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[1] Mineral aerosols are important atmospheric constituents owing to their interactions
with climate and biogeochemistry. The interannual variability in atmospheric mineral
aerosols is evaluated using a model simulation of 1979–2000 and mineral aerosol
observations. Overall, the variability in monthly means between different years is not as
large as the variability within a month for column amount, surface concentration, and
deposition fluxes. The magnitude of the variability predicted in the model varies spatially
and appears similar to that seen in the available observations, although the model is not
always able to simulate observed high- and low-dust years. The area over which the
interannual variability in the observing station data should be representative is estimated in
the model simulation and is shown to be regional in extent. However, correlations between
modeled surface concentrations at the stations and modeled deposition in the surrounding
region is often low, suggesting that the observations of the variability of surface
concentrations are difficult to extrapolate to variability in regional deposition fluxes. The
correlations between modeled monthly mean optical depth and modeled deposition or
mobilization are low to moderate (0.2–0.6) over much of the globe, indicating the
difficulty of estimating mobilization or deposition fluxes from satellite retrievals of optical
depth. In both the model and observations there are relationships between climate indices
(e.g., North Atlantic Oscillation, El Niño, and Pacific Decadal Oscillation) and dust,
although a 22-year simulation is not long enough to well characterize this relationship. In
this model, simulation of 1979–2000, dust concentration variability appears to be
dominated by transport variability and/or transport and source covariance rather than
source strength variability. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols

and particles (0345, 4801); 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions;

0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 1615

Global Change: Biogeochemical processes (4805); KEYWORDS: mineral aerosols, interannual variability,

desert dust

Citation: Mahowald, N., C. Luo, J. del Corral, and C. S. Zender, Interannual variability in atmospheric mineral aerosols from a

22-year model simulation and observational data, J. Geophys. Res., 108(D12), 4352, doi:10.1029/2002JD002821, 2003.

1. Introduction

[2] Mineral aerosols are thought to impact the radiative
budget due to absorption and scattering of solar and infrared
radiation [e.g., Miller and Tegen, 1998], to modify atmo-
spheric chemistry through heterogeneous reactions and pho-
tolysis rates [e.g., Dentener et al., 1996], and to impact
terrestrial and ocean biogeochemistry when deposited onto
the ground or ocean [e.g., Chadwick et al., 1999; Martin,

1990]. Observations of atmospheric concentrations of min-
eral aerosols suggest that there is substantial interannual
variability [e.g., Prospero and Nees, 1986]. In addition, the
fraction of desert dust particles which are produced to human
interactions are unknown. Tegen and Fung [1995] argued
that up to 50% of current atmospheric loading is due to
disturbed sources (including natural vegetation shifts and
human land use changes), while Prospero et al. [2002] and
Ginoux et al. [2001] argue that most of the sources of desert
dust are naturally occurring. Mahowald et al. [2002] argue
that current atmospheric data are insufficient to discriminate
between a natural topographic low source, a disturbed source,
and a land use source in North Africa. In order to make
accurate estimates of the anthropogenic radiative forcing of
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mineral aerosols, we need to understand the natural fluctua-
tions in desert dust. Tegen and Miller [1998] conducted a
15-year interannual variability study in the Goddard Insti-
tute of Space Sciences General Circulation Model (GCM)
assuming that all desert regions were sources and showed
that transport variations produce most of the interannual
variability in their model. Here we look in more detail at
the interannual variability in a 22-year simulation from the
Dust Entrainment and Deposition (DEAD) dust module,
Model of Atmospheric Transport and Chemistry (MATCH)
offline chemical transport model, using National Center for
Environmental Prediction (NCEP)/National Center for At-
mospheric Research reanalysis. Comparisons between sim-
ulations from this dust model and available observations
show that the climatology of the 22-year simulation is
roughly consistent with available observations [Luo et al.,
2003]. In this companion paper we focus on the interan-
nual variability of the simulation.
[3] The paper is organized as follows: In section 2 we

briefly describe the model simulations used in the com-
parison and previous comparisons of the model against
observations. Section 3.1 compares model and observed
interannual variability at in situ sites as well as from
satellite observations. Section 3.2 compares the amount of
variability in the model and observations (in situ and
satellite). Section 3.3 evaluates the correlation of climate
indices with desert dust in model and observations at the
stations, while section 3.4 expands this to look at spatial
correlations in the model and the climate indices. Section
3.5 focuses on the correlations between different sites in the
model and observations, while section 3.6 uses the model
results to evaluate the representativeness of the station data
and satellite data. Section 3.7 evaluates the role of interan-
nual variability in sources in controlling interannual varia-
bility in concentrations at the stations. Finally, section 4
summarizes the results of the study.

2. Model Description

[4] In this study we use the 22-year model simulation
described by Luo et al. [2003]. The DEAD dust module
[Zender et al., 2003] (also available at www.ess.icu.edu/
~zender) is based on the wind tunnel studies of Iversen and
White [1982],Marticorena and Bergametti [1995],Gillette et
al. [1998], and Fecan et al. [1999] and includes mobilization
(entrainment of dust into the atmosphere), and dry and wet
deposition. The source areas are defined as in Ginoux et al.

[2001] to be dry, unvegetated regions that have relatively low
topography. The transport model is the MATCH off-line
chemical transport model [Rasch et al., 1997], which has
been shown to work well with NCEP reanalysis data sets
[Mahowald et al., 1997]. The meteorological data used to
drive the models is the NCEP reanalysis [Kalnay et al., 1996;
Kistler et al., 2001]. Evaluations of this data set suggest that it
is most robust after 1979 [e.g., Santer et al., 2000] but that
there are problems during the 1979–2000 period, especially
in the hydrological cycle and in the tropics [e.g., Trenberth
and Guillemot, 1998; Trenberth et al., 2001], similar to other
reanalyses and models. For this study we simulated the dust
cycle in the atmosphere from 1979 to 2000. Optical depths
are calculated following Zender et al. [2003].
[5] The model described above was compared to avail-

able climatological observations of Luo et al. [2003], and
we summarize the results here. The model is able to capture
the monthly mean concentrations at surface stations glob-
ally but had more difficulty at several stations in the
Southern Hemisphere. Comparisons to deposition observa-
tions, both in situ and marine sediment cores, also show
rough consistency with the model simulations over 4 orders
of magnitude in deposition fluxes. Aerosol optical thick-
nesses predicted in the model appear consistent with avail-
able satellite and Aerosol Robotic Network (AERONET)
observations. The model daily (or weekly) averaged vari-
ability was compared to observations, and from this analysis
it appears that the model is often able to capture specific
dust events but that the timing or the magnitude of the event
may be slightly incorrect in the model. Overall, the model
simulation compares as well with available observations as
similar modeling studies [e.g., Ginoux et al., 2001; Tegen et
al., 2002], especially in the relatively well-observed North-
ern Hemisphere, but there are problems with the magnitude
and seasonality of the dust at a few stations in the Southern
Hemisphere.

3. Results

3.1. Comparisons of Interannual Variability
With Observations

[6] At least 2 years of measurement data are available at 10
in situ measurement sites, shown in Table 1. The latitude and
longitude of these sites are given in Figure 1, and the data are
made available to us courtesy of D. Savoie, J. Prospero, and
R. Arimoto [i.e., Prospero and Nees, 1986; Prospero, 1990;
Prospero et al., 1996; Arimoto et al., 1990, 1997]. These data

