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Abstract

Modeling the Observational Signatures and Feeding of Super-massive Black Holes using
Monte Carlo Radiative Transfer

by

Nathaniel Jacob Roth

Doctor of Philosophy in Physics

University of California, Berkeley

Associate Professor Daniel Kasen, Chair

This thesis presents numerical calculations designed to understand aspects of the feeding of,
and feedback from, super-massive black holes at the centers of galaxies. The first portion of
the thesis describes the development of radiative transfer tools used to address these prob-
lems. I present a description of how the Monte Carlo technique can be used to solve the
radiative transfer equation, and I demonstrate a coupling of the transfer solution with the
equations of hydrodynamics and statistical equilibrium. I next present two major applica-
tions of these ideas. The first is to quantify the effects of radiative feedback in active galactic
nuclei in the form of radiation pressure on dust at the center of a gas-rich galaxy. The sec-
ond is a calculation of the spectral energy distributions and optical spectral line strengths
emitted during the tidal disruption of a star by a massive black hole. In so doing, I help to
answer a number of puzzling questions relating to such disruptions, such as whether the lack
of hydrogen emission in their spectra can be the result of radiative transfer effects rather
than a lack of hydrogen in the disrupted star.
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Chapter 1

Introduction

Before presenting the calculations relating to the observational signatures and feedback
from super-massive black holes, it will be helpful to review the history of the discovery of
these objects and the realization of their physical significance.

1.1 The discovery of super-massive black holes (SMBHs)
The story of SMBHs goes back to discovery of unusual point-like sources of radio emission

given the name quasi-stellar radio sources, or quasars. A remarkable aspect of these objects
was the unusually high redshift of the emission lines found in their spectra, such as the
measurement of z = 0.158 for the quasar 3C 273 (Schmidt 1963). For this redshift to be
cosmological in origin, it places the source at a luminosity distance of hundreds of Mpc,
requiring a luminosity of at least 1012 L� to match the observed radiative flux, a brightness
that exceeds the combined stellar output of most nearby galaxies.

The following year, Salpeter and Zeldovich independently suggested accretion onto very
dense objects as a way to achieve these luminosities (Salpeter 1964; Zel’dovich, Y. B. and
Novikov, I. D. 1964). This was motivated by the fact that accretion onto a compact object
is a highly efficient way of liberating energy. A test particle that loses angular momentum
and spirals down to the innermost stable circular orbit of a Schwarzchild black hole will give
up about 6% of its rest mass energy in the process. This fraction can grow as large to 40%
for particular flows around Kerr black holes with maximal spin, but 10% is a typical value
for radiatively efficient accretion (e.g. Frank et al. 2002).

It was later suggested (Lynden-Bell 1969, 1978; Rees 1978) that accretion onto SMBHs
could explain the diverse emission from nearby galaxies harboring Active Galactic Nuclei
(AGN), with quasars being the most luminous case. This argument was bolstered by Soltan
(1982) who connected the present-day spatial density of quasar remnants to the integrated
quasar luminosity over cosmological volumes and found it to be consistent with the presence
of roughly one quasar remnant per present-day galaxy cluster. Thus, many nearby AGN
could be the remnants of more luminous quasars, and nearby inactive galaxies (of sufficiently
large total mass) likely harbor SMBHs that once grew through quasar-level accretion.
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Additional arguments emerged in favor of the SMBH accretion model for powering AGN.
For example, spatially resolved radio emission from quasars such as the aforementioned 3C
273 traced apparent super-luminal motion in the plane of the sky (Gubbay et al. 1969).
This posed no conflict with special relativity provided that the material giving rise to the
emission had a line-of-sight velocity component that was highly relativistic – the resulting
Doppler beaming allows the light emitted at various locations along the source to chase each
other and arrive in rapid succession from the observer’s perspective, a situation anticipated
by Rees (1966). These observations of collimated and highly relativistic outflows, known as
jets, were most naturally explained by via physical processes that take place in the vicinity of
a black hole with high spin (Blandford & Znajek 1977; Blandford & Payne 1982), although a
complete understanding of their mechanics remains a topic of investigation to this day (e.g.
Tchekhovskoy et al. 2011).

Another line of evidence came from the observation that the x-ray emission from some
AGN exhibited variability on timescales as short as several minutes (Mushotzky et al. 1993).
The appearance of an object generally cannot vary more rapidly than the light-crossing
time across its diameter (Terrell 1967), with some exceptions including the case of highly
relativistic jets as discussed above. Thus, the rapid variability points to emission from a
region, presumably the inner portion of an accretion disk, localized within a radius of several
times 1013 cm. This is approaching the Schwarzschild radius for a 108M� black hole.

Given these converging lines of evidence for the ubiquitous presence of SMBHs, the hunt
was on to detect their presence more directly via their dynamical effect in galactic centers.
Measurements of the velocity dispersion of the stars in the innermost portion of galactic
bulges provided an approximate measurement of the amount of mass enclosed within that
volume. A steep rise in the mass-to-light ratio toward at the center of a galaxy pointed
to the presence of a SMBH there. Early success was reported by Kormendy & Richstone
(1995), who summarized the dynamical evidence in favor of SMBHs residing at the center
of the Milky Way and seven nearby galaxies. The case was made even stronger with the
use of water maser emission to trace out a Keplerian rotation curve for the gas within the
central tenths of parsecs of a galaxy, suggesting a mass density that could only be explained
by a SMBH (Miyoshi et al. 1995). In the Milky Way, the orbits of individual stars at the
galactic center could be measured, allowing for an inference of the central mass (several times
106M�) with unprecedented precision (e.g. Genzel et al. 2000).

1.2 Galaxy correlations and the role of feedback
By this time, observations had suggested that SMBHs exist at the centers of most galax-

ies. The astrophysical significance of these objects grew as correlations were established
between the inferred black hole masses and properties of their host galaxies. The early
dynamical measurements had indicated a relationship between the SMBH mass and the es-
timated mass of the stellar bulge in which they reside (Richstone et al. 1998; Magorrian
et al. 1998). Soon, an even tighter correlation was found between the SMBH mass and the
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velocity dispersion of the bulge, a proxy for bulge mass, which has become known as the
MBH − σ relation (Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002).
These correlations were highly mysterious, given that the gravitational sphere of influence
of the SMBH is typically at least two orders of magnitude smaller than the diameter of the
bulge, requiring additional physical processes to explain the connection. Nevertheless, it was
clear that somehow a tight connection existed between the growth of SMBHs and the growth
of their host galaxies, compelling researchers to study their relationship more intently.

As already discussed, black hole accretion is an incredibly efficient mechanism for extract-
ing rest-mass energy and converting it to radiation or kinetic energy in outflows. Researchers
began to investigate what might happen if a small fraction of that energy was reabsorbed
by the host galaxy, a process that is now broadly termed feedback (Silk & Rees 1998). In
one early study along these lines, Di Matteo et al. (2005) used hydrodynamic simulations
to follow the aftermath of mergers of two comparably sized galaxies, a process that funnels
a large amount of gas to the center of the merged galaxy and initiates a period of rapid
SMBH growth and quasar-level accretion. These allowed 5% of the energy released during
accretion to reheat the gas in merged galactic nuclei. As the black holes in these simulations
grew, energy from the accretion was eventually deposited at rapid enough rates to unbind
most of the remaining galactic gas that would have eventually formed stars had it been left
undisturbed. This process therefore established a potential link between the mass of SMBHs
and the mass of the stars in their host galaxies, in a manner consistent with the MBH − σ
relationship. As a bonus, this process suggested a mechanism for explaining an observed
dichotomy in galaxies between those full of gas that are forming stars, and those that have
lost their gas and have had their star formation quenched (Springel et al. 2005).

While promising, results of this type only scratched the surface of the SMBH-galaxy
connection. An obvious limitation of such simulations was that they did not explain in detail
what processes could allow for the recapture the required energy released during accretion
to allow for effective feedback. Due to limitations in computational resources, this energy
was put in “by hand” in the simulations – it was impossible to resolve all the relevant length
and time scales to demonstrate how this process would work from first principles and go on
to affect the entire galaxy.

An additional set of complications relates to the fact that black holes are not the only
source of feedback in star-forming galaxies. Stars themselves play a role in limiting their
own growth. Stellar feedback can take a variety of forms: massive stars can ionize and
photo-evaporate their natal clouds; supernova explosions can disrupt the interestllar medium;
and stellar radiation can be especially well-absorbed by dust particles, allowing for the
transfer of large amounts of momentum via radiation pressure. Murray et al. (2005) derived
analytic expressions demonstrating how the momentum transfer from these last two channels
(supernovae and radiation pressure) may regulate the process of star formation and establish
observed correlations between galactic luminosity and stellar velocity dispersion in galaxies
that have ceased most of their star formation (Faber & Jackson 1976). These authors were
also able to demonstrate how the MBH − σ relation can arise via a similar mechanism in
which radiation released during accretion exerts pressure on dusty gas and launches galactic
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outflows that sweep away gas (see also King 2003).
Despite the vast body of work that has since arisen to explaining theMBH−σ in terms of

SMBH feedback, no consensus has been reached for the causal mechanism underlying it. The
relative effectiveness of black hole vs stellar feedback in various circumstances remains under
debate. This puzzle is connected to the aforementioned question of whether the energy
released by black hole accretion can be successfully captured by galactic gas, or whether
gas cooling is so efficient that the feedback must primarily rely on momentum-conserving
processes like radiation pressure on dust. This is a topic to which we will return in Chapter
3.

1.3 The unexpectedly rapid growth of SMBHs
Observations of quasar emission over cosmic volumes indicate that a large portion of

SMBH growth occurs during short periods of rapid accretion (recall Soltan 1982). However,
recent discoveries of just how rapid this growth can be have highlighted our incomplete
understanding of the manner by which accretion can proceed. For example, surveys of
quasars by the Sloan Digital Sky Survey have uncovered dozens of quasars that formed at
redshifts of z > 6, very shortly after the reionization of the universe (Fan 2006). In an
infrared survey, a particularly striking discovery was that of a quasar at z = 7.085 with an
estimated mass of at least 109M� (Mortlock et al. 2011). What makes these observations
so surprising is that, in the case that the seeds of SMBHs are primordial stars of masses on
the order of 102M� that form as early as z & 20, then to achieve such large masses by z = 7
they must steadily accrete at a rate close to or above the Eddington rate (defined as the
mass feeding rate at which the luminosity produced with some fiducial radiative efficiency
would produces spherically averaged radiation pressure on free electrons that exceeds the
gravitational attraction of the black hole) (Madau et al. 2014).

Accretion in these extreme (super-Eddington) conditions has remained a poorly under-
stood process, at least until very recently. The most well-studied instances of disk accretion,
those along the lines of the radiatively efficient thin disks originally described by Shakura &
Sunyaev (1973), do not apply at mass feeding rates approaching the Eddington rate (separate
but related departures from the thin-disk model also occur at much lower mass feeding rates).
At higher feeding rates, the disk cannot cool as effectively, causing the disk to thicken (e.g.
Paczyńsky & Wiita 1980; Abramowicz et al. 1988) and likely launching outflows(Shakura &
Sunyaev 1973). Photons may become trapped and advected along with the accretion flow
(Narayan & Yi 1994). The dynamical effects of radiation pressure become important in this
regime, so that a fully self-consistent study of the flow requires a solution of the radiative
transfer equation along with the equations of hydrodynamics. Outstanding questions in-
clude: what is the radiative efficiency for flows such as these, and to what extent can the
radiated luminosity exceed the Eddington luminosity? What fraction of the incoming mass is
accreted, and what fraction is launched in an outflowing wind? What is the kinetic luminos-
ity of such a wind? Encouraging progress toward answering these questions has been made
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in the last few years (McKinney et al. 2014; Jiang et al. 2014; Sa̧dowski & Narayan 2016,
e.g), although discrepancies and disagreements remain. In addition to further improvements
in numerical techniques, more observational data relating to super-Eddington accretion onto
SMBHs is likely required before a consensus can be reached.

1.4 Tidal disruption events (TDEs) as probes of feeding
and feedback

Within the last few years, a new window onto SMBH accretion has opened. One of the
most violent ways a SMBH can interact with its surroundings is by tidally tearing apart
stars that pass too close to it. The resulting stellar debris streams can collide, shock, and
accrete onto the black hole, giving rise to a luminous flare that peaks on timescales of weeks
to months. TDEs were first predicted and explored theoretically decades ago (Hills 1975;
Lacy et al. 1982; Carter & Luminet 1982; Rees 1988). There were some tantalizing early
x-ray detections (e.g. Komossa & Bade 1999; Komossa et al. 2004), but it is only recently
that TDEs have been observed systematically at a variety of wavelengths (e.g Bloom et al.
2011; Gezari et al. 2012; Arcavi et al. 2014; Miller et al. 2015; Cenko et al. 2016). A more
comprehensive discussion of TDE observations will be presented in Chapter 4.

TDEs provide signals from SMBHs in galactic nuclei that would otherwise be unobserv-
able. Ideally, TDEs can be used to measure the associated black hole masses. Given the
well-stablished correlations between SMBHs and their host galaxies discussed above, this is
crucial information for understanding galactic evolution at distances beyond which we can
measure these black hole masses dynamically. In particular, TDE rates should be higher in
galaxies hosting lower mass black holes (Phinney 1989). Recent observations suggest that
the well-known correlations begin to break down in lower mass systems (Greene et al. 2010),
making TDEs an especially valuable probe in such galaxies.

TDEs also provide data about the physics of SMBH accretion. The simplest theoretical
models of TDEs predict that the rate at which mass falls back onto the black hole at late time
should follow a characteristic t−5/3 decline (Phinney 1989), and indeed this decline is often
seen in the observed light-curves. This feeding rate provides a well-defined boundary condi-
tion for theoretical models of accretion, leading to the observation by Antonucci (2015) that
TDEs may be conceptualized as the “Green’s functions” for AGN accretion (an oversimplifi-
cation, but still an evocative notion). Moreover, for a large range of black hole masses, the
initial fallback rate is super-Eddington, followed by a transition to a sub-Eddington feeding
rate (Rees 1988; Evans & Kochanek 1989). This provides an excellent opportunity to test
the recent theoretical advances in radiation-pressure dominated accretion disks described
earlier.

The recent breakthroughs in TDE observations, however, have exposed our incomplete
theoretical understanding of how they operate. It is not clear how the stellar debris falls back,
circularizes, and accretes onto the SMBH, producing observable emission at wavelengths
spanning the x-ray to the optical. One explanation is that radiation from an accretion
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disk is intercepted by an envelope of material at large radii and is reprocessed to longer
wavelengths (Loeb & Ulmer 1997). However, the origin and structure of the reprocessing
envelope is unknown. The envelope may be quasi-static and supported by radiation pressure
(e.g. Coughlin & Begelman 2014). Other possibilities include outflows, or emission from
rotationally supported disks involved in the circularization of the bound debris. Radiative
transfer calculations can relate each of these models to observable light-curves and SEDs,
allowing us to constrain which of them is responsible for the observed emission.

1.5 Outline of this thesis
In Chapter 2, I provide an overview of the equations of radiative transfer, including some

description of how these equations are solved using Monte Carlo techniques. Additionally,
I show how the terms in the radiative transfer equation relating to integrated energy and
momentum exchange between the radiation field and the gas enter as source terms in the
equations of hydrodynamics. I discuss a numerical method to solve the coupled radiation
and hydrodynamics equations, along with a suite of test problems to validate the technique.
Finally, I include a discussion of how the ionization state and bound electron level populations
of a fluid are determined via the assumption of statistical equilibrium, without assuming
local theromdynamic equilibrium (NLTE). I then demonstrate a successful coupling of the
statistical equilibrium equations to the radiative transfer solver via a comparison to an
analytic solution in the optically thin regime.

In Chapter 3, I discuss an application of these ideas to quantifying the effects of radiative
feedback in AGN. In particular, I consider the effects of radiation pressure on dust at the
center of a gas-rich galaxy, in a region commonly referred to as the dusty torus. I construct
an ensemble of time-independent, three-dimensional snapshots of the radiation pressure on
the gas while varying parameters such as the torus opening angle, the accretion luminosity,
and the total amount of material in the torus. I then use these snapshots to estimate the
time-evolved properties of the feedback such as the mass, momentum, and energy fluxes in
the resulting outflows. The results of this chapter demonstrate that SMBH accretion may
launch molecular outflows that play a role in quenching star formation, but they are not
quite capable of generating the highest momentum-fluxes in the outflows that are seen in
observations.

Finally, in Chapter 4 I present calculations of the x-ray through optical spectra near
peak light for TDEs in a model in which the accretion luminosity is reprocessed through, a
thick and extended static envelope. I demonstrate that the reprocessed optical radiation is
a blend of emission at various temperatures, which argues against the practice of fitting a
single blackbody to optical photometry data. I also find that varying the amount of material
in the reprocessing envelope causes the overall optical flux to vary in a manner that keeeps
the inferred color of the optical continuum unchanged, in agreement with one of the most
mysterious aspects of optical TDE observations.

However, the most important result in this chapter relates to a debate about the emission
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lines in TDE optical spectra. The ratio of the equivalent width of the He II line at 4686 to
that of Hα varies substantially between events; in some cases the two lines are of comparable
strength, while in other cases, the helium line appears at least twice as bright relative to
the continuum compared to the hydrogen line. In at least two especially notable events,
there did not appear to be any hydrogen emission at all (for a compilation of spectra, see
Arcavi et al. 2014). These variations in the spectra have been interpreted to correspond to
variations in the composition of the disrupted star (Gezari et al. 2012; Strubbe & Murray
2015). Under that interpretation, pure-helium stars are being observed at rates orders of
magnitude above what one would expect based on the expected population of such stars.
This claim is difficult to substantiate (see especially the arguments from MacLeod et al.
2012), and it has motivated theorists to seek alternative explanations for the variations in
the line ratios.

Prior to this work, all such explanations were tested with photoionisation codes best
suited for the irradiation of optically thin clouds. However, given the high densities of the
stellar debris in a tidal disruption event, the problem called for a full radiative transfer
calculation suited for optically thick environments. When the optically thick line transfer is
properly treated, the helium-to-hydrogen line ratios can vary simply by adjusting properties
of the reprocessing envelope such as its radial extent, even when exclusively considering stars
with a solar helium-to-hydrogen composition. This can explain the diversity of line ratios
across the observed TDEs, and it removes the need to postulate exotic processes that would
lead to an exceptionally high tidal disruption rate for very rare stars.
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Chapter 2

Methods

The content of this chapter, excluding Section 2.12, is drawn from Roth & Kasen (2015),
with permission from the AAS and the co-author.

We explore the application of Monte Carlo transport methods to solving coupled radiation-
hydrodynamics problems. We use a time-dependent, frequency-dependent, 3-dimensional
radiation transport code that is special relativistic and includes some detailed microphysical
interactions such as resonant line scattering. We couple the transport code to two different
1-dimensional (non-relativistic) hydrodynamics solvers: a spherical Lagrangian scheme and
a Eulerian Godunov solver. The gas-radiation energy coupling is treated implicitly, allowing
us to take hydrodynamical time-steps that are much longer than the radiative cooling time.
We validate the code and assess its performance using a suite of radiation hydrodynamical
test problems, including ones in the radiation energy dominated regime. We also develop
techniques that reduce the noise of the Monte Carlo estimated radiation force by using the
spatial divergence of the radiation pressure tensor. The results suggest that Monte Carlo
techniques hold promise for simulating the multi-dimensional radiation hydrodynamics of
astrophysical systems.

2.1 Introduction
The dynamical effects of radiation can be important in astrophysical contexts, so numer-

ical simulations must often address the radiation transport problem. The radiation field,
when treated fully, is a function of not only three spatial coordinates, but also of time,
frequency and two direction angles. The high dimensionality of the problem makes it com-
putationally very challenging, and approximate methods that ignore certain dependencies
(e.g., on frequency and/or angle) are often employed. Recent efforts aim to relax these ap-
proximations and improve the accuracy of the transport scheme. Given the difficulty of the
radiation-hydrodynamics (RHD) problem, and the critical importance of it in astrophysical
simulation, a number of different numerical techniques should be explored. Ultimately, no
single approach may prove ideal in every conceivable application, and the relevant tradeoffs
in performance will need to be considered on a case by case basis.
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In this paper we explore the coupling of Monte Carlo radiative transfer (MCRT) to
hydrodynamics. The Monte Carlo approach offer several advantages as compared to a deter-
ministic solution of the radiative transfer equation. MCRT generalizes readily to arbitrary
3-dimensional geometries, and can naturally incorporate multi-frequency, multi-angle, and
time-dependent transport effects. It is also straightforward to include complex physical in-
teractions, such as anisotropic and inelastic scattering processes, polarization, and resonant
line scattering. MCRT methods generally parallelize well (although not necessarily triv-
ially for memory intensive problems (Kasen et al. 2008)) and so can be run profitably on
massively-parallel machines. This last consideration may ultimately prove to be the most
significant, as the available computing power increases over time.

The main disadvantage of MCRT methods is the presence of stochastic error, such that
the computation of a large number of packet trajectories may be required. A number of
variance reduction techniques exist to help limit the unwanted effects of noise, and certain
acceleration techniques can alleviate the well known computational inefficiency of MCRT in
regimes of high optical depth. The ultimate expense of MCRT relative to other transport
methods is difficult to estimate, but generally as the dimensionality of the problem increases,
the advantages of Monte Carlo methods become more apparent. This suggests that MCRT
will be competitive in addressing the full 3-D multi-angle multi-frequency RHD problem.

Here we present calculations using a MCRT code designed to handle the full-dimensionality
of the Boltzmann transport problem – i.e., the dependence on 3 spatial dimensions, time, fre-
quency and angle. The code is special relativistic and includes some more complex physical
interactions, such as resonant line scattering. It makes use of implicit techniques (Fleck &
Cummings 1971) in order to permit time-steps larger than the gas-radiation energy coupling
time. For the sake of demonstrating the essential principles and assessing the viability of
the approach, we restrict ourselves to coupling to a one-dimensional hydrodynamics solver;
upcoming work will generalize to multi-dimensional RHD.

In section 2.2, we review some of the existing literature on RHD in astrophysics, including
previous efforts in MCRT. In section 2.3 we outline the equations solved and the simplifying
assumptions employed. Section 2.4 describes the Monte Carlo implementation, while section
2.5 describes our numerical hydrodynamics scheme. Section 2.6 describes the implicit Monte
Carlo technique and its use in our code. Section 2.7 describes some radiation-only tests of
our frequency-dependent transfer code. Section 2.8, the centerpiece of this paper, presents
a suite of RHD test problems. Section 2.9 shows how Monte Carlo noise can be reduced by
computing the radiation force via spatial derivatives of the Eddington tensor, rather than
through a direct Monte Carlo force estimator. Section 2.10 provides some brief considerations
of the numerical performance of our code and the possibilities for improving it in the future.
Finally, Section 2.11 presents our conclusions.
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2.2 Existing astrophysical radiation-hydrodynamics tech-
niques

Radiation-hydrodynamics is a vast topic that spans many scientific disciplines. In this
brief (and necessarily incomplete) review, we will emphasize multi-purpose astrophysical
fluid codes.

One of the oldest and most commonly used techniques is flux-limited diffusion (FLD)
(Levermore & Pomraning 1981; Swesty & Myra 2009). As its name suggests, in this approach
radiation is transported via a diffusion equation , which amounts to dropping all terms in
the radiative transfer (RT) equation with a higher-order than linear angular dependence. An
interpolation procedure connects the optically thick to optically thin regimes and ensures
that the transfer rate of radiative energy never exceeds the speed of light. Grid-based
hydrodynamic and magneto-hydrodynamic (MHD) codes in use today making use of FLD
include those described in Turner & Stone (2001); Hayes et al. (2006), Krumholz et al.
(2007a), Gittings et al. (2008), Swesty & Myra (2009), Commerçon et al. (2011), van der
Holst et al. (2011), Orban et al. (2013), Tomida et al. (2013), Zhang et al. (2013), Bryan et al.
(2014), Kolb et al. (2013), and D’Angelo & Bodenheimer (2013). Additionally, Whitehouse
& Bate (2004) describe a smoothed-particle hydrodynamics code that makes use of FLD.

While fast and relatively easy to implement, FLD suffers from some well-characterized
shortcomings. It restricts the radiative flux to be in the direction of the radiative energy
gradient, which can lead to misdirected radiation forces. As a result, the radiation in an
FLD simulation will wrap around opaque barriers rather than cast sharp shadows.

An alternative method which alleviates this problem is the M1 closure for the Eddington
tensor (Dubroca & Feugeas 1999). Here, the two lowest-order angular moments of the RT
equation are used. The radiation energy and pressure are related via an entropy minimization
procedure, which results in the correct behavior in the free-streaming and diffusion limits.
TheM1 closure has been implemented in astrophysical RHD codes including those described
in González et al. (2007), Aubert & Teyssier (2008), Vaytet et al. (2011), Skinner & Ostriker
(2013), Rosdahl et al. (2013), Sa̧dowski et al. (2014), and McKinney et al. (2014).

Another option is to solve the full RT equation for discretized solid angle bins. This
can be accomplished by solving the equation along rays that extend through multiple cells
in the domain, a technique referred to as ray-tracing or a long-characteristics method. An
early example of an astrophysical RHD code to use this approach is the stellar atmoshpere
code described in Nordlund (1982), Nordlund & Stein (1990), and Stein & Nordlund (1998),
using a variation of a method first proposed by Feautrier (1964). The long characteristics
approach is especially effective in situations where a single or small number of luminous
point sources are present, and a common application is tracking the ionizing radiation emit-
ted from massive stars. Abel & Wandelt (2002) describes an an adaptively branching ray
tracing procedure, and it has been applied to HD and MHD calculations coupled to ioniz-
ing radiation as described in Sokasian et al. (2003), Krumholz et al. (2007b) and Wise &
Abel (2011). Other uses of ray tracing to track ionizing radiation include those described in
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Whalen & Norman (2006), Alvarez et al. (2006), Henney et al. (2009), and smoothed-particle
hydrodynamics implementations are described in Gritschneder et al. (2009) and Greif et al.
(2009). Kuiper et al. (2010) introduced a hybrid approach in which ray tracing is used to
follow the direct radiation from a point source, while FLD is used simultaneously to follow
diffuse radiation.

A related method is the short-characteristics technique, which is a subset of SN methods.
Here, the RT equation is solved for a fixed set of angles within every grid cell. Early descrip-
tions of such a technique were given by Mihalas et al. (1978) and Kunasz & Auer (1988). For
problems in which the radiation enters the diffusion regime, so that the radiative emissivity
is distributed over many grid cells, the short-characteristics approach allows the the compu-
tational expense of the problem to scale more slowly with the size of the grid than in the
long characteristic case (Davis et al. 2012). An early example of an astrophysical RHD code
to make use of the short-characteristics technique for two-dimensional problems is described
in Stone et al. (1992). Liebendörfer et al. (2004), Livne et al. (2004), Buras et al. (2006),
and Ott et al. (2008) describe codes that use short characteristics for neutrino transport,
which is coupled to hydrodynamics in simulations of core-collapse supernovae. Vögler et al.
(2005) describe an RHD code that uses short-characteristics in the context of stellar atmo-
spheres. Rijkhorst et al. (2006) developed a hybrid method that combined techniques from
both short- and long-characeterstics radiative transfer codes in the context of adaptive mesh
refinement in three dimensions. Three-dimensional MHD simulations with radiation tracked
using short characteristics include those described in Heinemann et al. (2007), Hayek et al.
(2010), and Jiang et al. (2012). Overall, the short characteristics approach has proven to be
accurate and reasonably fast. One potential drawback is the appearance of ray artifacts at
large distances from luminous sources.

Petkova & Springel (2011) introduced an advection technique to solve the monochromatic
radiative transfer equation on both structured and unstructured meshes. In the most general
implementation of this scheme, the flux of radiative energy between zones is discretized into
solid angle cones, which bears some resemblance to the short-characteristics method.

MCRT, while used for decades to simulate spectra and light curves of astrophysical ob-
jects (e.g. Mazzali & Lucy 1993; Kasen et al. 2006; Kerzendorf & Sim 2014), has only recently
been employed in the context of astrophysical RHD. Lucy (2005) developed time-dependent
(non-stationary) MCRT techniques for outflows in which radiation was not dynamically
important. Ercolano & Gritschneder (2011) used MCRT to process snapshots of HD simula-
tions to demonstrate that the diffuse radiation field in stellar ionization problems can differ
significantly from an on-the-spot approximation for remitted ionizing photons. Haworth &
Harries (2012) moved beyond snapshots and coupled MCRT of ionizing radiation, including
the diffuse radiation field, to a hydrodynamics solver. Abdikamalov et al. (2012) applied
MCRT to neutrino transport in core-collapse supernova simulations, and introduced exten-
sions to the implicit Monte Carlo technique to the case of velocity-dependent transfer case
(see section 2.6). Ghosh et al. (2011) and Garain et al. (2012) used MCRT to simulate the
effects of Compton cooling in black hole accretion, and coupled this to a hydrodynamics
solver. Noebauer et al. (2012) presented a general-purpose code that couples MCRT with



2.3. EQUATIONS SOLVED AND SIMPLIFYING ASSUMPTIONS 12

a Godunov solver for hydrodynamics, and validated its performance in a suite of common
RHD test problems. Wollaeger et al. (2013) combined implicit Monte Carlo with discrete
diffusion techniques in high velocity outflows on a Lagrangian grid.

In this work, we proceed in a manner similar to Noebauer et al. (2012), and repeat
some of the test problems contained therein. We keep our radiation equations exact to all
orders in v/c (see sections 2.3 and 2.4), although our hydrodynamics equations remain non-
relativistic. Unlike previous studies of RHD using Monte Carlo, we include test problems in
which the radiation energy is dominant over thermal energy, and where the radiation pressure
is dynamically important. We compare two techniques that may be used to calculate the
force from radiation pressure. Our approach also makes use of the implicit Monte Carlo
technique.

2.3 Equations solved and simplifying assumptions
We review here a basic formulation of radiation-hydrodynamics. For this, we rely heavily

on the expositions in Mihalas & Mihalas (1984) and Mihalas & Auer (2001), quoting directly
many of the equations therein for ease of reference throughout the rest of this paper.

