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ABSTRACT OF THE DISSERTATION

The Cube Problem for Linear Orders

By

Garrett Ervin

Doctor of Philosophy in Mathematics

University of California, Irvine, 2017

Professor Martin Zeman, Chair

In 1958, Sierpiński asked whether there exists a linear order X that is isomorphic to its lex-

icographically ordered cube but is not isomorphic to its square. The corresponding question

has been answered positively for many different classes of structures, including groups, rings,

graphs, Boolean algebras, and topological spaces of various kinds. However, the main result

of this thesis is that the answer to Sierpiński’s question is negative: every linear order X

that is isomorphic to its cube is already isomorphic to its square. More generally, if X is

isomorphic to any one of its finite powers Xn, n > 1, it is isomorphic to all of them.

The proof relies on a general representation theorem that characterizes, for a fixed structureA

from a class of structures C, those structures X ∈ C that satisfy the isomorphism A×X ∼= X.

This characterization is based on an analysis of an arbitrary bijection f : A×X → X, and

is closely connected to the tail-equivalence relation on the Baire space Aω.

In Chapter 1, we study the tail-equivalence relation as well as those continuous maps on Aω

that preserve tail-equivalence. In Chapter 2, we give our characterization of the isomorphism

A×X ∼= X, and specify it for several particular classes of structures, including the class of

linear orders in which we are primarily interested. In Chapter 3, we use this characterization

to solve Sierpiński’s problem, as well as several other problems concerning the multiplication

vii



of linear orders. In Chapter 4, we solve a related problem, also due to Sierpiński, by showing

there exist non-isomorphic orders X and Y that divide one another on both sides.
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Introduction

We wake and find ourselves on a stair;

there are stairs below us, which we

seem to have ascended; there are stairs

above us, many a one, which go

upward and out of sight. . .

Emerson

Self-Similar Structures

Suppose that (C,×) is a class of structures equipped with an associative cartesian product.

Given a fixed structure A ∈ C, a natural problem is to determine which structures X ∈ C are

invariant under left multiplication by A, that is, which X satisfy the isomorphism A×X ∼= X.

It turns out that for many classes it is possible to characterize such structures. Roughly

speaking, they can only be obtained by replacing points in the infinite product Aω with

structures from C, so that tail-equivalent points are replaced by isomorphic structures.

Before we state the result precisely, we recall what it means for two sequences to be tail-

equivalent in Aω.
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Definition. Given two sequences u, v ∈ Aω, we say u and v are tail-equivalent, and write

u ∼ v, if there exist finite sequences r, s ∈ A<ω and an infinite sequence u′ ∈ Aω such that

u = ru′ and v = su′.

Tail-equivalent sequences have equal tails, but the initial sequences preceding those tails can

be of differing lengths. It is easy to see that tail-equivalence is in fact an equivalence relation.

We denote the equivalence class of a given u ∈ Aω by [u].

Tail-equivalence classes are formally the smallest subsets of Aω that are invariant under left

multiplication by A. That is, for an arbitrary subset X ⊆ Aω, if we define A×X as the set

{au : a ∈ A, u ∈ X}, then A×X = X if and only if X is a union of tail-equivalence classes.

This fact can be used to produce many examples of structures invariant under left multipli-

cation by A, as follows. Suppose that for every tail-equivalence class [u] we fix a structure

I[u] ∈ C. Let Aω(I[u]) denote the “structure” obtained by replacing every point u ∈ Aω with

the corresponding I[u]. The underlying set of points in Aω(I[u]) is {(u, x) : u ∈ Aω, x ∈ I[u]}.

If u ∼ v, then both u and v are replaced by I[u] = I[v], but inequivalent points may be

replaced by different structures. Depending on context, certain extra restrictions may need

to be placed on the I[u] in order to make Aω(I[u]) a sensible structure. This “replacement”

operation generalizes the usual product, since if there is a structure Y such that I[u] = Y for

all u, then Aω(I[u]) is simply Aω × Y .

Structures of this form are naturally invariant under left multiplication by A: if X = Aω(I[u]),

then A×X ∼= X. The isomorphism is defined by the rule (a, u, x) 7→ (au, x). The fact that

structures replacing tail-equivalent points are identical is necessary for this map to make

sense.

It turns out that this is the only way to form such structures.
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“Theorem”. Fix a class of structures C and a structure A ∈ C. For any structure X ∈ C,

we have A×X ∼= X if and only if X is isomorphic to a structure of the form Aω(I[u]).

How to turn this “theorem” into a theorem depends on the class C. Here are some examples:

Representation Theorems.

a. Fix a set A. Then for any set X, there is a bijection between A×X and X if and only

if X ∼= Aω(I[u]) for some collection of sets I[u], u ∈ Aω. This holds even in the absence

of the axiom of choice.

b. Fix a group G. If H is a subgroup of Gω that is closed under tail-equivalence, and

X = H n N is a semi-direct product of H defined with respect to a “∼-invariant”

homomorphism, then G×X ∼= X. In the other direction, if G×X ∼= X then there is

a normal subgroup N of G such that G/N is isomorphic to a subgroup H of Gω that

is closed under tail-equivalence.

c. Fix a topological space T . For any topological space X, we have T × X ∼= X if and

only if X ∼= T ω(I[u]), where the topology on T ω can be the product topology, the box

topology, or any intermediate topology that is “closed under multiplication by T .”

d. Fix a linear order L and let × denote the lexicographical product of linear orders. Then

for any order X, we have L×X ∼= X if and only if X ∼= Lω(I[u]) for some collection of

linear orders I[u].

An iterated function system (IFS) is a finite collection of contraction mappings {f1, . . . , fn}

on a complete metric space. A fundamental result, due to Hutchinson [5], is that any

such system has a unique attractor. That is, there is a unique compact set K such that

K =
⋃
fi(K). Moreover, this attractor is naturally homeomorphic to a quotient of Cantor

space (on n symbols), and under this homeomorphism each fi becomes the shift map u 7→ iu.
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The representation theorems above can be viewed as analogues to Hutchinson’s result. If A

and X are structures such that A×X ∼= X, then X can be decomposed into “A-many copies

of itself.” Hence there is a collection of mappings {fa : a ∈ A} such that for each a ∈ A,

the map fa sends X onto the ath copy of itself within itself, and we have X =
⋃
fa(X).

Moreover there is a natural isomorphism identifying X, not as a quotient of Cantor space,

but as a replacement of Aω. Under this isomorphism the fa become shift maps on Aω. Since

there is no notion of metric, the fa are not contractions. As a result, the iterated images of

X under a sequence of these maps need not converge to a point, as they do in the case of

an IFS. However, they do converge to a substructure (or, in certain instances, the “coset of

a substructure”), and it is possible to show that substructures associated to tail-equivalent

sequences are isomorphic.

The “theorem” above can be generalized to characterize the isomorphism An ×X ∼= X for

a fixed positive integer n. For this isomorphism the relevant equivalence relation is not the

tail-equivalence relation ∼, but rather the finer n-tail-equivalence relation ∼n. Because they

are central to all subsequent work in the thesis, the relations ∼n are studied in detail in

Chapter 1. There, we will not work over some particular class of structures, but simply take

A to be an arbitrary set with the discrete topology and Aω to be its infinite product with

the product topology. We will also consider those continuous maps on Aω that preserve

tail-equivalence. In Chapter 2, we prove the “theorem” above and derive the representation

theorems (a)− (d).

Cube Problems

In many classes of structures (C,×), it is possible to find an infinite structure X that is

isomorphic to its own square. If X2 ∼= X, then by multiplying again we have X3 ∼= X.

Determining whether the converse holds for a given class C, that is, whether X3 ∼= X implies
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X2 ∼= X for all X ∈ C, is called the cube problem for C. If the cube problem for C has a

positive answer, then C is said to have the cube property.

The cube problem is related to three other basic problems concerning the multiplication of

structures in a given class (C,×).

1. Does A× Y ∼= X and B ×X ∼= Y imply X ∼= Y for all A,B,X, Y ∈ C? Equivalently,

does A×B ×X ∼= X imply B ×X ∼= X for all A,B,X ∈ C?

2. Does X2 ∼= Y 2 imply X ∼= Y for all X, Y ∈ C?

3. Does A × Y ∼= X and A × X ∼= Y imply X ∼= Y for all A,X, Y ∈ C? Equivalently,

does A2 ×X ∼= X imply A×X ∼= X for all A,X ∈ C?

The first question is sometimes called the Schroeder-Bernstein problem for C, and if it has a

positive answer, then C is said to have the Schroeder-Bernstein property. The second question

is called the unique square root problem for C, and if its answer is positive, then C has the

unique square root property. Taken together, the first two questions are sometimes called

the Kaplansky test problems, after Irving Kaplansky who posed them in [9] as a heuristic

test for whether a given class of abelian groups (under the direct product) has a satisfactory

structure theory (“I believe their defeat is convincing evidence that no reasonable invariants

exist”). Tarski [17] had posed them previously for the class of Boolean algebras. All three

questions are listed in Hanf’s seminal paper [4] on products of Boolean algebras. We will

refer to Question 3 as the weak Schroeder-Bernstein problem for C, and the corresponding

property as the weak Schroeder-Bernstein property.

A negative solution to Question 3 obviously gives a negative solution to Question 1. If the

product for C is commutative, it gives a negative solution to Question 2 as well. If the cube

problem for C has a negative solution, that is, if there is an X ∈ C that is isomorphic to

its cube but not to its square, then all three questions have a negative solution, without
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assuming commutativity of the product. In practice, it is often by constructing such an X

that these three problems are solved.

If the class C does not contain any infinite structure isomorphic to its cube, then the cube

property holds trivially. When the cube property does not hold trivially, it usually fails. The

first result in this direction is due to Hanf, who constructed in [4] a Boolean algebra that is

isomorphic to its cube but not its square. Tarski [18] and Jónsson [7] immediately adapted

Hanf’s result to show the failure of the cube property for the class of semigroups, the class of

groups, the class of rings, and various other classes of algebraic structures. Hanf’s example,

and consequently many of those produced by Tarski and Jónsson, is of size continuum, and

for some time it was open whether there were countable examples witnessing the failure of

the cube property for these various classes.

In 1965, Corner showed in [1] that indeed there exists a countable (torsion-free, abelian)

group G isomorphic to G3 but not G2. Later, Jones [6] showed that it is even possible to

construct a finitely generated (necessarily non-abelian) group isomorphic to its cube but not

its square. In 1979, Ketonen [10] solved the so-called Tarski cube problem by producing a

countable Boolean algebra isomorphic to its cube but not its square.

Throughout the 1970s and 1980s, Trnková solved the cube problem negatively for many

different classes of topological spaces and relational structures, including the class of graphs

under several different notions of graph product [22]. Her topological results are summarized

in [21]. Answering a question of Trnková, Orsatti and Rodino showed in [13] that there is

even a connected topological space homeomorphic to its cube but not its square. Koubek,

Nešetřil, and Rödl [11] showed that the cube property fails for the class of partial orders,

as well as for other classes of relational structures. More recently, Eklof and Shelah [2]

constructed an ℵ1-separable group isomorphic to its cube but not its square, and Gowers [3]

constructed a Banach space linearly homeomorphic to its cube but not its square.
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On the other hand, there are rare instances when the cube property holds nontrivially. It

holds for the class of sets under the cartesian product, since any set in bijective correspon-

dence with its cube is either infinite, empty, or a singleton, and hence in bijection with its

square. This is immediate if one assumes the axiom of choice, but it can be proved with-

out the axiom of choice using the Schroeder-Bernstein theorem. Similarly easily, the cube

property holds for the class of vector spaces (over a fixed field) under the direct product.

Less trivially, the cube property holds for the class of countably complete Boolean algebras.

This follows from the Schroeder-Bernstein theorem for such algebras. Trnková [19] showed

that the cube property also holds for the class of countable metric spaces (where isomor-

phism means homeomorphism), as well as for closed subspaces of Cantor space [20]. Koubek,

Nešetřil, and Rödl showed in [11] that the cube property holds for the class of equivalence

relations. It is worth noting that for all of these classes, it is actually possible to establish

the stronger Schroeder-Bernstein property.

In his 1958 book Cardinal and Ordinal Numbers [15], Sierpiński posed the cube problem

(although he does not use the term) for the class (LO,×lex) of linear orders under the

lexicographical product. On page 232, he writes,

“We do not know so far . . . any type α such that α = α3 6= α2.”

Here, “type” means linear order type, and the ordering on the cartesian powers α2 and α3

is the lexicographical ordering1. Although the cube problem has been solved for many other

classes of structures, Sierpiński’s question has remained open. One major difference in this

version of the cube problem is that, unlike the products for the other classes so far discussed,

the lexicographical product of linear orders is not commutative. Though he does not make a

conjecture in his book, his language suggests that Sierpiński expected that such an α exists,

that is, that the cube property fails for (LO,×lex). He was already aware of examples of

1Sierpiński actually ordered these powers anti-lexicographically, though in this thesis we will use the
lexicographical ordering. This does not change the problem.
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linear orders witnessing the failure of the unique square root property and (the right-sided

and left-sided versions of) the Schroeder-Bernstein property.

The main result of this thesis is that in fact the cube property holds for (LO,×lex). This is

proved in Chapter 3, appearing as Theorem 3.3.15 below.

Main Theorem. If X is a linear order and X3 ∼= X, then X2 ∼= X. More generally, if

Xn ∼= X for some n > 1, then X2 ∼= X.

Thus the cube property holds for the class of linear orders despite the fact that the Schroeder-

Bernstein property and unique square root property fail. We will show in Chapter 3 that

even the weak Schroeder-Bernstein property fails for (LO,×lex). In this sense, the cube

property is closer to failing for (LO,×lex) than it is for the other classes for which it is

known to hold.

The proof of the cube property relies crucially on the characterizations given in Section

2.2.1 of the isomorphisms A × X ∼= X and A2 × X ∼= X for linear orders. Using these

characterizations, it is possible to write down a sufficient condition, namely the existence of

a parity-reversing automorphism of Aω, for the implication A2 ×X ∼= X =⇒ A×X ∼= X

to hold for every linear order X. This is done in Section 3.2.2.

The combinatorial heart of the proof is contained in Section 3.3, where parity-reversing

automorphisms of Aω are constructed for various orders A, including all countable orders.

These maps are built using generalized versions of the classical Schroeder-Bernstein bijection.

In this context, the isomorphism X3 ∼= X can be rewritten X2 × X ∼= X. The results of

Section 3.2.2 then give that if Xω has a parity-reversing automorphism, then we must also

have X×X ∼= X (i.e. X2 ∼= X). We will show at the end of Section 3.3 that if X3 ∼= X, then

indeed Xω has a parity-reversing automorphism, completing the proof of the cube property.

8



The proof is then generalized to give Xn ∼= X =⇒ X2 ∼= X for any linear order X and

n > 1.

In Section 3.4, we show that the main theorem is not vacuous by illustrating a general way

of constructing orders X such that Xn ∼= X for a fixed n > 1. Such orders can be arranged

to be of any cardinality. In Section 3.5 we show that there exists an order A such that Aω

does not have a parity-reversing automorphism, and as a consequence we will be able to

construct a counterexample to the weak Schroeder-Bernstein property for (LO,×lex).

In Cardinal and Ordinal Numbers, Sierpiński posed several other questions related to the

cube problem concerning the multiplication of linear orders.

1. (Sierpiński) Do there exist non-isomorphic countable orders X and Y that are right-

hand divisors of one another? That is, do there exist countable orders X 6∼= Y such

that X ∼= A× Y and Y ∼= B ×X for some orders A,B?

In other words, Sierpiński is asking for countable witnesses to the failure of the (left-sided)

Schroeder-Bernstein property. He was aware of uncountable witnesses. We will show that

uncountability is in fact necessary.

Theorem. If X and Y are countable orders such that divide one another on the right, then

X ∼= Y .

This is proved in Section 3.6. A more delicate question is the following:

2. (Sierpiński) Do there exist non-isomorphic orders X and Y that are both right-handed

and left-handed divisors of one another? That is, are there orders X 6∼= Y such that

for some A0, B0, A1, B1 we have X ∼= A0 × Y ∼= Y ×B0 and Y ∼= A1 ×X ∼= X ×B1?

9



As already indicated, Sierpiński was aware of examples of non-isomorphic orders X0, Y0

that divide each other on the right. Separately he knew of non-isomorphic orders X1, Y1

that divide each other on the left. (In other words, he was aware of examples witnessing

the failure of the left-sided Schroeder-Bernstein property, and separately, the right-sided

Schroeder-Bernstein property.) It is natural to ask if there are distinct orders that divide

each other on both sides. We will refer to this question as the two-sided Schroeder-Bernstein

problem. If there were an order X isomorphic to X3 but not X2, then the pair X,X2 would

give a positive answer. By our main theorem there are no such orders, but it turns out the

answer is still positive.

Theorem. There exist non-isomorphic orders X, Y of size 2ℵ0 that divide one another on

both the left and right.

This is proved in Chapter 4 using an adaptation of the argument from Section 3.5. While such

orders are necessarily uncountable, it is unknown if they can consistently have cardinality

smaller than 2ℵ0 . The theorem gives further evidence that the cube property for (LO,×lex)

is “close” to being false.
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Chapter 1

Tail-equivalence Relations

1.1 The tail-equivalence relation

Let A be a nonempty set, and let Aω denote the set of infinite sequences of elements of A.

We take ω to include 0, so elements u of Aω are written u = (u0, u1, . . .). Later on, A will

often be a structure of some kind, such as a group or linear order, and Aω will be its infinite

direct product. Let A<ω denote the set of finite sequences of elements of A, including the

empty sequence. If r is a finite sequence, and u is either a finite or infinite sequence, we let

ru denote the sequence beginning with r and ending with u.

Definition 1.1.1. Given two sequences u, v ∈ Aω, we say u and v are tail-equivalent, and

write u ∼ v, if there exist finite sequences r, s ∈ A<ω and an infinite sequence u′ ∈ Aω such

that u = ru′ and v = su′.

In dealing with sequences of elements of A, the letters a, b, . . . will usually denote single

elements of A, whereas r, s, . . . will denote finite sequences, and u, v, . . . will denote infinite

sequences. If u = ru′ for some finite sequence r, then u′ is called a tail-sequence of u and r

is called an initial sequence of u. In an abuse, no distinction is made between elements of A
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and sequences of length 1, so that au refers to the sequence with first entry a ∈ A followed

by the tail-sequence u ∈ Aω. The length of a finite sequence r is denoted |r|. Given u ∈ Aω,

ui refers to the ith entry of u, and u � n = (u0, u1, . . . , un−1) denotes the initial sequence

of the first n entries of u. If a ∈ A is an element of A, then ak ∈ A<ω denotes the finite

sequence aa . . . a of a repeated k times. If k = 0, then ak denotes the empty sequence, but

we will usually tacitly assume that k > 0 in an expression of this form.

If u ∼ v, so that u = ru′ and v = su′ for some r, s, u′, the pair ru′ and su′ is called a meeting

representation of u and v. Alternatively, we will sometimes think of a meeting representation

as a triple (r, s, u′), where r, s are finite sequences and u′ is an infinite sequence. If we say

(r, s, u′) is a meeting representation of u and v, we mean u = ru′ and v = su′.

Meeting representations are not unique: if u = ru′, v = su′, and a is the first entry of u′, so

that u′ = au′′, then letting r′ = ra, s′ = sa we have that u = r′u′′ and v = s′u′′, giving a

different representation. Usually, unzipping along a tail-sequence like this is the only way of

generating distinct representations. However, if u′ is an eventually periodic sequence there

are other ways. We will return to this issue later.

It is easy to see that tail-equivalence is an equivalence relation on Aω. The equivalence class

of u is denoted [u]. It consists exactly of those elements in Aω of the form ru′, where r ∈ A<ω

and u′ is a tail-sequence of u.

Let × denote the cartesian product of sets. We will often suppress this symbol, writing

for example XY instead of X × Y . In later chapters × will usually be an extension of the

cartesian product to a particular class of structures, like the direct product of groups or the

lexicographical product of linear orders. Given a fixed structure A from our class, we will be

interested in determining which structures X have the property that A ×X ∼= X. It turns

out that such structures can essentially be represented as unions of tail-equivalence classes

in the infinite product Aω. We give the precise result in Chapter 2.
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For now, note that there is a natural bijection between A×Aω and Aω defined by (a, u) 7→ au.

Since this “flattening map” will play an important role in what follows, we denote it by fl,

so that fl(a, (u0, u1, . . .)) = (a, u0, u1, . . .) for every a ∈ A and sequence (u0, u1, . . .) ∈ Aω.

The tail-equivalence classes are the smallest subsets of Aω that are “invariant under left

multiplication by A” in the following sense. If [u] is a tail-equivalence class, then viewing

it as a subset of Aω, we may form the product A[u] = {(a, v) : a ∈ A, v ∈ [u]}. Then

fl[A[u]] = [u]. To check this, note that if v ∈ [u], then av ∼ v and hence av ∈ [u] for any

a ∈ A. Hence fl[A[u]] ⊆ [u]. And if v ∈ [u], say v = (v0, v1, . . .), then v′ = (v1, v2, . . .) is

tail-equivalent to v and hence also in [u]. But then v0v
′ = v is in the image of A[u], giving

the reverse containment.

On the other hand, if X ⊆ Aω and fl[AX] = X, then X is a union of tail-equivalence

classes. For, if u = (u0, u1, . . .) is in X, then fl−1(u) = (u0, (u1, . . .)) is in AX and therefore

the tail-sequence (u1, u2, . . .) is in X. By induction, any tail-sequence u′ of u is in X. Then

for any a ∈ A, we must have (a, u′) ∈ AX and hence fl((a, u′)) = au′ ∈ X. By induction,

for any finite sequence r we have ru′ ∈ X. Thus [u] ⊆ X, giving the claim. We have proved

the following proposition.

Proposition 1.1.2. Fix a subset X ⊆ Aω. Then fl[AX] = X if and only if X is a union of

tail-equivalence classes.

In Chapter 2, when A is not simply a set but a structure of some kind, we will see how this

proposition allows us to produce examples of structures X such that A×X ∼= X.

1.2 The n-tail-equivalence relations

We now turn our attention to the n-tail-equivalence relations ∼n, n > 1, which refine the

tail-equivalence relation. Just as the tail-equivalence relation partitions Aω into subsets
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invariant under left multiplication by A, the n-tail-equivalence relation partitions Aω into

subsets invariant under left multiplication by An. In the rest of the chapter, after a proving

a proposition or theorem about ∼n for an arbitrary n, we will often specify it for the case

when n = 2, since this is the case in which we are primarily interested.

Definition 1.2.1. Fix a positive integer n > 1. Two sequences u, v ∈ Aω are called n-tail-

equivalent if there exist r, s ∈ A<ω with |r| ≡ |s| (mod n) and a sequence u′ ∈ Aω such that

u = ru′ and v = su′. If u and v are n-tail-equivalent, we write u ∼n v.

The definition of n-tail-equivalence is identical to that of tail-equivalence, except that in the

meeting representation u = ru′, v = su′ witnessing u ∼n v, the lengths of r and s are required

to be the same modulo n. Reflexivity and symmetry of the relation ∼n are immediate, and

transitivity can be checked. The ∼n-equivalence class of u is denoted [u]n. It consists exactly

of those sequences of the form ru′, where u′ = (uk, uk+1, . . .) is a tail-sequence of u, and r is

a finite sequence such that |r| ≡ k (mod n).