Table 1. Correlation Between Interannual Variability in Model and Observationsa

Monthly
Correlation

Monthly Anomaly
Correlation

Annual
Correlation

Number of Months
of Data

Daily Averaged
Correlation

Barbados 0.66 (0.77) 0.46 (0.52) 0.38 (0.45) 260 0.51 (0.63)
Izana 0.64 (0.74) 0.51 (0.55) 0.64 (0.63) 104 0.31 (0.60)
Bermuda 0.83 (0.86) 0.74 (0.47) 0.84 (0.62) 108 0.49 (0.61)
Miami 0.72 (0.62) 0.39 (0.23) 0.03 (�0.12) 227 0.65 (0.51)
Midway 0.64 (0.76) 0.27 (0.18) �0.41 (�0.35) 109 0.84b (0.57)
Hawaii 0.74 (0.86) 0.38 (0.47) 0.48 (0.27) 62 0.46b (0.77)
Enewtak 0.40 (0.63) �0.00 (0.18) 0.71 (0.70) 43 0.81b (0.82)
Funafuti �0.08 (0.01) �0.02 (0.03) NAN (0.20) 40
Mace Head 0.34 (0.49) 0.27 (0.27) �0.53 (�0.60) 59
Norfolk 0.09 (0.23) 0.30 (0.14) 0.39 (0.09) 44

aRank correlations are in parentheses, and 95% statistically significant values are boldfaced. NAN, not a number.
bStation only has weekly averaged data, so weekly averaged correlations are shown.
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represent concentrations at one point and may not be repre-
sentative of an entire grid cell. However, because they are
usually located on islands and attempt to sample clean marine
air, we assume for this study that they are representative of the
grid cell size area. This does create a potentially important
difference between the model and observations, however,

since observational sites only report concentrations when the
winds are from the marine sector, while the model results are
under all wind conditions.
[7] A comparison of the monthly mean concentrations

from the observations and the model predictions is shown
in Figure 1 for 1979–2001. The correlations of the monthly

Figure 1. Observed (solid lines) and modeled (dashed lines) monthly mean concentrations at (a)
Barbados (13�N, 59�W), (b) Izana (28�N, 16�W), (c) Bermuda (32�N, 65�W), (d) Miami (26�N, 80�W),
(e) Midway (28�N, 177�W), (f) Hawaii (21�N, 158�W), (g) Enewtak (11�N, 162�E), (h) Funafuti (8�S,
179�W), (i) Mace Head (53�N, 10�W), and (j) Norfolk (29�S, 168�E).
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average concentrations between the model and observations
are shown in Table 1. The correlation coefficient is a useful
quantity in evaluating similarities between model and obser-
vations and is widely used in the literature. However, strictly
speaking, the evaluation of the significance of the correlation
coefficient requires that the distributions of both data to be
Gaussian and that their joint probability distribution also be
Gaussian [e.g., Press et al., 1992]. In the case of the mineral
aerosols evaluated here the distributions of daily mean,
monthly mean, and annual mean concentrations, deposition,
and column amounts are not Gaussian, and thus the assump-
tions used to develop statistical significance tests are not
valid. In order to test for statistical significance, tests like the
rank correlation (rank the values and then correlate the ranks)
need to be undertaken [e.g., Press et al., 1992]. Because of
the widespread use of the correlation coefficient and its easy
physical interpretation we will show correlation coefficients
in this study and show statistical significance assuming that
the distributions are Gaussian (which is a bad assumption). In
fact, using rank correlations does not significantly change our
interpretation of the results, so we only show or discuss rank
correlations in section 1. In addition, statistical significance
requires assumptions about the number degrees of freedom
and autocorrelations within the data. In this study, we make
the simple assumption that each monthly averaged dust
concentration, mobilization, deposition, or column amount
are independent. Of course, since dry years will tend to have
more dust for the entire season or longer, this is probably not a
good assumption. The caveats presented here imply that even
when our results are statistically significant, we should
interpret the results carefully.
[8] Overall, similar to that seen in the climatology [Luo

et al., 2003], the model is usually able to capture the strong
seasonal cycle seen at observations stations, as seen in
Table 1. The correlations and rank correlations are moder-
ately high (0.6–0.8) for most of the stations, except for
Southern Hemisphere stations such as Enewtak, Funafuti,
and Norfolk, as well as the Mace Head, Ireland, station,
where there are fewer months in the data record and which
may contain contamination from small local sources not
included in the simulation. The stations at which the model
simulation compares the worst are also the stations which
have the fewest months of data (also shown in Table 1). In
addition, the Mace Head station only reports dust concen-
trations when the wind blows from the west, but the model
averages include concentrations during transport from
Europe. It is likely that North African dust is transported
over Europe before being observed at the Mace Head
station. Observations from the Funafuti site may not be
as robust, owing to the very small concentrations and the
possibility of contamination (J. Prospero, personal commu-
nication, 2002). Notice, however, that even with a rank
correlation of 0.86 at Bermuda the model is only able to
correctly predict �60% of the variability in the ranks
(correlation squared).
[9] Next we consider the monthly anomalies (monthly

average minus the 22-year mean of the monthly average)
and the ability of the model to predict not just the seasonal
cycle but also the interannual variability. For most of this
paper we consider the monthly anomaly (the deviation of
the monthly average from the 22-year average for that
month) in order to evaluate interannual variability. Corre-

lations and rank correlations between the model and
observations of the monthly anomalies are again shown
in Table 1 and tend to be smaller than when we include
the seasonal cycle. Correlations and rank correlations are
significant at over half the sites, again with the largest
problems in the data poor Southern Hemisphere, where
our mean distribution is also the worst. Additionally, we
consider the annual average concentrations predicted in the
model and calculated from the observations (Table 1). In
this case, the model is able to capture the interannual
variability at only half the stations; notably, Miami and
Midway are not well predicted considering the correlation
coefficient, and neither Izana nor Bermuda are statically
significantly correlated if we use the rank correlations. If
one contrasts the correlation coefficients and rank correla-
tion coefficients derived from daily averages and interan-
nual variability, it appears that the model is just as capable
of capturing individual events as of capturing interannual
variability. We come back to the question of capturing
interannual variability after looking at the variability in the
model versus observations (section 3.2).
[10] Notice that in Table 1 the difference between the

correlation coefficient and the rank correlations tend to be
small and that assuming (incorrectly) that the correlation
coefficient derives from Gaussian distribution results in
values that are similarly statistically significant than using
the more statistically robust rank correlation coefficient,
except in the case of the correlation of the annual averages.
Because of these similarities and for simplicity of showing
the results, we will use correlation coefficients for the rest of
the paper.
[11] Next we compare modeled column amount with

available satellite data: Total Ozone Mapping Spectrometer
(TOMS) Absorbing Aerosol Index (AI) and the advanced
very high resolution radiometer (AVHRR). Both data sets
have some problems in interpreting them, discussed in more
detail elsewhere [e.g., Cakmur et al., 2001; Torres et al.,
1998; Mishchenko et al., 1995]. The TOMS AI is able to
detect absorbing aerosols over land, but the AI is not only
proportional to optical depth but also to altitude of the dust
(i.e., dust close to the surface has a relatively weak TOMS
AI response). This makes direct comparison difficult. We
show results here from the TOMS AI between 1984 and
1990 since this period was the most stable (O. Torres,
personal communication, 2001; similar to Cakmur et al.
[2001]). Results over the whole time period tend to be
slightly less clear than over this smaller, more robust time
period and are not shown in the paper. To reduce cloud
contamination, TOMS AI values are only included in the
average when the spectral reflectance is <20%. In order to
correct for some of these problems, Torres et al. [2002]
combine the TOMS AI with model results (not from this
dust model simulation but from Ginoux et al. [2001]) and
some simple assumptions to infer an optical depth at
380 nm, called the TOMS aerosol optical depth (AOD).
For this data set we make comparisons between 1983 and
2000 (with 1993–1996 having missing months and exclud-
ing 1991 and 1992 due to volcanic aerosols).
[12] The AVHRR satellite detects scattering aerosols,

while mineral aerosol both scatter and absorb; thus there
may be problems in interpreting the AVHRR optical depths
for mineral aerosols. In addition, AVHRR retrievals are
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sensitive to assumptions about the size of the aerosols
[Mishchenko et al., 1995]. Cakmur et al. [2001] have
suggested that because of the large viewing pixel there are
very few cloud-free data points per month at many locations,
leading to potential biases in the monthly means. For the
AVHRR comparison we use 1983, 1985–1990, and 1995–
1998, owing to constraints on data availability and avoid-
ance of volcanoes. The Cakmur et al. [2001] study suggested
that the monthly averages derived from the TOMS AI may
be more robust than AVHRR in regions with many clouds,
which includes the region 0�–25�N across the Atlantic,
which is unfortunately a large region where mineral aerosols
dominate the aerosol optical depth. The satellite images are
not without errors; as discussed by Cakmur et al. [2001], the
uncertainty in the daily images (0.2 for TOMS AI and 0.04
for AVHRR optical depth) is roughly twice as large as the
uncertainty in the monthly averages in the TOMS AI or
AVHRR. Cakmur et al. [2001] point out that the data will be
more robust to analyze mineral aerosols close to the source
areas, where the errors are less important relative to the
signal. Because TOMS AI, TOMS AOD, and AVHRR
include all aerosols, not only mineral aerosols, we are
required to be careful in evaluating our model results in
regions not dominated by mineral aerosols. For the correla-
tions shown below the satellite optical depths are interpolat-
ed onto the T62 grid (1.8� � 1.8� grid) used in the model
before being correlated but after the monthly averages are
calculated. During some months, there was insufficient data
to interpolate onto the T62 grid at higher latitudes, and the
AVHRR optical depths were interpolated only between 30�N
and 10�S, causing spatial discontinuities in the correlation
coefficients due to the change in the amount of data. Model
optical depths are estimated from the four size bins following
Zender et al. [2003].
[13] Comparisons between the seasonal mean optical

