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Abstract

External beam radiation treatment (EBRT) is a popular method for treating prostate cancer (CaP)

involving destroying tumor cells with ionizing radiation. Following EBRT, biochemical failure

has been linked with disease recurrence. However, there is a need for methods for evaluating early

treatment related changes to allow for an early intervention in case of incomplete disease response.

One method for looking at treatment evaluation is to detect changes in MRI markers on a voxel-

by-voxel basis following treatment. Changes in MRI markers may be correlated with disease

recurrence and complete or partial response. In order to facilitate voxel-by-voxel imaging related

treatment changes, and also to evaluate morphologic changes in the gland post treatment, the pre-

and post-radiated MRI must first be brought into spatial alignment via image registration.

However, EBRT induces changes in the prostate volume and distortion to the internal anatomy of

the prostate following radiation treatment. The internal substructures of the prostate, the central

gland (CG) and peripheral zone (PZ), may respond to radiation differently, and their resulting

shapes may change drastically. Biomechanical models of the prostate that have been previously

proposed tend to focus on how external forces affect the surface of the prostate (not the internals),

and assume that the prostate is a volume-preserving entity. In this work we present DoCD, a

biomechanical model for automatically registering pre-, post-EBRT MRI with the aim of

expressly modeling the (1) changes in volume, and (2) changes to the CG and PZ. DoCD was

applied to a cohort of 30 patients and achieved a root mean square error of 2.994 mm, which was

statistically significantly better a traditional biomechanical model which did not consider changes

to the internal anatomy of the prostate (mean of 5.071 mm).
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1. Background

Following a diagnosis of prostate cancer (CaP), several treatment options are available [1].

These include brachytherapy, focal ablation therapy, hormonal therapy, external beam

radiation therapy (EBRT), and radical prostatectomy [1]. EBRT involves irradiating the

affected anatomical region with ionizing radiation, in an effort to destroy CaP cells. During

treatment, the radiation disrupts the natural mitotic process in cells [2]. When apoptosis

naturally occurs, the tumor cells have not had a chance to divide as rapidly, and therefore get

eliminated naturally. Since tumor cells divide at a faster rate than benign cells [3], the

radiation implicitly affects tumor cells more than benign cells, and can be effective at

reducing the tumor volume. There is also significantly gland shrinkage following the

radiation treatment period due to the elimination of tumor cells, as well as atrophy which

can also occur to benign prostatic tissue [4].

Yet EBRT may not be effective at completely eradicating CaP, as there may be either

residual disease or local recurrence following EBRT [5]. To determine whether EBRT was

effective, Prostate Specific Antigen (PSA) concentrations (in ng/ml) are tracked post-EBRT.

PSA values are currently used to evaluate treatment efficacy [6], in which a rise in PSA

levels post-EBRT is deemed to constitute biochemical failure. Approximately one fourth of

EBRT patients undergo biochemical failure [7].

However, PSA cannot typically be used to evaluate early treatment response. Determining

early treatment response in the cases of residual or recurrent disease is necessary to allow for

an early image guided intervention which will allow for complete disease response. PSA is

usually measured at intervals of 3 to 6 months [7]. For favorable risk patients, the median

PSA doubling time (PSA-DT), a useful prognostic tool, is 18 months, and 8 months for

unfavorable risk patients [7]. In addition, a PSA-DT of less than 10 months is considered

rapid [8]. Consequently there appears to exist a need for a way of assessing very early

treatment changes to be able to modulate therapy if necessary via an image guided

intervention.

MRI has shown to be useful in the detection of recurrent disease post-EBRT and can

potentially be used to discern and quantify treatment efficacy [9, 10, 11, 12, 13, 14, 15].

Quantifying voxel-level changes within the tumor region on MRI can potentially be used to

quantify early treatment related changes [16]. Foltz et al. [16] studied the association

between changes in T2-w and apparent diffusion coefficient (ADC) MRI parameters

following EBRT. The tumor was manually identified on pre-EBRT MRI, and mapped onto

the post-EBRT MRI The changes in MRI parameter values 6 weeks following treatment

were statistically significantly correlated with PSA velocity values (ng/ml/year), suggesting

that early changes in voxel-by-voxel MRI imaging markers could be used to predict

biochemical treatment response [16].

