull of gravity is parallel with
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Figure 5.15: Fourier frequency data for the free evaporative surface I'c(left) and embedded paint-
paint surface I';;(right) for cases of the flat substrate Sgat(blue circles) and the PPG smooth sub-
strate Ssmooth (red diamonds), corresponding to Studies 3 and 4. The horizontal axis corresponds to
the wavelength in meters, noting the logarithmic nature of the axis, and the vertical axis represents

the wavelength’s amplitude in meters.
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the film-layers, produce longer wavelengths along the paint surfaces (compared to a hori-
zontal substrate) as well as clearly-observable effects such as sagging. However, under the
parameter and flow regimes of the present parametric study, we did not observe these effects.
For numerically-simulated vertical substrates (including rough substrate Syougn), the pull of
gravity provided a slight drift of the paint profile but the dominant behavior was still the
instabilities caused by the Marangoni forces, as witnessed in Studies 1-4.

5.2.3 Clearcoat viscosity

{ Study 6 — High viscosity J

As a possible means to mitigate the Marangoni instabilities, we examine next the effect of
clearcoat viscosity on the system. Viscosity acts to dampen momentum, providing friction
within the bulk of the liquid paint. Therefore, a higher value of viscosity could potentially
damp out the strength of the Marangoni modes and provide flatter interfaces. This study
matches all other values of Study 3 except the clearcoat viscosity is taken to be from the
PPG high range. Figure 5.16 shows that this change slightly dampens the effect of the
strong Marangoni forces and this simulation is the first multi-layer coating to entirely dry,
i.e., all solvents evaporate. The final simulation time in this study is 45 minutes. Here, the
long-wave oscillatory Marangoni modes deform the paint-gas and paint-paint surfaces during
the first 10 minutes of drying and these early deformations leave a lasting imprint on the
final paint profile—with moderate smoothing and settling over time. This test demonstrates
the utility of the adaptive time stepping technique of section 4.4, where the time step size
is changed based on the ratio of viscosity to surface tension. In this particular problem, the
time step size is nearly 400 times larger at the end of the simulation than at the beginning.

Study 7 — Low viscosity

On the opposite side of the spectrum, we tested a clearcoat with the PPG low viscosity. As
expected, the low viscosity did little to stop the Marangoni instabilities and this run quickly
terminated at 160s when the two paint surfaces collided with each other.

5.2.4 Additional studies

A few other ideas to weaken the Marangoni instabilities were also tested. The parameters of
these studies include an experimental clearcoat viscosity, standard surface tension, and a flat
vertical substrate Sp,¢. In the first test, the evaporation rate is decreased by half—increasing
the time frame for solvent diffusion to smooth out the gradients causing Marangoni forces.
However, this did not produce the desired effect. Neither did the second idea of increasing
the basecoat diffusion coefficient to match that of the clearcoat (5 x 10712 m? s7!), the idea
being that this will make the two paints more compatible since solvents can be exchanged
more easily between the two film-layers. Both of these tests are met by the same instability
and deformation patterns seen in the previous studies.
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Figure 5.16: Study 6 - A two-layer paint drying in entirety. Illustrated is the solvent mass concen-
tration profile at the indicated times for a 25.6mmx0.1mm domain with the horizontal z-direction
scaled by 1/20. The deformations from the Marangoni effect leave an imprint on the final paint
surface.

Study 8 — Lowered Marangoni forces

The simplest idea to mitigate the instabilities caused by the Marangoni effect is to decrease
the strength of the Marangoni forces themselves—in this study, by a factor of a half. The
results are shown in Figure 5.17. With the weakened Marangoni forces, the interfaces remain
mostly flat throughout the entirety of the simulation, which is allowed to run for 45 minutes.
There is little to no deformation of the basecoat or clearcoat. This study provides a clear
insight that clearcoat paints used in multi-layer coatings should target a weak Marangoni
profile.

5.3 Interfacial turbulence

In [18], Sternling and Scriven propose the Marangoni effect as a mechanism for producing
interfacial turbulence, i.e., the spontaneous agitation of the interface between two unequi-
librated liquids. Their work classifies the various regimes of stability and shows that mass
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Figure 5.17: Study 8 - The solvent concentration profile with Marangoni forces halved, at the
indicated times. The entire domain is shown with the horizontal x-direction scaled by a factor of
1/20. This result shows that decreasing the strength of the Marangoni forces helps maintain a flat
paint profile.

flowing from a fluid of (i) higher viscosity and (ii) lower mass diffusivity across an interface
whose surface tension (iii) decreases with respect to the mass concentration produces un-
stable fluid flow and may produce localized stirring and even droplets without any chemical
reactions [19]. These parameters describe the short-wave-unstable evaporating Marangoni
flows of the previous results and, in this section, the hybrid numerical framework is used to
model interfacial turbulence within a three-layer matter cascade. Here, a species originat-
ing in the bottom layer flows upwards, passing through multiple interfaces in a Marangoni
short-wave-unstable fashion.

The first example is shown in Figure 5.18. At t = 0, the bottom layer contains a species
with a mass concentration of ¢ = 0.2, while the other two layers do not contain the species.
The physical parameters are as in Table B.1 and each subsequent layer has half the viscosity
and double the mass diffusion coefficient and thickness of the previous layer. For these
tests, evaporation is disabled at the top free surface. By 25 seconds into the simulation,
the species has transferred from the bottom layer into the middle layer and the Marangoni
effect produces the familiar short-wave plume structures in both phases. The species then
reaches the next interface between the middle and top layers at around 50 seconds. Here,
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t = 100s

Figure 5.18: An interfacially turbulent matter cascade. Illustrated is the evolution and transfer
of species between three fluid layers, starting from the bottom layer, at the indicated times. The
Marangoni effect first generates the familiar plume structures in both the bottom and middle layers.
Then, mass in the middle layer is captured and transported by the Marangoni stresses of the second
interface, after which it enters the top layer. The process then repeats until the matter is exhausted.
The 400pmx200pum computational domain is repeated across its periodic axis for presentation.

the Marangoni effect quickly captures and transports the matter tangentially along this
interface, creating a “T” shape and a “matter conduit”—i.e., a concentrated region of mass
flow—between the two surfaces. The species enters the top layer on the opposite side of
the conduit; after which the flow reaches the top interface and Marangoni circulation cells
form. After some time, the mass flow through the conduit dies down, and then at time 175
seconds, the process repeats.

