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ABSTRACT OF THE DISSERTATION

Adaptive Methods in the Finite Element Exterior Calculus Framework

by

Adam Mihalik

Doctor of Philosophy in Mathematics with a specialization in Computational
Science

University of California, San Diego, 2014

Professor Michael Holst, Chair

In this thesis we explore convergence theory for adaptive mixed finite el-

ement methods. In particular, we introduce an a posteriori error-indicator, and

prove convergence and optimality results for the mixed formulation of the Hodge

Laplacian posed on domains of arbitrary dimensionality and topology in Rn. After

developing this framework, we introduce a new algorithm and extend our theory

and results to problems posed on Euclidean hypersurfaces.

We begin by introducing the finite element exterior calculus framework,

which is the key tool allowing us to address the convergence proofs in such gener-

ality. This introduction focuses on the fundamentals of the well-developed a priori

theory and the results needed to extend the core of this theory to problems posed

ix



on surfaces. A basic set of results needed to develop adaptivity in this framework

is also established. We then introduce an adaptive algorithm, and show conver-

gence using this infrastructure as a tool to generalize existing finite element theory.

The algorithm is then shown to be computationally optimal through a series of

complexity analysis arguments. Finally, a second algorithm is introduced for prob-

lems posed on surfaces, and our original convergence and optimality results are

extended using properties of specific geometric maps between surfaces.
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Chapter 1

Introduction

1



2

1.1 Overview

Ideas from three distinct areas of research are essential to the theory de-

veloped in this thesis. In this introduction we review the fundamentals of each of

these fields and discuss the role each will play in developing our main results. The

chapter then concludes with a discussion focusing on our research and the results

proven in later chapters.

1.2 Finite Element Exterior Calculus

Mixed finite elements have become standard tools for solving a large class

of partial differential equations (PDE), and practical applications require imple-

mentation of this method using computationally efficient algorithms. In Chap-

ters 2 and 3 we develop such algorithms for a large class of PDE problems, and

show they produce a sequence of approximating solutions that convergence in a

computationally optimal manner to the correct solution. Such a framework was

developed in [13] for problems posed on connected domains in R2, using proper-

ties of the standard vector calculus operators. For more generality we turn to the

theory of finite element exterior calculus (FEEC), introduced by Arnold, Falk and

Winther. Using established connections between mixed finite elements and the

calculus of exterior differential forms, including de Rham cohomology and Hodge

theory [10, 35, 36, 22], they showed that Hilbert complexes were a natural setting

for analysis and numerical approximation of mixed variational problems. One of

the powerful aspects of this theory is that results are proven for abstract Hilbert

complexes and then can be applied to a large class of differential equations. Re-

cently, researchers have shown the power and elegance of this framework by using

it to make further generalizations in mixed finite element theory [24, 25, 18]. This

framework will be a key tool as we develop a convergence and optimality theory

for domains of arbitrary dimension and topology, and for problems posed on Eu-

clidean hyper-surfaces. In the first part of this section we introduce the heart of

the abstract theory; Hilbert complexes and the abstract Hodge Laplacian. We

then discuss the de Rham complex and apply the abstract results to a large class
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of applicable equations.

1.2.1 Hilbert Complexes and the abstract Hodge Laplacian

A Hilbert complex (W,d) is a sequence of Hilbert spaces W k equipped with

closed, densely defined linear operators, dk, mapping V k ⊂ W k to the kernel of

dk+1 in W k+1. A Hilbert complex is bounded if each dk is a bounded linear map

from W k to W k+1. A Hilbert complex is closed if the range of each dk is closed in

W k+1. Given a Hilbert complex (W,d), the subspaces V k ⊂ W k endowed with the

graph inner product

〈u, v〉V k = 〈u, v〉Wk + 〈dku, dkv〉Wk+1 , (1.1)

form a Hilbert complex (V, d) known as the domain complex. By construction

dk+1◦ dk = 0, thus (V, d) is a bounded Hilbert complex.

The range of dk−1 in V k and the null space of dk will be denoted Bk and

Zk, respectively. By construction Bk ⊂ Zk, and the elements of Zk ∩Bk⊥ form the

space of harmonic forms, denoted Hk. For a closed Hilbert complex we can write

the Hodge decomposition of W k and V k,

W k = Bk ⊕ Hk ⊕ Zk⊥W , (1.2)

V k = Bk ⊕ Hk ⊕ Zk⊥V . (1.3)

Another important Hilbert complex will be the dual complex (W,d∗), where d∗k :

W k → W k−1 is the adjoint of dk−1. The domain of d∗k will be denoted by V ∗k . For

closed Hilbert complexes, an important result will be the Poincaré inequality,

‖v‖V ≤ cP‖dkv‖W , v ∈ Zk⊥. (1.4)

Given a Hilbert complex (W, d), the operator L = dd∗+d∗d, W k → W k will

be referred to as the abstract Hodge Laplacian. For f ∈ W k, the Hodge Laplacian
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problem can be formulated as the problem of finding u ∈ W k such that

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f, v〉, v ∈ V k ∩ V ∗k .

This formulation, however, has undesirable computational properties. The

finite element spaces V k ∩ V ∗k are often difficult to implement, and the problem

is not well-posed in the presence of a non-trivial harmonic space. In order to

circumvent these issues, a well posed (cf. [4, 5]) mixed formulation of the abstract

Hodge Laplacian is introduced as finding (σ, u, p) ∈ V k−1 × V k × Hk, such that:

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ V k−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V k,

〈u, q〉 = 0, ∀q ∈ Hk.

(1.5)

In [4, 5] a theory of approximate solutions to the Hodge-Laplace problem

is developed by using finite dimensional approximating Hilbert complexes. For a

Hilbert complex (W,d) with domain complex (V, d), an approximating subcomplex

is a set of finite dimensional Hilbert spaces, V k
h ⊂ V k with the property that dV k

h ⊂
V k+1
h . Since Vh is a Hilbert complex, Vh has a corresponding Hodge decomposition,

V k
h = Bk

h ⊕ Hk
h ⊕ Zk⊥Vh .

By this construction, (Vh, d) is an abstract Hilbert complex with a well posed

Hodge Laplace problem. Find (σh, uh, ph) ∈ V k−1
h × V k

h × Hk
h, such that

〈σh, τ〉 − 〈dτ, uh〉 = 0, ∀τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f, v〉, ∀v ∈ V k
h ,

〈uh, q〉 = 0, ∀q ∈ Hk
h.

(1.6)

Now, with this background in place, [4, 5] prove an a priori convergence

result for the abstract mixed Hodge-Laplacian.

Theorem 1.2.1. Let (Vh,d ) be a family of subcomplexes of the domain complex

(V ,d) of a closed Hilbert complex, parameterized by h and admitting V -bounded
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cochain projection. Let (σ, u, p) ∈ V k−1 × V k × Hk be the solution to the mixed

variational problem and let (σh, uh, ph) ∈ V k−1
h ×V k

h ×Hk
h be the solution to discrete

mixed variational problem. Then

‖σ − σh‖V +‖u− uh‖V + ‖p− ph‖ ≤ C( inf
τ∈V k−1

h

‖σ − τ‖V +

inf
v∈V kh
‖u− v‖V + inf

q∈V kh
‖p− q‖+ µ inf

v∈V kh
‖PBu− v‖)

where

µ = sup
r∈Hh,‖r‖=1

‖(I − πkh)r‖.

This result shows that as long as the approximating sub-complexes approach

the approximated complex then convergence will follow. As we will see in the next

section, this assumption cannot be made for adaptive methods. In developing

our generalized adaptive finite element method we build an analogous abstract

infrastructure that does not rely on this assumption.

1.2.2 The de Rham Complex

Let d be the exterior derivative acting as an operator from L2Λk(Ω) to

L2Λk+1(Ω). The L2 inner-product will define the W -norm, and the V -norm will

be defined as the graph inner-product

〈u, ω〉V k = 〈u, ω〉L2 + 〈du, dω〉L2 .

This forms a Hilbert complex (L2Λ(Ω), d), with domain complex (HΛ(Ω), d),

where HΛk(Ω) is the set of elements in L2Λk(Ω) with weak exterior derivatives

in L2Λk+1(Ω). The domain complex can be described with the following diagram

0→ HΛ0(Ω)
d−→ · · · → HΛn−1(Ω)

d−→ L2(Ω) −→ 0. (1.7)

It can be shown that a specific compactness property is satisfied, and therefore the

prior results shown on abstract Hilbert complexes can be applied.
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The Hodge star operator, ? : Λk(Ω) → Λn−k(Ω), is then defined using the

wedge product. For ω ∈ Λk(Ω),∫
Ω

ω ∧ µ = 〈?ω, µ〉L2Λn−k , ∀µ ∈ Λn−k(Ω).

Next we introduce the coderivative operator, δ : Λk(Ω)→ Λk−1(Ω),

?δω = (−1)kd ? ω, . (1.8)

which combined with Stokes theorem allow integration by parts to be written as

〈dω, µ〉 = 〈ω, δµ〉+

∫
∂Ω

tr ω ∧ tr ? µ, ω ∈ Λk−1, µ ∈ Λk(Ω). (1.9)

Using this formulation and the following spaces,

H̊Λk(Ω) = {ω ∈ HΛk(Ω) tr∂Ωω = 0},

H̊∗Λk(Ω) := ?H̊Λn−k(Ω),

the following theorem gives an important connection between the framework built

for abstract Hilbert complexes and the de Rham complex.

Theorem 1.2.2. (Theorem 4.1 from [5]) Let d be the exterior derivative viewed as

an unbounded operator L2Λk−1(Ω)→ L2Λk(Ω) with domain HΛk(Ω). The adjoint

d∗, as an unbounded operator L2Λk(Ω)→ L2Λk−1(Ω), has H̊∗Λk(Ω) as its domain

and coincides with the operator δ defined in (1.8).

Applying the results from the previous section and Theorem 1.2.2, we get

the mixed Hodge Laplace problem on the de Rham complex: Find the unique

(σ, u, p) ∈ HΛk−1(Ω)×HΛk(Ω)× Hk such that

σ = δu, dσ + δdu = f − p in Ω,

tr ? u = 0, tr ? du = 0 on ∂Ω,

u ⊥ Hk.

(1.10)

The following sub-sections follow the outline of a similar discussion given in
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[5]. The Hodge Laplacian in R3 is analyzed, and is related to classical differential

equations using the terminology of vector calculus. In addition to the material

in [5], this section aims to give a more detailed and applied discussion of the

harmonics, while also expanding the discusion to the case of surfaces without

boundary.

The Hodge Laplacian for case k = 0

The discussion of the harmonic 0-forms are the most straightforward. The

space of harmonic forms, H0, is simply the constant functions on each connected

component of the domain. In this case HΛ−1 is void and the Hodge Laplacian is

the problem of finding (u, p) ∈ HΛk × Hk, such that:

〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ HΛk,

〈u, q〉 = 0, ∀q ∈ Hk.
(1.11)

This equation implies that

〈du, dv〉 = 〈f − p, v〉, ∀v ∈ HΛk, (1.12)

thus

− div grad u = f − p in Ω. (1.13)

Since f is the adjoint of du, Theorem 1.2.2 can be applied to yield the boundary

condition,

grad u · n = 0 on ∂Ω. (1.14)

This is simply the scalar Laplacian with Neumann boundary conditions.

The role the harmonics play is simple. In order to guarantee existence of a solution,

the harmonic component of f is calculated as p, and then subtracted from f when

solving the equivalent of Poisson’s equation. The second equation of this mixed

formulation guarantees uniqueness. Otherwise one could add a constant function

to any solution u to derive another solution. In classical differential equations

these restrictions are taken care of with boundary conditions and restrictions to
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the function spaces.

A more intuitive discussion of the harmonics is also simple in this case. The

space V k−1 equals 0, and thus Bk equals zero. This implies Hk = Zk ∩B⊥ = Zk.

Since HΛ0 is the set of H1-functions, it is clear that the harmonics are the set

functions which are constant on each connected component.

We can also expand this discussion to surfaces without boundary. Equation

(1.17) is no longer constraint when the surface has no boundary, but now Stokes

theorem implies
∫

Ω
du = 0.

Hilbert complex isomorphisms do not generally map harmonic spaces of one

complex to harmonic spaces of another complex. For a given manifold, M , the de

Rahm complex on the manifold will be denoted by (HΩ(M), d). Any isomorphic

map between the Hilbert complexes HΩ(M) and HΩ(MA) must map Bk
M → Bk

MA
,

ZkM → ZkMA
and the reverse must also hold. But, for instance, Bk

M ⊂ ZkM , and

therefore there is no guarantee that Hk
M = Bk⊥

M ∩ ZkM is mapped to Hk
MA

. In the

case k = 0, the maps iA and πA introduced in Chapter 3 will provide such a map

of harmonic spaces. These maps are constructed using the pull-backs and push-

forwards, which in the case k = 0 simply maps function values point-wise back

and forth between the surfaces M and MA. Therefore, a constant function on one

surface will remain constant when mapped to the other surface using these maps,

and thus the harmonic spaces will map to each other. Another way to think about

this case is that B0 is void, and thus ZkM → ZkMA
implies Hk

M → Hk
MA

.

The Hodge Laplacian for case k = 1

Now we have moved off the edge of the Hilbert complex and have the

familiar Hodge Laplacian problem: Find (σ, u, p) ∈ HΩk−1 ×HΩk × H such that

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ HΩk−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ HΩk,

〈u, q〉 = 0, ∀q ∈ Hk.

(1.15)
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This equation implies that

〈u, dτ〉 = 〈σ, τ〉, ∀τ ∈ HΛk−1,

thus σ is the adjoint of u, and an application of Theorem 1.2.2 yields the following

boundary condition,

u · n = 0 on ∂Ω. (1.16)

This equation also implies that

〈du, dv〉 = 〈f − dσ − p, v〉, ∀τ ∈ HΛk−1,

thus f − σ− p is the adjoint of du, and an application of Theorem 1.2.2 yields the

following boundary condition,

curl u× n = 0 on ∂Ω. (1.17)

Since u is orthogonal to the harmonics, we have du = 0 and δu = 0, which are in

vector calculus terminology adds the constraints,

curl u = 0, div u = 0 in Ω. (1.18)

Additionally, the first two equations of (1.15) imply

σ = −div u, grad σ + curl curl u = f − p in Ω. (1.19)

In terms of vector calculus, the above equation is a boundary value problem for a

formulation of the the vector Laplacian.

As seen above, the elements of H1 must satisfy (1.17) and (1.18). The

dimension of H1 is the first Betti number, which is the number of handles [5]. To

give an example, take the case where Ω is a solid cylinder. There are no handles

to this domain, and thus the dimension of the harmonic space is zero. Now take

the case where we remove a cylinder of equal height and a smaller radius from the

domain. Now the dimension of the harmonic space equals 1 as a vector field can
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essentially wrap around the handle.

The Hodge Laplacian for case k = 2

As was the case for k = 1, we are dealing with the middle of the Hilbert

complex, and (1.15) is our reference equation. Using the same logic as the k = 1

case, we get the boundary conditions,

u× n = 0, div u = 0 on ∂Ω. (1.20)

In this case the first two equations of (1.15) imply

σ = curl u, curl σ − grad div u = f − p in Ω. (1.21)

And again, since u is orthogonal to H2, we have the constraints

curl u = 0, div u = 0 in Ω (1.22)

In terms of vector calculus, the above is then seen to be a slightly different boundary

value problem for a formulation of the vector Laplacian.

The dimension of the harmonic space is the second Betti number, and can be

seen to be the number of voids in the domain. Further discussion of this harmonic

space is not of interest here, as the properties of interest were already discussed

for the case k = 1.

The Hodge Laplacian for case k = 3

The harmonic space is void when dealing with polygonal domains in R3,

and we have the Hodge Laplacian problem: Find (σ, u) ∈ HΛk−1×HΛk satisfying

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ HΛk−1,

〈dσ, v〉 = 〈f, v〉, ∀v ∈ HΛk.
(1.23)
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In terms of vector calculus we have,

σ = −grad u, div σ = f in Ω. (1.24)

Since σ is the adjoint of u, an application of Theorem 1.2.2 yields the boundary

condition,

u = 0 on ∂Ω. (1.25)

This problem now can be seen to be Poisson equation with Dirichlet boundary

conditions.

The situation is more complicated when the domain is a surface without

boundary. Since dω = 0 ∀ω ∈ HΛn, H3 can be described as the set ω ∈ HΛn such

that δω = 0. When δω = 0 it implies d ? ω = 0, where d is the gradient operating

on H1(Ω). This implies the harmonics are constant forms and, if the domain has

a boundary, (1.25) implies these constants must be zero. Thus the harmonic space

is void in the case where there is a boundary. In the absence a boundary, (1.25)

does not apply and thus constant volume forms on each connected component

form the harmonics. We give an analogous lower-dimensional example of what is

happening. Consider a one dimensional surface in R2 with boundary. Any 1-form

in L2 is the derivative of some 0-form in H1, thus there are no harmonics. Now

connect the two ends of the line. Now only functions which integrate to zero can be

derived as derivatives of H1 functions. This idea can be extended to the language

of differential forms, and then dealt with in the cases of higher dimensions, and it

can be seen that the harmonics are the constant volume forms on the surface.