To determine voxel level changes in imaging markers, one must first register, or spatially

align, the pre- and post-EBRT imagery. Registration will allow one to (1) accurately localize

the tumor region to study, so as not to confuse changes in tumor appearance with radiation

necrosis of benign tissue, (2) determine precise voxel-by-voxel changes in imaging markers,
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and (3) determine EBRT induced morphologic changes to the prostate. Yet registration of

EBRT MRI is not a trivial task, due to changes in MRI intensity values, atrophic shrinkage

resulting from radiation, and local morphologic changes occuring within the gland [4]

(Figure 1). While registration was performed manually in [16], manual registration is time-

consuming, may be prone to errors and inter-observer variability, and may be infeasible for

large-scale studies. This work aims to create a domain constrained deformable (DoCD)

biomechanical model to automatically register pre-, post-EBRT MRI in order to study early

treatment related changes. The EBRT induced shrinkage effects and changes to the internal

structures of the prostate are used create a domain-specific biomechanical model. This

model is then used to register pre-, post-EBRT MRI for (1) determining voxel-by-voxel

changes, and (2) quantify changes in gland morphology (not just volume) following

radiation.

The rest of the paper is organized as follows. In section 2 we discuss the motivation for our

approach. In section 3 we summarize the closest relate works in which biomechanical

models have been used either to model prostate deformations, or model radiation effects on

MRI. In section 4 we describe the DoCD methodology in detail. In Section 5 we describe

the data, experiments, and comparative strategies, the results of which are presented in

Section 6. In section 7 we offer concluding remarks and future directions.

2. Motivation and Overview of Approach

The prostate gland consists of internal structures including the peripheral zone (PZ), central

zone (CZ), and transition zone (TZ), where the latter 2 structures are jointly referred to as

the central gland (CG) [17]. CG tumors have been found to be significantly less aggressive

compared to PZ tumors [18] and the different zones can even have different tissue

compositions [19], suggesting that they may respond to EBRT differently. Following EBRT,

there can be a significant loss in visible zonal anatomy on MRI [20]. Our DoCD model aims

to explicitly exploit domain information by taking into account the different effects EBRT

may have on the shapes of the internal prostatic structures, rather than on the gland as a

whole.

In [16], outlines of the prostate, tumor, CG, and PZ were manually identified on both the

pre- and post-EBRT MRI. Subsequently, the regions so identified were manually brought

into alignment between the pre-, post-EBRT MRI. Our DoCD model aims to take advantage

of the boundaries of internal structures CG and PZ to develop a domain constrained

biomechanical model for automatically registering pre- and post-EBRT MRI. In this work

we employ a finite element model (FEM) as the choice of biomechanical model. The FEM

is a biomechanical model which uses physical properties such as elasticity and

compressibility to deform one or more objects, in our case the CG and PZ.

Our DoCD FEM based biomechanical model is driven by physical properties of the organ,

specifically Young’s modulus and Poisson’s ratio. Young’s modulus defines the hardness of

the tissue, and defines the degree to which a force applied to the prostate will deform the

tissue. Brock et al. [21] used a Young’s modulus of 21 kPa for the prostate, and Chi et al.

[22] claimed that normal prostate tissue has a Young’s modulus of 40–80 kPa, benign
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hypertrophic prostate tissue has a value of 30–50 kPa, and cancerous prostate tissue has a

value of 80–120 kPa. Based off these findings, in this study we employed a Young’s

modulus of 30 kPa.

Poisson’s ratio determines the compressibility of the tissue, and can act as a volume-

preserving property. A Poisson’s ratio of 0.50 indicates that compressing in one direction

results in stretching in the perpendicular direction. A value of 0.0 indicates that compressing

in one direction yields no changes in the perpendicular direction, and as such reduces the

volume. Chi et al. [22] noted that an accurate Poisson’s ratio is critical for an accurate

registration. Brock et al. [21] modeled the prostate with a Poisson’s ratio of 0.40 and Crouch

et al. [23] used a value of 0.49.