In the last example, Figure 5.19 shows the results of a three-layer interfacially turbulent
matter cascade with viscosity halved from the previous result. The color scheme is chosen
to highlight the species mass concentration isocontours. In this example, similar matter
junctions form between interfaces, with a higher degree of vorticity and more pronounced
“matter turbulence” than in the previous result. This example highlights a cellular structure
within the interfacially turbulent Marangoni matter cascade.
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Figure 5.19: A three-layer interfacially turbulent matter cascade. The 400pmx200um computa-
tional domain is repeated across its periodic axis for presentation.
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Chapter 6

Conclusions and Future Work

In this work, we developed a multi-physics mathematical model and accompanying high-order
numerical framework to study multi-layer coating flow dynamics. These methods were used
to study the fluid flow, leveling, and ultimate surface profile of multi-layer automobile paint
coatings and to examine interfacial turbulence within a multi-layer matter cascade. Para-
metric studies were performed at industrially-relevant conditions, providing detailed insight
into the physics of multi-layer coatings and examining the behavior and impact of various
rheological parameters on the final paint smoothness. A few small-scale 3D simulations
were also performed. Several numerical methods were developed, including: hybrid finite
difference level set methods and implicit mesh discontinuous Galerkin methods for capturing
sharp-interface multi-phase quasi-Newtonian fluid dynamics, making use of state-of-the-art
fast multigrid Stokes solvers; local discontinuous Galerkin methods for Poisson problems
with Robin boundary and jump conditions on implicitly-defined curved domains, to capture
solvent evaporation; and a tailored finite difference projection algorithm for computing sur-
face gradients within Marangoni stress calculations. Individually, the components range in
orders of accuracy, from first-order mixed explicit-implicit time stepping methods, chosen
for simplicity, to arbitrarily-high order accurate fluid dynamics via high-order DG methods;
our particular choices led to an overall framework which is 2"¢ order accurate in space and
1% order in time. The numerical framework was implemented in C++ and parallelized using
standard domain decomposition together with MPI; medium-scale 2D simulations over long-
and-thin domains can be run on a modest multicore workstation; 3D simulations require
larger supercomputing resources, chiefly due to the fact that many tens of thousands of time
steps are needed to simulate over the long time scales associated with drying paint. The
simulations of the 2D parametric study were performed on 8 nodes of the Cori supercom-
puter, using 256 total CPU cores. The typical duration of an individual time-step ranged
from 5-7 seconds and the full simulations were run for 3-7 days.

Across this project, we have made significant progress toward understanding the key drivers
of flow and leveling within the multi-layer system; the wide variety of insights include:

e The presence of short- and long-wave Marangoni instabilities, leading to the formation
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of vortices/plumes within the clearcoat caused by solutal concentration gradients at
the evaporative surface during the drying process. The plumes grow until reaching
the basecoat, where steady-state circulating Bénard cells form. These cells, as well as
long-wave oscillatory Marangoni modes, push and pull on the basecoat paint. This may
greatly deform the film profile if the multi-layer paints are not “compatible” —meaning,
the rheological parameters of two compatible paints act to mitigate the Marangoni
forces. Additionally, clearcoats should aim to have a weak Marangoni profile.

e The typical Marangoni plume width was about twice its height, in agreement with
experiments.

e The formation of a rough surface profile during the initial flash phase will leave imprints
as the paints fully dry, with a slight degree of smoothing in the latter portion of drying
time.

e The importance of the embedded paint-paint surface tension within the system. The
force the film-layers impart on each other acts to keep the paint-paint surface flat. In
low embedded surface tension simulations, the paint-paint surface quickly gave way to
the Marangoni cells and significant deformation occurred. Paints that impart a higher
degree of surface tension on each other are likely to be more compatible. Values of
paint-paint surface tension coefficient are in general unknown; experimental studies into
specific paint values would greatly aid the accuracy of future computational studies.

e A conjecture on the formation of holes within the multi-layer system is that incompat-
ibility between paints allows for a high degree of interface deformation—Ileading to the
basecoat or even the substrate to be exposed to air. The drilling phenomena observed
in this work is one possible explanation of hole creation that is possibly linked to the
experimentally observed cratering phenomena sometimes found in automobile paints.

e The telegraphing of substrate profile onto the paint-paint surface. Fourier frequency
data found that the amplitude of wavelengths was higher for both the paint-paint sur-
face and the evaporative surface in the case of the somewhat-bumpy smooth substrate
Ssmooth; as compared to the completely flat substrate Sgas.

e The dramatic difference in dynamics as a result of the mass diffusion coefficient. The
mass diffusion coefficient dictates the width of the solvent boundary layer at the evapo-
rative surface. The very-thin boundary layers caused by low mass diffusion coefficients
result in large gradients that feed into the Marangoni forces. Consequently, for the
purposes of carefully modeling coating flow dynamics, an accurate description and
experimentally-derived values of mass diffusion coefficients for the various solvents
constituting the paints are paramount.

o A “tree”-like structure of the Marangoni plumes for low values of solvent mass diffusion
coefficient, with small plumes merging to form “branches” of the tree.

e The formation of Marangoni sheets in 3D—along with the merging of Marangoni fila-
ments into physically consistent hexagonal patterns along the top evaporative surface.
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Future Directions

Many avenues are available for future work on multi-layer coatings. Producing a smooth
defect-free film of paint is of utmost importance to the automobile industry, therefore, a
study on the formation of holes within multi-layer coatings may be considered. The drilling
phenomena observed in this work is one possible explanation of hole creation, wherein the
paint-paint and paint-gas surfaces intersect and expose the basecoats to air. Toward this end,
one could generalize the numerical framework to allow the tracking of multiple intersecting
paint-paint films, including contact lines and triple point motion. One possibility is to
replace the use of height functions with a more general approach, such as the Voronoi implicit
interface method (VIIM) [92]. Along the same lines, the finite difference algorithm for surface
gradient and Marangoni stress calculations would need to be extended to more intricate
geometries in this setting. The motion of contact lines between a paint surface and a solid wall
may necessitate the use of slip models [93][94]. Towards this objective, a high-order accurate
LDG method for Stokes problems with Navier-slip boundary conditions on implicitly-defined
curved domains is presented in Appendix A. Additionally, further expansion of the domain
size in 3D studies, which may require anisotropic meshes, will allow for capturing long-
wave oscillatory Marangoni modes and provide greater insight into the nature of multi-layer
coatings.