The equations governing the fluid flow are the mass conservation equation, the gas mo-
mentum conservation equation and the gas total (kinetic plus thermal) energy conservation
equation, with source terms relating to radiative transfer. To order v/c, where v is the fluid
velocity and c the speed of light, the equations are (Mihalas & Auer 2001)

∂ρ

dt
+
∂(ρvi)

∂xi
= 0 , (2.1)

∂(ρvi)

dt
+

∂

∂xj
(
ρvivj + p0δ

ij
)

= ρf i +Gi − vi

c
G0 , (2.2)

∂

dt

[
ρ

(
1

2
v2 + e0

)]
+

∂

∂xi

{[
ρ

(
1

2
v2 + e0

)
+ p0

]
vi
}

= ρvif i + cG0 . (2.3)

We have used the Einstein summation convention for indices, and the generic superscript
index i may refer to the x, y, or z component of a vector in a Cartesian coordinate system.
The subscript 0 denotes that quantities that are evaluated in the local comoving frame of
the fluid. Otherwise, the quantity is evaluated in the frame of the fixed coordinate system,
which we refer to as the lab frame. Thus, ρ is the lab frame fluid density, p0 is the comoving
gas pressure, e0 is the comoving gas specific internal energy (units energy per mass), and f i
is a body force such as gravity as measured in the lab frame. The quantities G0 and Gi are
the lab frame components of the force four-vector, G. This four-vector specifies the energy
and momentum coupling between the fluid and the radiation, and will be defined explicitly
below.
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An ideal gas equation of state relates the comoving pressure and specific internal energy
of the gas

p0 = (γad − 1)ρe0 . (2.4)

We do not consider here the fully special relativistic fluid equations. However, in our
treatment of the radiation transport we will be careful to include all special relativistic
terms. We also have not included terms for viscous transport, thermal heat conduction, or
an internal energy source terms such as would arise in a fluid undergoing nuclear reactions,
although these can in principle be included as well (Mihalas & Auer 2001).

To find the the radiation force four-vector G, we begin with the lab frame radiative
transfer equation

1

c

∂Iν(n)

∂t
+ ni

∂Iν(n)

∂xi
= −χν(n)Iν(n) + ην(n) . (2.5)

Here Iν is the specific intensity of the radiation, ν is the frequency, χν (units cm−1) is the total
extinction coefficient, η is the total radiative emissivity, and n is a unit vector representing
a direction. We may also make reference to the radiative source function Sν ≡ ην/χν . For
notational brevity we will henceforth suppress writing the dependence of Iν , χν and ην on
direction n, and keep in mind that Iν , χν and ην are also be functions of position and
time. Both χν and ην have contributions from scattering as well as thermal absorption and
re-emission, as we will discuss below.

It is useful to define moments of the radiation intensity which correspond to radiative
energy density, flux, and pressure

Eν =
1

c

∮
Iν dΩ, E =

∫ ∞
0

Eνdν , (2.6)

F i
ν =

∮
Iνn

i dΩ, F i =

∫ ∞
0

F i
νdν , (2.7)

P ij
ν =

1

c

∮
Ininj dΩ, P ij =

∫ ∞
0

P ij
ν dν . (2.8)

Equation 2.5 may be integrated over frequency and solid angle to obtain the radiation
energy equation

∂E

dt
+
∂F i

∂xi
=

∫ ∞
0

dν

∮
dΩ (−χνIν + ην) ≡ −cG0 . (2.9)

This is a conservation equation for the radiation energy density. The integral represents an
energy loss term for the radiation field, and hence an energy source term for the fluid, and
can therefore be identified with −cG0.

Integrating equation 2.5 over frequency and then integrating with respect to nidΩ results
in the radiation momentum equation

1

c2

∂F i

dt
+
∂P ij

∂xj
=

1

c

∫ ∞
0

dν

∮
dΩ
[
(−χνIν + ην)n

i
]
≡ −Gi . (2.10)
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This is a conservation equation for the radiation momentum density, and the integral can be
identified with the term −cGi. The problem has now been fully posed up to the specification
of initial conditions and boundary conditions for the radiation and the fluid.

At this point, we will introduce some simplifying assumptions that will allow us to derive
relatively simple expressions for the radiation four-force. These remain in effect for the
entirety of this paper, although some or all of them could be relaxed in future work: (1) All
absorption and emission, including scattering processes, are isotropic in the comoving frame.
(2) Scattering in the comoving frame is elastic (energetically coherent). (3) The quantities
η and χ can be decomposed into separate thermal and scattering contributions

χ0ν = χt0ν + χs0ν ,

η0ν = ηt0ν + ηs0ν . (2.11)

We will sometimes refer to χt0ν as the absorption coefficient. We will also find it useful to
define an opacity1 (units cm2 g−1) as κ0ν = χ0ν/ρ0, and κt0ν = χt0ν/ρ0, κs0ν = χs0ν/ρ. We
define an opacity ratio

εν ≡
κt0ν
κ0ν

=
χt0ν
χ0ν

. (2.12)

The case εν = 0 corresponds to complete scattering of photons, without any thermal absorp-
tion or re-emission. The case εν = 1 corresponds to a situation with no scattering, in which
every photon interaction corresponds to a photon being absorbed and its energy transferred
to the gas.

For the thermal emission, we assume local thermodynamic equilibrium (LTE). In this
case Kirchoff’s law implies that the thermal component of the emissivity, ηt0ν , is equal to
χt0νB0ν , where B0ν is the Planck function calculated using the gas temperature measured in
the comoving frame. Then we may write the total (thermal plus scattering) emissivity in
the comoving frame as

η0ν = χ0ν

[
ενB0ν + (1− εν)

cE0ν

4π

]
. (2.13)

When this expression for η0ν is plugged into the comoving frame analogue of Equation 2.9,
the scattering out of the beam (χs0νI0ν) cancels the scattering into the beam (ηs0ν) , and the
energy component of G0 becomes

cG0
0 =

∫ ∞
0

ενχ0ν (cE0ν − 4πB0ν) dν . (2.14)

Meanwhile, the assumed isotropy of emitted radiation, both thermal and scattering, allows
us to simplify the spatial components of the force four-vector,

Gi
0 =

1

c

∫ ∞
0

χ0νF
i
0νdν . (2.15)

1Our notation here differs slightly from Mihalas & Auer (2001), in which the symbol κ0 is used for the
extinction coefficient (units cm−1) rather than for an opacity (units cm−2 g−1).
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Finally, we introduce three mean extinction coefficients (energy-weighted mean, Planck
mean, and flux-weighted mean, respectively),

χ0E =

∫∞
0
ενχ0νE0νdν∫∞
0
E0νdν

, (2.16)

χ0P =

∫∞
0
ενχ0νB0νdν∫∞
0
B0νdν

, (2.17)

χ0F =

∫∞
0
χ0νF0νdν∫∞

0
F0νdν

. (2.18)

The expressions for the components of G0 then reduce to

cG0
0 = c

(
χ0EE0 − χ0ParT

4
0,g

)
, (2.19)

Gi
0 = χ0FF

i
0/c , (2.20)

where ar = 7.5657 × 10−15 erg cm−3 Kelvin−4 is the radiation constant, which arises from
the integration of the Planck function over frequency.

We may then use a Lorentz transformation to determine the components of G in the lab
frame

G0 = γ

[
G0

0 +

(
vi

c

)
Gi

0

]
, (2.21)

Gi = Gi
0 + γ

vi

c

[
G0

0 +
γ

γ + 1

(
vj

c

)
Gj

0

]
, (2.22)

where γ ≡ (1 − vivi/c2)−1/2. Equations 2.21 and 2.22 are accurate to all orders of (v/c)
(Mihalas & Auer 2001). These two equations, along with the fluid equations (2.1 through
2.3), provide the high-level schematic for what our code solves. It is important to recognize
that these are mixed-frame equations in the sense that the left-hand side refers to a lab frame
quantity, while the right-hand side is written in terms of comoving quantities.

We still must specify the expressions we will use to compute the comoving quantities
E0 and F i

0. One approach would be to first construct the radiation energy density, flux
and pressure entirely in the lab frame, and then relate the lab and comoving values of these
quantities using the fact that they are components of a second rank Lorentz covariant tensor,
the radiation stress-energy tensor. This approach is described in Mihalas & Auer (2001),
and it is also the way to derive the equations used in Lowrie et al. (1999) and Jiang et al.
(2012), which have been truncated at order (v/c)2. However, as will become clear below and
in section 2.4, we are able to easily construct estimators of the flux in the comoving frame,
and so we have a means of accurately calculating G without needing to compute and store
the components of the pressure tensor.

We note that the radiation field, Iν , is ultimately composed of photons with four-momenta
given by M = (hν/c)(1, ni). The lab frame and comoving frame components of the four-
momentum are related via a Lorentz transformation

ν0

ν
= γ(1− nivi/c) , (2.23)
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and
ni0 =

(ν0

ν

)−1
[
ni − γvi

c

(
1− γnjvj/c

γ + 1

)]
. (2.24)

These equations incorporate the relevant Doppler shift and aberration effects. Two final
transformations we will need are (Thomas 1930)

I0ν =
(ν0

ν

)3

Iν , (2.25)

dν0dΩ0 =
(ν0

ν

)−1

dνdΩ . (2.26)

Then we may write the comoving radiation energy density and flux as

E0 =
1

c

∫ ∞
0

dν0

∮
I0dΩ0 =

1

c

∫ ∞
0

dν

∮
Iν

(ν0

ν

)2

dΩ , (2.27)

F i
0 =

∫ ∞
0

dν0

∮
I0n

i
0dΩ0 =

∫ ∞
0

dν

∮
Iν

(ν0

ν

)2

ni0dΩ . (2.28)

Equations 2.27 and 2.28 provide us with a means of computing E0 and F0, accurate to all
orders in v/c, in terms of integrals of lab frame quantities (with the help of equations 2.23
and 2.24). It is straightforward to show that these equations are equivalent to those that
follow from the Lorentz covariance of the stress-energy tensor (Mihalas & Mihalas 1984).

Finally, we consider an approximate alternative to equation 2.22 that is valid in the
raditaive diffusion regime. Consider once again the convservation of radiation momentum
as expressed in equation 2.10. As noted in Mihalas & Auer (2001), when the radiation is
diffusing, the time-derivative on the left-hand side of that equation is at most on the order
λp/l compared to the radiation force term on the right-hand side of the equation, where λp is
the photon mean free path and l is the fluid flow length scale. Since λp/l � 1 by definition
in the radiative diffusion regime, this term can be safely dropped, leaving us with

Gi = −∂P
ij

∂xj
, or

Gi = −∂ (f ijE)

∂xj
, (2.29)

where in the second line we have introduced the Eddington tensor f ij which satisfies

P ij = f ijE . (2.30)

In some situations, using equation 2.29 for Gi may reduce the Monte Carlo sampling noise
(see section 2.9).
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2.4 Monte Carlo Transport
To make use of equations 2.27 and either 2.28 or 2.29, we still must solve the radiation

transfer equation. In the MCRT approach, one forgoes a direct numerical solution in favor
of a stochastic simulation of photon transport. The radiation field is represented by discrete
packets which are tracked through randomized scatterings and absorptions. Each packet is
described by a lab frame energy Ep and a lab frame photon momentum four-vector Mp =
(hν/c)(1, ni) where ν is the photon frequency and n the normalized propagation direction
vector measured in the lab frame. The number of photons represented per packet is then
N = Ep/hν.

In many cases, we initialize the radiation field based on the assumption of local thermo-
dynamic equilibrium (LTE). This assumption is justified in most test problems we consider
here, as the gas is optically thick to radiation across each zone. At the start of the calcula-
tion, a set number of packets, Ninit, are initiated in each zone. The radiation energy arT 4

0,gV0

is distributed equally among the packets in each zone. The packet comoving frequencies
are sampled from a blackbody distribution at the local temperature and their directions are
sampled isotropically in the comoving frame.

If necessary, it is possible to initialize photon packets without assuming LTE, as we will
discuss for two test problems (section 2.8.1 and section 2.8.4).

Photon packets are tracked in the lab frame, but the gas extinction coefficients and
emissivities are calculated in the comoving frame. The extinction coefficient in the comoving
frame χ0ν is then transformed into the lab frame using (Thomas 1930)

χν =
ν0

ν
χ0ν . (2.31)

While we have assumed that the comoving extinction is isotropic, in moving flows the lab
frame extinction χν is direction dependent (because of equations 2.31 and 2.23). The mean
free path is longer for photons propagating along the flow and smaller for photons propagating
against it, a property that is essential to include to get the correct advection of radiation
(see section 2.8.2).

The distance lk a photon travels in the lab frame before an interaction can be randomly
sampled using

lk = χ−1
ν [− ln(R)] , (2.32)

where R is a uniform random number between 0 and 1, not including 0. This distance can
be compared to the distance to the nearest cell boundary and the distance to the end of
the time-step (∆t/c) to determine the next event. In an interaction event, a packet may be
either scattered or absorbed, with the probability of absorption at a given frequency denoted
by εν . More details about how photon interactions are implemented are given in section 2.4.1

At each time-step, new packets may be generated to represent freshly radiated thermal
energy. The emission of this energy provides the cooling contribution in equation 2.19. The
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number of photon packets emitted in a zone over a lab frame time-step ∆t is

Nemit =
V ∆t ε χ0P c ar T

4
0,g

E0,p

. (2.33)

This expression will be modified slightly when implicit MCRT techniques are employed
(section 2.6). Here V is the zone volume measured in the lab frame. We have made use
of the fact that V dt = V0dt0 (Mihalas & Mihalas 1984), so to lowest order we may write
V∆t = V0∆t0. E0,p is the energy (not energy density) of each packet in the comoving frame.
The value of E0,p can be chosen arbitrarily and ultimately sets the total number of packets
included in a calculation. Typically, we choose the packet energy to be a small fraction
of the zone energy, E0,p = 10−4E0V0, however we limit the number of packets emitted per
zone per time-step to a manageable maximum value (see Table 2.1). The emitted packet’s
direction is sampled uniformly from an isotropic distribution in the comoving frame. The
frequency of the packet is sampled from a distribution weighted by the comoving thermal
emissivity, χ0νενB0ν . The packet energy, frequency and direction are then transformed into
the lab frame using equations 2.23 and 2.24.

Radiative heating could, in principle, be evaluated by tallying the number of photon
packets absorbed in each zone over a time interval. In any given time-step, however, the
number of packets actually absorbed may be very small, especially if the medium is scattering
dominated (εν � 1). Instead, we can construct estimators in each cell of the comoving
radiation energy density and radiation flux (equations 2.27 and 2.28) by summing over all
path lengths of packets moving through the zone (Lucy 1999)

E0 = 1
cV∆t

∑
pEp

(
ν
ν0

)2

lp (2.34)

F i
0 = 1

cV∆t

∑
iEp

(
ν
ν0

)2

lpn
i
0 , (2.35)

where Ep is the lab frame energy of packet p, lp is the length of the path the packet trav-
els through the zone (which may be composed of multiple redirections), and we are again
substituting V∆t for V0∆t0.

The flux estimator relies on the cancellation of packets moving in opposite directions,
so it may be poorly sampled in practical calculations. As noted in Section 2.3, when the
radiation is diffusing we may use the divergence of the lab-frame radiation pressure tensor
to compute Gi (equation 2.29). In this case, P ij is computed with the estimator

P ij =
1

cV∆t

∑
p

Eplpn
inj . (2.36)

2.4.1 Interaction Physics

One advantage of MC transport methods is that it is relatively straightforward to sim-
ulate complicated physical interactions, such as anisotropic scattering, line transport, or
polarization. In this section, we describe the treatment of select matter/radiation interac-
tions.
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Absorption and Coherent Scattering

In the simplest of interaction events, a packet may be either coherently scattered or
absorbed, with the probability of absorption at a given frequency, εν , determined by the
nature of the absorption interaction. In an explicit MC calculation, absorbed packets are
simply removed from the calculation. In implicit MC calculations, some absorbed packets
are not removed but instead undergo “effective scattering”, as will be described in Section 2.6.

To simulate an isotropic, coherent scattering event, a packet is first Lorentz transformed
to the comoving frame of the scatterer using 2.23 and 2.24. A new direction is then sampled
isotropically in the comoving frame, and the inverse transformation is applied to return the
lab frame. In this process, the lab frame energy of the photon becomes

Eout = Einc
1− niincv

i/c

1− nioutv
i/c

, (2.37)

where niinc and niout are the incoming and outgoing packet direction vectors in the lab frame.
The packet frequency changes in a corresponding way. When averaged over many scattering
events, Eq. 2.37 accounts for the adiabatic losses of the radiation field. Advection is captured
via the anisotropy of the lab frame extinction coefficient χ and the outgoing direction vector
niout.

If desired, one can also take into account the random motions of scatterers, which may in-
troduce additional Doppler shifts. In this case, the velocity vector of the individual scatterer
must be randomly sampled at each interaction event. For example, the speed of a scatter
could be randomly sampled from a Maxwell Boltzmann distribution with velocity dispersion
vd = (2KT/ms)

1/2, where ms is the mass of the scatterer. The direction of the scatterer
velocity vector is sampled from an isotropic distribution. The photon packet is then Lorentz
transformed into the rest frame of the scatterer, a new propagation direction is chosen, and
then the packet transformed back into the lab frame.

Line Interactions

The frequency-dependent cross-section of a line with rest frequency ν0 and oscillator
strength fosc is

σ(x) =

√
πe2

mec

fosc

∆νd

H(a, x) , (2.38)

where x is the frequency relative to line center in units of Doppler widths x = (ν − ν0)/νd,
where ∆νd = ν0(vd/c) and we take the velocity dispersion vd to be due to thermal line
broadening. The line profile is described by the Voigt function

H(a, x) =
a

π

∫ ∞
−∞

e−y
2

(x− y)2 + a2
dy . (2.39)

The parameter a describes the importance of the wings relative to the core of the line profile,
and is a function of temperature

a = 4.7× 10−3 (T/104 K)−1/2 . (2.40)
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We use the analytic fits for the Voigt profile provided by Tasitsiomi (2006).
The line absorption coefficient, α = nlσ(x), depends on the the number density, nl, of ions

occupying the lower level of the transition, and hence requires knowledge of the ionization
and excitation state of the gas. In the case of LTE, the state of the gas is readily determined
by solving the Saha/Boltzmann equations. When LTE does not hold, the level populations
must be determined by solving a set of coupled rate equations, with the radiative transition
rates estimated from the Monte Carlo transport. We postpone a discussion of the non-LTE
problem, and assume here that the level population nl is known.

To account for the thermal motions of ions, we randomly sample the ion velocities in
a manner similar to that described in Section 2.4.1. However, since the line cross-section
depends sensitively on frequency, the line-of-sight velocity v‖ must be sampled from the
modified distribution (Zheng & Miralda-Escudé 2002)

f(u‖) =
a

π

e−u
2
‖

(x− u‖)2 + a2
H−1(a, x) , (2.41)

where u‖ = v‖/vd. The transverse velocity components are sampled from the ordinary
Maxwell-Boltzmann distribution

v⊥,1 = vd

√
− ln(R1) cos(2πR2) ,

v⊥,2 = vd

√
− ln(R1) sin(2πR2) ,

(2.42)

where R1 and R2 are independently generated uninform random variables between 0 and 1,
not including 0. R1 sets the magnitude of the transverse velocity of the ion, and R2 sets its
direction in the transverse velocity plane. Packets can either be absorbed or scattered in a
line, in the way described in Section 2.4.1. If desired, a treatment of fluorescence can also be
included by randomly sampling the branching probability of de-excitation into all possible
line transitions (Lucy 2002). We will not discuss such a treatment here.

2.5 Hydrodynamics
Our primary method for solving the hydrodynamics equations is a second-order Godunov

scheme based on the PPM solver of Colella & Woodward (1984). While this paper only
presents results based on the one-dimensional version of this solver, we intend to extend it to
higher spatial dimensions in a spatially unsplit manner following the description in Colella
(1990).

For 1-D spherically symmetric problems, we use a Lagrangian hydrodynamics solver
because it allows for adaptive grid resolution. This solver is based on the von Neumann-
Richtmyer staggered mesh scheme as described in Castor (2004).

As is well known, the inclusion of artificial viscosity is useful to damp numerical oscilla-
tions behind strong shocks, but has the negative effect of smearing out the shock front over
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a number of zones determined by a constant Cq, an adjustable parameter (see Table 2.1).
For the Lagrangian solver we can include a standard artificial viscosity of the form

q = Cqρ max(vdown − vup, 0)2 , (2.43)

where vdown and vup are the lower and upper zone velocities of the Lagrangian mass element.
For the Godunov solver, the artificial viscosity is quite similar, although it involves modifying
the numerical fluxes in the manner described in Lapidus (1967). We find that including
artificial viscosity is helpful both in our Lagrangian solver and our Godunov solver, although
for problems with strong shocks we can typically obtain similar results with a smaller value
of Cq in the Godunov case than in the Lagrangian case.

We use an operator-splitting procedure for coupling the radiation source terms to the
hydrodynamics equations in a way similar to that of Noebauer et al. (2012). Every time-
step, we first perform the packet propagation through the fluid to construct the comoving
frame estimators defined in equations 2.34 and 2.35. For the Eulerian version of the code,
we use these estimators to construct the components of G in the lab frame, as given by
equations 2.21 and 2.22. We next use our Godunov solver to calculate the updates to the
hydrodynamical state variables that would have occurred in the absence of radiation. Finally,
we use our computed components of G to evaluate the right-hand sides of equations 2.2 and
2.3. These source terms indicate the rate at which momentum and energy are transferred
per time per zone, so we multiply these rates by V dt to compute the radiation contribution
to energy and momentum for that time-step. In other words, our treatment of the radiative
source terms is first order in time.

In the Lagrangian version of the code, we use a similar first-order approach to include
the radiative source terms, but in this case we use the comoving quantity cG0 for the rate
of radiative heating or cooling. We multiply this rate by V dt and add the result to the
internal energy of the gas in each zone. For the radiative momentum contribution we use
use the radial component of the radiative force. We multiply this force by V dt and add this
contribution to the total force that accelerates each zone boundary2.

Future work might include the developments described in Miniati & Colella (2007), Sekora
& Stone (2010), and Jiang et al. (2012) for including stiff radiative source terms more con-
sistently within the Godunov solver. Indeed, once we have used MCRT to construct the
radiation energy density, flux, and Eddington tensor, then the manner in which this infor-
mation is incorporated into the Godunov solver could proceed in a manner identical that
described in Jiang et al. (2012).

2This may introduce an error for moderately relativistic flows, because the velocities of the zone boundaries
are measured in the lab frame, yet we are using a radiative force computed in the comoving frame to modify
their acceleration
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2.6 Implicit Monte Carlo
On the fluid flow time scale, the Monte Carlo simulation always provides a stable and

accurate representation of the radiation field regardless of the time-stepping. However, an
explicit treatment of the matter-radiation coupling will be unstable unless the time-steps
are smaller than the time scale for radiative heating/cooling to significantly change the gas
energy, given by

trad ≈
1

cχ0P

(ρ/µ)kT0,g/(γad − 1)

arT 4
0,g

. (2.44)

Under certain conditions, in particular cases where the radiation energy exceeds that of
matter, trad may be much smaller than the Courant time-step. To avoid excessively small
time-steps while maintaining stability, we implement the implicit Monte Carlo (IMC) meth-
ods first developed by Fleck & Cummings (1971) (see also Abdikamalov et al. (2012)). In
this case one defines the Fleck factor

f ≡ 1

1 + 4αf

(
E0

e0

)
(c∆t χ0P )

, (2.45)

where αf is a nondimensional parameter that can be given a value between 0.5 and 1 in
order to ensure stability. The second term in the denominator can be thought of intuitively
as the ratio of ∆t to trad (up to order unity factors).

The Fleck factor has several important roles. First, it is used to define an “effective
scattering” rate. The true absorption fraction εν is multiplied by f to determine a new
probability that a photon interaction is treated by the code as an absorption event, rather
than a scattering event. When f � 1 (i.e. the hydro time-step is much larger than trad), then
nearly all photon interactions are ffective scatttering interactions. Conversely, if f ≈ 1 then
the Fleck factor factor has little effect on the course of the simulation, and the probability
of an absorption event remains approximately equal to εν .

Second, the amount of thermal energy radiated each time step is also multiplied by f .
This affects the second term in our calculation of G0

0 in equation 2.19, and the number of
packets emitted each time step as given by equation 2.33.

Finally, the Fleck factor is used to modify the process of adiabatic heating and cooling of
the gas. Following Fleck & Cummings (1971), we will define an adiabatic heating term Sγ:

Sγ = −(p+ Cq)
D

Dt

(
1

ρ

)
= (p+ Cq)

1

ρ2

(
∂ρ

∂t
+ v

∂ρ

∂x

)
. (2.46)

This expresses the rate at which gas kinetic energy is converted into internal energy (or
vice versa), and accounts for artificial viscosity. If desired, other heating source terms, such
as energy released from nuclear reactions, could be added here. This rate Sγ will also be
multiplied by f , which amounts to subtracting (1−f)Sγ from the gas heating rate. In order
to conserve energy, this same amount of energy per time step must then be added to the
radiation field (which could amount to a negative contribution if Sγ is negative).
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In detail, for the Eulerian version of the code, we use the results of our Godunov scheme
to construct the quantities ∂ρ/∂t and ∂ρ/∂x, which are in turn used to consruct Sγ. We
subtract (1 − f)Sγρ∆t from the total energy density update of the hydro state vector3.
During the subsequent radiative transfer step, we add this contribution to the emission
terms in equations 2.19 and 2.33.

In the Lagrangian version of the code, when it is time to update the internal energy
density of the fluid, we use fSγ for the amount of adiabatic heating or cooling, rather than
the full Sγ that we would use in the absence of implict Monte Carlo. The emission in the
next radiative transfer step is modified in the same manner as in the Eulerian case.

2.7 Radiation Test Problems
We have carried out a number of tests calculations to verify our code in a variety of

physical situations.

2.7.1 Frequency-dependent absorption with scattering

First, we compare our MCRT implementation against analytic treatments of plane-
parallel, semi-infinite, stratified, static atmospheres with frequency-dependent photon opac-
ities. We follow the traditional convention of setting τ = 0 at the observer’s location at
infinity, so that τ increases deeper into the atmosphere, along the z-axis of our coordinate
system. Since the gas has zero bulk velocity in this test, we make no distinction between lab
frame and comoving frame quantities for the rest of this subsection.

If, in addition to the assumptions listed in the previous paragraph, the source function
is istropic, scattering is absent, and the temperature profile of the atmosphere is known,
then the first three moments of the radiation intensity can be found exactly in terms of
exponential integrals (e.g. Chandrasekhar 1950; Kourganoff 1952). Here we follow Rutten
(2003) in writing the expressions for these moments as

Eν(τν) = 2π

∫ ∞
0

Sν(tν)E1 (|tν − τν |) dtν (2.47)

F z
ν (τν) = 2π

∫ ∞
τν

Sν(tν)E2 (tν − τν) dtν

− 2π

∫ τν

0

Sν(tν)E2 (τν − tν) dtν (2.48)

P zz
ν (τν) = 2π

∫ ∞
0

Sν(tν)E3 (|tν − τν |)dtν , (2.49)

3To be even more accurate we should transform the adiabatic heating/cooling rate, which is defined in
the comoving frame, into a lab frame rate when performing this subtraction. Such a transformaion was not
performed in this version of the code
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where

En(x) ≡
∫ 1

0

e−x/µµn−1dµ

µ
. (2.50)

We next consider including a frequency-independent scattering extinction χs, meant to
represent electron scattering, in addition to the frequency-dependent absorption coefficient
χtν . When scattering is included, an exact solution for the moments of the radiation intensity
is rarely possible, although excellent approximate solutions can be derived, as we will now
show.

It is conventional to introduce Jν ≡ (c/4π)Eν , Hν ≡ (1/4π)Fν and Kν ≡ (c/4π)P zz
ν . If all

radiative cross sections are assumed to be isotropic, then the lowest two moment equations
of the steady-state, plane-parallel transfer equation can be written

dHν

dτν
= εν (Jν −Bν) (2.51)

dKν

dτν
= Hν . (2.52)

If we employ the Eddington approximation, Kν = Jν/3, then the last two equations may
be combined to yield (e.g. Rybicki & Lightman 1986)

d2Jν
dτ 2

ν

= 3εν (Jν −Bν) . (2.53)

This is a linear, inhomogeneous ordinary differential equation for Jν . As such, it may be
solved via the method of variation of parameters. Illarionov & Sunyaev (1972) present such
a solution for the case when χtν corresponds to bremsstrahlung, so that it depends on both
the density and temperature of the atmosphere at each depth. Here, we consider a slightly
simpler situation in which εν is independent of depth. To specify the boundary conditions,
we assume that Bν approaches some finite value Bν,∞ as τν →∞, and that

Jν = aoutHν at τν = 0 , (2.54)

where aout is some constant value used to normalize the outgoing flux. If the two-stream
approximation were to hold exactly as τν → 0, then aout would equal

√
3 (Rybicki & Lightman

1986).
In that case, the solution for Jν becomes4

Jν(τν) = eτν
√

3εν

∫ ∞
τν

√
3εν
2

Bν(tν)e
−tν
√

3ενdtν

+e−τν
√

3εν

[∫ τν

0

√
3εν
2

Bν(tν)e
tν
√

3ενdtν

−
1− aout

√
εν
3

1 + aout

√
εν
3

∫ ∞
0

√
3εν
2

Bν(tν)e
−tν
√

3ενdtν

]
. (2.55)

4Unlike Illarionov & Sunyaev (1972), we allow the radiation to escape to τν = 0, rather than cutting off
the solution at τν = 1. Additionally, we have not made the approximation χs0ν � χt0ν .
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The emergent flux can then be computed as

Fν(0) = 4πHν(0) =
4π

3

dJν
dτν

(0)

= 4π
εν

1 + aout

√
εν
3

∫ ∞
0

Bν(tν)e
−tν
√

3ενdtν . (2.56)

Since the Eddington approximation was used to derive equation 2.56, taking its limit as
εν → 1 (i.e., in the limit of no scattering) does not recover equation 2.48 evaluated at τν = 0.
However, if we consider equation 2.48 under the the two-stream approximation so that µ is
fixed at 1/

√
3 in equation 2.50, and aout =

√
3, then we do indeed recover the εν → 1 limit

of equation 2.56.
To gain insight into equation 2.56, we consider the thermalization depth

Λν ≡ 1/
√
εν . (2.57)

This is the average depth that a freshly emitted photon with frequency ν will travel via
scattering before being reabsorbed. The heuristic derivation (following Rutten (2003)) for
equation 2.57 is as follows. During each scattering event, the probability that the photon is
absorbed is εν , by definition. Thus, an emitted photon will scatter an average of 1/εν times
before being reabsorbed. Meanwhile, for any random-walk process, the mean displacement
of a packet that has undergone N re-directions, each of mean free path l, is approximately
l
√
N . Consequently, the average distance between emission and absorption events is l/

√
ε.