depths from the model and AVHRR were shown to be
good by Luo et al. [2003]. Figure 2 shows the correlation
between the optical depth (at 380 nm for the TOMS
comparisons and at 630 nm for the AVHRR comparison),
in the model and observed TOMS AI (Figure 2a) and
AVHRR (Figure 2e), and for the model versus the estimated
TOMS AOD (Figure 2c). Over much of the high-desert-
dust-loading region (0�–25�N in the tropical Atlantic) the
model-TOMS AI comparison suggests high correlations
(>0.8), while the comparison with the AVHRR optical
depths (called AVHRR below) or TOMS AOD show mod-
erate correlations (0.6–0.8). It is not clear why the correla-
tion with TOMS AI is so much higher than TOMS AOD.
This could be due to the difference in the robust time period
(TOMS AI is robust only for 1984–1990) or due to differ-
ences between what the AI and AOD represent. The TOMS
AOD is a combination of model and data and does not use
this model, so this could be the source of the discrepancy.
Also, the TOMS AOD could be removing artifacts from the
TOMS AI due to the altitude of the aerosols, which acci-
dentally correlate with the modeled desert dust.
[14] When we remove the seasonal cycle, and look at the

model’s ability to predict interannual variability (i.e., we
remove the climatological mean monthly averages and com-
pare monthly anomalies), we find that the correlations are
much smaller, closer to 0.4, with the TOMS AI (Figure 2b),
while they do not decrease asmuch (0.4–0.6) with the TOMS

AOD (Figure 2d) or AVHRR (Figure 2f) in areas where the
desert dust should be the dominant aerosol. Cakmur et al.
[2001] analyzed TOMS AI and AVHRR and noted that the
temporal correlation in the high-dust region between these
two satellites was 0.55 once the seasonal cycle was removed.
Thus the model and TOMS AI, TOMS AOD, or AVHRR
correlations (0.4–0.6) are similar to the TOMS AI and the
AVHRR (0.55). Notice that there is a moderate correlation in
the anomalous dust just south of western North Africa (0�N
and 0�E) in both the TOMS and the AVHRR comparisons.
These areas are not likely to be dominated by desert dust but
have significant contribution from biomass burning. The
correlation between modeled desert dust and observed bio-
mass burning might be explained by assuming that both are
higher during drier years and highlights the need for critically
evaluating the calculated correlation values before interpret-
ing them. Rank correlation coefficients of bothmonthlymean
and monthly anomalies are similar in spatial distribution but
tend to be slightly higher (not shown).
[15] The fluctuations in TOMS AI between different years

can be due to differences in aerosol height as well as optical
depth. If the events tend to occur at approximately the same
altitude each year, then the comparison between monthly
anomalies in column amount and TOMS AI may be com-
paring similar properties (optical depth), and this assumption
has been used and justified by Hsu et al. [1999] and Cakmur
et al. [2001]. The similar correlations between the monthly
anomalies using TOMS AI and TOMS AOD (Figures 2b
and 2d) suggest that this assumption is largely valid. Overall,
the model seems to have some skill in simulating interannual
variability of desert dust close to the North African desert
dust source, since the TOMS AI, TOMS AOD, and AVHRR
comparisons suggest correlations above 0.6. The skill close
to the Arabian Sea source is lower (0.4–0.6 in the TOMS AI
and 0.2–0.4 in the TOMS AOD or AVHRR comparisons),
while the skill close to the Asian source is even lower.
Discrepancies between the model and observations may be
related to interferences with other aerosols or failures in the
model. The skill is also low near the Australian source,
which may be due either to that source’s relatively small
magnitude or to failures in the model.

3.2. Variability in Model and Observations

[16] Next we look at the magnitude of the variability in
the observations and how well the model is able to capture
that variability. We define variability as the standard devi-
ation divided by the mean and look at variability at in situ
stations as well as satellites compared to the model results in
this section. In Table 2 we show the variability within a
month (intramonthly variability) and the variability between
different years in the monthly mean (intermonthly variabil-
ity). The standard deviations are calculated for every month
and represent either the within month standard deviation
(i.e., standard deviation of the daily averaged values within
1 month) or the between month standard deviation (e.g.,
July of 1983 versus July of 1984, etc.) and then are
averaged to obtain a yearly value, which is then divided
by the annual mean concentration. The variabilities are
shown in Table 2 for both the model and observations at
the 10 observing stations. Notice that for many of the
observing stations, there are only weekly data available, in
which case the weekly averages from the model are also
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used for comparison. As can be seen in Table 2, there is
often 50% more variability inside of a month than between
months in both the model and observations. This is pre-
sumably due to the highly event-based nature of desert dust
transport. The model estimates intermonthly and intra-
monthly variability that is roughly similar to the observa-

tions at the observing stations, although the model seems to
underestimate variability by �25%. Because the model is
considering the concentration averaged over a grid box,
while the observations are looking at variability at one
point, a higher variability in observations should be
expected. However, we cannot eliminate the possibility that

Figure 2. (a) Correlation between monthly mean Total Ozone Mapping Spectrometer (TOMS)
Absorbing Aerosol Index (AI) [Torres et al., 1998] and model aerosol optical depth (380 nm) for 1984–
1990. (b) Correlation between monthly anomalies in TOMS AI and model optical depth (380 nm). (c)
Model optical depth (380 nm) and TOMS AOD for 1983–1993 and 1996–2000 [Torres et al., 2002]. (d)
Correlation between monthly anomalies in TOMS AOD and model optical depth. (e) Correlation between
advanced very high resolution radiometer (AVHRR) monthly mean optical depths [Husar et al., 1997]
and model optical depth (630 nm) for 1983, 1985–1990, and 1995–1998 (due to constraints on data
availability and avoidance of volcanoes). (f) Correlations between anomalies in AVHRR and model
optical depths.

AAC 3 - 6 MAHOWALD ET AL.: INTERANNUAL VARIABILITY IN MINERAL AEROSOLS



the model is underestimating variability in surface concen-
trations at the stations.
[17] Next we evaluate the model intramonthly and inter-

monthly variability (standard deviation/mean) in column
amount by comparing to satellite retrievals. Because of
the uncertainties in comparing satellite retrievals to models
discussed above, the comparison between satellite and
model variability in optical depth may be ambiguous in
some locations. Figure 3 shows the intramonthly and
intermonthly variability for January, and July, for the model
column amount, the TOMS AI (calculated on the TOMS AI
grid (1� � 1.25�), and the AVHRR optical depths (on the
AVHRR grid (1� � 1�)). Because standard deviations within
months are not available for the TOMS AOD, we do not
include an analysis of TOMS AOD variability. In order to
simplify our comparisons, we use column amount here. The
correlations shown in Figure 2 are similar if done between
observations and column amount and (in Figure 3) the
variability in column amount and optical depths is similar.
Overall, both model and observations suggest model intra-
monthly variability is larger than intermonthly variability
(similar to that seen at the observing stations). Variability
also tends to be larger outside of the strongest dust region
between 0� and 20�N across North Africa and the tropical
Atlantic in both the model and the observations.
[18] However, there is a large discrepancy between the