Numerous additional physical effects could be included in future work and some model as-
sumptions reconsidered. For example, the model in this paper is purely isothermal; also, the
interfaces do not carry solvent nor mass. At a first approximation, the effects of temperature
could be incorporated by means of a quasi-thermodynamic model that slowly varies the rheo-
logical properties as a function of time. Meanwhile, dynamics constrained to the paint-paint
and paint-gas interfaces, such as the motion and transfer of soluble or insoluble surfactants,
could be incorporated via surface PDEs coupled to the volumetric flow dynamics. Doing so
would allow for further fine-scaled studies of the intricate nature of the thin solutal boundary
layer dynamics in evaporating Marangoni flows. The coating flow dynamics were found to
vary dramatically with respect to the solvent mass diffusion coefficient—owing to the com-
plex interplay of evaporation, diffusion, and Marangoni forces along the boundary layer. An
experimentally-determined, variable diffusion coefficient could greatly alter the dynamics in
unknown ways and provide a more complete model. One possible model for polymer-solvent
diffusion using free-volume theory can be found in [95]. Incorporating polymer dynamics into
the multi-layer coating flow problem may require replacing the idealized quasi-Newtonian
fluid model with a fully non-Newtonian model.

Additional images of evaporative Marangoni flow can be found in Appendix C.
Thank you for reading my thesis. For making it to the end, here is a Marangoni flower.
— Luke P. Corcos
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Figure 6.1: A Marangoni Flower
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Appendix A

LDG for Stokes Problems with
Navier-Slip Boundary Conditions

The motion of contact lines between a paint surface and a solid wall may necessitate the
use of slip models [93][94]. As a preliminary step towards applying our hybrid numerical
framework for the multi-layer coating flow problem to other flow settings, in this section,
we develop high-order accurate local discontinuous Galerkin methods for Stokes problems
with Navier-slip boundary conditions on implicitly-defined domains. The methods follow
a similar structure as the LDG methods of [72]. The resulting discretization has several
favorable properties: for example, it is optimally high-order accurate in the fluid velocity
field and the final linear system is symmetric; moreover, the LDG discretization is amenable
to straightforward, fast, multigrid-preconditioned GMRES solvers [72].

Let © C R? represent a single-phase d-dimensional domain with Navier-slip boundary con-
ditions applied on the domain boundary, which is denoted I'y,. Assume that I'y, is suffi-
ciently smooth. The time-independent Stokes problem with Navier-slip boundary conditions
involves finding a velocity field u : Q — R? and pressure p : 2 — R such that

—V - (u(Vu++Vu'))+Vp=f inQ
-V -u= fg in Q
u-n=4g on 'y,
(u(Vu + Vul)n —pn +au), =h on [y,

(A.1)

where p : RY — RT and o : R? — Ry are functions mapping onto the space of positive
real numbers and the space of non-negative real numbers respectively. Here i represents the
viscosity of the fluid and « is a slip parameter that goes as the inverse of the slip length, with
a = 0 reducing the problem to the “free”-slip condition and o — oo approaching the no-slip
condition. We assume that the source data f, fy;, and boundary data g, h are sufficiently
smooth. Here n is the unit normal vector and 7 is the tangential direction to the boundary.
Let u, = (u-m)n represent the normal component of w and let w, represent the projection
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of u onto the tangential plane orthogonal to n, defined as u, = (I — n ® n)u, where I is
the identity tensor and ® is the Kronecker product. Also let o, = (n ® n)o. Note that the
right-hand-side h of the Navier-slip condition is a vector along the tangential plane, with
h-n = 0. The value 7 is either 0 or 1 depending on whether the Stokes problem is in regular
form or viscous-stress form respectively, noting that viscous-stress form should be used for
problems involving slip.

We present an LDG method for (A.1) similar to the LDG methods for Poisson problems
with Robin boundary conditions developed in section 3.3.2, however, the LDG formulation
for Stokes problems with Navier-slip boundary conditions is more mathematically intricate.
The numerical fluxes are chosen to be consistent with the PDE and the boundary conditions,
leading to an LDG discretization that provides a symmetric discrete linear system and high-
order accurate solutions to (A.1) on implicitly defined domains, in a dimension-independent
fashion, for variable viscosity and slip coefficients spanning several orders of magnitude. The
LDG methods presented in section A.2 are constructed through the following five steps [72]:

(i) Introduce the gradient n € Vthd such that n = Vu weakly via the strong-weak form.
(ii) Define the stress-tensor o € Vthd as the L? projection of u(n +yn’) — plL

111 C()IIl[)llte the divergence ()f the stress-tensor w - Vd such that w = V 0 weakly via
g h
the weak-weak form.

(iv) Enforce the divergence constraint w € Vj, such that w = V - u via the strong-weak
form.

(v) Require that —(w,w) equals the L? projection of (f, fqi,), while also incorporating
penalty stabilization to enforce continuity and boundary conditions.

A.1 Numerical fluxes

The choice of numerical fluxes (indicated by the (%) superscript, see section 3.2 for details)
for the LDG discretization for the Navier-slip boundary I'y, takes from the boundary data
in the direction it is available and takes from the interior element traces in the direction it
is not (indicated by the (—) superscript), setting

{“* —gn . ) (A.2)
(0-n) =0, n+(h—(au);).