Converting this distance to an optical depth gives us our result. A factor of
√

3 in front of εν
can account for the average angle with respect to the z-axis along which the photons travel
in the Eddington approximation.

We do not expect escaping photons to have been emitted at temperatures corresponding
to optical depth much greater than the thermalization depth. In other words, frequencies
with large thermalization depths allow us to see such photons that were emitted from deeper,
hotter portions of the atmosphere.

We ran three test calculations, each with a different degree of scattering, to test the code
against these solutions. In all three cases, we used a domain of total height h = 1014 cm.
For the first two tests we divided the domain into 128 zones of equal height, and for the final
test we used 256 zones. The domain was filled with gas following a power-law density profile

ρ(z) = ρmax

[
1 +

(
h− z
zs

)p]−1

, (2.58)

where we have chosen ρmax = 2.09 × 10−11 g cm−3 (yielding an optical depth to electron
scattering of 100, where the electron scattering opacity is 0.4 cm2 g−1 for fully ionized
hydrogen), zs = 1013 cm, and p = 3. Photons were emitted from the z = h plane and
propagate toward the z = 0 plane, where they are tallied to generate an outgoing spectral
energy distribution (SED). Any photons that scattered back past the z = h plane were
treated as absorbed by the luminous source and were no longer tracked. We adjusted the
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photon flux from the inner emitting surface (at z = h) so that the bolometric, steady-state
radiative flux escaping to infinity would equal a constant value of 1.64 × 1020 erg s−1 cm−2

in all three calculations.
We chose a normalization for χtν so that it would match the electron scattering extinction

at 100 Angstroms. We also let χtν scale as ν−1. Our wavelength resolution was set by dividing
the interval between 1 and 104 Angstroms into 100 bins equally spaced logarithmically.

Anticipating that the densities and temperatures in these calculations would correspond
to cooling times that were orders of magnitude shorter than the radiative diffusion time
through the computational domain, we used a fully implicit treatment of the radiative heat-
ing and cooling. Absorption events were always treated as effectively scattered, and we
periodically re-computed the temperature of the gas in each zone by enforcing radiative
equilibrium until a steady state was reached.

Figure 2.1 shows the outgoing SED for three test cases. In the first case, shown in the
top panel, we used only the absorption coefficient χtν , and neglected scattering entirely. This
allowed us to solve for the outgoing flux by invoking equation 2.48 at τν = 0 for all ν. The
match between the analytic formula and the Monte Carlo results is excellent.

In the second case, shown in the middle panel of Figure 2.1, we add Thomson scattering
but we keep all other details of the simulation the same as before. Given our functional
form for χtν described above, εν ranges from 10−2 at 1 Angstrom to 0.9 at 1000 Angstroms.
As shown in Figure 2.2, the inclusion of scattering along with absorption, while forcing the
escaping flux to be the same, leads to higher temperatures in all regions of the atmosphere.
Remarkably, this temperature adjustment occurs in such a way as to keep the shape of the
outgoing SED nearly identical to the case without scattering (compare the first and second
panels of Figure 2.1). The Eddington approximation prediction for the shape of the SED
(equation 2.56) still matches the computed SED quite well.

Finally, the bottom panel of Figure 2.1 shows the results of another test that includes
both absorption and scattering, but this time the absorption opacity is reduced to a value
of 0.01 times the value we had used previously. Now εν ranges from 10−4 at 1 Angstrom
to 0.09 at 1000 Angstroms. In this case there is a slight drop in temperature compared
to the previous case at all depths in the atmosphere, as seen in Figure 2.2. However, this
time the SED shifts markedly in the blueward direction, which is evident in the bottom
panel of figure 2.1. This can be understood in terms of the thermalization length described
earlier. As the atmosphere becomes increasingly scattering dominated, the photons that
escape to the observer tend to have been emitted at higher Thomson optical depth, where
the temperature is higher. Again, agreement with the analytic formula is very good, verifying
the MCRT calculation of multi-frequency transport in a scattering dominated regime.

2.7.2 Line Transport

We next test the transport of line radiation in both moving and static media. We use the
spherical Lagrangian version of the code and inject photons into a uniform density sphere
of radius rmax = 1015 cm. The thermal motions of ions are taken into account, with a
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Figure 2.1 : Tests of outgoing SEDs for static, stratified, plane-parallel atmospheres with frequency-
dependent opacities. Top panel: No scattering. The absorption coefficient χtν is chosen so that it
matches the Thomson extinction at 100 Angstroms, and declines as ν−1. The exact analytic solution
used for comparison is given in equation 2.48. The blackbody spectrum is included to guide the
eye and to illustrate how the emergent flux in this calculation includes emission from gas layers at
a range of temeperatures. Middle panel: Thomson scattering has been added as a contribution to
the opacity, but all other details of the calculation remain the same as the top panel. The analytic
prediction now uses the Eddington approximation and is given by equation 2.56. Bottom panel:
The thermal opacity is now multiplied by a factor of 0.01, but all other details remain the same
as in the middle panel. For sufficiently small εν , as in this panel, the SED shifts toward smaller
wavelengths even while the peak value of λFλ remains nearly the same as in higher εν runs. The
slight over-prediction of flux in this case seems to improve as spatial resolution is increased. Higher
spatial resolution is needed in this case because the photons that escape were initially emitted from
deeper, hotter portions of the atmosphere with higher temperature gradients than in the previous
two cases.



2.7. RADIATION TEST PROBLEMS 28

Figure 2.2 : The gas temperature as a function of height for the static atmosphere tests. The three
curves correspond to the three panels in Figure 2.1. Although the temperatures are noticeably
different between all three runs, the outgoing flux has been adjusted to be the same in all three
cases.
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Figure 2.3 : Test of line transport in a static medium, comparing Monte Carlo results (circles) to an
analytic solution based on the diffusion approximation (Equation 2.59, solid lines). In this problem,
a point source radiates line photons into a uniform spherical medium with a pure-scattering optical
depth at line center of τc = 104 (red), τc = 105 (black) and τc = 106 (blue).
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Figure 2.4 : Test of line transport in a moving homologously expanding medium. A spherical source
radiates continuum photons into a uniform pure-scattering medium with Sobolev line optical depth
of τs = 1. Results from the Monte Carlo (circles) are compared to the semi-analytic solution based
on the Sobolev approximation (Equation 2.60).
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velocity dispersion of vd = 25 km s−1. The line opacity is taken to be pure-scattering, and
for computational expediency we adopt a large Voigt parameter of a = 0.1 (see equation
2.40).

In the first test, we consider a static atmosphere with a total radial optical depth at line
center of τc. Photons are injected at the center of the sphere and at the line center rest
frame frequency νc. An analytic solution to the line scattering problem in the plane parallel
case was derived by Neufeld (1990) under the Eddington approximation, and generalized to
a spherical atmosphere by Dijkstra et al. (2006), who find a total flux density at the surface
of the sphere

J(x) =

√
π

24
√
πaτc

[
x2

1 + cosh[
√

2π3/27(|x3|/aτc)]

]
(2.59)

In Figure 2.3 we show results of the MC transport for spheres of optical depth τc = 104 and
106. The resulting line features show a characteristic double peaked profile. This is because
photons are Doppler shifted by the thermal motions of the scatterers, and preferentially
escape in the less opaque line wings. Our MC results show favorable agreement with the
analytic solution Equation 2.59, comparable to those seen in other MCRT line transport
codes (Dijkstra et al. 2006).

To test line transport in a moving atmosphere, we consider the case where the sphere
of gas is expanding homologously (i.e., velocity proportional to radius). We emit photon
packets from the surface of a spherical inner boundary of uniform specific intensity Ip in the
lab frame at a radius rp = 1014 cm. The velocity structure is given by v(r) = vmax(r/rmax),
with vmax = 108cm s−1. Because the velocity scale height of this problem is much greater
than the ion thermal velocities, the Sobolev approximation applies. The emergent line profile
in the lab frame is then given by an integral over the impact parameter p, (e.g., Jeffery &
Branch 1990)

F (ν) = 2π

∫ ∞
0

[
Ipe
−τs + S(r)(1− e−τs)

]
pdp (2.60)

where the Sobolev optical depth is

τs(r) =
πe2

mec

c

νc

foscnl
dv/dr

. (2.61)

In the present example the velocity gradient is dv/dr = vmax/rmax. The source function for
a pure-scattering line is equal to the mean intensity of the radiation field, S(r) = J(r) =
W (r)Ip where the dilution factor is

W (r) =
1

2

[
1−

√
1− (rp/r)2

]
. (2.62)

As discussed in Jeffery & Branch (1990), to properly treat the boundary condition of the
photosphere, τs(r) and S(r) are zero for the spatial region inside and behind the photosphere,
while Ip(p) is zero for p > rp.
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Figure 2.4 shows results for a constant density atmosphere with τs = 1. The spectrum
of the MCRT code, which resolves the line profile, is in good agreement with the Sobolev
semi-analytic solution.

2.8 Radiation-hydrodynamics Test Problems
We next discuss test problems in which the energy and momentum coupling of the gas

and radiation is considered. In what follows, we define the radiation temperature as T0,r =
(E0/ar)

1/4, where E0 is the comoving radiation energy density. We use an ideal gas equation
of state with γad = 5/3.

Table 2.1 lists the numerical parameters used in each radiation-hydrodynamics test prob-
lem.

2.8.1 Evolution to radiative equilibrium

We begin with a standard test of the heating and cooling of the gas by radiation, which
also provides clear a demonstration of the application of implicit MC techniques. We chose
here a setup identical to that of Turner & Stone (2001), although modified versions of the
test have appeared elsewhere, including Noebauer et al. (2012).

In this test we use the Eulerian version of the hydro solver. We again consider gas with
zero bulk velocity, so that the lab frame and the comoving frame are identical, although
we retain the comoving frame notation. The computational domain is filled with static gas
at a uniform density of ρ0 = 10−7 g cm−3, a mean atomic mass of µ = 0.6, and a gray
opacity κ0 = 0.4 cm2 g−1. Additionally, a uniform and isotropic radiation field is initialized
with energy density 1012 erg cm−3, so that T0,r = 3.4 × 106 K. Here ε = 1, so that the gas
and radiation are fully thermally coupled. Although the radiation pressure overwhelms the
gas pressure in this test, the radiation field is isotropic, so the radiation pressure does not
accelerate the gas. Reflecting boundary conditions were used for the radiation.

In this context, the gas energy equation (Equation 2.3) simplifies to

de0

dt
= χcarT

4
0,r − 4χB(T0,g)

= χcar(T
4
0,r − T 4

0,g) (2.63)

where B is the frequency-integrated Planck function Turner & Stone (2001). We consider
two versions of the test, one in which the gas is heated by radiation, and another in which the
gas cools. For the heating case, the gas is given an initial thermal energy density of 102 erg
cm−3, corresponding to T0,g = 11 K. For the cooling case, the initial thermal energy density
is 1010 erg cm−3, corresponding to T0,g = 1.1 × 109 Kelvin. In both cases, the radiation
energy greatly exceeds the gas energy density, and so remains nearly constant during the
energy exchange. This means that the gas will ultimately heat or cool to reach the radiation
temperature, corresponding to an equilibrium gas energy density of 7.8× 107 erg cm−3.
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Table 2.1 :

Test # of zones Zone width dt tstop αf Cq Initial Max packets
(cm) (s) packets emitted

per zone, per zone,
per step per step

Rad. equilib. 2 5.0× 109 1.0× 10−11 s 1.0× 10−7 0. 0. 1 0
(no IMC)

Rad. equilib. 2 5.0× 109 1.0× 10−14 s 1.0× 10−7 0.5 or 0. 1 0
(IMC) 1.0

Advected 201 0.00995 1.0× 10−13 s 1.0× 10−10 N/A 0. 105 0
pulse (center zone)

Homologous 64 Variable CFL 0.2 1.0× 105 N/A 0. 10 0
expansion

Bondi 2048 Variable CFL 0.2 3.0× 106 1.0 0. 10 40
accretion (from source)

M = 2 512 5.86× 10−5 CFL 0.5 1.0× 10−9 1.0 0.1 10 400
steady shock

M = 5 2048 1.95× 10−5 CFL 0.5 1.9× 10−9 1.0 0.1 10 100
steady shock

M = 70 896 1.29× 10−3 CFL 0.1 1.0× 10−9 1.0 0.1 7680 7680
steady shock

Sub-critical 512 1.37× 108 CFL 0.5 4.0× 104 0. 0.5 1000 4000
moving shock

Super-critical 512 1.37× 108 CFL 0.2 1.3× 104 1.0 0.5 1000 1000
moving shock

Note. — Numerical parameters. When zone width is listed as “variable”, the Lagrangian version of the code is being used.
When αf is listed “N/A”, the radiation energy and gas are thermally decoupled (i.e. ε = 0 so that radiation always scatters
and is never absorbed).
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This test only follows the evolution of the gas up to an elapsed time of 10−5 s, whereas the
photon interaction time 1/(ρκc) is approximately 10−3 s. In the absence of explicit photon
interactions, the energy exchange between gas and radiation is deterministic, and so the
number of photon packets employed has no effect on the solution.

Figure 2.5 displays the gas heating and cooling curves compared to the analytic solution
of Equation 2.63. Consider the cooling curve first. According to equation 2.44, the cooling
time at the beginning of the simulation is 1.7× 10−15 s. If we take a time-step smaller than
this, such as 10−15 seconds, then no implicit methods are needed, and the gas temperature
follows the analytic cooling curve to an accuracy of better than 1.3% at all times. If we wish
to take much larger time-steps, then we must turn on the implicit Monte Carlo by setting
αf ≥ 0.5, otherwise the code generates negative temperatures and crashes after the first
step of the calculation. Figure 2.5 shows the results of taking αf = 0.5 and αf = 1.0 for
dt = 10−11 s. In both cases, the cooling curves approach the analytic solution after many
time-steps, but the cooling is artificially slow at early times. The αf = 0.5 case converges
to the correct solution more quickly than the αf = 1.0 case, demonstrating that one should
strive for the smallest value of αf that still maintains stability.

The heating curves follow the analytic solution to within one part in 10−4 at all times,
regardless of the value of αf chosen or the size of the time-step up to 10−11 that we tested,
although larger time-steps could be used for the heating case.

2.8.2 Advected radiation pulse

In a moving, optically thick medium, radiation should be swept along with the matter.
This represents an important and non-trivial test of the MCRT routine, as advection is
not explicitly included in the code. Instead, advection is a statistical consequence of the
lab frame anisotropy of the lab frame extinction coefficient and scattering function. When
averaged over many scatters, these effects preferentially guide packets upstream.

Our test is similar to the radiation diffusion tests presented in Harries (2011) and Noe-
bauer et al. (2012), but with the added effect of advection. We use the Eulerian version of
the code, and consider a homogeneous gas distribution from x = −1 cm to x = 1 cm. The
gas is pure-scattering (ε = 0) with µ = 0.5, and is given a uniform lab frame velocity of
2 × 109 cm s−1. The scattering opacity is taken to be κ0 = 109 cm2 g−1, which gives an
optical depth across each zone equal to 1 in the comoving frame. The radiation is initialized
isotropically in the comoving frame of the central zone only, with a comoving energy density
of 1010 erg cm−3.

Since the gas and radiation are thermally decoupled in this test, and we are primarily
interested in the advection and diffusion of the radiation energy, the value chosen for the gas
temperature is arbitrary. However, a lower temperature results in a higher mach number. In
the test corresponding to Figure 2.6 (discussed below), we chose to set the gas temperature
to 104, corresponding to an isothermal mach number of roughly 1560. In this case, we found
it necessary to include a floor for the gas energy to prevent it from dropping below zero.
Radiation is allowed to escape through either side of the domain, and periodic boundary
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Figure 2.5 : Tests of the approach to radiative equilibrium in a radiation-energy dominated gas,
with gray radiative opacity. The red and blue curves represent the analytic gas heating and cooling
curves as computed from equation 2.63. The points represent values computed from the Monte Carlo
simulation for three sets of numerical parameters as described in the legend. All other numerical
parameters are held at the values specified in Table 2.1. Two different implicit treatments of the
heating and cooling are used for large time-steps, in addition to an explicit numerical treatment
at time-step much shorter than the cooling time. The bottom panel shows the fractional error
compared to the analytic solution for the case of explicit heating and cooling.
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conditions are employed for the hydrodynamics solver.
As discussed in Harries (2011) and Noebauer et al. (2012), the evolution of the radiation

energy can be solved for analytically in the diffusion approximation. Figure 2.6 compares
our computed radiation temperature to this solution at various times. One sees that the
radiation pulse moves along with the gas at the expected velocity. We confirmed that both
the transformation of the extinction coefficient (Equation 2.31) and the effect of aberration
(Equation 2.24) must be included to reproduce the proper advection velocity. Thus, even in
problems with velocities v � c, a special relativistic MC treatment is desirable to recover
the proper advection behavior.

2.8.3 Opaque Expanding sphere

We next consider a problem designed to test whether the code properly handles radiation
energy losses due to expansion. This is also a non-trivial test of the MCRT routine, as no
explicit term for radiation pdV work is included in the code. Instead, the change in the
radiation energy density is a statistical result of the multiple Doppler shifts photon packets
incur as they scatter anisotropically off of moving gas.

We consider a spherical gas cloud undergoing homologous expansion (i.e., velocity propor-
tional to radius) and opaque enough that photons do not diffuse significantly, but are rather
advected along with the flow. Such an adiabatically expanding flow cools as T ∝ V 1−γad ,
with V ∝ r3

out. We assume the medium is pure-scattering (ε = 0), so that the radiation and
gas are thermally decoupled. Hence the gas (γad = 5/3) should evolve as T0,g ∝ r−2

out while
the radiation (γad = 4/3) should evolve separately as T0,r ∝ r−1

out.
For this test, we use the Lagrangian version of the hydro solver. The outer edge of the

computational domain expands homologously as rout = rout,i + voutt , where t is the time
elapsed. We take rout,i = 1013 cm and vout = 109 cm s−1. The gas is initially uniform with
a temperature of 104 K, a density of ρ = 4.75 × 10−7 g cm−3, µ = 0.5, and κ0 = 0.4 cm2

g−1. Reflecting boundary conditions at rout are used for the radiation. To compute the
fluid pressure gradient at the outer boundary we linearly extrpolate the pressure from the
outermost two zones to evaluate the pressure beyond the outermost radial zone, although
the gas pressure does not play an important role in this test.

Figure 2.7 displays the spatially-averaged gas and radiation temperatures as a function
of rout (each zone was given equal weight in the average). The code recovers the expected
adiabatic loses of the gas and radiation field. We ran two versions of this test, one in which
the gas velocity was taken to be piece-wise constant in each zone, and the other in which
the gas velocity was linearly interpolated within each zone.

As is evident in the figure, the evolution of the radiation temperature is more accurately
computed for the case in which velocity interpolation was used, indicating that an adequate
resolution of the gas velocity field is necessary properly calculate the radiation pdV work.
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Figure 2.6 : Test of advection and diffusion of radiative energy in a moving fluid with gray scattering
opacity. The mean free path of the photons is approximately 0.01 cm, so the fluid is highly optically
thick to the radiation and sweeps the radiative energy along with it. The analytic solution is given
by the advection-diffusion equation, and the bottom panel shows the absolute error in the computed
radiative energy density as compared to the analytic solution. The numerical parameters used in
this test are specified in Table 2.1.
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Figure 2.7 : Test of the temperature evolution of a homologously expanding sphere of fluid that is
optically thick to scattering radiation. Since the gas and radiation have different adiabatic indices,
their temperatures as a function of radius/time follow different relationships. We find that in
order to achieve a percent-level match to the expected temperature profiles, we must interpolate
the velocity of the fluid between neighboring Lagrangian mass cells. The fractional error in the
computed versus expected temperatures is shown in the bottom panel. The numerical parameters
used in this test are listed in Table 2.1.
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2.8.4 Bondi accretion with optically thin radiation pressure

The classic Bondi problem of steady-state, spherically symmetric gravitational accretion
(Bondi 1952) provides an opportunity for us to test the effect of radiation force in the
optically thin limit. Our treatment of the problem closely follows that of Krumholz et al.
(2007a). For an accreting object with mass M and isotropic radiative luminosity L we may
define the Eddington factor

fEdd =
κ0L

4πGMc
, (2.64)

where κ0 is the gas opacity, taken here to be gray. We consider the isothermal case. For a
sound speed cs, we may then define the radiatively-inhibited Bondi radius as

rB = (1− fEdd)
GM

c2
s

. (2.65)

The expected steady-state mass accretion rate is then

ṀB = 4π

(
e3/2

4

)
csρ∞r

2
B, (2.66)

where ρ∞ is the gas density at the outer boundary of the domain.
We set M = 10 M�, L = 1.63 × 105 L�, cs = 1.29 × 107 cm s−1, ρ∞ = 10−18 g cm−3,

µ = 1, and κ0 = 0.4 cm2 g−1, so that fEdd = 0.5 and rB = 4×1012 cm. The spherical domain
has inner radius 0.2 rB and outer radius 6rB. We initialize the gas density and velocity
according to the analytic solution as described in Krumholz et al. (2007a), in a manner such
that each of our Lagrangian zones contains roughly equal mass.

We enforce inflow boundary conditions by removing the innermost Lagrangian zone from
the calculation when its outer radius drops below 0.25rB. We then simultaneously add a
zone at the outer edge of the computational domain with density equal to ρ∞ and with outer
velocity equal to the velocity of the formerly outermost zone. As in the previous test, to
compute the fluid pressure gradient at the outer boundary we linearly extrpolate the pressure
from the outermost two zones. Radiation escapes through the outer boundary.

Figure 2.8 displays the gas density and velocity as a function of position at time t =
9.7 rB/cs. The fractional deviation between the computed and expected solutions is at most
7% in the innermost zone. The average accretion rate over this time was 1.06 times the
expected mass accretion rate computed from equation 2.66.

2.8.5 Steady sub-critical and super-critical radiating shocks

A more complicated set of tests involve steady radiating shocks5. The structure of these
shocks differs from the pure hydrodynamic case because radiation emitted by the shocked

5We use the term “shock” here in a broad sense that also includes the case of very high upstream Mach
number (e.g. our M = 70 case) in which there is no embedded viscous shock, although there is still a
radiation-mediated shock.
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Figure 2.8 : The velocity and density profiles of a radiatively-inhibited Bondi accretion test, set
up to replicate the corresponding test in Krumholz et al. (2007a) at time t = 9.7 rB/cs. The red
curve is our computed solution and the black is the analytic solution. The maximum disagreement
between these two solutions is 7% for the velocity in the innermost zone. The numerical parameters
used in this test are listed in Table 2.1.
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gas leaks out ahead and behind the shock, heating the gas and forming a radiative precursor
region (upstream) and a radiative relaxation region (downstream). Additionally, the shock
obeys a modified set of jump conditions in which the total energy and momentum carried
by both gas and radiation is conserved (Zel’dovich & Raizer 1969).

In the gray nonequilibrium diffusion approximation, there exists a semi-analytic solution
for the shock structure (Lowrie & Edwards 2008). For the case where scattering is neglected,
and for an adiabatic equation of state with fixed index γad and mean particle mass µmp, this
solution is completely characterized by four dimensionless parameters: the Mach number,
M, of the upstream gas in the rest frame of the shock, the ratio of the speed of light to the
upstream sound speed C, the ratio of the upstream radiation pressure (times 3) to upstream
gas pressure P, and the optical depth to the radiation, τ , for a chosen comoving radiative
extinction χ0 (units of cm−1) and lab frame length scale L

M = vu/au = vu

√
µmp

γadkBTu,g
(2.67)

P =
arT

4
u,g

ρua2
u

=
aT 3

u,gµmp

ρuγadkB
(2.68)

C = c/au = c

√
µmp

γadkBTu,g
(2.69)

τ = χ0L . (2.70)

Here, quantities with subscript u refer to upstream values6. For consistency with equa-
tions 2.1 through 2.3 we take ρu and vu to be measured in the lab frame and Tu, au, and χ0

to be measured in the comoving frame, although this distinction is not made in Lowrie & Ed-
wards (2008). Also note that when setting these parameters, the upstream gas is considered
to be in radiative equilibrium so that Tu,g = Tu,r.

Following Lowrie & Edwards (2008) and Jiang et al. (2012), we choose P = 10−4, C =
1.732 × 103, and τ = 577. We take L = 1 cm, so that7 χ0 = 577 cm−1. We have also set
µ = 0.5. The upstream density, temperature, and velocity of the fluid can be determined
from these values, and the downstream values can be calculated using the jump conditions
and the procedure for solving them outlined in Bouquet et al. (2000).

We used the Eulerian version of the code. For M = 2 and M = 5, we initialized the
computational domain with a step function obeying the jump conditions, not the full semi-
analytic solution, and let the shock structure develop on its own. Then, once a structure
emerged that was stable over multiple shock crossing times, we spatially translated this
solution to compare the numerical shock structure to the semi-analytic solution. We used
Dirichlet boundary conditions for the hydrodynamics solver. On the upstream side of the

6Lowrie & Edwards (2008) use a slightly different set of nondimensional parameters, but they are directly
mappable to the ones listed here.

7In terms of the parameters used in Lowrie & Edwards (2008), we are using σa = 106 and κ = 1.
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Figure 2.9 : Steady radiating shock test as in Lowrie & Edwards (2008), withM = 2. The points are
output from our Monte Carlo rad-hydro calculation, and the solid line is the semi-analytic solution.
All hydrodynamic variables have been nondimensionalized (see text for details). The numerical
parameters used for this test are listed in Table 2.1.

domain, we used reflecting boundary conditions for the radiation. On the downstream side,
we let the radiation escape freely.

Figure 2.9 shows the results for the M = 2 case at t = 1.0 × 10−9 s, and Figure 2.10
shows the results for the M = 5 case at t = 1.9 × 10−9 s. In general, there is excellent
agreement with the semi-analytic solution. One slight issue relates to resolving the narrow
Zeldovich temperature spike. For theM = 5 case, we increased our resolution all the way
to 2048 zones, and even then the spike is slightly underestimated.

For theM = 2 case, we also display our computed value of the Eddington tensor element
f zz as a function of position in Figure 2.11. FLD assumes that the diagonal elements of f ij
never drop below 1/3. We find, as in Sincell et al. (1999) and Jiang et al. (2012), that f zz
does indeed drop below 1/3 near the shock.
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Figure 2.10 : Similar to Figure 2.9, but for M = 5. The inset in the gas temperature plot is a
zoomed-in plot in the region of the Zeldovich spike, and is not to scale with the rest of the figure.
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Figure 2.11 : Eddington tensor element fzz (red) for theM = 2 steady radiating shock test, with
the nondimensional density (blue) over-plotted. The solid black line represents a constant value of
1/3, which holds in the diffusion approximation. We that fzz does indeed drop below 1/3 near the
shock, as previous authors have observed (see text for details).
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Figure 2.12 : Similar to Figures 2.9 and 2.10, but forM = 70.

We also considered a stronger shock, with M = 70. In this case, we initialized the
problem with the steady-state solution and tested to make sure it maintained that solution
over several shock crossing times. Also for the M = 70 case, rather than implementing
a constant radiative flux boundary condition on the downstream side, we used a reflecting
boundary condition for the downstream radiation, and extended the downstream domain so
that any spurious effects from this boundary condition did not have time to reach the region
of interest near the shock.

Figure 2.12 shows the results for theM = 70 case at t = 10−9 s. This case is particularly
interesting because downstream of the shock, the radiation energy density is larger than the
gas thermal energy by a factor of about 9. Here radiation pressure becomes dynamically
important, and we are testing the behavior of the radiation pressure force in our code in
the optically thick regime. We find good agreement between our computed results and the
semi-analytic solutions for the gas and radiation temperatures. However, we find that the
gas density on the downstream side is about 5% lower than expected based on the jump
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conditions. The cause of this discrepancy is unclear, but it might be related to our method
for coupling the radiation momentum source terms to the Godunov solver. Our hydro time-
steps are large enough that we are in the highly implicit regime for the Monte Carlo, although
our solution does not appear to change signficantly if we reduce our CFL number by a factor
of 2.

2.8.6 Non-steady radiating shocks

This test involves a super-critical radiative shock driven by the supersonic motion of a
piston into initially uniform and static gas, as defined by Ensman (1994). The test has been
revisited many times, including in Hayes et al. (2006), in which the ZEUS-MP2 code was
used to solve the problem while making use of the flux-limited diffusion approximation for
the radiation. More recently, Noebauer et al. (2012) compared the results of their Monte
Carlo radiation-hydrodynamics code to the ZEUS results for this problem.

The numerical parameters for these tests are reported in Table 2.1. Additionally, we
used reflecting boundary conditions for both the radiation and the hydrodynamics at the
piston boundary. On the other side of the domain, we let radiation escape freely, and we
used Dirichlet boundary conditions for the hydrodynamics.

In Figures 2.13 and 2.14 we display our results for the sub-critical and super-critical
versions of the test, respectively. The agreement between the two codes is encouraging. As
Noebauer et al. (2012) found, we see deeper penetration of the radiation into the radiative
precursor than in the FLD result. We also find that the radiative precursor in our results
takes slightly more time to develop than in Zeus, and this might be due to our implicit
treatment of the radiative cooling.