We will need to see precisely how tail-equivalence classes are related to n-tail-equivalence

classes. If u ∼n v, then certainly u ∼ v as well. Hence the n-tail-equivalence relation refines

the tail-equivalence relation, and every ∼-class [u] splits into some number of ∼n-classes.

Clearly in fact, it splits into at most n such classes: if u and v are tail-equivalent, and

u = ru′, v = su′ is a meeting representation of u and v, then for some k, 0 ≤ k < n, we have

|s| ≡ |r| + k (mod n). Hence for any fixed a ∈ A we have v ∼n aku, as witnessed by the

meeting representation u = akru′, v = su′. (Here, ak can be replaced by any k-sequence of

elements of A.) This shows that for any ∼-class [u] and fixed a ∈ A we have

[u] =
⋃

0≤k<n

[aku]n.
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For distinct non-negative integers l < l′ < n, the classes [alu]n and [al
′
u]n are either equal or

disjoint, depending on whether alu ∼n al
′
u or not. It will be useful to know precisely when

we have alu ∼n al
′
u. Notice that this relation holds if and only if u ∼n al

′−lu. Hence to

determine when we have alu ∼n al
′
u for distinct integers l, l′ < n, it is sufficient to determine

when we have u ∼n aku for a given k, 0 < k < n.

Usually, aku 6∼n u. Certainly the obvious representation u = ru′, aku = su′, where r = ∅,

s = ak, and u′ = u does not witness aku ∼n u. Most of the time this obvious representation

is the only one, up to unzipping along the tail-sequence. However, if u is an eventually

periodic sequence then it is possible to get truly distinct representations, and in some of

these cases we have aku ∼n u. Proposition 1.2.2 below tells us exactly when this happens.

For any finite sequence s ∈ A<ω, let s denote the sequence sss . . . ∈ Aω. Define a sequence

u ∈ Aω to be eventually periodic if there exist r, s ∈ A<ω such that u = rsss . . . = rs. Such a

sequence is said to be repeating in s. If r = ∅ we say u is simply periodic. If p is the shortest

possible length of a sequence in which u repeats, we say u has period p.

Proposition 1.2.2. Fix a sequence u ∈ Aω and element a ∈ A. Let n be an integer greater

than 1, and fix k, 0 < k < n. Then aku ∼n u if and only if u is eventually periodic, and if p

is the period of u, then there is a nonzero integer l ∈ Z such that k ≡ lp (mod n).

Proof. Note that the l in the statement of the proposition is possibly a negative integer: the

last clause says that k is either a positive or negative multiple of p (modulo n).

Before proving the proposition, we establish the following claim: if u is eventually periodic

of period p, and we have a “periodic representation” of u as u = rs, then p divides |s|. If

p = |s| there is nothing to show, so suppose p < |s|. Then there are finite sequences r′, t

such that u = r′t and |t| = p. It is safe to assume that r′ = r, since if say r′ is shorter than

r, then by extending r′ to r at the beginning of the second representation for u, we see that

u = rt′, where t′ is of the same length as t (and similarly, if r′ is longer than r we may extend
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r to r′ in the first representation). Hence u = rs = rt. Thus the tail-sequences s and t are

equal. In particular, t is an initial sequence of s.

Let d = gcd (|s|, |t|). We wish to show d = |t|. Suppose to the contrary d < |t|. Write t as

x1x2 . . . xm, where the xi are sequences all of length d, and m = |t|
d

is greater than 1. Then

since t is an initial sequence of s, we have s = x1 . . . xms
′ for some finite sequence s′.

By Bezout’s identity there exist integers a and b such that a|s| + b|t| = d, where we may

assume a < 0 and b > 0. This means that if we consider the words x = ss . . . s consisting of

a-many copies of s, and y = tt . . . t consisting of b-many copies of t, then y is d entries longer

than x. But these words must be equal up to the end of x, since they begin the sequences

s and t, which are equal. Since the last d entries of y is exactly the sequence xm, we have

y = xxm. Thus we may rewrite s as xss and t as xxmtt. Expanding the solitary s and t

in these representations gives s = xx1x2 . . . xms
′s and t = xxmx1 . . . xm−1xmt. Since these

sequences are equal we must have the identities x1 = xm, x2 = x1, . . . , xm = xm−1. Hence

all of the xi are equal to x1. But then t = x1x1 . . . x1 so that t = x1 and hence u = rx1. This

is a contradiction, since we assumed that the period of u is p = |t|, and |x1| is strictly less

than |t|. We have the claim.

Now we can prove the proposition. Suppose first that we have u ∼n aku, as witnessed by

the meeting representation u = ru′ and aku = tu′. We may assume t is at least as long as

ak, that is t = akr′ for some r′ ∈ A<ω, since if not we can unzip along the tail-sequence until

we have a meeting representation where this holds. Since both r, r′ are initial sequences of

u, it must be that one is an initial sequence of the other. Let us assume first that r′ is an

initial sequence of r, that is, r = r′s for some finite sequence s. We are going to show that

u is repeating in s.

We know that |r| ≡ |akr′| (mod n). Hence |r| ≡ k + |r′| (mod n). But |r| = |r′|+ |s|, so we

have |r′|+ |s| ≡ |r′|+ k (mod n), which gives |s| ≡ k (mod n).
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Now, on one hand we have u = ru′ = r′su′, and on the other we have u = r′u′. Hence

u′ = su′. The only way this is possible is if u′ = s. Therefore u = rs is eventually periodic.

It may be that the period p of u is shorter than |s|, but by above we have |s| = lp for some

(positive) integer l. Combining this with the final clause in the previous paragraph gives

lp ≡ k (mod n).

The other case is when r is an initial sequence of r′, that is r′ = rs for some finite sequence s.

Then as before we can show that u = rs, and by assumption we have |r| ≡ |akr′| (mod n).

The difference is that now this congruence becomes |r| ≡ k+|r|+s (mod n), so that k+s ≡ 0

(mod n). Since |s| must be a positive multiple m of the period p, this congruence becomes

k +mp ≡ 0 (mod n), that is, k ≡ lp (mod n), where l = −m, as desired.

For the backwards direction, assume that u is eventually periodic of period p and k ≡ lp

(mod n) for some l ∈ Z, l 6= 0. Write u as u = rs for some s of length p. Suppose first

that l > 0. Then we have u = rs = rsls, and aku = akrs. The meeting representation

(rsl, akr, s) witnesses u ∼n aku. If l < 0, so that l = −m for some positive m, then we

have k + mp ≡ 0 (mod n). Writing u as rs and aku as akrsms, we see that the meeting

representation (r, raksm, s) witnesses u ∼n aku.

An equivalent statement of the proposition is that [u]n = [aku]n if and only if u is eventually

periodic and k is congruent (modulo n) to integer multiple of the period p. Since they play

an especially important role in what follows, we emphasize that for sequences u of period

1, we have [u]n = [aku]n for any k. In this case, all of the n-tail-equivalence classes [aku]n

are the same, and hence they all are simply equal to the tail-equivalence class [u]. On the

other hand, if u is not periodic in any period, all of the n-tail-equivalence classes [aku]n are

distinct, so that that the union

[u] =
⋃

0≤k<n

[aku]n.
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is in fact a disjoint union.

Since we will need to refer to this particular case later, let us state Proposition 1.2.2 for the

case n = 2.

Corollary 1.2.3. Fix elements u ∈ Aω and a ∈ A. Then au ∼2 u if and only if u is

eventually periodic and the period of u is odd.

Just as the ∼-classes [u] were the smallest suborders of Aω invariant under left multiplication

by A, the ∼n-classes [u]n are the smallest suborders of Aω invariant under left multiplication

by An. This is stated formally as Proposition 1.2.4 below. Let fln : An × Aω → Aω denote

the “n-flattening bijection” defined by fln((a0, a1, . . . , a
n−1), u) = a0a1 . . . an−1u.

Proposition 1.2.4. Fix a subset X ⊆ Aω and n ≥ 1. Then fln[AnX] = X if and only if X

is a union of ∼n-classes.

Proof. The proof is essentially identical to the proof of Proposition 1.1.2. There, the relevant

fact was that au ∼ u for all a, u. Here, it is that a0a1 . . . an−1u ∼n u for any n-sequence

a0 . . . an−1 ∈ An and u ∈ Aω.

Thus, just as A[u] is naturally in bijection (via fl) with [u] for every u ∈ Aω, we have

that An[u]n is naturally bijective with [u]n (via fln). We can express this informally by

writing A[u] = [u] and An[u]n = [u]n. A natural question is what happens to a given

n-tail-equivalence class [u]n when it is multiplied by a single factor of A.

Proposition 1.2.5. Fix n ≥ 1. For all u ∈ Aω and a ∈ A we have fl[A[u]n] = [au]n.

Proof. If x ∈ fl[A[u]n], then x = bv for some b ∈ A and v ∼n u. But then bv ∼n au, i.e.

x ∼n au. Conversely, if x ∼n au then writing x = x0x
′ we have that x′ ∼n u and hence

x ∈ fl[A[u]n].
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It follows that flk[A
k[u]n] = [aku]n for any a ∈ A and k > 0. We can express this informally

by saying Ak[u]n = [aku]n.

In later chapters, when A is a structure of some kind, Proposition 1.2.4 will allow us to

produce examples of structures X such that AnX ∼= X. Proposition 1.2.5 will then give us

a way of describing the “intermediate” structures AkX, 0 < k < n, in terms of the original

structure X.

1.3 Tail-equivalence preserving maps on Aω

In this section we will view Aω as a topological space and prove a theorem about continuous

maps f : Aω → Aω that are invariant on the tail-equivalence classes of Aω. Maps of this

kind will figure prominently in our proof of the cube property for linear orders.

As before, assume A is an arbitrary nonempty set. We may view A as a topological space

equipped with the discrete topology. Let Aω be equipped with the product topology. For a

given finite sequence r ∈ A<ω, let Or denote the set of sequences beginning with r, that is,

Or = {u : u = ru′ for some u′ ∈ Aω}. The collection {Or : r ∈ A<ω} is the standard basis

for the product topology on Aω. It is a well-known fact that Aω equipped with this topology

is a Baire space.

We are interested in understanding continuous maps f : Aω → Aω that preserve tail-

equivalence.

Definition 1.3.1. Given a function f : Aω → Aω, we say that f preserves tail-equivalence,

or f is ∼-preserving, if for every u ∈ Aω we have f(u) ∼ u. If O is a subset of Aω, we say f

is ∼-preserving on O if for every u ∈ O we have f(u) ∼ u.
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Equivalently, f is ∼-preserving if for every tail-equivalence class [u] we have that the image

of [u] under f is contained in [u].

The requirement that a given function f be ∼-preserving is quite a strong one, even by itself:

it implies, for one, that f is far from being a constant function.

In this section, we are interested in understanding maps that are both ∼-preserving and

continuous. The identity function gives one example of such a map. In a moment we will

see that there are non-identity examples.

For now, let us observe that there is a natural way for a given map f : Aω → Aω to be

∼-preserving and continuous on a basic open subset of Aω. Suppose r, s ∈ A<ω are finite

sequences, and for every u ∈ Or, if u = ru′ then f(u) = su′. Then f maps Or bijectively

onto Os. It does this by chopping off the initial sequence r from every sequence in Or and

replacing it with the sequence s. Clearly f is ∼-preserving on Or, and it is clearly continuous

on Or as well.

It turns out that a map on Aω that is globally ∼-preserving and continuous looks locally like

the chop-and-paste map described in the previous paragraph, at least on a open dense set.

The precise result is stated as Theorem 1.3.3 below.

Definition 1.3.2. Suppose f : Aω → Aω is a function. If r, s ∈ A<ω are finite sequences,

and for every sequence u of the form u = ru′ we have f(u) = su′, then we say that f is

standard on Or and write Or
f−→ Os. Given a fixed u ∈ Aω, we say that f is standard at u if

there exists a neighborhood Or containing u on which f is standard.

Thus if f is standard at u, then in particular f is continuous and ∼-preserving in a neigh-

borhood of u.

Now, suppose that R is a subset of A<ω with the property that for every u ∈ Aω there

is exactly one r ∈ R that is an initial sequence of u. (For example, R could be the set
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of sequences of length 1.) Let S be another subset of A<ω with this property of the same

cardinality as R. Then if F : R → S is any bijection, we can define a map f : Aω → Aω

by the following rule: given u ∈ Aω, if u = ru′ for r ∈ R, then f(u) = su′ where s = F (r).

Equivalently, for every r ∈ R, we have Or
f−→ OF (r). So defined, f is a bijection of Aω

with itself. Since it is standard everywhere, f is continuous and ∼-preserving (in fact, f

is a ∼-preserving homeomorphism of Aω). In particular, we can arrange that a (globally)

continuous and ∼-preserving map not be the identity.

A natural question is whether every ∼-preserving and continuous map has the same property

as the f defined above, namely, that it is standard everywhere. While this is not quite true,

the following theorem says that any continuous and ∼-preserving map on Aω is standard on

a generic subset of Aω.

Theorem 1.3.3. If a function f : Aω → Aω is continuous and preserves tail-equivalence,

then the set of points at which f is standard contains an open dense set.

Proof. Let f be a continuous and ∼-preserving function on Aω, and let O ⊆ Aω be an

arbitrary open subset of Aω. We will show that there exist finite sequences t, t′ such that

Ot ⊆ O and Ot
f−→ Ot′ . That is, we will find an open subset of O on which f is standard.

Since O was picked arbitrarily, this suffices to prove the theorem.

For every u ∈ Aω, we have that u ∼ f(u). Let us say that u is (m,n) if there is a meeting

representation u = ru′ and f(u) = su′ such that |r| = m and |s| = n. Let K(m,n) denote

the set of (m,n) points. Notice that if u is (m,n), then by unzipping along the tail-sequence

in the meeting representation for u and f(u), we can show that u is (m + k, n + k) for any

k ∈ ω. Hence K(m,n) ⊆ K(m+ k, n+ k) for any k ∈ ω.
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Since f is ∼-preserving, every u is (m,n) for some integers m and n, that is,

Aω =
⋃

(m,n)

K(m,n).

Similarly we have

O =
⋃

(m,n)

[K(m,n) ∩ O].

Since O is an open subset of a Baire space, it is also a Baire space in the inherited topology.

Since the union above is countable, it cannot be that all of the sets K(m,n) are nowhere

dense in O. Hence there exists a pair (m,n) and a finite sequence r ∈ A<ω such that Or ⊆ O

and K(m,n) is dense in Or.

Now, if |r| ≥ m, say |r| = m + k for some k ∈ ω, then since K(m,n) ⊆ K(m + k, n + k),

we have that K(m+ k, n+ k) is also dense in Or. On the other hand, if |r| < m, then if we

let q be any extension of r of length m, we have that Oq is an open subset of Or, and hence

K(m,n) is dense in Oq as well. Thus in either case we can match the “rank” of our open

set to the “rank” of our dense set, and so without loss of generality we may simply assume

that |r| = m to begin with.

Fix u ∈ K(m,n) ∩ Or. Then u = ru′ for some tail-sequence u′. Since u is (m,n) we know

that f(u) = su′ for some s of length n. By definition, then, we have f(u) ∈ Os.

Since f is continuous, for all v sufficiently near u we have that f(v) ∈ Os. That is, there

is a t extending r such that t is also an initial sequence of u and for all v ∈ Ot we have

f(v) ∈ Os. Suppose that t = rr′, so that u = tu′′ = rr′u′′, where r′u′′ = u′.
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Now, Ot is an open subset of Or, and so K(m,n) is dense in Ot as well. Suppose v ∈

K(m,n) ∩ Ot, so that v = tv′ = rr′v′ for some tail-sequence v′. Then since v is (m,n) and

f(v) ∈ Os, it must be that f(v) = sr′v′.

Let t′ = sr′. Then the above paragraph may be rephrased by saying, for densely many

v ∈ Ot, if v = tv′ then f(v) = t′v′. By continuity then, this actually must hold for every

v ∈ Ot. But this means precisely that Ot
f−→ Ot′ , as desired.

23



Chapter 2

The Isomorphism A×X ∼= X

2.1 Analyzing bijections f : A×X → X

2.1.1 Introduction and preliminaries

Suppose that (C,×) is a class of structures with a cartesian product, and A is a fixed structure

from C. In this chapter we will describe a general method for characterizing those structures

X ∈ C such that A×X ∼= X, and illustrate it by giving precise characterizations for several

particular classes of structures.

The method amounts to an analysis of the case when A and X are simply sets, and we are

given an arbitrary bijection f : A × X → X. We will show that such a bijection can be

used to construct, without any non-constructive principle like the axiom of choice, another

bijection F from X onto a set that looks something like a union of tail-equivalence classes

in Aω. This F can be thought of as a representation of X in terms of A. Conversely, given

such a representation of X, it will be easy to see that there is a natural bijection between

A×X and X.
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Since any isomorphism is in particular a bijection, our analysis will apply even when the sets

A and X carry extra structure, like that of a ring or topological space. In these cases, we will

be able to adapt our analysis to prove theorems of the form “A×X is isomorphic to X if and

only if X can be represented in this particular way.” The only challenge in specifying such a

theorem for a given class will be to determine how the representation of X is influenced by

the fact that the isomorphism in play is not only a bijection, but a structure-preserving one.

The method can be easily generalized to characterize those X satisfying the isomorphism

An × X ∼= X for a given n > 1. These characterizations are essentially the same as in the

case when n = 1, the only difference being that the relevant representation of X is in terms

of the n-tail-equivalence classes of Aω, instead of the tail-equivalence classes.

We begin by defining the necessary terminology, and giving some examples. For this section,

as in the previous chapter, capital letters like A,X, Y, . . . denote sets, and × is the cartesian

product. Also as before, we will freely omit × in expressions when there is no danger of

confusion: XY means X × Y . Later, capital letters will refer to structures from some fixed

class, and × will be a product on that class extending the cartesian product. As such, it

will be helpful to think of the sets that we deal with in this section not as sets purely, but

rather as structures of some kind about which we have no information. In this vein, we can

think of bijections not only as bijections, but as isomorphisms.

The cartesian product is naturally associative, in the sense that for any sets X, Y, Z there

is a natural bijection from (X × Y ) × Z onto X × (Y × Z), namely the map defined by

((x, y), z) 7→ (x, (y, z)). We will always assume that the products we deal with are associative,

that is, that this map defines an isomorphism when X, Y, Z are structures from a given class.

As such we will usually omit parentheses and write expressions of the form XY Z for threefold

products, and similar expressions for longer products. If X0X1 . . . Xn−1 is an n-fold product

of sets, then we write the underlying points as n-tuples (x0, . . . , xn−1). The notation Xn is

shorthand for the n-fold product XX . . .X.
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The cartesian product is of course also commutative: the map defined by (x, y) 7→ (y, x) is

a natural bijection of XY with Y X. We will not, however, assume that our products are

commutative in general. Though many products of structures are commutative, the product

in which we are primarily interested—the lexicographical product of linear orders—is not.

With this case in mind, we will think of the cartesian product in something a non-commutative

way. In any product XY , each x ∈ X indexes a “copy” of Y in XY , namely the set of points

(x, ·) with first coordinate x. We may think of XY as the set obtained by replacing every

point x ∈ X with a copy of Y , and say XY is X-many copies of Y .

Generalizing this idea, given a set X, and for every x ∈ X a set Ix, we define the replacement

of X by the sets Ix to be the set {(x, i) : x ∈ X, i ∈ Ix}. We denote this set by X(Ix) and

think of it as the set obtained by replacing every point x ∈ X with the corresponding Ix.

Importantly, we allow that for a given x0 ∈ X we have Ix0 = ∅. In this case there are no

pairs with first coordinate x0 in X(Ix). The notion of a replacement generalizes the notion

of a product, since if there is a Y such that Ix = Y for every x ∈ X, then X(Ix) = XY .

A replacement of X is nothing more than a collection of sets indexed by X. However, when

X is a structure of some kind the idea of replacing the points in X by other structures of the

same kind will usually be less trivial. For example, suppose that X is a linear order, and for

every point x ∈ X we fix a linear order Ix. The replacement order X(Ix) is formally defined

to be the set of pairs (x, i) : x ∈ X, i ∈ Ix, ordered lexicographically. But visually, X(Ix) is

the linear order obtained by replacing every point x ∈ X with the corresponding Ix.

It will be useful to see in what sense the operation of replacement is “associative” on the left in

its relation to the cartesian product. Given a replacement X(Ix) and a set A, we can multiply

to form the product A×X(Ix). Points in this set are tuples of the form (a, (x, i)). Since this

set is “A-many copies of X(Ix),” each Ix appears in it A-many times: the collection of points

of the form (a, (x, ·)) will be a copy of Ix, regardless of a. Alternatively, we might have begun

26



with A, formed A × X, and then replaced each point (a, x) with Ix to form (A × X)(Ix).

Points in this set are of the form ((a, x), i). The set of points of the form ((a, x), ·) is a copy

to Ix regardless of a, and hence this set is naturally bijective with A×X(Ix) under the map

((a, x), i) 7→ (a, (x, i)).

However, to be consistent with our previous notation, the subscripts in the replacement

(A × X)(Ix) should not (as they are written) range over X, but rather over A × X. In

forming the set the second way, by replacing after taking the product, we should have

labeled the set replacing the point (a, x) as J(a,x) and used the notation (A×X)(J(a,x)). If,

as in our example, J(a,x) = Ix for every a, then (A × X)(J(a,x)) is naturally bijective with

A×X(Ix), as noted.

We will use the following convention. If we first form the replacement X(Ix) and then

multiply on the left by A, we will write AX(Ix). If we first form the product AX and

then replace each point (a, x) with some J(a,x), we will use the notation AX(J(a,x)). It will

sometimes be convenient to think of AX(Ix) as being formed in the second way, with the

left multiplication taking place first, in which case we will switch the notation to AX(J(a,x))

and make clear that J(a,x) = Ix for all a ∈ A.

Finally, let us note how bijections factor through products and replacements. If X and Y are

sets of the same cardinality, as witnessed by a bijection f : X → Y , then for any set Z, the

products XZ and Y Z are naturally in bijection, as witnessed by the map (x, z) 7→ (f(x), z).

Similarly, if we have collections of sets Ix, x ∈ X, and Jy, y ∈ Y so that Ix = Jf(x) for all

x ∈ X, we will also have that the replacements X(Ix) and Y (Jy) are naturally in bijection,

as witnessed by the map (x, i) 7→ (f(x), i).
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2.1.2 Natural bijections f : A×X → X

Let A be a fixed, nonempty set. For which sets X can one find a bijection f : AX → X?

If X is infinite and at least as large as A, then the axiom of choice guarantees that such

a bijection always exists. However, if A and X are structures, there is no reason for the

bijection yielded by the axiom of choice to be an isomorphism of AX with X. Since we wish

to generalize our results to cases when we are looking for an isomorphism instead of simply

a bijection, it is more useful to ask for which sets X can we find a natural bijection between

AX and X.

Proposition 1.1.2 gives that if X is a subset of Aω that is closed under tail-equivalence, then

the flattening map (a, u) 7→ au defines a bijection of AX with X. In particular, there is a

natural bijection between AX and X when X = Aω. Extending this, if X ⊆ Aω is closed

under tail-equivalence and Y is any set, then if we let X ′ = XY we can also get a bijection

f : AX ′ → X ′ by defining f((a, u, y)) = (au, y). This is just the flattening map on the first

two coordinates of AXY , and the identity on the last. We write f = (fl, id).