Note how each numerical flux is split into normal and tangential components. The numerical
flux for the stress tensor considers only the normal direction; this is sufficient for imposing
the Navier-slip boundary conditions via the LDG weak forms. To prove the consistency of
this numerical flux choice with respect to the boundary condition, consider their projection
onto the surface normal vector n, as well as onto a vector defined along the tangential plane,
denoted 7. It is clear that u*-m = g and ©w* - 7 = u_. For the normal stress numerical flux:

n-(c-n)=n-(mnen)jc -n+n-(h—(au);)=n-0 -n



APPENDIX A. LDG FOR STOKES PROBLEMS WITH NAVIER-SLIP BOUNDARY
CONDITIONS 96

and
T -(c-n)=7-mMn)o” -n+71-(h—(au);)=71-(h— (au),).

This demonstrates that our numerical flux choice for the Navier boundary conditions is
consistent and uses the boundary data in the direction it is available while using values from
the interior element traces in the directions it is not.

A.2 Local discontinuous Galerkin methods

We now present the LDG method for (A.1) in the five steps previously described.

i) Define 7 € V¢ such that 7 = Vu weakly for element E € £ via the strong-weak form
h

/n:w:/Vu:w+/ (U —u) w-n,
E E OF

for all test functions w on element E. Summing over all elements gives

/Qn W= ;/Ew : “’*/M("*_“_)""_'"_Lo(“*_“+)'°"+'"+/m(“*_“_>'°"_'"’

where I'g is the collection of intraphase faces. Take the intraphase numerical flux to be one-
sided and from the left. Define the numerical flux w* for the Navier boundary as in section

A1, setting
. u- on I'y
u =
gn+u_ on y,.

Plugging in the numerical fluxes gives

Inw

e Define the Broken Gradient operator Vj, : Vj, — Vhd and the Lifting operator L : V}, —
Vi@ such that, respectively,

/th-v:Z/va, /Lu-v:/(u+—u_)v+-n,
Q = JE Q To

for u € Vj, and for all v € V%, Now, define the Gradient operator G : V;, — V& as
G=V,+ L.

e Define J, € Vthd such that

/Jg(g):w:/ gn-w” - n,
Q FN’U

for all w € V>4,
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e Define the Navier Boundary Lifting Operator to be B : V¢ — Vthd

/QB<u>:wz—/mmw)n-ww,

for all w € V%%, Breaking this down into components gives
h g g

/Bij(u)v: —/ (u™ -m)nn;v- Z/ Uy NENNU~
Q FNU 1—‘Nv

for all v € V},, and for 0 < i, j, k < d. Here u; and ny denote the k-th component of u
and m respectively. Now define sub-operator bfj : Vi — V3 such that

k . _ _
/bl-j(u)'u— —/ U nEnnv-,
0 In

for u € Vj, and for all v € Vi. So Byj(u) = >, b (ux).

Now piecing together n = Vu gives

’I’],’j = Gjuz- —+ Jg,ij + Bij (u) = Gjui -+ Jgﬂ'j -+ Z bf](uk)
k

Take ¢ =1 +yn’, then

Cij = Giu; +vGiu; + Jgi5 +vJg 50 + Z(bfﬂ + ’ybfl)(uk)
k

ii) Now define the stress tensor o € V,¥*? as the L? projection of u¢ — pl. The components
h J
of which are given by

iy = M M (Gui + Gty + Ty +1Tg i+ Y (0 +765) (w)) — pdij,
k

for 1 <4,5 < d. Here M is the mass matrix, M, is the y-weighted mass matrix such that
v Myu = [, vpu for all u,v € V,, and d;; is the Kronecker delta.

iii) Define the divergence of the stress tensor w € V¢ such that w = V-o on element E € £
g h
weakly via the weak-weak form

/w~'v:—/0':Vv—i—/ v-(o-n),
B E OF

for all test functions v on element E. Summing over all elements gives

/Qw-v:—Z/Eo':V'v—ir/ro(v—v+)~(a~n)*—|—/rmv'(o~n)*.
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Define the normal stress numerical flux (o - n)* for the Navier boundary as in section A.1
and take the intraphase flux on I'g from the right, i.e., in the opposite direction as that for

u, setting
. ot -n on Iy
(o-n)" =

o, -n+(h—(au);) onI'y,.

Note that v~ -0, n=v" - (n®n)o” -n= (v -n)n-o~ -n. Plugging in the numerical
fluxes gives

/Q'w-v = —XE:/EJ ; Vv—/ro(v*—v_)-a*-n%—/FNU(v‘-n)n-a_-n+/rm v -(h—(au);).

e The first two terms in the equation are equivalent to — ) .(o;, Gv;), where o is the
i-th row of o and v; the i-th component of v, for 1 <i < d.

/QJ;L(h)-'v:/FNU'v_-h7

e Define operator ANV : V4 — V4 to account for the slip term

/QAN”(u)~v:/FNH'U_-(au)T_:Ava_~(H—n®n)(OAL)_,

for all v € V)¢, which component-wise gives

Afvvuvi:/ v; (au); — /v;nm-auf
fartn = [ vitewr =30 [ oo,

The block operator Ag” is therefore given by

/Ag”(u)vzéij/ v_(au);—/ v nng(au);,
Q I'no Fnw

for all v € V,, and for all 1 <i,5 <d.

e Define J, € V) such that

for all v € V2.

e The third term in the divergence equation is equivalent to

/B('v):a:—/ (v -n)n / ka’nkn~a’-n
Q FNv FNv k
:—Z/ v nen): o
k FNv
So the value acting on component v; is

_/ Sninen) 22/

FN’U

v; NNy, E E /blk V;) Ol
Ik
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Combining these terms gives the following definition for the i-th component of the discrete
divergence V - o

w == M7'G]Moy; > Y M b, Moy, — AN (w) + Jys.
j l k

Combining this with the definition of o gives the following component-wise definition of the
Stokes stress equation w = V - o taking into account the Naiver-slip boundary condition

W; = — Z M_IG?MM(GJ‘UZ‘ + vGiuj + Jgﬂ'j + ’YJg,ji + Z(bf} + vbfz)(uk)) + M_IG?M]?
j k

J

= M MG+ Gk + Tyu + Yo + > O A Y0 ()
! k m

+ 3 M Mp — AN (w) + iy,
k

for each 1 <17 < d.

