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DERIVATION OF ONE-DIMENSIONAL REFRACTIVE-INDEX
PROFILES FROM INTERFEROGRAMS '

" F. R. McLarnon, R. H. Muller and C. W. Tobias
Inorganic_Méterials Research Division, Lawrence Berkeley Laboratory and
Department of Chemical Engineering; University of California
Berkeley, California 94720
ABSTRACT

A method is presented for the derivation of one-dimensional

refractive-index fields from interferograms that may be distorted by

light-deflection effects. The technique involves an iterative process

that eﬁploys_ciosed—form solutions for light-propagation through
inhomogeneous media and a three-parameter polynomial function to
describe the refractive-index field. The method was tested by analyzing
the interfefbgrams assoclated with various refractive-index fields
generated by diffusion and convection at a solid-fluid interface. The
results show that the derived polynomial refractive—index profileé
closely.approximate the concentration fields and accurately depict the

interfacial refractive-index. However, the derived interfacial

refractive-index gradient can be in error, because of the limitations

in the precision with which the exact location of the interface can be

established on an experimental interferogram.

Index Headings

Interferometry; Refraction; Refractive-index; Ray-tracing; Electrochemical

boundary layers



Introduction

Conventional interpretation of interferograms assumes that light

propagates along a straight line through a spécimen. Local refractive;
index variations within the specimen are then caiculated from the local
phase change (fringe shifts) in the 1nterferogtam.1 However, because
refractive—iﬁdex variatidns nofmal to the beam direction deflect

the beam as iﬁ traverses the refractive-index field, conve’ntiénal
interpretatioh.of the resulting interferogram qénllead to large
errors.z’3 ‘This paper presents a ﬁethod for the derivation of
oﬁe—dimensional refractive-index profiles from iﬁterferograms which

may be distorted by light-deflection effects.

A numerical solution to the equation of light deflectior? has permittéd
computation of the interferogram associated with aﬁy given refractive-
index field. ‘For the reQerse problem, an iterative technique ﬁust
be used to calculate the refractive-index field associated with a given
interferogram because no directAcomputational,method exists. Closed-
form solutions to the equaﬁionrof light—deflegtioq have now been defived'
for a polynomial-typé.reftactive;index field énd are used in the

iterative method presented in this paper.

Light-Deflection in a Refractive-Index Field

Figure 1 schematically illustrates the.trajecforz of a light ray
within a fefractive—index'field. The field in fhis case is a béundary
layer, which is a transparent medium of variable refractive-index
near an opaqué surface (the plane identifiéd by y =0 in Fig. 1).

The refractive-index increases continuously from its minimum value
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n_ at y = O to itslmaximum value n at y = S , the edge of the
boundary layer; and the refractive-index has a constant value n,
for y > ¢ . Such boundary layers are encounterea in heat and mass:
traﬁsfer between two phases. Local variations in temperature or

concentration result in corresponding refractive-index variations near

the interface. The trajectory y(x) of light beam AB is calculated

: 2,4
by solving the light-deflection equation for this coordinate system: ’
2 2 ,
&y .1 1+(§z _33_(21-33- W
2 n dx dy dx/ 9x :

dx

where n = n(x,y)’ is the refractive-index within the field.
Concurrently, the optical path length p of theAbeam must be calculated
in order to determine the phase difference between various rays

traversing the specimen:

-
2 .
p(x) =fn(x,y) ‘yl + (%i-) dx o (2)
0 -

Solution of the Light~Deflection Equations

In the analysis of one-dimensional boundary layers, the refractive-
index is a function of y only (n = n(y)) and the last term on the
right-hand side of Eq. (1) vanishes. Equation (1) may now be

integrated directly:



(3)

4)

where Yo is the position where a particular light ray enters the
specimen (parallel to the plane y = 0) and n, is the medium refractive-
index at x = 0 and yv= Yo . The tractability of‘Eq. (4) depends
upon the form of the refractive-index function n = n(y) . Solutions
for‘a constant refractive-index gradienf of unlimited extent (n « y)
have been obtained previously.1 | |

Solutions for more general refractive~index profiles céﬁ be

obtained if the light-deflection equation [Eq. (4)] is simplified. If we

define € =<§— - 1, we see that € is a small number for most practically
e C :
observed concentration fields. For example, that maximum value of € likely

to be encountered in the interferometry of aqueous CuSO4 systems3'

is about 0.01. We can then approximate .(n/ne)2 - 1= 2 + 6253 2

to within about 0.5%.