variability seen in the TOMS AI and in the AVHRR optical
depths for both the intramonthly and intermonthly variabil-
ity. The TOMS AI has much more intramonthly variability
than the AVHRR optical depths (with the model lying
between these extremes), while the AVHRR optical depths
has more intermonthly variability than the TOMS AI. These
discrepancies could be due to sampling issues: For example,
the TOMS AI is only used for 7 years, while the AVHRR is
being considered for 13 years. Also, the AVHRR tends to
include fewer data in the monthly mean than the TOMS, as
discussed in section 3.1. In addition, the TOMS AI is
dependent on aerosol height, so if our assumption that
aerosol heights are roughly constant between years is
incorrect, that would allow more variability in the TOMS
AI than in the AVHRR optical depth. In addition, within
monthly variability in the TOMS AI will include aerosol
height variability as well as changes in the scan angle that
may increase the intermonthly variability. There are reasons
that the satellite data may represent different variability than
the model. The TOMS AI or AVHRR optical depth is a

snapshot at a given time, and at a finer horizontal resolution,
than the model daily averaged values, which implies that
diagnosed model variability would be higher if model data
were subsampled at the frequency of satellite overpasses. To
test the importance of horizontal resolution on variability,
we interpolated the daily TOMS AI onto a T62 grid and
calculated the standard deviation; this standard deviation
tended to be less than the standard deviation calculated on
the original TOMS grid, implying that a higher horizontal
resolution will increase variability. There are also reasons
why the TOMS AI and AVHRR optical depths should have
a lower variability then the model. For example, satellite
retrievals (TOMS AI or AVHRR optical depths) mean value
include more aerosols than just mineral aerosols and have a
detection limit (not reporting values lower than this limit).
The combination of the above produces monthly mean
TOMS AI or AVHRR, even in regions with minimal
aerosols, of a minimum of �0.02 and �0.05, respectively,
whereas the model predicts optical depths several orders
of magnitude smaller [e.g., see Luo et al., 2003, Figures 1
and 2]. This produces smaller variability in the satellite data
than in the model in the same regions.
[19] The model values of intramonthly variability lie

between TOMS AI and AVHRR optical depth estimates.
For the intermonthly variability both the TOMS AI and
AVHRR show less variability than the model simulation.
This could be due to the larger mean optical depth discussed
above or due to the model overestimating variability. Since
the surface concentration data tended to suggest that the
model was underestimating intermonthly variability, it
seems likely that the discrepancy in the intermonthly
variability may be due to the larger mean optical depths
retrieved from satellites (from other aerosols and a higher
detection limit) than predicted by the model.
[20] The spatial structure of the intra and intermonthly

variability is similar; the largest values are observed just
northwest of North Africa, especially during winter. Pre-
sumably, this means that every once in a while there is an
event that transports dust into this region, while in the high-
dust areas, there are regular events. Generally speaking,
there is more variability in the less heavily impacted
regions, right on the edge of the largest dust regions, similar
to the intramonthly variability. Overall, it is difficult to
evaluate the model variability from the satellites, but some
of the same spatial and temporal structure is seen in the
model and observations.

Table 2. Intramonthly and Intermonthly Variabilitya

Intramonthly Standard
Deviation/Mean
Observation

Intramonthly Standard
Deviation/Mean

Model

Intermonthly Standard
Deviation/Mean
Observation

Intermonthly Standard
Deviation/Mean

Model

Barbados 1.09 .73 0.67 0.62
Izana 1.48 0.60 1.01 0.44
Bermuda 1.09 0.91 0.74 0.55
Miami 1.11 0.62 0.90 0.46
Midwayb 0.73 0.81 0.58 0.48
Hawaiib 0.57 0.74 0.57 0.45
Enewtakb 0.76 0.67 N/A 0.44
Funafutib 1.20 0.54 0.73 0.49
Mace Headb 1.34 0.65 0.78 0.46
Norfolkb 0.78 1.35 0.88 0.79

aAveraged over all months.
bStation only has weekly averaged data, so the model and observational calculations are based on weekly averages.
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[21] There is some indication that model variability and
skill (in terms of correlation with observations) are related.
Increased variability means that there is a larger signal
relative to the noise in interannual variability. If one looks
at both the intermonthly variability (Figure 3) and the
correlations between anomalies in dust column and TOMS
AI (similar to Figure 2), one notices that both have their
largest values in the same region northwest of North Africa.
If we choose 18 points in the North Atlantic, in the region
where most of the aerosols are mineral aerosols, spanning
variability between 0.6 and 2.0 (from Figure 3) and corre-
lations between the model and TOMS of 0.2 to 0.6 (from
Figure 2) and correlate variability with model-TOMS AI
correlation, we obtain a moderate correlation of 0.5. Sim-
ilarly, using the station concentration data (section 3.1), if
we compare correlation the model’s variability within a
month, and the model-observational daily correlation, we
obtain a correlation of 0.4. If we look at intermonthly

variability and the anomaly correlation between model
and in situ observations, we obtain only a 0.l correlation,
which does not support our view that increasing variability
is correlated with increasing skill in the model.
[22] Figure 4 shows the intramonth and intermonth var-

iability in an annual average for the column amount, the
surface concentrations, and the deposition. Notice that
generally the column amount has less variability than the
surface concentration or the deposition, which is consistent
with that variable being an integrated quantity (over the
column). The deposition tends to have the most variability
within the model, which is presumably due to the episodic
nature of the wet deposition.

3.3. Climate Indices and Surface Concentrations
at the Stations

[23] There are several climate indices that are hypothe-
sized to be important in indicating interannual variability in

Figure 4. Annual average of the model variability in (a) intramonthly column, (b) intermonthly column,
(c) intramonthly surface concentration, (d) intermonthly surface concentration, (e) intramonthly
deposition, and (f) intermonthly deposition.

Figure 3. (opposite) Variability (standard deviation over mean) in the model and observations of column amount for (a)
model intramonthly (within month) variability in January, (b) model intermonthly (between month) variability in January,
(c) model intramonthly variability in July, (d) model intermonthly variability in July, (e) TOMS AI intramonthly variability
in January, (f) TOMS AI intermonthly variability in January, (g) TOMS AI intramonthly variability in July, (h) TOMS
AI intermonthly variability in July, (i) AVHRR optical depth intramonthly variability in July, ( j) AVHRR optical depth
intermonthly variability in July, (k) AVHRR optical depth intramonthly variability in July, and (l) AVHRR optical depth
intermonnthly variability in July.
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weather, and here we look at comparisons between the in
situ station data and climate indices. (In section 3.4 we look
more broadly at spatial correlations between the climate
indices and dust in the model.) The most famous is the El
Niño/Southern Oscillation, which is a 2–3 year timescale
oscillation that is very important for tropical Pacific weather
and has teleconnections throughout the globe [e.g., Tren-
berth, 1996]. The North Atlantic Oscillation (NAO) has
been shown to be important for the North Atlantic region,
extending globally, and tends to change sign on decadal
timescales [e.g., Trenberth, 1996]. The Pacific Decadal
Oscillation (PDO) is seen in the North Pacific, and is also
an oscillation seen on a decadal timescale [e.g., Zhang et al.,
1997; Mantau et al., 1997].
[24] Moulin et al. [1997] reported that there are correla-

tions of 0.66 and 0.49 between the NAO and Meteosat
retrievals of aerosol optical depth between 1983 and 1994
for the Mediterranean and Atlantic regions, respectively,
and a correlation of 0.50 between the Barbados in situ data
and the NAO between 1965 and 1995. We explore here the
relationship between the different station data and the
climate indices in the observations and in the model. We
start first by looking at the winter NAO (available at http://
www.cgd.ucar.edu/(jhurrell/nao.html) [Hurrell, 1995], the
Pacific Decadal Oscillation (available at ftp://ftp.atmos.wa-
shington.edu/mantua/pnw_impacts/INDICES/PDO.latest)
[Zhang et al., 1997; Mantau et al., 1997], and El Niño 3.4
indices [available at ftp://ftp.ncep.noaa.gov/pub/cpc/
wd52dg/data/indices/sstoi.indices) [Trenberth, 1996] and
correlating these indices with the observations and model
for the period 1979–2000 (Table 3). For this study we use
annual average values for both the climate indices and the
dust concentrations. For simplicity we assume that the
annual average distributions meet the criteria such that we
can discuss the statistical significance. The annual average
of data is more similar to a Gaussian distribution than the
monthly average data, but the required criteria are not
actually met in either the data or the model concentrations.
We also assume that individual annual averages are inde-
pendent of each other, which is not the case if El Niño or
NAO are important processes for dust, since they have
longer than 1-year timescales. Thus the statistical signifi-
cance of these correlations needs to be carefully interpreted.
[25] In contrast to the Moulin et al. [1997] study looking