The methods in [21, 23] use a high Poisson’s ratio because the prostate capsule is essentially

modeled as a volume-preserving entity, such that compressing one part of the prostate yields

an expansion elsewhere. While this is likely a correct assumption for modeling how various

external forces affect the prostate capsule, such as the pressure from an endorectal coil [24]

or the bladder [22], this may not be a valid assumption for EBRT induced deformations. In

this work, we wish to model the EBRT induced shrinkage effects on the PZ and CG of the

prostate, and therefore use a Poisson’s ratio of 0.0, which allows changes in the volume.

For DoCD, strains are applied at the boundaries of the CG and PZ directed towards the

centroids of these substructures, to model the shrinkage which occurs from EBRT. Strains

are placed at the boundaries of these prostatic substructures, as well as on the prostate

surface itself. A 3D FEM is then used to deform the entire prostate as a result of these

strains. Similar to [25], an optimization scheme is used to determine the model parameters

which best deform the pre-EBRT to post-EBRT MRI.

3. Previous Related Work and Novel Contributions

There are several examples of biomechanical models being used to (1) register prostate MRI

and CT imagery [21, 22, 23, 24, 26, 27], and to (2) register brain MRI following radiation

treatment [25, 28, 29] (Table 1). Biomechanical models have been used to model

morphologic and volumetric changes as a result of tumor growth and shrinkage on brain

MRI. Karacali et al. [29] attempted to study brain tissue atrophy which was simulated by

prescribing volume changes to the region of atrophy. In addition, Kyriacou et al. [28]

modeled the effects of tumor shrinkage on surrounding tissue using a biomechanical model.

Existing prostate biomechanical models have focused on how external loads on the surface

of the prostate deform the gland [21, 22, 23, 24, 26, 27], which is extremely useful when

modeling how organs move relative to each other [22, 26], or how a probe deforms the

prostate [24]. Chi et al. [22] modeled the motion of the bladder, prostate, and rectum on CT

imagery, and explored different material properties for benign prostate tissue, prostate

tumors, and benign prostatic hyperplasia using a FEM model. Boubaker et al. [26] used a

FEM to model how the bladder, rectum, and prostate moved on CT imagery, and compared

the results to a cadaver. Crouch et al. [23] used a FEM to register the prostate surfaces on

CT imagery. Hensel et al. [24] used a FEM to register a prostate MRI with an endorectal coil

to an MRI without. Brock et al. [21] used an FEM to register a prostate MRI acquired prior
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to treatment to an MRI acquired during treatment by automatically aligning nodes on the

prostate surface.

However, existing biomechanical models of the prostate have focused on external forces,

and models for registering radiation treatment have mainly focused on 2D brain MRI. By

contrast, DoCD uses a 3D FEM to register pre-, post-EBRT MRI due to the FEM’s ability to

explicitly incorporate prior domain knowledge about the EBRT induced effects on the

prostate. The approach we take is similar to that of [29] in which brain atrophy was modeled

by shrinking the volume of certain pixels in the image. However, while domain-specific

information was used in [29], no physical tissue information was incorporated, as we aim to

do via the use of a FEM. In this case, the effects of EBRT shrinkage are modeled by

supplying known loads at locations within the prostate (rather than only at the surface, as in

traditional prostate FEM schemes [21]).

In summary, DoCD makes the following novel contributions:

1. DoCD uses an FEM generated from the PZ and CG substructures of the prostate,

rather than the capsule as a whole (as in [21, 23, 24, 26]), in order to more precisely

model the EBRT induced changes to the internal prostate morphology.

2. DoCD applies strains within the prostate towards the centroid of the PZ and CG, in

order to model the unique shrinking effects of EBRT, unlike only applying loads on

the surface of the prostate as in [21, 23, 24, 26].

3. DoCD employs physical properties specifically chosen to allow changes in volume

of the prostate and substructures in order to model the EBRT shrinkage, unlike [22,

24] which models the prostate as volume-preserving.