2.9 Radiation Force Calculation Using the Divergence of
the Eddington Tensor

One of the main concerns with applying MCRT methods to RHD problems is that the
estimators of the radiation field possess stochastic errors that may propagate into the dy-
namics. In general, the radiation force is more poorly sampled than the radiation energy
deposition, due to the fact that packets traveling in opposite directions cancel out in the
estimator of the flux. The problem becomes more acute in regions of high optical depth,
where the radiation becomes nearly isotropic and the flux constitutes only a small fraction
of the total radiation mean intensity.

In this case, a better approach (mentioned in section 2.3) may be to use the divergence
of the Eddington tensor (equation 2.29) to derive the radiation force. As noted before,
this approach is only guaranteed to be accurate when the radiation is diffusing, but that is
precisely the situation in which such an approach becomes most attractive. The P zz element
of the radiation pressure tensor does not suffer from the same packet cancellation as does
the flux, and so is typically better estimated. To calculate the radiation force, we used a



2.9. RADIATION FORCE CALCULATION USING THE DIVERGENCE OF
THE EDDINGTON TENSOR 47

Figure 2.13 : Gas and radiation temperatures for the sub-critical moving shock test as described
in Ensman (1994). We compare our solutions for the radiation and gas temperatures to those
computed by the ZEUS-MP2 code. While the two calculations agree very well in the vicinity of
the shock, the radiative precursor in the Monte Carlo calculation extends farther into the upstream
gas, as was also observed in Noebauer et al. (2012). The numerical parameters used in this test are
listed in Table 2.1.
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Figure 2.14 : Similar to Figure 2.13, but for a super-critical radiating shock.
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simple centered difference to take a second-order spatial derivative of the pressure tensor.
We note that there are more sophisticated methods for taking numerical derivatives of noisy
data, and that these may lead to superior results.

Figure 2.15 compares the noise in the calculation of the radiation force in the M = 70
steady radiating shock test using our two different methods (in all other tests, only the direct
Monte Carlo estimator of the force was used, not the divergence of the pressure tensor). The
figure demonstrates that although the two methods converge to a similar result at high
spatial resolution and for a large number of packets, the pressure tensor divergence method
converges must faster - it provides much less noise than the direct Monte Carlo summation
method for coarser spatial resolutions and lower packet number.

These results suggest the possibility of using MCRT in a hybrid approach with other
radiation transport schemes. In particular, solution of the radiation moment equations
require a closure relation, which is often taken to be an approximate analytic prescription.
Solution of the MCRT, however, provides estimator of the true Eddington tensor, which
could then be used as a closure to the moment equations. In this case, the MCRT may not
need to be run every time-step, allowing for a reduced computational load.

2.10 Performance
The relative performance of the MCRT compared to traditional radiation-hydrodynamics

schemes depends sensitively on the particular problem at hand — the spatial resolution,
optical depth, degree of radiation domination, and level of tolerable noise. For the test
problems discussed in the last section, we find that MCRT execution times are in some cases
comparable to grey FLD techniques, and in others considerably more expensive.

Table 2.2 summarizes the execution times for the Ensman super-critical shock test for
a varying number of Monte Carlo packets employed, and two separate spatial resolutions.
These tests were performed on a 2012 MacBook Pro laptop (2.6 Ghz Intel Core i7 processor)
and compiled with g++. For comparison, we have included tests run with the flux-limited
diffusion code Zeus-MP, run on the same machine and compiled with gfortran.

When a smaller number of packets is used, the radiation field in the MCRT calculation
naturally possesses increased noise, as illustrated in Figure 2.16. The error is most apparent
in the high-temperature shocked gas, and in the stair step behavior at the leading edge of
the radiative precursor. The latter effect arises because only a small number of high energy
packets manage to diffuse ahead of the shock in any given time-step. This behavior is in part
due to our unoptimized choice to emit equal numbers of packets in every zone, despite the
fact that the emissivity behind the shock is at least 106 times greater than that of the coldest
gas ahead of it. Applications of so-called importance sampling techniques may substantially
reduce the error without increasing the execution time. In particular, one could increase
the number of high-energy packets emitted near the shock interface, while at the same time
reducing the number of low-energy packets emitted in the pre-shock region.

It is comforting to see that, despite the noisy radiation field of Figure 2.16, the gas density
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Figure 2.15 : Comparison of calculations of the radiation force in the M = 70 steady radiating
shock problem. The left panels use the divergence of the pressure tensor to calculate the radiation
force, whereas the right panels use the direct Monte Carlo summation method. The top two panels
use numerical parameters as listed in Table 2.1. The bottom two panels use a spatial resolution
that is four times as coarse, and a maximum of 4000 packets per zone instead of 7680.
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Figure 2.16 : The left panel corresponds to the fourth time output in Figure 2.14, but with a
maximum of only 100 packets emitted per zone per time-step, instead of 1000. The right panel
shows the corresponding gas densities.
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suffers less from noise. This is because the gas properties are determined by the radiative
heating and acceleration integrated over many time-steps. These time-averaged quantities
are more accurately sampled than the instantaneous radiation field snapshot plotted in the
figure. In general, we find that for problems where gas energy dominates, the dynamics of
the problem are rather robust against instantaneous radiation noise. For problems where
radiation energy and pressure dominate, the radiation noise is more problematic and can
propagate into the gas properties. The deleterious effect of noise may also be more significant
in multi-dimensional simulations where instabilities might develop.

Figure 2.17 shows the gas temperatures computed for each of the calculations in Table 2.2,
zoomed in to the region surrounding the Zeldovich spike. In addition to the noise present at
the scale of a few zone widths, the value of the temperature averaged over larger scales also
varies between the individual Monte Carlo calculations at the level of a few percent, as is
evident in Figure 2.17 and listed in Table 2.2. In order to quantify the small-scale noise, we
focus on the region upstream (left) of the spike, where the effect of the noise is most severe.
We apply an offset to the Monte Carlo temperatures so that their mean value in this region
matches that of the Zeus calculation. Then, we measure the root mean square difference
between these offset gas temperatures and the temperatures computed by Zeus, excluding
the 3 zones directly adjacent to the left boundary. The effect of increasing the number of
packets on the RMS error for the four calculations with 1200 zones agrees especially well
with the rule of thumb that the random error should scale as 1/

√
N where N is the number

of packets employed. We see that to decrease the RMS error associated with small-scale
noise to within 1%, the CPU time requirement is approximately four times that of Zeus in
the runs employing 512 zones, and twice that of Zeus in the runs employing 1200 zones.

The potential performance advantages of the MCRT method would become more appar-
ent if, instead of comparing to Zeus-MP, we were to compare to a non-grey radiation code.
For most deterministic transport methods, the execution time scales with the number of an-
gle bins and frequency groups employed, and therefore become significantly more expensive
than grey FLD. Our MCRT calculations, on the other hand, already include the angular
information and can be run in multi-frequency mode with minimal additional computational
expense. Photon packets are distributed across the relevant frequency range and, because
the radiation force four-vector is given by integrals over frequency, no additional packets
are needed to construct source term estimators of comparable noise, at least in the case
that the opacity has a reasonably smooth frequency dependence. In cases where the opacity
has sharp dependencies (e.g., lines), importance sampling technique can be used to increase
packet statistics at the most important frequencies. Convergence tests varying the number of
packets would be required to determine whether the frequency sampling had been sufficient.

As already mentioned, the execution time of the MCRT code is highly problem-dependent,
in particular because of the well-known inefficiency of Monte Carlo methods in regions of
high optical depth, where many photon interactions must be tracked per time-step. For high
optical depth cases, a substantial speed-up can be obtained through the inclusion of the
discrete diffusion technique, which has been described for the gray radiation case in Gentile
(2001); Densmore et al. (2007) and the non-gray case in Abdikamalov et al. (2012).
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Table 2.2 : Performance comparison for the Ensman super-critical shock test

Description Mean gas RMS noise (K), CPU Time
temperature (K) percent error (minutes)

Zeus 512 zones 4617.5 1.8
MC 512 zones, 100 packets 4686.9 44.7 (0.95 %) 6.4
MC 512 zones, 300 packets 4618.0 29.3 (0.63 %) 18.3
MC 512 zones, 1000 packets 4639.0 24.7 (0.53 %) 56.4

Zeus 1200 zones 4613.8 17.8
MC 1200 zones, 50 packets 4535.5 50.1 (1.1 %) 35.4
MC 1200 zones, 100 packets 4574.1 35.5 (0.75 %) 68.3
MC 1200 zones, 200 packets 4622.2 25.2 (0.55 %) 133.6
MC 1200 zones, 500 packets 4680.6 14.3 (0.31 %) 298.3

Note. — The number of packets in the description refers to the maximum number of
packets emitted per zone per time step. All other numerical parameters are as listed in
Table 2.1. The mean gas temperature is computed in the upstream region left of the Zeldovich
spike, excluding the three zones nearest to the left boundary. For the details of how the RMS
noise is computed, please see the text.
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Figure 2.17 : Gas temperatures calculated for the Ensman super-critical shock test, zoomed in
to the region surrounding the Zeldovich spike, for various packet counts and two separate spatial
resolutions.
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For problems with one spatial dimension, or problems of higher dimension and sufficiently
coarse spatial resolution, the entire computational domain can be stored in the memory of
a single computational node. With the added fact that Monte Carlo packets propagate
independently of one another over a single time-step, this permits an “embarrassingly par-
allelizable” treatment for the radiation portion of the problem. The transport step may be
replicated over as many computational nodes as are available, and then the results of the
packet propagation during each time-step for each node can be summed together with an
Message Passing Interface (MPI) reduction.

We have run MPI-parallelized versions of the Ensman sub-critical shock test in which the
total number of photon packets per time-step is held constant, but is divided over varying
numbers of CPUs. Although we have only parallelized the radiation portion of the code, the
CPU time required to execute the hydro update is negligible compared to the radiation. We
see perfect strong parallel scaling in the time for this test, which is to say that the amount
of wall time needed to complete the test is cut in half each we double the number of cores
we use, as shown in Figure 2.18.

2.11 Conclusions regarding the radiation-hydrodynamics
coupling

We have demonstrated that MCRT coupled to both Lagrangian and Eulerian hydrody-
namics solvers can result in accurate, robust treatments of RHD problems, including those
in which the radiation energy dominates. Although we have focused here on 1-dimensional
test problems, our Eulerian code is multi-dimensional, and subsequent studies will address
astrophysical problems in higher spatial dimensions.

Our approach makes use of the implicit MCRT method to allow us to take hydrodynam-
ical time-steps much larger than the gas cooling time. We also showed how to use Monte
Carlo estimators to construct expressions for the radiation force four-vector Gi that are ac-
curate to all orders of v/c, although the hydrodynamics equations are only solved to order
v/c. We compared simulations using our exact expression for Gi to those using a more ap-
proximate expression based on the divergence of the radiation pressure tensor, which is valid
when the radiation is in the diffusion regime. We found that the latter method can lead to a
significant reduction in Monte Carlo noise in cases of coarse spatial resolution. In most of the
problems studied here, the presence of stochastic noise did not introduce substantial error
in the dynamics, however the effects of noise become a larger concern in problems where
radiation energy is strongly dominated.

Several additional refinements will be explored in the future. We will consider the use of a
more sophisticated treatment of the radiative source terms in the Godunov scheme. Improve-
ments in performance may be realized by incorporating the discrete diffusion technique. It is
straightforward to incorporate the effects of more complicated radiation-matter interactions,
including photoionization and anisotropic scattering processes such as Compton scattering
with Klein-Nishina corrections. Possible applications of this technique include radiatively-
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Figure 2.18 : Parallel scaling for the Ensman sub-critical shock test.
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launched winds from galaxies, tidal disruptions of stars, shock breakouts and ejecta-ISM
interactions in supernovae.

2.12 Non-LTE solution of ionization states and bound
electron level populations

The goal here is to understand, given statistical equilibrium, the behavior of the level
populations as a function of radius for spherically symmetric, pure hydrogen gas illuminated
by a source radiating as a blackbody at some fixed (position-independent) temperature Ts.
The gas itself might have a radial temperature dependence which can affect its electron
recombination rates. We assume that collisional transition rates are negligible. This simple
case is the starting point for the more detailed non-LTE calculations presented in Chapter
4.

Note that Johnson & Klinglesmith (1965), with help from White (1961), wrote down
the formal solution for the case with three bound levels plus continuum, and for a more
arbitrary source spectrum. Here, with our restriction of the source to a blackbody, and
by factoring out the optically thin solution, we obtain formuale more suitable for gaining
physical intuition.

2.12.1 Two bound levels

Let the levels have energies E1 and E2, E2 > E1, with statistical weights g1 and g2. Also
let ν12 = (E2 − E1)/h. Statistical equilibrium at each position gives

n2A21 = n1J̄νB12 − n2J̄νB21 (2.71)

where, as usual, J̄ν is equal to Jν integrated over the line profile.
We rearrange to get

n1

n2

=
A21 + J̄νB12

J̄νB21

(2.72)

This equation, along with the total conservation equation n1 + n2 = nH and a manner
of obtaining Jν , specify the level populations completely. In general it is not easy to solve
because J̄ν can depend on the level populations - in the formal soluiton for J in terms of the
source function S, S depends on the level populations.

We will factor J as follows

Jν(r) = W (r)sνBν(Ts) (2.73)

where W is the geometrical dilution factor

W (r) =
1

2

[
1−

√
1−

(rp
r

)2
]

(2.74)
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and sν is any further enhancement/dehancement of the radiation field with respect to a
diluted blackbody at each frequency. When the gas is optically thin, sν → 1 for all ν.

We will also consider the line to be sufficiently narrow such that J̄ν = Jν12 to a high
degree of accuracy. Then we have

n1

n2

(r) =
A21 + sν12W (r)Bν12(Ts)B12

sν12W (r)Bν12(Ts)B21

(2.75)

One must be careful here not to confuse the Einstein coefficients with the Planck function
evaulated at ν12 in the above expression.

After writing out the Planck function, using the relations between the Einstein coeffi-
cients, and going through some algebra, we get

n1

n2

(r) =

[
g1

g2

eζ12
] [

1 + e−ζ12 (sν12W (r)− 1)

sν12W (r)

]
(2.76)

where
ζ12 ≡

hν12

kTs
(2.77)

We see that if sW � exp(hν12/kTs) (which automatically implies sW � 1), then the
ratio of the level populations approaches the ratio of the g’s. That is, all states at all energy
levels are occupied with nearly equal probability, because the radiation field is so energetic.
As sW goes down, the ratio n1/n2 increases montonically.

2.12.2 Two bound levels plus continuum

The photoionization rate from level i, with photoionization cross-section σi(ν), is given
by ∫ ∞

νci

σi(ν)Jν
hν

dν ≡ Ii (2.78)

where νci is the minimum frequency for photo-ionizing from level i to the continuum.
Then statistical equilibrium for the n = 2 level gives

n2A21 + n2I2 = n1J̄νB12 − n2J̄νB21 + nenpα2 (2.79)

Statistical equilibrium for the continuum gives

n1I1 + n2I2 = nenp (α1 + α2) (2.80)

Considering the equilibrium for n = 1 gives no new information. Of course, we still have
the total conservation condition n1 +n2 +np = nH . We’re considering pure hydrogen for the
moment, so np = ne. We can use the continuum equation to write the product nenp in terms
of other quantities, use the Einstein relations and go through the algebra to finally obtain

n1

n2

=
g1

g2

eζ12

[
1 + e−ζ12(sν12W − 1) + I2

A21

(
1− e−ζ12

)
α1

α1+α2

sν12W + I1
A21

g1
g2

(eζ12 − 1) α2

α1+α2

]
(2.81)
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As a consistency check, we see that this reduces to the two-level solution without con-
tinuum when both I1 and I2 are zero. Now, as Ts varies, there exists a maximum value for
n2, instead of the monotonic behavior we saw without the continuum.

2.12.3 Three bound levels plus continuum

Statistical equilibrium for the n = 2 level gives

n2A21 + n2J̄νB21 + n2J̄νB23 + n2I2 = n3A32 + n1J̄νB12 + n3J̄νB32 + nenpα2 (2.82)

For the n = 3 level:

n3A32 + n3A31 + n3J̄νB31 + n3J̄νB32 + n3I3 = n1J̄νB13 + n2J̄νB23 + nenpα3 (2.83)

For the continuum:

n1I1 + n2I2 + n3I3 = nenp (α1 + α2 + α3) (2.84)

The n = 1 level euilibrium equation gives no new information. The condition n1 + n2 +
n3 + np = nH , and hydrogen charge conservation ne = np, close the system.

Our factoring of Jν and the relations between the Einstein coefficients eventually let us
write

n1

n3

=
1 +

sν31W

eζ31−1
+ I3

A31

(
1− α3

α1+α2+α3

)
+ A32

A31

(
1 +

sν32W

eζ32−1

)
g3
g1

sν31W

eζ31−1
+ I1

A31

(
α3

α1+α2+α3

)
+ n2

n1

[
g3
g2

A32

A31

sν32W

eζ32−1
+ I2

A31

(
α3

α1+α2+α3

)] (2.85)

and

n1

n2

=
1 +

sν21W

eζ21−1
+ I2

A21

(
1− α2

α1+α2+α3

)
+ g3

g2

A32

A21

sν32W

eζ32−1

g2
g1

sν21W

eζ21−1
+ I1

A21

(
α2

α1+α2+α3

)
+ n3

n1

[
A32

A21

(
1 +

sν32W

eζ32−1

)
+ I3

A21

(
α2

α1+α2+α3

)] (2.86)

So schematically, if
n1

n3

=
A

B + C n2

n1

n1

n2

=
D

E + F n3

n1

(2.87)

then
n1

n3

=
AD − CF
BD + CE

n1

n2

=
AD − CF
AE +BF

(2.88)

A note of caution: The presence of the terms such as eζ32 − 1 in denominators will result
in division by zero when two of the three levels are degenerate.
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2.12.4 Concluding remarks about the analytics

The main challenge we face when making use of these expressions for the level popula-
tions is their dependence on the exact structure of Jν . This determines the values of the
photoionization rates Ii and the line radiation enhancements sνij .

In the optically thin limit all the sνij → 1 and the photoionization rates can be straight-
forwardly integrated numerically given expressions for the photoionization cross-sections.

When there is non-negligible optical depth to photoionization and the line transitions,
the only way to proceed exactly is to simultaneously solve the transfer equation for Jν along
with the expressions for the level populations in terms of Jν at each radius working out-
ward, or using full Monte Carlo. The presence of electron scattering and/or bremsstrahlung
complicates the soluiton even more.

Given certain guesses about the level populations, it might be possible to simplify the
expressions for the population ratios by dropping terms and then check for self-consistency.

There might also be a way to make further progress on paper by assuming homologous
expansion and working with line escape probabilities.

2.12.5 Test problem

To put the preceding ideas into action, we set up a test problem with the following
parameters: Ts = 5× 104 K, inner radius 3× 1013 cm, outer radius 1× 1014 cm, uniform gas
density of 1 cm−3 (although this value does not matter, as long as the gas remains optically
thin), and uniform gas temperature of 5× 104 K.

The simplified hydrogen atomic strucutre consists of three bound levels, with principal
quantum numbers n of 1, 2, and 3. An additional level representing unbound (continuum)
electrons is also included in the model atom. The excitation energies for the bound levels
are 0 eV, 10.20 eV, and 12.09 eV for the n = 1, 2, and 3 levels, respectively. The statistical
weights for the levels are 2, 8, and 18, respectively. The einstein A coefficients for those three
levels are 4.696e8 Hz, 5.572e7 Hz, and 4.408e7 Hz, respectively. The photoionization cross
sections are taken to follow a ν−3 law, as in Rybicki & Lightman (1986) Equation 10.56, and
the Gaunt factors are set to 1. The recombination rate coefficients αn can then be computed
using the Milne relation, as in Rybicki & Lightman (1986) Equation 10.62, and assuming
that free electrons follow a Maxwellian velocity distribution at the specified temperature.
For the parameters listed above, the recombination coefficients are found to be 5.83e-14,
2.02e-14, and 9.67e-15 cm3 s−1, respectively.

Figure 2.19 shows the results of the test problem. The solid lines correspond to the ratios
n1

n2
and n1

n3
as analytically derived from equations (2.85) and (2.86), as a function of radius.

The points are the output of the NLTE solver implemented in Sedona. We find that the
Sedona values match the analytic function to within 1% error over most of the computational
domain, although the error rises to above 5% at the innermost radial zones.
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Figure 2.19 : Level population ratios as a function of radius for the NLTE test problem
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Chapter 3

AGN Radiation Pressure Feedback on
Dusty Gas and the Launching of Massive
Molecular Outflows

The content of this chapter is drawn from Roth et al. (2012), with permission from the
AAS and the co-authors.

Observational and theoretical arguments suggest that the momentum carried in mass
outflows from AGN can reach several times L/c, corresponding to outflow rates of hundreds
of solar masses per year. Radiation pressure on lines alone may not be sufficient to provide
this momentum deposition, and the transfer of reprocessed IR radiation in dusty nuclear gas
has been postulated to provide the extra enhancement. The efficacy of this mechanism, how-
ever, will be sensitive to multi-dimensional effects such as the tendency for the reprocessed
radiation to preferentially escape along sightlines of lower column density. We use Monte
Carlo radiative transfer calculations to determine the radiation force on dusty gas residing
within approximately 10 parsecs from an accreting super-massive black hole. We calculate
the net rate of momentum deposition in the surrounding gas and estimate the mass-loss
rate in the resulting outflow as a function of solid angle for different black hole luminosities,
sightline-averaged column densities, clumping parameters, and opening angles of the dusty
gas. We find that these dust-driven winds carry momentum fluxes of 1-5 times L/c and
correspond to mass-loss rates of 10-100 M� per year for a 108 M� black hole radiating at
or near its Eddington limit. These results help to explain the origin of high velocity molec-
ular and atomic outflows in local ULIRGs, and can inform numerical simulations of galaxy
evolution including AGN feedback.
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3.1 Introduction

3.1.1 Motivations from observations and theory

The nature of the interaction between an accreting super-massive black hole (SMBH)
and its host galaxy remains a challenging problem in the study of galaxy evolution. Numer-
ical simulations reveal that gas can be drawn inward toward the nucleus by gravitational
torques arising from a series of gravitational instabilities (Hopkins & Quataert 2010). This
gas typically forms a dusty structure at small radii with a characteristic length scale of ∼1-10
parsecs which in some cases has been imaged directly (Jaffe et al. 2004; Raban et al. 2009).
Phenomenologically, this structure can be modelled as a torus (Lawrence 1991; Antonucci
1993), but it remains an outstanding theoretical challenge to provide a convincing expla-
nation of its configuration and what supports it. If a sufficiently strong poloidal magnetic
field is present at the parsec scale, one possible explanation is that the dusty gas is launched
as a hydromagnetic wind (Konigl & Kartje 1994; Keating et al. 2012). Heating of the ISM
from stellar feedback might support the dusty gas in a puffy disk (Hopkins & Quataert
2011a). The disk might be simultaneously supported by infrared radiation pressure (Pier
& Krolik 1992; Krolik 2007), or the infrared radiation pressure may generate a failed wind
(Dorodnitsyn et al. 2011; Dorodnitsyn & Kallman 2012).

Regardless of what supports the torus, gas continues to be drawn in to the black hole
accretion disk at small radii (< 1017 cm), where it powers an active galactic nucleus (AGN).
The radiation emitted from SMBH accretion disks influences the dynamics of the torus itself,
along with the dynamics of the host galaxy. This feedback may act through a number of
channels that include radiative heating (e.g. Di Matteo et al. 2005), jets (Silk 2005; Croton
et al. 2006; McNamara & Nulsen 2007), and winds driven by radiation pressure on lines
(Murray et al. 1995; Proga et al. 2000) and dust (Konigl & Kartje 1994; Murray et al. 2005;
Keating et al. 2012). Our challenge is to understand the combined effect of all these modes
of interaction. Improving our understanding of this connection will be crucial for answering
questions about the growth of SMBHs, observations of AGN, and the star formation histories
in galaxies.

Recent observations have begun to reveal the violent impact that AGN may have on their
host galaxies. Observations of obscured quasars such as SDSS J1356+1026 have revealed
outflows extending out to tens of kiloparsecs from the galactic nucleus (Greene et al. 2012).
The estimated mechanical luminosity of these outflows (1044−45 ergs s−1) is too large to
be explained by the inferred star formation activity. Other obscured quasars possess more
massive outflows, with mass-loss rates of hundreds of solar masses per year (Moe et al.
2009; Dunn et al. 2010). Meanwhile, observations of local ultra-luminous infrared galaxies
(ULIRGs) have led to the discovery of outflows with velocities that are correlated with the
AGN bolometric luminosity (Sturm et al. 2011). These outflows also have mass-loss rates
equal to several times the star formation rate and in some cases exceeding 1000 solar masses
per year, depleting the gas on timescales as short as 106 years. Adding to our picture are
studies of post-starburst galaxies, exhibiting outflows with median velocity of approximately
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1000 km s−1, suggesting that past AGN activity played a role in launching the gas (Tremonti
et al. 2007).

These observations are complemented by numerical simulations of AGN feedback (Ciotti
et al. 2010; DeBuhr et al. 2011; Debuhr et al. 2011) that account for deposition of both
energy and momentum from the accretion radiation, including a combination of heating
by X-rays and photoionizations, radiation pressure at the kiloparsec scale, and winds driven
from within a radius of less than 100 parsecs. Taken together, these effects can help to explain
both the MBH - σ relation (Ferrarese & Merritt 2000) and the existence of galactic outflows
observed at speeds of thousands of km s−1. The results, particularly those of Debuhr et al.
(2011), also suggest that line-driven winds may be insufficient to drive observed outflows,
and that a large amount of momentum (& 3L/c) may need to be deposited via absorption
by dust grains during the period when the SMBH is optically thick to both ultraviolet and
far-infrared radiation, the time when most black hole growth is believed to occur (Hopkins
et al. 2005; Hopkins & Quataert 2011a).

A large uncertainty in the numerical calculations referenced above is the amount of radia-
tive momentum deposited within the central unresolved radius. The velocity and mass-loss
rate of the resulting wind depend sensitively on this coupling. Moreover, in those studies the
momentum was deposited in a spherically symmetric manner. In reality, multidimensional
effects, such as the tendency for radiation to escape out the rarefied, polar regions of the gas
distribution, will be crucial. A multidimensional study that linked the parsec and kiloparsec
radial scales was undertaken by Novak et al. (2011), and a treatment of the radiative transfer
through dusty gas as a boundary value problem was performed in Novak et al. (2012). Our
study extends this work by performing three dimensional Monte Carlo radiative transfer
calculations for dusty gas that is optically thick to the infrared.

The momentum flux in radiation from a SMBH accretion disk with luminosity L is L/c.
Generally L will not exceed LEdd, the Eddington luminosity set by the electron scattering
(Thomson) opacity. Dust will contribute to the opacity seen by the radiation at large radii,
but only at distances greater than the radius rsub at which its temperature drops below the
sublimation temperature Tsub ≈ 1400 K. Although the sublimation temperature varies for
each grain depending on its composition and its size, we choose to adopt the simplification
of assigning a uniform sublimation temperature to all the dust in our calculations. The
sublimation radius may be estimated as

rsub ≈

√
L

4πσSBT 4
sub

= 0.62 pc

(
L

1046 ergs−1

)1/2(
Tsub

1400 K

)−2

. (3.1)

When the gas distribution surrounding the SMBH is not isotropic, rsub may vary with angle.
Within this radius, electron scattering dominates the opacity, and the usual Eddington limit
applies.

Once the intrinsic photons from the accretion disk encounter dust in the surrounding gas,
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they are absorbed and the energy is re-emitted at infrared wavelengths. If the gas is also
optically thick to the infrared, then the re-emitted radiation will continue to be absorbed and
re-emitted in a random-walk pattern until it exits the optically thick region. Along the way,
momentum will be imparted by the photons to the gas multiple times. In this scenario it is
possible for the radiation to transfer momentum to the gas at a rate that exceeds LEdd/c.
For a spherically symmetric problem, this “boost” factor to the infrared radiation force is
exactly the infrared optical depth of the gas, which can be shown as follows: In steady-state,
when radiative equilibrium holds and the luminosity as a function of radius is constant, we
may compute the radiation force per volume frad as

frad =
L

4π r2 c
ρ(r)κ(r) . (3.2)

The total outward force exerted by the radiation is∫
V

frad dV = 4π

(
L

4π c

)∫ ∞
0

ρ(r)κ(r) dr = τ
L

c
, (3.3)

where τ is the radial optical depth for the infrared photons.
In a gas rich galactic nucleus with a column density of 1025 cm−2, a mean mass per

particle of 1.5 times the proton mass, and an infrared dust opacity of 10 cm2 per gram of
gas, an initial guess for the optical depth would be approximately 250. There are two primary
effects that will reduce the actual radiation force from such a high value. The first is the lack
of spherical symmetry: a torus obscures only a fraction of the solid angle surrounding the
accretion disk, and the presence of clumps and voids in the torus can increase the photon
mean free path for certain sightlines. The second effect is dust sublimation: dust will be
absent from the innermost regions of the nucleus that contribute a substantial fraction to
the gas column density, and the force integral can be well-approximated by setting its lower
limit to rsub.

To get a sense of the sort of momentum deposition rates that have been observed, consider
the case of Mrk 231. This system features an outflow of neutral gas with velocities in the
range 360-900 km s−1 and a mass-loss rate estimated at 420 solar masses per year (Rupke
& Veilleux 2011). The momentum flux in the outflow, estimated by multiplying the mass
loss rate by the velocity, and find that it is likely between 2.6 to 6.5 times L/c where L is
measured to be 1.1×1046 ergs s−1. The kinetic luminosity of the outflow, on the other hand,
is estimated at 7.3× 1043 ergs s−1, less than 1% of the bolometric AGN luminosity.

Modeling the force from radiation pressure and predicting by what factor it exceeds L/c,
becomes a difficult problem to tackle analytically in the absence of spherical symmetry, the
presence of clumps, and with an accounting for dust sublimation. For these reasons, we turn
here to three-dimensional radiative transfer calculations using the wavelength-dependent
Monte Carlo radiative transfer code SEDONA (Kasen et al. 2006). Given that the radiative
diffusion time in these systems is shorter than the dynamical times, we restrict ourselves to
steady-state configurations that do not include an explicit coupling to hydrodynamics.
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In section 3.2, we describe how we parametrize the gas configurations surrounding the
black hole and how we treat the key physical processes in the radiative transfer. In section
3.3, we present our results for a series of calculations in which we vary the opening angle
of the torus, the amount of gas present, the radial variation in the gas density, and the
accretion disk luminosity. We also examine how our dynamical conclusions are affected by
accounting for a clumpy rather than smooth distribution of dust and gas. Finally, in section
3.4 we present our conclusions.