at 1965 to 1996, we do not obtain a statistically significant
correlation between the NAO and the Barbados surface

concentrations for the period 1979–2000 in the observa-
tions, only in the model. If we include the observations back
to 1965, we obtain a correlation of 0.38, more similar to that
calculated by Moulin et al. [1997]. This argues that some
influences of the climate indices on atmospheric dust
distributions will not be apparent over only a 22-year
simulation, especially when we consider decadal timescales
of variability such as the NAO. In fact, a correlation of 0.4
suggests that only 16% of the variability in the station data
at Barbados is controlled by the NAO (even if we assume
that the annual average concentrations at Barbados have a
Gaussian distribution, which is untrue). Overall, the NAO is
related to the observations at Enewtak and Funafuti only for
the observations, but for Barbados, Izana, and Mace Head in
the model. These results highlight the difficulty in interpret-
ing correlations between dust concentrations and climate
variables; there may be spurious correlations, such as
between Enewtak and Funafuti and the NAO.
[26] We also conduct correlation analysis for other climate

indices, such as the PDO and Niño 3.4 index for El Niño
(there are many indices for El Niño, as discussed below) and
show the results in Table 3. There are some correlations that
do not appear to be physically significant (such as the
correlation between Barbados and the PDO), but the corre-
lation between Hawaii, Midway, and Enewtak and the PDO
would appear reasonable owing to physical proximity.
Notice the low correlations between the dust concentrations
at the observing stations and the El Niño index. Since the El
Niño index is well correlated with the first-mode variability
in Empirical Orthogonal Function (EOF) analyses of pre-
cipitation [e.g., Dai and Wigley, 2000], it is interesting that it
does not appear to correlate with atmospheric desert dust
well, either in the model or observations at most stations;
only at Midway does it correlate with both. This appears to
be due to the location of the observing sites, according to the
results in the next section. Notice that the observations
suggest a negative correlation between Midway concentra-
tions and the Niño 3.4 index, while the model suggests a
positive correlation. This may be due to the shortness of the
observed record or to errors in transport at Midway. As
discussed below, the pattern of Niño 3.4 index correlation
with the Pacific dust loading is rather complicated, so there
may be a shift in the transport or precipitation patterns in the
Pacific in the NCEP reanalysis from the real atmosphere.
Note that if instead of using the PDO we use the North
Pacific Index [Trenberth and Hurrell, 1994], we obtain
similar results (not shown). Similarly, if we use another El
Niño index (such as the Niño 3 index), we also obtain
somewhat similar results to the Niño 3.4 index. We show
only one index for simplicity of presentation.
[27] We also conducted correlation studies between the

monthly anomalies of concentrations and the climate indices,
instead of just annual average, as above. Unfortunately, these
results do not show a clear picture of how climate indices
might correlate with desert dust, so we do not show the results
of these studies. We additionally did some analysis of lag
correlations with monthly averages and again found few
easily interpretable results, so we do not include them here.

3.4. Climate Index Correlations With Model Results

[28] We expand the above analysis to look at where the
variability in modeled dust appears to be related to the

Table 3. Annual Average Concentrations Versus Climate Indices

in Observations and Modela

NAO PDO Niño 3.4

Barbados 0.16 (0.40) 0.36 (0.28) 0.29 (0.12)
Izana 0.26 (0.42) 0.24 (�0.40) �0.49 (�0.24)
Bermuda 0.18 (�0.08) 0.37 (0.18) �0.18 (�0.20)
Miami �0.21 (0.18) 0.14 (0.15) �0.24 (0.25)
Midway �0.35 (�0.09) 0.14 (0.36) �0.57 (0.48)
Hawaii 0.32 (0.12) 0.63 (0.40) �0.20 (0.27)
Enewtak 0.97 (0.18) 0.63 (0.43) 0.36 (0.44)
Funafuti 0.88 (0.12) 0.54 (�0.12) 0.42 (0.22)
Mace Head �0.45 (0.60) �0.26 (�0.05) 0.72 (�0.08)
Norfolk �0.71 (0.25) 0.21 (�0.05) �0.42 (0.00)

aModel values are in parentheses, and statistically significant values are
boldfaced.
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climate indices. Figure 5 shows the correlation between the
NAO and the annual average mobilization (Figure 5a), dust
column (Figure 5b), surface concentration (Figure 5c), and
deposition (Figure 5d). Mobilization in North Africa is
correlated at the 0.6 level at some locations in North Africa
with the NAO. Concentrations and column depth in the
eastern and southern parts of the North Atlantic are corre-
lated at the 0.4 level, while deposition throughout the North
Atlantic basin is correlated at the 0.2–0.6 level with the
wintertime NAO. The spatial structure of these correlations
is consistent with the strong correlation in the Mediterra-
nean and eastern North Atlantic seen in the Meteosat
aerosol optical depths [Moulin et al., 1997].
[29] Figures 5e and 5f show the correlation between

modeled column amount and the PDO and Niño 3.4
indices. In the both the North and South Pacific the PDO
show moderate correlations (0.4–0.8) with the distribu-
tions. If we contrast this with correlations with the North
Pacific Index (not shown), the North Pacific Index shows a
stronger positive correlation farther north in the Pacific
than the PDO. The Niño 3.4 index is correlated with high-

dust column amount in the western part of the tropical
Pacific and lower dust in the eastern tropical Pacific,
consistent with precipitation pattern shifts due to El Niño
[e.g., Dai and Wigley, 2000]. A reason that the El Niño
signal does appear very strong in the Hawaii and Funafuti
station data may be the location of the stations; they appear
to be where the correlation changes sign. Notice that the
Midway correlations in Table 3 are actually opposite in
sign between the observations and the model. This may be
due to a shift precipitation between the NCEP reanalyses
and the atmosphere.
[30] Unfortunately, it is difficult to verify these compar-

isons with the available satellite data. We have 13 years of
data from the AVHRR while TOMS AI is only robust for
�8 years, not long enough to capture decadal variability
such as that described by the NAO or PDO or even El Niño.
In addition, these satellite retrievals represent mineral aero-
sol only in a small area of the globe. Results of this analysis
show that the satellites are positively correlated in the North
Atlantic region (0�–20�N) with the NAO in either the
AVHRR or the TOMS AI (not shown). The TOMS AI or

Figure 5. Correlation between the wintertime (a) North Atlantic Oscillation and annual average model
mobilization, (b) column amount, (c) surface concentration, and (d) deposition. Correlation between (e)
annual average dust column amount and Pacific Decadal Oscillation and (f) El Niño index 3.4.
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AVHRR correlations with Niño 3.4 show a weak maximum
over the Indonesia region (not shown), consistent with the
model. The TOMS AI and AVHRR optical depths did not
show a consistent correlation with PDO, and the TOMS
AOD show little correlation with any of the indices.
Overall, the model correlations with the climate indices
appear roughly consistent with observations, but a 22-year
simulation is too short a time period to do robust correla-
tions with decadal oscillations such as the NAO or PDO, so
these results should be regarded with caution.

3.5. Station to Stations Correlations

[31] Another way to evaluate the model is to look at the
relationships in concentrations between stations seen in the
observations and evaluate whether they are captured in
the model. For example, if fluctuations in the magnitude
of the mobilization in North Africa are responsible for
fluctuations at the North Atlantic, we would expect the
stations downwind of North Africa (Barbados, Bermuda,
Miami, and Izana) to be correlated, and we would hope the
model would be able to capture these fluctuations. (In
section 3.6 we look more broadly at the spatial correlations
within the model and the representativeness of the station
data for nearby regions.) We evaluate this using the monthly
mean anomalies from the model and observations and
correlate these for the different stations, as shown in Table 4.
[32] There are moderate correlations (0.5–0.7) between

monthly anomalies in the observations seen between
Hawaii and Izana and between Miami and Bermuda,
and there is even a strong correlation between Norfolk
and Izana. It is unclear why Hawaii and Izana or Norfolk
and Izana would be correlated, and this is not captured in
the model; it is likely that this type of spurious correlation
is due to the small time series we are correlating or the
fact that we are using correlations in the case of non-
Gaussian distributions. However, the physically justifiable
correlations between Miami and Bermuda or Miami and
Barbados are captured by the model. Mace Head and
Izana are correlated in the model but not in the observa-
tions. This could be due to the elimination of data from
easterly wind sectors (i.e., from Europe) done in the
observations at Mace Head but not done in the model.
The model also predicts a moderate correlation between
concentrations at Midway and Hawaii, while the observa-
tions suggest only a low correlation, although both are
statistically significant (if we incorrectly assumed that the
model and observations of monthly mean concentrations
were Gaussian distributed). The model predicts correla-
tions between Enewtak and Hawaii, which are not seen in

the observations. Surprisingly, there is little correlation
between Barbados and Bermuda or Bermuda and Izana,
including in the anomalous monthly comparison (which
removes differences in the seasonal cycle), implying that
the whole North Atlantic region is not equally dusty during
different months. Overall, there are not strong correlations
between the different stations, suggesting that much of the
variability seen at the observing stations during 1979–2000
is not due to changes in large-scale sources magnitude but
rather due to transport fluctuations or smaller-scale source
fluctuations. The model and observations agree on this lack
of strong correlations between stations.