4. Description of DoCD

4.1. Notation

A 3D MRI image scene  = (C, f) is defined by a collection of voxels c = (xc, yc, zc), ∀c ∈ C,

and MRI intensity information for each voxel, f (c) ∈ ℝ, ∀c ∈ C. Each voxel c is manually

labeled as either the PZ, CG, or background (the prostate is simply CG + PZ), such that L (c)

= {CG, PZ, background}. The pre-EBRT MRI is denoted as  and the post-EBRT MRI is

denoted as . A region R upon which to induce shrinking is defined by a collection of

voxels, such that R ⊂ C. A collection of N nodes  representing the meshed discretization

of  is defined as a collection of voxels  ⊂ C. A full list of notation used throughout this

section is presented in Table 2.

4.2. DoCD Overview

The DoCD model aims to transform pre-EBRT imagery  onto the post-EBRT imagery

 (thus yielding T ( ). To determine the optimal transformation, at each iteration a set

of shrinking forces F are applied to the CG and PZ. The displacements U at various nodes

throughout the image resulting from these shrinking forces are calculated by solving an

FEM for the given displacements (Equation 1). A deformation of the entire image is then

calculated using Equation 5. An optimizer is used to iteratively determine which shrinking

forces yield the transformation T which best aligns the pre-, post-EBRT CG and PZ using
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Equation 6. Therefore, at each iteration, an FEM is solved to determine the transformation

resulting from the shrinking forces. A flowchart of the algorithm is shown in Figure 2.

4.3. FEM Review

An FEM contains elements (e.g. hexahedrons) connected at nodes. Given N nodes  in a 3D

FEM, a 3N × 3N sparse, symmetric “stiffness” matrix K defines how each node interacts

with every other node. A 3N × 1 vector V represents the coordinates of the nodes, a 3N × 1

vector F represents a series of external forces applied to each node, and a 3N × 1 vector U

represents the final displacements of each node (the final result of the FEM calculation).

Mathematically, this is stated as solving for U in the following equation,

(1)

However, solving (U = K−1 · F) directly is computationally infeasible; iterative algorithms

such as the biconjugate gradient stabilized method algorithm [30] estimate U by solving,

(2)

which we employ in DoCD.

4.4. Radiation Induced Shrinkage

The collection of nodes associated with region R, upon which to apply a shrinking strain, is

defined as  =  ∩ R. To shrink region R with magnitude ΔR ∈ ℝ, we define a radial

displacement uc ∈ ℝ3 at each node c ∈  relative to its centroid as,

(3)

Essentially, Equation 3 represents inducing a strain (fixed displacement u) of a given

magnitude Δ towards the center of a region R.

4.5. FEM Deformation of Prostate MRI

In the case of the EBRT-induced shrinkage, the displacements uc from each of the M

shrinking regions are used as boundary conditions in the FEM, as described in [21].

Boundary conditions essentially set the displacements of several nodes as constant and solve

the FEM for the displacements of the remaining nodes (denoted as U). To determine the

displacement of each voxel in the image scene (c ∈ C), the nodes surrounding c, Sc ⊂ {1,

…, N}, are defined by the corners of the FEM element containing c. In this work we use

hexahedron elements as in [23, 31], and as such, Sc ∈ ℝ8. The transformation of c is defined

as an interpolation of nodal displacements,
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(4)

where un denotes the displacement of node n from the FEM result U. This allows for a

deformation of  given the parameterized shrinking regions. The transformed pre-EBRT

MRI T ( ) is defined as,

(5)

Figure 2 shows the general flow of DoCD.