The light-deflection equations [Eqs. (2) to (4)] now simplify to

e N (5)
e
y
x=| —&X (6)
: , n - '
ye 2 n
e



X
p(x) = nx + 2] (n - Ine)dx (7
A _

Use of thése_approximatg equations is justified in Appendix A for the
.interferometric analysis of a particular refractive-index field.
Note that as n > n, > the refractive-index variations vanish'and

Eq. (7) becomes p(x) = o x , which corresponds to conventional

interferogram interpretation.

Two-Parameter Refractive-Index ?rofile

A closed-form solution of both Eqns. (4) and (6) can be obtained

(see Appendix B ) for a parabolic refractive-index profile

p=—-="-1-@a-ni-2v-v?, 0<v<1 (8)

where 0 is‘a dimensionless refraétive index aﬁd Y a dimensionless distance

in a boundary layer Y = y/8. The parabolic profile has only two degrees of
freedom, ns and §: the parameter n_ pernits stretching along the refracfive—
index axis (e.g., the abscissa in Fig. 4) and the parameter § allows

stretching along the distance axis (e.g., the ordinate in Fig. 4).

Three-Parameter Refractive-Index Profile

A polynomial refractive-index function can be formulated as



D@
]

1- a-n2a-v?, 0.268<k<1, 0<Y<1 (9

8=1,Y>1

where the limits on the parameter k insure that the fqnction G(X)_r
suffers no inflection or extremum pointsvfor 0 { f <1 . This
relatively simple functibnality offers two.advénfages: (a) it permits
a closed-form solution to the equations of light—defléction [Eqs. (5)
to (7)], ana (b) it is flexible enough to closely approximate typical

refractive-index fields encountered in heat and mass transfer. Note

that thé pérabolic boundary layer profile Eq. (8) is a spéciél case
of Eq. (9) for k=0 . | |

Tﬁere are three variable parameters.in Eq. (9): n. 6§ and k .
in additionvto the twd st:etching parameters ns‘ and é , the cu;Qe
shape parameter k provides addi;ional flexibility tp_fit data. -
The polynomial function Eq. (9) is plotted in Fig. 2 for sgveral
" values of k .

We can obtain a closed-form solution to Eq. (6) for the polynomial
boundary layer profile by first defining the following variables and

parameters:

w(¥) = A -kNQAQ-Y) (10) "
-8 u(Y) | | |
U u, "t (11.).

i 2
=1 a-x- ,
m=3 [} + m “é ] o : (12)'



h=2 f—"i;-—-‘i | (13)
e
u ‘ N

%y = 7w | (4

U is a transformation variable related to dimensionless distance Y by

1+k Ye ' on
Y = Zk‘_T(Ztn_1+U) (15)

Using the new variable of intggration v, Eq.b(6) transforms into:

1
x = D du (16)
)/ A -DOU+DE -1+ 2m)
4 :
for which the solution is:S
- fi-u
x = x °sn ( T n> : | (17)
‘where m (defined by Eq. (12)) is the parameter of the elliptic
integral of the first kind sn-1 . Equation (17).can be inverted
to a function of the Jacobian eiliptic function sn :
-2 x o
=1 - 2m*sn (;— . m) (18)
m ’ .

The phase integration formula Eq. (7) becomes:



X
p(x)=nex+hx—fU2& | (19)

0

which can be easily integrated by standard formuléé (e.g., Gauss-
' Legendre Quadrature). Formulae similar to Egs. (17).— (19) can
be derived6 for k< 0. For k=0 , the parabolic boundary layer

formulae (see Appendix 1) apply.