3.6. Representativeness of the Observations

[33] Unfortunately, we are limited in our ability to make
observations of mineral aerosols globally. This makes it
important to understand the region over which the available
observation stations represent the fluctuations in dust, or
what we will define as the station’s representativeness. In
this analysis, we use the model to estimate how represen-
tative the different stations are of the region near them by
correlating surface concentrations in the model at the
different stations with nearby dust concentrations, column
amounts, and deposition, also from the model. From section
3.5 we have some confidence in the ability of the model to
predict the correct scales of variability, which tend to be
smaller than the distance between most of the stations. Since
mesoscale and subgrid-scale processes are included only in
a very coarse manner in our model, this analysis is likely to
overestimate the representativeness of the observing sta-
tions. In addition, the results of this study will be sensitive
to the model we used. For example, this model simulates
more wet deposition than dry deposition in regions remote
from the sources. Since wet deposition requires not only
dust concentrations but also precipitation, this will shift the
patterns slightly from another model study more dependent
on dry deposition. Of course, errors in the mean circulation
or precipitation in the NCEP reanalyses will also cause
errors in the patterns.
[34] Since Barbados has the longest record, we first

consider that observation station and then more briefly the
other stations. First, we show the correlations between
modeled monthly averaged concentrations at the surface
and modeled dust column amount (Figure 6a). Notice that
because both North Africa and the Arabian Peninsula have
more dust in the summer, these areas are correlated with the
Barbados surface concentrations. The correlations seen
close to Barbados of over 0.8 are consistent with in situ
correlations between concentration and AERONET data

Table 4. Station to Station Monthly Anomaly Correlations: Observations and Modela

Stations Barbados Izana Bermuda Miami Midway Hawaii Enewtak Funafuti Mace Head

Izana 0.01 (0.28)
Bermuda 0.09 (0.07) 0.02 (0.09)
Miami 0.18 (0.21) �0.03 (0.08) 0.51(0.57)
Midway �.03 (�0.11) 0.25 (�0.15) 0.12 (0.00) 0.09 (0.06)
Hawaii 0.01 (�0.16) 0.67 (�0.14) �0.59 (0.02) 0.03 (0.01) 0.25 (0.57)
Enewtak 0.09 (�0.04) 0.00 (0.00) 0.00 (0.00) �0.26 (0.00) �0.27 (0.37) �0.04 (0.42)
Funafuti 0.19 (0.07) 0.00 (0.00) 0.00 (0.00) �0.15 (0.00) 0.11 (�0.04) 0.01 (�0.04) �0.09 (�0.06)
Mace Head 0.11 (0.09) 0.03 (0.39) �0.08 (0.01) �0.14 (0.02) 0.00 (�0.09) �0.26 (�0.05) 0.00 (0.00)
Norfolk �0.12 (0.10) 0.92 (0.04) �1.00 (�0.01) 0.19 (0.05) 0.06 (�0.00) �0.02 (0.01) 0.11 (0.03) �0.43 (0.05) �0.88 (0.00)

aModel values are in parenthesis. Statistically significant results are boldfaced (assuming the distributions are Gaussian).
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[Smirnov et al., 2000]. A more insightful way to look at the
data is to remove the monthly mean concentrations and
view just the correlation between the monthly mean anoma-
lies in column amount and concentration at the Barbados
station (Figure 6b). Figure 6b represents more clearly the
region where the variability at Barbados is similar within
the model. There is a small correlation (0.2–0.3) between
Barbados monthly average anomalies and mobilization in
the western part of North Africa and near the Bodele basin
(not shown). In the correlations with column amount,
surface concentrations (Figure 6c), and deposition (Figure
6d), there is a moderate to high correlation between the
surface concentration at Barbados, with a maximum corre-
lation of above 0.8 over Barbados, extending throughout the
Caribbean, as far west as the western Pacific, and as far east
as North Africa. The correlations are strongest for the
largest area between the monthly anomalies in surface

concentrations at Barbados and the column amount. If
we correlated instead annual averages, we would obtain
roughly consistent results close to the observing stations but
with more ‘‘noise’’ in regions far away from the observing
station (not shown in figures). Notice that the correlations
between the deposition near Barbados and the concentra-
tions observed at Barbados are low (0.4–0.6) compared
with the correlations between the concentration at Barbados
and column amounts at Barbados (0.8–1.0). In this model,
the interannual variability in deposition is difficult to
observe for a region, probably at least partly due to the
importance of wet deposition in this model.
[35] It is somewhat difficult to verify that the model

results of representativeness are correct, because we are
limited to satellite data for large-scale analysis. As discussed
above, interpreting the satellite results is not always easy,
and we can only compare with satellite observations in

Figure 6. (a) Correlation between the modeled time series of surface concentration at the Barbados
station and different grid boxes for modeled column amount to show the ‘‘representativeness’’ of the
station. Figures 6b–6d show the correlation between the anomalous concentrations at Barbados and (b)
the anomalous column amount, (c) surface concentration, and (d) deposition. (e) Monthly averaged
TOMS AI correlation with the Barbados observations. (f) Correlations between the anomalies in the
monthly mean TOMS AI and Barbados observations.
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regions where we expect the dominant aerosol to be mineral
aerosol, which limits us to the North Atlantic south of
�25�N [e.g., Cakmur et al., 2001]. Figure 6e shows the
correlation between the Barbados observations and the
TOMS AI for 1984–1990 using the monthly means and
in Figure 6f using the monthly anomalies. The regions with
a correlation tend to be similar to those in the model,
although not as clearly defined. Considering the caveats in
using the satellite data, these comparisons are encouraging
enough that the model study of representativeness may be
reasonable. We do not show results using the TOMS AOD
or AVHRR satellite retrievals, but these are similar (but with
more noise).
[36] Next we show results from more stations and the

correlations between surface concentrations and the nearby
grid points in our model for concentration and deposition,
shown in Figure 7. The correlations between concentration
and concentration at the observing stations are usually the
highest (not shown in figures), with similarly high correla-
tions between column amount and station surface concen-
tration, while monthly anomaly deposition near the stations
and surface concentrations at the station are usually low to
moderately correlated.
[37] The Izana station appears to measure a different

region than Barbados; the correlations are strongest extend-
ing to the north into Europe. The Bermuda station captures
the region close to Bermuda, again not overlapping with the
Barbados or Izana representative regions. The Miami station
captures a region slightly overlapping both Barbados and
Bermuda. The Mace Head station in Ireland is representa-
tive of the northern parts of the North Atlantic. The
Midway, Oahu, and Enewtak stations are representative of
regions in the Pacific that tend to be larger than the
stations in the North Atlantic, perhaps because these stations
are farther from the sources. The Funafuti station in the
Southern Hemisphere has a very small region that is highly
correlated, perhaps due to the high amounts of precipitation
in this region. Norfolk, near Australia, also has a small area
where it is highly correlated (but an area larger than the
Funafuti station). The correlation between Norfolk Island
and either the column amount or deposition extends over a
larger area than the concentration correlations (not shown).
In fact, there is some correlation in the deposition in the
Southern Ocean and the station data at Norfolk. These
results are consistent with the station to station correlations
shown in Table 4. We do not attempt to verify these
relationships in the observations because either stations do
not have sufficient data or they are in regions where the
mineral aerosols are not the dominant aerosols, and thus we
do not expect the same relationships as seen in the dust
model.
[38] Finally, we consider the representativeness of the