The proposition actually yields substantially more general examples. Suppose that for every

u ∈ Aω we fix a set Iu, with the restriction that if u ∼ v, then Iu = Iv. Let X = Aω(Iu). Then

there is a natural bijection between AX and X. Indeed, this bijection is just the flattening

map on the first two coordinates. To see this, rewrite AX = A×Aω(Iu) as (A×Aω)(J(a,u)),

where J(a,u) = Iu for all a ∈ A. Then J(a,u) = Iau as well, since au ∼ u. Thus the map

(a, u, x) 7→ (au, x) makes sense, and defines a bijection of (A×Aω)(J(a,u)) with Aω(Iu), that

is, of AX with X.

Letting I[u] denote the single set Iv for all v ∈ [u], we may denote X by Aω(I[u]). Our previous

examples were actually of this form: if X ⊆ Aω is a union of tail-equivalence classes then X

may be written as Aω(I[u]), where I[u] = 1 if u ∈ X, and otherwise I[u] = ∅. Of course, since

the I[u] may be chosen arbitrarily, there are many other examples besides these.
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Here is a concrete one. Let Z denote the set of integers, and Zω the set of infinite sequences

of integers. Each tail-equivalence class [u] ⊆ Zω is a countable subset of Zω, hence the

number of classes is 2ω. Enumerate them as {Cα : α < 2ω}. Let X be the set obtained by

replacing every point in the αth class with the ordinal α (not as a singleton but as a set).

That is, if [u] = Cα let I[u] = α, and let X = Zω(I[u]). By our observations above, there is

a natural bijection between ZX and X given by the flattening map (z, u, x) 7→ (zu, x). In

Chapter 3 we will revisit this example, but there we will consider Zω and the ordinals α as

linear orders.

It is worth noting that if we did not insist Iu = Iv whenever u ∼ v, the “map” between

A × Aω(Iu) and Aω(Iu) defined by (a, u, x) 7→ (au, x) may be meaningless. For example, if

for some u ∈ Aω and a ∈ A we had that Iu = {x} and Iau = ∅, then while (a, u, x) is a point

in A × Aω(Iu), there is no point (au, x) in Aω(Iu). Indeed, there are no points whatsoever

with first coordinate au in Aω(Iu).

We have just seen that for every set X of the form X = Aω(I[u]), there is a natural bijection

between AX and X, namely the flattening map (fl, id). Even if we do not have identity, but

only an bijection F : X → Aω(I[u]), there is still a natural bijection f : AX → X, namely

f = F−1 ◦ (fl, id) ◦ (id, F ). This is the same flattening map, up to the relabeling F .

A converse to this statement is very nearly true, even in the absence of the axiom of choice.

In order to prove a precise converse, we need to loosen the meaning of the notation Aω(I[u]).

Suppose that we have a collection of sets Iu, u ∈ Aω such that for every pair of tail-equivalent

sequences u, v there is a bijection fu→v : Iu → Iv. Then while the sets Iu and Iv may not be

identical, they are of the same “type” (i.e., cardinality).

To produce such a system of bijections {fu→v : u, v ∈ Aω, u ∼ v}, it is actually sufficient

that for every sequence u and element a ∈ A, we have a bijection fu→au : Iu → Iau. Then,

for every finite sequence r = ab of length two, we can define the bijection fu→abu : Iu → Iabu
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to be the composition fbu→abu ◦ fu→bu. By taking longer compositions, we can get a bijection

fu→ru : Iu → Iru for any finite sequence r and u ∈ Aω. By taking inverses, we obtain

bijections fru→u : Iru → Iu for any r, u. Finally, if u and v are tail-equivalent sequences,

as witnessed by a meeting representation u = ru′, v = su′, we can define a bijection fu→v :

Iu → Iv as fu′→su′ ◦ fru′→u′ . So we get a bijection fu→v for every pair u ∼ v, as claimed.

In what follows, we will take the notation Aω(I[u]) to mean a replacement Aω(Iu) for which

we have a system of bijections {fu→au : u ∈ Aω, a ∈ A}. We record this in the following

definition, so that we can refer back to it later.

Definition 2.1.1. Let A be a set. Then Aω(I[u]) is a pair 〈Aω(Iu), {fu→au : a ∈ A, u ∈ Aω}〉,

where Aω(Iu) is a replacement of Aω, and for all u ∈ Aω and a ∈ A, fu→au is a bijection of

Iu and Iau. We refer to such a pair as a replacement of Aω up to tail-equivalence.

We will often take Aω(I[u]) as simply referring to the underlying replacement Aω(Iu). For

example, if we say “X is in bijection with Aω(I[u]),” we mean X is in bijection with a

replacement Aω(Iu) for which we have a system of bijections {fu→au}. If all of the bijections

fu→au are the identity, then Iu = Iv for every tail-equivalent pair u, v, and this reduces

to the case above. This will usually be the situation we are in, but not always: we will

consider replacements Aω(I[u]) for which the bijections fu→au are not the identity. Given

such a replacement Aω(I[u]) and a sequence u ∈ Aω, one may think of I[u] as referring, not

to a specific set, but rather the “isomorphism type” of every set Iv for v ∈ [u].

Even with this loosened meaning, we still have that if X is a replacement of the form

Aω(I[u]), then there is still a natural bijection between AX and X, namely the map defined

by (a, u, x) 7→ (au, fu→au(x)). Also as before, even if we do not have identity, but only a

bijection F : X → Aω(I[u]), we may obtain a bijection between AX and X by conjugating

the above map with F .
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We can now prove our converse: there is a bijection between AX and X only if X can be

put into bijective correspondence with a set of the form Aω(I[u]). In the presence of the

axiom of choice, this is a trivial theorem. But the proof below does not use choice, and can

be adapted to cases when A and X are structures, and we wish to characterize those X for

which there is an isomorphism between AX and X.

Theorem 2.1.2. Let A and X be nonempty sets. Then there is a bijection f : AX → X if

and only if there is a bijection F from X onto a replacement of the form Aω(I[u]).

Proof. We have already seen that if there is a bijection F between X and a set of the form

Aω(I[u]), then there is a natural bijection f : AX → X.

So assume that there is a bijection f : AX → X. For every a ∈ A, let aX denote the set

of pairs in AX with first coordinate a, and let Xa denote f [aX]. The sets Xa are pairwise

disjoint and cover X. We think of our bijection f : AX → X as giving us a way of splitting X

into A-many copies of itself, and Xa as being the ath copy of X within X. Let fa : X → Xa

be the bijection defined by fa(x) = f(a, x).

Given one of the sets Xb and some a ∈ A, we may think of the image fa[Xb] as the bth copy of

X within Xa. Denote this set by X(a,b). Then fa◦fb is a bijection of X with X(a,b). Extending

this, given a finite sequence r = (a0, a1, . . . , an) ∈ A<ω, define Xr as fa0 ◦ fa1 ◦ . . . ◦ fan [X].

Denote the bijection fa0 ◦ fa1 ◦ . . . ◦ fan : X → Xr by fr.

It is immediate that for any r, s ∈ A<ω, we have fr[Xs] = Xrs, and conversely, f−1r [Xrs] = Xs.

If t extends r, then Xt is a subset of Xr. If neither one of r, t extends the other, then Xr

and Xt are disjoint. In particular, if |r| = |t| but r 6= t, then Xr ∩Xt = ∅.
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Now, given an infinite sequence u ∈ Aω, define Iu to be the set obtained by taking the

natural nested intersection:

Iu =
⋂
n∈ω

Xu�n.

For a given u, the set Iu need not be in bijection with X. Indeed, Iu may be empty. However,

every x ∈ X is in some Iu. Furthermore, if u, v are distinct sequences in Aω, then for some

n we have u � n 6= v � n. Hence Xu�n ∩Xv�n = ∅, and so Iu ∩ Iv = ∅. Thus we have that the

Iu in fact partition X.

Because we have partitioned X into sets Iu indexed by sequences u ∈ Aω, there is a natural

bijection F between X and the replacement Aω(Iu). This bijection is defined by the following

rule: if x ∈ Iu, then F (x) = (u, x).

It remains to show that there is a system of bijections {fu→au : Iu → Iau : a ∈ A, u ∈ Aω}.

There is a natural choice for fu→au, namely the map fa, restricted to Iu. And this choice

works, that is, fa[Iu] = Iau. For we have

fa[Iu] = fa[
⋂
nXu�n]

=
⋂
n fa[Xu�n]

=
⋂
nXa(u�n)

= Iau.

Hence {fa � Iu : a ∈ A, u ∈ Aω} gives the desired system of bijections. It follows that the

replacement Aω(Iu) is of the form Aω(I[u]).
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2.1.3 Natural bijections f : An ×X → X

If there exists a bijection f : AX → X, then by iterating it one can obtain a bijection

between AnX and X for any fixed n > 1. Similarly, if A and X are structures such that

AX ∼= X, then any given isomorphism can be iterated to witness AnX ∼= X. That is, for

any fixed n > 1 we have AX ∼= X =⇒ AnX ∼= X. The converse, however, is not necessarily

true: if AnX ∼= X for some n > 1, then it does not follow, formally at least, that AX ∼= X.

And indeed, there are many examples of structures A and X for which AnX ∼= X for some

n > 1 but AX 6∼= X.

We will be interested in knowing under what conditions AnX ∼= X does imply AX ∼= X. In

order to get at such conditions, we first seek to characterize those structures X such that

AnX ∼= X. As in the case when n = 1, the first step toward such a characterization for

a given class of structures is understanding the case when A and X are simply sets, and

isomorphism means bijection.

We begin with some examples. Just as Proposition 1.1.2 yields examples of sets X for which

there is a natural bijection f : AX → X, Proposition 1.2.4 can be used to produce sets X

naturally in bijection with AnX. Suppose that for every u ∈ Aω we fix a set Iu, with the

restriction that if u ∼n v then Iu = Iv. Let Aω(I[u]n) denote the replacement Aω(Iu). If we

let X = Aω(I[u]n), then there is a natural bijection between AnX and X, namely the map

defined by (r, u, x) 7→ (ru, x), where r ∈ An denotes a sequence of length n. This is just the

n-flattening map on the first n+ 1 coordinates, and the identity on the last. The reason this

map is well-defined is because for any n-sequence r and any u ∈ Aω, we have ru ∼n u, so

that Iu = Iru.

In analogy with our work in the previous section, let us generalize the above. Suppose that

Iu, u ∈ Aω is a collection of sets, and for every n-sequence r ∈ An and sequence u ∈ Aω we

have a bijection fu→ru : Iu → Iru. Then if we let X = Aω(Iu), there is a natural bijection
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between AX and X defined by (r, u, x) 7→ (ru, fu→ru(x)). We use the notation Aω(I[u]n) to

denote a replacement Aω(Iu) for which we have such a system of bijections {fu→ru}. When

all of these bijections are the identity, this reduces to the case in the previous paragraph.

As one might guess, this form is general for sets X for which there is a bijection f : AX → X.

Theorem 2.1.3. Let A and X be nonempty sets, and n be a fixed integer greater than 1.

Then there is a bijection f : AnX → X if and only if there is a bijection F from X onto a

replacement of the form Aω(I[u]n).

Proof. It remains to prove the forwards direction. Suppose that f : AnX → X is a bijection.

Then by Theorem 2.1.2, there is a replacement (An)ω(Iu) of (An)ω for which we have a

bijection F : X → (An)ω(Iu), and along with this replacement, a system of bijections

fu→ru : Iu → Iru for every r ∈ An and u ∈ (An)ω. If we identify every sequence u =

((a0, a1, . . . , an−1), (an, . . . a2n−1), . . .) in (An)ω with the corresponding u = (a0, a1, . . .) in Aω,

then this identifies (An)ω with Aω. Under this identification, the replacement (An)ω(Iu) is

identified with the replacement Aω(Iu), and F becomes a bijection of X with Aω(Iu).

2.2 The isomorphism A×X ∼= X over a class (C,×)

In this section we will show how Theorem 2.1.2 can be used to characterize those structures

X from a given class C that are invariant (up to isomorphism) under left multiplication by

a given A ∈ C. The idea is that if AX ∼= X, as witnessed by an isomorphism f : AX → X,

then because f is in particular a bijection, we can use the proof of Theorem 2.1.2 to produce

a bijection F from X onto a set of the form Aω(I[u]). We will argue that in the cases we

consider, this set can actually be viewed as a structure from C, and that this structure behaves

“as expected” given that we denote it Aω(I[u]). In particular, on its first ω coordinates, it

behaves like the infinite product Aω.
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We will consider three cases: the first is when (C,×) is the class of linear orders under the

lexicographical product, the second, when it is the class of topological spaces under the topo-

logical product, and the third, when it is the class of groups under the direct product. Anal-

ogous characterizations can be proved for many other classes, but these three are somewhat

representative: linear orders stand in for relational structures, groups for algebraic struc-

tures, and topological spaces for topological structures (or more generally “second-order”

structures).

2.2.1 A×X ∼= X over the class of linear orders

If X and Y are linear orders, the lexicographical product X × Y is the order obtained by

lexicographically ordering the cartesian product of X and Y . That is, X ×Y = {(x, y) : x ∈

X, y ∈ Y } ordered by the rule (x0, y0) < (x1, y1) if and only if x0 < x1 (in X), or x0 = x1

and y0 < y1 (in Y ).

Visually, XY is the order obtained by replacing every point in X with a copy of Y . Every

point x ∈ X determines an interval of points in XY of order type Y , namely the set of pairs

(x, ·) with left entry x. One may also visualize XY as a tree with two ordered levels. The

first level has X-many nodes, and each of these has Y -many descendants. The order type of

the terminal nodes is XY .

The lexicographical product is associative, in the sense that (X × Y ) × Z is isomorphic to

X × (Y × Z) for all orders X, Y, Z. But it is not commutative. For example, let Z be the

integers in their usual order, and let 2 be the unique linear order with two elements. Then Z2

is isomorphic to Z, but 2Z is not, as the latter order contains a bounded infinite increasing

sequence, whereas every infinite increasing sequence in Z is unbounded.
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We identify the n-length product X0X1 . . . Xn−1 with the set of n-tuples {(x0, x1, . . . , xn−1) :

xi ∈ Xi, i < n} ordered lexicographically. If Xi = X for all i < n, this order is abbreviated

as Xn. We also define the ω-length product X0X1 . . . as the set of sequences {(x0, x1, . . .) :

xi ∈ Xi, i ∈ ω} ordered lexicographically. If Xi = X for all i ∈ ω, this order is abbreviated

as Xω. One may think of Xn as a tree with n levels and Xω as a tree with ω-many levels,

but since in the latter case there are no terminal nodes, one must lexicographically order the

branches of the tree to recover the order.

Given a linear order X, and for every x ∈ X an order Ix, the replacement X(Ix) is the

linear order obtained by lexicographically ordering the replacement set X(Ix). That is,

X(Ix) = {(x, i) : x ∈ X, i ∈ Ix} ordered by the rule (x0, i0) < (x1, i1) if and only if x0 < x1

(in X), or x0 = x1 and i0 < i1 (in Ix0 = Ix1). Visually, X(Ix) is the order obtained by

replacing every point x ∈ X with the corresponding Ix. As in the case of sets, we allow that

for a given x0 ∈ X we have Ix0 = ∅, and in forming X(Ix) think of replacing x0 with a gap.

Now, let A be a fixed, nonempty linear order. For which orders X do we have AX ∼= X? We

can adapt the results of the previous sections to completely characterize such orders, and

the adaptation is straightforward. First, suppose that for every u ∈ Aω we fix a linear order

Iu, with the restriction that if u ∼ v, then Iu = Iv. Let X = Aω(Iu) be the replacement of

Aω by these orders. We also denote a replacement of this form by Aω(I[u]).

The flattening map (a, u, x) 7→ (au, x) is order-preserving, and hence defines an isomorphism

between AX and X. Thus for any order X of the form Aω(I[u]), we have that AX ∼= X.

More generally, even if we do not have identity, but only an isomorphism fu→v : Iu → Iv for

every pair of tail-equivalent sequences u, v, we still have that AX ∼= X, as witnessed by the

map (a, u, x) 7→ (au, fu→au(x)).
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We will take the notation Aω(I[u]) to mean a replacement Aω(Iu) for which u ∼ v implies

Iu ∼= Iv. We have just observed that any order X of this form is isomorphic to AX. An easy

adaptation of the proof of Theorem 2.1.2 shows that the converse is also true.

Theorem 2.2.1. Let A and X be nonempty linear orders. Then AX ∼= X if and only if X

is isomorphic to an order of the form Aω(I[u]).

Proof. It remains to prove the forward direction. Assume that AX ∼= X, as witnessed by an

isomorphism f : AX → X. We will simply run the proof Theorem 2.1.2 using this f . The

notation below is adopted from that proof.

Note that for any a ∈ A, the set aX is in fact an interval in AX. Moreover if a < b, then

aX and bX are disjoint intervals with aX lying to the left of bX. For such intervals we write

aX < bX. If aX < bX in AX, then by taking their images under f we see that Xa < Xb in

X. For each a ∈ A, the map fa : X → Xa is not only a bijection but an order isomorphism

of X with the interval Xa.

Extending this, we have that for every finite sequence r ∈ A<ω, the set Xr is an interval in

X, and fr : X → Xr is an order isomorphism of X with this interval. If t extends r, then

Xt is a subinterval of Xr. If neither one of r, t extends the other, and if rk < tk, where k is

the leftmost entry at which the sequences differ, then Xr < Xt.

Since an intersection of intervals is an interval, each Iu is an interval in X, and these intervals

partition X. It follows from the previous paragraph that if u < v in Aω then Iu < Iv in X.

That is, the intervals Iu partition X and respect the ordering of their indices. (It may be

that for a given u, we have that Iu is in fact empty. Such an interval is not really an interval

but a gap. However, if Iu is a gap, then it still is ordered correctly with respect to its index

u: if v, w are sequences such that v < u < w, then Iv lies to the left of the gap Iu, and Iw

lies to the right.)
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Hence, if we consider Aω(Iu) not only as a replacement set but as a replacement order, we

have that the bijection F constructed in the proof of Theorem 2.1.2 defines an isomorphism

of X with this order.

To complete the proof, suppose that u and v are tail-equivalent sequences in Aω, as witnessed

by a meeting representation u = ru′, v = su′. Then the map fs ◦ f−1r , which is an order

isomorphism of Xr with Xs, sends the interval Iu onto Iv. Hence Iu ∼= Iv as linear orders, so

that our replacement Aω(Iu) is really of the form Aω(I[u]).

We conclude this section by stating, without proof, the corresponding characterization of

those orders X satisfying the isomorphism AnX ∼= X for a given n > 1. We single out the

case when n = 2, since we will frequently be interested in this case specifically in Chapter 3.

Fix n > 1. Suppose that Aω(Iu) is a replacement of Aω with the restriction that if u ∼n v,

then the orders Iu and Iv are isomorphic. We use the notation Aω(I[u]n) to denote such an

order. If X is an order of this form, then AnX ∼= X, as witnessed by the n-flattening map

(r, u, x) 7→ (ru, x). Conversely, this form is general for orders satisfying the isomorphism

AnX ∼= X.

Theorem 2.2.2. Let A and X be nonempty linear orders. Then AnX ∼= X if and only if

X is isomorphic to an order of the form Aω(I[u]n).

Theorem 2.2.3. Let A and X be nonempty linear orders. Then A2X ∼= X if and only if

X is isomorphic to an order of the form Aω(I[u]2).

2.2.2 A×X ∼= X over the class of topological spaces

Suppose now that (C,×) is the class of topological spaces under the topological product. If

X and Y are topological spaces, then the space X × Y = XY is the cartesian product of X

and Y , equipped with the topology generated by the collection of sets of the form O × P ,
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where O is an open subset of X and P is an open subset of Y . In this section, the notation

X ∼= Y means “X is homeomorphic to Y .”

Let A be a fixed topological space. Our aim is to characterize those spaces X such that AX

is homeomorphic to X. We will show below that any such space is a replacement of Aω up

to tail-equivalence, equipped with a topology that is, roughly speaking, compatible with the

topology of A.

Before considering replacements, let us note first that there are many topologies on Aω

itself that are compatible with the topology on A, that is, that make the flattening map

fl : A×Aω → Aω a homeomorphism. The two most common are the product topology and

the box topology. The product topology is generated by the collection of open sets of the

form Πi∈ωOi = O0×O1× . . ., where each Oi is open in A, and for all but finitely many i we

have Oi = A. The box topology is also generated sets of the form Πi∈ωOi, where now there

is no restriction on the Oi except that they are all open in A. Clearly, the box topology

refines the product topology.

We will verify later that under both of these topologies the flattening map is a homeomor-

phism, though this is not difficult to check. We will show that in fact these topologies are

the minimal and maximal topologies on Aω with this property, respectively.

If O is a subset of A and O is a subset of Aω, we will take the notation O × O to have

two different meanings. The first is its usual meaning as a subset of A × Aω. The second

is as the subset of Aω consisting of points u = (u0, u1, . . .) with first coordinate u0 ∈ O and

tail-sequence (u1, u2, . . .) ∈ O. These meanings are the same, modulo the flattening map fl.

When we do need to distinguish between these two senses of the notation O×O, we will do

so verbally, referring to its usual meaning as the “first sense” and its flattened meaning as

the “second sense.”
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Now suppose that Aω(I[u]) is a replacement of Aω up to tail-equivalence. Suppose that O

is a subset of A and O is a subset of Aω(I[u]). In analogy with the previous paragraph, we

wish to define two meanings of the notation O×O. The purpose of doing so is to make the

proof of Theorem 2.2.4 easy, but since in this case the confusion is less transparent, we will

explain it carefully.

Recall that, as a set, Aω(I[u]) is a replacement Aω(Iu) equipped with a system of bijections

fu→au : Iu → Iau. By the “first sense” of O×O, we mean the subset of A×Aω(I[u]) consisting

of points (a, u, x) with a ∈ O and (u, x) ∈ O. By the “second sense” of O×O, we mean the

image of O ×O (in the first sense) under the flattening map (a, u, x) 7→ (au, fu→au(x)).

Hence (a, u, x) ∈ O×O in the first sense, if and only if (au, fu→au(x)) ∈ O×O in the second

sense. In the other direction, suppose v = au and y ∈ Iv. Then (v, y) ∈ O×O in the second

sense, if and only if (a, u, f−1u→au(y)) ∈ O × O in the first sense, if and only if a ∈ O and

(u, f−1u→au(y)) ∈ O.

In the case when all the bijections fu→au are the identity, the notation is significantly more

transparent. In this case, we have that Iu = Iv for all tail-equivalent pairs u, v. In particular,

Iu = Iau for all u, a. Then if O is a subset of A and O is a subset of Aω(I[u]), we have

(a, u, x) ∈ O ×O in the first sense, if and only if (au, x) ∈ O ×O in the second sense.

Now suppose that X, considered as a set, is a replacement of Aω up to tail-equivalence, that

is, X = Aω(I[u]). Suppose further that X is equipped with a topology with the following two

properties:

(1) if O is open in A, and O is open in X, then O×O (in the second sense) is open in X.
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(2) if O is open in X, then O is a union of open sets of the form Oi × Oi (in the second

sense). That is,

O =
⋃
i∈I

Oi ×Oi

where Oi is open in A and Oi is open in X for all i in some indexing set I.

We claim that if X carries such a topology, then the flattening map (a, u, x) 7→ (au, fu→au(x))

defines a homeomorphism between AX and X. To see this, it is enough to check that this

map is open and continuous, since we know already that it is a bijection. To check openness,

suppose that O×O (in the first sense) is a basic open subset of AX. Then the image of this

map is just O × O (in the second sense), which is open in X by (1). To check continuity,

suppose that O is an open subset of X. Then by (2), O is a union of sets of the form Oi×Oi

(in the second sense), where each Oi is open in A and each Oi is open in X. The pre-image

of each Oi × Oi is simply Oi × Oi (in the first sense), which is a basic open set in AX.