4.6. Optimization of EBRT Shrinking Parameters

We aim to register a pre-EBRT MRI  to a post-EBRT MRI . The goal is to calculate

the transformation T, such that,

(6)

where T is defined by the magnitude of shrinkage at each node on the surface of the prostate

substructures. E is an energy function measuring the degree of overlap, and expressed as,

(7)

The parameters defining T are modified, and the registration algorithm then proceeds to

determine which parameters maximize E, in a manner similar to [25]. A “particle swarm”

optimizer [32] is used, in which 100 random parameters (100 “particles”) are each allowed

to converge independently on the maximum E, and the particle with the maximum energy

overall is chosen. The choice to use 100 particles was due to the fact that additional particles

significantly added to the computation time while not converging at a different result than

100 particles. However, when using fewer than 100 particles (below 50), the results would

occasionally converge to a local minima. Hence 100 was chosen as a tradeoff between a

more deterministic, global optima, without significantly increasing computation time.

5. Experimental Design

5.1. Data Description

A retrospective cohort of 30 CaP patients had T2-weighted MRI acquired both before and

after EBRT. The cohort included patients from between 1991 and 2011 and the selection

criteria included patients from UCSF who had both pre-, post-EBRT T2-weighted MRI but

no androgen deprivation therapy. In each study, the T2-weighted MRI was acquired using

either a 1.5 Tesla or 3.0 Tesla GE MRI scanner. The image sizes were approximately
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140×140×140 mm, and the voxel sizes ranged from 0.27 × 0.27 × 2.2 mm/voxel to 0.54 ×

0.54 × 3.0 mm/voxel. A summary of the data is shown in Table 3.

5.2. Quantitative Measures for Evaluating Registration Accuracy

As in [33, 34], in this work manual segmentations of the prostatic structures were used to

drive the registration. The prostate and CG were manually delineated on each image (the PZ

is simply the subtraction of the two) by an expert radiation oncologist using the Slicer

software [35]. While we have the capability of using an automatic scheme such as [36, 37,

38] to segment the CG and PZ, we did not want to introduce another source of error. In

addition, the method in [36] needs to be extended to accommodate post-EBRT MRI.

Similar to [21], the center of mass (CoM) of the prostate, and the mean absolute distance

(MAD) between the surfaces, were used to evaluate the accuracy of the registration. A

registration is considered accurate if the residual error is less than the largest voxel

dimension (in our case 3.0 mm) [21]. Moreover, the Dice similarity coefficient [39], which

measures the overlap between two volumes (1.0 is a perfect overlap), was also used to

evaluate the registration accuracy.

In addition, between 3 and 11 anatomical fiducials (median of 6) were manually identified

by an expert corresponding to structures, such as the urethra or calcifications as in [40],

visible on both pre-EBRT and post-EBRT imagery. The root-mean-square (RMS)

displacement between the fiducials (in mm) was then calculated following the registration,

which gives a more unbiased estimate of the registration errors within the prostate. The

following measures were used to evaluate the accuracy of the registration comparing ,

and T ( ).

1. Dice coefficient [39] for prostate, CG (0.0 to 1.0, higher is better).

2. Center of Mass (CoM) displacements [21] (mm, lower is better).

3. Mean Absolute Distance (MAD) for surfaces [21] (mm, lower is better).

4. Root Mean Square (RMS) differences between the manually identified fiducials

within the prostate [40] (mm, lower is better).

5.3. Comparative Strategies

The following strategies were compared against DoCD:

1. An FEM which does not explicitly exploit EBRT domain knowledge [21].

2. Rigid alignment, in which only translations and rotations (no change in volume) are

allowed [34].

3. Affine alignment, which adds X, Y, and Z scaling terms to a rigid transformation to

account for global changes in volume and shearing effects [33].

We have adopted an implementation of a “traditional” biomechanical FEM (simply referred

to as FEM) which contains just as many degrees of freedom as DoCD, is also deformable,

and yet does not exploit specific EBRT domain knowledge. The model is based on the FEM

in [21] which was used to align prostate surfaces. Young’s modulus was set to 20 kPa,
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Poisson’s ratio to 0.49, and an iterative closest points algorithm [21] was used to align the

prostate surfaces. No information on the internal anatomy of the prostate, nor any specific

radiation-induced shrinking effects, was used.