(iv) Define the divergence constraint w € Vj,, w = V - u in the strong-weak form such that

for element F € £
/wv:/vv-u+/ v(u" —u)-n,
E E OF

for all test functions v on element E. Summing over all elements and using the same
numerical fluxes for u as before gives effectively the trace of 7, with

w = Z GjUj + Z Z bfjuk + ngm
J j k

where Jy.,, € Vj, such that [, Jy.,v = fFN gv—, for all v € V},.

(v) To ensure wellposedness of the discrete problem, the LDG methods employ penalty
stabilization to weakly impose continuity of the polynomials between elements and to weakly
impose the normal component of the Navier boundary condition. The former terms are of
the form [i, Jo[u] - [v] for the velocity field and [, J,[p][v] for pressure, with corresponding
operators F, and E, respectively. Here vy, 9,, 9y, are positive penalty parameters. The
Navier boundary penalty term is given by

/ Unp(u™ —(gn+u,)) - v~ —/ Inol, -V —/ Ino gnu - v,
Inw In Y

v v

for all v € V4. Define ay, € V}¢ such that

/an"v: Iny gn - v,
Q T



APPENDIX A. LDG FOR STOKES PROBLEMS WITH NAVIER-SLIP BOUNDARY
CONDITIONS 100

Stokes form | d polynomial degree p

1 2 3 4
standard 2D | 0.19 0.10 0.086 0.019
3D | 0.12 0.088 0.084

viscous stress | 2D | 0.14 0.046 0.034 0.0095
3D [ 0.12 0.039 0.040

Table A.1: Optimal values of pressure penalty parameter 9, from [72].

and define the Navier boundary penalty operator EV? : V¢ — V4 such that

/EN”(U)-'U :/ Inyu, -V,
Q Ino

where the block operator Eg Y is given by

Nv — -
/E,L»j (u)v:/ VNt ngmiv-,
Q I'no

for all v € V}, and for all 1 < 4,7 < d. In the convergence tests of section A.4, the penalty
parameters are specified as follows: the velocity penalty parameters should scale proportion-
ally with the local viscosity coefficient p and polynomial degree p and in inverse proportion
with mesh spacing h, setting 9o, 9V? = Cup/h, with C = 0.5 and C' = 10 respectively. A
result of [72] is that the pressure penalty parameter ¥, plays a key role in solution accuracy
and multigrid performance. In that work ¥, = 9h/u, where ¥ is a user-defined penalty pa-
rameter; the optimal values of ¥ that cluster the eigenvalues of the multigrid preconditioned
system around one are specified in [72]. These values are used in this work and are repeated
in Table A.1 for completeness.

Summary

The LDG formulation for the Stokes problem with Navier-slip boundary conditions (A.1)
involves finding the velocity field u € V¢ and pressure p € V}, such that

Z M_IGJTMM(GJ'U@ +vGiuj + Z(bfj + ybfl)(uk)) + Z Z M_lbikTMu(GkUl + vGuy,
J k l k
+ 3 (O b () + AN () + Byu; + BN (w); — (MTIGTM +Y - M0, M)p
m k
=Py, (fi) = Y MG Mu(Jgis + 7 g50) = Y > M 0" My (Jguk + 7 g )
j Ik
+ Jhi + Ao, (A.3)
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for each 0 < i < d, subject to divergence constraint
- Z Gjuj Z Z bk iUk — p PVh (fdlv) g ns (A4)
J

where Py, (f) is the L? projection of f onto the polynomial space V.

Block structure

Multiplying the above two equations (A.3,A.4) by the mass matrix M and putting them into

block form gives
A MY u s
(e 15, () = (o2) 49

The degrees of freedom for w and p are blocked together on an element-wise basis and the
block-sparse linear system may be written as &/x = s, where x = (u,p) and s = (s, Sqiv)-
The resulting Stokes operator 7 is symmetric indefinite and the system (A.5) is solved via
operator coarsening multigrid-preconditioned GMRES methods [72], discussed in the next
section. The components of linear system (A.5) are

o 9 =(%4,...,9,) is a discrete gradient operator given by
G =—-MGIM —> MM,
The divergence constraint is enforced in the lower left corner of (A.5) by the application

of a discrete divergence operator that is the negative adjoint of this discrete gradient
operator.

e Ais ad x d block matrix, with block (7, j) given by
Aij = 0y (Z G M, Gk> +7GS M,Gi+0i;MEy+BGi;+GBij+ BB+ MAY + ME[".

The first three terms in the definition of A;; represent the base viscous component of
the Stokes operator and the final five terms represent the contribution from the Navier
boundary. Here operators BG,GB, BB are defined by

BGi; =Y (b, MGy + b, M, Gy)
k

GBi; = Z G M, (b], +7by,)
k

BB;; = Z Z bfkTMu(b{k + Vbil)'
k

l

e The terms (s, Sqiy) combine the right-hand sides of the Stokes momentum equation
and divergence constraint respectively, including the source and boundary data.
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A.3 Operator coarsening multigrid

To solve the linear system (A.5), we extend the operator coarsening geometric multigrid
methods of [72][78] to the LDG methods developed in section A.2 for Stokes problems with
Naiver-slip boundary conditions. Recall from section 3.4, that geometric multigrid methods
act by reducing high-frequency eigenmodes in the error along a hierarchy of successively
coarsened meshes. The operator coarsening paradigm coarsens LDG operators individually,
maintaining PDE and boundary condition consistency throughout each level of the hierarchy
while also sharply preserving the interfaces and avoiding the explicit construction of coarse
meshes. The multigrid methods of this section use the same (a) quad/octree mesh hierarchy,
(b) mesh-to-mesh transfer operators, and (c¢) damped block Gauss-Seidel smoother as in
section 3.4.

Recall the definition (eq. (3.32)) of the coarsening operator C(A) : V.. — V, for the fine mesh
operator A : Vy — Vy:

C(A) = M7N(IH" M ALL,
where My and M, are the fine and coarse mesh mass matrices respectively and I, TV, — Vi
is the interpolation operator. Within the operator coarsening framework, the LDG operators

of the Stokes system are coarsened individually and then recombined at each level of the
hierarchy, with the coarse mesh LDG operators defined as

M, = (I1)" My 1!