Therefore the pre-image of O is a union of basic open sets, and hence is open.

We will now show that this form in general for spaces X such that AX ∼= X.

Theorem 2.2.4. Let A and X be nonempty topological spaces. Then AX ∼= X if and

only if X is homeomorphic to a space of the form Aω(I[u]) that carries a topology satisfying

conditions (1) and (2).

Proof. It remains to prove the forward direction. So suppose that A,X are topological spaces

and f : AX → X is a homeomorphism. By the proof of Theorem 2.1.2, X can be relabeled

as Aω(I[u]) by way of the bijection F , and under this relabeling the map f becomes the

flattening map (a, u, x) 7→ (au, fu→au(x)). For simplicity, we forget F and simply identify X

with the set Aω(I[u]).
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If O is open in A, and O is open in X, then the image of the basic open set O ×O (in the

first sense) under the flattening map is just O × O (in the second sense). Since f is open,

this set is open in X. Thus the topology on X satisfies condition (1).

Conversely, if O is open in X, then since f is continuous, the pre-image under f of O is open

in AX. Hence this preimage is a union of basic open sets Oi × Oi (in the first sense), so

that O itself is a union of such sets (in the second sense). Thus the topology on X satisfies

condition (2).

We conclude this section with some examples. Let A be a fixed nonempty topological space.

For simplicity, instead of considering spaces of the form Aω(I[u]), we simply consider the

space X = Aω, and ask which topologies on this space satisfy (1) and (2) (this is equivalent

to considering spaces X = Aω(I[u]) for which each I[u] is a singleton). These are exactly the

topologies for which the flattening map defines a homeomorphism between AX and X.

The product topology is easily seen to satisfy (1) and (2). In fact, any topology that satisfies

(1) refines the product topology. This is because Aω itself is open in any topology on Aω.

Therefore, if it carries a topology that satisfies (1), then any “shifted” set O0 × O1 × . . . ×

On × Aω is must also be open in this topology. But sets of this form are exactly the sets

that generate the product topology.

Similarly, the box topology is easily seen to satisfy (1) and (2). In fact, any topology that

satisfies (2) must be a coarsening of the box topology. For, if O is open in Aω in some

topology T satisfying (2), then O is a union of sets of the form Oi ×Oi. Each of the “tail-

sets” Oi can in turn be written as a union of sets of the form Oi,j×Oi,j. Hence O is actually

a union of sets of the form Oi × Oi,j × Oi,j. If we repeat this factoring process infinitely

many times, then we see that O is actually a union of sets of the form Oi0 × Oi0,i1 × . . .,

where each Oi0,...,in is open in A. These sets are of course open in the box topology, and so

it follows that every open set in T is open in the box topology. We cannot conclude that
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these sets themselves are open in T (though each such set is of course Gδ in T ). Hence the

box topology refines T .

There are topologies on Aω that fall strictly between the product and box topologies and

that satisfy (1) and (2). For example, consider the collection of sets of the form Πi∈ωOi,

where each Oi is open in A, and for all but finitely many pairs i, j, we have Oi = Oj. These

“eventually constant” open sets form a basis for a topology on Aω. It can be easily verified

that this topology satisfies (1) and (2). However, in most any case when the topology on A

is nontrivial, this topology will be strictly finer than the product topology on Aω and strictly

coarser than the box topology.

2.2.3 A×X ∼= X over the class of groups: a partial characterization

Now suppose that our class (C,×) is the class of groups under the direct product. If X and

Y are groups, then the group X×Y = XY is the cartesian product of X and Y whose group

operation is coordinate-wise multiplication. If A is a group, then the infinite direct product

Aω also forms a group under coordinate-wise multiplication.

If a, b are elements in a group A, we write a · b to denote their product in A, whereas ab

still denotes the 2-sequence of a followed by b. If u, v are elements in Aω, we write u · v to

denote their product in Aω. Hence, if (a, u) and (b, v) are elements in A×Aω, their product

(a, u) ·(b, v) is (a ·b, u ·v). The image of this product under the flattening map is the sequence

with first entry is a · b followed by the tail-sequence u · v. For clarity, we use parentheses and

write this sequences as (a · b)(u · v). That is, (a · b)(u · v) = (a · b, u0 · v0, u1 · v1, . . .). We

write 1 for the identity of A. In Aω, the identity is the sequence (1, 1, . . .). We denote this

sequence by 1.
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If ϕ : X → Aut(N) is a homomorphism from X into the automorphism group of a group

N , then we can define the semi-direct product XnN with respect to the homomorphism ϕ.

This is the group with underlying universe X ×N , whose group operation is defined by the

rule (x0, n0) · (x1, n1) = (x0 · x1, ϕx1(n0) · n1), where ϕx1 denotes the automorphism ϕ(x1).

While the operation of coordinate-wise multiplication in Aω is well-defined and makes Aω a

group, we do not know a general way to put a sensible group structure on a set of the form

Aω(Iu) that extends the coordinate-wise multiplication on Aω. It will follow from our work

below that if there is a general way of defining such a group, there are at least significant

restrictions on what the Iu can be. In particular, in any such “replacement group” it must

be that I1 is a normal subgroup, and every nonempty Iu is a coset of this subgroup. In

particular, all nonempty Iu must be of the same cardinality.

Let A be a fixed, non-empty group. Can we say for which groups X we have AX ∼= X?

Unlike in the case of linear orders and topological spaces, we are not able to give a complete

characterization of such groups in terms of A. However, we can characterize certain quotients

of such groups. This is Theorem 2.2.5 below.

Before proving this partial characterization, we give some examples. First, note that the

flattening map (a, u) 7→ au is a group isomorphism of A × Aω with Aω. We will call a

subgroup H ≤ Aω a good subgroup of Aω if it closed under tail-equivalence. If H is any good

subgroup, then the flattening map witnesses AH ∼= H. Similarly, given a good subgroup H

and an arbitrary group N , if we let X = HN , then we have AX ∼= X. The isomorphism

is, as always, just the flattening map (a, u, x) 7→ (au, x), restricted here to the first two

coordinates.

Hence any direct product of a good subgroup of Aω with an arbitrary group is invariant

under multiplication by A. The situation for semi-direct products, however, is less clear.
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Suppose we have a homomorphism ϕ : H → Aut(N) from a good subgroup H into the

automorphism group of a group N . If we let X = H nN , do we have AX ∼= X?

We do not know the answer to this question in general. However, if the homomorphism ϕ is

of a particular kind, then we can give a positive answer. We say that ϕ is shift-invariant if

for every u ∈ H and a ∈ A we have ϕu = ϕau. It follows that if u ∼ v, then ϕu = ϕv. That

is, a shift-invariant homomorphism is constant on tail-equivalence classes.

If ϕ is shift-invariant, and we form the semi-direct product X = H n N with respect to

ϕ, then we claim that AX ∼= X, and that the isomorphism is witnessed by the flattening

map (a, u, x) 7→ (au, x). We know that this map defines a bijection, so we need only check

that it respects multiplication and inverses. If (a, u, x) and (b, v, y) are arbitrary elements

of AX, then their product is (a · b, u · v, ϕv(x) · y). The image of this product under the

flattening map is ((a · b)(u · v), ϕv(x) · y). On the other hand, if we flatten first, our arbitrary

elements become (au, x) and (bv, y). The product of these elements in X is ((a · b)(u ·

v), ϕbv(x) · y). By shift-invariance, this is equal to ((a · b)(u · v), ϕv(x) · y). Hence the

flattening map respects multiplication. To see that it respects inverses, suppose (a, u, x) is

an arbitrary element in AX. Then its inverse is (a−1, u−1, ϕu−1(x−1)). If we flatten this

image we get (a−1u−1, ϕu−1(x−1)). On the other hand, if we flatten first to form (au, x), and

then take the inverse we get (a−1u−1, ϕa−1u−1(x−1)). By shift-invariance of ϕ this is equal to

(a−1u−1, ϕu−1(x−1)). Hence the flattening map also respects inverses, and we have the claim.

Let us give an example of such a group HnN . Let Z2 = {−1, 1} be the unique group on two

elements, written multiplicatively. Let H be the subgroup of Zω2 consisting of all sequences

whose entries are either eventually 1, or eventually −1. Then H = [1] ∪ [−1]. Thus H

is closed under tail-equivalence and so forms a good subgroup of Zω2 . Let N = Z3. Then

Aut(N) is isomorphic to Z2. We identify Aut(N) with Z2. We can define a homomorphism

ϕ : H → Aut(N) by mapping every element u ∈ [1] to 1, and every element u ∈ [−1] to −1.

It is easily checked that this is a homomorphism, and it is also clearly shift-invariant. Then
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by above, AX ∼= X. It can also be checked that X is a nonabelian group, and hence distinct

from the corresponding direct product HN .

If we assume that X is a group such that AX ∼= X, we do not know in general if X must be

of the form HnN for some good subgroup H, even if we do not assume that the semi-direct

product is defined with respect to a shift-invariant homomorphism. What we can show is

that any such X contains a normal subgroup N such that the quotient X/N is isomorphic

to a good subgroup H ≤ Aω.

Theorem 2.2.5. Suppose that A and X are nonempty groups. If AX ∼= X, then there is a

good subgroup H ≤ Aω and a normal subgroup N EX such that X/N ∼= H.

Proof. Suppose that f : AX → X is an isomorphism. Then if we run the proof of Theorem

2.1.2, we obtain a bijection F of X onto a set of the form Aω(I[u]). For simplicity, we identify

the underlying universe of the group X with this set.

We claim:

(1) for u, v ∈ Aω, if (u, x) is an arbitrary element of Iu and (v, y) is an arbitrary element

of Iv, then (u, x) · (v, y) ∈ Iu·v. That is, multiplication in X = Aω(I[u]) respects

multiplication in Aω.

(2) for u ∈ Aω, if (u, x) is an arbitrary element of Iu, then (u, x)−1 ∈ Iu−1 . That is, the

operation of taking inverses in X respects the operation of taking inverses in Aω.

It follows from these claims that the map (u, x) 7→ u defines a homomorphism from X onto a

subgroup H of Aω. From Theorem 2.1.2 we know that H is a good subgroup: we have u ∈ H

if and only if Iu 6= ∅, if and only if Iv 6= ∅ for all v ∼ u. The kernel of this homomorphism is

N = I[1]. By the first isomorphism theorem for groups, X/N ∼= H.

46



Hence it remains to prove the claims. If A,B are subsets of a group, let A · B denote the

set {a · b : a ∈ A, b ∈ B}. We also adopt the notation of the proof of Theorem 2.1.2. Since

A,X are groups we have, for any a, b ∈ A, that aX · bX = (a · b)X. Hence Xa ·Xb = Xa·b.

Extending this, if r, s are finite sequences of the same length n, we have that Xr ·Xs = Xr·s,

where r · s denotes the n-sequence (r0 · s0, . . . , rn−1 · sn−1).

Fix elements (u, x) ∈ Iu and (v, y) ∈ Iv. By definition, (u, x) is contained in Xu�n for every

n, and (v, y) is contained in Xv�n for every n. Since Xu�n · Xv�n = X(u·v)�n, we have that

(u, x) · (v, y) ∈ X(u·v)�n for every n. Hence (u, x) · (v, y) ∈ Iu·v. This proves the first claim. A

similar calculation proves the second.
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Chapter 3

The Cube Problem for Linear Orders

3.1 Introduction

In this chapter we will prove that the cube property holds for the class (LO,×lex) of linear

orders under the lexicographical product: if X is a linear order that is isomorphic to its

lexicographically ordered cube X3, then X is isomorphic to X2. More generally we have the

following.

Main Theorem. Let X be a linear order, and fix an integer n > 1. If Xn ∼= X, then

X2 ∼= X.

This is Theorem 3.3.15. Thus the answer to Sierpinśki’s question from Cardinal and Ordinal

Numbers of whether there exists a linear order that is isomorphic to its cube but not its square

is negative. See the introduction of this thesis for a detailed discussion of this problem and

its history, as well as an overview of the proof.
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3.1.1 Terminology

A linear order is a pair (X,<X) where X is a set and <X is a binary relation that to-

tally orders X. We will always refer to linear orders by their underlying sets, and write

< without any subscript. Throughout the chapter, “order” always means linear order, and

“isomorphism” means order isomorphism.

Given a linear order X, a subset I ⊆ X is called an interval if for all points x, y, z ∈ X, if

x < y < z and x, z ∈ I, then y ∈ I. Every singleton is an interval, as is X itself. Given

points x, y ∈ X with x < y, the interval notation (x, y), [x, y), (x, y], and [x, y] has its usual

meaning. If I and J are intervals in X, and for all x ∈ I and y ∈ J we have x < y, then I

lies to the left of J and we write I < J . An interval I is called an initial segment of X if

whenever x ∈ I and y < x then y ∈ I. An interval J is called a final segment of X if J is

the complement of an initial segment of X.

An order (or interval) may have endpoints. The terms minimal element, left endpoint, and

bottom point will be used interchangeably, as will maximal element, right endpoint, and top

point.

An order X is dense if between any two distinct points in X one may find a third that lies

strictly between them. A subset D ⊆ X is dense in X if for any two points in X, either

one of them lies in D or there exists a point between them that lies in D. An order X is

complete if every bounded monotonic sequence (of any ordinal length) in X converges to a

point in X.

For X a linear order, X∗ denotes the reverse order. That is, X and X∗ share the same

underlying set of points, but x < y in X if and only if y < x in X∗. To every function

f : X → X, there is a corresponding function on X∗, denoted f ∗, which acts identically to
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f on the underlying set of points shared by X and X∗. If f is an order automorphism of X,

then f ∗ is an order automorphism of X∗.

The following definitions are copied from Section 2.2.1. If X and Y are linear orders, then

their lexicographical product X × Y = XY is the order obtained by replacing every point in

X with a copy of Y . Formally, XY is the cartesian product {(x, y) : x ∈ X, y ∈ Y } ordered

by the rule (x0, y0) < (x1, y1) if and only if x0 < x1 (in X), or x0 = x1 and y0 < y1 (in

Y ). Longer finite products X0X1 . . . Xn−1, as well as infinite products X0X1 . . ., are defined

similarly, as the lexicographically ordered set of n-sequences {(x0, . . . xn−1) : xi ∈ Xi}, and

the lexicographically ordered set of ω-sequences {(x0, x1, . . .) : xi ∈ Xi}, respectively. In the

case when all of the Xi are equal to a single order X, these orders are abbreviated Xn and

Xω, respectively.

If for every x ∈ X we fix a linear order Ix, then the replacement X(Ix) is the order obtained

by replacing every point x ∈ X with the corresponding Ix. Formally, X(Ix) = {(x, i) : x ∈

X, i ∈ Ix} ordered by the rule (x0, i0) < (x1, i1) if and only if x0 < x1 (in X), or x0 = x1

and i0 < i1 (in Ix0 = Ix1). We allow that for a given x0 ∈ X we have Ix0 = ∅. Both of the

notions of lexicographical product and replacement are central to the rest of this chapter.

See Section 2.2.1 for a more detailed discussion of these definitions.

3.1.2 Examples of countable orders isomorphic to their squares

To begin, we give some examples of countable orders that are isomorphic to their own squares.

In Section 3.4 we will construct uncountable examples.

Our examples here rely on Cantor’s theorem characterizing the order types of countable

dense linear orders, as well as a generalization due to Skolem.
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Theorem. (Cantor) If X and Y are countable dense linear orders without endpoints, then

X is isomorphic to Y .

Thus every countable dense linear order without endpoints is isomorphic to the set of ratio-

nals Q in their usual order.

Theorem. (Skolem) Fix some k, 1 ≤ k ≤ ω. Let X, Y be countable dense linear orders

without endpoints. Fix a partition X =
⋃
i<kXi such that each Xi is dense in X, and

similarly Y =
⋃
i<k Yi. There is an isomorphism f : X → Y such that f [Xi] = Yi for every

i < k.

This says that if we have two copies of the rationals, and color each of them with the same k

colors, using every color densely often, then there is an isomorphism between the two orders

that respects the colorings. The proof is an easy generalization of the usual back-and-forth

proof of Cantor’s theorem.

Now, if L is any countable order, then LQ is countable, dense, and without endpoints.

Hence, LQ ∼= Q. In particular, Q2 ∼= Q, yielding our first example of an order isomorphic

to its square. To get another, let 2 denote the unique order (up to isomorphism) with

two points, and let X = Q2. This order is not isomorphic to Q, since it contains many

intervals isomorphic to 2, and thus is not dense. Yet if L is any countable order, then

LX = L(Q2) ∼= (LQ)2 ∼= Q2 = X. In particular X2 ∼= X.

Using Skolem’s theorem, we generalize these examples. Fix k, 1 ≤ k ≤ ω, and a partition

Q =
⋃
i<kQi such that each Qi is dense in Q. For each i, fix some countable order Ii, and

form the replacement X = Q(Iq), where if q ∈ Qi then Iq = Ii. This is the order obtained

by replacing each point in the rationals with one of the k countable orders Ii, such that each

order appears densely often.
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Let L be any countable order. Then LQ(Iq) ∼= Q(Iq), i.e. LX ∼= X. The isomorphism

follows from Skolem’s theorem: LQ(Iq) is also a countable dense shuffling of the Ii, which is

the same form as Q(Iq).

To see this explicitly, let us write LQ(Iq) as LQ(J(l,q)), where J(l,q) = Iq for all l ∈ L. Thus

J(l,q) = Ii if q ∈ Qi. We partition LQ according to the partition of Q: let Qi = {(l, q) ∈

LQ : q ∈ Qi}. Then the Qi partition LQ and we have J(l,q) = Ii if (l, q) ∈ Qi. Since each Qi

is dense in LQ, there is an isomorphism f : LQ→ Q such that f [Qi] = Qi for every i. But

then J(l,q) = If((l,q)) for every (l, q) ∈ LQ. Thus the isomorphism lifts to give an isomorphism

of LQ(J(l,q)) with Q(Iq), i.e. of LX with X. Since L was arbitrary, we have in particular

that X2 ∼= X.

In Section 3.2 it will be shown that if X is a countable order without endpoints and Xn ∼= X

for some n > 1, then X has the same form as the order above: X ∼= Q(Iq), where for each

q there is a dense set of p ∈ Q such that Iq = Ip. It follows, as above, that X2 ∼= X and

hence Xm ∼= X for any m > 1. Of course, our main theorem is that Xn ∼= X =⇒ X2 ∼= X

holds in general, but in the countable, no-endpoints case we have a complete classification:

Xn ∼= X for some n > 1 if and only if X ∼= Q(Iq). As we observed, such an order is not only

invariant under left multiplication by itself, but by any countable order L.

3.1.3 A solution to the cube problem when X has both endpoints

It turns out that it is easy to prove Xn ∼= X =⇒ X2 ∼= X for linear orders X with both a

left and right endpoint. The proof uses the following theorem of Lindenbaum, that could be

called the Schroeder-Bernstein theorem for linear orders. Although the proof for the general

case is substantially harder, a generalized version of Lindenbaum’s theorem does play an

important role.
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Theorem. (Lindenbaum) Suppose X, Y are linear orders. If X is isomorphic to an initial

segment of Y , and Y is isomorphic to a final segment of X, then X ∼= Y .

Proof. Suppose f : X → Y is an isomorphism of X onto an initial segment of Y and

g : Y → X is an isomorphism of Y onto a final segment of X. Then f, g are in particular

injections. Let h : X → Y be the bijection constructed out of f, g as in the classical proof

of the Schroeder-Bernstein theorem. Then the hypotheses guarantee that this bijection is

order-preserving.

Corollary 3.1.1. If X is a linear order with both a left endpoint and right endpoint, and

Xn ∼= X for some n > 1, then X2 ∼= X.

Proof. Denote the minimal element of X by 0 and the maximal element by 1. Then X2

contains an initial segment isomorphic to X, namely the interval of points of the form (0, ·).

Since Xn ∼= X, it follows that X2 contains an initial segment isomorphic to Xn. But the

interval consisting of points (1, 1, . . . , 1, ·, ·) with n − 2 leading 1s is a final segment of Xn

isomorphic to X2. By Lindenbaum’s theorem, X2 ∼= Xn. Hence X2 ∼= X.

Thus any linear order with both endpoints that is isomorphic to its cube is isomorphic to its

square, solving the cube problem in this case. The simplicity of the proof suggests that there

may be a simple proof when X has either no endpoints or one endpoint. But the proof above

uses crucially that X has both endpoints, and there does not seem to be an adaptation to

the other cases. The isomorphisms constructed in Section 3.3 to take care of the other cases

do make use of Schroeder-Bernstein style maps, but using them requires an understanding

of the structure of orders X that satisfy isomorphisms of the form AnX ∼= X.
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3.2 A sufficient condition for An×X ∼= X =⇒ A×X ∼= X

3.2.1 Review

Throughout the rest of the chapter, when it is not otherwise specified, A simply refers to

some fixed order. We recall several of the relevant definitions and results from Chapters 1

and 2 concerning orders that are invariant under left multiplication by A or a finite power

of A.

Suppose that Aω(Iu) is a replacement of Aω such that whenever u ∼ v, we have Iu ∼= Iv.

We refer to such an order as a replacement of Aω up to tail-equivalence, and denote it by

Aω(I[u]). If X is a linear order, then by Theorem 2.2.1, we have AX ∼= X if and only if X is

isomorphic to an order of the form Aω(I[u]).

We will adopt the following convention, since it simplifies notation: if X = Aω(I[u]) is a

replacement of Aω up to tail-equivalence, and u and v are tail-equivalent sequences, then

we will assume that in fact Iu equals Iv. This is safe to do, since any replacement in which

we only have isomorphism between Iu and Iv is isomorphic to a replacement in which we

have equality. Hence our convention does not change the statement of Theorem 2.2.1. For

such an order X, the isomorphism between AX and X is witnessed by the flattening map

(a, u, x) 7→ (au, x). We can disregard the isomorphisms fu→au that we considered in Chapter

2, since they are irrelevant to our proof of the cube property.

Here is a concrete example of a replacement up to tail-equivalence. Let Z denote the integers

in their usual order, and form the product Zω (this order is isomorphic to the irrationals).

Each tail-equivalence class [u] ⊆ Zω is a countable dense subset of Zω, hence the number

of classes is 2ω. Enumerate them as {Cα : α < 2ω}. Let X be the order obtained by

replacing every point in the αth class with the ordinal α, i.e. if [u] = Cα let I[u] = α, and
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let X = Zω(I[u]). This order may be visualized as densely many copies of each ordinal less

than 2ω interspersed with one another. By our observations above, ZX ∼= X.

Similarly, if Aω(Iu) is a replacement of Aω such that whenever u ∼2 v we have Iu = Iv, then

we refer to such an order as a replacement of Aω up to 2-tail-equivalence, and denote it by

Aω(I[u]2). (Here, we are again assuming equality of Iu and Iv instead of isomorphism.) For

an order X, by Theorem 2.2.3, we have A2X ∼= X if and only if X is isomorphic to an order

of the form Aω(I[u]2).

Also recall that for a sequence u ∈ Aω, we have [u] = [u]2 if and only if u is eventually

periodic and the period of u is odd. This is Corollary 1.2.3. In all other cases, [u] is the

disjoint union of [u]2 and [au]2, where a is any fixed element of A.