In addition, a rigid registration (translation plus rotation) was used as a comparative strategy

in [34] for a deformable registration of pre-EBRT MRI and CT. Rigid was therefore used as

a comparative strategy in this study. Moreover, we also compared our strategy to an affine

registration, which extends rigid registration by allowing scaling and shearing in each of the

3 dimensions [33]. A comparison with affine will allow us to determine the usefulness of

using a linear scaling term to model the EBRT induced shrinkage since rigid does not allow

scaling. A statistical test of the results was performed. The null hypothesis was that the mean

error between DoCD and the comparative strategy was equivalent for a given strategy.

6. Results and Discussion

6.1. Qualitative Estimation of Location of DoCD Registration Errors

Qualitative results of the location of DoCD registration errors are shown in Figures 4 and 5.

In each panel of Figure 4, the post-EBRT MRI  is shown along with the deformed pre-

EBRT MRI T ( ). In addition, renderings of the prostate and CG surfaces are shown, in

which hot colors represent regions of large error, while cool colors represent regions of low

error. Most errors were sub-millimeter. A comparison of DoCD with Rigid, Affine, and

FEM registration schemes, in terms of surface errors on the prostate, is shown in Figure 5.

6.2. Quantitative Evaluation of DoCD versus Comparative Registration Schemes

Quantitative registration errors are shown in Figure 6. DoCD outperformed the rigid, affine,

and FEM registration schemes in terms of Dice, MAD, CoM and fiducial errors. DoCD

yielded mean Dice coefficients for the prostate and CG of 0.896 and 0.902 respectively

(median of 0.916 and 0.911). The mean MAD of the prostate and CG surfaces were 0.665

mm and 0.397 mm respectively (median of 0.642 mm and 0.379 mm). The mean CoM

displacements of the prostate and CG were 1.104 mm and 0.617 mm respectively (median of

0.598 mm and 0.540 mm). The mean RMS fiducial displacement was 2.994 mm for DoCD

(median of 2.894 mm). Results from a Student’s t-test are shown in Table 4. The null

hypothesis was rejected for all results except the prostate surface MAD and CoM of the

traditional FEM.

6.3. Comparison of DoCD to Linear Registration

The difference in accuracy between rigid and affine schemes demonstrates the importance of

the scaling term for EBRT images. However, while the affine registration yielded better

results than rigid registration, the local morphologic deformations modeled by DoCD

statistically significantly outperformed the affine registration in terms of Dice, COM, and

MAD measures. Nonetheless, a perfect alignment of the prostate and CG surfaces would

have yielded a “perfect” Dice measure of 1.0, and “perfect” CoM & MAD errors of 0.0 mm,

yet could yield completely unrealistic deformations within the prostate. This underlies the

necessity of evaluating the registration accuracy with manually identified fiducials within

the prostate. The statistically significant improvements noticed in the Dice, CoM, and MAD
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evaluation measures are also apparent in the fiducial errors, suggesting that DoCD is better

able to capture the internal deformations occurring after EBRT. In addition, in 16 of the 30

cases, the fiducial displacements were within the inter-slice resolution of the MRI.

6.4. Comparison of DoCD to Traditional FEM

Even though both DoCD and the traditional FEM accurately deformed the prostate surface

(as demonstrated in the prostate Dice values), there was a minor significant improvement in

the prostate Dice values in DoCD. This suggests the importance of explicitly incorporating

the EBRT induced shrinkage, represented by the low Poisson’s ratio in DoCD. However,

there were no significant differences in the CoM and MAD values between DoCD and the

FEM.

The traditional FEM yielded noticeably poor results in the CG evaluation, even compared to

the rigid and affine results. The most noticeable results, however, are in the fiducial

displacements, in which the FEM was outperformed by all comparative strategies. The fact

that the FEM had better prostate Dice, MAD, and CoM values than rigid and affine, and yet

poorer CG and fiducial values, suggests that while the FEM aligned the prostate surfaces

quite well, it did not accurately model the internal changes to the prostate as a result of

EBRT. Our DoCD method, comparatively, was able to align the prostate surfaces well, in

addition to the internals of the prostate, thus showing the importance of the domain

knowledge incorporated into the model.