3.2 Methodology

3.2.1 Initial gas configuration - parameterized, smooth model

Although the specific region we are studying is difficult to observe directly, gravito-
hydrodynamic simulations (Hopkins & Quataert 2011a) provide information about its con-
figuration before the effects of radiative feedback are felt. The gas and stars form a thick
disk roughly in vertical hydrostatic equilibrium (our usage of the word “disk” throughout
the remainder of this study refers to what is usually labelled as the torus and should not be
confused with a reference to the black hole accretion disk, which is unresolved at our scales
of interest). The puffiness of the disk in the Hopkins & Quataert (2011a) simulations is to
some extent determined by the sub-grid turbulent velocity dispersion when strong stellar
feedback in the ISM is included, but also by bending modes (firehose instabilities) driven
by resolved velocities when less stellar feedback is included. While further accretion of the
gas at this scale will rely on non-axisymmetric torques, we first adopt a simple axisymmet-
ric, hydrostatic disk model analogous to one used in Hopkins & Quataert (2011a). This
parametrization captures the key features of the gas configuration seen in the hydrodynam-
ics simulations, but allows us greater control over free parameters and removes unnecessary
complications in our attempt to isolate the effects of the radiation. Such a parametrization
also allows us to systematically introduce clumpiness into the gas for certain calculations
(which, among other effects, breaks axisymmetry), as will be described in section 3.2.2

The vertical structure of the smooth disk model may be calculated by solving the equation
of hydrostatic equilibrium in the normal (z) direction, assuming an isothermal equation of
state with effective sound speed cs set by both the resolved and sub-grid velocity dispersion,
along with any contribution from the thermal pressure of the gas,

cs
2

ρ

dρ

dz
= −dΦ

dz
, (3.4)

with solution
ρ(R, z) = ρ(R, 0) exp

{
c−2
s

[
Φ(R, 0)− Φ(R, z)

]}
. (3.5)

Here Φ denotes the gravitational potential, ρ denotes the density of the gas, and R is the
cylindrical radius. If we assume that the gravitational potential is dominated by the mass



3.2. METHODOLOGY 68

of the central black hole MBH at these scales, then the density distribution is

ρ(R, z) = ρ(R, 0) exp
{GMBH

Rc2
s

[ 1√
1 + z2/R2

− 1
]}

(3.6)

In the limit of small z/R, this yields a Gaussian vertical structure. In this limit, the ratio
of the squared sound speed to the squared Keplerian velocity Vc functions as the ratio of
the disk scale height to the cylindrical radius, and for convenience we choose to define a
parameter that makes this identification universal:

hs
R
≡ cs
Vc

= cs

(
GMBH

R

)−1/2

. (3.7)

Typical values of hs/R found in Hopkins & Quataert (2011a) range from 0.1 to 0.5.
Moderately large values of h/R & 0.2 − 0.3 are suggested by the fraction of obscured ver-
sus unobscured quasars, although generally this fraction correlates strongly with luminosity
(Maiolino et al. 2007).

From the simulations in Hopkins & Quataert (2011a), we note that the mid-plane density
may be well-fit with a power-law R−γ where γ falls between 1.5 and 2.0. This is also in
agreement with the arguments for a column density distribution Σ ∝ R−η with η falling
between 0.5 and 1, as argued for in Hopkins & Quataert (2011b). We fix γ to 1.5 for the
numerical calculations in this study. The total mass in the disk will not converge for this
value of γ, and in reality the power law cuts off on a scale of roughly 1 kpc. Additionally,
observations indicate that γ may vary with the accretion luminosity (Kishimoto et al. 2011).
Indeed, such a relationship might arise self-consistently in a coupled radiation hydrodynamic
simulation.

Converting to spherical polar coordinates r and θ, where θ is taken to be zero along the
z-axis, we obtain

ρ(r, θ) = ρ0

(r sin θ

r0

)−γ
exp

[
(hs/R)−2(sin θ − 1)

]
. (3.8)

Here r0 represents some inner cut-off radius where the density is ρ0, and to prevent the radial
column density from diverging we take ρ(r < r0) = ρ0.

One undesirable aspect of this model is that it leads to an accumulation of mass in the
polar region of the disk, where sin θ is small. To correct for this, we allow the density profile
to drop as a power law in the spherical radius r rather than in the cylindrical radius R.
This amounts to dropping the factor of (sin θ)−γ, which is only significant far from the disk
mid-plane. This leaves

ρ(r, θ) = ρ0

( r
r0

)−γ
exp

[
(hs/R)−2(sin θ − 1)

]
. (3.9)

The results from Hopkins & Quataert (2011a) indicate that hs/R does not change by more
than a factor of order unity for all R. For simplicity, we take hs/R to be a constant for all R
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Table 3.1 : Fiducial parameters for the calculation of massive molecular outflows launched by AGN
radiation pressure.

hs/R NH ( cm−2 ) radial density L/LEdd MBH (M�)
power-law γ

0.3 3.4× 1024 1.5 1 108

Note. — The first three parameters set the gas density distribution, while the last two
set the relative strengths of the radiation pressure and gravity. The mean mass per particle
is always set to 1.5 times the proton mass. Note that the column density presented in this
table corresponds to integrating the gas density from large radii to a distance of 0.1 pc from
the BH. The column density computed by integrating to the edge of the dust sublimation
radius is 9.5× 1023 cm−2 if the other fiducial parameters are fixed.

and allow it to vary as a free parameter for different disk models. For all calculations in this
study we assume a black hole mass MBH of 108 M�, and we parametrize the luminosity as a
fraction of the electron-scattering Eddington luminosity for that mass. Another free param-
eter is ρ0, which sets the sightline-averaged column density NH. Unless stated otherwise, NH

corresponds to the column density integrated to a distance of 0.1 parsecs from the central
black hole. Also, unless NH is being varied explicitly, ρ0 is set so that the sightline-averaged
column density is 3.4 × 1024 cm−2, with a mid-plane column density of 1.0 × 1024 cm−2.
These values are consistent with the calculations from Hopkins & Quataert (2010) of surface
densities of 1011 – 1012 M� kpc−2 for the central 10 parsecs surrounding the black hole. The
fiducial parameters are summarized in Table 3.1.

For this smooth density model we use a two-dimensional grid with spherical polar (r, θ)
coordinates, with logarithmic spacing in the radial coordinate and linear spacing in the
angular coordinate. Our resolution is 192 radial zones and 64 θ zones for θ ranging from 0
to π/2, with an assumed symmetry for θ → π − θ. Slices of the gas density for the model
developed in this section, along with a simulation from Hopkins & Quataert (2011a), are
shown in Figure 3.1.

3.2.2 Initial gas configuration - clumpy models

It has long been predicted on theoretical grounds that the dusty gas surrounding an
accreting SMBH will not be smoothly distributed, but will instead form clumps (Krolik &
Begelman 1988). This prediction has been supported by observations such as the variability
of x-ray absorbing column densities in type 2 Seyferts (Risaliti et al. 2002) as well as IR
spectroscopy (Mason et al. 2006; Hönig et al. 2010; Deo et al. 2011). A vast literature exists
concerning radiative transfer through clumpy torus models, with many prescriptions for
generating clumpy density distributions from an underlying smooth density model (Nenkova
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Figure 3.1 : Top: An example of a slice through the smooth model density distribution with the
fiducial parameters listed in Table 3.1, except NH = 1.0 × 1025 cm−2. Bottom: A density slice
taken from a hydrodynamical simulation of gas accretion onto a central black hole (see Hopkins &
Quataert (2011a)).
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et al. 2002; Hönig et al. 2006; Schartmann et al. 2008; Stalevski et al. 2012; Siebenmorgen
& Heymann 2012).

Our method for generating the clumpy gas distribution most closely resembles those of
Hönig et al. (2006) and Schartmann et al. (2008). We use a three dimensional grid and
spherical-polar (r, θ, φ) coordinates, with logarithmic spacing in the radial coordinate and
linear spacing in the angular coordinates. Our resolution is 128 radial zones, 96 θ zones
for all θ ranging between 0 and π, and 192 φ zones for all φ ranging from 0 to 2π. The
density of each clump in a given simulation is the same, and a preset number of clumps are
placed on the grid. The clump positions are sampled from a probability distribution derived
from a smooth density distribution as described in section 3.2.1. If two clumps overlap in
position, their densities are added. Each clump’s radius is set to a fixed number of grid
zones in a given simulation, and the logarithmic radial spacing of the grid causes the size
of the clumps to grown with increasing distance from the SMBH. Overlaid on the clumps is
a diffuse, smooth background gas distribution that is generated by multiplying the density
distribution from section 3.2.1 by 10−2. An example is pictured in Figure 3.2.

Making the gas clumpy tends to make the column density distribution bimodal, as a
significant number of sightlines intersect no clumps at all, forming the lower peak of the
distribution. This bi-modality persists for all clumping parameters considered in this study,
although it can be avoided if a larger fraction of the mass is allocated to the diffuse phase.
Such bi-modality is not seen in observations (Risaliti et al. 1999; Malizia et al. 2009; Treister
et al. 2009), but the addition of clumping to our models does improve the match to obser-
vations by creating a larger number of sightlines with column densities below 1021 cm−2.

3.2.3 Monte Carlo Radiative Transfer

The Monte Carlo technique partitions the luminosity of the accreting black hole into
equal-energy photon packets that probabilistically interact with the surrounding gas. The
packets were transported in three dimensions for all calculations in this study. We improve
our statistics by mapping the energy and momentum deposited by the packets into a two-
dimensional array of zones – a photon that scatters at spherical coordinates (r,φ,θ) is mapped
to position (r,θ′) where θ′ = θ if 0 ≤ θ ≤ π/2 and θ′ = π − θ if π/2 < θ ≤ π.

The radial zones span radii ranging from r0 = 0.1 pc to an outer radius rout = 1020 cm
(≈ 32.4 pc). The 0.1 pc scale was chosen because it is a larger scale than the typical black
hole accretion disk, but also small compared to the typical dust sublimation radius. We
ignore all momentum deposition inside the 0.1 pc radius, and since nearly all the momentum
deposition occurs at and beyond the sublimation radius, the exact choice of innermost radius
has little effect on our results. We employ 64 equal spacings in the polar angle θ ranging
from 0 along the z-axis to π/2 at the mid-plane. For most calculations, the photons are
emitted isotropically at the edge of the 0.1 pc sphere surrounding the origin. The effect of
anisotropic emission is treated in section 3.3.4.

In Monte Carlo radiative transfer, the specific intensity of the radiation I(r,n, λ) is
constructed by counting the number of photon packets with wavelength λ that enter into each
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Figure 3.2 : A clumpy gas distribution corresponding to the fiducial parameters in Table 3.1. The
gas density in clumps of 7.8× 108 cm−3 and the average clump diameter is 0.043 pc . Not pictured
is the diffuse background gas. The “frame width” corresponds to the width of the white cube drawn
at the center.
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grid zone at position r and with direction vector n in a given interval of time. Specifically,
the radiation force per volume frad is defined as

f rad ≡
1

c

∫
ω,λ

ρ κλ I n̂ dω dλ . (3.10)

To compute frad in a given zone of our computational domain with volume ∆V over a
time interval ∆t, we perform a sum a sum over all photon packets entering the zone. Each
photon packet carries with it an energy Ep, a direction of travel n̂p, and a wavelength λp.
Associated with that wavelength is an opacity κ(λp), measured per gram of gas, and which
depends on whether dust is present at location r. The packet traverses a path of length ∆r
within a zone at position r. The force is then

f rad =

(
1

∆V∆ t

)
ρ(r)

∑
p

Ep
c
κ(λp, r) ∆r n̂p . (3.11)

The radiative acceleration arad is simply defined as frad/ρ.
Our calculations apply the stationarity approximation, in which we solve the steady-

state radiative transfer problem for a fixed gas density distribution. This approximation is
justified if the radiative heating time scale and the radiative diffusion time scale are much
shorter than the dynamical time scale.

For a sound speed of 200 km s−1 and a characteristic length scale of 10 pc, the dynamical
time is approximately 1012 seconds. Meanwhile, the photon diffusion time through the disk
never exceeds 1011 seconds, and for many disk parameters the diffusion time is substantially
shorter than that. The radiative heating time, estimated by dividing the thermal energy of
the gas by the rate of radiative energy deposition, is

theat ≈
(
ρ kB Tgas

µmp

)(
1

ρ κ c a T 4
rad

)
= 2.4× 105 s

(
Tgas

100 K

)(
Trad

100 K

)−4(
κ

10 cm2/g

)−1

, (3.12)

which is also much shorter than the dynamical time.
In this case, the condition of radiative equilibrium allows us to compute the dust tem-

peratures by balancing radiative heating and cooling,

4π
∫
λ
ρ κabs(λ)Bλ(Tdust) dλ

=
∫
ω,λ

ρ κabs(λ)Iλ dω dλ , (3.13)

We emit photons and follow their propagation for time intervals of 5 × 109 seconds, at
which point we update the temperature of the dust in each grid zone. We treat dust as present
everywhere where the dust temperature is below 1400 Kelvin. The dust temperatures are
updated until convergence is obtained at the one percent level, which typically takes fewer
than 40 iterations if the initial dust temperature is set to 100 Kelvin in every zone.
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Finally, for estimating the dynamics of the gas based on the radiation pressure on the
dust, we assume perfect hydrodynamical coupling between the dust and the gas, as justified
in Murray et al. (2005).

3.2.4 Intrinsic AGN spectrum

We use the “intrinsic” (unreddened) AGN spectral energy distribution described in Mar-
coni et al. (2004). The majority of the spectral energy is found in the optical and near-UV
and originates from the accretion disk, which resembles a 105 Kelvin black body emitter. The
spectrum also contains a sizable x-ray component. Intentionally absent from this spectrum
is any infrared component, which we will calculate self-consistently based on the reprocessing
of the radiation by dust.

3.2.5 Dust and electron interactions

We use tabulated dust opacities and albedos based on Draine (2003a) for wavelengths
greater than 10 Angstroms, and Draine (2003b) for shorter wavelengths, all corresponding
to visual extinction ratio RV = 3.1 and assuming a fixed dust-to-gas mass ratio of 1/125.
These values were interpolated between 48 reference wavelengths. In practice, the difference
between scattering and absorption is that for an absorption interaction, the wavelength of
the re-emitted photon packet will be sampled from a probability distribution that depends
on the dust’s temperature, whereas the wavelength will remain unchanged for a scattering
interaction. For wavelengths less than 100 Angstroms, we ignore scattering by dust since it
will be almost entirely in the forward direction and hence will not lead to a net transfer of
momentum, although we still allow for absorption by dust.

Electron scattering is only relevant for photons with wavelengths less than∼ 10 Angstroms,
when the dust absorption cross section drops below that of the Thompson cross section, and
when the photons are energetic enough to scatter equally well off of both bound and free
electrons. We account for anisotropic, inelastic electron scattering in accordance with the
Klein-Nishina formula.

3.3 Results

3.3.1 Dust temperature and radiative acceleration dependence on
smooth gas geometry

Figure 3.3 shows slices of the equilibrium dust temperature and the radiative acceleration
vector field for disks of two opening angles and with a smooth gas distribution. The color
scheme is set so that all temperatures above the dust sublimation temperature appear as
solid gray. Arrows representing the acceleration are plotted in zones where the dust is not
sublimated and where the gas density exceeds 10−21 g cm−3.
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We find that the dust sublimation region has an aspherical, hour-glass shape. Sublimation
extends to larger radii in the polar regions where the dusty gas is optically thin in the infrared.
There, dust emits at longer wavelengths than it absorbs, and so is forced to reach higher
temperatures in order to maintain radiative equilibrium.

Interestingly, nearly all the angular redistribution of the radiation occurs near the surface
of the dust sublimation region. Light from the central source initially travels isotropically
to the inner edge of the dusty gas, and a large fraction of the photons are absorbed at the
dust interface. When photons are re-emitted in the infrared, many are sent back into the
sublimation region. It is through this re-emission that the net flux becomes anisotropic at
small radii. When infrared photons succeed in penetrating deep into the dusty gas, they
generate a nearly radial radiative flux, as they would in a spherically symmetric problem
(see Figure 3.4).

Figure 3.5 displays how the radiative acceleration varies with radius and polar angle
for the fiducial simulation. The behavior of the acceleration is quite different inside and
outside the dust sublimation region – the presence of dust raises the opacity of the gas and
therefore raises the radiative acceleration (as in equation 3.10). In a given solid angle the
acceleration is highest just beyond the edge of the dust sublimation region, where ultraviolet
and optical photons can push on optically thick, dusty gas. The acceleration rapidly drops as
the radiation penetrates farther into the dusty gas and ultraviolet/optical light is converted
into infrared, to which the dust is less opaque. For all solid angles, the acceleration settles
to a constant ratio above gravity at sufficiently large radius, indicating that the acceleration
eventually becomes proportional to 1/r2, further evidence that the infrared radiation diffuses
primarily in the radial direction. In addition to the radial dependence of the acceleration,
there is an angular dependence that arises from the diversion of flux from the mid-plane to
the polar regions of the disk at the surface of the sublimation region.

Slices of the net acceleration with gravitational acceleration included are shown in Figure
3.6. In all cases the acceleration is primarily radial in direction, either outward or inward.
Note that for opening angles hs/R < 0.3 there is a critical polar angle below which radiation
dominates over gravity and above which gravity dominates. In these cases inflow may persist
in the equatorial region while gas is blown out at angles directed farther away from the mid-
plane, potentially leading to a steady state outflow. However, the radiative acceleration
dominates over gravity everywhere when hs/R ≥ 0.3 for this AGN luminosity and column
density.

For another perspective, in Figure 3.7 we plot the integrated radiative acceleration for
columns of gas as a function of polar angle (without gravitational acceleration included).
We assume there are no forces in the tangential directions (i.e., each column is accelerated
independently), and that the radiation force is shared along the whole column as the inner
gas pushes on outer gas. To compute this net acceleration, we first compute the integrated
net force in each solid angle (including the effects of both gravity and radiation),

dFnet

dω
(θ) ≡

∫ rout

rsub

(
frad −

GMBH ρ

r2

)
r2 dr , (3.14)
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Figure 3.3 : Arrows indicating the direction and strength of the radiative acceleration are plotted
over slices of dust temperature. All parameters correspond to the fiducial values in Table 3.1, except
for opening angles which vary as indicated (while conserving mass in the calculation domain).
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Figure 3.4 : Arrows representing the net radiation flux are plotted over gas density. All parameters
in this calculation correspond to the fiducial values listed in Table 3.1. Arrows with significant
deviation from the radial direction are colored black, while the boundary of the dust sublimation
region is marked with black cells. Arrow lengths are proportional to log10(10−14× net flux (cgs)).
Through a process of absorption of UV light and re-emission in the IR at the inner wall of the dusty
gas, flux is channeled toward the poles in the outermost part of the dust sublimation region. The
radiation travels radially in the dusty portion of the gas.
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Figure 3.5 : Radiative acceleration in radius and solid angle. All parameters in this calculation
correspond to the fiducial values listed in Table 3.1. The acceleration is normalized at each radius
by the gravitational acceleration GMBH/r

2, and the logarithm of that ratio is plotted. Thus, points
with y-values above zero correspond to locations where the radiative acceleration exceeds gravity.
The abrupt jump in acceleration occurs at the boundary of the dust sublimation region, where dust
begins to contribute to the radiative opacity. As the radius increases beyond this boundary, the
mean wavelength of the radiation transitions from the UV to the IR, rapidly lowering the radiative
opacity in the process and reducing the radiative acceleration until eventually obeying an inverse
square law dependence on radius.
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Figure 3.6 : Arrows representing net acceleration (radiation + gravity) as a function of position.
All parameters for this calculation correspond to the fiducial values listed in Table 3.1, except for
opening angles which vary as indicated. Inward-directed arrows are colored black.
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along with the mass in that solid angle,

dMgas

dω
(θ) ≡

∫ rout

rsub

ρ r2 dr , (3.15)

where rsub denotes the edge of the dust sublimation region for each value of θ. Then, the
net integrated acceleration is simply

anet(θ) ≡
[
dFnet

dω

] / [dMgas

dω

]
. (3.16)

The value of anet depends on the choice of rout. However, we will show in section 3.3.5
that the dependence of the rate of mass outflow on rout is very small.

From Figure 3.7 we see that as the opening angle of the parsec-scale disk becomes smaller,
the radiative acceleration becomes more sharply divided between the optically thin and
optically thick portions of the disk. This primarily reflects the sharper density gradients
present for smaller opening angles. As we will show in section 3.3.2, even though the radiative
force is greater in the optically thick portion of the disk, the force does not rise as quickly as
the mass. This causes the acceleration to decrease toward the mid-plane, even though the
radiation force is stronger in the direction of the mid-plane.

3.3.2 Enhancement of radiation force above L/c and the dependence
on smooth gas geometry

The ability of radiation to clear away ambient gas is enhanced by the fact that diffusing
photons deposit their momentum multiple times as they random walk outwards. We can
quantify this effect in each solid angle by dividing the integrated force on the gas column in
that solid angle by the radiative momentum per time per solid angle leaving the black hole.
We call the resulting quantity τeff(θ), which is computed as

τeff(θ) =

(
dFrad

dω

)(
1

4π

)
LBH

c

, (3.17)

and we extend the lower limit of the integral defining dFrad/dω from rsub to 0 when computing
this quantity. We may also compute an average value of this quantity averaged over all lines
of sight,

τ eff ≡
1

4π

∫
ω

τeff dω =

∫ π/2

0

τeff sin θ dθ . (3.18)

Figure 3.8 summarizes our results for τeff for various disk opening angles while holding the
other parameters at their fiducial values as listed in Table 3.1. Increasing the opening angle
boosts τeff(θ) for all θ, up to a maximum value of approximately 5-6 for these parameters.
In the polar region, this effect can be understood simply in terms of the presence of more
mass in that region when the opening angle is larger. Meanwhile, even though there is less
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Figure 3.7 : Radiative acceleration as a function of polar angle (gravity not included). All parameters
for this calculation correspond to the fiducial values listed in Table 3.1, except for opening angles
which vary as indicated (while conserving mass in the calculation domain). The acceleration is
lowest in the equatorial region, even though the force from radiation pressure is highest there,
because the force does not rise as quickly as the mass as the polar angle increases.
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Figure 3.8 : τeff(θ) for various opening angles (see equation 3.17). Parameters correspond to the
fiducial values in Table 3.1, except for opening angles which vary as indicated (while conserving the
total mass in the calculation domain). τeff(θ) is a measure of the radiative force on the gas column
at a given polar angle, and it reaches its highest values in the equatorial region.

mass present in the equatorial region as the opening angle increases, the radiative flux in
that region increases such that τeff(θ) is able to increase there as well.

If we calculate the radiation force on spherically distributed gas with the same NH, we
find that τeff = 13. Thus although the effective radiation force exceeds L/c in Figure 3.8, the
enhancement is not as large for a realistic disk geometry as it is in the spherically symmetric
case. For the largest opening angle considered in this study (hs/R = 0.35), τ eff is smaller
than the spherically symmetric value by a factor of ∼ 2.
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Figure 3.9 : τeff(θ) for various clump densities ncl and average clump diameters dcl. In all simulations
the number of clumps is varied such that the total mass of the gas in the simulations domain is held
constant. The diffuse background makes up 1% of the mass in all simulations.

3.3.3 Results for Clumpy Gas

Figure 3.9 shows how τeff(θ) varies with the clumpiness of the gas. For each clumpy gas
distribution, the total mass in the computational domain was set equal to that of our fiducial
smooth density model. The shape of the momentum deposition as a function of θ appears
generally the same for the clumpy and smooth cases. This suggests that the smooth density
distributions employed throughout most of this study provide accurate approximations to the
behavior of more realistic clumpy density distributions, although they should systematically
overestimate the radiation force on the dusty gas by a factor of ∼ 2 in the most extreme
cases of clumping.

Figure 3.10 illustrates how the radiation force acts on portions of individual clumps. Note
how the force remains radially directed even in the presence of clumps, and how clumps
shadow gas behind them.
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Figure 3.10 : Arrows indicating the direction and magnitude of the radiation force are plotted over
a slice of the magnitude of the force for a clumpy gas distribution just outside the sublimation
boundary. The arrows are proportional to log10(10

22)× frad (cgs))
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3.3.4 Results for Anisotropic AGN Emission

If the black hole accretion disk is aligned with the mid-plane of the gas present at the
scale of our calculation, one might expect that there would be more flux emitted in the polar
directions than in the mid-plane direction. According to one prescription (Netzer 1987), the
emitted flux should obey

Femitted ∝ cos θ (1 + 2 cos θ) , (3.19)

where the first factor accounts for projected surface area and the second factor accounts of
limb-darkening in an optically thick atmosphere.

Unlike the case of isotropic emission, we find that for anisotropic emission τeff(θ) peaks
at an intermediate angle < π/2. The peak arises because at small polar angles there is
hardly any gas present to provide optical depth, whereas hardly any light penetrates into
the dusty gas at large polar angles. For a calculation with our fiducial parameters, the ratio
of τ eff in the case of anisotropic emission versus τ eff for the case of isotropic emission is 0.72,
indicating that photons tend to escape from the disk with fewer interactions when they are
emitted in an anisotropic manner. This ratio will be even smaller for smaller disk opening
angles.

From this point on, we will only consider models with a smooth density distribution and
isotropic central emission. Nevertheless, it is important to keep in mind that the integrated
force and Ṁ are likely to be reduce by factors of a few due to the effects of gas clumping
and anisotropic emission of radiation.

3.3.5 Estimating the mass outflow rate

We cannot determine precisely the dynamics of the gas without coupling the radiative
transfer calculation to a hydrodynamic solver in a time-dependent calculation. However, we
may apply an Eddington-type argument to approximate whether gas will be blown away
in a given solid angle and to estimate the mass-loss rate. This argument considers the
gravitational and radiation forces but ignores centrifugal acceleration of the gas, viscous or
gravitational torques, and shocks.

Let t(θ) denote the time taken to accelerate the gas in a given column with mass dMtot

to a distance rout at constant acceleration anet(θ). Then

t(θ) ≈
√

2 rout

anet

=

√
2 rout

dMgas

dω
dFnet

dω

. (3.20)

We define a differential mass outflow rate per solid angle dṀ/dω,

dṀ

dω
(θ) ≡

dMgas

dω

t(θ)
=

√√√√(dMgas

dω

) (
dFnet

dω

)
2 rout

. (3.21)
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We can also define a mass outflow rate integrated over the entire volume (all of θ),

Ṁ ≡
∫
ω

dṀ

dω
dω = 2 (2π)

∫ π/2

0

dṀ

dω
sin θ dθ , (3.22)

where we have taken advantage of the assumed symmetry for θ → π− θ. Whenever dṀ/dω
is less than zero for a particular value of θ, we do not add it to the total reported value for
the total volume-integrated Ṁ , since we are only interested in the gas that gets blown away.

Our gas density prescription (section 3.2.1) indicates that for any given polar angle, the
density goes as r−γ. This allows us to compute dMgas/dω in terms of rout and the sublimation
radius rsub(θ),

dMgas

dω
=
∫ rout
rsub

ρ(rsub)
(

r
rsub

)−γ
r2 dr

= 1
3−γ ρ(rsub) r3

out

(
rsub
rout

)γ [
1−

(
rsub
rout

)3−γ
]
. (3.23)

In section 3.3.6 we will present values for dṀ/dω calculated using equations 3.21, 3.23,
and the values of dFnet/dω calculated using the Monte Carlo. For the rest of this section,
we present a simple scaling argument to demonstrate that our estimates of the mass outflow
rate depend only weakly on our choice of the outer radius rout (which is somewhat arbitrary).

Our results from section 3.3.1 indicate that we can think of the radiative acceleration as
being divided into two parts: a spike in acceleration at the sublimation radius that arises
from the absorption of ultraviolet and optical photons, and acceleration due to absorption
of infrared photons that goes as r−2 at large radii. Only the second type of acceleration is
sensitive to our choice of rout. We may approximate the infrared radiation force as

dFnet

dω IR
≈∫ rout

rsub
ρ(rsub)

(
r

rsub

)−γ [
arad(rsub)r2sub−GMBH

r2

]
r2dr

= 1
γ−1

ρ(rsub)
[
arad(rsub)− GMBH

r2sub

]
r3

sub

×
[
1−

(
rsub
rout

)γ−1
]
, (3.24)

where arad(rsub) refers to the value of the radiative acceleration at the sublimation radius
that provides the correct normalization for the inverse-square law acceleration at large radii.

Using equation 3.21, dropping factors of order unity, and assuming rout � rsub, we finally
arrive at

dṀ
dω IR

≈

ρ(rsub)
[
arad(rsub)− GMBH

r2sub

]1/2

r
5/2
sub

(
rout
rsub

)1− 1
2
γ

. (3.25)
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From the simulations performed in Hopkins & Quataert (2011a), γ tends to fall between
1.5 and 2, and as already noted we have fixed γ at 1.5 for all numerical calculations in this
study. We expect that the density profile will ultimately truncate at about 1 kpc. So, the
ratio of the dṀ/dω due to absorption of infrared photons that we would calculate using rout

of 1 kpc versus rout of 32.4 pc would be, for γ = 1.5, only 2.4. For γ = 2, dṀ/dω would be
invariant with respect to choice of rout, and for γ = 2.5 the ratio would be 0.42. The fact
that a significant portion of the radiative acceleration in the Monte Carlo calculations comes
from the spike near the dust sublimation radius further reduces the sensitivity of our results
to our choice of rout.

A final quantity that will be useful to us is the velocity of the gas in a solid angle vout(θ),

vout(θ) ≡
√

2 anet rout . (3.26)

Once again focusing on the infrared acceleration at large radii and making the same
approximations as we did for estimating dṀ/dω, we find

vout(θ) =

√
2

dFnet
dω

dMgas
dω

rout

≈
√

2
[
arad(rsub)− GMBH

r2sub

]
rsub

(
rout
rsub

) 1
2
γ−1

. (3.27)

Therefore our calculations for the velocity of the gas will have a similarly weak dependence
on rout as that of the mass-loss rate.