3.2.2 When A2 ×X ∼= X implies A×X ∼= X

We now turn to the question of when the isomorphism A2X ∼= X implies AX ∼= X. Notice

that if A2X ∼= X and we use Theorem 2.2.3 to decompose X as Aω(I[u]2), then there is no

“obvious” isomorphism between AX and X. The natural guess for such an isomorphism

would be the flattening map (a, u, x) 7→ (au, x). But the definition of this map may be

meaningless: the interval consisting of tuples (a, u, ·) in AX is of type Iu = I[u]2 whereas the

interval (au, ·) in X is of type I[au]2 . If u 6∼2 au, these orders may be distinct.

If it so happens that I[u]2 = I[au]2 for every u and a, then the flattening map makes sense

and witnesses AX ∼= X. Indeed if this is so we may denote the common order type of I[u]2

and I[au]2 by I[u], so that X ∼= Aω(I[u]).

But this need not be the case. For example, consider Zω and let v denote the sequence

(1, 2, 3, . . .). Then v is not eventually periodic and hence not 2-tail-equivalent to 0v =

(0, 1, 2, . . .). Let I[v]2 = 1 and I[0v]2 = 2. For all other ∼2-classes [u]2, let I[u]2 = ∅. Let
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X = Zω(I[u]2). Then the map ((a, b), u, x) 7→ (abu, x) witnesses Z2X ∼= X, while the “map”

(a, u, x) 7→ (au, x), which purports to send each copy of 1 in AX isomorphically onto a copy

of 2 in X, and vice versa, is meaningless. In this sense it is not immediate that ZX ∼= X

(though, in this case, this turns out to be true).

The following proposition describes the precise relationship between AX and X when A2X ∼=

X.

Proposition 3.2.1. Suppose X is an order such that A2X ∼= X, so that X is of the form

Aω(I[u]2), and let Y = AX. Then Y ∼= Aω(J[u]2), where for all u ∈ Aω and a ∈ A, we have

J[u]2 = I[au]2 .

Proof. Define J[u]2 = I[au]2 as in the statement of the theorem, and assume for simplicity that

X is not only isomorphic to but in fact equals Aω(I[u]2). Then the isomorphism between AX

and Aω(J[u]2) is given by the flattening map (a, u, x) 7→ (au, x). This is an isomorphism since

each interval in AX consisting of points (a, u, ·) is of type I[u]2 and each interval (au, ·) in

Aω(J[u]2) is of type J[au]2 = I[aau]2 = I[u]2 as well.

Thus if A2X ∼= X, we obtain AX by interchanging the role of each I[u]2 with I[au]2 in the

decomposition X ∼= Aω(I[u]2). It is worth noting that in the case when [u]2 = [au]2 = [u],

no interchange is needed: in this case the orders I[u]2 , I[au]2 , and J[u]2 , J[au]2 are all identical,

whereas in general only the equalities J[u]2 = I[au]2 and I[u]2 = J[au]2 hold.

The upshot of Proposition 3.2.1 is that, in the case where A2X ∼= X, if we can find an order

automorphism of Aω that maps each ∼2-class [u]2 onto [au]2, we can lift it to obtain an

isomorphism of AX with X.

Definition 3.2.2. An order automorphism f : Aω → Aω is called a parity-reversing auto-

morphism (abbreviated p.r.a.) if f(u) ∈ [au]2 for every u ∈ Aω and a ∈ A. Equivalently,
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an order automorphism f of Aω is a p.r.a. if for every u ∈ Aω and a ∈ A the image of [u]2

under f is [au]2.

It follows that the image of [au]2 under a parity-reversing automorphism f is [u]2. Parity-

reversing automorphisms are “idempotent on ∼2-classes” in this sense.

Proposition 3.2.3. Suppose that Aω admits a parity-reversing automorphism. Then for

every order X, if A2X ∼= X then AX ∼= X.

Proof. Let f : Aω → Aω be a parity-reversing automorphism. Fix X and assume A2X ∼= X.

Writing X as Aω(I[u]2) and AX as Aω(J[u]2), we may define an isomorphism from X to AX

by the map (u, x) 7→ (f(u), x). This map is well-defined: the interval (u, ·) in X is of type

I[u]2 , and the interval (f(u), ·) in AX is of type J[au]2 = I[u]2 since f(u) ∈ [au]2. Hence

X ∼= AX.

In the context of the cube problem, the case of interest is when A = X. If X is an order

such that X3 ∼= X, then we may rewrite this as X2X ∼= X. By 3.2.3, if Xω has a p.r.a., then

XX ∼= X as well, i.e. X2 ∼= X. In Section 3.3, parity-reversing isomorphisms for Aω are

constructed for many different kinds of orders A, culminating in the proof that if X3 ∼= X

then indeed Xω has a p.r.a., no matter the cardinality of X.

3.2.3 When An ×X ∼= X implies A×X ∼= X

We provide the analogous definitions and results (without proof) for analyzing orders that

satisfy the isomorphism AnX ∼= X, for some fixed n > 1.

Recall from Chapter 2 that Aω(I[u]n) denotes a replacement Aω(Iu) for which u ∼n v implies

Iu = Iv. For an order X, by Theorem 2.2.2, we have AnX ∼= X if and only if X is isomorphic

to an order of the form Aω(I[u]n).
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The next theorem describes the relationship between the various orders AkX, 1 ≤ k ≤ n−1,

in the case where AnX ∼= X. The notation ak denotes the sequence aa . . . a ∈ A<ω in which

a is repeated k times.

Proposition 3.2.4. Suppose X is an order such that AnX ∼= X, so that X is of the form

Aω(I[u]n). For a fixed k, 1 ≤ k ≤ n − 1, let Y = AkX. Then Y ∼= Aω(J[u]n), where for all

u ∈ Aω and a ∈ A, we have J[u]n = I[aku]n .

In the above, the sequence ak may be replaced with any k-sequence a0a1 . . . ak−1 of elements

of A.

Definition 3.2.5. An order automorphism f : Aω → Aω is called an n-revolving automor-

phism (abbreviated n-r.a.) if for every u ∈ Aω and a ∈ A the image of [u]n under f is

[au]n.

Proposition 3.2.6. If AnX ∼= X and there exists an n-revolving automorphism on Aω, then

AX ∼= X as well (and hence AkX ∼= X for all k).

Hence if Xn+1 ∼= X for some n ≥ 1 and there is an n-revolving automorphism on Xω, we

have X2 ∼= X as well.

3.2.4 A solution to the cube problem when X is countable, with-

out endpoints

As a corollary to Theorem 2.2.1, we prove the characterization that was claimed in Section 3.1

for countable orders X without endpoints such that Xn ∼= X for some n > 1. A consequence

is that the cube property holds for such orders. The argument differs substantially from the

argument for the general case, and if desired this section can be skipped.
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Corollary 3.2.7. Let X be a countable linear order without endpoints. If Xn ∼= X for

some n > 1, then X is isomorphic to an order of the form Q(Iq), where for each q, there are

densely many p ∈ Q with Iq = Ip. Hence for any countable order L we have LX ∼= X, and

in particular X2 ∼= X.

Proof. Let A = Xn−1. The hypothesis is that AX ∼= X. By Theorem 2.2.1, X is isomorphic

to an order of the form Aω(I[u]). Note that since A is countable, each equivalence class [u] is

countable: each v ∈ [u] is of the form ru′ for some tail-sequence u′ of u, and there are only

countably many r ∈ A<ω, and countably many tail-sequences u′.

Since X is countable, it must be that for all but countably many of the equivalence classes

[u] we have I[u] = ∅. Let k be the number of classes for which I[u] is nonempty, so that

1 ≤ k ≤ ω. Enumerate these classes as Ci, i < k, and let Ii denote I[u] if [u] = Ci. Let

C =
⋃
i<k Ci. Since C is the union of those classes [u] for which I[u] is nonempty, we have

that X = C(Iu) where Iu = Ii if [u] = Ci. We use the notation X = C(Ii).

Split Q into k-many dense subsets Q =
⋃
i<kQi and form the order Q(Iq), where if q ∈ Qi,

then Iq = Ii. Denote this order by Q(Ii). If we can show that X = C(Ii) is isomorphic

to Q(Ii), the proof will be complete. To do this, it is sufficient to show that there is an

isomorphism of C with Q that sends each Ci onto Qi. By Skolem’s theorem, it is enough to

show that C is countable, dense and without endpoints, and each Ci is dense in C.

Certainly C is countable, since it is a countable union of countable classes. For the rest,

note that since X is without endpoints, A = Xn−1 is also without endpoints. Fix v < w in

C and fix one of the Ci. Pick a representative u ∈ Ci, so that Ci = [u]. Since v < w we may

find an n so that v � n < w � n lexicographically. Since A is without endpoints, we may

find a ∈ A such that a > vn, and b, c ∈ A such that b < v0 and c > w0. Let x = (v � n)au,

y = bu, and z = cu. Then y < v < x < w < z in Aω, and clearly x, y, z ∈ [u] = Ci. But
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this proves the claims: Ci is dense in C, but further C is dense and without a top or bottom

point. The proof is complete.

Although we are going to show that the implication Xn ∼= X =⇒ X2 ∼= X holds for any

linear order X, the advantage of the corollary is that it yields a complete classification in

the countable, no endpoints case. Such an X is of the form Q(Ii). Hence to specify X it

is enough to specify the number of parts k in the partition Q =
⋃
i<kQi and the countable

orders Ii.

Under what other hypotheses can we carry out a similar proof to classify the orders satisfying

the isomorphism Xn ∼= X? We can always use Theorem 2.2.1 to decompose such an X into

an order of the form Aω(I[u]), where A = Xn−1. But the argument from there can break

down in a number of ways.

When X is countable and has a single endpoint, the same proof goes through and yields

an analogous classification. In the countable, two endpoints case, the proof does not carry

over. The reason is that, while there is a unique (up to isomorphism) countable dense order

with two endpoints, namely Q = Q ∩ [0, 1], this order does not enjoy the same invariance

under multiplication that Q enjoys. There exist countable orders L with both endpoints

such that LQ 6∼= Q. In fact it is easy to see we have non-isomorphism whenever L is not

dense. Moreover, this difference has consequences. Unlike for Q, there are right products of

Q that are not isomorphic to their squares. For example, X = Q2 is not isomorphic to its

square. It follows that the analogous classification in this case fails, though it may be that

some more detailed classification is possible.

In the uncountable case, the proof breaks down completely, and the results of Section 3.4

show that no similar classification is possible. In many models of set theory, there do not

even exist analogues to the order Q on higher cardinals. Even when such orders do exist,

nothing like “Xn ∼= X if and only if X ∼= Q(Ii)” is true for uncountable X.
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For example, under the continuum hypothesis there exists the saturated order Q1 of size

ℵ1. This order has a characterization a la Cantor’s characterization of Q, and enjoys many

analogous properties to those of Q. For one, if L is any order of size ℵ1 with uncountable

cofinality and coinitiality, then LQ1
∼= Q1, and in particular Q2

1
∼= Q1. Furthermore, we

have the result “any order X of the form Q1(Ii) is invariant under left multiplication by any

L of size ℵ1 with uncountable cofinality and coinitiality. In particular, if the orders Ii are

of size at most ℵ1, then for any n we have Xn ∼= X.” (Here, each Ii replaces densely many

points in Q1.) But the converse is false outright: if X is of size ℵ1 and Xn ∼= X it need

not be true that X ∼= Q1(Ii). For example, it is possible to use the methods of Section 3.4

to produce, without extra set theoretic hypotheses, an X of size ℵ1 such that X2 ∼= X but

(ω∗1 + ω1)X 6∼= X.

3.3 Parity-reversing automorphisms on Aω

In this section we show how to construct parity-reversing automorphisms of Aω for orders

A satisfying certain structural requirements. A consequence of our work is that if X3 ∼= X,

then Xω has a parity-reversing automorphism. By Proposition 3.2.3 it follows that X2 ∼= X

as well. At the end of the section, we sketch how to generalize the argument to get the

implication Xn ∼= X =⇒ X2 ∼= X for any order X and n ≥ 2, finishing the proof of the

main theorem.

For a sequence u = (u0, u1, u2, . . .) ∈ Aω, let σu denote the once shifted tail-sequence

(u1, u2, . . .) and σnu the n-times shifted tail-sequence (un, un+1, . . .).

As a first step toward constructing a p.r.a. for Aω, we show that any closed interval in

Aω with periodic endpoints of odd period has a parity-reversing automorphism. It is then
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possible to write down conditions under which a collection of these partial maps can be

stitched together to get a full p.r.a. on Aω.

A technical note: if r, s ∈ A<ω are finite sequences, and if r < s in Aω, then it always holds

that r < rs < sr < s, even when one of the sequences is an initial sequence of the other.

This is Proposition 3.3.1 below. This fact will be used repeatedly throughout the rest of the

chapter without explicit mention, in particular in Lemma 3.3.2. However, in every case in

the subsequent work where we actually consider specific sequences r < s, it will be apparent

that we actually have r < rs < sr < s. As such the following proof can be skipped, if

desired.

Proposition 3.3.1. Suppose r, s ∈ A<ω are finite sequences such that r < s in Aω. Then

r < rs < sr < s.

Proof. The proof is essentially an instance of the Euclidean algorithm. For any pair of finite

sequences q, p ∈ A<ω, either one sequence is an initial sequence of the other, or for some

n < min (|p|, |q|), we have qn 6= pn. In the latter case, if n is the minimal place where we

have inequality and qn < pn we will write, for the purpose of this argument, q < p. If one

sequence is an initial sequence of the other, we do not define an order between them. For k a

non-negative integer, for the purposes of this argument only, we let kq denote the sequence

qq . . . q consisting of k-many copies of q. (In the rest of the thesis, we denote this sequence

qk.) We will sometimes employ parentheses for clarity: (kq)p means the sequence beginning

with k-copies of q followed by a copy of p.

Now, suppose r, s ∈ A<ω are finite sequences such that r < s. We are trying to establish

the three inequalities r < rs, rs < sr, and sr < s. Note that by cancelling the leading r in

both sequences, the first inequality is equivalent to r < sr. Similarly, the third inequality is

equivalent to rs < s. We will show the first and third inequality hold by establishing these

rewritten forms.
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We assume that |r| ≤ |s|. The case when |r| > |s| is similar. The proof proceeds algorith-

mically.

Stage 0 : if r can be compared lexicographically to s, then it must be that r < s. It follows

immediately that the three inequalities hold, and our algorithm terminates. If r cannot be

compared lexicographically to s, we go to Stage 1.

Stage 1 : in this case, it must be that one of r, s is an initial sequence of the other. Since

we are assuming |r| ≤ |s|, we have that r is an initial sequence of s. But it may be that s

begins with more than one copy of r. Suppose that s begins with exactly k1 copies of r, that

is, s = (k1r)q1, where k1 ≥ 1, and q1 is the “remainder sequence” that does not begin with

r. Note that q1 is not the empty sequence, since otherwise s would be multiple of r and we

would have r = s.

Then we have

s = ss

= (k1r)q1s.

We also have

r = (k1r)rr.

If r can be compared lexicographically to q1, it must be that r < q1, since r < s. Assume

this is the case. We have that

rs = rsrs

= r(k1r)q1rs

= (k1r)rq1rs,

63



and also that

sr = srsr

= (k1r)q1rsr.

Comparing these expansions and using the fact that r < q1, we see easily that the inequalities

r < sr, rs < sr, and rs < s all hold, and our algorithm terminates.

In the case where r and q1 cannot be compared lexicographically, we proceed to Stage 2.

Stage 2 : in this case we must have that |q1| < |r|, since otherwise r would be comparable to

q1. Hence q1 is an initial sequence of r, that is r = (k2q1)q2 for some strictly positive integer

k2 and a remainder sequence q2 that does not begin with q1. Again, the remainder cannot

be the empty sequence, since if it were r and s would both be multiples of q1 and we would

have r = s.

Continuing our expansion of s we have

s = (k1r)q1s

= (k1r)q1r . . .

where we have split off the r in the last line from the initial s in the tail sequence s from the

previous line (that is, the ellipsis denotes the sequence ((k1 − 1)r)q1s),

= (k1r)q1(k2q1)q2 . . .

= (k1r)(k2q1)q1q2 . . .

Further expanding r, we have

r = (k1r)(k2q1)q2r

= (k1r)(k2q1)q2q1 . . .
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where, in the last line, we have split off the initial copy of q1 from the first r in the tail r

from the previous line.

If q2 is comparable to q1, then from the above expansions it follows that q2 < q1, since r < s.

Assume this is the case.

We also have

rs = (k1r)(k2q1)q2q1rs,

sr = (k1r)q1(k2q1)q2sr

= (k1r)(k2q1)q1q2sr.

From these expansions and the fact that q2 < q1 we see that r < sr, rs < sr, and rs < s all

hold, and our algorithm terminates.

If on the other hand q2 is not comparable to q1, then reasoning as before it must be that q2

is a proper initial sequence of q1. In this case q1 = (k3q2)q3 for some k3 > 0 and non-empty

remainder q3 not beginning with q2, and the algorithm proceeds to Stage 3. And so on.

This algorithm must eventually terminate: if at Stage n we cannot lexicographically compare

qn and qn−1, then qn is strictly shorter in length than qn−1. So at worst we continue until

|qn| = 1, in which case it must be comparable to qn+1, since it can never be an initial

sequence of qn+1. At whatever stage qn is first comparable to qn+1, we are able to expand

the expressions above for r, rs, sr, and s and conclude the desired inequalities.

Now, suppose that we have finite sequences r, s ∈ A<ω of lengths m,n respectively, such that

r < s in Aω. The shift map u 7→ σmu restricted to the interval [r, rs] is an isomorphism of

this interval with the interval [r, sr]. The inverse map is given by u 7→ ru, restricted to [r, sr].

Similarly the map u 7→ su, when restricted to [rs, s], is an isomorphism of this interval with

[sr, s] whose inverse is given by u 7→ σnu. Thus we have the following proposition.
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Lemma 3.3.2. Suppose r, s ∈ A<ω are finite sequences, respectively of lengths m,n, such

that r < s in Aω. Then the map f : [r, s]→ [r, s] defined by

f(u) =

 σmu u ∈ [r, rs]

su u ∈ [rs, s]

is an order automorphism of the interval [r, s]. Its inverse is given by

f−1(u) =

 ru u ∈ [r, sr]

σnu u ∈ [sr, s].

Note that there is no ambiguity in the definition of f(rs) in the statement of the lemma,

since σmrs = srs = sr.

Given an interval of the form [r, s] in Aω, we call the automorphism f defined in Lemma

3.3.2 a standard map on [r, s]. Standard maps are the essential tool in our proof of the cube

property for (LO,×).

Standard maps are defined with respect to given sequences r, s ∈ A<ω, and an interval can

carry more than one standard map. For example, if r0 = a, r1 = aa, and s = b for some

points a < b in A, then we have [r0, s] = [r1, s] = [a, b]. However, the standard map on

this interval defined with respect to the sequences r0, s is different than the standard map

defined with respect to the sequences r1, s. We adopt the convention that the phrase “the

standard map on [r, s]” means the one defined with respect to the sequences r, s.

Lemma 3.3.3. Fix r, s ∈ A<ω of lengths m,n respectively. If m,n are both odd, then the

standard map f : [r, s] → [r, s] is parity-reversing, in the sense that for all u ∈ [r, s] and

a ∈ A, we have f(u) ∈ [au]2.
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Proof. Either f(u) = σmu or f(u) = su. In either case, the obvious meeting representation

between au and f(u) witnesses f(u) ∼2 au.

Theorem 3.3.4. Suppose A has both a left and right endpoint. Then Aω has a parity-

reversing automorphism.

Proof. Let 0 denote the left endpoint of A, and 1 denote the right endpoint. Then Aω also

has left and right endpoints, namely 0 and 1. That is, Aω = [0, 1]. Thus the standard map

on this interval is actually an automorphism of Aω. It is parity-reversing by Lemma 3.3.3,

since 0 and 1 are both of period 1.

Thus if A has both a left and right endpoint, and X is an order such that A2X ∼= X, then

AX ∼= X as well. Decomposing X as Aω(I[u]2) and AX as Aω(J[u]2), the isomorphism is

given by (u, x) 7→ (f(u), x), where f is the standard map on Aω = [0, 1].

In this case, we may alternatively apply Lindenbaum’s version of the Schroeder-Bernstein

theorem to get an isomorphism between X and AX: X, which is isomorphic to A2X, contains

an initial copy of AX by virtue of the fact that A has a left endpoint, and AX contains a

final copy of X since A has a right endpoint. Thus AX ∼= X by Lindenbaum’s theorem. If

A = X, we recover Corollary 3.1.1.

These approaches are actually the same. The isomorphism one gets from the proof of Linden-

baum’s theorem (which is really just the classical proof of the Schroeder-Bernstein theorem),

when viewed as an isomorphism of Aω(I[u]2) with Aω(J[u]2), turns out to be exactly the iso-

morphism (u, x) → (f(u), x), where f is the standard map on [0, 1] = Aω. In this sense,

standard maps are generalized instances of the classical Schroeder-Bernstein bijection in the

context of orders of the form Aω.

The standard map f fixes the endpoints 0 and 1 of Aω—necessarily so, since f is an order

automorphism. It is easily checked that these are the only fixed points of f . This does not
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change the fact that f is parity-reversing: both 0 and 1 are periodic sequences of period 1,

so that [a0]2 = [0]2 = [0] and [a1]2 = [1]2 = [1] for any a ∈ A. Thus the parity-reversing

requirement on f at these points is simply that f(0) ∈ [0] and f(1) ∈ [1], which certainly

holds. Viewing f as defining an isomorphism between some X ∼= A2X ∼= Aω(I[u]2) and

AX ∼= Aω(J[u]2), we have that this isomorphism maps I0 onto J0, which is legitimate as

these intervals are identical, as noted in the discussion following 3.2.1. Similarly for I1 and

J1.

If A does not have any endpoints, or only a single endpoint, then Aω is not of the form [r, s].

Thus no standard map defines a p.r.a. on all of Aω. However, because they fix the endpoints

of the intervals on which they are defined, standard maps can be stitched together to obtain

automorphisms of longer intervals. For example, suppose r, s, t ∈ A<ω are sequences such

that r < s < t. Let f denote the standard map on [r, s] and g the standard map on [s, t].

Then f ∪ g is an automorphism of [r, t]. Its fixed points are exactly r, s, and t. If |r|, |s|, and

|t| are all odd, then f and g, and thus f ∪ g, are parity-reversing.

The standard map h on [r, t] also serves as an automorphism of this interval. This map

is different than the two-piece map f ∪ g (e.g. h does not fix s). The advantage of the

piecewise construction is that it can be extended to get parity-reversing maps on intervals

without endpoints, as well as orders without endpoints. To deal with such intervals, we

introduce some terminology.

The cofinality of an interval I is the minimum length λ of an increasing sequence of points

{xi : i < λ} ⊆ I such that for every y ∈ I there is i < λ with y ≤ xi. Similarly, the

coinitiality of I is the minimum length κ of a decreasing sequence in I that eventually goes

below every element of I. The cofinality is 1 if the interval has a maximal element, and if it

has a minimal element the coinitiality is 1. When these cardinals are not 1, they are infinite

and regular. An interval with coinitiality κ and cofinality λ is called a (κ, λ)-interval. We

usually write these as ordinals, e.g. ω, ω1, etc., to emphasize that they refer to sequences.
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We refer to (1, 1)-intervals as 2-intervals, (1, ω)-intervals as ω-intervals, (ω, 1)-intervals as ω∗-

intervals, and (ω, ω)-intervals as Z-intervals, since these intervals are, respectively, spanned

by sequences of order type 2, ω, ω∗, and Z. Viewing the order A as itself an interval, we

may speak of (κ, λ)-orders, or 2, ω, ω∗, and Z-orders.