The above fact brings the problem on surfaces to the more familiar Hodge

Laplacian: Find (σ, u, p) ∈ HΩk−1(M)×HΩk(M)× H such that

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ HΩk−1(M),

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ HΩk(M),

〈u, q〉 = 0, ∀q ∈ Hk.

(1.26)

The boundary condition clearly can no longer exist and the emergence of the

harmonic constraint is essentially replacing this condition.
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Numerically the algorithms we have developed work specifically for the

case where f is formulated as a volume form, and take advantage of the lack

of harmonics. Thus our algorithm will not attack this problem directly. Since

constant volume forms are easy to deal with, we can simply factor out the average

of any volume form f , and essentially create a mean zero set of basis functions

for calculating u. This will allow us to solve 1.26 using the same tools we built to

solve 1.23.

Unlike the case k = 0, Hilbert complex isomorphisms do not generally

map the harmonic forms on M to harmonic forms on MA. Harmonic forms are

the constant volume forms, and thus maps such as the pull-back scale by volume

ratios point-wise between the surfaces. However, as mentioned above, we can deal

with the harmonics in a preprocessing step thus this is more a point of interest

rather than a computational concern.

1.3 Adaptive Finite Element Methods

Adaptive finite elements methods (AFEM) are a class of finite element

methods (FEM) which aim to distribute computational power efficiently by refining

the mesh of the domain non-uniformly. For a large class of important problems in

science and engineering it is not practical to refine the mesh uniformly and AFEM

based on a posteriori error estimators have become standard tools (cf. [1, 46, 38]).

A fundamental difficulty with these adaptive methods is guaranteeing convergence

of the solution sequence. The first convergence result was obtained by Babuska

and Vogelius [7] for linear elliptic problems in one space dimension, and many

improvements and generalizations to the theory have followed [19, 31, 34, 33, 41].

Given an initial triangulation of the domain, T0, the adaptive procedure will

generate a nested sequence of triangulations Tk and discrete solutions (σk, uk, pk),

by looping through the following steps:

Solve −→ Estimate −→ Mark −→ Refine (1.27)

The following subsection will describe details of these steps.
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Approximation Procedure

We assume access to a routine SOLVE, which can produce solution to (1.6)

given a triangulation, problem data, and a desired level of accuracy. For the

ESTIMATE step we will introduce a posteriri error indicators ηT on each element

T ∈ Tk. Two important properties of such indicators are reliability and efficiency.

We say that an indicator is reliable if it bounds the error of interest up to a

constant. We say that an indicator is efficient if, up to some positive constant and

higher order terms, it provides a lower bound of the error. In the MARK step we

will use Dörfler Marking strategy [20]. An essential feature of the marking process

is that the summation of the error indicators on the marked elements exceeds a

user defined marking parameter θ.

We assume access to an algorithm REFINE in which marked elements are

subdivided into two elements of the same size, resulting in a conforming, shape-

regular mesh. Triangles outside of the original marked set may be refined in order

to maintain conformity. Bounding the number of such refinements is important in

showing optimality of the method. Along these lines, Stevenson [44] showed certain

bisection algorithms developed in two-dimensions can be extended to n-simplices

of arbitrary dimension satisfying

(1){Tk} is shape regular and the shape regularity depends only on T0,

(2)#Tk ≤ #T0 + C#M,

where M is the collection of all marked triangles going from T0 to Tk.

Convergence and Optimality

The idea of convergence in this context is straightforward; the approxima-

tions must approach the actual solution. We will show that our adaptive algorithm

convergences linearly to any given error tolerance in a finite number of steps. Con-

vergence, however, does not necessarily imply optimality of a method. This idea

has led to the development of a theory related to the optimal computational com-

plexity of AFEMs, and within this framework certain classes of adaptive methods
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have been shown to be optimal [8, 43, 12].

In order to make this discussion of optimality more concrete, we introduce

the approximation classes as defined in [8]. Let σ be the solution to the to the

Hodge Laplacian, and the σT be the solution to the discrete version of the prob-

lem on a given triangulation of the domain, T . For a given refinement of T , let

N represent the number of elements in the triangulation added from an original

conforming triangulation, T0. Also let T̂N represent the entire set of triangulations

that can be formed for a given value of N . Another tool in developing the idea of

the approximation class is the following norm,

‖σ‖As = sup
N≥#T0

(
N s inf

T ∈T̂N
‖σ − σT ‖

)
. (1.28)

With these tools we now define the approximation class

As = {σ ∈ V k−1 : ‖σ‖As <∞}. (1.29)

A method is optimal if for any iterated triangulation there is a constant C,

such that‖σ − σN‖ ≤ CN−s. In proving the optimality of our method we follow

[43, 13], which, after proving convergence, only requires orthogonality, a discrete

upper bound and an efficient error indicator,

‖σ − σk+1‖2 = ‖σ − σk‖2 − ‖σk+1 − σk‖2, (1.30)

‖σk+1 − σk‖2
T̂k
≤ Cη2(σk, T̂k ⊆ Tk), (1.31)

C2η
2(σk, Tk) ≤ ‖σ − σk‖2. (1.32)

In [13], ideas of [8] related to optimal function approximation are used

to show certain quasi-orthogonality are enough for optimality. The remainder of

proving the optimality of our method follows [43]. The high level intuition behind

the proof is as follows. Take any single refinement step of our algorithm. The

collections of elements refined contribute to a minimal amount of error reduction, λ.
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Then, combining the above equations with cardinality properties of the refinement

strategy, the amount of elements added is bounded by λ−1/s multiplied with a

multiple of the current error. Then this relationship can be combined over each

iteration of the algorithm, and then used to get the desired optimality result.

In [13], Chen, Holst, and Xu used error indicators developed in [3] and

establish convergence and optimality of an adaptive mixed finite element method

for the Poisson equation on simply connected polygonal domains in two dimensions.

Their argument used a type of quasi-orthogonality result, exploiting the fact that

the error was orthogonal to the divergence free subspace, while the part of the error

not divergence free was bounded by data oscillation through a discrete stability

result. A generalization of this quasi-orthogonailty will be fundamental in proving

convergence and optimality of our algorithm introduced in Chapter 2.

1.4 Surface Finite Element Methods

Many applicable problems are posed on embedded surfaces, and thus an

extension of finite element theory developed in Chapter 2 is desired. Typically,

surfaces of interest are not polygonal, and it is necessary to approximate the sur-

faces or introduce a map to the surface from an approximating polygonal manifold.

This thesis investigates these methods, and develops convergence and optimality

results for a class of surface PDE.

In a 1988 article, Dziuk [21] introduced a nodal finite element method for

the Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear

triangulation, pioneering a line of research into surface finite element (SFEM)

methods. Demlow and Dziuk [17] built on the original results, introducing an

adaptive method for problems on 2-surfaces, and Demlow later extended the a

priori theory to 3-surfaces and higher order elements [16]. While a posteriori

error indicators are introduced and shown to have desirable properties in [17], a

convergence and optimality theory related to problems on surfaces is a relatively

undeveloped area, and developing such a theory is the main topic of Chapter

3. Key tools to our development will be ideas from [24], where Holst and Stern
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extend the FEEC theory to include problems in which the discrete complex is

not a subcomplex of the approximated complex. This made it possible in [24] to

reproduce the existing a priori theory for SFEM as a particular application, as well

as to generalize SFEM theory in several directions.

Surfaces finite element methods, by their nature, have additional compli-

cations which make developing and all-encompassing algorithm difficult. Surfaces,

for instance, can be described in different manners, and depending on the access

to surface quantities, algorithms that are ideal in one situation may be infeasible

in others. Also, when refining a mesh, element nodes are not necessarily required

to lie on the approximated surface, or even alter the approximating surface. Con-

tinually improving the surface approximation has desirable features, but it also

complicates the analysis of convergence and optimality. With these ideas in mind,

we have explored three separate categories of surface finite element methods, and

developed results with desirable features depending on the specifics of the problem

of interest.

• Parametric Finite Element Approximations, where the basis elements are

defined on an approximating surface and mapped back to the original domain.

• Algorithms that reduce the geometric error to specified levels prior to working

on the error related to the PDE on the approximating surface.

• Standard surface finite element methods constrained to have the element

nodes lying on the actual surface.

Ideas similar to the first method were discussed in the a priori setting in

Dziuk [21] and Demlow [16]. Initially an approximate surface lying an a tubular

neighborhood of the domain must be created. A mesh on the approximating surface

is continually refined and the basis elements defined on this mesh are mapped

back to the approximated surface. This creates a desirable situation where nested

refinements produce function subspaces on the elements. In Chapter 3 we use

this property, and further develop differential geometry tools introduced in [24], to

prove convergence and optimality of an adaptive method on surfaces.
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In the second type of method above, the user must define desired error

tolerance prior to running the computation. The first step of the method is to

create a surface with a geometric portion of the approximation error bounded below

a specified tolerance. The second step of the algorithm applies standard adaptive

methods to reduce the residual portion of the approximation error below the desired

tolerance, and hence the overall error is reduced as desired. The advantage of this

method is that calculation of the geometrical terms related to iterated values of

the PDE are avoided and this is computationally desirable. This also yields an

optimal algorithm in cases where error tolerance can be fixed a priori.

Once the fixed approximating surface is created, however, the additive ge-

ometric error does not decrease. If the desired error tolerance changes, then the

algorithm must be started from scratch. This can be an undesirable feature which

we have addressed by adding geometrical terms to the error indicator, and forcing

the nodes of the mesh to lie on the approximated surface. The error indicators

used in this method can be shown to be reliable and efficient, providing promise

for a good adaptive method. Convergence and complexity results, however, are

harder to obtain, as the evolving surface removes the desirable subspace properties

present on non-evolving domains.

The third method above is in the realm of [21, 16, 17] and has many sim-

ilarities to the first method. The biggest disadvantage of this method is that the

refined spaces do not have the nested subspace property for the function spaces.

This property is at the core of many traditional convergence arguments, and thus

this problem requires a new technique. One advantage of this method is the surface

estimates improve at each step, and therefor the bounding constant due to surface

approximation decrease. We discuss topic this more detail and compare with our

method in Chapter 3.

1.5 Main Results

In Chapter 2 we use the FEEC framework to extend the convergence and

complexity arguments of [13] for simply connected domains in two dimensions
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to more general domains. Specifically we introduce an adaptive algorithm and

show convergence and optimality of the method for the Hodge-Laplace problem

(k = n) on domains of arbitrary topology and spatial dimension. While our results

are shown for the specific case (k = n), many of the auxiliary results hold for

arbitrary k, and we also discuss possible extensions to the general B-Hodge-Laplace

problem. In Chapter 4 we apply this adaptive method and step through a detailed

computational example.

In Chapter 3 we introduce an adaptive method for problems posed on

smooth Euclidean hypersurfaces in which finite element spaces are mapped from

a fixed approximating polygonal manifold. The mesh on the fixed approximating

surface is refined using error indicators related to the original problem. Using tools

developed in [24], the auxiliary results of Chapter 2 are modified to account for

the surface mapping. In doing this we establish the optimality of a convergent

algorithm for the Hodge Laplacian (case k = m ) on hypersurfaces of arbitrary

dimension.
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2.1 Abstract

Finite Element Exterior Calculus (FEEC) was developed by Arnold, Falk,

Winther and others over the last decade to exploit the observation that mixed

variational problems can be posed on a Hilbert Complex, and Galerkin-type mixed

methods can then be obtained by solving finite-dimensional subcomplex problems.

Stability and consistency of the resulting methods then follow directly from the

framework by establishing the existence of operators connecting the Hilbert com-

plex with its subcomplex, essentially giving a “recipe” for well-behaved methods.

In 2012, Demlow and Hirani developed a posteriori error indicators for driving

adaptive methods in the FEEC framework. While adaptive techniques have been

used successfully with mixed methods for years, convergence theory for such tech-

niques has not been fully developed. The main difficulty is lack of error orthog-

onality. In 2009, Chen, Holst, and Xu established convergence and optimality

of an adaptive mixed finite element method for the Poisson equation on simply

connected polygonal domains in two dimensions. Their argument used a type of

quasi-orthogonality result, exploiting the fact that the error was orthogonal to

the divergence free subspace, while the part of the error not divergence free was

bounded by data oscillation through a discrete stability result. In this paper, we

use the FEEC framework to extend these convergence and complexity results for

mixed methods on simply connected domains in two dimensions to more general

domains. While our main results are for the Hodge-Laplace problem (k = n) on

domains of arbitrarily topology and spatial dimension, a number of our supporting

results also hold for the more general B-Hodge-Laplace problem (k 6= n).

2.2 Introduction

An idea that has had a major influence on the development of numerical

methods for PDE applications is that of mixed finite elements, whose early success

in areas such as computational electromagnetics was later found to have surpris-

ing connections with the calculus of exterior differential forms, including de Rham

cohomology and Hodge theory [10, 35, 36, 22]. A core idea underlying these devel-
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opments is the Helmholtz-Hodge orthogonal decomposition of an arbitrary vector

field f ∈ L2(Ω) into curl-free, divergence-free, and harmonic functions:

f = ∇p+∇× q + h,

where h is harmonic (divergence- and curl-free). The mixed formulation is explic-

itly computing the decomposition for h = 0, and finite element methods based on

mixed formulations exploit this. There is a connection between this decomposition

and de Rham cohomology; the space of harmonic forms is isomorphic to the first de

Rham cohomology of the domain Ω, with the number of holes in Ω giving the first

Betti number, and creating obstacles to well-posed formulations of elliptic prob-

lems. A natural question is then: What is an appropriate mathematical framework

for understanding this abstractly, that will allow for a methodical construction of

“good” finite element methods for these types of problems? The answer turns out

to be theory of Hilbert Complexes. Hilbert complexes were originally studied in

[11] as a way to generalize certain properties of elliptic complexes, particularly the

Hodge decomposition and other aspects of Hodge theory. The Finite Element Ex-

terior Calculus (or FEEC) [4, 5] was developed to exploit this abstraction. A key

insight was that from a functional-analytic point of view, a mixed variational prob-

lem can be posed on a Hilbert complex: a differential complex of Hilbert spaces, in

the sense of [11]. Galerkin-type mixed methods are then obtained by solving the

variational problem on a finite-dimensional subcomplex. Stability and consistency

of the resulting method, often shown using complex and case-specific arguments,

are reduced by the framework to simply establishing existence of operators with

certain properties that connect the Hilbert complex with its subcomplex, essen-

tially giving a “recipe” for the development of provably well-behaved methods.

Due to the pioneering work of Babuska and Rheinboldt [6], adaptive finite

element methods (AFEM) based on a posteriori error estimators have become

standard tools in solving PDE problems arising in science and engineering (cf. [1,

46, 38]). A standard adaptive algorithm has the general iterative structure:

Solve −→ Estimate −→ Mark −→ Refine (2.1)
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where Solve computes the discrete solution uk in a subspace Xk ⊂ X; Estimate

computes certain error estimators based on uk, which are reliable and efficient in the

sense that they are good approximation of the true error u−uk in the energy norm;

Mark applies certain marking strategies based on the estimators; and finally, Refine

divides each marked element and completes the mesh to to obtain a new partition,

and subsequently an enriched subspace Xk+1. The fundamental problem with

the adaptive procedure (2.1) is guaranteeing convergence of the solution sequence.

The first convergence result for (2.1) was obtained by Babuska and Vogelius [7] for

linear elliptic problems in one space dimension. The multi-dimensional case was

open until Dörfler [19] proved convergence of (2.1) for Poisson equation, under

the assumption that the initial mesh was fine enough to resolve the influence of

data oscillation. This result was improved by Morin, Nochetto, and Siebert [31],

in which the convergence was proved without conditions on the initial mesh, but

requiring the so-called interior node property, together with an additional marking

step driven by data oscillation. These results were then improved and generalized

in several respects [34, 33, 41]. In another direction, it was shown by Binev,

Dahmen and DeVore [8] for the first time that AFEM for Poisson equation in the

plane has optimal computational complexity by using a special coarsening step.

This result was improved by Stevenson [43] by showing the optimal complexity

in general spatial dimension without a coarsening step. These error reduction

and optimal complexity results were improved recently in several aspects in [12].