3.3.6 Variation of mass outflow with opening angle

Figure 3.11 shows the differential mass outflow rate dṀ/dω calculated using equation
3.21 for disks with various opening angles. The densities of the innermost radial grid zones
have been re-scaled to keep the total mass in the calculation domain constant in each case.

The overall mass outflow rate declines with smaller hs/R due to the increased funneling
of radiation into the low-density polar regions. For hs/R ≥ 0.25 the differential mass outflow
rate peaks at θ = π/2, while for hs/R ≤ 0.25 the peak is at an intermediate polar angle.
This is due to an interplay between the amount of mass available to be cleared away, its
inertia, and the gravitational force acting upon it. Near the equator, however, the large
amount of gas cannot be unbound by the radiative acceleration and so there is not outflow,
even though the force due to radiation is strongest there.

We emphasize that Figure 3.11 represents only a snapshot in time of the mass outflow
rate for an accreting SMBH. The evolution of dṀ/dω with time is not calculated here and
requires a fully coupled radiation-hydrodynamics calculation. Nevertheless, these snapshots
provide insight into how a SMBH may self-regulate its accretion. One possible scenario is
that an initially optically thick and puffy disk will blow away gas in the polar region. In the
absence of a replenishing mechanism that operates on a timescale shorter than t, this will
cause the disk to become thinner, reducing the tendency for radiation to blow out more gas.
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Figure 3.11 : Differential mass outflow rate dṀ/dω for various opening angles. Parameters corre-
spond to the fiducial values in Table 3.1, except for opening angles which vary as indicated (while
conserving the total mass in the calculation domain).
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Figure 3.12 : Differential mass outflow rate dṀ/dω for various sightline-averaged column densities
(measured to 0.1 pc from the black hole). Parameters correspond to the fiducial values in Table 3.1,
except for the average column densities which vary as indicated. The total mass in the calculation
domain varies proportionally with the average column density.

3.3.7 Variation of mass outflow with other parameters

Figure 3.12 shows the differential mass outflow rate dṀ/dω for disks with varying column
densities (the column density is averaged over all lines of sight, and includes both dusty and
non-dusty gas). The variation in column density is directly proportional to variation in the
total mass present in the calculation domain.

As expected, more mass can be ejected when there is more mass present to begin with.
However, we find the scaling to be sub-linear: Ṁ ∝ N

0.49

H for the range of column densities
included in this study (power-law scaling relations for all the free parameters in the problem
will be summarized in section 3.3.8). The slow growth of Ṁ with column density is due
to the fact that at higher column densities, the radiative force on the gas in the densest
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Figure 3.13 : Differential mass outflow rate dṀ/dω for various luminosities. Parameters correspond
to the fiducial values in Table 3.1, except for the luminosities which vary as indicated.

portions of the disk does not rise as quickly as the mass present there, and so gravity
becomes increasingly effective at limiting the outflow rate.

Finally, Figure 3.13 shows the differential mass outflow rate dṀ/dω for calculations with
varying black hole luminosities. For higher AGN luminosities, not only is there a higher
net force on a column at a given value of θ for which the net force was already outward
(positive), but also the net force becomes positive on columns at larger polar angles. For all
other parameters held constant, there exists a critical luminosity at which the radiation force
exceeds gravity for all polar angles, and all the gas would be blown away. For opening angle
hs/R = 0.3 and our fiducial mean column density 3.4× 1024 cm−2, radial density power-law
γ = 1.5 and black hole mass MBH = 108 M�, this critical luminosity is L/LEdd ≈ 0.7. The
existence of such a critical luminosity might help to explain the dearth of quasars observed
to be radiating at the full value of their inferred Eddington limit, although time-dependent
calculations will be necessary to test this hypothesis.
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3.3.8 Summary scalings of integrated quantities

The scalings of τ eff with the parameters of the problem, varied one at a time from the
fiducial values listed, for a black hole with mass 108 M�, can be summarized as follows:

τ eff = 3.8

(
hs/R

0.3

)1.5

×
(

NH

3.4× 1024 cm−2

)0.49

×
(

L

1.26× 1046 ergs s−1

)−0.13

(3.28)

We may also present a summary scaling relation for the volume-integrated mass outflow
rate Ṁ :

Ṁ = 144 M� yr−1

(
hs/R

0.3

)2.6

×
(

NH

3.4× 1024 cm−2

)0.62(
L

1.26× 1046 ergs s−1

)1.6

(3.29)

Note that NH in these scaling relations corresponds to column densities integrated from
0.1 pc to large radii. If instead we use the column density integrated from the edge of the dust
sublimation radius outward, then the fiducial column density becomes 9.5× 1023 cm−2, the
column density power-law in equation 3.28 changes to 0.56, and the column density power-
law in equation 3.29 changes to 0.71. Also note that the rates in equation 3.29 correspond
to a radius of 32 parsecs from the central SMBH, and there is a weak dependence on radius
(no stronger than r1/4 when γ = 1.5; refer to section 3.3.5.)

The fiducial value for the mass outflow rate of 144 M� per year may seem surprisingly
large. That value was computed for a black hole radiating at its full Eddington luminosity,
and at that luminosity the radiative acceleration beats out gravity at all solid angles. There-
fore, there is reason to suspect that such a large outflow rate is not sustainable for many gas
dynamical times at the parsec scale, as the amount of mass present and the opening angle
of the disk readjust during the outflow. The quoted outflow rate also does not incorporate
the effects of making the gas distribution clumpy, and as was demonstrated in section 3.3.3,
this reduces the integrated force by a factor of ∼ 2 for significant clumping.. Since the mass
loss rate should roughly scale as the integrated force to the 1/2 power (as argued in section
3.3.5), the mass outflow rate will be reduced approximately by a factor of 1

√
2 in the case of

significant clumping. On the other hand, the mass-loss rates calculated above correspond to
the mass swept up within a radius of approximately 30 parsecs from the central black hole.
Extrapolating our results out to 1 kpc, as discussed in section 3.29, might boost the outflow
rates by roughly a factor of 2 for γ = 1.5.
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With those caveats in mind, the important conclusions to be drawn from equations 3.28
and 3.29 are that the radiation force may reach several times (∼ 3) L/c, and that the mass
outflow rates can easily reach tens of solar masses per year for parameters close to our fiducial
values. In the proper circumstances (NH & 1024 cm−2, hs/R & 0.25, and L/LEdd ≈ 1), the
mass outflow rates can reach up to 100 M� per year.

It is also interesting to note that the momentum enhancement and mass outflow rate
depend relatively strongly on the AGN luminosity and disk opening angle hs/R. The fact
that the dependence of the mass outflow rate on luminosity is steeper than the dependence
of the radiation force on luminosity may at first seem surprising. This scaling has its origins
in an effect noted in section 3.3.7, specifically that increasing the luminosity allows the
radiation force to exceed gravity for a larger fraction of the solid angle, adding more mass
to the outflow than was present at lower luminosities.

Finally, to drive home the point that momentum deposition, not heating, is responsible
for the large computed outflow rates, we can estimate the corresponding kinetic luminosities.
We use our estimate of the gas velocity as a function of solid angle vout(θ) (equation 3.26)
to compute the fraction of the accretion luminosity L that goes into kinetic luminosity:

εk ≡
[

1

L

] [∫
1

2

dṀ

dω
(θ) v2

out(θ) dω

]

=

[
2(2π)

L

] [∫ π/2

0

1

2

dṀ

dω
(θ) v2

out(θ) sin θ dθ

]
(3.30)

Once again by varying each parameter one at a time with respect to the fiducial values,
our results for a 108 solar mass black hole can be summarized as

εk = 0.009

(
hs/R

0.3

)1.9

×
(

NH

3.4× 1024 cm−2

)0.19

×
(

L

1.26× 1046 ergs s−1

)1.8

(3.31)

If the column density is computed by integrating from the dust sublimation radius out-
ward, the corresponding power-law in equation 3.31 barely changes at all, increasing to 0.21.

The mass-weighted average velocity of the gas in the outflow will be approximately
equal to τ effL/(cṀ), although a more accurate value can be obtained by integrating vout(θ)
weighted by dMgas/dθ and only counting contributions from solid angles and radii for which
gas can be blown out. For our fiducial parameters this average velocity at 32 parsecs from
of the computational domain is approximately 1000 km s−1.

3.4 Conclusion
We have calculated how radiation pressure from a luminous accretion disk around a

SMBH drives a powerful outflow of gas via continuum radiation pressure on dust at distances
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of 0.1-30 pc from the black hole. Using ambient gas conditions motivated by observational
constraints on nuclear obscuration in AGN (hs/R & 0.25, NH & 1024 cm−2) we find that a
108M� SMBH radiating at Eddington can drive a wind with velocities of ∼ 1000’s of km
s−1 and an instantaneous mass loss rate of ∼ 10-100 M� per year (see equation 3.29). For
SMBHs with masses & 109M�, the outflow rates could approach ∼ 1000M� per year.

Radiative heating sublimates the dust out to distances of roughly 0.5 to 1 pc in the
mid-plane, and radiation pressure drives away the gas and dust in the polar regions, leaving
behind what may constitute the observed dusty torus. The wide-angle bipolarity of these
outflows corresponds well to observations of obscured quasars (Greene et al. 2012) and Seyfert
2s (Crenshaw & Kraemer 2000). Although the radiative acceleration is greatest in the polar
regions, the majority of the ejected mass comes from oblique angles where there is a more
significant reservoir of gas. By contrast, gas in the equatorial plane is more difficult to unbind
because of its large inertia and large integrated gravitational attraction.

The net momentum flux in the resulting outflow can exceed L/c by factors of up to 5
for the parameters studied, as infrared photons interact multiple times during their outward
diffusion. As recently demonstrated in the calculations of Ciotti et al. (2010); Novak et al.
(2011); Debuhr et al. (2011), outflows with these properties have a significant impact on
gas in the surrounding host galaxy. Our results for the outflows match reasonably well the
observed outflows in local ULIRGs such as Mrk 231 (Rupke & Veilleux 2011). The mass-
loss rates and kinetic luminosity fractions we calculate also provide a reasonable match to
observations of obscured quasars (Moe et al. 2009; Dunn et al. 2010), although our model
does not provide a mechanism for launching large amounts of gas at the high velocities
(> 20000 km s−1) observed in these systems at small radii. One possibility is that these
quasars are exhibiting both line and continuum radiation pressure driven outflows.

We find that the net effect of the AGN radiation on the surrounding gas is a strong
function of the opening angle of the accreting gas at the parsec-scale (the torus). Increasing
the opening angle allows more momentum to be deposited in all directions because the
mass distribution and emergent radiative flux become more isotropic. We also find a steep
dependence of the outflow rate on the luminosity of the accretion disk, because at higher
luminosities gas becomes unbound over a greater range of solid angles. This result is also
in agreement with the observed anti-correlation between obscured AGN fraction and AGN
luminosity (Simpson 2005; Hasinger et al. 2007; Maiolino et al. 2007), although we are
restricting our attention to a single black hole mass.

Keeping all of our parameters at the fiducial values listed in Table 3.1 but varying the
luminosity, we find that outward radiative acceleration begins to exceed gravity at all angles
once L/LEdd reaches a value of ∼ 0.7 (for mean column densities and/or opening angles larger
than those given in Table 1, this critical value of L/LEdd would be smaller). This finding
may help to explain the relative dearth of broad-line quasars observed to be radiating at
their full Eddington luminosity (Kelly et al. 2010).

The effects of dust sublimation play a crucial rule in determining the angular dependence
of the radiative force on the torus. The redistribution of flux between polar angles takes
place almost entirely in the region of gas in which dust has been sublimated, where infrared
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radiation is re-emitted from the edge of the dusty gas at angles deviating from the radial
direction. Once photons penetrate into the dusty gas, they tend to diffuse radially and
deposit momentum almost entirely in the radial direction.

A fully coupled radiation-hydrodynamic calculation will be needed to fully understand
the subsequent behavior of the gas in time. Future work will focus on incorporating the
results of this study into hydrodynamic simulations of black hole accretion. In addition to
the coupling to the hydrodynamics, more details pertinent to the radiative physics may be
addressed in such calculations, including line absorption, anisotropic scattering off of dust,
metallicity gradients, and variations in the average dust-to-gas ratio.
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Chapter 4

The X-ray through Optical Flux and
Line Strengths of Tidal Disruption
Events

The content of this chapter, excluding Section 4.1, is drawn from Roth et al. (2015), with
permission of the co-authors.

We study the emission from tidal disruption events (TDEs) produced as radiation from
black hole accretion propagates through an extended, optically thick envelope formed from
stellar debris. We analytically describe key physics controlling spectrum formation, and
present detailed radiative transfer calculations that model the spectral energy distribution
(SED) and optical line strengths of TDEs near peak brightness. The steady-state transfer is
coupled to a solver for the excitation and ionization states of hydrogen, helium and oxygen
(as a representative metal), without assuming local thermodynamic equilibrium. Our calcu-
lations show how an extended envelope can reprocess a fraction of soft x-rays and produce
the observed optical fluxes of order 1043 erg s−1, with an optical/UV continuum that is not
described by a single blackbody. Variations in the mass or size of the envelope may help
explain how the optical flux changes over time with roughly constant color. For high enough
accretion luminosities, x-rays can escape to be observed simultaneously with the optical flux.
Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed rel-
ative to helium line emission (with HeII-to-H line ratios of at least 5:1 in some cases) even
in the disruption of a solar-composition star. We discuss the implications of our results to
understanding the type of stars destroyed in TDEs and the physical processes responsible
for producing the observed flares.

4.1 TDE preliminaries
The discussion in this section is provided for background and is almost entirely drawn

from work that is not my own. In particular, it follows Rees (1988), Ulmer (1999), and Li
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et al. (2002) very closely. For simplicity, the discussion only uses Newtonian gravity. It does
not, for example, account for general relavistic precession of the initial stellar orbit (see Dai
et al. (2015) for a particularly nice treatment of this analytically), or relativistic corrections
to the gravitational potential of the black hole (BH). Therefore, this will all be most accurate
when the tidal radius (defined below) is much larger than the BH event horizon.

Additional complications, not accounted for here, arise when the BH has appreciable
spin. In this case the stellar orbit is not confined to a single plane. See (Guillochon &
Ramirez-Ruiz 2015) for more on that case and its observational implications (it has some
implications for the observed TDE rates).

The tidal radius is defined as the distance from the BH where the acceleration from self-
gravity of the star at its surface equals the acceleration due to the tidal potential of the BH.
Equating these gives

GM∗
R2
∗

=
GMBH

rT
2

(
R∗
rT

)
(4.1)

where the right-hand side comes from Taylor expanding the tidal force of the BH.
This can be easily rearranged to get

rT = R∗

(
MBH

M∗

)1/3

= 7× 1012

(
MBH

106M�

)1/3(
R∗
R�

)
cm (4.2)

Now we introduce the penetration parameter β ≡ rT/rp, where rp is the pericenter of the
initial stellar orbit bringing it close to the BH. A higher value of β means a deeper encounter.
The ratio of the typical kinetic energy of stars far from the black hole, in a stellar bulge with
velocity dispersion σ, to the kinetic energy they obtain upon close passage of the BH is then

σ2

2

rT

βGMBH

= 2.6× 10−6 1

β

(
σ

100 km s−1

)2(
MBH

106M�

)−2/3(
R∗
R�

)
(4.3)

In other words, the stars are almost at rest far from the BH, when compared to the
energies they obtain on close orbits to the BH. So a stellar orbit near the BH will typically
be close to parabolic. Depending on the exact velocity of the star as it is nudged into its orbit
that brings it close to the BH, it may technically be energetically bound (so orbit becomes
elliptical) or unbound (hyperbolic orbit).

So we take the total energy of the star (kinetic plus gravitational potential) to be zero
for the typical example. This total energy must be conserved globally over the course of the
encounter, but will become non-uniformly distributed over parts of the star. In particular,
at rp there is a large spread in energy across the star, with the material closest to the BH
being more energetic than the material far away form the BH. This spread in specific total
energy (energy per unit mass) falls in the range

|∆E| ≤ ∆Emax = k
GMBH

rp

R∗
rp

(4.4)
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(equation 7 of Li et al. (2002)). It is easy to understand the k = 1 case based on
Taylor expansion of the gravitational potential of the BH, and then using equation (4.2) to
substitute for rT. However, k might reach values as large as 3 if the star has also been spun
up during the orbit. This spin-up is discussed but ultimately not quantitatively accounted
for in Rees (1988). After performing some manipulations we arrive at

∆Emax = kβ2 GM∗
R∗

(
MBH

M∗

)1/3

(4.5)

Regardless of the value of k, the spread in energy is much larger than any of the initial
binding energy of the star to the BH (which we already said was small, as discussed above),
and much larger than the gravitational self-binding energy of the star, which is on the order
of GM∗/R∗. So half the mass of the star becomes unbound and is flung away from the BH,
never to return. This unbound material is generally confined to a narrow stream because of
self-gravity (Kochanek 1994; Guillochon et al. 2014), so it will intercept a very small fraction
of any radiation produced close to the BH.

The remaining half of the star remains bound with elliptical orbits with energies dis-
tributed in the range from −∆Emax to 0. We can use Kepler’s laws to determine the time
for the material to return to pericenter given its orbital energy. For the ellpitical orbits of
the bound debris, assuming that the black hole mass completely dominates the dynamics,
the specific total energy E (kinetic plus potential energy divided by mass) is

E = −GMBH

2a
(4.6)

And Kepler’s third law is
P 2

a3
=

4π2

GMBH

(4.7)

Using equation (4.6) to eliminate a, the periods of the orbits of the bound material are given
by

P = 2πGMBH (−2∆E)−3/2 (4.8)

Then, using equation (4.5)

Pmin =
2π

(2k)3/2
β−3

√
R3
∗

GM∗

(
MBH

M∗

)1/2

(4.9)

Putting in values,

Pmin = 7.88 days

(
k

3

)−3/2

β−3

(
MBH

106M�

)1/2(
M∗
M�

)−1(
R∗
R�

)3/2

(4.10)

There are a few ways to now see the famous t−5/3 law for the rate at which bound debris
continues to return. Start with the chain rule

dM

dt
=
dM

dE

dE

dt
. (4.11)
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All simple derivations now need to assume that the stellar mass is uniformly distributed in
specific energy post disruption, that is, dM/dE is constant. This is justified by the numerical
work in Evans & Kochanek (1989) and Ayal et al. (2000), although some deviations do appear
when more realistic stellar models are used (Guillochon & Ramirez-Ruiz 2013). Referring
to equation (4.8), we rearrange to get E in terms of the period, which is t, and the -5/3 law
falls out immediately.

4.2 TDE observations and puzzles
Observational candidates for TDEs are rapidly accumulating. A number of flares from

galactic centers have been discovered in x-rays (Komossa & Bade 1999; Donley et al. 2002;
Komossa et al. 2004; Halpern et al. 2004; Esquej et al. 2007; Cappelluti et al. 2009; Maksym
et al. 2010; Saxton et al. 2012; Hryniewicz & Walter 2016; Lin et al. 2015; Komossa 2015).
The peak luminosity is high, & 1044 erg s−1, and the spectral energy distribution peaks at
soft x-ray energies . 0.1 keV. After peak, the luminosity fades as a power-law in time similar
to L ∝ t−5/3, a dependence predicted for the fallback of disrupted stellar debris (Rees 1988;
Phinney 1989; Evans & Kochanek 1989; Lodato et al. 2009; Guillochon & Ramirez-Ruiz
2013).

There have also been TDE candidates found in the ultraviolet (UV) (Gezari et al. 2006,
2009), and in the optical in SDSS (van Velzen et al. (2011); van Velzen & Farrar (2014),
Pan-STARRS1 (Gezari et al. 2012; Chornock et al. 2014), ASASSN (Holoien et al. 2014,
2016b,a), PTF (Cenko et al. 2012a; Arcavi et al. 2014), and ROTSE (Vinkó et al. 2015).
These events typically rise to a peak (observer frame) R-band luminosity of∼ 2×1043 ergs s−1

on a timescale of ∼ months (Arcavi et al. 2014), with a late time fall consistent with t−5/3.
Intriguingly, PTF10iya, Swift J2058.4, ASASSN-14li, and ASASSN-15oi have been simulta-
neously observed in both optical and x-ray (Cenko et al. 2012a,b; Holoien et al. 2016b; Miller
et al. 2015; Cenko et al. 2016; Holoien et al. 2016a).

A few long-lived (∼ 107 sec) transients have also been observed at hard x-ray and gamma-
ray energies (Bloom et al. 2011; Cenko et al. 2012b; Brown et al. 2015). Occasionally,
associated optical emission is also detected. These events have been interpreted as due to a
relativistic jet generated via BH accretion; such “jetted” TDEs appear to be observationally
rare compared to the soft x-ray and UV/optical flares (van Velzen & Farrar 2014; Arcavi
et al. 2014), in line with theoretical expectations (De Colle et al. 2012).

While many aspects of the TDE candidates remain poorly understood, the nature of
the optical/UV emission is perhaps the most puzzling. Two fundamental questions await
full explanation: 1) Why is the observed optical flux in the UV/optical transients orders of
magnitudes higher than that predicted by a standard BH accretion disk, and with a blue
color that remains roughly constant over time? 2) Why do the optical spectra show strong
lines of helium, but little or no hydrogen line emission (Gezari et al. 2012; Arcavi et al.
2014)?

The first puzzle stems from the fact that the tidal disruption radius, Rtd = (Mbh/M?)
1/3R?,
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is ≈ 1013 cm for the disruption of a solar-like star (mass M? = M�, radius R�) by a BH
of mass Mbh ∼ 106 M�. Thermal emission from this radius should be in the soft x-ray
(temperatures & 105 K) with low optical luminosity (. 1042 ergs s−1). The problem has
been addressed by postulating the presence of gas at large radii (∼ 100 times Rtd) that
absorbs (or advects) radiation and re-emits it at lower temperatures of a few times 104 K.
This reprocessing region may be due to the formation of a hydrostatic (or quasi-static) en-
velope around the BH (Loeb & Ulmer 1997; Guillochon et al. 2014; Coughlin & Begelman
2014), or a super-Eddington mass outflow (Strubbe & Quataert 2009; Lodato & Rossi 2011;
Metzger & Stone 2015; Vinkó et al. 2015; Miller 2015), or the circularization of material
at radii much greater Rtd (Shiokawa et al. 2015; Piran et al. 2015; Hayasaki et al. 2015;
Bonnerot et al. 2016; Guillochon & Ramirez-Ruiz 2015; Dai et al. 2015). As of yet, however,
no detailed radiative transfer calculations have determined how, or if, TDE radiation can be
so reprocessed, and if so how the emergent optical through x-ray emission depends on the
gas properties. These are key questions we hope to address here.

The solution to the second puzzle – the low hydrogen to helium emission line ratios –
continues to be debated. Early theoretical modeling of the Hα emission by Bogdanović
et al. (2004) raised the possibility that this line emission might be destroyed due to the high
optical depth to Hα photons in a reprocessing region surrounding the inflowing stellar debris.
Gezari et al. (2012) argued that the absence of H lines in PS1-10jh implies the disruption
of a He-rich stellar core. The simulations of MacLeod et al. (2012), however, show that it is
difficult to remove the H envelope of a red giant and disrupt only the He core. Noting that
He star disruptions would be exceedingly rare, Guillochon et al. (2014) instead argued for the
disruption of a normal main sequence star but with the hydrogen line emission suppressed
by photoionization effects (e.g., Korista & Goad 2004). Gaskell & Rojas Lobos (2014) also
argued in favor of a main-sequence star based on new calculations using the photoionization
code CLOUDY. However, a separate CLOUDY parameter study performed by Strubbe &
Murray (2015) disputed this interpretation, concluding that, for the conditions relevant to
TDEs, hydrogen lines would not be suppressed enough to be consistent with the observations
of PS1-10jh.

All previous studies of TDE line emission, however, have suffered from the limitation of
the CLOUDY code, which assumes that the gas is optically thin in the continuum. Here
we show that TDE envelopes are optically thick and highly scattering dominated, and that
this profoundly changes the nature of line and continuum formation. We first use analytic
arguments to delineate the physical conditions and key radiative processes in TDE envelopes,
and then carry out the first non local-thermodynamic equilibrium (non-LTE) Boltzmann
radiative transfer calculations for an idealized TDE model with a spherically, optically thick
reprocessing region.

In contrast to optically thin CLOUDYmodels, spectrum formation in optically thick TDE
envelopes more closely resembles the situation in stellar atmospheres, where the emission at
a given wavelength depends on the source function at the associated thermalization depth.
The thermalization depth is the radius at which emitted photons can scatter to the surface
without being reabsorbed, and corresponds to a radial optical depth (integrated inward) of
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approximately
√
τabsτes where τabs and τes are the optical depths to absorptive and electron

scattering processes, respectively. The thermalization depth varies with wavelength, such
that lines and the continuum form at different layers (see Figure 4.1). The resulting spectrum
will generally not be described by a single blackbody.

Our calculations define the conditions under which a TDE envelope may be ”effectively”
optically thick (i.e.,

√
τabsτes & 1) at soft x-ray wavelengths, and so absorb and reprocess a

fraction of the accretion luminosity into optical continuum and line emission. We describe
how the reprocessing efficiency depends on the mass, size, and ionization state of the en-
velope. Variations in these quantities may help explain the observed optical flux evolution
and the occasional simultaneous appearance of x-rays. We show that escaping line photons
are produced only in the outer layers of the envelope, such that the H to He line ratio is
suppressed and will vary with the envelope extent. Indeed, some optical TDE candidates do
show detectable, but varying, Hα emission (Arcavi et al. 2014; Holoien et al. 2016b).

In Section 4.3, we describe the assumptions of the model setup, and make analytic es-
timates of the degree of reprocessed luminosity. In Section 4.4 we present our numerical
results from our radiative transport calculations. In Section 4.5 we discuss implications for
observations and models of TDEs, and in Section 4.6 we conclude with a summary of the
most important take away points.

4.3 Analytic Considerations
An accurate determination of the optical/UV luminosity from TDE envelopes requires a

detailed non-LTE radiative transfer calculation, which we provide in Section 4.4. However,
some insight into the physics of radiation reprocessing, and how it depends on envelope
parameters, can be gained by approximate analytic arguments.

We consider a 1D configuration where radiation is emitted by a spherical source at radius
rin defining the layer at which most of the radiative luminosity is generated. Choosing rin

comparable to the original stellar pericenter passage distance (typically ∼ 1013 cm for a
106-107 M� BH) would approximate the luminosity arising from a viscous accretion disk
formed near the disruption radius. Alternatively, the luminosity could be generated by the
circularization of fallback material at a larger radius, rin ∼ 1014 cm (e.g. Piran et al. 2015;
Dai et al. 2015).

We assume that the inner boundary radiates blackbody radiation at a source temperature
Ts. Our implicit assumption is that the conditions interior to rin are sufficient to thermalize
the radiation, e.g., via Comptonization or adiabatic expansion. For luminosities of order
1044 − 1045 ergs s−1, Ts ∼ 105 − 106 K and source photons are emitted primarily at soft
x-ray/ultraviolet wavelengths (energies ∼ 20− 100 eV).

Figure 4.2 shows the processes that contribute to the absorptive opacity for conditions
found in a typical numerical calculation of a TDE envelope (to be described in Section 4.4).
For soft x-rays near 100 Å, a primary absorptive opacity is photoionization of HeII (threshold
energy of 54.4 eV). Photoionization and line absorption from other metals will also contribute
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Figure 4.1 : A schematic (not entirely to-scale) representation of a quasi-static TDE envelope,
marking the effective photospheres at different wavelengths (beyond the effective photosphere, most
photons will electron scatter their way out of the envelope without being re-absorbed). The soft
x-ray photosphere lies deepest in, perhaps near the tidal disruption radius. The optical continuum
photosphere lies farther out, followed by the He II λ4686 photosphere. The Hα photosphere lies
farthest out, near to the Thomson photosphere. The larger visible volume of helium line emission
results in a high He to H emission line ratio in the model TDE spectra. Although our calculations
assume spherical symmetry, we have suggested the presence of possible viewing angle effects owing
to the presence of a funnel or jet in the polar directions.
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to the reprocessing.
In this section, we quantify the conditions in the envelope (density, temperature, and

ionization state) and the effective optical depth to HeII photoionization. We then estimate
the fraction of light reprocessed into the optical and its dependence on envelope parameters.
The results, while approximate, will be useful in interpreting the detailed numerical spectral
calculations that follow.

4.3.1 Envelope Density Structure and Optical Depth

We invoke the presence of a reprocessing envelope surrounding the source, and remain
agnostic about its origin. For simplicity, we assume the envelope is spherically symmetric
and quasi-static; in reality, global asymmetries and velocity gradients will complicate the
picture, and are issues to be addressed in future work.

We model the envelope with a power-law density profile, ρ(r) ∝ r−p, extending from an
inner radius, rin, to an outer radius, rout. An exponent p = 3 applies to a radiation pressure-
supported envelope (Loeb & Ulmer 1997), while p = 2 for a steady state wind outflow
(or inflow). The hydrodynamic solutions of Coughlin & Begelman (2014) find intermediate
values of p = 1.5 to 3. In this work, we adopt p = 2, in which case the density profile is

ρ(r) =
Menv

4πr2
in(rout − rin)

(
r

rin

)−2

. (4.12)

The envelope mass, Menv is at most the total mass of the originally bound stellar debris
(generally . 0.5 M�) and for a quasi-static envelope will likely change over time as material
falls back, accretes or is launched in an outflow. If the density profile of Equation (4.12) is
interpreted a steady wind, the corresponding mass loss rate is Ṁ = Menv(vw/rout) where vw

is the wind speed.
For quasi-static envelopes, we expect rout to be set by the radiation pressure support, with

typical values rout ∼ 1015 cm (Loeb & Ulmer 1997; Coughlin & Begelman 2014; Guillochon
et al. 2014). For a radiatively launched outflow, rout will be set by the extent of the expanding
gas at any given time. Gas expanding at vw = 10, 000 km s−1 for 20 days will have reached
a similar radius, rout ≈ 1015 cm. Scaling to characteristic values, the density at the base of
the envelope, rin, is

ρin ≈
8× 10−12

(1− rin/rout)
Me,0.5r

−2
i,14r

−1
o,15 g cm−3 (4.13)

where Me,0.5 = Menv/0.5 M�, ri,14 = rin/1014 cm, and ro,15 = rout/1015 cm. For solar
composition, the mean particle mass is µ ' 1.3mp and the number density at the base is
nin = ρin/µ ≈ 4× 1012 cm−3.