A cover for an order A is a collection of disjoint intervals C = {Ca : a ∈ A} so that a ∈ Ca

for all a. Indexing by the elements of A is for convenience: it is not assumed that a 6= b

implies Ca 6= Cb, since this would give only trivial covers, but only that either Ca = Cb or

Ca ∩ Cb = ∅.

A cover C is called a Z-cover if every C ∈ C is a Z-interval. Not every order A admits a

Z-cover: if, for example, A has a left endpoint 0, then in any cover C for A, the interval C0

cannot be a Z-interval. Less trivially, suppose A is a complete (ω1, ω1)-order, and C is a

cover for A. Suppose C contains a Z-interval C. This interval is open. Since A is “long” to

both the left and right, C is bounded. Since A is complete, C has a greatest lower bound x

and least upper bound y. The intervals Cx and Cy must be disjoint from C, hence x must be

the maximal element in Cx and y the minimal element in Cy. Thus neither is a Z-interval,

and it follows that A admits no Z-cover.

A cover C is called a {Z, ω}-cover if every C ∈ C is either a Z-interval or an ω-interval.

Similarly, C is called a {Z, ω∗}-cover if every C ∈ C is either a Z-interval or ω∗-interval.

Given a cover C, let CX ⊆ C denote the collection of intervals in C of type X. For example,

if C is a {Z, ω}-cover, then C = CZ ∪ Cω.

Theorem 3.3.5.

1. If A admits a Z-cover, then Aω has a parity-reversing automorphism.

2. If A has a left endpoint and admits a {Z, ω}-cover, then Aω has a parity-reversing

automorphism.
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3. If A has a right endpoint and admits a {Z, ω∗}-cover, then Aω has a parity-reversing

automorphism.

Thus in any of these three cases, if X is an order such that A2X ∼= X, then AX ∼= X as

well.

Proof. (1.) Assume first that A has a Z-cover C. It follows that A has no endpoints. For

every C ∈ C, fix a Z-sequence . . . < xC−1 < xC0 < xC1 < xC2 < . . . spanning C. To each of the

points xCk in A there is the corresponding periodic sequence xCk in Aω. For C,D ∈ C and

k, l ∈ Z, the intervals [xCk , x
C
k+1) and [xDl , x

D
l+1) intersect if and only if they are identical. The

same is true of the corresponding intervals [xCk , x
C
k+1) and [xDl , x

D
l+1) in Aω.

These intervals actually cover Aω, that is, for every u ∈ Aω there is a unique C ∈ C and

k ∈ Z such that u ∈ [xCk , x
C
k+1). To see this, note that since the intervals C cover A, u’s first

entry u0 (viewed as a point in A) falls in one of the C. There are two possibilities: either

xCk < u0 < xCk+1 for some k ∈ Z, or u0 = xCk for some k ∈ Z. In the first case, we have that

xCk < u < xCk+1 so that u ∈ [xCk , x
C
k+1). In the second, either xCk−1 < u < xCk or xCk ≤ u < xCk+1

depending on whether the first entry of u differing from xCk (if it exists) is greater or less

than xCk . Thus either u ∈ [xCk−1, x
C
k ) or u ∈ [xCk , x

C
k+1).

We have shown that

Aω =
⋃
k∈Z
C∈C

[xCk , x
C
k+1].

The intervals in this union are pairwise disjoint unless they are consecutive, in which case

they share a single endpoint.

For every k ∈ Z and C ∈ C, let fCk denote the standard map on [xCk , x
C
k+1]. Since the

endpoints of this interval are of period 1, we have that fCk is parity-reversing.
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The function

f =
⋃
k∈Z
C∈C

fCk

is well-defined, since the domains of two different fCk share at most one point and at that

point the functions agree. Since each fCk is a parity-reversing automorphism of [xCk , x
C
k+1]

and Aω is the union of these intervals, f is a p.r.a. for Aω.

(2.) Now assume that A has a left endpoint 0 and a {Z, ω}-cover C. Then A has no right

endpoint. The argument is similar to the previous one, but with a catch. For every C ∈ CZ,

fix a sequence . . . < xC−1 < xC0 < xC1 < xC2 < . . . spanning C. Similarly, for every C ∈ Cω fix

a sequence xC0 < xC1 < xC2 < . . . spanning C, where xC0 is the left endpoint of C.

As before, the intervals [xCk , x
C
k+1) are pairwise disjoint. The difference is that now there may

be points in Aω that do not fall in any of these intervals.

To see this, suppose u ∈ Aω. Then there is a unique C ∈ C and k such that xCk ≤ u0 < xCk+1.

If in fact xCk < u0 < xCk+1, then certainly u ∈ [xCk , x
C
k+1). So suppose u0 = xCk . If either

C ∈ CZ, or C ∈ Cω and k > 0, then u is contained in either [xCk−1, x
C
k ) or [xCk , x

C
k+1),

depending on whether the first entry of u differing from xCk (if it exists) is greater than or

less than xCk .

So suppose u0 = xC0 for some C ∈ Cω. Then either u ≥ xC0 or u < xC0 . In the first case we

have u ∈ [xC0 , x
C
1 ).

The issue occurs in the second case when u < xC0 . Assume we are in this case, and for

notational simplicity denote xC0 by x. It must be then, that x (viewed as a point in A) is

greater than the left endpoint 0, and further that un < x, where un is the leftmost entry of u

differing from x. However, since u0 = x it must be that u ≥ x000 . . . = x0. Thus u ∈ [x0, x).
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This interval is disjoint from all of the [xCk , x
C
k+1), and by the same argument, any v ∈ Aω

that is not contained in one of the [xCk , x
C
k+1) must be contained in an interval of this form.

Thus

Aω =
⋃
k∈Z
C∈CZ

[xCk , x
C
k+1] ∪

⋃
k∈ω
C∈Cω

[xCk , x
C
k+1] ∪

⋃
x=xC0
C∈Cω

[x0, x].

These intervals are pairwise disjoint up to endpoints. The intervals [xCk , x
C
k+1] have parity-

reversing standard maps fCk . If we can show that for every interval [x0, x], there is a parity-

reversing automorphism fx : [x0, x]→ [x0, x], then the map

f =
⋃
k∈Z
C∈CZ

fCk ∪
⋃
k∈ω
C∈Cω

fCk ∪
⋃
x=xC0
C∈Cω

fx

is a parity-reversing automorphism of Aω.

So fix C ∈ Cω and let x = xC0 . If C is the leftmost interval in C, then x = 0 and [x0, x] = {0}

is just the left endpoint of Aω. In this case let fx be the map that fixes 0 and is undefined

elsewhere.

Otherwise x > 0. The interval [x0, x] has a periodic right endpoint, but only an eventually

periodic left endpoint. We have not defined a standard map for such an interval. Note

however that the shift map u 7→ σu restricted to [x0, x] is an isomorphism of this interval

with [0, x]. Let g denote this shift map, and let f denote the standard map on [0, x]. Then

fx = g−1 ◦ f ◦ g is a parity-reversing automorphism of [x0, x], as desired.

Now f , as defined above, is a p.r.a. for Aω.
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(3.) Finally, suppose A has a right endpoint and admits a {Z, ω∗}-cover. Then A∗ has a

left endpoint and admits a {Z, ω}-cover. Thus (A∗)ω, which is isomorphic to (Aω)∗, has

a p.r.a. f ∗. The corresponding automorphism f on Aω is still parity-reversing since the

requirement f(u) ∈ [au]2 does not depend on the ordering of Aω, but only on the underlying

set of points.

Suppose for the moment that A is an order without endpoints. The content of the theorem

is that if A has a Z-cover, then Aω can be covered disjointly (up to endpoints) by intervals

of the form [x, y], with x, y ∈ A. Since we have parity-reversing standard maps on these

intervals, we can use this decomposition to build a p.r.a. on all of Aω.

The essence of what can go wrong when A does not admit a Z-cover can be illustrated by an

example. Suppose that A is a complete (ω1, ω1)-order. We have seen that A has no Z-cover.

We might still attempt to build a p.r.a. for Aω piecewise: begin with some x0 < x1 in A and

consider the corresponding periodic points x0 < x1 in Aω. Put the standard map on [x0, x1].

Then pick some x2 > x1, and so on. After ω-many steps we will have defined a p.r.a. on the

interval spanned by x0 < x1 < x2 < . . . .

Now, since A is complete and of cofinality ω1, the sequence x0 < x1 < x2 < . . . is bounded

in A and converges to some point x. However, the sequence of xn does not converge to x in

Aω. Rather, there is a nonempty open interval I sitting above all the xn and below x. This

interval I consists of points u with first coordinate u0 = x but with some later coordinate

ui < x. Notice that there are no periodic points of period 1 in this interval. We might hope

to bridge this gap (perhaps up to some collection of legally fixable points) with intervals

whose endpoints are only eventually periodic, as we did in the proof of (2.) of Theorem

3.3.5. There, however, it was crucial for the argument that A had a left endpoint 0.

It turns out it is impossible to bridge this gap, in the sense that any automorphism on

Aω extending the partial automorphism described above cannot be parity-reversing on I.
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Moreover, no alternative construction works. We will show in Section 3.5 that any complete

(ω1, ω1)-order does not admit a parity-reversing automorphism.

Here is an immediate corollary of Theorem 3.3.5.

Corollary 3.3.6. If A is a 2-order, ω-order, ω∗-order, or Z-order, then Aω has a parity-

reversing automorphism. Thus for any order X, if A2X ∼= X then AX ∼= X.

Proof. When A is a 2-order, this is simply a restatement of Theorem 3.3.4. In the other three

cases A has, respectively, a {Z, ω}-cover, {Z, ω∗}-cover, or Z-cover given by C = {A}.

Among the orders satisfying the hypotheses of the corollary are all countable orders, since

any countable order has a cofinality and coinitiality at most ω. Thus for any countable A

and any X we have A2X ∼= X =⇒ AX ∼= X. This gives in particular that any countable

X isomorphic to its cube is isomorphic to its square, recovering Corollaries 3.1.1 and 3.2.7

and also giving the result for countable orders with a single endpoint.

The order R of the real numbers gives an example of an uncountable Z-order. Hence R2X ∼=

X =⇒ RX ∼= X for any X. One of the simplest examples of an order that is not a Z-order

but admits a Z-cover is ω1Z. Here, the cover consists of the intervals Cα = {(α, z) : z ∈ Z}.

Similarly, ω1R admits a Z-cover, since each copy of R is spanned by a Z-sequence.

The order ω1 has a left endpoint, but admits no {Z, ω}-cover, as can be shown by a similar

argument to the one showing any complete (ω1, ω1)-order has no Z-cover. Thus it does not

follow from 3.3.5 that there is a p.r.a. on ωω1 . It turns out that ωω1 does have a p.r.a., though

we will not prove this. However, if A = ω∗1 + ω1 is the order obtained by putting a copy

of ω1 to the right of a copy of ω∗1, then A is a complete (ω1, ω1)-order. It follows from the

results of Section 3.5 that there is no p.r.a. on Aω. We will show in fact that there exists an

X such that A2X ∼= X but AX 6∼= X.
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It remains to show that any order X that is isomorphic to its cube admits the right kind of

cover to get a p.r.a. on Xω. This is Theorem 3.3.7 below. When combined with Theorem

3.3.5, it shows that for any X without endpoints or with a single endpoint, if X3 ∼= X then

X2 ∼= X. Since we have already dealt with the two endpoint case, we have X3 ∼= X =⇒

X2 ∼= X for any X, finishing the proof of the cube property.

Theorem 3.3.7. Suppose X is an order such that X3 ∼= X.

1. If X has no endpoints, then X admits a Z-cover.

2. If X has a left endpoint but no right endpoint, then X admits a {Z, ω}-cover.

3. If X has a right endpoint but no left endpoint, then X admits a {Z, ω∗}-cover.

The proof of the theorem is in two lemmas. Before we can state these lemmas, we need some

more terminology.

Up to this point we have only studied invariance of orders under left multiplication (by a fixed

A or power of A). Orders X such that Xn ∼= X fit into this context since the isomorphism

Xn ∼= X can be rewritten as An−1X ∼= X, where A = X. However, such orders also

display an invariance under right multiplication, since Xn ∼= X can just as well be rewritten

XAn−1 ∼= X, where again A = X. It is this right-sided invariance under multiplication that

is needed to get the covers of X in Theorem 3.3.7.

Forgetting the isomorphism X3 ∼= X for now, we consider the single power version of this

right-sided invariance. That is, for an order A, we analyze the structure of orders X such

that XA ∼= X.

In the case of invariance under left multiplication by A, the space Aω of right-infinite se-

quences plays a crucial role. In the case of right-sided invariance, it is the space of left-infinite

sequences that is relevant.
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Let Aω
∗

= {(. . . , a2, a1, a0) : ai ∈ A, i ∈ ω} denote the set of left-infinite sequences of

elements of A. Notice that we still index the entries of such sequences by elements in ω. We

copy over the notation from the right-sided case, reversing it when necessary. The letters

u, v, . . . will now be used to denote elements of Aω
∗
. The nth entry of u is still denoted un.

Let A<ω
∗

= {(an−1, . . . , a1, a0) : ai ∈ A, n ∈ ω} denote the set of left-growing finite sequences.

The letters r, s, . . . will for now denote elements of A<ω
∗
. For r = (an−1, . . . , a1, a0) ∈ A<ω

∗

and u = (. . . , u1, u0) ∈ Aω
∗
, we use ur to denote the sequence (. . . , u1, u0, an−1, . . . , a1, a0).

It is impossible to order Aω
∗

lexicographically, in the sense that two left-infinite sequences

may not have a leftmost place in which they differ. If, however, two such sequences eventually

agree, it is possible to compare them lexicographically.

Definition 3.3.8. For u, v ∈ Aω∗ , we say u is eventually equal to v, and write u ∼∞ v, if

there exists N ∈ ω such that for all n > N we have un = vn.

Equivalently, u ∼∞ v if there exist finite sequences r, s with |r| = |s| and a sequence u′ ∈ Aω∗

such that u = u′r and v = u′s. This is just the usual eventual equality relation, considered

here for left-infinite sequences. The ∼∞-class of u is denoted [u]∞.

Observe that for a given u ∈ Aω∗ , the class [u]∞ can be ordered lexicographically. If u ∼∞ v,

define u < v if and only if uN < vN , where N is the leftmost place such that uN 6= vN . It

is immediate that u 6< u, and one of u < v, u = v, u > v always holds. Transitivity can be

checked as well.

The classes [u]∞ are the largest subsets of Aω
∗

that can possibly be ordered lexicographically,

in the sense that if u 6∼∞ v, then u and v have no leftmost place of difference. In what follows,

whenever we refer to an order on [u]∞ we mean the lexicographical order. If we write u < v

it is assumed that u ∼∞ v.

Here are our lemmas.
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Lemma 3.3.9. Fix u ∈ Aω∗ .

1. If A has no endpoints, the class [u]∞ is a Z-order.

2. If A has a left endpoint but no right endpoint, the class [u]∞ is either an ω-order or

Z-order.

3. If A has a right endpoint but no left endpoint, the class [u]∞ is either an ω∗-order or

Z-order.

Proof. (1.) Assume first A has no endpoints. We define a sequence . . . < v−1 < v0 < v1 < . . .

spanning [u]∞. Let v0 = u. For n a fixed positive integer, define vn = (. . . , vn1 , v
n
0 ) to be any

sequence such that vnm = um for all m > n but vnn > un. It is always possible to find such a

vnn, since A does not have a top point. On the other side, again for n a fixed positive integer,

let v−n be a sequence such that v−nm = um for all m > n, but now v−nn < un. This is possible

since A does not have a bottom point.

It is clear that . . . < v−1 < v0 < v1 < . . . since the ordering is lexicographical. Further

if v ∈ [u]∞, then there is some N such that for all m ≥ N we have vm = um. Thus

v−N < v < vN , and so the sequence vn spans [u]∞, as desired.

(2.) Now assume A has a left endpoint 0 but no right endpoint. The class [0]∞ has a left

endpoint, namely 0 itself. Let v0 = 0 and vn be any sequence that is 0 beyond the nth place,

but is greater than 0 in the nth place. Then we have v0 < v1 < . . . as before, and in fact

this sequence spans [0]∞. Thus [0]∞ is an ω-order.

So assume u 6∼∞ 0. We show [u]∞ is a Z-order. As before, since A has no top point, we may

find v1 < v2 < . . . cofinal in [u]∞.
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On the other side, observe that since u 6∼∞ 0, there are infinitely many places n such that

un > 0. Enumerate these places as nk, k ∈ ω. Let vnk be any sequence that agrees with

u beyond the nkth place, but such that vnk
nk

< unk
. This is possible since unk

> 0. Then

. . . < vn1 < vn0 , and further this sequence is coinitial in [u]∞. Hence [u]∞ is a Z-order, as

claimed.

The case (3.) is symmetric to (2.).

Lemma 3.3.10. Suppose that X is an order such that XA ∼= X.

1. If A has neither a left nor right endpoint, then X admits a Z-cover.

2. If A has a left endpoint but no right endpoint, then X admits a {Z, ω}-cover.

3. If A has a right endpoint but no left endpoint, then X admits a {Z, ω∗}-cover.

Proof. The intuition of the proof is simple. If XA ∼= X, then X can be organized into

X-many intervals of type A. Since there are X-many of them, these intervals in turn may

be organized into XA-many copies of A, that is, X-many copies of A2. And so on. Now

consider the situation from the point of view of some fixed x ∈ X. At the first stage x is

included in a copy of A, and in the second, in some copy of A2 containing the initial copy of

A, etc. These larger and larger intervals surrounding x, consecutively isomorphic to A, A2,

A3, . . ., have a limit, which is isomorphic to [u]∞ for some u ∈ Aω∗ . The conclusion follows.

To make this explicit, let f : X → XA be an isomorphism. Let fl and fr denote the left

and right components of f , that is, the unique functions such that f(x) = (fl(x), fr(x)) for

all x ∈ X. For every x ∈ X, we define a sequence of points x0, x1, . . . in X and a sequence

ax0 , a
x
1 , . . . in A. Let x0 = x and recursively define xn+1 = fl(xn). Let axn = fr(xn).
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With this notation, we have f(x) = (x1, a
x
0). By repeatedly factoring the xi, we get an

isomorphism from X onto XAn defined by x 7→ (xn, a
x
n−1, . . . , a

x
1 , a

x
0). Although it is not

literally an n-fold composition of f , we denote this isomorphism by fn.

For n ∈ ω, define Ixn to be the set of y ∈ X such that yn = xn. Then the image of Ixn under fn

is the set of points in XAn of the form (xn, bn−1, . . . , b0), bi ∈ A. Hence Ixn is an interval in X,

and it is isomorphic to An. Furthermore, we have the containments {x} = Ix0 ⊆ Ix1 ⊆ Ix2 ⊆ . . .

since if yN = xN then for every n ≥ N we have yn = xn as well.

Let Ix∞ =
⋃
n I

x
n . Then since the Ixn form a chain of intervals in X, Ix∞ is also an interval in

X. Notice that by definition, for every N ∈ ω and x, y ∈ X, either IxN ∩ I
y
N = ∅ or IxN = IyN ,

and in this latter case Ixn = Iyn for all n ≥ N . Hence Ix∞ and Iy∞ are either equal or disjoint

as well.

For x ∈ X, define ux to be the sequence (. . . , ax1 , a
x
0). Then if y ∈ Ix∞, it must be that for all

sufficiently large n we have yn = xn. Thus for all sufficiently large n we have axn = ayn, which

gives ux ∼∞ uy. On the other hand, suppose v ∈ [ux]∞, say v = (. . . , axn+1, a
x
n, bn−1, . . . , b1, b0)

for some bi ∈ A, i < n. There is a unique y ∈ X such that fn(y) = (yn, a
y
n−1, . . . , a

y
0) =

(xn, bn−1, . . . , b0). But then uy = v.

This shows that the map F : Ix∞ → [ux]∞ defined by F (y) = uy is a bijection. This

map is clearly order-preserving as well, and hence an isomorphism of Ix∞ with [ux]∞. Thus

{Ix∞ : x ∈ X} is a cover of X by intervals of the form [u]∞. The conclusion of the lemma

now follows from Lemma 3.3.9.

Proof of Theorem 3.3.7. Suppose X is an order such that X3 ∼= X. Then XA ∼= X, where

A = X2. If X has no endpoints, then A has no endpoints. By Lemma 3.3.10, X admits a

Z-cover, and therefore, by Lemma 3.3.9, Xω admits a parity-reversing automorphism. If X

has a left endpoint, but not a right one, then similarly A has a left endpoint, but no right
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one. Hence X admits a {Z, ω}-cover, and again Xω admits a parity-reversing automorphism.

The right endpoint case is symmetric.

We conclude this section with a sketch of the proof that Xn ∼= X implies X2 ∼= X for all

orders X and all n ≥ 2. When n = 2 the statement is trivial, and we have just finished the

proof for n = 3. The argument for larger n is a straightforward adaptation of the case when

n = 3.

For convenience, we consider orders satisfying the (only notationally distinct) isomorphism

Xn+1 ∼= X, and we assume n > 2. This isomorphism can be rewritten as AnX ∼= X, where

A = X. We know by the results at the end of Section 3.2 that if Aω has an n-revolving

automorphism (n-r.a.), then AX ∼= X. So we turn to the question of when Aω admits such

an automorphism.

We build n-r.a.’s as we built p.r.a.’s, that is, as unions of standard maps. In our previous

argument, to ensure that a map f was parity-reversing, it was enough to have that for every

u either f(u) = σnu or f(u) = ru, with n and |r| both odd. This is because deleting or

adding an initial sequence of odd length always sends u into [au]2. For n > 2, the situation

is not symmetric.

Lemma 3.3.11. Suppose f : Aω → Aω is an order automorphism, and for every u ∈ Aω,

either f(u) = σku for some k ≡ n−1 (mod n) or there exists a finite sequence r with |r| ≡ 1

(mod n) and f(u) = ru. Then f is an n-r.a.

Proof. In either case, the obvious meeting representation witnesses f(u) ∼n au.

Thus if we have two sequences r, s ∈ A<ω such that |r| ≡ n − 1 (mod n) and |s| ≡ 1

(mod n), the standard map on [r, s] is n-revolving. As before, when A has both a left and

right endpoint, a single standard map serves to get an n-r.a. of Aω.
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Theorem 3.3.12. Suppose A has both a left and right endpoint. Then Aω has an n-revolving

automorphism.

Proof. Let 0 and 1 denote the left and right endpoints of A. Then Aω = [0n−1, 1]. By Lemma

3.3.11, the standard map on this interval is n-revolving.

In particular, if X has both endpoints and Xn+1 ∼= X, then X2 ∼= X. For the cases with

one or neither endpoint, we need the generalizations of Theorems 3.3.5 and 3.3.7.

Theorem 3.3.13.

1. If A admits a Z-cover, then Aω has an n-r.a.

2. If A has a left endpoint and admits a {Z, ω}-cover, then Aω has an n-r.a.

3. If A has a right endpoint and admits a {Z, ω∗}-cover, then Aω has an n-r.a.

Thus in any of these three cases, if X is an order such that AnX ∼= X, then AX ∼= X as

well.

Theorem 3.3.14. Suppose X is an order such that Xn+1 ∼= X.