Célculation of Ray Trajectories and Optical Paths

_Equétion (18) may be used to calcuiate the trajectpfy of a light
ray through a boundary layer. Figure 3'illust;ates two types of ray
trajectoriés fo consider: Typé I, représented by line ABC, in which
the ray remains within the boundafy layer for 0<x<w, and
Type 1I, représented by line DEF, in‘which the ;ay leaves ;he‘
boundary layer before entering the gLassvwall at x = w. Since the
ray would leave the boundary layer by definition when the .ray reaches
the edge of the boundary layer Y=1 (or U = 0), we can easily
determine the type trajectory (I or II) of a ray by qsing Eq. (17) for |

U =0 to calculate the abscissa location Xy where the ray leaves

x, = xm'sn-l(V% , m) : (20)

Type 1 x> w : the ray remains within the boundary layer for

0 <x <w. Integration of Eq. (19) provides the optical path length

the boundary layer:

of the beam:



p(x = w) z'p<w)=ne"+hw-fU2dx - (21)

The integral in Eq. (21) can be accurateiy evaiuated by 3-point Gauss-
Legendre Quadrature,7'where Eq: (18) éupplies the functional values

U2(x) . The accuracy of the 3-point quadrature is discussed in

Appendix A, Eq. (18) and Eq. (15) provide the locaﬁioﬁ y(w) (see Fig. 1)
of the ray as it leaves the medium to enter the glass wall. Equation

(9) gives the medium refractive-index and Eq. (5) gives the slope of

the ray at this plane.

Type II Xy < w : the ray leaves the boundary layer before entering
the glass sidewall. For x > X the ray travels along a straight .
line since above the edge of the boundary layer there is no refractive-
index gradient. Inspection of Eqs. (5) and (13) shows that the ray

. v _ .
has a slope ax vh for Xy

the plane where it leaves the medium to enter the glass wall is

< x<w, so the location of the ray at

Y(w)=1+/ﬁ(w-xb) - (22)

The optical path length of the ray can be calculated from Eq. (2) and

Eq. (19):

pw) = n % + h xb - f Uzdx + n° (w ..— xb)VI + h (23) |
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Calculation of Interferograms from Known Refractive-Index Fields

The formulae derived in the previous section provide the
trajectory y(x) and the optical path length p(x) of avlight ray

as 1t traverses the medium 0 < x < w . The fay then passes through

the glass wall w < x'<w +d and propagates to the imaging objective

lens of the interferometer. If the real plane of focus (opticaily
conjugate to the film plane of the interferometer) lies at some plane
X =X, we can calculate2 the location of the virtual piane of

focus GM (Fig.l) (relative to the plane of light-exit x =w +d

from the specimen):

. Aw-x ’ . V
Fe—>=+ 2 (28)

) g
The distance ' F 1s shown on Fig. 1 for focus at X, = 0, o = 1.33
~and n_ = 1.5 . All rays, provided they are accepted by the objective

g

lens, appear to emanate from the virtual plane-bf focus GM. The

deflected réy ABC thus appears to come from its virtual origin M ,
‘and its location on the interferogram can be calculated by considering
refraction in the glass wall and the distance S = F-tan ¢a shown -

in Fig. 1 .

vy = y(w) + d°tap ¢g - F-tan'¢a | (25)

‘The angles ¢g in the glass wall and ¢_ in the surrounding medium

N

(e.g., air) are easily determined by Snell's Law.
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ggggg‘on the interferogram is calcﬁiated from the optical path length
difference between the deflected ray ABC (Fig. 1) and a hypothetical unde-
flected ray LMN passing (in bulk solupion) through the virtual origin M.
The exit péints C and N of each ray lie on an eqniphase arc CN
centered on the virtual origin M . Beyond points C and N the
imaging §étics introduce no phase difference between the réys ABC

and LMN. The optical path P, of the hypothétical undeflected ray is

calculated by considering the distance T ='F-(dl + tan2 ¢a - 1)

on Fig. 1:

- . ' . . 3 2 - )
Py = By W + ng d +F (dl + tan ¢a 1 (26)
where the sufrounding medium is assumed to be air. The optical path

difference between a deflected ray ABC (Fig. 1) and the undeflected ray

LMN of the same virtual origin is given by _
Ap = p(w) +n_-d Q]l +tan® o - p (27)
g g o

and is related to the number of fringe shifts on the interferogram by

Using a large number (e.g., 50) of rays entering the plane
x = 0 at different positions (ye values) an interferometric phase

vs distance relationship, i.e. an interferogram, can be constructed

by application of the above formulae.
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Derivation of Refractive-Index Profiles from Interferograms

Although the interferogram associated with a given polynomial
refractive-index field caﬁ now bg derived in cloéed form, the reverse
is not péssible. Rather,an iterative technique is required to find
the refraqtive—index.profile associated witﬁ'a gi?én (i.e., experimental)
interferogram; The three variable parameters of‘thg:bolyndmial
function.Eq. (9) can be estimated by a conventional analysis of the
1nt¢rferogram. These parameters are then varied in a systematic
fashion, and a new interferogram is calculated each time a single _
parameter is changed until the best fit between the experimental

and compﬁted interferograms is found.

The foilowing parameter variation technique has been used to
find the:refractive—index profile associated with a given interfgro-
gram by minimizing the deviations between the giveh and calculated
interferograms: |
1. vVary the interfacial refractive-index ’ns until the average
deviation between computed and given.interferograms_is zero
_(of less fhan some arbitrafy small valﬁe).
2. Change the orientation parameter k and calculaﬁe the new
' n_ yalue by repeating step #1. | |
3. Repeat step #2 until a minimum in standard deviation between -
caiculated and given interferograms is fbund. |
4. Change the boundary layer thickness & and calculate the

new k and n, values by repeating step #3.



-13-

5. Repeat step #4 until a minimum in standard deviation between
calculated and given interferograms is found.

Details of this iterative technique are given elsewhere.6

Accuracy of Polynomial Representation of Refractive-Index Fields

Rgsﬁlts of sample interférogram analyses are shown in Fig. 4.

~On the abscissa of this figure the interference order (fringe shifts)
is linearly related to refractive-index (concentration). [This
relétion corresponds to conventiénal interpretation Ap = w(n - nb)].
The true refractive-index fields correspoﬁd to cbncentration profiles
(boundary layers) formed by the electrodeposition of Cu from
aéueous 0.1 M CuSO4 electrolyte. These profiles'are depicted by
the filled circles on Fig. 4 and correspond t§ the following functional

relationships:

o 2
a: 0=1+71"5A - erfy) - ¥ - (29a)
b: 6 = erfy (29b)
e o= 34

2Y - 2Y" + Y . _ (29¢c)

Equations (295) ahd (29b) descfibe the concentration profile;3formed by
diffusion-controlled electrodeposition at (a) conétant current
(constant ihterfacial refractive~index gradient) éﬁd (b) constant
potential10 (constant interfacial refractive-index). Equation‘(29c)-
describes a Pohlhausen—typevfieldll; it approximates rather well the

concentration profile one might expect12 for forced convection-controlled
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electrodeposition. The open circles shown on Fig;‘4 are the "data'" which
define an interference friﬁge to be anélyzed. These points were calculated
by numeri&:al'inr;egrat::lonz"8 of the iight—deflectidn equation (Eq. (1)) for
the refractive-index fields Eq. (29) for real plane of focus Xg = 0.  The
solid and_dashed éurves are the derived golznomial'cqncentration profile and
its associated computed 1nterfefogram, respectively. 40—90-iterati§nsb
are usually required to find the minimum standard deviation between.
éomputed (dashed curve) and given (open circles):iﬁterferograms,
consuming about 1 sec of comput:erl'3 time. About 20.seconds of computer
time would be required to perform a similar analysis.using a numerical
solutionz’s of the light-deflection equation. | |