satellite data. In the future we will have interannual
variability in optical depth from many more satellites.
We address the question here of how much information
these aerosol retrievals provide about variability in surface
concentrations and deposition, especially in terms of the
monthly average and monthly anomaly values. In order to
address this point, we look at the correlation in time at
every grid point between the column amount and surface
concentration or deposition at the same grid point. We
assume here that we have observations at every grid point,

as a perfect satellite would give us. Figure 8 shows the
correlation between monthly average column amount and
surface concentration (Figure 8a), between surface concen-
tration and deposition (Figure 8c), between column amount
and deposition (Figure 8e), and between column amount
and mobilization (Figure 8g). The correlations can be quite
high, above 0.8, but the correlations are actually negative
in some locations, often associated with strong marine
boundary layers close to shore (e.g., off the coast of North
Africa in Figure 8a, where the midtropospheric level dust
transport during the summer is referred to as the Saharan
Air Layer) or with strong precipitation (at the equator in
North Africa in Figure 8c). The correlations between the
monthly anomalies have a similarly large range (Figures
8b, 8d, 8f and 8h). Correlations between column amount
and mobilization over the source areas range between 0.2
and 0.8, suggesting that in many source regions, variability
in the retrieved optical depths may not be able to indicate
accurately variability in source strengths. Overall, the
deposition is the least well correlated with column amount
or surface concentration over regions far from the sources.
Because our model may overestimate wet deposition,
Figures 8e and 8f may underestimate the real ‘‘represen-
tativeness’’ of the satellite data. The correlation between
dry deposition and column amount is similar to the
correlation between surface concentration and column
(Figures 8a and 8b).
[39] We can also correlate during each month the spatial

distribution of the column amount predicted in the model
and the surface concentration and deposition. This pro-
vides insight into how much information is provided by
the monthly mean optical depths from the satellite about
the spatial distributions of the monthly mean surface
concentrations, deposition, and mobilization underneath
the column amounts. We use column amount here as a
proxy for optical depth, so we need not look at several
optical depths. Column amount is related to optical depths,
with size-dependent coefficients, so that as long as the size
distributions are not changing very much with space or
time (which is true for our model), using column amount
gives a good proxy for optical depth. In the real world,
size distributions may change more than in the model,
implying that the relationship between optical depth and
concentration or deposition may be less related than those
inferred in the model. These correlations average to a
correlation of 0.85 between surface concentration and
column amount, 0.70 between deposition and column
amount, 0.86 between surface concentration and deposi-
tion, and 0.56 between mobilization and column amount
(only calculated over land). This implies that if one
perfectly observed the monthly mean optical depth (and
we have normally distributed errors) during a given month,
one could predict 75% of the spatial variability in surface
concentrations, 50% of the spatial distribution of the
deposition fluxes, and only 25% of the spatial distribution
of the mobilization. The deposition variability captured
from satellite may be an underestimate if the model is
overpredicting the relative amount of wet deposition; the
value would be closer to 75% (similar to surface concen-
trations). This analysis suggests that satellite retrievals of
aerosol optical depth may be difficult to extrapolate to
monthly mean or interannual variability in deposition or
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Figure 7. Correlation between the anomalous column amount (or deposition) and the station surface
concentration in the model for (a and b) Izana, (c and d) Bermuda, (e and f) Miami, (g and h) Midway,
(i and j) Hawaii, (k and l) Enewtak, (m and n) Funafuti, (o and p) Mace Head, and (q and r) Norfolk.
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mobilization but may provide more information about
surface concentration variability.

3.7. Role of Source Variability

[40] Tegen and Miller [1998] show that in their GCM-
based dust model, much of the variability in concentrations
is controlled by transport fluctuations. They study transport
variability using two sets of experiments: one in which the
source is constant each year and one where the source is

allowed to vary. We do not have available to us a constant
source simulation; however, we look at the size of the
variability in modeled concentration at four observing
stations and sources and whether the variability in concen-
trations are correlated with variability in the source strength.
[41] Because the relationship between source strength and

downwind concentrations is roughly linear, we can estimate
the annual average concentration at a station (c, which is the
vector containing annual averages from 1979 to 2000) as

Figure 8. Correlation between the modeled values at the same grid points of (a) monthly mean surface
concentration and column amount, (b) monthly anomalies in column amount and surface concentration,
(c) monthly mean column amount and deposition, (d) monthly anomalies of column amount and
deposition, (e) monthly mean surface concentration and deposition, (f) monthly anomalies in surface
concentration and deposition, (g) monthly mean column amount and mobilization, and (h) monthly
anomalies in column amount and mobilization.
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the sum of the contributions from each source, ci (where i
indicates the source area), which is a function of a vector of
source strengths si multiplied by a vector of the linear
transport factor ti. Here we assume that transport is linear.
In our model it will be close to linear, but in the real world,
wet removal may occur nonlinearly if the dust aerosols are
interacting with the precipitation

c ¼
X
i

ci ¼
X
i

siti: ð1Þ

We can rewrite ci, si and ti as the sum of a mean over time
(denoted by an overbar) and anomalies from the mean
(denoted by a prime). If we assume that the anomalies from
the mean are small compared to the mean, we obtain
equation (2)

c0i
ci
¼ s0i

si
þ t0i
ti
: ð2Þ

If we define the variance of vector xi (Var(xi)) as the sum
over n time samples of (xi0)2/(n � 1), and the covariance of
yi and xi as the sum of (x0iy

0
i)/(n � 1) over n time samples,

then we can obtain the following linearized equation for
variance in concentration from each source (R. Miller,
personal communication, 2002):

Var c0i
� �

cið Þ2
¼

Var s0i
� �

sið Þ2
þ
Var t0i

� �
tið Þ2

þ 2
Covar s0i; t

0
i

� �
tisi

: ð3Þ

The total variance in concentrations over the mean is then
shown in equation (4)

Var c0ð Þ
cð Þ2

¼

P
i

c0i

� �2

= n� 1ð Þ

cð Þ2

¼
X
i

cið Þ2

cð Þ2
Var s0i

� �
sið Þ2

þ
Var t0i

� �
tið Þ2

þ
Covar s0i; t

0
i

� �
tisi

" #

þ
X
i

X
j6¼i

Covar c0i; c
0
j

	 

cð Þ2

: ð4Þ

Thus the variability in concentration (in this section we
define variability as the variance over mean squared, so
roughly the square of sections 3.1–3.6) has contributions
from source variability, transport variability in addition to
the covariance of source and transport variability, and a
covariance in the contributions from different sources.
[42] In this paper, we can only calculate the variability in

the concentration (the left-hand side of equation (4)) and the
variability in the sources (the first term on the right-hand
side of equation (4)). We estimate the mean contribution
from each source (ci) from a simulation by Luo et al. [2003],
which included a source apportionment study using seven
different source areas (West Africa, Central Africa, East
Africa, Arabian Pennisula, East Asia, Australia, and all
others). As seen in the work of Mahowald et al. [2002],
slightly different source areas tend to give very similar
concentrations at the downwind stations. Thus it is likely
that the exact geometry of the sources is not important for
downwind concentrations, which allows us to look at
mobilization averaged over regions. The variability in
transport from each source is unknown; we would need to
conduct a 22-year simulation with each source area sepa-
rately tagged.
[43] In Table 5 we look at the concentration variability

(left-hand side of equation (4)), and the contribution of the
source variability to this station (first term on the right-hand
side of equation (4)) for the sources that are most important
at four observing stations (Barbados, Bermuda, Mauna Loa,
and Norfolk Island). The variances are calculated for the
annual mean quantities; notice that the variability in Table 5
is the square of the variability in previous tables. In
addition, temporal correlations between the area average
source strength and the concentration for annual average,
monthly average, and anomalous monthly averages are also
shown in Table 5. For all four stations the variability in the
source regions are smaller than the variability in surface
concentration at the sources, especially when the contribu-
tion from that source area to the station is included in the
calculation ci=�cð Þ2var sið Þ= sið Þ2. The correlation between
the annual average source strength and surface concentra-