1. If X has neither a left nor right endpoint, then X admits a Z-cover.

2. If X has a left endpoint but no right endpoint, then X admits a {Z, ω}-cover.

3. If X has a right endpoint but no left endpoint, then X admits a {Z, ω∗}-cover.

The conjunction of these theorems along with 3.3.12 gives that Xn+1 ∼= X =⇒ X2 ∼= X

for all X. Theorem 3.3.14 follows immediately from Lemmas 3.3.9 and 3.3.10. The proof of

3.3.13 (1.) is essentially the same as 3.3.5 (1.): if A has a Z-cover, then Aω can be covered

(disjointly up to endpoints) by intervals of the form [a, b] for a, b ∈ A. Writing such intervals
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as [an−1, b], we have that the associated standard maps are n-revolving. The union of these

maps then gives an n-r.a. on Aω.

The proof of 3.3.13 (2.) is also very similar to that of 3.3.5 (2.). Given a {Z, ω}-cover of A

we obtain a cover of Aω by intervals of the form [a, b] and [x0, x], where 0 denotes the left

endpoint of A. Intervals of the first type have n-revolving standard maps, as above. Intervals

of the second type shift onto intervals of the first type, and therefore also have n-revolving

automorphisms. The union of these maps yields an n-r.a. for Aω.

The proof of (3.) is symmetric. The main theorem follows:

Theorem 3.3.15. Suppose X is an order such that Xn ∼= X for some n > 1. Then X2 ∼= X.

In particular, the cube property holds for (LO,×).

3.4 Constructing orders X such that Xn ∼= X

The purpose of this section is to justify the previous work, in two ways. First, we will

show that the cube problem for linear orders, and more generally the problem of showing

Xn ∼= X =⇒ X2 ∼= X, is not vacuous, in the sense that for every n there exist many

orders X such that Xn ∼= X. We construct such orders below as direct limits, and show in

particular that they can be of any infinite cardinality.

Secondly, we wish to justify the need for the machinery developed in Section 3.3 for solving

the cube problem. When we say “X3 ∼= X,” what is meant implicitly is that there exists an

isomorphism f : X3 → X. All of our analysis of the relation X3 ∼= X has really been with

respect to a fixed isomorphism f . Associated to such an f is an order of the form Xω(I[u]2)

and an isomorphism F : X → Xω(I[u]2) built using f . If we view f , via the relabeling F , as

an isomorphism of X2 ×Xω(I[u]2) with Xω(I[u]2), then f is just the flattening isomorphism

fl2 on the first three coordinates. This follows from Theorem 2.2.1 and its corollary 2.2.3.
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Conversely, if we can ever construct an isomorphism F from X onto an order of the form

Xω(I[u]2), we immediately have that X3 ∼= X as witnessed by the flattening isomorphism.

Suppose it were the case that for every X for which there exists an isomorphism F of X

onto an order of the form Xω(I[u]2), we had that I[u]2
∼= I[au]2 for every a ∈ X and u ∈ Xω.

Let us call such a decomposition trivial. Then letting I[u] denote the common order type of

I[u]2 and I[au]2 , we would have that X ∼= Xω(I[u]) and hence X2 ∼= X. We would have this

isomorphism of X with X2 without any need for a parity-reversing automorphism of Xω, and

the work in Section 3.3 showing that Xω has such an automorphism would be unnecessary

to solve the cube problem. However, we shall show that this is not the case. There are pairs

(X,F ) where X is a linear order and F is an isomorphism of X onto an order of the form

Xω(I[u]2) such that for many a and u we have I[au]2 6∼= I[u]2 . This follows from Theorem 3.4.2

below. For such an X we have X3 ∼= X naturally, but in order to show X2 ∼= X we need

the device of a p.r.a. for Xω.

Although Theorem 3.4.1 can be derived from 3.4.2, it has a proof which is easier to under-

stand and thereby serves as a warmup for the proof of 3.4.2.

Given orders X and Y , an embedding of X into Y is an injective order-preserving map

f : X → Y . Given embeddings f : X0 → Y0 and g : X1 → Y1 the map defined by

(x, y) 7→ (f(x), g(y)) is an embedding of X0×X1 into Y0×Y1. We denote this map by (f, g).

Given a sequence of orders X0 ⊆ X1 ⊆ X2 ⊆ . . . the order X =
⋃
i∈ωXi is well-defined.

Similarly, given a directed system

X0
f0−→ X1

f1−→ . . .
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where each fi is an embedding of Xi into Xi+1, we may form the direct limit

X = lim−→
i

Xi.

If the fi are inclusion maps, the direct limit of the Xi is isomorphic to their union. We will

sometimes confuse the direct limit construction with the union construction, and speak of

each Xi as a suborder of Xj for j ≥ i, and as a suborder of X = lim−→Xi.

Given two systems

X0
f0−→ X1

f1−→ . . .

Y0
g0−→ Y1

g1−→ . . .

we obtain a system

X0 × Y0
(f0,g0)−−−−→ X1 × Y1

(f1,g1)−−−−→ . . .

It is a standard fact that if Z = lim−→(Xi×Yi), then Z ∼= X×Y , where X = lim−→Xi and lim−→Yi.

Written shortly, we have

lim−→(Xi × Yi) ∼= (lim−→Xi)× (lim−→Yi).

Given orders X and Y , we say that X spans Y if there is an embedding f of X into Y

such that for every y ∈ Y , there exist y0, y1 in the image f [X] such that y0 ≤ y ≤ y1. The

following theorem says that any order can be expanded to an order of the same cardinality

that is isomorphic to its square.

Theorem 3.4.1. Let X0 be any order. Then there exists an order X such that
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1. X2 ∼= X,

2. X0 spans X,

3. |X| = |X0|+ ℵ0.

Proof. For every i ∈ ω, let Xi+1 = Xi × Xi. Then Xn = X2n

0 . Let f0 : X0 → X1 be the

embedding defined by f0(x) = (x, x). For every i > 0, let fi = (fi−1, fi−1). Then fi is an

embedding of Xi into Xi+1.

Let X = lim−→Xi. Then we have

X = lim−→Xi (i ≥ 0)

∼= lim−→Xi (i > 0)

= lim−→(Xi−1 ×Xi−1) (i > 0)

= lim−→(Xi ×Xi) (i ≥ 0)

∼= lim−→(Xi)× lim−→(Xi) (i ≥ 0)

= X ×X.

This proves (1.). The cardinality claim (3.) is clear. To verify (2.), let us view the fi as

inclusions, so that each Xi is included in Xj for j ≥ i, and in X. Then X0 is included in

X1 = X0×X0 as the set of points of the form (a, a), and more generally in Xn = X2n

0 as the

set of points of the form (a, a, . . . , a).

Fix x ∈ X. Then x ∈ Xn for some n. Clearly, for some a, b we have (a, a, . . . , a) ≤ x ≤

(b, b, . . . , b). That is, x lies between two points of X0, provided we view X0 as a subset of

Xn. Hence we also have that x lies between two points of X0, now viewing X0 as a subset

of X.
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Note in particular that X has the same endpoint configuration as X0: if X0 has both

endpoints, then so does X, and likewise for the other cases. Hence there are orders of any

cardinality and any endpoint configuration isomorphic to their squares.

We can get “X3 ∼= X” instead of “X2 ∼= X” in the conclusion of the theorem by letting

Xi+1 = X3
i and letting f0 be the embedding x 7→ (x, x, x). Similarly, we can get orders X

such that Xn ∼= X.

However, with this particular construction the resulting isomorphisms turn out to be trivial.

That is, if one uses the proof of 3.4.1 to produce an order X isomorphic to X3, and then

analyzes the isomorphism f : X3 → X yielded by the proof and the associated decomposition

Xω(I[u]2), one finds that I[u]2 = 1 if and only if u is eventually constant. Otherwise I[u]2 = ∅.

Since for eventually constant u we have [u]2 = [au]2 = [u], such a decomposition already

witnesses X2 ∼= X without the need for a p.r.a. of Xω.

We shall now show how to directly build an order X along with an isomorphism F of

X onto an order of the form Xω(I[u]). More generally we can construct X and F with

F : X → Xω(I[u]n). It will follow from the construction that these decompositions can be

arranged to be non-trivial.

We have observed that if the embedding from Xi×Yi into Xi+1×Yi+1 is of the form (fi, gi),

we have that the limit of the products Xi×Yi is isomorphic to the product of the limits. An

analogous fact holds for limits of replacements, as well as for limits of infinite products. Let

us spell these out.

Suppose we are given a system

X0
f0−→ X1

f1−→ . . .

86



Let X = lim−→Xi. We again view each Xi as included in all subsequent Xj as well as in X.

Suppose further that for every x ∈ X we are given a system

I0,x
g0,x−−→ I1,x

g1,x−−→ . . .

For each x ∈ X, let Ix = lim−→ Ii,x.

Naturally we obtain a system

X0(I0,x)
F0−→ X1(I1,x)

F1−→ . . .

The embedding Fi is defined by Fi(x, y) = (fi(x), gi,x(y)), and in the replacement Xi(Ii,x),

it is understood that the index x of each Ii,x only ranges over Xi. Then we have that

lim−→Xi(Ii,x) = lim−→(Xi)(lim−→(Ii,x)) = X(Ix).

Similarly, if we are given

X0
f0−→ X1

f1−→ . . .

then we obtain a system

Xω
0

F0−→ Xω
1

F1−→ . . .

where the embedding Fi is defined by Fi((x0, x1, . . .)) = (fi(x0), fi(x1), . . .). We use the

notation Fi = (fi, fi, . . .). Viewing each Xi as included in Xi+1 by way of fi, we may view

Xω
i as included in Xω

i+1 by way of Fi. Letting Y = lim−→Xω
i , observe that it is not the case

(naturally, at least) that Y is isomorphic to Xω, where X = lim−→Xi. Rather, Y is isomorphic

to the subset of Xω consisting of sequences of “bounded rank,” that is, sequences (x0, x1, . . .)
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such that for some i, for all n we have xn ∈ Xi. If the Fi are true inclusions then Y =
⋃
iX

ω
i .

Note that Y is a union of tail-equivalence classes.

Theorem 3.4.2. Let {Lj : j ∈ J} by any collection of nonempty, pairwise non-isomorphic

orders, indexed by some indexing set J . Then there exists an X such that X ∼= Xω(I[u]) for

some collection of orders I[u] (and hence X2 ∼= X), and further such that

1. For u, v ∈ Xω, if [u] 6= [v] then either I[u] = I[v] = ∅ or I[u] and I[v] are non-isomorphic.

2. For every j ∈ J , there exists a unique tail-equivalence class [u] such that I[u] = Lj.

Proof. Let X0 be any order such that the number of tail-equivalence classes in Xω
0 is at least

|J |.

Fix an injection ι : J → {[u] : u ∈ Xω
0 }. If ι(j) = [u], define I0,[u] = Lj. For those [u] not

assigned an index j ∈ J , pick orders I0,[u] so that the final collection {I0,[u] : u ∈ Xω
0 } consists

of pairwise non-isomorphic orders.

Denote the order Xω
0 (I0,[u]) by X1. Fix an embedding f0 : X0 → X1. For example, we may

define f0 by f0(x) = (x, x, x, . . . , ax), where ax is any element in I0,[x].

By way of this f0, view X0 as included in X1. Then as in the discussion preceding the

theorem, we may view Xω
0 as included in Xω

1 by way of F0 = (f0, f0, . . .). For each u ∈ Xω
1 ,

if [u] ∩ Xω
0 6= ∅, define I1,[u] = I0,[u]. The remaining u are exactly those sequences with

infinitely many terms from X1 \X0. For these [u], iteratively choose orders I1,[u] so that the

final collection {I1,[u] : u ∈ Xω
1 } consists of pairwise non-isomorphic orders.

Let X2 = Xω
1 (I1,[u]). The “inclusion” F0 : Xω

0 → Xω
1 naturally determines an “inclusion”

f1 : X1 → X2. Namely, if (u, a) ∈ X1 = Xω
0 (I0,[u]), with say u = (u0, u1, . . .), we define

f1((u, a)) = (F0(u), a) = (f0(u0), f0(u1), . . . , a). It is legal to let f1 be the identity on the
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last coordinate, since the interval (u, ·) in X1 is of type I0,[u], and the interval (F0(u), ·) in

X2 is of type I1,[u] = I0,[u].

Now repeat this process. View X1 as included (by way of f1) in X2, and Xω
1 as included in

Xω
2 . For each u ∈ Xω

2 , if u ∈ Xω
1 , let I2,[u] = I1,[u]. For the remaining u, fix orders I2,[u] so

that the collection {I2,[u] : u ∈ Xω
2 } consists of pairwise non-isomorphic orders.

Continuing in this way, we get a system

X0
f0−→ X1

f1−→ X2
f2−→ . . .

Let X be the limit. Then we have

X = lim−→Xi

∼= lim−→Xi+1

= lim−→Xω
i (Ii,[u])

= Xω(I[u])

where if u ∈ Xω
i for some i, then I[u] = Ii,[u], and if u is in none of the Xω

i (i.e. if u has terms

of unboundedly high rank), then I[u] = ∅.

This X satisfies the conclusion of the theorem.

In particular, any fixed order L can appear as an interval in the X constructed in the proof,

by simply including L among the Lj.

By an analogous construction, for any n ≥ 1 we can get an X such that X ∼= Xω(I[u]n) (and

hence Xn+1 ∼= X), where the nonempty I[u]n are pairwise non-isomorphic and fill up the

classes of every Xω
i for some increasing sequence X0 ⊆ X1 ⊆ . . . converging to X. Although

not all of the n-tail-equivalence classes [u]n are filled in the final decomposition Xω(I[u]n),

those that are filled are filled with pairwise non-isomorphic orders. In particular, there will
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be many examples of where I[u]n 6∼= I[au]n , and therefore these decompositions will be non-

trivial. By doing a longer induction, it is possible to get X ∼= Xω(I[u]n) where every I[u]n is

nonempty. Of course, it is also possible to arrange during the construction that some (or

all) of the I[u]n are isomorphic.

3.5 Constructing A and X such that X ∼= A2×X 6∼= A×X

Our main theorem gives that the cube property holds for the class of linear orders under the

lexicographical product. In view of the proof, it is natural to ask if we could have established

the stronger result, that for all orders A and X, if A2X ∼= X then AX ∼= X. By 3.2.3, if it

were possible to construct a p.r.a. for any order of the form Aω then the answer would be

yes. This raises the subquestion of whether constructing a p.r.a. for Aω is always possible.

We show in this section that the answer to both questions is no. In fact, if A is a complete

(κ, λ)-order for cardinals κ and λ of uncountable cofinality, then Aω does not admit a p.r.a.

Furthermore, the converse to Theorem 3.2.3 holds: if Aω does not have a p.r.a., then there

exists an X such that A2X ∼= X but AX 6∼= X. Thus in particular, there is such an X

when A = ω∗1 + ω1. In the language of the introduction to this thesis, this says that the

(left-sided) weak Schroeder-Bernstein property fails for the class of linear orders. (The right-

sided weak Schroeder-Bernstein property also fails, that is, there exist X,A with XA2 ∼= X

but XA 6∼= X. This is easier to prove, but we will not do so here.)

Given a linear order X, a cut in X is a pair of intervals (I, J) such that I∪J = X, I∩J = ∅,

and I < J . Thus I is an initial segment of X, and J is a final segment. A cut (I, J) is called

a gap if I has no maximal element, and J has no minimal element.

The Dedekind completion of X, denoted X, is the order obtained from X by filling every

gap (I, J) with a single point x(I,J). Viewing X as a suborder of X, we have that X is dense
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in X, and in particular the cofinality (respectively, coinitiality) of X coincides with that of

X. The Dedekind completion X is always a complete linear order, and if X is complete to

begin with, then X = X.

Any automorphism f : X → X can be extended uniquely to an automorphism f : X → X.

For, if (I, J) is a gap in X, then (f [I], f [J ]) must also be a gap. The automorphism f

is defined by setting f(x(I,J)) = x(f [I],f [J ]) for every gap (I, J), and f(x) = f(x) for every

x ∈ X.

A subset C ⊆ X is called closed if every monotone sequence in C (of any ordinal length) is

either unbounded in X or converges to some point in C. For C to be closed it is necessary

that C is complete in the order inherited from X. However, completeness is not sufficient for

closure. For example, { 1
n

: n ≥ 1}∪{0} is closed as a subset of R, whereas { 1
n

: n ≥ 1}∪{−1}

is not. Note that if X is not complete, then X is not closed as a subset of itself.

A subset C ⊆ X is called left-unbounded if for every x ∈ X there exists c0 ∈ C such that

c0 ≤ x, and right-unbounded if for every x one can find c1 ∈ C with c1 ≥ x. If C is unbounded

in both directions, we simply say C is unbounded. If C is closed and left-unbounded, then

C is called a left club, and C is a right club if it is closed and right-unbounded. If C is both

a left and right club, then we say simply that C is a club. Similarly, if I ⊆ X is an interval,

then viewing I as an order in itself we may speak of a right club in I, left club in I, and club

in I.

It is straightforward to check that if X has uncountable cofinality, then the intersection of

two right clubs is a right club, and if X has uncountable coinitiality, then the intersection

of two left clubs is a left club. Hence if X has both uncountable cofinality and coinitiality,

the intersection of two clubs is a club, the intersection of a club with a right club is a right

club, and the intersection of a club with a left club is a left club.
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An order X may not contain any club suborders, but its completion X always contains at

least one club, namely X itself.

Suppose that X is a (κ, λ)-order, and both κ and λ have uncountable cofinality (so that

X has uncountable cofinality and coinitiality). Let f be an automorphism of X, and f its

extension to X. Let us check that C, the set of fixed points of f , is a club in X. It is clear

that C is closed. To see that it is unbounded, fix x ∈ X. If f(x) = x, then x ∈ C and there

is nothing to check. So suppose x 6∈ C. Then either f(x) > x or f(x) < x. Assume without

loss of generality that we are in the former case. Then the positive iterates of x under f

form an increasing sequence, that is, we have

x < f(x) < f
2
(x) < . . .

Since X has uncountable cofinality, this sequence is bounded, and hence converges (by com-

pleteness) to some point b. It is easy to see that b must be a fixed point of f . Symmetrically,

since the coinitiality of X is also uncountable, the negative iterates of x converge to some

a, and this a must be fixed by f . We have found a, b ∈ C with a < x < b, and so C is

unbounded as claimed.

Until further notice, let A denote the order ω∗1 + ω1. If α ∈ ω1 is an ordinal, we denote the

corresponding element in ω∗1 by −α. We identify the 0 of ω1 with the 0 of ω∗1. Thus

A = . . . < −α < . . . < −1 < 0 < 1 < . . . < α < . . .

Theorem 3.5.1. Let A = ω∗1 + ω1. Then Aω does not admit a parity-reversing automor-

phism.

Proof. For every finite sequence r ∈ A<ω, let Ir denote the interval in Aω consisting of

sequences beginning with r. We confuse sequences of length 1 with elements of A, so that if
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a ∈ A then Ia means the interval of points with first entry a. Note that Ir is isomorphic to

Aω for every r, and in particular has neither a left nor right endpoint.

While A is complete, Aω is not, since for every r the interval Ir has a gap to its immediate

left and right. To see this, let J be the interval consisting of points in Ir and above, and

let I be the complement of J . Then J has no minimum, since Ir does not. On the other

side, I has no maximum, since any u ∈ I must begin with a finite sequence s, of the same

length as r, but with some entry si < ri. Writing u = su′, pick a sequence u′′ > u′, which is

always possible since Aω has no top point. Let v = su′′. Then v > u but v is still in I since

it lies below Ir. Thus the cut (I, J) is in fact a gap, and it lies to the immediate left of Ir.

Symmetrically (since Aω has no bottom point), Ir has a gap to the right.

For every r ∈ A<ω, let r− and r+ denote the elements of Aω that fill the gaps to the left and

right of Ir respectively. (These points are not pairwise distinct: if a, b ∈ A and b = a + 1

then for any r ∈ A<ω we have ra+ = rb−.)

Let f : Aω → Aω be an automorphism of Aω, and f its extension to Aω. Let C ⊆ Aω denote

the club of fixed points of f .

We shall show that f has a fixed point of the form u = (α0,−α1, α2,−α3, . . .) for some

collection of ordinals αi ∈ ω1 with αi 6= 0 for all i. Since such a u cannot be periodic of odd

period, we have that [u]2 6= [au]2, and thus f is not parity-reversing.

Consider the ω1-length increasing sequence of intervals

I0 < I1 < . . . < Iα < . . .
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If α is a limit ordinal, then there are no points in Aω that lie below Iα but above each Iβ for

β < α. This means that the ω1-sequence of left endpoints

0− < 1− < . . . < α− < . . .

is closed in Aω. Since this sequence is right unbounded, it forms a right club in Aω. Denote

this right club by D0.

Then D0 ∩C is a right club in Aω. Fix α−0 ∈ D0 ∩C with α0 6= 0. Let J1 denote the interval

of points in Aω lying strictly above α−0 . Then since α−0 is a fixed point of f , we have that f

restricted to J1 is an automorphism of J1. The coinitiality of J1 is ω1 since Iα0 is an initial

segment of J1, and its cofinality is also ω1, since it is a final segment of Aω. Hence J1 is a

complete (ω1, ω1)-order. It follows that the set of fixed points of f in this interval, J1 ∩ C,

is a club in J1.

Now consider the descending sequence of intervals

I(α0,0) > I(α0,−1) > . . . > I(α0,−α) > . . .

and the corresponding closed sequence of right endpoints

(α0, 0)+ > (α0,−1)+ > . . . > (α0,−α)+ > . . .

Denote this sequence by D1. Then D1 is left unbounded in J1, and hence a left club in J1.

Thus D1 ∩ C is a left club in J1, and we may fix (α0,−α1)
+ ∈ D1 ∩ C. We may choose this

point so that α1 6= 0.

At the next stage we define J2 to be the subinterval of J1 consisting of points that lie strictly

below (α0,−α1)
+. Then f restricted to J2 is an automorphism of J2. This interval ends with

I(α0,−α1) and hence has cofinality ω1. Since it also has coinitiality ω1, we have again that the
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set of fixed points in this interval, J2 ∩C, is a club in J2. Hence there must be a fixed point

(α0,−α1, α2)
− (with α2 6= 0) in the right club sequence

(α0,−α1, 0)− < (α0,−α1, 1)− < . . . < (α0,−α1, α)− < . . .

Continuing in this way, we obtain a sequence of fixed points (α0)
−, (α0,−α1)

+, (α0,−α1, α2)
−,

(α0,−α1, α2,−α3)
+, . . ., where at each stage we ensure αi 6= 0. While these points all lie

outside of Aω, they converge (in the obvious sense) to the point u = (α0,−α1, α2, . . .) ∈ Aω.

Since the set of fixed points of f is closed, it must then be that u is fixed by f . Since f

agrees with f on Aω, we have in fact that u is a fixed point of f . As observed already, it

follows that f is not parity-reversing.

It is easy to generalize the proof to get that if A is any complete (κ, λ)-order, where κ and

λ have uncountable cofinality, then Aω does not have a parity-reversing automorphism.

We will now prove the converse to 3.2.3. Recall that a linear order is called scattered if it

does not contain an infinite, dense suborder. In particular, every ordinal α, considered as a

linear order, is scattered.

Theorem 3.5.2. Suppose that Aω does not have a parity-reversing automorphism. Then

there exists an order X such that A2X ∼= X but AX 6∼= X.