Figure 4 shows that the refractive-index field dgrived'from a
given interferogram by the technique presented in this paper does
approximaﬁe fhe true fiéld. A serious question ériées, however,
about the uniqueness of the derived réfractive—indéx profile. 1Imn
Fig. 4b and 4c the form of the derived profile clogely appfokimates
~ the gggg of_ﬁhe true profile, but careful inspeétion shows that_the
slopes dC/dy at y =20 do not match. Figures.S,aﬁd 6 present a
series of computations that illustrate thisrproblem.v Figure 5 deﬁicts'
the ratio Rg of the derived interfacial refractivé—index gradient
to thé true inferfacial refractive—index.gradient.as a function of the
true gradient. The calculations were performed fo;.the three model
refractive-index profiles Eqs. (29) for a real plane of focus Xg ;vO .
Thé filled syﬁbols on Fig. 5 represent conventional interpretation of

the (computed)interferograms while the open symbols illustrate
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interpretgtion as previously desc?ibed in Fig. 4, Figure 6 shows
similar calculations for the rati§ Rh ‘of derived refractive-index
differences (bulk less interfacial) to the truevrefractive;index
difference.

The open points in Figs. 5 and 6 show that while the techﬁique
presented here is likely to find the interfacial refractive—index to
within 5%, serious (up to 30%) errors can result in the determination
of the in;erfacial refractive-index gradient. These errors are related
to the insufficient flexibility of the polynomiallrefractive—index
function Eq. (9); it can accurately repfeSent the modél profile
Eq. (29a), but it cannot adequately describe the profiles Eqns. (29b)
and (29¢c). :

Although one's immediate reaction miéht behto suggest another
refractive—indéx~functionality,more general than Eq. (9), careful
inspection of Fig. 4 indicates a problem in the uniqueness of the
refractive—index field derived from the intetferégram. Note that the
end-point of the computed interferégram (dashed line) matches the
end point éf:the given interferogram (lowest‘open circle) only in
Fig. 4a. In Fig. 4b and 4c, there are 0.023 mm and 6.017 mm
discrepancies between the end points. This misfit is the only apparénf
signal that the best match between computed and gi§en (experimental)
interferograms has not been found. In Etactice; there is considerable
difficult;ugn reading the exact 1ocation.of the interface on an
experimental interferogram, so it is unlikely that this small difference
bgtween the computed and given interferograms could be detected. In

other words, there are two different refractive-index fields (e.g. the
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solid curve and filled circles in Fig. 4b) associated with practically
ipdistinguishable interferograms (e.g.,~the dashed curve and open
“circles in Fig. 4b). Thus, while the technique presented in this
paper can indeed approximate both tﬁe form of ;he refractive-index
-field and the interfacial refractive~index associﬁfed with a given

interferogram, it is not able to find either the unique refractive-index

profile functionality or the exact interfacial refractive-index gradient.
Under certain circumstances, however, it may be possible to deter-

mine the true refractive-index profile functioﬁality directly from the

(distoried) inte;ferogram. The solid curves 1n‘Fig. 7 depict two
specific forms of the polynomial refractive-index function Eq. (9):
the parabdlic profile k = 0 and the quartic prof;le k = 1, both in
dimensionless form. Ihe computed dimensionlgss intérferogramé
associated with the parabolic and quartic profiles are indicated by
. the dasheducﬁrves. The close agreément betweenlﬁhe'form of the para-
bolic profile and its associated interferogram suggests that the
true refractive-index functionality may be determined directly from
the distorted interferogram if the true.profilg is ﬁot too different
from parabolic. For example, the Pohlhausen profile Eq. (29c) would
be of this type. ;However, the mismatch between the quartic profile
and its associated interferogram suggesté that the refractive;indei
functionality.cannot be determined directly from the distorted

interferogram. This is the case for the refractive-index functionality

Eq. (29a).

L3
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The filled symbols in Figsf 5 and 6 show that except for small
refractive-inde# gradients, conventional interpretation of inter—
ferograms can lead to large (up to 60-85%) errors in the deterﬁination
of the inteffacial composition ;nd gradient of refractive-index.
Reference (3) discusses the effect of speciﬁen sizes.and refractive-
index differences on sucﬁ»light-deflection errors.. While the technique
presented'in this paper obviously has its_limitafions, it is
certainly preferable to the conventional intefpfetation of interferograms
when the refractive~-index gradients are large.