7. Concluding Remarks

Radiation treatment aims to destroy cancerous cells with ionizing radiation, and pre- and

post-EBRT treatment MRI can potentially be used to determine treatment related changes in

the gland. However, to quantify these changes, the pre- and post-EBRT MR images must

first be registered. Challenges of such a registration technique arise from the significant

changes to gland morphology following radiation treatment, specifically local gland

shrinkage arising from a reduction in tumor volume, as well as atrophy of benign tissue. In

this work we presented DoCD, a biomechanical model for simulating the effects of radiation

on the internal substructures of the prostate. DoCD has been applied to register images from

30 patients who have undergone external beam radiation therapy (EBRT) for prostate

cancer. Qualitative and quantitative results demonstrate the efficacy of this model. Each

patient had internal fiducials manually identified for evaluating the accuracy. DoCD

achieved a root mean square fiducial error of 2.994 mm, which was statistically significantly

better a traditional biomechanical model (mean of 5.071 mm).

Yet there exist several limitations which will be addressed in future work. Firstly, the

prostate and internal structures were manually segmented, as in [16, 33, 34]. Future work

will employ an automatic segmentation scheme such as [36] to automatically segment the

CG and PZ. Secondly, future work will entail a rigorous study of DoCD parameters. These

include:

• FEM Elements. DoCD used hexahedron elements based on [23, 31], but different

shapes and sizes of elements can be explored.
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• Material Properties. DoCD used a Young’s modulus of 30 kPa for the prostate

based on [21, 22] but future work will compare Young’s moduli for the prostate as

well as separate values for the CG and PZ.

• Optimizer. DoCD used a particle swarm optimizer based on [32] but future work

will explore various other optimizers and associated parameters.

Thirdly, several of the studies had registration errors near the apex and base of the prostate.

For example, in Figure 7c, the voxels on the most apical slice were incorrect by 3 mm. This

occured due to  containing one additional apex slice compared to T ( ), resulting in an

error or 3 mm, the inter-slice spacing, which future work will aim to address.
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Figure 1.
Prostate MRI intensity changes as a result of EBRT, where the PZ boundary is shown with a

dotted yellow outline, and the CG boundary with a solid red outline in (a) and (b). (a) and

(c) show the pre-EBRT MRI and (b) and (d) show the post-EBRT MRI. In (c) and (d) 3D

renderings of the CG (red) and PZ (yellow) are shown. It can be seen that there are not only

significant changes in volume to the prostate as a whole following EBRT, but also changes

to the shapes of the PZ and CG, which DoCD aims to model.
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Figure 2.
Flowchart of DoCD algorithm.
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Figure 3.
FEM of the CG (pink) and PZ (blue). Forces (yellow) are applied to the CG of the prostate

(a). The FEM deforms the entire mesh based on these forces, resulting in a deformed model

(b).
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Figure 4.
Qualitative results showing the location of DoCD registration errors for two studies (one

study per row). The post-EBRT MRI  was used as the fixed image, and is shown in (a)

and (e). The deformed pre-EBRT MRI T ( ) is shown in (b) and (f). In (c) and (g), the

surfaces of the post-EBRT prostate are shown in 3D, and colored based on the deformation

error. For every voxel on the surface, the closest distance to the prostate on T ( ) is

calculated and colored, such that blue represents minimal error and red represents maximum

error (3 mm). The same renderings are shown for the CG in (d) and (h).
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Figure 5.
Qualitative results comparing the locations of registration misalignments for DoCD and the

comparative strategies are shown for three studies (one study per column). Shown are the

misalignment locations for Rigid (first row), Affine (second row), FEM (third row), and

DoCD (fourth row) schemes. In each image, the prostate surface is colored depending on the

surface error at that location, where hot colors represent regions of large error and cool

colors represent regions of small error. Blue represents minimal error and red represents

maximum error (up to 3 mm).
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Figure 6.
Quantitative results comparing the rigid (90% grey), affine (60% grey), traditional FEM [21]

(30% grey) and DoCD (white) registration algorithms in terms of the center of mass (CoM)

between objects (a), the mean absolute distance (MAD) between surfaces (b), the Dice

similarity coefficient between volumes (c), and the RMS distance between fiducials (d). The

height of the bars represent the mean over 30 studies, and the standard deviations are shown

as black error bars.
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Figure 7.
Qualitative results for one studies in which the errors were concentrated in the apical slice.