Proof. Since Aω does not have a p.r.a., by Theorem 3.3.4 it must be that A either has no

endpoints, or only a single endpoint. In either case Aω is dense. Hence any interval in Aω,

considered as a linear order itself, is dense. Suppose that Aω(Iu) is any replacement of Aω

such that for densely many u we have Iu 6= ∅. Then since Aω is dense, for any interval

I ⊆ Aω(Iu), we have that either I ⊆ Iu for some u, or I contains a dense suborder. (The

“or” here is non-exclusive: both conditions may hold, but not neither.) In the latter case, I

is by definition non-scattered.
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Let κ denote the number of ∼2-equivalence classes in Aω. Enumerate these classes as {Cα :

α ∈ κ}. Let X be the replacement of Aω obtained by replacing every point in the αth class

with a copy of α, that is, X = Aω(I[u]2) where I[u]2 = α if [u]2 = Cα. (It is inessential, though

convenient, that we replace the points with ordinals. Any κ-sized collection of pairwise non-

isomorphic scattered orders also works to define the I[u]2 .)

By construction we have that A2X ∼= X. We know from 3.2.1 that AX ∼= Aω(J[u]2) where

J[u]2 = I[au]2 for all u and a. Suppose toward a contradiction that there is an isomorphism f

of X with AX, that is, of Aω(I[u]2) with Aω(J[u]2).

For a fixed u, the order type of the interval Iu is an ordinal α, and in particular is scattered.

Its image f [Iu] must be an interval of type α in Aω(J[u]2), and so from our observation above,

it must be that f [Iu] ⊆ Jv for some v. By the same argument, f−1[Jv] must be contained

in Iw for some w. But then since f−1[Jv] contains Iu, it must be that in fact v = w, and

f [Iu] = Jv. But then Jv = α, and hence it must be that v ∈ [au]2. Moreover, f must be the

identity on Iu, since the identity is the only isomorphism of α with itself.

Thus the isomorphism f may be factored as (g, id), where g : Aω → Aω is a parity-reversing

automorphism. But no such g exists, by hypothesis. Hence there is no isomorphism between

X and AX.

3.6 Related problems

In Cardinal and Ordinal Numbers, Sierpiński poses several other questions concerning the

multiplication of linear orders aside from the cube problem. On page 232 he writes, “We

do not know so far any example of two types ϕ and ψ, such that ϕ2 = ψ2 but ϕ3 6= ψ3, or

types γ and δ such that γ2 6= δ2 but γ3 = δ3.” Later, on page 251, “We do not know whether

there exist two different denumerable order types which are left-hand divisors of each other.
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Neither do we know whether there exist two different order types which are both left-hand

and right-hand divisors of each other.”

Since Sierpiński ordered products anti-lexicographically, “left-hand divisor” for him means

“right-hand divisor” in the convention of this thesis. Writing them out using our convention,

his questions are,

1. Do there exist orders X and Y such that X2 ∼= Y 2 but X3 6∼= Y 3?

2. Do there exist orders X and Y such that X2 6∼= Y 2, but X3 ∼= Y 3?

3. Do there exist countable orders X and Y such that X 6∼= Y but for some orders A,B

we have AY ∼= X and BX ∼= Y ?

4. Do there exist orders X and Y such that X 6∼= Y but for some orders A0, A1, B0, B1 we

have A0Y ∼= Y A1
∼= X and B0X ∼= XB1

∼= Y ?

In comparison with the questions from the thesis’s introduction, these questions are phrased

negatively, asking for counterexamples to the corresponding properties. Questions 3 and 4

were mentioned already in the thesis’s introduction.

Sierpiński was aware of counterexamples to the unique square root property for linear orders,

that is, of non-isomorphic orders X and Y such that X2 ∼= Y 2. These examples are due to

Morel; see [12]. Question 2 is the natural generalization of the unique square root problem,

and could be called the unique cube root problem. More generally, one may ask if there exist

orders X and Y such that Xn ∼= Y n but Xk 6∼= Y k for k < n.

Question 1 is motivated by the fact that Morel’s examples X, Y of non-isomorphic orders

with isomorphic squares have the property that Xn ∼= X for all n ≥ 1 and Y n ∼= X for all

n > 1. In particular, not only is it the case that X2 ∼= Y 2 but actually that Xn ∼= Y n for all
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n > 1. Question 1 asks whether this kind of collapsing is necessary, or if it is possible that

two orders have isomorphic squares but non-isomorphic cubes.

Both Questions 1 and 2 are related to a generalization of the cube problem. Suppose it

were possible to find an order X such that X5 ∼= X but the powers X,X2, X3, and X4 were

pairwise non-isomorphic. Then X and Y = X3 would give a positive answer to Question 2.

Similarly, if it were possible to find an X isomorphic to X7 but whose intermediate powers

were pairwise non-isomorphic, then X and Y = X3 would give a positive answer to Question

1. By our main theorem, there are no such X, but it may still be that these two questions

have positive answers. These questions are, to the author’s knowledge, still open.

Question 4 might be called the two-sided Schroeder-Bernstein problem for the class (LO,×).

It is a sensible problem to ask given that the lexicographical product is non-commutative and

that there exist examples witnessing the failure of left-sided Schroeder-Bernstein property

and right-sided Schroeder-Bernstein property for linear orders. It is closely related to the

cube problem, in the sense that if there existed an X isomorphic to its cube but not its

square, then X and Y = X2 would give a positive answer. There is no such X, but it turns

out that Question 4 still has a positive answer. The proof of this is given in the next chapter.

This gives further evidence that the cube property for (LO,×) is “close” to being false.

Question 3 is the left-sided Schroeder-Bernstein problem for countable linear orders. Sierpiński

was aware of uncountable orders X, Y,A,B satisfying the relations in the problem. In Section

3.5 we constructed such orders with A = B. From the discussion following 3.3.6, we know

that in the case when A = B, any orders X and Y satisfying the relations of Question 3

must be uncountable. We will now strengthen this result, and show that Question 3 has a

negative answer.

Suppose that X, Y,A,B are countable orders, and AY ∼= X and BX ∼= Y . We prove X ∼= Y .

Notice first that the hypotheses give ABX ∼= X. Let C = AB. There are three cases. If C
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has both endpoints, then both A and B must also have both endpoints. But then X, which is

isomorphic to AY , contains an initial copy of Y , and Y , which is isomorphic to BX, contains

a final copy of X. Hence X ∼= Y by Lindenbaum’s theorem. If C has neither endpoint, then

by the proof of 3.2.7, since CX ∼= X we have that X must be of the form Q(Ii). Thus X

is invariant under left multiplication by any countable order. In particular, BX ∼= X, that

is, Y ∼= X. Finally, suppose C has a single endpoint. Without loss of generality, assume it

is the left endpoint. Then both A and B have a left endpoint (and at least one of them is

missing the right endpoint). By the adaption of the proof of 3.2.7 to the left endpoint case,

X must be of the form Q(Ii), where Q = Q ∩ [0, 1), and where the order replacing the left

endpoint 0 also has a left endpoint. It can be shown that such an order is invariant under

left multiplication by any countable order with a left endpoint. In particular, BX ∼= X, that

is, Y ∼= X.

All of Sierpiński’s questions are instances of a much more general question. If we distinguish

the structures in a given class C only up to isomorphism type, then (C,×) may be viewed as

a (possibly very large) semigroup, where the semigroup operation is given by the product.

For a given semigroup (S, ·), we say that S can be represented in C if there is a map ι : S → C

such that ι(a · b) ∼= ι(a)× ι(b), and if a 6= b then ι(a) 6∼= ι(b).

The failure of the cube property for a given class C is equivalent to the statement that the

group Z2 can be represented in C. Thus our main theorem gives that Z2, and more generally

Zn, cannot be represented in (LO,×).

5. Which semigroups can be represented in (LO,×)?

6. Can any nontrivial group be represented in (LO,×)?
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Question 6 is of course a subquestion of Question 5. By our results, if Question 6 has a

positive answer, then any non-identity element in the witnessing group must be of infinite

order.

Questions 1, 2, and 4 all concern relations that can be realized in certain semigroups. Thus

a complete answer to Question 5 would yield answers to all of these questions.
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Chapter 4

The Two-Sided Schroeder-Bernstein

Problem for Linear Orders

4.1 Introduction

In this chapter we will solve the two-sided Schroeder-Bernstein problem for the class (LO,×)

of linear orders under the lexicographical product. The problem asks whether there exist

two non-isomorphic orders X and Y such that X is both a left-hand and right-hand divisor

of Y , and Y is both a left-hand and right-hand divisor of X. We will show that the answer

is positive by constructing such orders directly. See Section 3.6 of the previous chapter as

well as the introduction to this thesis for a discussion of this problem and its history.

Specifically, we will construct non-isomorphic orders X and Y , such that (1) X ∼= AY and

X ∼= Y ω, and (2) Y ∼= AX and Y ∼= Xω. Here A denotes the order ω∗1 + ω1. It follows from

these isomorphisms that X ∼= A2X. Hence from Theorem 2.2.3 we know that X is of the

form Aω(I[u]2), and from Proposition 3.2.1 that Y is its shift Aω(J[u]2). Our construction will

closely resemble our construction from Theorem 3.5.2 from Section 3.5. The difference will
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be in our choice of the I[u]2 , which instead of being ordinals as in 3.5.2, will be what Jullien

[8] called surordinals.

4.2 The construction

4.2.1 Review

Our terminology and notation is much the same as in the rest of the thesis. As always,

X × Y = XY denotes the lexicographical product of X and Y , and X(Ix) denotes the

replacement of X by the orders Ix. If A is a linear order, then Aω(I[u]) denotes a replacement

Aω(Iu) such that whenever u ∼ v, we have Iu = Iv. We call such a replacement a replacement

up to tail-equivalence. We similarly define replacements up to 2-tail-equivalence, denoted

Aω(I[u]2). See Sections 2.2.1 and 3.1.1 for more on these notions.

Also as before, a cut in X is a pair (I, J) such that I is an initial segment of X and J = X \I.

If (I, J) is a cut in X, we will sometimes write X = I +J . Conversely, if X and Y are linear

orders, we define the sum X +Y to be the order obtained by placing a copy of X to the left

of a copy of Y . Then (X, Y ) is a cut in X + Y . We will informally refer to this cut as “the

cut at the + sign.”

In Section 3.3 we defined the cofinality and coinitiality of an interval. Cuts, like intervals,

also have coinitialities and cofinalities. Suppose that (I, J) is a cut in X. A strictly increasing

sequence of points (xi)i<δ in I is said to be cofinal in I if for every y ∈ I there is an xi such

that y ≤ xi. If κ is the minimum length of a cofinal sequence in I we say that I has cofinality

κ. Similarly, a strictly decreasing sequence of points in J is said to be coinitial in J if it

eventually goes below every point in J , and J has coinitiality λ if λ is the minimum length

of such a sequence. The cofinality of I is 1 if I has a top point, and the coinitiality of J
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is 1 if J has a bottom point. When these cardinals are not 1 they are infinite and regular.

If I has cofinality κ and J has coinitiality λ, we say that (I, J) is a (κ, λ)-cut. Although κ

and λ are cardinals, just as in the case of intervals we will often write them as ordinals, to

emphasize they refer to sequences. For example, saying (I, J) is an (ω, ω1)-cut means that

I has a countable cofinal sequence, whereas J has a coinitial sequence of length ω1.

One may also define longer finite sums of orders, as well as infinite sums. Because the

sum operation, like the product, is associative, there is no danger of confusion in ignoring

parentheses. Given orders Xi, i ∈ Z, we write X0 +X1 + . . . to denote the order obtained by

placing a copy of X1 to the right of a copy of X0, followed by a copy of X2 to the right of a

copy of X1, etc. We similarly define . . . + X−1 + X0 and . . . + X−1 + X0 + X1 + . . . These

orders are really just replacements of ω, ω∗, and Z, respectively, but it will sometimes be

convenient to write them out as infinite sums.

The lexicographical product is right-distributive over the sum, but it is not left-distributive.

That is, for all orders X, Y, Z we have (X + Y ) × Z ∼= XZ + Y Z, but it is usually not

the case that Z × (X + Y ) ∼= ZX + ZY . In fact, the product distributes on the right over

replacements. In particular, we have distributivity over sums of any finite length, as well as

the sums of type ω, ω∗, and Z described above.

A word of warning: there will be one place in our construction where the ordinal ωω appears.

Here, ωω has its traditional meaning as supn<ω ω
n, and not as the set of infinite sequences

with entries from ω as has been our convention throughout the thesis. We will point out

when this happens so as to avoid any confusion that might arise from the ambiguity of

notation. We also note that while traditional ordinal exponents of this kind behave as

expected with respect to the anti -lexicographical product (the product usually used when

studying ordinals), with regard to the lexicographical product there is some awkwardness.

Namely, if α, γ, δ are ordinals, and if αγ and αδ have their traditional meanings and ×

is the lexicographical product, then αγ × αδ = αδ+γ (note the reversal in the exponent).
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However, for spaces of δ-sequences Xδ, exponents behave as expected with respect to the

lexicographical ordering and product. When there is no word to the contrary, Xδ is always

assumed to mean the set of δ-length sequences on X ordered lexicographically, even when

X is an ordinal.

4.2.2 The final lap

For the remainder of this chapter, let A denote the order ω∗1 + ω1. We adopt the following

conventions from Section 3.5. If α is a point in ω1, we denote the corresponding element of

ω∗1 by −α. We also identify the 0 of ω∗1 and the 0 of ω1, so that

A = . . . < −α < . . . < −1 < 0 < 1 < . . . < α < . . .

Though it does not follow directly from the statement of Theorem 3.5.1, the proof of 3.5.1

actually shows that we have the following theorem.

Theorem 4.2.1. Suppose that f : Aω → Aω is an order-automorphism. Then f has a fixed

point of the form (α0,−α1, α2,−α3, . . .), for some collection of ordinals αi ∈ ω1, where for

all i we have αi 6= 0.

Using this, we can give our solution to the two-sided Schroeder-Bernstein problem for

(LO,×).

Theorem 4.2.2. There exist non-isomorphic linear orders X and Y that are left-hand and

right-hand divisors of one another. Specifically, X and Y satisfy the four isomorphisms

X ∼= AY , X ∼= Y ω, Y ∼= AX, and Y ∼= Xω, where A = ω∗1 + ω1.

Proof. It follows from the isomorphisms X ∼= AY and Y ∼= AX that X ∼= A2X. Hence,

by Theorem 2.2.3 our X will be of the form Aω(I[u]2) for some collection of orders I[u]2 . By
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Proposition 3.2.1, it must be that Y ∼= AX will be of the form Aω(J[u]2), where for every

u ∈ Aω and a ∈ A we have J[u]2 = I[au]2 . Since for such X, Y we automatically have that

Y ∼= AX and X ∼= AY , it remains only to specify the orders I[u]2 , show that Xω ∼= Y and

Y ω ∼= X, and prove X 6∼= Y .

In what follows, ωω has its traditional meaning as an ordinal, that is, as supn<ω ω
n and not

as the collection of ω-length sequences on ω. The ordinals ωn also appear, though in this

case there is no ambiguity in the notation, since ωn (as an ordinal) is isomorphic to ωn (as

the collection of n-sequences on ω, ordered lexicographically).

We first define a collection of orders Li, i ∈ Z. For n ≥ 0, let

L0 = . . .+ 3ω3 + 2ω2 + ω + ωω

L1 = . . .+ 3ω4 + 2ω3 + ω2 + ωω

...

Ln = . . .+ 3ωn+3 + 2ωn+2 + ωn+1 + ωω

...

On the other side, let

L−1 = . . .+ 4ω3 + 3ω2 + 2ω + ωω

L−2 = . . .+ 5ω3 + 4ω2 + 3ω + ωω

...

L−n = . . . (n+ 3)ω3 + (n+ 2)ω2 + (n+ 1)ω + ωω

...

We claim that for i, j ∈ Z with i 6= j we have Li 6∼= Lj. This follows from a more general result

due to Jullien [8] and independently Slater [16]. We argue from Slater’s paper. Suppose that

105



we have orders L and M such that

L = . . .+ l2ω
k2 + l1ω

k1 + ωω

M = . . .+ l′2ω
k′2 + l′1ω

k′1 + ωω,

where the ln, l
′
n, kn, k

′
n are all positive integers, and furthermore k1 < k2 < . . . and k′1 < k′2 <

. . . are strictly increasing sequences. In the terminology of Slater’s paper, L and M are RJ

types of type 4 (see Theorem 2 of [16]). By Theorem 4 of [16], if L ∼= M , then there exists

an r ≥ 0 and N , such that for every n ≥ N , we either have that k′n = kn+r and l′n = ln+r, or

we have that kn = k′n+r and ln = l′n+r. That is, for L and M to be isomorphic, it is necessary

that the coefficients ln, l
′
m and exponents kn, k

′
m eventually agree, up to some shift of index.

If we compare Li and Lj for i 6= j, we see that while these orders are of the same form

as L and M , they do not satisfy the condition given in Slater’s paper necessary for their

isomorphism. Hence Li 6∼= Lj, as claimed.

Though they are pairwise non-isomorphic, the Li are all closely related. Namely, we claim

Liω = Li+1 for all i ∈ Z. There are three cases to verify. If i ≥ 0, we have

Liω = (. . .+ 2ωi+2 + ωi+1 + ωω)ω

∼= . . .+ 2ωi+2ω + ωi+1ω + ωωω

∼= . . .+ 2ωi+3 + ωi+2 + ωω

∼= . . .+ 2ω(i+1)+2 + ω(i+1)+1 + ωω

= Li+1,

where, in going from the second to third line, we have used the fact that ωωω ∼= ω1+ω

(reversing the exponent, as noted in the review) ∼= ωω.
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For i = −1 we have

L−1ω = (. . .+ 3ω2 + 2ω + ωω)ω

∼= . . .+ 3ω3 + 2ω2 + ωω

∼= . . .+ 3ω3 + 2ω2 + ω + ωω

= L0.

where, in going from the second to third line, we have used the fact that α + ωω ∼= ωω for

any α < ωω. Similarly, if i < −1, so that i = −n for some n > 1 we have

Liω = L−nω

= (. . .+ (n+ 2)ω2 + (n+ 1)ω + ωω)ω

∼= . . .+ (n+ 2)ω3 + (n+ 1)ω2 + ωω

∼= . . .+ ((n− 1) + 3)ω3 + ((n− 1) + 2)ω2 + ((n− 1) + 1)ω + ωω

= L−(n−1)

= Li+1,

where, in going from the third to fourth line, we have split off the ((n − 1) + 1)ω from the

final segment ωω. Hence Liω = Li+1 in all cases, as claimed.

We are now almost ready to define the orders I[u]2 that will appear in the replacement

Aω(I[u]2). These orders will each be one of the three orders Ieven, Iodd, and I, defined as

follows:

Ieven = . . .+ L−2 + L0 + L2 + . . .

Iodd = . . .+ L−1 + L1 + L3 + . . .

I = . . .+ L−1 + L0 + L1 + . . .

Before defining the I[u]2 , we prove that these three orders are pairwise non-isomorphic. Note

first that for a given i, every cut in Li is either a (1, 1)-cut or (ω, 1)-cut. The only cuts in
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the orders Ieven, Iodd, and I that do not fall in the midst of an Li occur at the + signs, and

these cuts are (ω, ω)-cuts. Hence these are the only (ω, ω)-cuts appearing in these orders.

Now suppose, for example, that there exists an isomorphism f : Ieven → Iodd. It must be,

then, that f [L0] ⊆ Lk for some odd integer k. This is because f [L0] is an interval in Iodd,

and every interval in Iodd is either a subinterval of some Lk or contains an (ω, ω)-gap. It

cannot be that f [L0] contains an (ω, ω)-gap, since L0 does not. But then we must actually

have f [L0] = Lk, since by a symmetric argument f−1[Lk] must be a subinterval of Lm for

some even integer m, and the only possible m is m = 0.

This is a contradiction. It cannot be that f [L0] = Lk since this would mean that the orders

L0 and Lk are isomorphic. But L0 is never isomorphic to Lk for k odd. Hence Ieven 6∼= Iodd.

By similar arguments, Ieven 6∼= I and Iodd 6∼= I, as claimed.

However, it is easy to see that we have Ievenω ∼= Iodd, Ioddω ∼= Ieven, and Iω ∼= I. For

example, to verify the first isomorphism, we check

Ievenω = (. . .+ L−2 + L0 + L2 + . . .)ω

∼= + . . .+ L−2ω + L0ω + L2ω + . . .

∼= + . . .+ L−1 + L1 + L3 + . . .

= Iodd,

and similarly for the other two isomorphisms. It follows that all three orders are invariant

under right multiplication by ω2, that is Ievenω
2 ∼= Ieven, Ioddω

2 ∼= Iodd, and Iω2 ∼= I.

Now we can define the I[u]2 . For every tail-equivalence class C ⊆ Aω, fix a representative

uC (so that C = [uC ]). There are two cases. If uC 6∼2 auC , so that [uC ]2 ∩ [auC ]2 = ∅, we

let I[uC ]2 = Ieven and I[auC ]2 = Iodd. If uC ∼2 auC , so that [uC ]2 = [auC ]2 = [uC ], we let

I[uC ]2 = I. Then by above, we have that I[u]2ω
∼= J[u]2 for all u ∈ Aω: depending on the u,

this is just the isomorphism Ievenω ∼= Iodd, Ioddω ∼= Ieven, or Iω ∼= I.
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Let X = Aω(I[u]2), and let Y = AX. Then Y ∼= Aω(J[u]2), where for every u ∈ Aω and a ∈ A

we have J[u]2 = I[au]2 . It is automatic from Theorem 2 that X ∼= AY . We claim that these

orders have the remaining desired properties, namely, that X ∼= Y ω, Y ∼= Xω, and X 6∼= Y .

The first two properties are easy to verify. First, we have

Xω = Aω(I[u]2)ω

∼= Aω(I[u]2ω)

∼= Aω(J[u]2)

= Y,

and similarly to show Y ω ∼= X.

So it remains to prove X 6∼= Y . First note that since A has no endpoints, the order Aω

is dense. Thus every interval of Aω is dense. It follows that, in general, if Aω(Iu) and

Aω(Ju) are replacements of Aω with none of the Iu, Ju empty, and g : Aω(Iu) → Aω(Ju) is

an isomorphism, then for a given Iu we must have that either f [Iu] ⊆ Jv for some v, or that

f [Iu] (and hence Iu) contains an infinite dense suborder. (The “or” here is non-exclusive.)

Now, suppose that f : X → Y is an isomorphism. We view f as an isomorphism of Aω(I[u]2)

with Aω(J[u]2). None of the orders Lk contains an infinite dense suborder, and so neither do

the I[u]2 , J[u]2 , as these are just Z-sums of the Lk. By our observation above, it must be that

for every u ∈ Aω there is a v such that f [Iu] ⊆ Jv. Conversely, for every v ∈ Aω there must

be a u such that f−1[Jv] ⊆ Iu. Combining these observations gives that in fact for every u

there is a v such that f [Iu] = Jv. In particular, for such a pair u, v we have that Iu ∼= Jv

as linear orders. We will assume for convenience that f is actually the identity on each Iu,

that is, that f((u, x)) = (v, x), since if f ever acts non-trivially on the right coordinates we

can replace f with another isomorphism that does not, but still sends Iu onto Jv.
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But then we have that f actually factors as (g, id), where g : Aω → Aω is an automorphism.

By Theorem 4, the automorphism g has a fixed point u = (α0,−α1, α2,−α3, . . .), where the

αi are non-zero ordinals in ω1. For such a u we have u 6∼2 au, and hence I[u]2 6∼= I[au]2 : one of

these orders is Ieven, and the other is Iodd. Hence one of Iu, Ju is Ieven and the other is Iodd.

But this is a contradiction. Since g fixes u it must be that f [Iu] = Ju, an impossibility, as

these orders are non-isomorphic. Hence X 6∼= Y , and the theorem follows.
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