In their analysis, the artificial assumptions of interior node and extra marking

due to data oscillation were removed, and the convergence result is applicable

to general linear elliptic equations. The main ingredients of this new convergence

analysis are the global upper bound on the error given by the a posteriori estimator,

orthogonality (or possibly only quasi-orthogonality) of the underlying bilinear form

arising from the linear problem, and a type of error indicator reduction produced

by each step of AFEM. We refer to [37] for a recent survey of convergence analysis

of AFEM for linear elliptic PDE problems which gives an overview of all of these

results through late 2009. See also [26] or an overview of various extensions to

nonlinear problems.
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Of particular relevance here is the 2009 article of Chen, Holst, and Xu [13],

where convergence and optimality of an adaptive mixed finite element method for

the Poisson equation on simply connected polygonal domains in two dimensions

was established. The main difficulty for mixed finite element methods is the lack of

minimization principle, and thus the failure of orthogonality. A quasi-orthogonality

property is proved on the ‖σ − σh‖L2 error in [13] using the fact that the error is

orthogonal to the divergence free subspace, while the part of the error that is

not divergence free was bounded by the data oscillation using a discrete stability

result. This discrete stability result was then also used to get a localized discrete

upper bound, which was the key to giving a proof of optimality of the resulting

adaptive method. A key technical tool was the use of the error indicator developed

by Alonso in [3]. In this paper, we will generalize the approach taken in [13] by

analyzing the ‖σ − σh‖L2Λk−1(Ω) error in the FEEC framework, which will allow

us extend the convergence and complexity results for simply connected domains

in two dimensions in [13] to domains of arbitrary topology and spatial dimension.

In FEEC terminology, the methods considered in [13] are equivalent to those for

solving the Hodge-Laplace problem when k = n = 2. As described in more detail

in Section 2.3 below, Hodge-Laplace problems on the complex HΛk(Ω), k = n

are a subset of the more general B-Hodge-Laplace problem. Our main result will

apply to the k = n case for arbitrary n and domains which are not necessarily

simply connected. However, a number of our supporting results also hold for the

more general B-Hodge-Laplace problem (k 6= n). For each result, we will indicate

whether it holds for all B-Hodge-Laplace problems, or just the case k = n.

In mixed finite element methods σ is often the variable of interest, and the

error measured in the natural norm can be broken into two components,

‖σ − σh‖HΛk−1(Ω) = ‖σ − σh‖L2Λk−1(Ω) + ‖d(σ − σh)‖L2Λk−1(Ω).

In the general B problems we have d(σ−σh) = f −fh, and standard interpolation

techniques can be used to efficiently reduce this error. Our results will focus on

the first term involving σ − σh, the quantity that is often of interest, yet typically

cannot be calculated explicitly.
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The remainder of the paper is organized as follows. In Section 2.3 we in-

troduce the notational and technical tools needed for the paper. The first part of

Section 2.3 follows the ideas of [5] in introducing general Hilbert complexes, the

de Rham complex, and properties of specific mappings between the complexes.

We then give a brief overview of a standard adaptive finite element algorithm.

In Section 2.4 we follow the ideas in [13] and develop a quasi-orthogonality re-

sult. In Section 2.5, we prove discrete stability (which was needed for proving

quasi-orthogonality in Section 2.4), and also establish a continuous stability re-

sult, which will be needed for deriving an upper bound on the error. In Section 2.6

we begin by introducing an error indicator and then derive bounds and a type of

continuity result for this indicator. An adaptive algorithm is then presented in

Section 2.7, and we then combine the results from the previous sections to prove

both convergence and optimality. Finally, we draw some conclusions in 2.8.

2.3 Preliminaries

In this section we first review abstract Hilbert complexes. We then examine

the particular case of the de Rham complex. We follow closely the notation and

the general development of Arnold, Faulk and Winther in [4, 5]. We also discuss

results from Demlow and Hirani in [18]. (See also [24, 25] for a concise summary

of Hilbert Complexes in a yet more general setting.) We then give an overview of

the basics of Adaptive Finite Element Methods (AFEM), and the ingredients we

will need to prove convergence and optimality within the FEEC framework.

2.3.1 Hilbert complexes

We begin with a quick summary of some basic concepts and definitions. A

Hilbert complex (W,d) is a sequence of Hilbert spaces W k equipped with closed,

densely defined linear operators, dk, which map their domain, V k ⊂ W k to the

kernel of dk+1 in W k+1. A Hilbert complex is bounded if each dk is a bounded

linear map from W k to W k+1 A Hilbert complex is closed if the range of each dk is

closed in W k+1. Given a Hilbert complex (W,d), the subspaces V k ⊂ W k endowed



25

with the graph inner product

〈u, v〉V k = 〈u, v〉Wk + 〈dku, dkv〉Wk+1 ,

form a Hilbert complex (V, d) known as the domain complex. By definition dk+1◦
dk = 0, thus (V, d) is a bounded Hilbert complex. Additionally, (V, d) is closed if

(W,d) is closed.

The range of dk−1 in V k will be represented by Bk, and the null space of dk

will be represented by Zk. Clearly, Bk ⊂ Zk. The elements of Zk orthogonal to Bk

are the space of harmonic forms, represented by Hk. For a closed Hilbert complex

we can write the Hodge decomposition of W k and V k,

W k = Bk ⊕ Hk ⊕ Zk⊥W , (2.2)

V k = Bk ⊕ Hk ⊕ Zk⊥V . (2.3)

Following notation common in the literature, we will write Zk⊥ for Zk⊥W or Zk⊥V ,

when clear from the context. Another important Hilbert complex will be the dual

complex (W,d∗), where d∗k, which is an operator from W k to W k−1, is the adjoint

of dk−1. The domain of d∗k will be denoted by V ∗k . For closed Hilbert complexes,

an important result will be the Poincaré inequality,

‖v‖V ≤ cP‖dkv‖W , v ∈ Zk⊥. (2.4)

The de Rham complex is the practical complex where general results we show on

an abstract Hilbert complex will be applied. The de Rham complex satisfies an

important compactness property discussed in [5], and therefore this compactness

property is assumed in the abstract analysis.

The abstract Hodge Laplacian

Given a Hilbert complex (W,d), the operator L = dd∗+d∗d, W k → W k will

be referred to as the abstract Hodge Laplacian. For f ∈ W k, the Hodge Laplacian
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problem can be formulated as the problem of finding u ∈ W k such that

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f, v〉, v ∈ V k ∩ V ∗k .

The above formulation has undesirable properties from a computation per-

spective. The finite element spaces V k ∩ V ∗k can be difficult to implement, and

the problem will not be well-posed in the presence of a non-trivial harmonic space,

Hk. In order to circumvent these issues, a well posed (cf. [4, 5]) mixed formu-

lation of the abstract Hodge Laplacian is introduced as the problem of finding

(σ, u, p) ∈ V k−1 × V k × Hk, such that:

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ V k−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V k,

〈u, q〉 = 0, ∀q ∈ Hk.

(2.5)

Sub-complexes and approximate solutions to the Hodge Laplacian

In [4, 5] a theory of approximate solutions to the Hodge-Laplace problem is

developed by using finite dimensional approximating Hilbert complexes. Let (W,d)

be a Hilbert complex with domain complex (V, d). An approximating subcomplex

is a set of finite dimensional Hilbert spaces, V k
h ⊂ V k with the property that dV k

h ⊂
V k+1
h . Since Vh is a Hilbert complex, Vh has a corresponding Hodge decomposition,

V k
h = Bk

h ⊕ Hk
h ⊕ Zk⊥Vh .

By this construction, (Vh, d) is an abstract Hilbert complex with a well posed

Hodge Laplace problem. Find (σh, uh, ph) ∈ V k−1
h × V k

h × Hk
h, such that

〈σh, τ〉 − 〈dτ, uh〉 = 0, ∀τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f, v〉, ∀v ∈ V k
h ,

〈uh, q〉 = 0, ∀q ∈ Hk
h.

(2.6)

An assumption made in [5] in developing this theory is the existence of a bounded

cochain projection, πh : V → Vh, which commutes with the differential operator.
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In [5], an a priori convergence result is developed for the solutions on the

approximating complexes. The result relies on the approximating complex getting

sufficiently close to the original complex in the sense that infv∈V kh ‖u− v‖V can be

assumed sufficiently small for relevant u ∈ V k. Adaptive methods, on the other

hand, gain computational efficiency by limiting the degrees of freedom used in areas

of the domain where it does not significantly impact the quality of the solution.

2.3.2 The de Rham complex and approximation properties

The de Rham complex is a cochain complex where the abstract results from

the previous section can be applied in developing practical computational methods.

This section reviews concepts and definitions related to the de Rham complex that

will be needed in our development of an adaptive finite element method. This

introduction will be brief and and mostly follows the notation from the more in-

depth discussion in [5].

For the remainder of the paper we assume a bounded Lipschitz polyhedral

domain, Ω ∈ Rn, n ≥ 2. Let Λk(Ω) be the space of smooth k-forms on Ω, and let

L2Λk(Ω) be the completion of Λk(Ω) with respect to the L2 inner-product. There

are no non-zero harmonic forms in L2Λn(Ω) (see [4], Theorem 2.4) which will often

simplify the analysis in our primary case of interest, k = n. For general k such a

property cannot be assumed, and therefore, since the B problem deals with the

spaces of k and (k − 1)-forms, analysis of the harmonic spaces is still necessary.

Note that the results in [13] hold only for polygonal and simply connected domains,

therefore Hk−1 is also void in the case k = n = 2.

The de Rham complex

Let d be the exterior derivative acting as an operator from L2Λk(Ω) to

L2Λk+1(Ω). The L2 inner-product will define the W -norm, and the V -norm will

be defined as the graph inner-product

〈u, ω〉V k = 〈u, ω〉L2 + 〈du, dω〉L2 .
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This forms a Hilbert complex (L2Λ(Ω), d), with domain complex (HΛ(Ω), d), where

HΛk(Ω) is the set of elements in L2Λk(Ω) with exterior derivatives in L2Λk+1(Ω).

The domain complex can be described with the following diagram

0→ HΛ0(Ω)
d−→ · · · → HΛn−1(Ω)

d−→ L2(Ω) −→ 0. (2.7)

It can be shown that the compactness property is satisfied, and therefore the prior

results shown on abstract Hilbert complexes can be applied.

The importance of the adjoint operator is clear by the first equation of the

mixed Hodge Laplace problem. Defining the coderivative operator, δ : Λk(Ω) →
Λk−1(Ω), and two particular spaces, will be helpful in understanding the adjoint

operator on the de Rham complex.

?δω = (−1)kd ? ω, (2.8)

H̊Λk(Ω) = {ω ∈ HΛk(Ω) tr∂Ωω = 0}, (2.9)

H̊∗Λk(Ω) := ?H̊Λn−k. (2.10)

Combining δ with Stoke’s theorem gives a useful version of integration by parts

〈dω, µ〉 = 〈ω, δµ〉+

∫
∂Ω

tr ω ∧ tr ? µ, ω ∈ Λk−1, µ ∈ Λk. (2.11)

The following result uses the above concepts and is helpful in understanding the

mixed Hodge Laplace problem on the de Rham complex.

Theorem 2.3.1. (Theorem 4.1 from [5]) Let d be the exterior derivative viewed as

an unbounded operator L2Λk−1(Ω)→ L2Λk(Ω) with domain HΛk(Ω). The adjoint

d∗, as an unbounded operator L2Λk(Ω)→ L2Λk−1(Ω), has H̊∗Λk(Ω) as its domain

and coincides with the operator δ defined in (2.8).

Applying the results from the previous section and Theorem 2.3.1, we get

the mixed Hodge Laplace problem on the de Rham complex: find the unique
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(σ, u, p) ∈ HΛk−1(Ω)×HΛk(Ω)× Hk such that

σ = δu, dσ + δdu = f − p in Ω,

tr ? u = 0, tr ? du = 0 on ∂Ω,

u ⊥ Hk.

(2.12)

Using proxy fields and symmetric properties of the problem, a generic method

for solving (3.9) in the case k = n equivalently solves the Poisson equation with

natural Dirichlet boundary conditions. In this case du = 0 and p = 0, thus the

mixed Hodge Laplace problem on the de Rham complex simplifies to: find the

unique (σ, u, p) ∈ HΛn−1(Ω)×HΛn(Ω)× Hn such that

σ = δu, dσ = f in Ω,

tr ? u = 0, on ∂Ω.
(2.13)

Let (Λn, d) be a finite dimensional subcomplex of the de Rham complex,

then a discrete version of (2.13) can be written: find the unique (σh, uh, ph) ∈
Λn−1
h (Ω)× Λn

h(Ω)× Hn
h such that

σh = δhuh, dσh = Phf in Ω,

tr ? uh = 0, on ∂Ω,
(2.14)

where Phf is the L2 projection of f on to the discrete space parameterized by

h. Note that δh is distinct from δ, and follows from the definition of the abstract

discrete problem.

Finite element differential forms

For the remainder of the paper it is assumed that all approximating sub-

complexes of the de Rham complex are constructed as combinations of the polyno-

mial spaces of k-forms, PrΛk and P−r Λk. For a detailed discussion on these spaces

and construction of Hilbert complexes using these spaces, see [5]. We also have
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useful properties in the case k = n,

P−r Λn = Pr−1Λn,

P−r Λ0 = PrΛ0.

For a shape-regular, conforming triangulation Th of Ω,Λk
h(Ω) ⊂ L2Λk(Ω)

will denote a space of k-forms constructed using specific combinations of the these

spaces on Th. For an element T ∈ Th, we set hT := diam(T ). We do not discuss

the details of these spaces further, but specific properties will be explained when

necessary.

Bounded Cochain Projections

Bounded cochain projections and their approximation properties are neces-

sary in the analysis of both uniform and adaptive FEMs in the FEEC framework.

Properties of three different interpolation operators will be important in our anal-

ysis. The three operators and respective notation that we will use are as follows:

the canonical projections Ih defined in [4, 5], the smoothed projection operator πh

from [5], and the commuting quasi-interpolant Πh, as defined in [18] with ideas

similar to [39, 40, 14]. Some cases will require a simple projection, and Phf also

written fh, will denote the L2-projection of f on to the discrete space parameter-

ized by h. fBh will denote the L2 projection of f onto the B component of the

discrete space parameterized by h. Note fBh = fh when k = n.

For the remainder of the paper, ‖·‖ will denote the L2Λk(Ω) norm, and when

taken on specific elements of the domain, T , we write ‖ · ‖T . For all other norms,

such as HΛk(Ω) and H1Λk(Ω), we write ‖ · ‖HΛk(Ω) and ‖ · ‖H1Λk(Ω) respectively.

Lemma 2.3.2. Suppose τ ∈ H1Λn−1(Ω), and Ih is the canonical projection op-

erator defined in [4, 5]. Let Λn−1
h (Ω) and Λn

h(Ω) be taken as above. Then Ih is a

projection onto Λn
h(Ω),Λn−1

h (Ω) and satisfies

‖τ − Ihτ‖T ≤ ChT‖τ‖H1Λn−1(T ), ∀T ∈ Th, (2.15)

Ihd = dIh (2.16)
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Proof. The first part is comes from Equation (5.4) in [4]. The second part follows

the construction of Ih.

Lemmas 2.3.3 and 2.3.4 deal with important properties of the canonical

projections. In each case we assume fh, uh ∈ Λn
h(Ω), and let Th be a refinement of

TH .

Lemma 2.3.3. Let T ∈ TH , then

∫
T

(fh − IHfh) = 0. (2.17)

Proof. In the case k = n, the canonical projections are L2 bounded. Let ω ∈
PrΛ

n(T ). This is sufficient since P−r Λn(T ) = Pr−1Λn(T ). By definition [4]:

∫
T

(ω − IHω) ∧ η = 0, η ∈ P−r Λ0(T ) = PrΛ
0(T ).

Set η = 1 and this completes proof.

Lemma 2.3.4. Let T ∈ TH , then

〈(Ih − IH)uh, fh〉T = 〈uh, (Ih − IH)fh〉T . (2.18)

Proof. ∫
T

(uh − IHuh) ∧ η = 0, η ∈ PrΛ0(T ) = ?PrΛ
n(T ).

Thus,

〈(Ih − IH)uh, fh〉T = 〈(Ih − IH)uh, (Ih − IH)fh〉T .

The proof is completed using the same logic on the IHuh term.

The next lemma is taken directly from [18], and will be a key tool in develop-

ing an upper bound for the error.

Lemma 2.3.5. Assume 1 ≤ k ≤ n, and φ ∈ HΛk−1(Ω) with ‖φ‖ ≤ 1. Then there

exists ϕ ∈ H1Λk−1(Ω) such that dϕ = dφ,ΠHdφ = dΠHφ = dΠHϕ, and
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∑
T∈Th

h−2
T ‖ϕ− ΠHϕ‖2

T + h−1
T ‖tr(ϕ− ΠHϕ)‖2

∂T ≤ C.

Proof. See Lemma 6 in [18].

The following theorem is a special case of Theorem 3.5 from [5]. Rather

than showing the result on an abstract Hilbert Complex with a general cochain

projection, we use the de Rham complex and the smoothed projection operator πh

in order to use uniform boundedness of the cochain projection.