The post-EBRT MRI is shown in (a) and the deformed pre-EBRT MRI T ( ) is shown in

(b). In (c), the surfaces of the post-EBRT prostate are shown in 3D, and colored based on the

deformation error. For every surface voxel, the closest distance to the prostate on T ( ) is

calculated and colored, such that blue represents minimal error and red represents maximum

error (up to 3 mm). The same renderings are shown for the CG in (d).
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Table 1

DoCD (last row) and closest related work. Most existing works either model shrinkage in brain imagery, use

2D models, or model external surface forces on the prostate, unlike DoCD which models EBRT-induced

changes to substructures within the prostate.

Image Type Brief Description

2D Brain MRI FEM strains model tumor shrinkage [28]

3D Brain MRI Tissue atrophy modeled by reducing volume of pixels [29]

2D Brain MRI Tumor growth modeled using a FEM [25]

3D Prostate CT Prostate, bladder, rectum modeled with FEM [22, 26]

3D Prostate MRI Endorectal coil deformation modeled with FEM [24]

3D Prostate MRI External forces with FEM align prostate surfaces [21]

3D Prostate MRI DoCD: Internal shrinkage models EBRT deformations.
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Table 2

Notation and symbols used.

Symbol Description

C Collection of voxels.

c Single voxel c ∈ C, c = (xc, yc, zc).

f(c) Intensity at voxel c.

Pre-EBRT MRI.

Post-EBRT MRI.

L(c) Label of voxel c (CG, PZ, background).

R Region consisting of a collection voxels (R ⊂ C).

c̄R Center of mass of region R (c ̄R ∈ C).

ΔR Magnitude to shrink region R.

Collection of voxels representing FEM nodes (  ⊂ C).

N Number of nodes in FEM.

K 3N × 3N matrix representing FEM material properties.

F 3N × 1 vector representing FEM forces.

U 3N × 1 vector representing FEM displacements.

Sc Nodes representing corners of an element in the FEM.

T (c) Transformation applied to voxel c.
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Table 3

Detailed description of the data used to test DoCD.

# of Patients 30

Protocol T2-weighted, 3.0 Tesla

Field Strength 1.5 or 3.0 Tesla

Image Size (pixels) (256 × 256 × 19) to (512 × 512 × 35)

Field of View (mm) 140 × 140 × Z, 60 < Z < 150

Resolution (mm) (0.54 × 0.54 × 3.0) to (0.27 × 0.27 × 2.2)

MRI Acquisition Fast Spin Echo, Endorectal Coil

Hormonal Therapy No
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Table 4

Results of a 2-tailed paired Student’s t-test (p is shown), with statistically significant results indicated by

asterisks (p < .05*, p < .01**). DoCD was compared to each method in terms of the center of mass (CoM)

displacements, the mean absolute distance (MAD) between surfaces, the Dice similarity coefficient, and the

root mean square (RMS) error between fiducials.

DoCD vs: Rigid Affine FEM

Prostate Dice 1.84 × 10−09 ** 1.32 × 10−06 ** 1.81 × 10−02 *

CG Dice 8.87 × 10−11 ** 8.02 × 10−08 ** 7.11 × 10−07 **

Prostate MAD 8.18 × 10−10 ** 3.62 × 10−09 ** 8.02 × 10−02

CG MAD 2.95 × 10−09 ** 2.69 × 10−09 ** 3.18 × 10−06 **

Prostate CoM 3.60 × 10−04 ** 9.40 × 10−04 ** 1.29 × 10−01

CG CoM 2.30 × 10−03 ** 1.02 × 10−02 * 3.27 × 10−04 **

Fiducials RMS 5.62 × 10−05 ** 1.18 × 10−02 * 2.80 × 10−10 *
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