My = ([cf)TMu,fIcf
Ge= M NID)"M;GyI!
be = M7HIDT Meb,I!

C

1
Bue= () Eu sl

Ep,c = 2<[g)TEp,f[g
AN = (IDTAF T,

1
By = Ly ey

where the factor of half is applied to the coarsened penalty operators F,, EV? and a factor
of two is applied to E, to maintain the penalties parameters’ respective 1/h and h scaling
throughout the multigrid hierarchy [80]. Recombining the coarse mesh LDG operators gives
the following coarse mesh block-form Stokes operator

A, M 4.
e = (%CTMC —MCEP,C) ’
where

C,i1

Gy = —M'GLM, =Y Mo M.,
k
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and

Acij =035 (Z GZkMu,ch,k> + G M Gey + 65, MEy .
k

+ BGi; + GBeyj + BBey; + M AN + M ENY

c,ij c,ij)

with operators BG..,GB,., BB, defined by

Bgcﬂj = Z ( c,kj MM CGCk + P}/ijk‘ MH»CGCJ‘?)
gBC,Z] Z G bi ik + 'ch kz)

Bei; = Zzbclk eVl g, + YO 1)-

The multigrid V-cycle algorithm for linear system &7z = s is as in section 3.4. To further
accelerate performance, the multigrid algorithms are applied as preconditioners for Krylov
subspace methods. Krylov subspace methods work well to weakly impose the boundary
conditions, while multigrid solves the interior elliptic problem. For the Stokes problem
(A.5), a single V-cycle is applied as a left preconditioner to the GMRES method. For more
information on preconditioned Krylov subspace methods, see [87].

A.4 Convergence tests

In this section, we test the order of accuracy of the developed LDG methods for the Stokes
problem with Navier-slip boundary conditions (A.1). In particular, we demonstrate high-
order accuracy for the challenging case of variable viscosity and slip coefficients spanning
several orders of magnitude on an implicitly-defined curved domain, in both 2D and 3D.
Convergence of the computed solution is tested against an exact offset sinusoid solution,
setting u : 2 — R?and p: Q — R to

d
wi(z) = Hsin 2m(x; — 0.27), (A.6)
" d
p(z) = 1o H sin 27 (z; + 0.2), (A.7)

where 0.27 is a component-dependent shift and pg is the typical viscosity coefficient for the
problem. The exact solution is used to generate the source data f, fg, and the boundary
data g, h. We test our formulation within the irregular “amoeba” domain of section 3.5,
shown in Figure 3.3, which is embedded within a unit [0, 1]¢ box.
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Note that the time-independent Stokes problem with Navier-slip boundary conditions has
an associated kernel in the pressure field that is the span of globally constant functions.
We nullify this trivial kernel by considering only mean-zero pressure fields, meaning that
throughout the multigrid hierarchy, the following constant is removed from the computed
pressure solution:

(1,p) 1"Mp

(1,1)  1TM1’
where (-, -) is the standard inner product, M is the mass matrix, and 1 represents the unit
function. Additionally, we note that within certain geometries, a trivial kernel may also
appear within the fluid velocity field. For example, consider the Stokes problem (A.1) on a
simple 2D square domain, with periodic boundary conditions along the horizontal z-axis and
Navier boundary conditions along the top and bottom walls. Let w = (u,v). Within this
domain specification, the first Navier boundary condition w-n = ¢ provides information only
for the vertical fluid velocity v, and subsequently, the time-independent Stokes system (A.1)
has an associated kernel that is the span of globally constant functions within the horizontal
fluid velocity u. This kernel may be treated in a similar mean-zeroing manner, however, we
note that this trivial velocity kernel in the fluid velocity field is not present within the test
cases considered here.

Test 1: Constant diffusion and slip coefficients: We begin with perhaps the simplest non-
trivial Navier-slip boundary condition, setting unit viscosity and slip coefficients: © = a = 1.
Figure A.1 shows the computed L? and L™ errors against the exact solution and demon-
strates optimal p + 1 order accuracy in the fluid velocity field, in both 2D and 3D. The
pressure field loses a half order of accuracy in the L? norm and a full order of accuracy in
the L*> norm. The loss of order is due to numerical boundary layers within the pressure field
and is consistent with the findings of [72] for Stokes problems with other boundary condition
types. This boundary layer does not affect the accuracy of the computed fluid velocity. We
note the results of this test in Figure A.1 are similar for the free-slip condition o = 0.

Test 2: Variable viscosity and slip coefficients spanning several orders of magnitude

Next, we examine a challenging case with variable coefficients, where the viscosity varies by
four orders of magnitude and the slip coefficient by eight orders of magnitude throughout
the domain, setting

in 2D: in 3D:
= 102sin(27r(:c—0.1))sin(27r(y+0.1)) = 102sin(27r(:c—0.1)) sin(27(y+0.1)) sin(27(2—0.1))
o= 10—4+851n(7rx/2) sin(wy/2) o = 107418 sin(7z/2) sin(mwy/2) sin(7r(2+0.5)/2).

In this setting, additional speedups in multigrid performance can be achieved by a suitable
rescaling of the discrete Stokes operator, effectively so that it has unit viscosity and unit
length scale. Here we apply diagonal pre- and post-scalings to the Stokes operator, replacing

(A.5) with
a 0 A MY a 0
0 B)\¥"™™ —-ME,)\0 B)’
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where o and (3 are diagonal matrices with entries equal to y/L/u and +/pu/L respectively,
with L being the characteristic length scale of the problem. The scaled problem AP =35
is then solved, where o7 is the scaled Stokes operator and s = diag(«, 3)s, after-which the
original unscaled solution x = diag(a, §)Z is computed. We note that this scaling is applied
at each level of the multigrid hierarchy in the operator coarsening framework.