For fully ionized gas of solar composition, the dominate continuum opacity is electron
scattering with an opacity κ = 0.32 cm2 g−1. The optical depth through the envelope is then

τes =
κMenv

4πrinrout

≈ 270 Me,0.5r
−1
i,14r

−1
o,15. (4.14)
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Figure 4.2 : The ratio of various absorptive opacities at soft x-ray and UV wavelengths to that of
electron scattering, computed near the inner boundary of a TDE envelope. The values are from
the non-LTE radiation transport calculation of Section 4.4 with Menv = 0.5M�, rin = 1014 cm,
rout = 1015 cm, and L = 1045 ergs s−1. At soft x-ray wavelengths near 100 Å, photoionization of
He II is a dominant absorptive process. Oxygen lines also contribute, while oxygen photoionization
is negligible. The photoionization opacities begin to dip at long wavelengths due to stimulated
recombination.
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The envelope is highly scattering dominated, with the ratio of absorptive opacity to total
opacity ε . 10−4 at x-ray/UV wavelengths (see Figure 4.2). The reprocessing of radiation
to optical wavelengths is accomplished via absorptive processes (e.g., HeII photoionization),
not electron scattering. However, the large scattering opacity traps photons and increases
the probability that they will be absorbed. It thus has a critical effect on the formation of
the optical continuum and emission lines.

The radiation diffusion time through the envelope is tdiff ∼ r̄2κρ̄/c where ρ̄ is an ap-
propriately weighted envelope density and r̄ a characteristic envelope length scale. Taking
ρ̄ = ρ(r̄) gives tdiff ∼ 10 Me,0.5r

−1
i,14 days, which is similar to the diffusion time we find in our

direct numerical transport calculations of Section 4.4. For the TDE envelopes we consider
here at times t ≈ weeks since disruption (near the peak of the light curve), tdiff . t and we
can assume steady state transport above the inner boundary. However, at earlier times on
the light curve rise, or for very dense envelopes, the diffusion timescale may be important in
setting the emergent luminosity.

4.3.2 Envelope Temperature Structure

We assume that above our inner boundary, energy is primarily transported by radiation
diffusion and there is negligible energy input from other processes such as viscosity or shocks.
The temperature structure of the envelope is then set by radiative heating and cooling. Given
the high electron scattering optical depth, we apply the spherical steady-state diffusion
approximation to determine the frequency integrated radiation energy density, Erad(r),

dErad(r)

dr
= −3κρ(r)

4πcr2
L (4.15)

where c is the speed of light and L is the bolometric luminosity of the central source. The
solution of Equation (4.15), using the density profile from Equation (4.12) and a constant
electron-scattering opacity, is

Erad(r) =
τesL

4πcr2
in

[
r3

in

r3
− r3

in

r3
out

+
4

τes

r2
in

r2
out

]
(4.16)

where we have taken as an outer boundary condition Erad(rout) = aradT
4
eff , where arad is

the radiation constant, Teff = [L/4πσsbr
2
out]

1/4 and σsb ≡ c arad/4 is the Stefan-Boltzmann
constant. Defining a radiation temperature by Trad = (Erad/arad)1/4, we have in the limit
rout � rin

Trad(r) = Trad(rin)
[rin

r

]3/4

(r � rout), (4.17)

where the interior temperature is

Trad(rin) =

[
τes

4

L

4πσsbr2
in

]1/4

. (4.18)
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The temperature at the inner boundary is greater than that of a blackbody sphere emitting
into vacuum by a factor of (τes/4)1/4 ≈ 3. This is due to the back-heating of the source
by photons trapped in the optically thick envelope. We estimate characteristic radiation
temperature to be

Trad(rin) ≈ 3.1× 105 L
1/4
45 M

1/4
e,0.5r

−1/4
o,15 r

−3/4
i,14 K . (4.19)

Note that the mass and size of the envelope directly affects the temperatures. For simplicity,
we will usually set Ts, the blackbody temperature of our inner source, equal to Trad(rin). This
may not hold in general; for example, the source luminosity may come from an accretion
disk with radius smaller than the inner envelope edge, rin.

As defined, Trad is simply a convenient rescaling of the local radiation energy density.
However, we now show that Trad may provide a good estimate of the gas temperature Tgas.
When the thermal state of the gas is determined primarily by radiative heating and cooling,
the time-evolution of Tgas is

3

2
nkB

dTgas

dt
= −4παSB(Tgas) + 4παEJ, (4.20)

where J = cErad/4π is the integrated mean specific intensity, B(Tgas) = σsbT
4
gas/π is the

frequency-integrated Planck function, kB is the Boltzmann constant, and αE and αS are
mean absorptive extinction coefficients defined by

αE ≡
∫
αabs
ν (ν)Eν(ν)dν

Erad

, αS ≡
∫
αabs
ν (ν)Bν(ν)dν

B
,

where αabs
ν (ν) is the absorptive extinction coefficient at each frequency, and Eν(ν) is the

radiation energy density in the frequency interval between ν and ν + dν.
Given sufficient time, the gas will reach a thermal equilibrium where radiative heating

balances cooling. From Equation (4.20), the timescale, theat, to heat gas from some lower
temperature up to the equilibrium value is

theat =
3

2

1

c αE

[
nkBTrad

aradT 4
rad

]
. (4.21)

The term in brackets is the ratio of gas to radiation energy density, and is � 1 for the
conditions in TDE envelopes. The true absorption coefficient αE is & 10−5 that of electron
scattering (Figure 4.2) from which we find theat ranges from . 1 s at the base of the envelope
up to ∼ hours at the outermost radii, which is comfortably smaller than the characteristic
timescale of weeks for the evolution of observed TDE lightcurves. The gas temperature will
then be able to reach a steady state, dTgas/dt = 0, and Equation (4.20) gives

Tgas = (αE/αS)1/4 Trad. (4.22)

Therefore, Tgas is close to Trad, with a correction factor related to the frequency dependence
of αabs

ν and the extent to which the radiation field spectrum differs from a blackbody. In
our numerical calculations, we find that Equation (4.17) provides a good estimate of Tgas in
the inner portions of the envelope, up to the continuum thermalization depth. Beyond that,
Tgas plateaus at a higher value than Trad.
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4.3.3 Envelope Ionization State

Photoionization of HeII provides one of the most important absorptive opacity at soft
x-ray wavelengths (see Figure 4.2). If helium is primarily in the HeII state, the associated
photoionization optical depth is� 1, and essentially all of the source x-rays will be absorbed
and reprocessed to longer wavelengths. However, for high luminosity TDEs, the intense
radiation field may completely ionize helium to HeIII, allowing only a small fraction of the
source luminosity to be absorbed. Such an ionization effect has been explored in Metzger
et al. (2014) and Metzger & Stone (2015). Determining the ionization state is therefore
crucial for estimating the reprocessing efficiency of a TDE envelope.

To roughly estimate the critical luminosity, Lion, required to highly ionize the envelope,
we use simple Stromgren sphere arguments. The rate at which ionized photons are produced
by the central source is Q̇ = L/Ēs where Ēs is the average energy of source photons. The
total recombination rate within a sphere of radius r is

Ṙ(r) =

∫ r

rin

4πr′2αB,0ne(r
′)nHeIII(r

′)dr′ (4.23)

where αB,0 ≈ 2× 10−13 cm3 s−1 is the case B helium recombination coefficient at a temper-
ature 105 K, ne is the free electron density, and nHeIII is the number density of HeIII. The
condition Q̇ = Ṙ(r) allows us to solve for the Stromgren radius within which the helium is
fully ionized

rstrom = rin

[
1− L

4πAHen2
inαB,0r

3
inĒs

]−1

(4.24)

where AHe ≈ 0.1 is the number fraction of helium, and we have assumed ne equals the ion
number density, n, which is accurate to within 10% for the conditions that interest us. We
see that the Stromgren radius of HeII diverges for luminosities above a critical luminosity
Lion = 4παB,0AHen

2
inr

3
in or

Lion ≈ 3× 1044 M2
e,0.5r

−1
i,14r

−2
o,15E50 ergs s−1 (4.25)

where E50 = Ēs/(50 eV). A transition in the ionization state around this luminosity is
confirmed by our numerical calculations in Section 4.4, and has a dramatic effect on the
fraction of escaping x-ray photons.

Similar arguments could be applied to other elements that may contribute to absorption.
However, the Stromgren estimates are ultimately limited by the fact that, in the true radia-
tion transport, ionizing photons may be produced not only by the source, but also within the
TDE envelope. In particular, radiation absorbed by helium will be largely re-emitted as pho-
tons capable of ionizing hydrogen. Indeed, our numerical calculations (Section 4.4) find that
hydrogen remains fully ionized for luminosities less than the Lion implied by Equation 4.25.

In the limit that helium is highly ionized (L > Lion), we can estimate the fraction of
helium in the HeII state. Assuming that photoionization equilibrium holds at all radii, the
number densities, nHeII and nHeIII, of HeII and HeIII respectively are related by

nHeIII = nHeIIIneαB (4.26)
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where I is the photoionization rate and the radiative recombination coefficient depends on
temperature as αB ∝ T−1/2. Using the temperature structure Equation 4.17 gives

αB(r) ≈ αB,0T
−1/2
s,5

[
r

rin

]3/8

(4.27)

where Ts,5 = Ts/105 K. For typical envelope densities, collisional ionization rates are small,
while the recombination timescale, trec ∼ 1/neαB ∼ 1 s, is short, validating the assumption
of photoionization equilibrium. The photoionization rate is

I(r) ≡ 4π

∫ ∞
νion

σion
ν Jν(r)

hν
dν (4.28)

where νion is the threshold frequency for HeII ionization, Jν(r) is the mean specific intensity of
the radiation field, and the photoionization cross-section σion

ν is given to good approximation
(about 15% error because of neglect of Gaunt factors) for hydrogenic ions by

σion
ν (ν) = σ0

(
ν

νion

)−3

(4.29)

with σ0 ≈ 1.5 × 10−18 cm2 for HeII. In the limit that only a small fraction of the source
radiation is absorbed, the frequency dependence of Jν will be a Planck distribution at the
source temperature, Bν(Ts). The radiation energy density, however, will be diluted according
to the diffusion solution Equation (4.16), giving

Jν(r) = Bν(Ts)
[rin

r

]3

(4.30)

which assumes rout � rin. The ionization rate is then

I(r) =
8πν3

ionσ0

c2

[rin

r

]3

Ω(Ts) (4.31)

where the dimensionless factor Ω is

Ω(Ts) =

∫ ∞
hνion
kBTs

dx

x(ex − 1)
≈ 0.8

[
kBTs

hνion

]
e−hνion/kBTs . (4.32)

The second expression approximates the integral to within a few percent over the range of
temperatures of interest. The ionization equilibrium Equation (4.26) then determines the
fractional ratio of HeII

fHeII =
nHeII

nHeIII

=

[
ninαB,0c

2

8πν3
ionσ0T

1/2
s,5 Ω(Ts)

][
r

rin

]11/8

(4.33)
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where we have again taken ne = n. The fraction of HeII grows with radius, due both to the
decrease of the ionizing radiation field and the increase of the recombination coefficient at
larger radii. The HeII fraction at rin is

fHeII(rin) = 6× 10−11e
6.31
Ts,5 T

−3/2
s,5 Me,0.5r

−2
i,14r

−1
o,15 (4.34)

which shows that, for these fiducial parameters, most of the helium is in the fully ionized
HeIII state. This predicted HeII fraction is very similar to what we find in our numeri-
cal transport calculations (Section 4.4) when L � Lion. The temperature dependence in
Equation 4.34 resembles the LTE Saha equation expression, a consequence of the assumed
Planckian frequency distribution of the radiation field. Near the inner boundary, where the
radiation field approaches a true blackbody, the ionization state will approach its LTE value.

4.3.4 Reprocessed Luminosity

Having solved for the ionization state, we can calculate the optical depth to HeII pho-
toionization

τHeII(ν) =

∫ rout

rin

nHeII(r)σ0(ν/νion)−3dr. (4.35)

Figure 4.2 makes it clear that other opacities (e.g., HeII and oxygen lines) also contribute
to the opacity soft x-ray wavelengths; however, our analysis of the HeII photoionization
provides some proxy for the more general radiative process.

When most of the helium is in the HeIII state (as indicated by Equation 4.34) we can
write the number density of HeII as nHeII = AHefHeIIn. For the temperature range of interest
(2 × 105 K < Ts < 106 K) we can more coarsely approximate Equation (4.32) as Ω ≈
6× 10−3T 2

s,5. Using our ionization solution Equation (4.33) gives

τHeII(ν) =

AHen
2
inrinαB,0c

2

3πν3
0T

1/2
s,5 Ω(Ts)

[
ν

νion

]−3
[(

rout

rin

)3/8

− 1

]
(4.36)

≈ 0.02 L
−5/8
45 M

11/8
e,0.5 r

−3/2
i,14 r−1

o,15(ν/νion)−3. (4.37)

The expected fraction of absorptive to electron scattering opacity at threshold isAHefHeII(rin)σ0/σT ≈
2×10−5 (where σT is the Thomson cross-section for electron scattering), in rough agreement
with our numerical results (Figure 4.2).

In the radial direction, the envelope is optically thin to HeII photoionization. However,
the electron scattering opacity increases the path length of photons as they random walk
through the envelope, enhancing the probability of absorption. The typical number of scat-
ters is τ 2

es, and so the effective optical depth for a photon to be absorbed is τr =
√
τHeIIτes,

or
τr(ν) ≈ 2L

−5/16
45 M

19/16
e,0.5 r

−5/4
i,14 r−1

o,15(ν/νion)−3/2 (4.38)



4.3. ANALYTIC CONSIDERATIONS 109

For frequencies near the HeII threshold, the envelope can thus absorb and re-emit a fraction
of the source luminosity, L. As a simple estimate of the reprocessed luminosity, we assume
that a fraction e−τr of the source luminosity is absorbed and re-emitted as a blackbody at
an envelope temperature Tr. The specific luminosity of reprocessed light is then

Lν(ν) = e−τrL
Bν(Tr)∫∞

0
Bν(Tr)dν

. (4.39)

If observations are taken at a frequency νopt = 4000 Å that is on the Rayleigh-Jeans tail of
the blackbody (hνopt � kBTr), and when τr � 1 the observed luminosity is

νoptLν(νopt) = νoptτrL

[
2πν2

optkB

c2σsbT 3
r

]
(4.40)

≈ 1.1× 1043 L
−1/16
45 M

7/16
e,0.5 ri,14r

−1/4
o,15 ergs s−1. (4.41)

The normalization in the second expression depends on the assumed temperature Tr of the
reprocessed radiation; the value in Equation 4.41 assumes is emitted a radius of 5rin where
Tr ≈ Ts/3.

Though approximate, our analytic treatment provides insight into how reprocessing takes
place in highly ionized TDE envelopes. The reprocessed optical luminosity increases with
Menv, though sub-linearly. Having more mass in the envelope increases the effective absorp-
tive optical depth, but there is also a counteracting effect; a higher Menv produces higher
envelope and source temperatures, which increases the ionization state and shifts the repro-
cessed emission to shorter wavelengths.

In the highly ionized regime, the reprocessed optical luminosity depends very weakly
on the source luminosity. This is because a higher L leads to higher ionization state, and
hence a lower HeII effective optical depth; although the input radiation is brighter, a smaller
fraction of it is absorbed and reprocessed. This behavior, however, only holds in the limit
that a small fraction of the source x-rays are absorbed. When L . Lion, HeIII will recombine
and a HeII ionization front will develop in the envelope. In this case, nearly all of the source
photons with energies & 54.4 eV are absorbed. The reprocessing becomes highly efficient
and the optical luminosity will more closely track the input luminosity, in contrast to the
weak dependence found in Equation (4.41).

The scalings in Equation (4.41) also do not reflect the likely correlation between the pa-
rameters. For example, both the envelope mass and bolometric luminosity may be decreasing
at the light curve peak. In this situation, the bolometric luminosity and the reprocessed lu-
minosity will track each other more closely than what Equation (4.41) predicts when L is
varied on its own.

4.3.5 Optical Line and Continuum Formation

The soft x-rays absorbed by photoionization in the envelope can be re-emitted at longer
wavelengths. In an optically thin medium (e.g., an HII region) absorbed photons are pri-
marily re-emitted in lines. In TDE envelopes, in contrast, the medium can be effectively
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optically thick in the continuum, and radiation will be reprocessed into both continuum and
lines.

Figure 4.3 shows an example of the relevant opacities for TDE envelopes at optical wave-
lengths from a numerical calculation to be discussed in Section 4.4. The primary continuum
opacity is free-free (bremsstrahlung), with some contribution from bound-free absorption
from excited states of hydrogen and helium. The free-free absorption coefficient in the
Rayleigh-Jeans limit (hν � kBT ) is

αff ≈ 2× 10−2n neT
−3/2gffν

−2 (4.42)

where the free-free Gaunt factor, gff , is of order unity. This can be compared to the electron
scattering absorption coefficient αes = neσt to give the absorption ratio εff = αff/(αff +αes) ≈
αff/αes of

εff ≈ 10−3L
−3/8
45 M

5/8
e,0.5r

−7/8
i,14 r

−5/8
o,15

[
ν

νopt

]−2

(4.43)

which has only a weak dependence on radius. The radial optical depth to free-free is τff =
εffτes < 1. However, the multiple electron scattering enhances the effective optical depth
of free-free absorption. The continuum emission originates roughly from the thermalization
depth to free-free absorption at an electron scattering optical depth of τtherm = 1/

√
ε ≈ 30.

The opacity of some optical lines may also be effectively optically thick. The absorption
coefficient for a bound-bound transition between and lower and upper level with number
densities nl and nu is

αbb =

(
πe2

mec

)
nlfoscφν(ν)

[
1− glnu

gunl

]
(4.44)

where fosc is the oscillator strength and φν the line profile function. The term in brackets is
the correction for stimulated emission where gl and gu are the statistical weights. To estimate
the extinction at the line center frequency, ν0, we approximate φ(ν0) ≈ 1/∆ν, where for a
line Doppler broadened by a velocity v the line width ∆ν = ν0(v/c). When the radiation
field takes the form of a diluted blackbody (Equation 4.30), the relative level populations
will approximate their LTE values, e.g., nu/nl ≈ (gu/gl)e

−∆El/kTs . In the limit hν0 � kTs,
Equation 4.44 then becomes

αbb,0 ≈
(
πe2

mec

)
nlfosc

[ c
v

] h

kBTs

. (4.45)

The ratio εbb = αbb/αes is then

εbb ≈ 0.06
nl

10−10nin

foscv
−1
9 T−1

s,5 (4.46)

where v9 = v/109 cm s−1 and the density nl is scaled by the expected ionization fraction
of Equation 4.34. The Hα line emission thus originates from a region of electron scattering
depth of τtherm = 1/

√
ε ≈ 6. Due to the lower abundance of helium, AHe ≈ 0.1, the optical
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Figure 4.3 : The ratio of various absorptive opacities at optical wavelengths to that of electron
scattering, computed near the outer edge of a TDE envelope. The values are from the non-LTE
radiation transport calculations of Section 4.4 with Menv = 0.5M�, rin = 1014 cm, rout = 1015 cm,
and L = 1045 ergs s−1. Free-free is the dominant continuum opacity at wavelengths longer than the
Balmer break. Hydrogen Balmer series lines provide the highest opacities of all, with Hα being the
most opaque. Oxygen lines provide negligible opacity.
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depth of the HeII λ4686 line (all other things being roughly equal) should be smaller than Hα
by a factor ∼ 10, suggesting a larger thermalization depth τtherm ≈ 20. The values roughly
agree with the numerical results of Figure 4.3.

These arguments motivate the physical picture illustrated in the schematic of Figure 4.1.
In this quasi-static picture, spectrum formation resembles that of a stellar atmosphere, with
the emission at different wavelengths originating from the source function at different ther-
malization depths. Soft x-rays are generated in the interior (at our inner boundary). The
optical continuum forms further out, while the effective photospheres of strong lines of hy-
drogen and helium lie even nearer the surface. All of the observed emission is generated
below the electron scattering photosphere.

4.4 Numerical Results
In this section, we present synthetic non-LTE spectra for TDE envelopes, discussing the

physics of optical line and continuum formation and the dependence on envelope parameters.
Details of the numerical method and radiative processes treated are given in the appendix.
In all models, a luminosity L is emitted as a blackbody of temperature Ts at the absorbing
inner boundary rin, and transported through the spherical envelope of mass Menv with a
density structure ρ(r) ∝ r−2 extending from radii rin to rout. In order to avoid an artificially
abrupt truncation of the envelope, we allow the envelope extend beyond rout following an
r−10 density profile (we find that our results are not highly sensitive to the exact value of this
power-law). We include opacities from hydrogen, helium, and oxygen, in solar abundances.

For the bound-bound transitions, we assume a Gaussian line profile with a Doppler
velocity of 104 km s−1. This velocity, which is motivated by the width of line features
observed in TDE candidate spectra (e.g., Gezari et al. 2012; Arcavi et al. 2014), is much
higher than the ion sound speed, but comparable to the virial velocity in TDE envelopes.
Our setup thus resembles a quasi-static envelope with disordered velocities due to, e.g.,
turbulence or irregular motion driven by fallback streams, as seen in numerical simulations
(Ramirez-Ruiz & Rosswog 2009; Guillochon et al. 2014). In envelopes with ordered bulk
velocity due to, e.g., outflow or rotation, the line formation may differ from that discussed
here. Future calculations will consider more general velocity structures, and include a more
complete metal composition.

4.4.1 Spectral Energy Distributions

Figure 4.4 shows computed spectral energy distributions (SEDs) for two models with
Menv = 0.25 M� and L = 1045 ergs s−1 (≈ LEdd of a 107 M� BH) but with two different
values of the inner boundary radius. The dashed curves show the unprocessed blackbody
spectrum from the inner boundary. We find that reprocessing of the source light by the TDE
envelope enhances the optical luminosity by several orders of magnitude. The presence of the
extended envelope is clearly required to approach the optical luminosity of ∼ 1043 ergs s−1
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observed in TDE candidates.
As suggested by our analytic estimates (Equation 4.38) for the chosen values of L and

Menv, most of the soft s-ray source emission is able to propagate through the envelope without
being absorbed. Those photons that are absorbed are mostly used to photoionize HeII at
wavelengths near 220 Å. For the rin = 5× 1013 cm model, oxygen absorption at the shortest
wavelengths also plays a role. The radiation absorbed by photoionization (though small) is
re-emitted over a wide range of longer wavelengths and significantly enhances the optical
flux. The simultaneous emission of both soft x-rays and optical light with an SED that does
not follow a single blackbody bears a qualitative resemblance to PTF10iya, ASASSN-14li,
and ASASSN-15oi (Cenko et al. 2012a; Holoien et al. 2016b; Miller et al. 2015; Cenko et al.
2016; Holoien et al. 2016a).

The reprocessed optical continuum in Figure 4.4 is relatively insensitive to the chosen
inner radius, and follows a power law that superficially resembles the Rayleigh-Jeans tail of
a blackbody. However, the emission is not that of a single blackbody; the thermalization
depth varies with wavelength, and the continuum is the superposition of thermal emission
from different temperature blackbodies at different radii. Due to this effect, the slope of our
model continuum, Lλ ∝ λ−3, is somewhat shallower than that of a true Rayleigh Jeans tail,
Lλ ∝ λ−4.

Given the non-blackbody nature of the emergent spectrum, the turn-over that one begins
to see at bluer wavelengths cannot necessarily be extrapolated with a Planck function. This
suggests caution when inferring a bolometric luminosity by fitting a single blackbody tem-
perature to the optical continuum. In both models of Figure 4.4, the bolometric luminosity
is 1045 erg s−1, much larger than one might estimate based on fitting a single blackbody to
the optical/UV data.

Figure 4.5 shows how the model SEDs depend on the envelope mass,Menv. For this figure,
rin = 1014 cm and for clarity we held the temperature of the inner boundary emission fixed at
3.29×105 K (unlike the rest of the models we present in this work, we did not set Ts equal to
T (rin) as given by Equation 4.18). As expected from our analytic arguments (Equation 4.41)
the optical luminosity increases with Menv due to the greater degree reprocessing by higher
mass envelopes. For the smallest envelope mass (Menv = 0.02 M�) essentially none of the
source luminosity is reprocessed, despite the fact that the gas is optically thick to electron
scattering (τes ≈ 20). The emphasizes that in scattering dominated TDE envelopes, an
optical depth � 1 is required to thermalize and reprocess x-rays to optical wavelengths.

Figure 4.6 shows how the model SEDs depend on the source luminosity, L. Interestingly,
the optical continuum luminosity remains largely unchanged even as L is varied by a factor
of ∼ 10 (again, holding the mass and size of the envelope fixed). This is consistent with
the weak L dependence found in our analytic arguments (Equation 4.41) and reflects a self-
regulating effect in the radiation transport. Higher L leads to a higher ionization state and
higher envelope temperatures, which reduces the fraction of x-ray emission that is reprocessed
to longer wavelengths.

A dramatic change in the spectra of Figure 4.6 is seen when the source luminosity is
reduced to 2.5 × 1044 ergs s−1. This is due to the formation of a HeII recombination front
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Figure 4.4 : Model spectra for two calculations with different inner boundary conditions. The two
dashed curves represent the input radiation fields at the inner boundaries, with temperatures set
by Equation (4.18). In both cases, a fraction of the intrinsic spectrum is absorbed and re-radiated
at UV and optical wavelengths; the colored curves show the SED of the radiation that escapes. In
both calculations, Menv = 0.25 M�, rout = 5 × 1014 cm (not including the ρ ∝ r−10 density tail),
and L = 1045 ergs s−1. Changing rin shifts the peak of the escaping x-ray emission, but leads to
only small changes in the optical emission.
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Figure 4.5 : Model spectra for calculations with varying mass in the reprocessing envelope. In all
models, L = 1045 ergs s−1, rin = 1014 cm, rout = 5×1014 cm (not including the ρ ∝ r−10 density tail,
which contributes negligible mass), and the inner boundary temperature is held fixed at 3.29× 105

K. Varying Menv changes the amount of reprocessed optical emission in a manner similar to the
prediction from Equation (4.41). Such behavior could represent the time-dependent depletion of
the envelope depletion after peak light. This variation leaves the shape of the optical continuum
mostly unchanged, at least until Menv drops so low that barely any radiation is reprocessed.
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Figure 4.6 : Model spectra for calculations with varying bolometric luminosity. In all models,
Menv = 0.25M�, rin = 1014 cm and rout = 5 × 1014 cm (not including the ρ ∝ r−10 density tail).
Varying the bolometric luminosity alone has only a minor effect on the emitted optical flux, as
predicted in Equation (4.41). The pattern changes when the luminosity drops low enough that a
helium recombination front begins to form at L . 3× 1044 ergs s−1.
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that absorbs essentially all radiation at wavelengths below the photoionization threshold
(. 220 Å). This transition occurs roughly near the critical luminosity estimated by Strom-
gren arguments in Equation (4.25). For these lower luminosities, nearly all of the radiation
emerges at UV/optical wavelengths, with essentially no flux escaping in x-ray bands. In this
regime, the UV/optical luminosity will track the source luminosity, in contrast to the weak
L dependence found in the fully-ionized regime.

4.4.2 Spectral Line Features

The spectra of Figures 4.4–4.6 show a number of line features superimposed on the
continuum. In the soft x-ray/UV bands, the strongest lines are those of the He II Lyman
series at wavelengths between 200 and 400 Å. Other UV lines from highly ionized species
might appear if more metals had been included in our calculations. In the optical bands,
lines of hydrogen (the Balmer series) and HeII (the 4686 Å and 3203 Å lines) may be visible.
We find that the line corresponding to the n = 7 to n = 4 transition in He II with wavelength
5412 Å (a Pickering series line, analogous to Brackett γ in H) appears for some of our models.
Finally, we note that the He II Pickering line at 6560 Å has a small contribution to emission
and opacity near Hα , as pointed out in Gaskell & Rojas Lobos (2014).

The relative strength of the optical hydrogen and helium lines has generated particular
interest in the literature, as this bears on the gas composition and hence the nature of the
disrupted star. Figure 4.7 shows the optical spectra for three models with L = 1045 ergs s−1,
Menv = 0.25 M�, but different values for the outer radius of the envelope, rout. In all
cases, the emission in the HeII λ4686 line exceeds that of Hα, despite the gas having solar
composition. As rout is decreased, the Hα emission decreases with respect to the continuum.
The line ratios can be seen more clearly in Figure 4.8, in which we have subtracted off a
power-law to approximate the underlying continuum. The hydrogen-to-helium line ratios
are roughly 3:1 and 5:1 for rout of 2 × 1015 and 1 × 1015, respectively. For rout = 5 × 1014,
the Hα feature has transitioned into a shallow absorption.

Our calculations thus lend further support to the interpretation that the absence of
a conspicuous Hα feature – as observed in PS1-10jh and PTF-09ge – is consistent with
the disruption of a main-sequence star of solar composition, as suggested by Guillochon
et al. (2014). In general, TDE envelopes can produce a range of Hα equivalent widths and
hydrogen-to-helium line ratios, depending on the gas configuration and bolometric luminos-
ity. Such a variation might help to explain the diversity of hydrogen-to-helium line ratios
seen in observed TDE candidates (Arcavi et al. 2014).