Table 5. Transport Variability and Correlations in Model Simulationsa

Source Area

Variability in
Concentration
Var (c)/(�c)2

Variability
in source

Var sið Þ= sið Þ2

Variability in
Concentration
From Source

ci=�cð Þ2Var sið Þ= sið Þ2

Correlations Annual
Mobilization Versus

Concentration

Correlation Monthly
Mobilization Versus

Concentration

Correlation Monthly
Anomaly Mobilization
Versus Concentration

Barbados
West Africa 0.047 0.018 0.0021 0.26 0.45 0.30
Central Africa 0.022 0.0067 �0.03 0.36 0.20
West and Central Africa 0.016 0.0125 0.11 0.43 0.29

Bermuda
West Africa 0.086 0.018 0.0015 0.46 0.13 0.14
Central Africa 0.022 0.0085 0.19 �0.06 0.10
West and Central Africa 0.016 0.013 0.35 0.02 0.13

Hawaii
Asia 0.044 0.038 0.00095 0.26 0.10 0.13
Central Asia 0.021 0.00038 �0.09 �0.08 0.04
West and Central Africa 0.016 0.0032 0.42 0.52 0.05

Norfolk
Australia 0.15 0.045 0.041 0.53 0.49 0.33

aVariability in this table is the square of variabilities in the previous tables. Variability represents annual values.
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tion is only correlated moderately well (0.3–0.5) in four
cases (Bermuda versus West Africa, Bermuda versus West
and Central Africa, Hawaii versus West and Central Africa,
and Norfolk versus Australia), and no correlations above
0.35 are calculated when monthly anomalies are used
instead. Thus at all four of these sites, transport variability
and/or transport and source covariances are responsible for a
large part of the observed fluctuations, consistent with
Tegen and Miller [1998]. The importance of sources vari-
ability over the 1979–2000 period is very different than
what may have been the case during longer time periods
[e.g.,Mahowald et al., 1999, 2002], when changes in source
strength and location are likely to have taken place.

4. Summary and Conclusions

[44] The interannual variability simulated in a 22-year
dust modeling study is shown to be roughly consistent with
available observations. Comparisons between model and
observations at in situ sites of monthly average surface
concentrations suggest moderate to high correlations at
stations with more than 5 years of data. Once the seasonal
cycle is removed, the correlations between anomalous
monthly values in the model and observations are low to
moderate (0.3–0.7), except at stations with <5 years of data,
where the correlations can be lower. Correlations with
available satellite observations suggest that the model is
able to capture much of the observed seasonal and interan-
nual variability in the limited regions where mineral aero-
sols are the dominant aerosols.
[45] In in situ observations, satellite retrievals, and model

results, the variability within a month tends to be larger than
the variability between different years, probably due to the
event-based nature of dust transport. The model appears to
have more skill in predicting interannual variability in dust
in regions where there is stronger interannual variability,
which is presumably a result of an increase in the signal-to-
noise ratio. The amount of variability in the model appears
roughly consistent with the limited available data. The
model suggests that there is more variability in deposition
than surface concentrations and more variability in surface
concentrations than column amount.
[46] The relationship between climate indices such as the

NAO, PDO, and El Niño 3.4 suggest that dust is affected by
these large-scale climate phenomenon to some extent, as
suggested previously [e.g., Moulin et al., 1997]. However,
with only a 22-year model simulation it is likely any
distinctive effects of decadal oscillations such as the NAO
and PDO will be less robust. Indeed observations at
Barbados and the NAO are not statistically significantly
correlated over this short time period, in contrast with
comparisons over 1966–1996 [Moulin et al., 1997]. Sup-
porting the Moulin et al. [1997] hypothesis that the NAO
impacts mobilization, we see a high correlation (>0.8)
between the NAO and mobilization in the southern part of
the North African source regions in the model. The spatial
patterns in the correlations between NAO and column
amount, surface concentrations, and deposition suggest that
there are some changes in the transport as well. Since these
correlations are �0.6, this would imply that the NAO is
associated with at most 36% of the variability (if we
incorrectly assume Gaussian distributions in our variables);

NAO is then an important modulator of desert dust, but
much of the variability is not associated with the NAO.
Both the PDO and Niño 3.4 affect modeled concentrations
in the Pacific, although they have weaker correlations with
desert dust than the NAO in this model. This may well be
due to the fact that this model predicts over 50% of the
global dust source as coming from North Africa [Luo et al.,
2003]. Atmospheric dust loading, even in North Africa, is
more strongly correlated with NAO than El Niño, even
though El Niño is shown to have strong correlations with
Sahelian precipitation [e.g., Dai and Wigley, 2000].
[47] We estimate the ‘‘representativeness’’ of the different

observing stations by correlating model surface concentra-
tions at the stations with model column amount, deposition,
and surface concentrations at nearby grid points to show the
regions with high correlations. At all stations but Funafuti,
the low to moderate correlations (>0.4) extend to suggest
that the stations are monitoring interannual variability up to
several hundred kilometers distant from the station. Vari-
ability in surface concentrations at the observing stations is
often well correlated with column amount and surface
concentration in the regions near the source. Correlations
between variability in station surface concentrations and
deposition tend to be low to moderate at many stations,
indicating difficulty in extrapolating variability in station
surface concentrations to regional deposition fluxes. We
also considered the representativeness of monthly mean
satellite data in inferring surface concentration, deposition,
and mobilization interannual variability. A correlation of
model predicted column amount and deposition at each
point suggests that variability in column amount is often
only low to moderately correlated with deposition (0.2–
0.6). This implies that using variability in satellite-retrieved
optical depths to infer variability in deposition may be
difficult. Similarly, correlations between mobilization and
column amount are only low to moderately correlated over
most source regions (�0.2–0.6). Correlations between
column amount and surface concentrations are stronger
(0.4–0.8), but even the moderate correlations (0.4–0.6)
seen over parts of the globe suggest that variability in
satellite-retrieved optical depths only will give information
about at most 16–36% of the variability in surface concen-
tration even if the satellite retrievals have no errors. Even
including the seasonal cycle (which tends to increase the
correlations) results in spatial locations where surface con-
centrations, deposition, or mobilization are not well corre-
lated with column amount.
[48] These results highlight the problem of having

enough observations to constrain the mineral aerosol distri-
bution and deposition flux over the globe. Because both the
intramonthly and intermonthly variability is so large, high
frequency and long-term measurements are required. Satel-
lite observations are capable of providing good spatial and
temporal coverage (although there are limitations with
1979–2000 satellite data as discussed above). However,
our results suggest that satellite observations may be difficult
to extrapolate from optical depth to surface concentrations,
deposition fluxes, or mobilization. Model correlations be-
tween the spatial distributions of column amount and
surface concentration are 0.85, while the correlation be-
tween spatial distributions of column amount and deposition
is 0.70, and are only 0.5 (only calculated over land) for
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mobilization and column amount. Correlations between
variability in modeled monthly mean column amount and
the modeled surface concentration, deposition and mobili-
zation at the same point are 0.4–0.8, 0.2–0.6, and �0.2–
0.6, respectively, for most of the globe. Thus only 10–75%
of the temporal and spatial variability of surface concentra-
tion, deposition, and mobilization can be characterized by
observing optical depths (if we assume, incorrectly, Gauss-
ian errors, which may be a bad assumption), with deposition
or mobilization being much harder than surface concen-
trations to observe. Analysis of the model results suggest
that the in situ observation stations provide regional infor-
mation about the variability in surface concentrations and
optical depths, but, again, deposition is more difficult to
extrapolate. Because of the strength of the wet deposition in
this model, it is possible that the correlations with deposi-
tion are slightly higher in other models and the real world,
but they will not be higher than the correlation with surface
concentration. These results highlight the difficulty in
observing mineral aerosols well enough so that even the
large-scale features of the variability in distribution and
deposition of mineral aerosols is documented. This will
limit our ability to evaluate dust models and the subsequent
calculations of radiative forcing and biogeochemical
impacts.
[49] Understanding interannual variability of desert dust

and our ability to simulate it in models is an important step
to understanding both the importance of desert dust to
climate and biogeochemistry, as well as how humans may
be impacting desert dust. While in this study, the model was
able to capture much of the variability seen in the observa-
tions from 1979 to 2000; a previous study [Mahowald et al.,
2002] showed that the same model is not able to capture
changes in Barbados dust seen prior to 1979. There may be
different processes that are important to be able to simulate
the 1979–2000 period versus the pre-1980 period (e.g.,
different sources), or this may indicate that our model has
difficulty simulating the period prior to the inclusion of
satellite data in the reanalyses.
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