Theorem 2.3.6. Assume Λk
h(Ω) is a subcomplex of HΛk(Ω) as described above,

and let πh be the smoothed projection operator. Then

‖(I − PHk)q‖V ≤ ‖(I − πkh)PHkq‖V , q ∈ Hk
h, (2.19)

then combining the above with the triangle inequality,

‖q‖V ≤ c‖PHkq‖V , q ∈ Hk
h. (2.20)

Proof. Since the de Rham complex is a bounded closed Hilbert complex, (2.19) is

directly from [5]. (2.19) with the triangle inequality implies

‖q‖V − ‖PHkq‖V ≤ ‖(I − πkh)‖‖PHkq‖V , q ∈ Hk
h,

thus,

‖q‖V ≤ (‖(I − πkh)‖+ 1)‖PHkq‖V , q ∈ Hk
h.

By construction πh is uniformly bounded with respect to h and therefore

(‖(I − πkh)‖ + 1) can be replaced with a generic constant not dependent on the

triangulation. In Corollary 2.3.8 a similar result is used to relate the harmonics on

two discrete complexes. In this case the canonical projection Ih can be used as a

map between the two complexes, and (I − Ih) is clearly uniformly bounded with

respect to h.

Theorem 2.3.7 will be essential in dealing with the harmonic forms in the
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proof of a continuous upper-bound. The corollary will be used identically when

proving a discrete upper-bound. For use in our next two results we introduce an

operator δ and one of its important properties. Let A,B be n < ∞ dimensional,

closed subspaces of a Hilbert space W , and let

δ(A,B) = sup
x∈A,‖x‖=1

‖x− PBx‖,

then [18], Lemma 2 which takes the original ideas from [27], shows

δ(A,B) = δ(B,A). (2.21)

Theorem 2.3.7. Assume Hk
H and Hk have the same finite dimensionality. The

there exist a constant CHk dependent only on T0, such that

δ(Hk,Hk
H) = δ(Hk

H ,H
k) ≤ CHk < 1. (2.22)

Proof. Given that Hk
H and Hk have the same finite dimensionality we can apply

(2.21) to prove the first equality.

For the second part,

δ(Hk
H ,H

k) = supx∈HkH ,‖x‖=1‖x− PHkx‖,

for any x ∈ Hk
H with ‖x‖ = 1, (2.20) implies,

C ≤ ‖PHkx‖, 0 < C < 1.

Now, by orthogonality of the projection, we have

δ(Hk
H ,H

k) ≤
√

1− C2 = CHk < 1.

Corollary 2.3.8.

δ(Hk
h,H

k
H) = δ(Hk

H ,H
k
h) ≤ C̃Hk < 1. (2.23)
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Proof. The proof follows the same logic as Theorem 2.3.7. The only difference

is that the harmonics are compared on two discrete complexes Hk
h and Hk

H , and

therefore Ih is used rather than πh.

2.3.3 Adaptive Finite Elements Methods

Given an initial triangulation, T0, the adaptive procedure will generate a

nested sequence of triangulations Tk and discrete solutions σk, by looping through

the following steps:

Solve −→ Estimate −→ Mark −→ Refine (2.24)

The following subsection will describe details of these steps.

Approximation Procedure

We assume access to a routine SOLVE, which can produce solution to (2.6)

given a triangulation, problem data, and a desired level of accuracy. For the

ESTIMATE step we will introduce error indicators ηT on each element T ∈ Tk. In

the MARK step we will use Dörfler Marking strategy [20]. An essential feature of

the marking process is that the summation of the error indicators on the marked

elements exceeds a user defined marking parameter θ.

We assume access to an algorithm REFINE in which marked elements are

subdivided into two elements of the same size, resulting in a conforming, shape-

regular mesh. Triangles outside of the original marked set may be refined in order

to maintain conformity. Bounding the number of such refinements is important in

showing optimality of the method. Along these lines, Stevenson [44] showed certain

bisection algorithms developed in two-dimensions can be extended to n-simplices

of arbitrary dimension satisfying

(1){Tk} is shape regular and the shape regularity depends only on T0,

(2)#Tk ≤ #T0 + C#M,
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where M is the collection of all marked triangles going from T0 to Tk.

Approximation of the Data

A measure of data approximation will be necessary in establishing a quasi-

orthogonality result. Following ideas of [31], data oscillation will be defined as

follows,

Definition 2.3.9. (Data oscillation) Let f ∈ L2Λk(Ω), and Th be a conforming

triangulation of Ω. Let hT be the mesh-size for a given T ∈ Th. We define

osc(f, Th) :=
( ∑
T∈Th

‖hT (f − fBh)‖2
T

)1/2
.

Stevenson [44] generalized the ideas of [8] to show that approximation of

data can be done in an optimal way regardless of dimension. Using the approxi-

mation spaces (As, ‖ · ‖As) and (Aso, ‖ · ‖Aso) as in [8] we recall the result.

Theorem 2.3.10. (Generalized Binev, Dahmen and DeVore) Given a tolerance

ε, f ∈ L2Λn(Ω) and a shape regular triangulation T0, there exists an algorithm

TH = APPROX(f, T0, ε),

such that

osc(f, TH) ≤ ε, and #TH −#T0 ≤ C‖f‖1/s

A1/s
o

ε−1/s.

As in the case of [13], the analysis of convergence and procedure will follow

[12], and the optimality will follow [43].

2.4 Quasi-Orthogonality

The main difficulty for mixed finite element methods is the lack of minimiza-

tion principle, and thus the failure of orthogonality. In [13], a quasi-orthogonality

property is proven using the fact that the error is orthogonal to the divergence free

subspace. In this section we follow a similar line of reasoning to prove a quasi-

orthogonality result between the solutions to (2.13) and (2.14). Analogous to [13],

our result uses the fact that σ−σh is orthogonal to the subspace Zn−1
h ⊂ HΛn−1

h (Ω).
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Solutions of Hodge Laplace problems on nested triangulations Th and TH
will frequently be compared. Nested in the sense that Th is a refinement of TH .

For a given f ∈ HΛk(Ω), let L−1f denote the solutions of (2.12). Let L−1
h fBh and

L−1
H fBH denote the solutions to the discrete problems on Th and TH respectively.

Set the following triples, (u, σ, p) = L−1f , (uh, σh, ph) = L−1
h fBh , (ũh, σ̃h, p̃h) =

L−1
h fBH and (uH , σH , pH) = L−1

H fBH . In the case k = n, as with general B

problems, the harmonic component will be zero in each of these solutions. When

we are only interested in σ we will abuse this notation by witting σ = L−1f .

Lemma 2.4.1. Given f ∈ L2Λk(Ω), such that f ∈ Bk, and two nested triangula-

tions Th and TH , then

〈σ − σh, σ̃h − σH〉 = 0. (2.25)

Proof. Since σ̃h − σH ∈ V k−1
h ⊂ V k−1, (2.5) implies

〈σ − σh, σ̃h − σH〉 = 〈u− uh, d(σ̃h − σH)〉,

and the harmonic terms are zero since these are B problems,

= 〈u− uh, fBH − fBH 〉

= 0.

Theorem 2.4.2. Given f ∈ L2Λn(Ω) and two nested triangulations Th and TH ,

then

〈σ − σh, σh − σH〉 ≤
√
C0‖σ − σh‖osc(fBh , TH), (2.26)

and for any δ > 0,

(1− δ)‖σ − σh‖2 ≤ ‖σ − σH‖2 − ‖σh − σH‖2 +
C0

δ
osc2(fBh , TH). (2.27)
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Proof. By (2.25) we have

〈σ − σh, σh − σH〉 = 〈σ − σh, σh − σ̃h〉+ 〈σ − σh, σ̃h − σH〉

= 〈σ − σh, σh − σ̃h〉

≤ ‖σ − σh‖‖σh − σ̃h‖.

And then by the discrete stability result, Theorem 2.5.4, we have

≤
√
C0‖σ − σh‖osc(fBh , TH).

(2.27) follows standard arguments and is identical to [13] (3.4)

2.5 Continuous/Discrete Stability

In this section we will prove stability results for approximate solutions to the

σ portion of the Hodge Laplace problem. Theorem 2.5.1 gives a stability result for

particular solutions of the Hodge de Rham problem that will be useful in bounding

the approximation error in Section 2.6. Theorem 2.5.4 will prove the discrete

stability result used in Theorem 2.4.2. The basic structure of these arguments

will follow [13], but key modifications are introduced in order to generalize the

dimensionality and topology of the main results.

Theorem 2.5.1. (Continuous Stability Result) Given f ∈ L2Λn(Ω), let Th be a

triangulation of Ω. Set (σ, u, p) = L−1f and (σ̃, ũ, p̃) = L−1fBh, then

‖σ − σ̃‖ ≤ Cosc(f, Th). (2.28)

Proof. The harmonic terms are zero since f, fBh ∈ Bk, thus

‖σ − σ̃‖2 = 〈d(σ − σ̃), u− ũ〉 = 〈f − fBh , u− ũ〉.

Let v = u−ũ. Since v ∈ Bk and ‖δv‖ = ‖grad v‖ = ‖σ−σ̃‖, we have v ∈ H1Λn(Ω).
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Restricting v to an element T ∈ Th, we have v ∈ H1Λn(T ), thus

‖σ − σ̃‖2 = 〈f − fBh , v〉 =
∑
T∈Th

〈f − fBh , v − Ihv〉T .

Applying (2.15),

≤ C
∑
T∈Th

hT‖f − fBh‖T‖v‖H1Λn(T )

= C
∑
T∈Th

hT‖f − fBh‖T (‖u− ũ‖T + ‖δ(u− ũ)‖T )

≤ C(
∑
T∈Th

‖hT (f − fBh)‖2
T )1/2(

∑
T∈Th

(‖u− ũ‖T + ‖δ(u− ũ)‖T )2)1/2,

and v ∈ H1Λn(Ω) allows us to to combine terms of the summation,

≤ C(
∑
T∈Th

‖hT (f − fBh)‖2
T )1/2(‖u− ũ‖+ ‖δ(u− ũ)‖).

Since u− ũ ∈ Bk, ‖u− ũ‖ = 〈u− ũ, dτ〉 for some τ ∈ Z⊥ with ‖dτ‖ = 1, thus

= C(
∑
T∈Th

‖hT (f − fBh)‖2
T )1/2〈(σ − σ̃), τ〉Ω + ‖σ − σ̃‖).

Then applying Poincaré on τ :

= C‖σ − σ̃‖(
∑
T∈Th

‖hT (f − fBh)‖2
T )1/2.

Divide through by ‖σ − σ̃‖ to complete proof.

The following is Lemma 4 in [18], and is a special case of Theorem 1.5 of [30].

It is related to the bounded invertibility of d, and will be an important tool in

proving discrete stability.

Lemma 2.5.2. Assume that B is a bounded Lipschitz domain in Rn that is home-

omorphic to a ball. Then the boundary value problem dϕ = g ∈ L2Λk(B) in
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B, tr ϕ = 0 on ∂B has a solution ϕ ∈ H1
0 Λk−1(B) with ‖ϕ‖H1Λk−1(B) ≤ C‖g‖B if

and only if dg = 0 in B, and in addition, tr g = 0 on ∂B if 0 ≤ k ≤ n − 1 and∫
B
g = 0 if k = n .

The next lemma is an intermediate step in proving the discrete stability result.

The general structure follows [13] and applies Lemma 2.5.2 in order to find a

sufficiently smooth function that is essentially a bounded inverse of d for the ap-

proximation error of uh on TH .

Lemma 2.5.3. Let Th, TH be nested conforming triangulations and let σh, σH be

the respective solutions to (2.6) with data f ∈ L2Λn(Ω). Then for any T ∈ TH

‖uh − IHuh‖T ≤
√
C0hT‖σh‖T . (2.29)

Proof. Let gΩ = uh − IHuh = (Ih − IH)uh ∈ L2Λn(Ω). Then, for any T ∈ TH let

g = trTgΩ ∈ L2Λn(T ), and by Lemma 2.3.3,
∫
T
g = 0. Thus Lemma 2.5.2 can be

applied to find τ ∈ H1
0 Λn−1(T ), such that:

dτ = (Ih − IH)uh, on T

‖τ‖H1Λn−1(T ) ≤ C‖(Ih − IH)uh‖T .

Extend τ to H1Λn−1(Ω) by zero and then, by Lemma 2.3.4,

‖(Ih − IH)uh‖2
T = 〈(Ih − IH)uh, dτ〉T = 〈uh, (Ih − IH)dτ〉T .

Then by Lemma 2.3.2, and locality of τ ,

= 〈uh, d(Ih − IH)τ〉Ω = 〈σh, (Ih − IH)τ〉Ω.

Then again by locality of τ ,

= 〈σh, (Ih − IH)τ〉T ≤ ‖σh‖T (‖τ − Ihτ‖T + ‖τ − IHτ‖T ).
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Since Ih is uniformly bounded with respect to h on Λn
h(Ω),

≤ ChT‖σh‖0,T‖τ‖H1Λn−1(T ) ≤ ChT‖σh‖T‖(Ih − IH)uh‖T .

Cancel one power of ‖(Ih − IH)uh‖T to complete the proof.

Theorem 2.5.4. (Discrete Stability Result) Let Th and TH be nested conforming

triangulations. Let (ũh, σ̃h, p̃h) = L−1
h fBH and (uh, σh, ph) = L−1

h fBh, with f ∈
L2Λn(Ω). Then there exists a constant such that

‖σh − σ̃h‖ ≤ Cosc(fBh , TH) (2.30)

Proof. From 2.6, and since ph, p̃h = 0, we have

〈σh − σ̃h, τh〉 = 〈uh − ũh, dτh〉, ∀τh ∈ Λk−1
h , (2.31)

〈d(σh − σ̃h), vh〉 = 〈fBh − fBH , vh〉, ∀vh ∈ Λk
h. (2.32)

Next set τh = σh − σ̃h in (2.31), and vh = uh − ũh in (2.32) to obtain:

‖σh − σ̃h‖2 = 〈uh − ũh, d(σh − σ̃h)〉 = 〈fBh − fBH , vh〉,

and since (fBh − fBH ) ⊥ L2Λk
H(Ω) when k = n, we have

〈fBh − fBH , vh〉 = 〈fBh − fBH , vh − IHvh〉.



41

Then by Lemma 2.5.3, we have:

‖σh − σ̃h‖2 =
∑
T∈TH

〈vh − IHvh, fBh − fBH 〉T

≤
∑
T∈TH

‖fBh − fBH‖T‖vh − IHvh‖T

≤ C
∑
T∈TH

hT‖fBh − fBH‖T‖σh − σ̃h‖T

≤ C(
∑
T∈TH

h2
T‖fBh − fBH‖2

T )1/2‖σh − σ̃h‖

Then cancel one ‖σh − σ̃h‖ to complete the proof.

2.6 Error Estimator, Upper and Lower bounds

In this section we introduce the a posteriori error estimators used in our

adaptive algorithm. The first two terms of the estimator follow [3, 13], and a third

term is introduced in order to construct a more practical and efficient algorithm.

Next, we prove bounds on these estimators and a continuity result, both of which

are key ingredients in showing the convergence and optimality of our adaptive

method.

2.6.1 Error Estimator: Definition, Lower bound and Con-

tinuity

Definition 2.6.1. (Element Error Estimator) Let T ∈ TH , f ∈ L2Λk(Ω), and

σH = L−1fBH . Let the jump in τ over an element face be denoted by [[τ ]]. For

element faces on ∂Ω we set [[τ ]] = τ . The element error indicator is defined as

η2
T (σH) = hT‖[[tr ? σH ]]‖2

∂T + h2
T‖δσH‖2

T + h2
T‖f − dσH‖2

T

For a subset T̃H ⊂ TH , define
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η2(σH , T̃H) :=
∑
T∈T̃H

η2
T (σH)

Theorem 2.6.2. (Lower Bound ) Given f ∈ L2Λk(Ω) and a shape regular tri-

angulation TH , let σ = L−1f and σH = L−1
H fBH . Then there exists a constant

dependent only on the shape regularity of TH such that

C2η
2(σH , TH) ≤ ‖σ − σH‖2 + C2osc2(f, TH). (2.33)

Proof. In proving a lower bound, in [18] it is shown that

hT‖δσH‖T ≤ C‖σ − σH‖T ,

h
1/2
T ‖[[tr ? σH ]]‖∂T ≤ C‖σ − σH‖Tt ,

where Tt is the set of all triangles sharing a boundary with T . The first is equation

(5.7) and the second is a result of equation (5.12) in [18].

Sum terms and add oscillation to both sides to complete the error-indicator

term. Notice, by conformity of the triangulation, the summation of the ‖σ −
σH‖Tt terms can at most be some fixed multiple of ‖σ − σH‖ depending on the

dimensionality of the problem.

The following lemma will be important in proving a continuity result used

in showing convergence of our adaptive algorithm. It is nearly identical to an

estimator efficiency proof in [18], but the subtle difference is that we make use of

σH , the solution on the less refined mesh, and σ is not used in our arguments.