The LDG method produces high-order accurate solutions even in this challenging setting,
achieving optimal p + 1 order accuracy for the fluid velocity in both the L? and L* norms.
A similar loss of order in the pressure field occurs, as in the previous result. The convergence
results are illustrated in Figure A.2.
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Figure A.1: Convergence rates for the Stokes problem with Navier-slip boundary conditions on
an implicitly-defined curved domain with p,« = 1. h denotes the background mesh spacing and
polynomial degrees are represented by @, B & for p = 1,2, 3 respectively, with the slopes of the
lines indicating asymptotic convergence rates. Slope indicators with two comma-separated values
correspond to the left and right columns respectively.
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Figure A.2: Convergence rates for the Stokes problem with Navier-slip boundary conditions on an
implicitly-defined curved domain with variable i, o spanning several orders of magnitude. h denotes
the background mesh spacing and polynomial degrees are represented by @ Ml ¢ for p = 1,2,3
respectively, with the slopes of the lines indicating asymptotic convergence rates. Slope indicators
with two comma-separated values correspond to the left and right columns respectively.
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Appendix B

Physical Parameters

Laboratory experiments by PPG Industries Inc., along with standard reference values, specify
many of the physical parameters involved in the multi-layer coating flow problem. Figure B.1
provides the range of PPG provided values for paint viscosity and surface tension with respect
to the resin mass concentration, including regular/experimental, high, and low values. The
figure indicates that the rheological parameters vary substantially over time as the paints
dry; consequently, the numerical framework must handle a wide parameter range. Note the
sharp exponential nature of the viscosity profile with respect to resin concentration acts to
model the solidification of the paint.

Some parameters of the multi-layer coating flow problem are difficult to determine experi-
mentally, such as the solvent mass diffusion coefficients, while for other parameters, little is
known in general—e.g., the precise nature of embedded paint-paint surface tension forces.
For these values, we rely on the physical intuition of prior work and are also guided by
the results of our numerical simulations. For example, the mass diffusion coefficients for
different materials can range over four orders of magnitude, anywhere from 10714 — 10710
m? s~!. In particular, as diffusion rates decrease, the thickness of solvent boundary layers
decreases, meaning the numerical resolution must increase to correctly and accurately re-
solve the strong Marangoni forces at the interface. The smallest value of clearcoat diffusion
resolvable by our current simulations was 1072 m? s~!. Values of embedded paint-paint
surface tension coefficients are taken to be within the range of the coefficients of paint-gas
surface tension and, for some tests, an order of magnitude smaller.

The typical range of values for the paint parameters used in this work is stated below. The
specific rheological values for each simulation are given in Table B.1.
e Fluid density: p = 1000 kg m~3, approximately that of water.

e Basecoat viscosity: ppc ~ 20 — 500 kg m~! s7!, often taken as the PPG-provided
high-range viscosity.

e Clearcoat viscosity: pcc ~ 1—100 kg m~! s7!, often from PPG provided experimental
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Figure B.1: PPG provided viscosity and surface tension values with respect to resin concentration.

Figure B.2: The PPG provided smooth Ssmooth (top) and rough Syouen (bottom) substrate profiles.
The horizontal a-direction has been scaled by 1/40 to illustrate the features.

data.

Paint-gas surface tension: v ~ 0.02 — 0.04 N m~!, see Figure B.1.
Linear surface tension = 27 + 6.67cg mN m~!.

Paint-paint surface tension: ~;; ~ 0.001 — 0.04 N m~'.

Initial basecoat resin concentration: cg% = 0.75.

Initial clearcoat resin concentration: c%% = 0.65.

Solvent diffusion coefficient D ~ 10712 — 1071% m? s~1,
Evaporation rate: m ~ 107° — 10™* kg m~2 s~

Gravity: g ~ 9.8 m s2.

The typical length and time scales are:

Initial basecoat film thickness: hge ~ 30 — 50 pm.
Initial clearcoat film thickness: hoo =~ 50 — 100 pm.
Horizontal length scale: tens of millimeters.

Flash period: four to ten minutes.
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Substrate profile

In addition to specifying some of the physical parameters, PPG also conducted laboratory
experiments to determine the profile of two typical substrates, seen in Figure B.2. Corre-
spondingly, we consider in this work three substrate profiles:

e Sy.t — Perfectly flat substrate, used as a baseline.
® Simooth — Mildly-rough substrate, with Fourier amplitudes up to 0.15um.

® Siough — Rough substrate, with Fourier amplitudes up to 0.45um.



Parameter (units) Symbol Fig. 4.3 Fig. 5.1 Fig. 5.3 Fig. 54 Fig. 5.7
Number of solvents C 1 1 1 1 3
Number of layers 2 1 2 2 1
Substrate/gravity SHat SHat Shatd Satd Shatd
Mesh resolution 128 32 32 32 64
Domain width (um) 400 400 100 100 400
Init. height T'. (um) 90 90 90 90 50

Init. height I';; (um) 35 — 35 35 —

Fluid density (kg/m3) p 1000 1000 1000 1000 1000
Basecoat viscosity (Pa - s) UBC 4 — Visc. High  Visc. High —
Clearcoat viscosity (Pa - s) noo 2 2 Visc. Reg Visc. Reg Visc. Reg
Basecoat diffusion (m?/s) Dgc 2 x 10712 — 1x 10712 1x 10712 —
Clearcoat diffusion (m?/s) Dce 1x 1071 1x1071! 5x 10712 4x 10712 5x 10712
Surface tension I’y (mN/m) Ye 50 — 25¢cg 10 + 25¢cR St. Lin St. Lin St. Lin

Surface tension I';; (mN/m) Vi 30 — 3 3 —
Evaporation coeff (kg/(m? - s)) € 1x1073 3.33x107% 3.33x107* 3.33x107* 3.33,5.0,7.67 x 1074

Init. basecoat resin cons Cgc As specified — 0.75 0.75 —

Init. clearcoat resin cons C%C As specified 0.65 0.65 0.65 0.65
Parameter (units) Symbol Fig. 5.8/C.1 Study 1 Study 2 Study 3 Study 4
Number of solvents C 3 1 1 1 1
Number of layers 1 2 2 2 2
Substrate/gravity Shatd Statd Shatd Shatd Ssmoothd