Determination of the uqigue refractive-index field associated
with a given iqterferogram is possible only if atvléast one of the
folloﬁing conditions is‘met:

(1) If the refractive-index gradients are so small that light~
deflectioh'effects are negligible.

(2) I1f the light-deflection equation can be inverted and the
refractive-index field directly determined from the interferogram.

(3) If the form of the refractive-index function is known
beforehand,;s‘numerical integration of the light-deflection equafibn
cdupled with a suitable iteration techpique can be used to determine
quantities such as inierfacial_refractive—index, etc.

(45 If,'fof example, the interfacial refractive-index gradient
is known beforehand,16 numerical integration of the light-deflection
equation can be performed for various types of refractive—index

profiles until the derived gradients match the known gradients.
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(5) If the refractive-index functionality is not unlike the
parébolic profile k = 0, the functionality may be determined directly
from the interferograﬁ.
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Appendix I

Parabolic Refractive Index Profile

The solution to the complete equation of light-deflection

[Eq. (4)] can be obtained for a parabolic refractive-index profile

Eq.‘(8) by use of the following transformation:

In addition; a scaling factor xp is defined as

=
*p W(nb SR AFE )

Eq. (4) then transforms into

2‘7% f \\/7 -D@E - DE+ D

for which the solution 135

-1( 1H-1 )
X = x _°sn - m
i P m l

Here, m is the parameter for the elliptic integral of the first

kind sn_l and is defined as m = (nb - ne)/(nb + ne) for this

solution. Equation (33) may be inverted:

(30)

(31)

(32)

(33)



-20-

1 + mesn(Z, |
+msn( m) (34)

¥ foy®

where ' sn 1is the Jacobian elliptic function, and the phase integratioﬁ

equation [Eq. (2)] becomes:
x
2 ' _
p(x) = n* IH dx : g (35) .
0o '

which may be integrated by standard formulae (e.g., Gauss-Legendre

Quadrature).

- The simplified form of the light-deflection equations [Eﬁs. (6)

and (7)] can be integrated directly for a parabolic boundéry layer

profile:
%—_—_-1—1 = cos xi' ‘ . (36)
o o o
b(x) =nx - (nbi— ne)'xo'sin ££'°cos-§i- _ . (37)
‘ . 0. . 0 o
where

e
x, =6 Q/——-——_——-—— . (38) . ;
0 2(nb ns) o |
Equation (37) is a closed-form solution of the phase integration

equation and can be used to estimate the accuracy of Gauss-Legendre
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quadrature as applied to Eqs. (35) and (37). Equation (36) pernits
a simple determination of the location Xy where all rays leave the

boundaryvlayer:

X =5 xg - : ‘ (39)
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- Appendix II

Validity of Approximations

The effect of the approximations made in the derivation of the
closed-form solutions of the light—deflection equationé (Eqs. 17, 19, »
33 and 37) has been investigated by computing interferograms for a
type I and a type II boundary layer,_ﬁsing differen; computation

schemes. Two parabolic boundary layers are chosen to represent an

3,6,8

electrochemical system where the refractive~index field corresponds

to aqueous CuSO, electrolyte depleted in CuSOa concentration near an '

4
electrode surface. For each case, the concentratiénﬁdifferehce between
'fhe bulk (y > 6) solution and the interface (y = 0)_13 0.1 M CuSOA,
corresponding to refractive-index values3 nb:-l;3§4oand n_ = 1.3311
at X = 632.8 nnm. | |

Type I: § = 0.70 mm, and no rays are deflected out of the boundary layer.

Type II: 6 = 0.35 mm, and all rays are deflected out of the boundary

layer.
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wa.characteristics of the computed interferograms are given
in Tablé I: Yeg» the positionvon the interferogram of a ray entering
the specimen at ye = 0; and AN, the total number of fringe shifts seen
on the intérferogram. The calculations are performed for w = 10.0 mom,
d=12.7 mm and A = 632.8 nm (see Ref.‘Z for the dependence of light-
deflection errors on w, d and n - ns).