Lemma 2.6.3. Given f ∈ L2Λk(Ω) and nested triangulations Th and TH , let

σh = L−1
h fBh and σH = L−1

H fBH . Then for T ∈ Th

C2

∑
T∈Th

(hT‖[[tr ? (σh − σH)]]‖2
∂T + h2

T‖δ(σh − σH)‖2
T ) ≤ ‖σh − σH‖2. (2.34)

Proof. Here we will closely follow [18] in applying the “bubble function” technique
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of Verfürth[45] in order to bound residual terms in the FEEC framework. For

T ∈ Th one can construct a corresponding bubble function bT ∈ W 1
∞(Ω) with

supp(bT ) = T , and the property that for any polynomial form v of arbitrary but

uniformly bounded degree defined on T , we have

‖v‖T ' ‖
√
bTv‖T . (2.35)

For n − 1 dimensional faces e = T1 ∩ T2, with T1, T2 ∈ Th, and T2 void

(see [18]) on ∂Ω, one can construct a corresponding edge bubble function be ∈
W 1
∞(Ω) with supp(be) = T1 ∪ T2 and the property that for any polynomial form v

of arbitrary but uniformly bounded degree defined on e, we have

‖v‖e ' ‖
√
bev‖e. (2.36)

Given a k-form v defined on an n− 1 dimensional face e = T1 ∩T2, one can

construct χv to be a polynomial extension of v to T1 ∪ T2 such that

‖χv‖(T1∪T2) ≤ Ch
1/2
T ‖v‖e, (2.37)

where hT can be either hT1 or hT2 since they are neighbors which have sizes related

by a shape regularity constant

Let ψ = bT (δ(σh − σH)), which by construction of bT will be zero on ∂T .

Applying integration by parts, we have

‖δ(σh − σH)‖2
T ' 〈δ(σh − σH), ψ〉 = 〈σh − σH , dψ〉, (2.38)

and then applying an inverse inequality ‖dψ‖T ≤ Ch−1
T ‖ψ‖T ,

hT‖δ(σh − σH)‖ ≤ C‖σh − σH‖T . (2.39)
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For an element face e, shared by elements T1, T2, we have

‖[[tr ? (σh − σH)]]‖2
e ' 〈be ? ψ, [[tr ? (σh − σH)]]〉

=

∫
e

tr (beχψ) ∧ [[tr ? (σh − σH)]]

= 〈d(beχψ), σh − σH〉T1∪T2 − 〈beχψ, δh(σh − σH)〉T1∪T2 ,
(2.40)

where δh is defined to be δ evaluated elementwise on elements of Th. The necessity

of this additional definition is that neither σh or σH are in H∗Λk−1(Ω) globally,

but σh and σH are in H∗Λk−1 when restricted to individual elements of Th. Next,

using the inverse inequality ‖d(beχψ)‖T ≤ Ch−1
T ‖beχψ‖T , we have

≤ C‖[[tr ? (σh − σH)]]‖e(h−1/2
T ‖σh − σH‖T1∪T2 + h

1/2
T ‖δh(σh − σH)‖T1∪T2), (2.41)

where hT can be either hT1 or hT2 for the same reasons as mentioned above. Ap-

plying (2.39) we have

h
1/2
T ‖[[tr ? (σh − σH)]]‖e ≤ C‖σh − σH‖T1∪T2 . (2.42)

Squaring and summing (2.39) and (2.42) for every element will complete the proof.

The edges not on the boundary of Ω will be included twice in the summation, and

the overlap of the C‖σh−σH‖T1∪T2 terms can be bounded by a multiple depending

on n.

Theorem 2.6.4. (Continuity of the Error Estimator ) Given f ∈ L2Λk(Ω) and

nested triangulations Th and TH , let σh = L−1
h fBh and σH = L−1

H fBH . Then we

have:

β(η2(σh, Th)− η2(σH , Th)) ≤ ‖σh − σH‖2 + osc2(fBh , TH) (2.43)
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Proof. Applying the triangle inequality to (2.34) gives

‖σh − σH‖2 ≥ C
( ∑
T∈Th

(hT‖[[tr ? (σh)]]‖2
∂T + h2

T‖δ(σh)‖2
T )

−
∑
T∈Th

(hT‖[[tr ? (σH)]]‖2
∂T + h2

T‖δ(σH)‖2
T )
)
.

In terms of the error indicator this can be written

‖σh − σH‖2 ≥ C
(
η2(σh, Th)− η2(σH , Th)

−
∑
T∈Th

h2
T‖f − dσh‖2

T +
∑
T∈Th

h2
T‖f − dσH‖2

T

)
.

An additional application of the triangle inequality yields

‖σh − σH‖2 ≥ C(η2(σh, Th)− η2(σH , Th)−
∑
T∈Th

h2
T‖d(σh − σH)‖2

T )).

Since fBh , fBH ∈ L2Λk(Ω) globally, using the summation on the coarser mesh

completes the proof

‖σh − σH‖2 +
∑
T∈TH

h2
T‖d(σh − σH)‖2

T ≥ C(η2(σh, Th)− η2(σH , Th)).

2.6.2 Continuous and Discrete Upper Bounds

The following proofs have a similar structure to the continuous and discrete

upper bounds proved in [3, 13]. A key element of the proof will be comparisons

between the discrete solution σH = L−1
H fBH and the solution to the intermediate

problem, σ̃ = L−1fBH . We begin by looking the orthogonal decomposition of

σ̃ − σH ,

σ̃ − σH = (σ̃ − PZ⊥σH)− PBk−1σH − PHk−1σH
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which allows the norm to be rewritten

‖σ̃ − σH‖2 = ‖(σ̃ − PZ⊥σH)‖2 + ‖PBk−1σH‖2 + ‖PHk−1σH‖2.

Lemmas 2.6.5, 2.6.6 and 2.6.7 will each bound a portion of this orthogonal decom-

position. Then Theorem 2.6.8 will combine these results in proving the desired

error bound.

Lemma 2.6.5. Given an f ∈ L2Λk(Ω) in Bk. Let σ̃ = L−1fBH and σH = L−1
H fBH .

Then

‖(σ̃ − PZ⊥σH)‖2 = 0. (2.44)

Proof. Since we are only dealing with Z⊥, we have

σ̃ − PZ⊥σH = δv, v ∈ HΛk(Ω).

Thus,

‖(σ̃ − PZ⊥σH)‖2 = 〈σ̃ − σH , δv〉 = 〈d(σ̃ − σH), v〉.

In the case of B problems the harmonics are void and

〈d(σ̃ − σH), v〉 = 〈fBH − fBH , v〉 = 0.

The next lemma uses the quasi-interpolant ΠH described in [18], and also

applies integration by parts in the same standard fashion that [18] use when bound-

ing error measured in the natural norm, ‖u−uh‖HΛk(Ω)+‖σ−σh‖HΛk−1(Ω)+‖p−ph‖.
In [18], coercivity of the bilinear-form is used to separate components of the error,

whereas here we simply analyze the orthogonal decomposition of σ − σH . In [18],

the Galerkin orthogonality implied by taking the difference between the continuous

and discrete problems is employed in order to make use of Πh. Here we are able

to introduce the quasi-interpolant by simply using the fact that σH ⊥ Bk−1
H .
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Lemma 2.6.6. Given an f ∈ L2Λk(Ω) in Bk. Let σH = L−1
H fBH . Then

‖PBk−1σH‖2 ≤ Cη2(σH , TH). (2.45)

Proof.

‖PBk−1σH‖ = 〈σH ,
PBk−1σH
‖PBk−1σH‖

〉 = 〈−σH , dφ〉, φ ∈ Z⊥k−2

By the the Poincaré inequality ‖φ‖ can be bounded from above by a constant. φ

can then be replaced with ϕ satisfying the properties of Lemma 2.3.5, and noting

σH ⊥ Bk−1
H ,

= 〈−σH , d(ϕ− ΠHϕ)〉.

The problem is now reduced to a case handled in [18], when they bound a portion

of their η−1 estimator. We follow their ideas to complete to proof. Applying the

integration by parts formula we have

=
∑
T∈TH

[

∫
∂T

(tr ? σH ∧ tr (ϕ− ΠHϕ)) + 〈δσH , ϕ− ΠHϕ〉T ]

Noting tr(ϕ−ΠHϕ) is single-valued on the element boundaries, this can be reduced

to

≤ C
∑
T∈TH

‖tr(ϕ− ΠHϕ)‖∂T‖[[tr ? σH ]]‖∂T + ‖ϕ− ΠHϕ‖T‖δσH‖T

≤ C
∑
T∈TH

(h
1
2
T‖[[tr ? σH ]]‖∂T + hT‖δσH‖T )(h

− 1
2

T ‖tr(ϕ− ΠHϕ)‖∂T + h−1
T ‖ϕ− ΠHϕ‖T )

Which using the definition of the error indicator simplifies to

≤ Cη(σH , TH)
∑
T∈TH

(h−1
T ‖tr(ϕ− ΠHϕ)‖2

∂T + h−2
T ‖ϕ− ΠHϕ‖2

T )1/2.

The proof is then complete by applying the bounds from Lemma 2.3.5, and squaring

both sides.

Lemma 2.6.7. Given an f ∈ L2Λk(Ω) in Bk. Let σ̃ = L−1fBH and σH = L−1
H fBH .
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Then

‖PHk−1σH‖2 ≤ C‖σ̃ − σH‖2, C < 1. (2.46)

Proof. Since σ̃ ⊥ Zk−1 and σH ⊥ Zk−1
H , we follow [18] and write

‖PHk−1σH‖ = supv∈Hk−1,‖v‖=1(σH − σ̃, v − PHk−1
H
v)

≤ supv∈Hk−1,‖v‖=1(‖v − PHk−1
H
v‖)‖σH − σ̃‖

= δ(Hk−1,Hk−1
H )‖σH − σ̃‖.

Applying Theorem 2.3.7, and then squaring both sides we get

‖PHk−1σH‖2 ≤ C‖σ̃ − σH‖2, C < 1.

Now we have the tools to prove the continuous upper bound for the B problems.

Theorem 2.6.8. (Continuous Upper-Bound) Given an f ∈ L2Λk(Ω) in Bk. Let

σ̃ = L−1fBH and σH = L−1
H fBH . Then

‖σ − σH‖2 ≤ C1η
2(σH , TH). (2.47)

Proof. Since these are B problems, p, p̃ = 0, and

〈σ − σ̃, σ̃ − σH〉 = 〈u− ũ, d(σ̃ − σH)〉

= 〈u− ũ, fBH − fBH 〉

= 0.
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Thus, by applying (2.46), (2.44), (2.45) and Theorem 2.5.1,

‖σ − σH‖2 = ‖σ̃ − σH‖2 + ‖σ − σ̃‖2

≤ C(‖(σ̃ − PZ⊥σH)‖2 + ‖PBk−1σH‖2) + ‖σ − σ̃‖2

≤ C(‖PBk−1σH‖2) + ‖σ − σ̃‖2

≤ C1(η2(σH , TH)) + C0osc2(f, TH)

≤ Cη2(σH , TH).

Theorem 2.6.9. (Discrete Upper-Bound) Given f ∈ L2Λk(Ω) in B and nested

triangulations Th and TH , let σh = L−1
h fBh and σH = L−1

H fBH . Then

‖σh − σH‖2 ≤ C1η
2(σH , TH). (2.48)

Proof. The proof requires the same ingredients needed to prove the continuous

upper bound. The same intermediate steps are taken by performing analysis on

the W k−1
h orthogonal decomposition of σ̃h − σH .

σ̃h − σH = (σ̃h − PZ⊥h
σH)− PBk−1

h
σH − PHk−1

h
σH .

The discrete version of Lemma 2.6.5 uses δh rather than δ, but is otherwise iden-

tical. The discrete version of Lemma 2.6.6 is identical. The discrete version of

Lemma 2.6.7 follows the same structure but makes use of Corollary 2.3.8. The

final step in the proof uses the discrete stability result, Theorem 2.5.4.

2.7 Convergence of AMFEM

After presenting the adaptive algorithm, the remainder of this section proves

convergence and then optimality. The results in this section follow ideas already

in the literature [43, 31, 32, 20, 13], with Theorem 2.7.3 building on these ideas by

proving reduction in a quasi-error using relationships between data oscillation and
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reduction of a second type of quasi-error. The following algorithm and analysis of

convergence deal specifically with the case k = n. In presenting our algorithm we

replace h with an iteration counter k.

Algorithm:[TN , σN ] = AMFEM(T0, f, ε, θ): Given a initial shape-regular triangu-

lation T0 and marking parameter θ, set k = 0 and iterate the following steps until

a desired decrease in the error-estimator is achieved:

(1)(uk, σk, pk) = SOLV E(f, Tk)

(2){ηT} = ESTIMATE(f, σk, Tk)

(3)Mk = MARK({ηT}, Tk, θ)

(4)Tk+1 = REFINE(Tk,Mk)

2.7.1 Convergence of AMFEM

The following notation will be used in the proofs and discussion of this

section:

ek = ‖σ − σk‖2, Ek = ‖σk+1 − σk‖2, ηk = η2(σk, Tk),

ok = osc2(f, Tk), ôk = osc2(fk+1, Tk),

where fk = Pkf = PBkf since k = n.

Lemma 2.7.1.

βηk+1 ≤ β(1− λθ)ηk + Ek + ôk. (2.49)

Proof. This follows from continuity of the error estimator (2.43), and properties

of the marking strategy, i.e. reduction of the summation on a finer mesh due to

smaller element sizes on refined elements. The proof can be found in [13]. λ < 1

is a constant dependent on the dimensionality of the problem.

For convenience, we recall the quasi-orthogonality (2.27) the continuous
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upper-bound (2.47) equations,

(1− δ)ek+1 ≤ ek − Ek + C0ôk, for any δ > 0,

ek ≤ C1ηk.

With these three ingredients, basic algebra leads to the following result,

Theorem 2.7.2. When

0 < δ < min{ β

2C1

θ, 1}, (2.50)

there exists α ∈ (0,1) and Cδ such that

(1− δ)ek+1 + βηk+1 ≤ α[(1− δ)ek + βηk] + Cδôk. (2.51)

Proof. Follows the same steps as [13].

With the above result we next prove convergence.

Theorem 2.7.3. (Termination in Finite Steps) Let σk be the solution obtained in

the kth loop in the algorithm AMFEM, then for any 0 < δ < min{ β
2C1

θ, 1}, there

exists positive constants Cδ and 0< γδ < 1 depending only on given data and the

initial grid such that,

(1− δ)‖σ − σk‖2 + βη2(σk, Tk) + ζosc2(f, Tk) ≤ Cqγ
k
δ ,

and the algorithm will terminate in finite steps.

Proof. The following proof will be broken into two cases, depending on the relative

size of ôk. For ease of reading, let qk = (1− δ)‖σ − σk‖2 + βη2(σk, Tk).

Case 1. Suppose the case Cδôk ≤ (1−α
2

)qk. Thus for an arbitrary positive constant

C, (2.51) yields

qk+1 + Cok+1 ≤ (α +
1− α

2
)qk + Cok.



52

Since βok ≤ qk,

qk+1 + Cok+1 ≤ (α̂ +
1− α̂

2
)qk +

C − β(1−α̂)
2

C
Cok, (2.52)

where

α̂ = (α +
1− α

2
) < 1.

Case 2. Suppose the case Cδôk ≥ (1−α
2

)qk. We then have,

ok+1 ≤ κok, κ < 1,

ôk ≤ ok.

This implies

ok+1 ≤ (κ+
1− κ

2
)ok −

1− κ
2

ôk.

Combined with (2.51) we have

qk+1 +
2Cδ

1− κ
ok+1 ≤ αqk + κ̂

2Cδ
1− κ

ok, (2.53)

where κ̂ = (κ + 1−κ
2

) < 1. The proof is completed by taking 2Cδ
1−κ for the constant

in (2.52), and then combining with (2.53). The rate of decay will be determined

by

γδ = max

{
κ̂,
C − β(1−α̂)

2

C
, α̂ +

1− α̂
2

}
< 1. (2.54)

The methods used above to prove convergence have many similarities to

prior work. Our treatment of oscillation, however, uses properties of ôk that create

distinct implementation and efficiency improvements. To clarify this point, next we

compare our convergence proof with two from the literature, [12, 13]. In order to

make the differences clear, we focus on the basic properties of the three equations

that are at the core of the convergence analysis.

Convergence is essentially proved by manipulating the equations for quasi-

orthogonality, continuity of the error estimator and the upper-bound. For this
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reason they will be the focus of our discussion, and for ease of comparison, we

present our results together in a simplified form.

(1− δ)ek+1 ≤ ek − Ek + C0

δ
ôk, for any δ > 0,

βηk+1 ≤ βληk + Ek + ôk, λ < 1,

ek ≤ C1ηk.