Mesh resolution 64 32 32 32 32
Domain width (um) 400 25600 25600 25600 25600
Init. height T, (um) 50 90 90 90 90
Init. height T';; (um) — 35 35 35 35

Fluid density (kg/m?3) p 1000 1000 1000 1000 1000
Basecoat viscosity (Pa - s) LBC — Visc. High  Visc. High  Visc. High  Visc. High
Clearcoat viscosity (Pa - s) | ele} Visc. Reg Visc. Reg Visc. Reg Visc. Reg Visc. Reg
Basecoat diffusion (m?/s) Dpc — 1x10712 1x 10712 1x10712 1x 10712
Clearcoat diffusion (m?/s) Dce 1.25,2.5,5.0 x 10712 5 x 10712 5x 10712 5x 10712 5x 10712

Surface tension I, (mN/m) Ye St. Lin St. Reg St. Reg St. Reg St. Reg
Surface tension I';; (mN/m) Vij — 1.5 ~4-8 30 30
Evaporation coeff (kg/(m? - s)) € 3.33 x 1074 3.33x107% 333 x107% 333x107% 3.33x1074
Init. basecoat resin cons cgc — 0.75 0.75 0.75 0.75
Init. clearcoat resin cons Cgc 0.65 0.65 0.65 0.65 0.65
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Parameter (units) Symbol Study 5 Study 6 Study 7 Study 8
Number of solvents C 1 1 1 1
Number of layers 2 2 2 2
Substrate/gravity Stat, Srough— Statd Shatd Stat—

Mesh resolution 32 32 32 32
Domain width (um) 25600 25600 25600 25600
Init. height T, (um) 90 90 90 90
Init. height T';; (um) 35 35 35 35

Fluid density (kg/m?) p 1000 1000 1000 1000

Basecoat viscosity (Pa - s) UBC Visc. High Visc. High  Visc. High Visc. High
Clearcoat viscosity (Pa - s) [%ele; Visc. Reg Visc. High  Visc. Low Visc. Reg

Basecoat diffusion (m?/s) Dpc 1x 10712 1x10712 1 x 10712 1 x 10712

Clearcoat diffusion (m?/s) Dce 5x 10712 5x 10712 5x 10712 5x 10712
Surface tension I'. (mN/m) Ye St. Reg St. Reg St. Reg St. Reg, VQS'Y
Surface tension I';; (mN/m) Yij 30 30 30 30

Evaporation coeff (kg/(m? - s)) € 3.33x107%  333x107*% 333x107* 3.33x107%
Init. basecoat resin cons cgc 0.75 0.75 0.75 0.75
Init. clearcoat resin cons cG¢ 0.65 0.65 0.65 0.65

Parameter (units) Symbol Fig. 5.18 Fig. 5.19 Fig. C.2/ C.3

Number of solvents C 1 1 1
Number of layers 3 3 1
Substrate/gravity SHat Stiat SHat

Mesh resolution 64 64 64
Domain width (um) 400 400 400
Init. height T, (um) 180 180 90/180
Init. height T';; (um) 35,90 35,90 —

Fluid density (kg/m?) p 1000 1000 1000

Basecoat viscosity (Pa - s) KBC 8,4 4,2
Clearcoat viscosity (Pa - s) koo 2 1 Visc. Reg

Basecoat diffusion (m?/s) Dpc 125,25 x 10712 1.25,2.5 x 10712 —

Clearcoat diffusion (m?/s) Dce 5x 10712 5x 10712 1.25 x 10712
Surface tension T’ (mN/m) Ye 10 + 25¢cg 10 + 25¢cg St. Lin, V;”
Surface tension I';; (mN/m) Vi 10 + 25¢cg 10 + 25¢cg —

Evaporation coeff (kg/(m? - s)) £ 0 0 3.33 x 1074
Init. basecoat resin cons cg 0.8,1 0.8,1 —
Init. clearcoat resin cons cgc 1 1 0.65

Table B.1: The rheological parameters used in the numerical simulations. Note the mesh
resolution specifies the number of cells of the DG background mesh per 100um block. The
arrow by the substrate profiles specifies the direction of gravity, e.g., | specifies a horizontally-
oriented substrate with gravity pulling downwards. No arrow specifies that gravity is not

considered in the simulation.
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Appendix C

Additional Images

In the results presented in Chapter 5, the coating flow dynamics were found to vary dramat-
ically with respect to the solvent mass diffusion coefficient—owing to the complex interplay
of evaporation, diffusion, and Marangoni forces along the boundary layer. In particular, the
multi-solvent evaporation study of Figure 5.8 illustrates the dramatic impact of the diffusion
coefficient on the short-wave Marangoni plume structures. The low diffusion solvent exhibits
tighter formations and thinner boundary layers when compared to the higher diffusion sol-
vents; the vortices are almost “tree” like in nature, with the smaller forming plumes merging
to form “branches” of the tree. Such low diffusion Marangoni flows lead to the Marangoni
“flower” pattern of Figure 6.1.

In this section, we present additional images of evaporating Marangoni flow, exploring the
formation of tree structures within low diffusion Marangoni plumes. The mass diffusion
coefficient is set to 1.25 x 10712 m? s~!; this is about the smallest value of clearcoat diffusion
resolvable by our current simulations. Figure C.1 highlights the evolution of the low diffusion
solvent from the multi-solvent evaporation study of Figure 5.8. Figures C.2 and C.3 examine
the low diffusion plume structures within a single solvent paint, considering different initial
film thicknesses. The rheological parameters are as described in Appendix B. All simulations
use 64 x 64 background DG cells per 100um block to resolve the thin boundary layer dynamics
associated with low diffusion Marangoni flows.
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Figure C.1: The mass concentration profile of the low diffusion solvent from the multi-solvent
evaporation study shown in Figure 5.8. These results consider an initial film thickness of 50um.
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Figure C.2: The mass concentration profile of a low diffusion solvent. The results are shown at Left:
20, 30, 40, 50, 60s; Right: 70,80, 100,120, 140s. These results consider an initial film thickness of
90um.
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Figure C.3: The mass concentration profile of a low diffusion solvent. These results consider an
initial film thickness of 180um. For illustration, the domain is repeated across its periodic axis.