For lower luminosities (L < Lion) recombination fronts of helium, and eventually hydrogen
form in the envelope. The recombination fronts are generally accompanied by an increase
in the strength of spectral features (see Figure 4.6), including lines of hydrogen, helium,
and oxygen. A more featureless spectrum is more easily obtained when the ionization is
high, which for lower luminosities (L . 1044 ergs s−1) may require a correspondingly smaller
envelope mass or a larger outer radius.
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Figure 4.7 : Optical spectra for three calculations with varying outer radii for the reprocessing
envelope. All models have Menv = 0.25 M�, rin = 1014 cm, and L = 1045 ergs s−1. The flux units
have been rescaled so that the continua of all three calculations overlap at 6000 . Two emission
lines of HeII are visible at 3203 Å and 4686 Å. The Hα equivalent width decreases as the envelope
is made more compact. All calculations used 1600 logarithmically spaced wavelength bins between
10 and 105 . In order to suppress the Monte Carlo noise, we have smoothed the data here to an
effective resolution of 400 bins. N.B., the indicated outer radius does not include the ρ ∝ r−10 tail.
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Figure 4.8 : Continuum-subtracted spectra for the same three calculations shown in Figure 4.7.
We have subtracted off a power-law continuum to facilitate comparison of the line strengths. The
helium-to-hydrogen line ratio is approximately 3:1 for the calculation with rout = 2× 1015 cm, and
is 5:1 for the calculation with rout = 1× 1015 cm. For the calculation with rout = 5× 1014 cm, Hα
has transitioned to a shallow absorption feature. The vertical black lines at the bottom of the plot
indicate the line-center wavelengths of the three labeled spectral features.
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4.4.3 Understanding the Line Ratios

The low Hα to HeII line emission found in our models differs from previous photoion-
ization studies using the CLOUDY code (Strubbe & Murray 2015; Gaskell & Rojas Lobos
2014). This is due to our inclusion of optically thick radiation transport effects. The previ-
ous CLOUDY calculations assumed that all line photons produced within some photoionized
volume escape to be observed. In a realistic TDE envelope, however, emitted line photons
random walk through multiple electron scatters and are subject to re-absorption either in
the line itself, or by continuum processes.

As we have noted earlier, an observer will primarily see radiation at a given wavelength
emitted from the volume where the electron scattering optical depth (integrated from the
outside in) is less than the thermalization depth τtherm = 1/

√
ε for that wavelength. Since

this is only an estimate, there is some flexibility in the definition of τtherm, especially because
ε varies with radius, along with the wavelength variation displayed in Figure 4.3. Once we
have a thermalization depth, we can estimate the observed specific luminosity at any given
wavelength by integrating the emissivity, jλ, outside of the thermalization depth:

Lλ ≈
∫ ∞
rtherm

4πjλ(4πr
2)dr. (4.47)

The emissivity in Equation (4.47) is a sum over both line and continuum processes, but not
electron scattering.

Note that photons absorbed in a line have some probability of either being line-scattered
(re-emitted in the same bound-bound transition), or destroyed via multiple mechanisms
(e.g. the atom de-exciting through a different line transition, being collisionally de-excited,
being photoionized, or being radiatively excited to another bound electron level). The line
contribution to the emissivity jλ in Equation (4.47) accounts for all of these possibilities;
it depends on the level populations of the bound electrons, which is in turn governed by
balancing the transition rates between all bound levels and the continuum (see Appendix).

Figure 4.9 applies this estimate of Lλ to the calculation corresponding to the red curve
in Figure 4.8 (with rout = 5× 1014 cm). We plot the integrated emissivity (Equation (4.47))
at the wavelengths corresponding to Hα and He II λ4686.

For each wavelength, we have separated the contributions from continuuum processes
(the solid curves) and from lines (the dashed curves). We have indicated the approximate
location of the thermalization depth, including contributions from both line and continuum
opacity, with vertical dash-dotted lines. Meanwhile, thermalization depths that account for
only continuum opacities are indicated with solid vertical lines. To compute the thermaliza-
tion depths, we have evaluated ε at rout, in this case 5 × 1014 cm. By summing the contri-
butions of the integrated emissivity for both the lines and the continuum processes at the
thermalization depth, we obtain an estimate for the luminosity observed at each wavelength.
These estimates are represented by the points plotted on top of the dash-dotted vertical
lines. For reference, we have also estimated the emission from the continuum alone at these
wavelengths by evaluating the integrated continuum-only emissivity at the continuum-only
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Figure 4.9 : Volume-integrated emissivity as a function of optical depth. The integrated emissivity
is that expressed in equation (4.47). The vertical lines represent the approximate thermalization
depths at the indicated wavelength, either accounting for both line and continuum opacities (the
dash-dotted vertical lines), or only the continuum opacities (the solid vertical lines). The plotted
points represent the emission as estimated by the integrated emissivity down to the the thermal-
ization depth, either accounting for emission from both line and continuum processes (the points
on top of the dash-dotted vertical lines), or from the continuum alone (the points on top of the
solid vertical lines). The line-plus-continuum emission at the Hα wavelength lies very close to the
emission from the continuum on its own. In contrast, the line-plus-continuum emission at 4686 lies
above the emission from the continuum on its own at that wavelength.
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thermalization depth. These reference luminosities are plotted as points on top of the solid
vertical lines.

As suggested by our analytic arguments (Section 4.3), the thermalization depth at the Hα
wavelength (the red dash-dotted vertical line) lies within several electron scattering mean free
paths from the Thomson photosphere, while HeII λ4686 has a thermalization depth several
times deeper (the purple dash-dotted line). The thermalization depths of the continuum
alone at optical wavelengths are deeper still (the solid vertical lines). Even though the Hα
emissivity is greater at each radius than the emissivity in the HeII line, the self-absorption
of line photons reduces the effective emitting volume. The end result is that the total
emission at the Hα wavelength lies very close to the emission from the continuum alone at
that wavelength. In contrast, the total emission at 4686 lies above the emission from the
continuum alone at that wavelength.

The method described above provides insight into the relative strengths of the line and
continuum emission at each wavelength, once the envelope ionization state and bound elec-
tron level populations are known. More accurate values for the emission are provided directly
from the Monte Carlo radiative transfer, which is why the estimates for the emission in Fig-
ure 4.9 differ slightly from what is shown in Figure 4.8.

Figure 4.9 makes it clear that the emergent Hα feature is sensitive to the particular
model parameters, which set the exact location of rtherm and the line emissivity above it. For
different envelope configurations, the Hα line will therefore show different levels of emission,
as we found in our synthetic spectra (Figure 4.7). For TDEs from massive BHs and near
peak brightness, however, we typically expect a situation similar to that of Figure 4.9, where
the Hα emission is suppressed relative to that of HeII.

4.5 Implications for Observations and Models of TDEs
In many ways, our synthetic spectra resemble those of observed TDE candidates, such as

PS1-10jh, near maximum light. In particular, the spectrum is largely featureless and blue,
with two emission lines of HeII and a weak or absent Hα feature. In detail, however, some
discrepancies are apparent. Our model continua slopes are somewhat shallower, Lλ ∝ λ−3,
than the Rayleigh-Jeans tail, Lλ ∝ λ−4, seen in PS1-10jh (Gezari et al. 2012). Nevertheless,
our slope is consistent with HST UV data for ASASSN-14li (Cenko et al. 2016), as well as
the spectral indices measured in TDE1/TDE2 (van Velzen et al. 2011), in the absence of
strong dust extinction.

Our optical luminosity for a massive envelope (Menv = 0.5M�) tops out at≈ 1043 ergs s−1,
which is a factor of ≈ 2 less than some observed TDEs. This may in part be due to our
incomplete inclusion of metals, which may result in an underestimate of the net reprocessing
efficiency. The efficiency could also be enhanced if the gas is confined to e.g., a shell or disk,
which would increase the density. The radiation from an aspherical envelope will also be
anisotropic, with the observed luminosity brighter from viewing angles that maximize the
projected surface area.
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Observations of ASASSN-14li showed simultaneous x-ray, UV, and optical emission (Holoien
et al. 2016b; Miller et al. 2015; Cenko et al. 2016). The SED cannot be fit by a single black-
body, but appears consistent with the superposition of different temperature blackbodies
for the x-rays and optical/UV. Such an SED resembles our highly ionized reprocessing en-
velopes (e.g., Figure 4.4) for which thermal x-rays characteristic of the hot inner accretion
regions are only partially reprocessed to optical radiation characteristic of the lower envelope
temperatures, resulting in a multi-blackbody SED.

Our calculations have focused on radiation transport in generic TDE envelopes, remaining
largely agnostic about the origin of the envelope. The mechanism for forming an extended
gas distribution is unclear, and several classes of explanations have been suggested. The
insights from our radiative transfer studies can be applied (within limit) to illuminate the
possible observable properties of various scenarios.

4.5.1 Quasi-static Envelopes

Loeb & Ulmer (1997) predicted that TDEs could form an optically thick, roughly spher-
ical, radiation pressure supported envelope with radius rout ∼ 1015 cm. The stability of
such an envelope depends on the luminosity being regulated to be near LEdd (Ulmer et al.
1998). Analytic studies by Coughlin & Begelman (2014) suggest that even if the accretion
rate is super-Eddington, the flow can equilibrate in a quasi-stable configuration by allowing
energy to escape in a narrowly confined jet. The earliest three-dimensional hydrodynamic
simulations of TDEs that followed the event past the initial disruption and into the accre-
tion phase, such as Ayal et al. (2000) and Bogdanović et al. (2004), provided some evidence
for the build-up of material at large radii that could reprocess accretion luminosity. More
recent calculations such as Guillochon et al. (2014) (see also Ramirez-Ruiz & Rosswog 2009;
Rosswog et al. 2009) show the development of an extended gas distribution around the even-
tual accretion disk, which is produced as shock-heated material is lifted above and below
the original orbital plane of the disrupted star’s orbit; (such calculations, however, have not
followed the longer term radiative evolution of this debris).

Our model calculations provide a fair representation of the radiative transfer in such
quasi-static envelopes, and suggest that such a scenario (with a solar composition envelope
of mass Menv ≈ 0.1 − 0.5 M�) can likely reproduce the maximum light spectra of observed
optical TDEs like PS1-10jh. More specific model calculations are warranted; the power law
exponent of the envelope density structure may differ from our choice ρ ∝ r−2 (for a static
radiation pressure-supported envelope, ρ ∝ r−3 as in Loeb & Ulmer (1997)) and the velocity
dispersion may be due in part to rotational or circulatory motion, not the random motion
adopted in our calculations.

The properties of a quasi-static envelope can be expected to vary over time. Initially, over
the timescale for the most-bound debris to fall back to the BH (tfb ≈ 25[MBH/107 M�]1/2 days
for the disruption of a solar mass star), the envelope mass may increase. For highly-ionized
envelopes, a larger Menv leads to more efficient reprocessing (see Figure 4.5). The initial rise
of the optical TDE light curves could therefore reflect the gradual accumulation of mass in an
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envelope. The decline of the light curve with roughly constant color could likewise reflect the
draining of the envelope. Such an evolution is hinted at by observations of PS1-10jh, which
appears to have a photosphere that first grows and later recedes (Strubbe & Murray 2015).
The weak dependence of the reprocessed luminosity on the source luminosity, when the mass
and extent of the envelope are held fixed, suggests that the peak luminosity of TDEs with
Mbh & 106 may be regulated to be near a few times 1043 ergs s−1, with a stronger dependence
on the envelope mass than the BH mass.

If, after being assembled, the mass of the envelope remains roughly fixed, then at some
time after maximum light the source luminosity should decline to L < Lion where recombi-
nation fronts form. The source luminosity would then be nearly completely absorbed and
reprocessed, and the optical luminosity may track the accretion rate, as perhaps suggested
by the observed t−5/3 decline in the optical light curves. Little soft x-ray emission would be
expected at these later times unless deviations from spherical symmetry allows for channels
for x-rays to escape, or the envelope mass is at some point depleted.

4.5.2 Outflows

A different mechanism for generating an extended gas distribution is through outflows.
Super-Eddington accretion onto the BH is likely to unbind some fraction of the infalling
debris (Strubbe & Quataert 2009; Lodato & Rossi 2011; Vinkó et al. 2015; Metzger & Stone
2015). Miller (2015), drawing on work by Laor & Davis (2014), suggest that line-driven
winds analogous to those launched from the atmospheres of massive stars might also be
responsible for launching outflows. For a wind launched near the tidal disruption radius, the
expected escape velocities are ∼ 105 km s−1, which is much greater than that observed in
the line widths of observed TDE spectra. However, if debris circularizes at radii much larger
than Rtd, or if the winds are mass loaded, the expansion velocities may be lower.

Strubbe & Quataert (2009) argued that accretion may continuously generate an optically
thick outflow, which would advect the energy dissipated at the accretion disk to larger radii.
That advection may circumvent some of the complexities of absorption and reprocessing
that we have studied here. Photons trapped in an outflow will be adiabatically degraded,
which provides a robust mechanism for shifting the spectral energy distribution to longer
wavelengths. The photons finally decouple from the flow at a trapping radius set by τ ∼ c/v.
This scenario most closely resembles the calculations presented here only if the advection
velocity is relatively low (v ≈ 1000 km s−1), in which case the trapping radius coincides
with the inner boundary used in our calculations (τ ≈ 300). Based on analysis of the data
of PS1-10jh, Strubbe & Murray (2015) suggest an outflow that does move at such a low
velocity. However, their suggested outflow mass of 0.02 M� is likely too low to efficiently
reprocess the source radiation, as shown in Figure 4.5.

Metzger & Stone (2015) present a modified outflow picture in which a large fraction of the
inflowing tidal debris is promptly unbound, forming a quasi-spherical outflow with expansion
velocities ≈ 104 km s−1. Radiation from the accretion disk of the BH is then absorbed and
reprocessed by the outflow. At times near the peak of the optical TDE light curve (∼
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weeks) that outflow will have reached radii rout ≈ 1015 cm and the diffusion time is of order
the expansion time. Our models provide a fair representation of such density distributions,
although we do not include a radial velocity gradient. Nonetheless, the indications are that
such a scenario can likely reproduce the near maximum light spectra of observed TDEs.

In contrast to the quasi-static or steady wind models, the optical depth of a prompt
outflow necessarily decreases with time, given that rout ∝ t. At some point, the envelope
should become inefficient at reprocessing, at which time soft x-rays will escape and the
optical light curve may no longer track the accretion rate. Since the critical luminosity
(Equation 4.25) decreases more steeply (Lion ∝ t−2) than the expected accretion luminosity
(L ∝ t−5/3), the condition L > Lion is expected to occur at some late time. Metzger & Stone
(2015) have discussed this possible “ionization break-out” and estimated its properties.

4.5.3 Circularization at Large Radius

Recent numerical work has suggested that the optical emission might arise from dissipa-
tion in material in the process of circularizing at large radii. Shiokawa et al. (2015) performed
general relativistic (GR) hydrodynamics simulations and found that shocks located at the
apoapse of orbits of returning material lead to build-up of material with enough angular
momentum to support wide orbits, with a semi-major axis corresponding to that of the most
bound debris from the initial disruption, several times 1014 cm. This is at least an order of
magnitude larger than the periapse of the initial stellar orbit, where most earlier work had
suggested that circularization should occur. Similar but less pronounced effects were found
in the smoothed particle hydrodynamics simulations including leading-order GR effects per-
formed by Bonnerot et al. (2016) and Hayasaki et al. (2015), and the grid-based Newtonian
gravity calculation of Guillochon et al. (2014). Emission from the circularizing gas at these
large radii has been suggested to give rise to the observed optical emission (Piran et al.
2015).

If the gas distribution formed from such circularization processes (or perhaps their as-
sociated outflows) extends from ∼ 1014 − 1015 cm, the situation resembles the numerical
calculations presented here. Given that the gas is highly scattering dominated, a relatively
high optical depth τes & 40 in that material is required to thermalize the radiation in the
circularization region. Assuming the optical depth is at least that high, we find that it makes
little difference to the optical spectra whether the luminosity is generated at a circulariza-
tion radius of ∼ 1014 cm or nearer the BH at ∼ 1013 cm (see Figure 4.4). Indeed, much
more energy is expected to be liberated as material accretes onto the BH than from the
circularization process itself, although mechanisms for hiding the accretion energy have been
suggested (Piran et al. 2015; Svirski et al. 2015).

Simultaneous x-ray and optical observations for events such as PTF10iya, ASASSN-14li,
and ASASSN-15oi (Cenko et al. 2012a; Holoien et al. 2016b; Miller et al. 2015; Holoien et al.
2016a) provide some hope at distinguishing the source of the luminosity, since for highly
ionized envelopes the x-ray spectrum will be largely preserved as it propagates through the
scattering dominated envelope. The peak of the x-ray flux then reflects the temperature at
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the depth at which it was produced (see Figure 4.4).

4.6 Conclusions

4.6.1 Summary of Key Results

This paper has presented analytic estimates and detailed radiative transfer calculations
that clarify how the spectra of TDEs can be generated within an extended envelope. We
have focused our attention on TDEs around the optical light curve peak, with bolometric
luminosities in the range 1044 − 1045 ergs s−1 (corresponding to the Eddington luminosity
of 106 − 107M� BHs). We accounted for non-LTE effects and the high electron scattering
optical depth of the reprocessing material, which we show are crucial for understanding both
the thermalization of the optical continuum and the emission line ratios.

We identified two regimes of reprocessing, depending on the envelope ionization state.
When the envelope is highly ionized (L > Lion), we find that the intrinsic x-ray emission
from the accretion disk is only partially absorbed, giving rise to an SED that peaks in the
soft x-ray but is accompanied by an enhanced optical emission component (& 1043 ergs s−1

at wavelengths longer than 1000 Å). In addition to providing an optical flux at a sufficient
brightness to match observations, this can explain TDEs observed simultaneously in the
optical and x-ray, such as PTF10iya, ASASSN-14li, and ASASSN-15oi.

If the bolometric luminosity declines rapidly enough compared to the mass of the enve-
lope, a critical value can be reached (L < Lion) for which a helium recombination front forms
and the soft x-rays are completely absorbed. This second regime resembles TDEs that have
been observed at optical wavelengths without a coincident x-ray signal, such as PS1-10jh and
ASASSN-14ae. In this regime, the reprocessing is completely efficient and the optical/UV
should closely track the accretion luminosity.

In general, the x-ray through optical SED is not well described by a single blackbody,
but is a blend of emission from a variety of depths and temperatures. For this reason, one
must be cautious if attempting to fit a single blackbody temperature to optical data. One
is likely to underestimate the bolometric luminosity in this way, as the SED can peak at
shorter wavelengths than would be inferred from the optical data.

The light curve evolution of TDEs will depend on how the source luminosity, envelope
mass, and envelope radius change with time. When the envelope is highly ionized (L > Lion),
the optical luminosity depends more on the envelope mass than the source luminosity. This
is because increasing L leads to higher envelope ionization, which reduces the efficiency
with which x-rays are reprocessed to the optical. It is thus possible that the rise and fall
of TDE light curves reflects in large part the growth and subsequent depletion of mass in
the reprocessing envelope. As the mass of the envelope decreases, so does the reprocessing
efficiency and the optical flux, but the shape of the continuum remains mostly unchanged.
This points to an explanation for the near-constant color of the optical continuum.

We have demonstrated that the strength of line features in TDEs depends on optically
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thick radiation transport effects that are not well captured by photoionization codes like
CLOUDY. Even in envelopes of solar composition, the Hα line may be highly suppressed
relative to HeII lines due to optical depth effects. By varying the configuration of material
in the reprocessing envelope, a variety of helium-to-hydrogen line ratios can be realized in
the optical spectrum. In particular, we have explored what happens as we vary the outer
radius of the envelope while keeping the total mass fixed, and have shown a transition of
Hα from emission to shallow absorption. Although the radial extent of the envelope is
a key parameter, other parameters also influence the line ratios, including the bolometric
luminosity and the mass of the envelope.

4.6.2 Outstanding Issues

While our studies have outlined many of the key physical processes at play in TDE
envelopes, several questions remain to be addressed. An obvious area for improvement is
relaxing the assumption of spherical symmetry. Variation in the density and temperature
structure of the envelope with polar angle could lead to important viewing-angle effects which
may be important for explaining why soft x-rays are visible in only a subset of observed TDEs.
The density and temperature profile of the envelope may also vary with viewing angle, which
may have implications for observables such as the slope of the optical continuum.

Another critical area needing further study is the kinematic structure of the envelope.
We have only crudely accounted for motions via a Doppler line-width set to a value of order
the virial velocity. In many scenarios, velocity gradients are due instead to bulk motions
– outflows or rotation – that may alter the formation of line features. Radiative transfer
studies of the detailed line profiles may illuminate the kinematics of the envelope. Radially
expanding outflows like supernovae, for example, generally produce P-Cygni type absorption
features, whereas the optical lines observed in TDEs are usually purely in emission, and
occasionally show substructure (Arcavi et al. 2014; Holoien et al. 2016b).

Our calculations have only directly tracked bound-bound and bound-free opacities from
hydrogen, helium, and oxygen. In reality, other metals likely increase the opacity, especially
in the x-ray and UV, and ionization edges and lines from these other metals are likely to
appear in the spectrum. Nevertheless, for the luminosities we studied, we found that the
optical continuum and optical helium-to-hydrogen line ratios do not seem to be greatly
influenced by the presence of oxygen, the most abundant metal.

Our assumed inner boundary condition of blackbody radiation emitted at rin deserves
further study. In reality, the source emission spectrum may be that from an accretion disk
smaller than rin. On the other hand, dense hot gas just below our inner boundary may have
a Compton y-parameter � 1, in which case Comptonization may indeed thermalize the
radiation to the gas temperature near the envelope base. Outside of our inner boundary, the
Compton y-parameter can be of order unity, and may have some effect on the spectrum. The
physics of Compton scattering will be directly included in our future Monte Carlo transport
calculations.

Future work will include a more detailed exploration of the parameters governing the
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spectrum, including the mass of the envelope, accretion disk luminosity, and gas density
gradient, as well as how these parameters evolve over time in different scenarios. Studies of
this sort, in comparison to improved observations of TDEs, will hopefully clarify the physics
governing these transients.
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4.A Numerical Method
To generate model spectra of TDE events, we carry out NLTE radiative transport calcu-

lations using the Monte Carlo radiative transfer code SEDONA (Kasen et al. 2006; Roth &
Kasen 2015). The calculation is divided into two steps. First, the multi-wavelength radiation
transport is calculated using Monte Carlo method which includes scattering, bound-bound,
bound-free, and free-free radiative processes. Second, the gas temperature and atomic level
populations are determined via a solution of the equations of statistical and thermal equi-
librium. Since the photon opacities and emissivities depend on the level populations and
temperature, these two steps are iterated (typically 20-60 times) until the envelope structure
and output spectra have converged.

For the transport problem, we assume a stationary envelope, which should be applicable
for TDE light curves near peak, when the diffusion time through the envelope is less than or
comparable to the peak time. We enforce radiative equilibrium, justified by the heating-time
arguments in Section 4.3, by “effectively scattering” photon packets during each interaction,
thereby ensuring energy conservation. At each interaction, the outgoing packet is reassigned
a wavelength, sampled from the NLTE emissivity distribution across all wavelengths, as in
Carciofi & Bjorkman (2006).
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To calculate the NLTE level populations, we use Monte Carlo estimators of the photoion-
ization rates and the bound-bound radiative rates. We assume statistical equilibrium and
solve the set of coupled linear equations such that the net transition rate for each electron
level is zero.

4.A.1 Setup and initial conditions

We divide our spherical grid into 512 zones, equally spaced in radius from zero to rout. In
order to avoid an artificially abrupt truncation of the envelope, we add roughly 100 zones that
follow an r−10 density profile beyond rout(we find that our results are not highly sensitive to
the exact value of this power-law). We initialized each zone with approximately 1000 photon
packets sampled from a blackbody wavelength distribution at the temperature in the zone
computed from Equation (4.17). During each iteration, we emit approximately 100 million
packets at the zone corresponding to our inner radius rin.

We impose an absorbing boundary condition at the inner radius — photons that scatter
back below that radius are removed from the calculation. Likewise, photons that escape at
the outer radius are tallied and removed from the calculation.

4.A.2 Radiative processes included

The radiative processes included in our calculation are electron scattering, free-free
(bremsstrahlung), bound-free (photoionization) and bound-bound (line) transitions. The
extinction coefficient for electron scattering is αes = neσt, while the free-free extinction
coefficient is given by

αffν =
4e6

3mhc

(
2π

3mkT

)1/2

Z2nenionν
−3
(
1− e−hν/kT

)
. (4.48)

By Kirchhoff’s law, the free-free emissivity is jff
ν = αff

νBν(T ).
The bound-bound extinction coefficient is given by Equation (4.44). The corresponding

emissivity is

jbbν =
hν

4π
n2Aulφ(ν) (4.49)

where Aul is the Einstein coefficient for spontaneous emission, and φ(ν) is the line profile.
For φ(ν), we assume a Gaussian profile with a width corresponding to Doppler velocity of
104 km s−1.

We include bound-free transitions from all excited atomic levels. For hydrogen and HeII,
we use the photoionization cross-section (Rybicki & Lightman 1986)

σion
ν =

nq,iσ0,H

Z2

(
hν

χi

)−3

(4.50)

where nq,i is the principal quantum number of the bound electron level labeled by index i,
σ0,H = 6.3× 10−18 cm2 and χi is the ionization potential to remove an electron from level i.
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For the ground state HeI, we use the photoionization cross-section fits of Verner et al. (1996).
For oxygen, we use the TOPbase photoionization cross-sections smoothed over resonances.
For atomic levels that do not have data, we use an approximate hydrogenic cross-section of
the form Equation (4.50), with Z corresponding to the net nuclear charge seen by the valence
electrons and nq,i the principal quantum number of the valence electron being ionized.

When computing the photoionization extinction coefficient, we include the non-LTE cor-
rection for stimulated radiative recombination, yielding (e.g. Mihalas 1978)

αion
ν = niσ

ion
ν

[
1− nen

+

ni
f(T ) exp

(
− hν

kBT

)]
,

f(T ) =

(
h2

2πmekBT

)3/2
g−

2g+
exp

(
χi
kBT

)
(4.51)

where ni is the number density of particles with bound electron in level i, n+ is the number
density for the ions in the ground state of the next highest ionization state, g− and g+ are
the statistical weights of the species being ionized and the ionized state, respectively, and T
is the temperature of the free electrons.

This opacity must be summed over all elements and all bound electron levels labeled by
the index i within each ionization state.

To derive radiative recombination cross-sections, σrec(ue), as a function of electron speed
ue, we use the Milne relations which relate σrec(ue) to the photoionization cross-sections.
The associated emissivity for bound-free recombination is (see Osterbrock & Ferland 2006).

jrecomb
ν =

n+ne
4π

uefuσ
rec(ue)hν

du

dν
,

ue =

√
2

me

(hν − χi) ,

fu =
4√
π

( me

2kT

)3/2

u2
e exp

(
−meu

2
e

2kT

)
. (4.52)

This emissivity must be summed over all elements and all bound electron levels to which the
free electron may recombine. We derive the temperature-dependent radiative recombination
coefficient for each atomic level by integrating σrec(ue) over the electron Maxwell-Boltzmann
distribution.
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Chapter 5

Prospects for Future work

This dissertation has presented the development of tools to study the feeding of SMBHs,
and some exciting results demonstrating the capabilities of these tools. This marks more of
a beginning than an end. The following sections describe plans for follow-up research.

5.1 Time-dependent calculations of TDE light-curves and
spectra

While the previous calculations presented in this dissertation considered the emission
from quasi-static TDE envelopes, many theories of TDEs predict significant time evolution
of the debris, as discussed in Chapter 4. By calculating synthetic light curves with time-
dependent transport, we can distinguish between these models. We may allow key parameters
to vary such as the accretion luminosity and the mass/size of the reprocessing envelope to
evolve together in accordance with analytic theories of outflows. We may then track the
outgoing spectra as a function of time to see how the x-ray, UV, and optical light-curves
evolve.

An outflowing or rotating envelope will have a bulk velocity gradient that will affect
spectral line features. In Roth et al. (2015), we assumed random motion. For the future
calculations, we will self-consistently compute the effect of velocity gradients on the line
transport (a capability which we have demonstrated in Roth & Kasen (2015). Therefore, in
addition to the SEDs, we will be able to generate spectra with realistic line profiles that can
be compared to observations to interpret the kinematics of the gas.

As an additional extension of previous work, we will include the effects of Compton
scattering into our calculations, which we expect to be important for shaping the x-ray
spectrum formed near the base of the envelope. We can then compare the improved models
for the x-ray spectrum with events such as ASASSN-14li (Miller et al. 2015).
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5.2 Multi-dimensional models of TDEs
The flexibility of the Monte Carlo transport allows us to consider models with arbitrary

geometries. Given the initial angular momentum of the disrupted star, we expect the distri-
bution of material in the envelope to have a higher density closer to the plane of disruption
than along the poles. Additionally, radiation pressure or jets might open a funnel in the po-
lar directions. Therefore, a natural step is to consider 2D (axisymmetric) gas distributions
where the density increases with polar angle. Such calculations would track the light-curves
in the x-ray, UV, and optical wavebands, but this time accounting for the viewing angle.
We expect that there will be strong orientation effects (e.g., x-rays may escape more readily
in the polar direction than along the dense equator). By calculating such dependences, we
will be able to better interpret observations, and statistically predict the fraction of TDEs
visible at each of the wavelengths of interest.

5.3 The Continuum Emission from Active Galactic Nu-
clei

One of the long standing puzzles regarding AGN has been the origin of the spectral peak
in the UV (the “big blue bump”), a feature that remains unexpectedly similar across such a
wide range of luminosities. Recently, observations from both micro-lensing and reverberation
mapping suggest a large size for the optically emitting material, hinting at the presence of
a reprocessing region similar to what we have studied for TDEs. Our calculations therefore
provide an opportunity to address one of the most persistent puzzles in AGN physics. To
do so, we will set up two-dimensional, idealized axisymmetric wind calculations, very much
like the axisymmetric TDE calculations described above. We may then study the interaction
between radiation from the center, the wind, and the disk, which will not only be emitting,
but also absorbing some of the reprocessed radiation.

The key parameters we will vary will be the mass loss rate of wind, the luminosity of the
central central source, and the opening angle of wind. The outputs will include temperature
profiles of the disk, which can be compared to the micro-lensing data. Additionally, we
will generate reprocessed SEDs, and determine whether this geometry provides a natural
explanation for the universality of the UV spectral energy peak in AGN.
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