The accuracy of the phase integration by 3-point Gauss-Legendre
Quadrature can .be checked by comparing computations #3 and #4 of Table I.
Both computations have been carfied'out for the simplified version of‘
the light-deflection equation [Eq. (6)], but the calculation scheme
##4 uses the.Gauss—Legendre Quadrature while #3 uses the closed-form
solution for the phase integration, Eq. (37).

The accuracy of approximating Egs. %) and’(Z) with Eqs. (6) and
(7) can be éhecked by compariné scheme #4 with scﬁéme #2. Note that
the approximation is good to within 0.1Z.

The accuracy of the numerical integration2’8 of the light-
deflection equation can be checked by comparing schemes #5~9 with
#2. ‘Note that about 500 intervals (step size 0.02 mm) are required to
approach the clésed-form solution to within O'OOIva (ysf) and

0.1 fringe (AN) .
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Table I

.'Validity of Approximations and Convergence

of Numerical Solutions

. Type 1 Type II
& boundary layer boundary layer
$%§F § = 0.70 mm 6 = 0.35 mm
b )
X Qo Yy AN -y ' AN
5%5? (fs) (number of (fs) (number of
O _ m .. fringes) o fringes)

1 Conventional analysis ' _ :

Eq. 29 0 45,83 0 - 45,83
2 Egs. 33 - 35" -0.2466 53.26 -0.2027 38,51
3 Eqs. 36 - 37 -0.2464 53,25 -0.2025 38.50
4 Eq. 36" ~0.2L464 53.25 '*-o.éoes 38.50

. . 2,8

Numerical Integrgtlon :

Intervals Mesh Size (mm) _ o . _
5 10 1.0 -0.2824 57.20 -0.2663 . §7.42
6 100 0.1 -0.2502  53.66 -0.2086 39.00
T 500 . 0.02 -0.247h 53.35 | -0.2039 38.68
8 1000 0.01 -0.2L69 53.29 -0.2035 38.62
9 10000 0.001 -0.2L67 53.26 -0.2030 - 38.54

*

3-point Gauss-Legehdre Quadrature used for phase integraticn
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uncertainty in the location of a 10 mm wide surface.
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This is the case forrdiffusion—controlled electrodeposition.
See'Ref. 3).

In many electrochemical systems, the local iﬁ;erfacial refractive
indéx gradieﬁt is directly related to local current density,

which can often be measured independehtly.
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NOMENCLATURE
c éléctrolyté concentration (M CuSO4)
d glass wall width (mm)
F - location of virtual plane‘of'focus Gmﬁ)
h parameter Eq. (13)l
H’Hm;x _trénsformation variable Eq. (30)
i ‘current density (mA cm—z)
k ~ parameter Eq. (9)
bm - parameter of the elliptic integral of the first kind

Eq. (12) or Eq. (33)

n refractivé—index
' n Sulk refractive-index (y > §)
n, ~refractive-index at x = 0, y = Ve
n_ »iﬁterfacial refracti§e—index (y = 0)
N interference order Eq. (28)
P optical path length (mm)
P, optical path length of undeflected ray (mm)
Rg ratio of the derived interfacial refractive-index gradient,b
to the true gradient
Rn _ ratio of the derived refractive-index difference n, - o

to the true difference

u transformation variable Eq. (10)
u, u(ye)

U u/ue

w cell width (mm)

x horizontal distance (mm)
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loéation where ray leaves boundary layér (mm) (Egqs. (20), (39))
parameter (mm) Eq. (14)

parameter (mm) Eq. (38)

_parameter (mm) Eq. (31)

vertical distance (mm) Fig. 1

" position of light entfance into specimen (mm) Fig. 1

distance on interferogram (mm)

‘interfacial location on interferogram (ﬁm)

dimensionless distance Y = y/§

¥/

boundary layer thickness (mm)

number of fringe shifts on an interferogram

optical path difference (mm) | _ -

" (n —‘ne)/né

dimensionless refractive~index Eq. (8), (9), or (29)

wavelength of light (nm)

ray angle in air (rad)

ray angle in glass (rad)
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FIGURE CAPTIONS

Fig. 1. Schematic illustration of a light ray trajectory.

Fig. 2.

Fig. 3.