(2.55)

In [12], an orthogonality result, ek+1 = ek − Ek, is possible since they are not

working with a mixed merthod. In addition, a similar estimator continuity result

is proved without the need for the ôk term. Since oscillation is not present, con-

vergence is proved without the additional analysis used in the proof of Theorem

2.7.3.

For the purpose of comparison, we now present a simplified version of the

equivalent equations from [13],

(1− δ)ek+1 ≤ ek − Ek + C0

δ
ok, for any δ > 0,

βηk+1 ≤ βληk + Ek, λ < 1,

ek ≤ C1ηk + C0ok.

(2.56)

In [13], oscillation is not included in the error indicator and therefore it is needed in

the upper bound. Once ok is used for the upper-bound, it is used out of simplicity

in the quasi-orthogonality result as ok ≥ ôk. The issue with including ok versus

ôk is that ok can be significant in steps where oscillation is not reduced. Whereas

the value of ôk indicates oscillation reduction and thus reduces the impact of data

oscillation on remaining iterations. In order to manage this situation, the algo-

rithm in [13] marks separately for η and oscillation. This is a disadvantage from an

implementation point of view, and is also inefficient in cases when η and oscillation

are different orders of magnitude.

2.7.2 Optimality of AMFEM

Once Theorem 2.5.1, Theorem 2.3.10, and the Lemma 2.7.1 are established,

optimality can be proved independent of dimension following the proof of Theorem
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5.3 in [43].

Theorem 2.7.4. (Optimality) For any f ∈ L2Λn(Ω), shape regular T0 and ε >

0, let σ = L−1f and [ σN , TN ] = AMFEM( TH , fH , ε/2, θ). Where [TH , fH ] =

APPROX( f, T0, ε/2 ). If σ ∈ As and f ∈ Aso, then

‖σ − σN‖ ≤ C(‖σ‖As + ‖f‖Aso)(#TN −#T0)−s. (2.57)

Proof. Follows directly from [13].

2.8 Conclusion and Future Work

In this paper, we have focused on the error ‖σ−σh‖ for the Hodge Laplacian

in the specific case k = n. Next, we outline how this work relates to further

generalizations.

Extending the convergence results to general B problems is of particular

interest. With the exception of the stability results, the methods used to prove

convergence relied only on properties inherent to all B problems. The issue with

stability is that we cannot assume HΛk(Ω) ∩ H̊∗Λk(Ω) ⊂ H1Λk(Ω) [5]. However,

H̊∗Λn(Ω) ⊂ H1Λn(Ω), thus we have the desired interpolation properties of u − ũ
in the case k = n. Since σ and σh depend only on the B component of f , a

convergent method for B problems might be useful in extending results to general

Hodge Laplace problems. The issue with this extension, however, is that only

the B component of f should be considered when resolving data oscillation, and

access to this quantity is not presumed. Thus extending results from B problems

to general Hodge Laplace problems would require analysis of the error caused by

using an approximation of fB.

Adaptivity focusing on the natural norm, ‖u−uh‖HΛk(Ω)+‖σ−σh‖HΛk−1(Ω)+

‖p− ph‖, is another direction of interest. Error indicators related to this norm are

analyzed in [18], yet difficulties still arise in an attempt to gain full generality (see

[18] for a detailed discussion ). Additionally, a quasi-orthogonality result would

be useful. The quasi-orthogonality proved here used analysis tailored specifically
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to the norm of interest. A generalized quasi-orthogonality and convergence result

would likely require a different line of of reasoning and a specific analysis regarding

a refinement strategy that takes into account the approximation of the harmonic

forms.
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3.1 Abstract

In a 1988 article, Dziuk introduced a nodal finite element method for the

Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear trian-

gulation, initiating a line of research into surface finite element methods (SFEM).

Demlow and Dziuk built on the original results, introducing an adaptive method

for problems on 2-surfaces, and Demlow later extended the a priori theory to

3-surfaces and higher order elements. In a separate line of research, the Finite

Element Exterior Calculus (FEEC) framework has been developed over the last

decade by Arnold, Falk and Winther and others as a way to exploit the observation

that mixed variational problems can be posed on a Hilbert complex, and Galerkin-

type mixed methods can be obtained by solving finite dimensional subproblems.

In 2011, Holst and Stern merged these two lines of research by developing a frame-

work for variational crimes in abstract Hilbert complexes, allowing for application

of the FEEC framework to problems that violate the subcomplex assumption of

Arnold, Falk and Winther. When applied to Euclidean hypersurfaces, this new

framework recovers the original a priori results and extends the theory to prob-

lems posed on surfaces of arbitrary dimensions. In yet another seemingly distinct

line of research, Holst, Mihalik and Szypowski developed a convergence theory for

a specific class of adaptive problems in the FEEC framework. Here, we bring these

ideas together, showing convergence and optimality of an adaptive finite element

method for the mixed formulation of the Hodge Laplacian on hypersurfaces.

3.2 Introduction

Adaptive finite element methods (AFEM) based on a posteriori error esti-

mators have become standard tools in solving PDE problems arising in science and

engineering (cf. [1, 46, 38]). A fundamental difficulty with these adaptive meth-

ods is guaranteeing convergence of the solution sequence. The first convergence

result was obtained by Babuska and Vogelius [7] for linear elliptic problems in one

space dimension, and many improvements and generalizations to the theory have

followed [19, 31, 34, 33, 41]. Convergence, however, does not necessarily imply
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optimality of a method. This idea has led to the development of a theory related

to the optimal computational complexity of AFEM, and within this framework

certain classes of adaptive methods have been shown to be optimal [8, 43, 12].

In a 1988 article, Dziuk [21] introduced a nodal finite element method for

the Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear

triangulation, pioneering a line of research into surface finite element (SFEM)

methods. Demlow and Dziuk [17] built on the original results, introducing an

adaptive method for problems on 2-surfaces, and Demlow later extended the a

priori theory to 3-surfaces and higher order elements [16]. While a posteriori

error indicators are introduced and shown to have desirable properties in [17], a

convergence and optimality theory related to problems on surfaces is a relatively

undeveloped area, and developing such a theory is the main topic of this article.

A separate idea that has had a major influence on the development of nu-

merical methods for PDE applications is that of mixed finite elements, whose early

success in areas such as computational electromagnetics was later found to have

surprising connections with the calculus of exterior differential forms, including

de Rham cohomology and Hodge theory [10, 35, 36, 22]. Around the same time

period, Hilbert complexes were studied as a way to generalize certain properties of

elliptic complexes, particularly the Hodge decomposition and Hodge theory [11].

These ideas came together with the introduction of the theory of finite element ex-

terior calculus (FEEC), where Arnold, Falk and Winther showed that Hilbert com-

plexes were a natural setting for analysis and numerical approximation of mixed

variational problems by mixed finite elements. This theory has proved a powerful

tool in developing general results related to mixed finite elements. In [24, 25], Holst

and Stern extend the theory to include problems in which the discrete complex is

not a subcomplex of the approximated complex, and applying these results they

develop an a priori theory for the Hodge Laplacian on hypersurfaces, and to non-

linear problems. This made it possible in [24] to reproduce the existing a priori

theory for SFEM as a particular application, as well as to generalize SFEM theory

in several directions. In [23], we used the FEEC framework as a critical tool for

developing an AFEM convergence theory for a class of adaptive methods for linear
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problems posed on domains in Rn. The aim of this paper is to build upon these

results and develop a convergence theory for a class of problems that violate the

subcomplex assumption of Arnold, Falk and Winther, allowing for the treatment

of problems on surfaces.

More specifically, we introduce an adaptive method for problems posed on

smooth Euclidean hypersurfaces in which finite element spaces are mapped from

a fixed approximating polygonal manifold. The mesh on the fixed approximating

surface will be refined using error indicators related to the original problem. Using

tools developed in [24, 25], the auxiliary results of [23] are modified to account

for the surface mapping, yielding an adaptive method whose main results mirror

those of [23]. In doing this we establish the optimality of a convergent algorithm

for the Hodge Laplacian (case k = m ) on hypersurfaces of arbitrary dimension.

The remainder of the paper is organized as follows. In Section 3.3 we

introduce the notational and technical tools essential for the paper. We begin

by discussing the fundamental framework of abstract Hilbert complexes and in

particular the de Rham complex [5], ideas which are critical in the development

of the theory of finite element exterior calculus. We then finish the section with

a brief overview of a standard adaptive finite element algorithm. Next, Section

3.4 follows [24, 25] by introducing geometric tools and ideas that tie the general

theory developed in [4, 5] to problems on Euclidean hypersurfaces. Additionally

we prove some basic results for an interpolant built on the approximating surface.

In Section 3.5.2 we closely follow the ideas in [23] and develop a similar quasi-

orthogonality result, specifically tailoring our results for application on surfaces.

Section 3.5.3 again closely follows [23], and we prove a discrete stability result

applicable to problems on surfaces (which is needed for proving quasi-orthogonality

in Section 3.5.2), and also establish a continuous stability result, which will be

needed for deriving an upper bound on the error. In Section 3.6 we begin by

introducing an error indicator and then derive bounds and a type of continuity

result for this indicator. An adaptive algorithm is then presented in Section 3.7,

for which convergence and optimality are proved using the auxiliary results from

the previous sections. Finally, we close in Section 3.8 with a discussion on related
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future directions and alternative methods for solving numerical PDE on surfaces.

The results in this paper follow [23] in a natural manner. It is the same convergence

idea, but the results are adapted to account for the geometry of the surface and

the mapping between the surfaces.

3.3 Notation and Framework

The algorithm developed in this article will rely heavily on the methods

introduced on polygonal domains in [23]. In order to keep this work self contained,

this section will provide a similar introduction to that of [23], from which we quote

freely. We begin with an introduction of some basic concepts of abstract Hilbert

complexes. Next, we examine the particular case of the de Rham complex, closely

following the notation and general development of Arnold, Falk and Winther in

[4, 5]. We also discuss results from Demlow and Hirani in [18]. (See also [24, 25]

for a concise summary of Hilbert complexes in a yet more general setting.) We

then give an overview of the basics of adaptive finite element methods (AFEM),

and the ingredients we will need to prove convergence and optimality within the

FEEC framework.

3.3.1 Hilbert Complexes

A Hilbert complex (W,d) is a sequence of Hilbert spaces W k equipped with

closed, densely defined linear operators, dk, which map their domain, V k ⊂ W k to

the kernel of dk+1 in W k+1. A Hilbert complex is bounded if each dk is a bounded

linear map from W k to W k+1 A Hilbert complex is closed if the range of each dk is

closed in W k+1. Given a Hilbert complex (W,d), the subspaces V k ⊂ W k endowed

with the graph inner product

〈u, v〉V k = 〈u, v〉Wk + 〈dku, dkv〉Wk+1 ,

form a Hilbert complex (V, d) known as the domain complex. By definition dk+1◦
dk = 0, thus (V, d) is a bounded Hilbert complex. Additionally, (V, d) is closed if
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(W,d) is closed.

The range of dk−1 in V k will be represented by Bk, and the null space of dk

will be represented by Zk. Clearly, Bk ⊂ Zk. The elements of Zk orthogonal to Bk

are the space of harmonic forms, represented by Hk. For a closed Hilbert complex

we can write the Hodge decomposition of W k and V k,

W k = Bk ⊕ Hk ⊕ Zk⊥W , (3.1)

V k = Bk ⊕ Hk ⊕ Zk⊥V . (3.2)

Following notation common in the literature, we will write Zk⊥ for Zk⊥W or Zk⊥V ,

when clear from the context. Another important Hilbert complex will be the dual

complex (W,d∗), where d∗k, which is an operator from W k to W k−1, is the adjoint

of dk−1. The domain of d∗k will be denoted by V ∗k . For closed Hilbert complexes,

an important result will be the Poincaré inequality,

‖v‖V ≤ cP‖dkv‖W , v ∈ Zk⊥. (3.3)

The de Rham complex is the practical complex where general results we show on

an abstract Hilbert complex will be applied. The de Rham complex satisfies an

important compactness property discussed in [5], and therefore this compactness

property is assumed in the abstract analysis.

The Abstract Hodge Laplacian

Given a Hilbert complex (W,d), the operator L = dd∗+d∗d, W k → W k will

be referred to as the abstract Hodge Laplacian. For f ∈ W k, the Hodge Laplacian

problem can be formulated weakly as the problem of finding u ∈ W k such that

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f, v〉, v ∈ V k ∩ V ∗k .

The above formulation has undesirable properties from a computation per-

spective. The finite element spaces V k ∩ V ∗k can be difficult to implement, and

the problem will not be well-posed in the presence of a non-trivial harmonic space,
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Hk. In order to circumvent these issues, a well posed (cf. [4, 5]) mixed formu-

lation of the abstract Hodge Laplacian is introduced as the problem of finding

(σ, u, p) ∈ V k−1 × V k × Hk, such that:

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ V k−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V k,

〈u, q〉 = 0, ∀q ∈ Hk.

(3.4)

Sub-Complexes and Approximate Solutions to the Hodge Laplacian

In [4, 5] a theory of approximate solutions to the Hodge-Laplace problem is

developed by using finite dimensional approximating Hilbert complexes. Let (W,d)

be a Hilbert complex with domain complex (V, d). An approximating subcomplex

is a set of finite dimensional Hilbert spaces, V k
h ⊂ V k with the property that dV k

h ⊂
V k+1
h . Since Vh is a Hilbert complex, Vh has a corresponding Hodge decomposition,

V k
h = Bk

h ⊕ Hk
h ⊕ Zk⊥Vh .

By this construction, (Vh, d) is an abstract Hilbert complex with a well posed

Hodge Laplace problem. Find (σh, uh, ph) ∈ V k−1
h × V k

h × Hk
h, such that

〈σh, τ〉 − 〈dτ, uh〉 = 0, ∀τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f, v〉, ∀v ∈ V k
h ,

〈uh, q〉 = 0, ∀q ∈ Hk
h.

(3.5)

An assumption made in [5] in developing this theory is the existence of a bounded

cochain projection, πh : V → Vh, which commutes with the differential operator.

In [5], an a priori convergence result is developed for the solutions on the

approximating complexes. The result relies on the approximating complex getting

sufficiently close to the original complex in the sense that infv∈V kh ‖u− v‖V can be

assumed sufficiently small for relevant u ∈ V k. Adaptive methods, on the other

hand, gain computational efficiency by limiting the degrees of freedom used in areas

of the domain where it does not significantly impact the quality of the solution.
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3.3.2 The de Rham Complex and its Approximation Prop-

erties

The de Rham complex is a cochain complex where the abstract results

from the previous section can be applied in developing practical computational

methods. This section reviews concepts and definitions related to the de Rham

complex necessary in our development of an adaptive finite element method. This

introduction will be brief and and mostly follows the notation from the more in-

depth discussion in [5].

In order to introduce the ideas of [23], we first assume a bounded Lipschitz

polyhedral domain, Ω ∈ Rn, n ≥ 2. Let Λk(Ω) be the space of smooth k-forms

on Ω, and let L2Λk(Ω) be the completion of Λk(Ω) with respect to the L2 inner-

product. There are no non-zero harmonic forms in L2Λn(Ω) (see [4], Theorem 2.4)

which will often simplify the analysis in our primary case of interest, k = n. For

general k such a property cannot be assumed, and therefore, since the B problem

deals with the spaces of k and (k − 1)-forms, analysis of the harmonic spaces is

still necessary. Note that the results in [13] hold only for polygonal and simply

connected domains, therefore Hk−1 is also void in the case k = n = 2.

The de Rham Complex

Let d be the exterior derivative acting as an operator from L2Λk(Ω) to

L2Λk+1(Ω). The L2 inner-product will define the W -norm, and the V -norm will

be defined as the graph inner-product

〈u, ω〉V k = 〈u, ω〉L2 + 〈du, dω〉L2 .

This forms a Hilbert complex (L2Λ(Ω), d), with domain complex (HΛ(Ω), d), where

HΛk(Ω) is the set of elements in L2Λk(Ω) with exterior derivatives in L2Λk+1(Ω).

The domain complex can be described with the following diagram

0→ HΛ0(Ω)
d−→ · · · → HΛn−1(Ω)

d−→ L2(Ω) −→ 0. (3.6)
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It can be shown that the compactness property is satisfied, and therefore the prior

results shown on abstract Hilbert complexes can be applied.

The Hodge star operator, ? : Λk(Ω) → Λn−k(Ω), is then defined using the

wedge product. For ω ∈ Λk(Ω),∫
Ω

ω ∧ µ = 〈?ω, µ〉L2Λn−k , ∀µ ∈ Λn−k(Ω).

Next we introduce the coderivative operator, δ : Λk(Ω)→ Λk−1(Ω),

?δω = (−1)kd ? ω, . (3.7)

which combined with Stokes theorem allow integration by parts to be written as

〈dω, µ〉 = 〈ω, δµ〉+

∫
∂Ω

tr ω ∧ tr ? µ, ω ∈ Λk−1, µ ∈ Λk(Ω). (3.8)

Using this formulation and the following spaces,

H̊Λk(Ω) = {ω ∈ HΛk(Ω) tr∂Ωω = 0},

H̊∗Λk(Ω) := ?H̊Λn−k(Ω),

the following theorem connects the framework built for abstract Hilbert complexes

to the de Rham complex.

Theorem 3.3.1. (Theorem 4.1 from [5]) Let d be the exterior derivative viewed as

an unbounded operator L2Λk−1(Ω)→ L2Λk(Ω) with domain HΛk(Ω). The adjoint

d∗, as an unbounded operator L2Λk(Ω)→ L2Λk−1(Ω), has H̊∗Λk(Ω) as its domain

and coincides with the operator δ defined in (3.7).

Applying the results from the previous section and Theorem 3.3.1, we get

the mixed Hodge Laplace problem on the de Rham complex: find the unique
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(σ, u, p) ∈ HΛk−1(Ω)×HΛk(Ω)× Hk such that

σ = δu, dσ + δdu = f − p in Ω,

tr ? u = 0, tr ? du = 0 on ∂Ω,

u ⊥ Hk.

(3.9)

Finite Element Differential Forms

For the remainder of the paper it is assumed that all approximating sub-

complexes of the de Rham complex are constructed as combinations of the polyno-

mial spaces of k-forms, PrΛk and P−r Λk. For a detailed discussion on these spaces

and construction of Hilbert complexes using these spaces, see [5]. We also have

useful properties in the case k = n,

P−r Λn = Pr−1Λn, (3.10)

P−r Λ0 = PrΛ0. (3.11)

For a shape-regular, conforming triangulation Th of Ω,Λk
h(Ω) ⊂ L2Λk(Ω)

will denote a space of k-forms constructed using specific combinations of the these

spaces on Th. For an element T ∈ Th, we set hT := diam(T ). We do not discuss

the details of these spaces further, but specific properties will be explained when

necessary.

Bounded Cochain Projections

Bounded cochain projections and their approximation properties are neces-

sary in the analysis of both uniform and adaptive FEMs in the FEEC framework.

Properties of three different interpolation operators will be important in our analy-

sis. The three operators and respective notation that we will use are as follows: the

canonical projections Ih defined in [4, 5], the smoothed projection operator πh from

[5], and the commuting quasi-interpolant Πh, as defined in [18] with ideas similar

to [39, 40, 14]. Some cases will require a simple projection, and Phf also written

fh, will denote the L2-projection of f on to the discrete space parameterized by h.

For the remainder of the paper, ‖·‖ will denote the L2Λk(Ω) norm, and when
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taken on specific elements of the domain, T , we write ‖ · ‖T . For all other norms,

such as HΛk(Ω) and H1Λk(Ω), we write ‖ · ‖HΛk(Ω) and ‖ · ‖H1Λk(Ω) respectively.

Lemma 3.3.2. Suppose τ ∈ H1Λk(Ω), where k = n − 1 or k = n. Let Ih be

the canonical projection operator defined in [4, 5] and let Λn−1
h (Ω) and Λn

h(Ω) be

defined as above. Then Ih is a projection onto Λn
h(Ω),Λn−1

h (Ω) and satisfies

‖τ − Ihτ‖T ≤ ChT‖τ‖H1Λk(T ), ∀T ∈ Th, (3.12)

Ihd = dIh (3.13)

Proof. The first part is comes from Equation (5.4) in [4]. The second part follows

the construction of Ih.

Lemmas 3.3.3 and 3.3.4 deal with important properties of the canonical

projections. In each case we assume fh, uh ∈ Λn
h(Ω), and let Th be a refinement of

TH .

Lemma 3.3.3. Let T ∈ TH , then

∫
T

(fh − IHfh) = 0. (3.14)

Proof. See [23]

Lemma 3.3.4. Let T ∈ TH , then

〈(Ih − IH)uh, fh〉T = 〈uh, (Ih − IH)fh〉T . (3.15)

Proof. See [23].

The next lemma is taken directly from [18], and will be a key tool in develop-

ing an upper bound for the error.

Lemma 3.3.5. Assume 1 ≤ k ≤ n, and φ ∈ HΛk−1(Ω) with ‖φ‖ ≤ 1. Then there

exists ϕ ∈ H1Λk−1(Ω) such that dϕ = dφ,ΠHdφ = dΠHφ = dΠHϕ, and
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∑
T∈Th

h−2
T ‖ϕ− ΠHϕ‖2

T + h−1
T ‖tr(ϕ− ΠHϕ)‖2

∂T ≤ C.

Proof. See Lemma 6 in [18].

The following theorem is a special case of Theorem 3.5 from [5]. Rather

than showing the result on an abstract Hilbert Complex with a general cochain

projection, we use the de Rham complex and the smoothed projection operator πh

in order to use uniform boundedness of the cochain projection.

Theorem 3.3.6. Assume Λk
h(Ω) is a subcomplex of HΛk(Ω) as described above,

and let πh be the smoothed projection operator. Then

‖(I − PHk)q‖V ≤ ‖(I − πkh)PHkq‖V , q ∈ Hk
h, (3.16)

then combining the above with the triangle inequality,

‖q‖V ≤ c‖PHkq‖V , q ∈ Hk
h. (3.17)

Proof. See [23].

Theorem 3.3.7 will be essential in dealing with the harmonic forms in the

proof of a continuous upper-bound. The corollary will be used identically when

proving a discrete upper-bound. For use in our next two results we introduce an

operator δ and one of its important properties. Let A,B be n < ∞ dimensional,

closed subspaces of a Hilbert space W , and let

δ(A,B) = sup
x∈A,‖x‖=1

‖x− PBx‖,

then [18], Lemma 2 which takes the original ideas from [27], shows

δ(A,B) = δ(B,A). (3.18)
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Theorem 3.3.7. Assume Hk
H and Hk have the same finite dimensionality. The

there exist a constant CHk dependent only on T0, such that

δ(Hk,Hk
H) = δ(Hk

H ,H
k) ≤ CHk < 1. (3.19)

Proof. See [23]

Corollary 3.3.8.

δ(Hk
h,H

k
H) = δ(Hk

H ,H
k
h) ≤ C̃Hk < 1. (3.20)

Proof. The proof follows the same logic as Theorem 3.3.7. The only difference

is that the harmonics are compared on two discrete complexes Hk
h and Hk

H , and

therefore Ih is used rather than πh.

3.3.3 Adaptive Finite Elements Methods

This section gives a concise introduction to key concepts and notation used

in developing our AFEM. Our methods will follow [43, 31, 32, 20, 13], which give

more a more complete discussion on AFEM.

Given an initial triangulation, T0, the adaptive procedure will generate a

nested sequence of triangulations Tk and discrete solutions σk, by looping through

the following steps:

Solve −→ Estimate −→ Mark −→ Refine (3.21)

The following subsection will describe details of these steps.

Approximation Procedure

We assume access to a routine SOLVE, which can produce solution to (3.5)

given a triangulation, problem data, and a desired level of accuracy. For the

ESTIMATE step we will introduce error indicators ηT on each element T ∈ Tk. In

the MARK step we will use Dörfler Marking strategy [20]. An essential feature of

the marking process is that the summation of the error indicators on the marked

elements exceeds a user defined marking parameter θ.
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We assume access to an algorithm REFINE in which marked elements are

subdivided into two elements of the same size, resulting in a conforming, shape-

regular mesh. Triangles outside of the original marked set may be refined in order

to maintain conformity. Bounding the number of such refinements is important in

showing optimality of the method. Along these lines, Stevenson [44] showed certain

bisection algorithms developed in two-dimensions can be extended to n-simplices

of arbitrary dimension satisfying

(1){Tk} is shape regular and the shape regularity depends only on T0,

(2)#Tk ≤ #T0 + C#M,

where M is the collection of all marked triangles going from T0 to Tk.

Approximation of the Data

A measure of data approximation will be necessary in establishing a quasi-

orthogonality result. Following ideas of [31], data oscillation will be defined as

follows,

Definition 3.3.9. (Data oscillation) Let f ∈ L2Λk(Ω), and Th be a conforming

triangulation of Ω. Let hT be the diameter for a given T ∈ Th. We define

osc(f, Th) :=
( ∑
T∈Th

‖hT (f − fh)‖2
T

)1/2
.

Stevenson [44] generalized the ideas of [8] to show that approximation of

data can be done in an optimal way regardless of dimension. Using the approxi-

mation spaces (As, ‖ · ‖As) and (Aso, ‖ · ‖Aso) as in [8] we recall the result.

Theorem 3.3.10. (Generalized Binev, Dahmen and DeVore) Given a tolerance

ε, f ∈ L2Λn(Ω) and a shape regular triangulation T0, there exists an algorithm

TH = APPROX(f, T0, ε),

such that

osc(f, TH) ≤ ε, and #TH −#T0 ≤ C‖f‖1/s

A1/s
o

ε−1/s.
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As in the case of [13], the analysis of convergence and procedure will follow

[12], and the optimality will follow [43].

3.4 The de Rham Complex on Approximating

Manifold

3.4.1 Hodge-de Rham Theory and Diffeomorphic Rieman-

nian Manifolds

We next introduce the Hodge-de Rham complex of differential forms on

a compact oriented Riemannian manifold. This discussion will be minimal and

closely follows [24, 25], where a more complete development can be found.

We assume M is a smooth, oriented, compact m-dimensional manifold

equipped with a Riemannian metric, g. Let Ωk(M) be the space of smooth k-

forms on M , and define the L2 inner product for any u, v ∈ Ωk(M) as

〈u, v〉L2Ω(M) =

∫
M

u ∧ ?gv =

∫
M

〈〈u, v〉〉gµg,

where ?g : Ωk(M)→ Ωm−k(M) is the Hodge star operator associated to the metric,

〈〈·, ·〉〉g is the pointwise inner product induced by g, and µg is the Riemannian

volume form. For each k, define L2Ωk(M) as the Hilbert space formed by the

completion of Ωk(M) with respect to the L2-inner product.

Combined with the exterior derivative, dk : Ωk(M) → Ωk+1(M), these

spaces form a Hilbert complex, (L2Ωk(M), d), with domain complex (HΩk(M), d).

Here HΩk(M) ⊂ L2Ωk(M) is the set of elements in L2Ωk(M) with a weak exterior

derivative in L2Ωk+1(M). Each space HΩk(M) is endowed with a graph inner-

product,

〈u, v〉HΩ(M) = 〈u, v〉L2Ω(M) + 〈du, dv〉L2Ω(M),

and the complex can be described with the following diagram,
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0→ HΩ0(M)
d−→ HΩ1(M)

d−→ · · · → HΩm(M)
d−→ 0. (3.22)

Next, assume MA is a polygonal, oriented, compact Riemannian mani-

fold equipped with a metric gA and an orientation preserving differmorphism

ϕA : MA → M . For any point x ∈ MA, let {e1, ..., em} and {f1, ..., fm} be

positively-oriented orthonormal (with respect to the given metric ) bases for the

tangent spaces TxMA and Tϕ(x)M . The tangent map TxϕA : TxMA → Tϕ(x)M

can be represented by an m × m matrix with m strictly positive singular values

independent of the choice of basis,

α1(x) ≥ · · · ≥ αm > 0.

The next theorem, from [24, 42], describes a useful property of these singular

values; see also [15] for the classical version of the result in the case of domains in

Rn.

Theorem 3.4.1. Let (MA, gh) and (M, g) be oriented m-dimensional Riemannian

manifolds, and let ϕh : MA → M be an orientation-preserving diffeomorphism

with singular values α1(x) ≥ · · · ≥ αn(x) > 0 at each x ∈ MA. Given p, q ∈
[1,∞] such that 1/p + 1/q = 1, and some k = 0, . . . ,m, suppose that the product

(α1 . . . αk)
1/p(αm−k+1 . . . αm)−1/q is bounded uniformly on MA. Then, for any ω ∈

LpΩk(MA),

‖(α1 · · ·αk)1/q(αk+1 · · ·αm)−1/p‖−1
∞ ‖ω‖p

≤ ‖ϕh∗ω‖p ≤ ‖(α1 · · ·αm−k)1/p(αm−k+1 · · ·αm)−1/q‖∞‖ω‖p.

Holst and Stern then use the above theorem with q = p = 2, noting the

compactness of the manifolds yields the uniform boundedness condition, to show

that ϕA induces Hilbert complex isomorphisms ϕA∗ : L2Ω(MA) → L2Ω(M) and

ϕ∗A : L2Ω(M)→ L2Ω(MA).
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3.4.2 Signed Distance Functions and Euclidean Hypersur-

faces

Let M ⊂ Rm+1 be a compact, oriented, m dimensional Euclidean hyper-

surface. It is then possible to construct an open neighborhood, U , encompassing

the surface with a well-defined mapping along normals to the surface, a : U →M .

Furthermore, associated to any such surface is a value δ0 > 0 such that the set

of points whose Riemanian distance from M is less than δ0 forms such a neigh-

borhood. Given an adequate U , let δ : U → R be the standard signed distance

function. Then for every x ∈ U,∇δ(x) = ν(x) is the outward facing unit normal

vector to the surface at a(x), and

x = a(x) + δ(x)ν(x),

and the normal projection a : U →M can be expressed

a(x) = x− δ(x)ν(x).

Thus for any approximating surface, Mh ⊂ U , a(x) restricted to Mh gives

an orientation-preserving diffeomorphism, ϕh(x) = a|Mh
: Mh → M , with well

defined singular values. Therefore Theorem 3.4.1 can be applied.

The approximating surface is introduced as a computational tool used to ap-

proximate solutions to the Hodge Laplacian which are then mapped to the smooth

approximated surface. In order to do this it is necessary to develop a map of k-

forms between the two surfaces. In doing this we follow a subset of the ideas of

[24, 25]. Letting P = I − v ⊗ v and S = −∇v, we have

∇a = I −∇δ ⊗ v − δ∇v = I − v ⊗ v − δ∇v = P + δS.

This leads to the following theorem from [24] allowing for the computation of the

pullback map, a∗ : Ω1(M)→ Ω1(U).

Theorem 3.4.2. (Holst and Stern [24] Theorem 4.3) Let M be an oriented,

compact, m-dimensional hyper surface of Rm+1 with a tubular neighborhood U.
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If Y ∈ TyM and x ∈ a−1(y) ⊂ U . them the lifted vector a∗Y ∈ TxU satisfies

a∗Y = (I + δS)Y

Proof. See [24].

Let j : M ↪→ Rm+1 and jh : Mh ↪→ Rm+1 be inclusions of the submanifolds

endowed with metrics g = j∗γ and gh = j∗hγ, where γ is the standard Euclidean

metric. For a point x ∈Mh, the mapping can be restricted to TxMh by composing

a∗Y with the adjoint of jh, yielding the adjoint of the restricted tangent map

Tϕh = j∗ha
∗, satisfying

Yh = j∗ha
∗Y = Ph(I + δS)Y.

3.4.3 Discrete Problem on a Euclidean Surface

The Hodge Laplacian defined on a Euclidean hypersurface is our main prob-

lem of interest: Find (σ, u, p) ∈ HΩk−1(M)×HΩk(M)× Hk such that

〈σ, τ〉 − 〈dτ, u〉 = 0, ∀τ ∈ HΩk−1(M),

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ HΩk(M),

〈u, q〉 = 0, ∀q ∈ H′k.

(3.23)

For the remainder of the paper, let MA be an approximating surface satisfy-

ing assumptions of the previous section. Then ϕA∗ and ϕ∗A act as the isomorphisms

between HΩ(M) and HΩ(MA). For ease of discussion, and similarity to the gen-

eral maps in the FEEC frameworks, we use the notation iA and πA respectively

for ϕA∗ and ϕ∗A. This notation is also consistent with the current literature in the

sense that ϕA∗ and ϕ∗A are an injective and projective Hilbert complex morphisms.

Since we have an isomorphism of Hilbert complexes we can define an equivalent

problem on MA using the map iA. Find (σ′, u′, p′) ∈ HΩk−1(MA)×HΩk(MA)×H′k
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such that

〈iAσ′, iAτ〉 − 〈iAdτ, iAu′〉 = 0, ∀τ ∈ HΩk−1(MA),

〈iAdσ′, iAv〉+ 〈iAdu′, iAdv〉+ 〈iAp′, iAv〉 = 〈f, iAv〉, ∀v ∈ HΩk(MA),

〈iAu′, iAq〉 = 0, ∀q ∈ H′k.

This equivalent reformulation is helpful in defining a practical discrete prob-

lem: find (σ′h, u
′
h, p
′
h) ∈ V k−1

h (MA)× V k
h (MA)× H′kh such that

〈iAσ′h, iAτ〉 − 〈d(iAτ), iAu
′
h〉 = 0, ∀τ ∈ V k−1

h (MA),

〈d(iAσ
′
h), iAv〉+ 〈d(iAu

′
h), d(iAv)〉+ 〈iAp′h, iAv〉 = 〈f, iAv〉, ∀v ∈ V k

h (MA),

〈iAu′h, iAq〉 = 0, ∀q ∈ H′kh.