'ABC

LMN
GM
CN

PQ

F,S,T

s

Ray trajectory

Hypothetical undeflected ray

Virtual plane of focus

Equiphase arc centered on virtual origin M
Edge of‘the boundary layer

Horizontal distance

Vertical distance

Position of light ray entrance into specimen
Glass wall thickness, refractive-index ng
Cell thickness,medhmzrefractive—index n(x,vy)
See text ”

Boundary layer thickness

Polynomial boundary layer refractive-index profiles.

Ordinate: dimensionless distance Y = y/§

Abscissa: dimensionless refractive-index 6 = (n-ns)/(nb~ns)

a

b

[

d

k = -0.268
k= 0

k = 0;5
k= 1.0

Schematic illustration of different ray trajectories.

ABC

DEF

GH

Trajectory of a ray that remains inside the boundary

layer (Type I)

Trajectory of a ray that is deflected out of the

.boundary layer (Type II)

Edge of the boundary layer
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Interpretation of interferograms.

Abscissa:

Ordinéte:

00O

0000

local con;entration M CuSOa) o:‘phase change
N.(fringes). |

distancg y (mm) .

Intetfetogfam‘(phase vs disténce‘relationship)

to be analy?ed. (Computed from the refractive-index

2,8

fields (Eq. (29)) by numerical methods ’ .) Plane

of focus'xf =0 , w ='lb.0 mm énd d ='12.7 mm .
Polynomial concentration p.rof.ile _(fefractive—;l.ndex
field)derived from the above'interferggraﬁ.
Interference fringe #ssocia;ed with the above
concentration profile.

True concentration profile (reffactive—index field
Eq. 29). C_ = 0and G = 0.1 n Cus0, (n_ = 1.3311
and n = 1.3340 for A = 632.8 nm).

Refractive-index field described by Eq. (29a).

Derived concentration profilei § = 0.535 mm,

k = 0.800, C_ = ~0.0004 M CuSO,. ' Standard deviation

4

4
1.97 X10 ' M CuSO4 per data point.
Refractive-index field described by Eq. (29b).
Derived concentration profile: § = 0.408 mm,

k =-0.454, Cs = -0.0053 M. Standard dgviation

2.43 x 1074 M/point.
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Fig. 6.
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c Refractive-index field described by Eq. (29c).
Derived concentration profile: § = 0.272 mm,
k = 0.068, Cs = ~0.0020 M. Standard deviation

1.37 x 1074 M/point.

Relative error of measured interfacial refractive-index gradients.

-Abscissa: true interfacial refractive-index gradient (cm—l).

Ordinate: R8 = derived interfacial refractive-index gradient

divided by true gradient.

C)‘? 0O Apparent réfractive—in@ex gradient derived by
conventional interpretation of the (computed)
interférograms.

C)‘7 O Refractive~-index gradient de?ivéd by interpretation

.of interferograms as shown in Fig. 4.

ONO) Refractive—-index field described by Eq. (29a).
‘7 ‘7 Reftactive—index field described by Eq. (29b).
aog Refractive-index field described by Eq. (29c).

Relative error of measured interfacial refractive—index.

Abscissa: true interfacial refractive-index gradient (cm-l).

Ordinate: R.n = derived refractive—index difference (ﬁﬁ - ns)
divided by true refractive-index difference.

O V O Apparent interfacial refractive-index derived
by conventional interpretatioﬁ ofbthg (computed)
interferograms.

() ‘7 (W Interfacial refractive-index derived by interpretation

of interferograms as showm in Fig. 4.

Other designations as in Fig. 5.
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Fig. 7. Parabolic and Quartic refractive-index fields and corresponding

interferograms. :

Ordinate:

Abscissa:

dimensionless distance

dimensionless refractive-index

True refractive-index field (parabolic .k =0

and quartic k = 1). |
Computed interferogram associatéd_withbthe true
refractive-index field. Corréqunds to interfacial

refractive-index gradient %s . =0.3 cm-l .

y=0

w .
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Phase change (fringes)
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Fig. 4
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Fig. 5
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—— Computed interferogram
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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