Here H′k and H′kh are the spaces which iA maps to harmonic forms in

HΩk(M). The properties of these spaces will not affect our analysis, but it is

worth noting that these spaces are distinct from Hk and Hk
h (see [23] for a detailed

discussion).

Using this discrete formulation is equivalent to defining finite element spaces

on the polygonal approximating surface and mapping them to M . The spaces on

MA can be refined with standard techniques yielding a refined mapped space.

Using this discrete formulation, we will prove a convergent and optimal algorithm

for solving (3.23). Notationally we will use T to represent a triangulation of the

linear approximating surface, and a(T ) to represent the triangulation mapped to

the approximated surface.

Unlike [23] we are dealing with manifolds which may not have a boundary,

and thus harmonics may be present in the case k = m. However, in the case

k = m, the harmonic component of f on a surface without boundary is simply

the constant volume form. In this situation the harmonic component of f can be

calculated efficiently, essentially reducing the problem to a B problem. Therefore

we focus on B problems in the case k = m for the remainder of the paper.
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3.5 Approximation, Orthogonality, and Stability

Properties

3.5.1 Approximation Properties

Before proceeding, we prove similar results to those of Section 2 for cases

in which the finite element space is no longer constructed on triangulations of

polygonal domains in Rn. Here, and for the remainder of our analysis, we will use

a triangulation of a polynomial approximating surface, MA, and pull the spaces

PrΩk(MA) or P−r Ωk(MA) to the surface M .

Next, we define i∗A : L2Ω(M) → L2Ω(MA) as the the adjoint of iA, such

that

〈iAu, iAv〉M = 〈i∗AiAu, v〉MA
, ∀u, v ∈ L2Ω(MA).

The H1 boundedness of i∗A will be important in our convergence analysis.

We prove this boundedness in Lemma 3.5.2, but first introduce an intermediary

lemma.

Lemma 3.5.1. Given τ ∈ L2Ωk(M) we have

i∗Aτ = (−1)k(m−k) ?MA
πA ?M τ (3.24)

where ?M and ?MA
are the Hodge star operators related to the surfaces M and MA.

Proof.

〈i∗Aτ, σ〉MA
= 〈τ, iAσ〉M ,

=

∫
M

〈〈τ, iAσ〉〉µM ,

=

∫
M

iAσ ∧ ?Mτ,

=

∫
M

iAσ ∧ (iAπA) ?M τ

Next, since the pullback commutes with the wedge product and ?MA
?MA

= (−1)k(m−k),
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we have

=

∫
MA

σ ∧ (πA) ?M τ,

= (−1)k(m−k)

∫
MA

σ ∧ (?MA
?MA

)πA ?M τ,

= (−1)k(m−k)

∫
MA

〈〈σ, ?MA
πA ?M τ〉〉µMA

,

= 〈σ, (−1)k(m−k) ?MA
πA ?M τ〉MA

.

Given the construction of the Hilbert spaces this is sufficient to complete the

proof.

Lemma 3.5.2. Let τ ∈ H1Ωm(M), and let iA be defined as above. Then i∗Aτ ∈
H1Ωm(MA), and

C1‖i∗Aτ‖H1Ωm(MA) ≤ ‖τ‖H1Ωm(M) ≤ C2‖i∗Aτ‖H1Ωm(MA). (3.25)

Proof. Lemma 3.5.1 shows, in the case k = m, that the bounds on i∗A are the same

as those used for πA in the case k = 0. In the case k = 0, πA maps H1Ω(M) →
H1Ω(MA), with bounds introduced earlier.

Next we introduce a new interpolant, IMh
which is related to the canonical

interpolant introduced earlier.

Definition 3.5.3. Let Ih be the canonical projection operator on Th, a triangula-

tion of MA. Then for τ ∈ HΩk(M), we define IMh
as

IMh
τ = iAIh(πAτ)

Lemma 3.5.4. Suppose τ ∈ H1Ωk(M), where k = m − 1 or k = m. Let IMh
be

the altered canonical projection operator introduced above. Then

IMh
d = dIMh

(3.26)
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Proof. Using Lemma 3.3.2 and the fact that the pull-back and push-forward com-

mute with d, we have

IMh
d = iAIhπAd

= iAIhdπA

= d(iAIhπA).

Lemma 3.5.5. Let f ∈ HΩm(M), and let T ∈ Th. Then∫
a(T )

(fh − IMH
fh) = 0 (3.27)

Proof. From (3.3.3) we know∫
T

(Ih(πAf)− IH(IhπAf)) = 0

and since k = m, we have∫
a(T )

(iAIh(πAf)− iAIH(IhπAf)) = 0

yielding ∫
a(T )

IMh
f − (iAIHπA)IMh

f = 0

3.5.2 Quasi-Orthogonality

The main difficulty for mixed finite element methods is the lack of mini-

mization principle, and thus the failure of orthogonality. In [23] results from [13]

are generalized, and a quasi-orthogonality property is proven using the fact that

σ − σh is orthogonal to the subspace Zn−1
h ⊂ HΛn−1

h (Ω). In this section we show

that this same orthogonality result holds for finite elements spaces mapped to the

smooth surface from the approximating surface.
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Solutions of Hodge Laplace problems on nested triangulations Th and TH
will frequently be compared. Nested in the sense that Th is a refinement of TH .

For a given f ∈ L2Ωm(M), let L−1f denote the solutions of (3.23). Let L−1
h fh

and L−1
H fH denote the solutions to the discrete problems on a(Th) and a(TH)

respectively. Set the following triples, (u, σ, p) = L−1f , (uh, σh, ph) = L−1
h fh,

(ũh, σ̃h, p̃h) = L−1
h fH and (uH , σH , pH) = L−1

H fH . The following analysis deals with

the B problem and thus the harmonic component will be zero in each of these

solutions. When we are only interested in σ we will abuse this notation by writing

σ = L−1f .

Lemma 3.5.6. Given f ∈ L2Ωm(M) in B, and two nested triangulations Th and

TH , then

〈σ − σh, σ̃h − σH〉M = 0. (3.28)

Proof. See [23].

The next result is similar to Theorem 4.2 in [23]. We present the proof in

order to clarify the impact of the surface mapping.

Theorem 3.5.7. Given f ∈ L2Ωm(M) in B, and two nested triangulations Th
and TH , then

〈σ − σh, σh − σH〉 ≤
√
C0‖σ − σh‖osc(πAfh, TH), (3.29)

and for any δ > 0,

(1− δ)‖σ − σh‖2 ≤ ‖σ − σH‖2 − ‖σh − σH‖2 +
C0

δ
osc2(πAfh, TH). (3.30)

Proof. By (3.28) we have

〈σ − σh, σh − σH〉 = 〈σ − σh, σh − σ̃h〉+ 〈σ − σh, σ̃h − σH〉

= 〈σ − σh, σh − σ̃h〉

≤ ‖σ − σh‖‖σh − σ̃h‖.
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And then by the discrete stability result, Theorem 3.5.11, we have

≤
√
C0‖σ − σh‖osc(πAfh, TH).

(3.30) follows standard arguments and is identical to [13] (3.4)

3.5.3 Continuous and Discrete Stability

In this section we will prove stability results for approximate solutions to

the σ portion of the Hodge Laplace problem. Theorem 3.5.8 gives a stability

result for particular solutions of the Hodge de Rham problem that will be useful

in bounding the approximation error in Section 3.6. Theorem 3.5.11 will prove

the discrete stability result used in Theorem 3.5.7. These proofs follow the same

structure as [23], with additional steps that take care of the mapping between the

surfaces.

Theorem 3.5.8. (Continuous Stability Result) Given f ∈ L2Ωm(M) in B, let Th
be a triangulation of MA. Set (σ, u, p) = L−1f and (σ̃, ũ, p̃) = L−1fh, then

‖σ − σ̃‖ ≤ Cosc(πAf, Th). (3.31)

Proof. The harmonic terms are vacuous, thus

‖σ − σ̃‖2
M = 〈d(σ − σ̃), u− ũ〉M = 〈f − fh, u− ũ〉M = 〈πA(f − fh), i∗A(u− ũ)〉MA

.

Let v = u − ũ. Since v ∈ Bk and ‖δv‖ = ‖grad v‖ = ‖σ − σ̃‖, we have v ∈
H1Ωm(M). Restricting v to an element a(T ) ∈ a(Th), we have v ∈ H1Ωm(a(T )),

thus

‖σ − σ̃‖2 = 〈f − fh, v〉 =
∑
T∈Th

〈πA(f − fh), i∗Av〉T .

=
∑
T∈Th

〈πAf − πAfh, i∗Av − Ih(i∗Av)〉T .
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Applying (3.12) and then (3.5.2),

≤ C
∑
T∈Th

hT‖πAf − πAfh‖T‖i∗Av‖H1Λn(T )

≤ C
∑
T∈Th

hT‖πAf − πAfh‖T‖v‖H1Λn(a(T ))

= C
∑
T∈Th

hT‖πAf − πAfh‖T (‖u− ũ‖a(T ) + ‖δ(u− ũ)‖a(T ))

≤ C(
∑
T∈Th

‖hT (πAf − πAfh)‖2
T )1/2(

∑
T∈Th

(‖u− ũ‖a(T ) + ‖δ(u− ũ)‖a(T ))
2)1/2,

and v ∈ H1Ωm(M) allows us to to combine terms of the summation,

≤ C(
∑
T∈Th

‖hT (πAf − πAfh)‖2
T )1/2(‖u− ũ‖M + ‖δ(u− ũ)‖M).

Since u− ũ ∈ Bk, ‖u− ũ‖ = 〈u− ũ, dτ〉 for some τ ∈ Z⊥ with ‖dτ‖ = 1, thus

= C(
∑
T∈Th

‖hT (πAf − πAfh)‖2
T )1/2〈(σ − σ̃), τ〉M + ‖σ − σ̃‖M).

Then applying Poincaré on τ :

= C‖σ − σ̃‖(
∑
T∈Th

‖hT (πAf − πAfh)‖2
T )1/2.

Divide through by ‖σ − σ̃‖ to complete proof.

The following is Lemma 4 in [18], and is a special case of Theorem 1.5 of [30].

It is related to the bounded invertibility of d, and will be an important tool in

proving discrete stability.

Lemma 3.5.9. Assume that B is a bounded Lipschitz domain in Rn that is home-

omorphic to a ball. Then the boundary value problem dϕ = g ∈ L2Λk(B) in

B, tr ϕ = 0 on ∂B has a solution ϕ ∈ H1
0 Λk−1(B) with ‖ϕ‖H1Λk−1(B) ≤ C‖g‖B if

and only if dg = 0 in B, and in addition, tr g = 0 on ∂B if 0 ≤ k ≤ n − 1 and∫
B
g = 0 if k = n .
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The next lemma is an intermediate step in proving the discrete stability

result. The general structure follows [13] and applies Lemma 3.5.9 in order to find

a sufficiently smooth function that is essentially a bounded inverse of d for the

approximation error of uh on TH .

In [23], Lemma 3.3.3 is applied to shape regular polygonal elements, and

thus the multiplicative constant can be bounded. In this case, however, the ele-

ments are not necessarily polygonal, and thus we are forced to map the proof to

MA, where the regularity is clear, and then map back to M .

Lemma 3.5.10. Let Th, TH be nested conforming triangulations and let σh, σH

be the respective solutions to (3.5) with data f ∈ L2Ωm(M) in B. Then for any

T ∈ TH

‖Ihi∗Auh − IHi∗Auh‖T ≤
√
C0hT‖σh‖a(T ). (3.32)

Proof. Let gΩ = Ihi
∗
Auh − IHi∗Auh = (Ih − IH)i∗Auh ∈ L2Ωm(MA). Then, for any

T ∈ TH let g = trTgΩ ∈ L2Ωm(T ), and by Lemma 3.3.3,
∫
T
g = 0. Thus Lemma

3.5.9 can be applied to find τ ∈ H1
0 Λn−1(T ), such that:

dτ = (Ih − IH)i∗Auh, on T

‖τ‖H1Λn−1(T ) ≤ C‖(Ih − IH)i∗Auh‖T .

Extend τ to H1Λn−1(Ω) by zero and then, by Lemma 3.3.4,

‖(Ih − IH)i∗Auh‖2
T = 〈(Ih − IH)i∗Auh, dτ〉T = 〈i∗Auh, d(Ih − IH)τ〉T

Then by Lemma 3.3.2, and locality of τ ,

= 〈i∗Auh, d(Ih − IH)τ〉MA
= 〈uh, d(iA(Ih − IH)τ)〉M = 〈σh, iA(Ih − IH)τ〉M .

Then again by locality of τ and Theorem 3.4.1,

= 〈σh, iA(Ih − IH)τ〉a(T ) ≤ ‖σh‖a(T )(‖iA(τ − Ihτ)‖a(T ) + ‖iA(τ − IHτ)‖a(T )),

≤ ‖σh‖a(T )(‖τ − Ihτ‖T + ‖τ − IHτ‖T ).
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And by (3.12),

≤ ChT‖σh‖a(T )‖τ‖H1(T ) ≤ ChT‖σh‖a(T )‖(Ih − IH)i∗Auh‖T .

Cancel one power of ‖(IMh
− IMH

)uh‖T to complete the proof.

Theorem 3.5.11. (Discrete Stability Result) Let Th and TH be nested conform-

ing triangulations. Let (ũh, σ̃h, p̃h) = L−1
h fH and (uh, σh, ph) = L−1

h fh, with f ∈
L2Ωm(M) in B. Then there exists a constant such that

‖σh − σ̃h‖ ≤ Cosc(πAfh, TH) (3.33)

Proof. From 3.5, and since ph, p̃h = 0, we have

〈σh − σ̃h, τh〉 = 〈uh − ũh, dτh〉, ∀τh ∈ Λk−1
h , (3.34)

〈d(σh − σ̃h), vh〉 = 〈fh − fH , vh〉, ∀vh ∈ Λk
h. (3.35)

Next set τh = σh − σ̃h in (3.34), and vh = uh − ũh in (3.35) to obtain:

‖σh − σ̃h‖2 = 〈uh − ũh, d(σh − σ̃h)〉 = 〈fh − fH , vh〉,
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Then by Lemma 3.5.10, we have:

‖σh − σ̃h‖2 =
∑
T∈TH

〈vh, fh − fH〉a(T )

=
∑
T∈TH

〈i∗Avh, IhπAf − IHπAf〉T

=
∑
T∈TH

〈Ih(i∗Avh), IhπAf − IHπAf〉T

=
∑
T∈TH

〈Ih(i∗Avh)− IH(i∗Avh), IhπAf − IHπAf〉T

≤ C
∑
T∈TH

‖IhπAf − IHπAf‖T‖Ihi∗Avh − IHi∗Avh‖T

≤ C
∑
T∈TH

hT‖IhπAf − IHπAf‖T‖(σh − σ̃h)‖a(T )

≤ C(
∑
T∈TH

h2
T‖IhπAf − IHπAf‖2

T )1/2‖σh − σ̃h‖M

Then cancel one ‖σh − σ̃h‖ to complete the proof.

3.6 A Posteriori Error Indicator and Bounds

In this section we introduce the a posteriori error estimators used in our

adaptive algorithm. The estimator follows from [23] which follows [3, 13]. The

difference here is that we estimate the error on the fixed approximating surface.

Next, applying ideas [23] to the surface estimator, we prove bounds on these esti-

mators and a continuity result, both of which are key ingredients in showing the

convergence and optimality of our adaptive method.

3.6.1 Error Indicator: Definition, Lower bound and Con-

tinuity

Definition 3.6.1. (Element Error Indicator) Let T ∈ TH , f ∈ L2Ωm(M) in B,

and σH = L−1fH . Let the jump in τ over an element face be denoted by [[τ ]]. For
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element faces on ∂Ω we set [[τ ]] = τ . The element error indicator is defined as

η2
T (σH) = hT‖[[tr ? (πAσH)]]‖2

∂T + h2
T‖δ(πAσH)‖2

T + h2
T‖πAf − d(πAσH)‖2

T

For a subset T̃H ⊂ TH , define

η2(σH , T̃H) :=
∑
T∈T̃H

η2
T (σH)

Theorem 3.6.2. (Lower Bound) Given f ∈ L2Ωm(M) in B and a shape regular

triangulation TH , let σ = L−1f and σH = L−1
H fH . Then there exists a constant

dependent only on the shape regularity of TH and the surface mapping, such that

C2η
2(σH , TH) ≤ ‖σ − σH‖2 + C2osc2(πAf, TH). (3.36)

Proof. In proving a lower bound, in [18] it is shown that

hT‖δσH‖T ≤ C‖σ − σH‖T ,

h
1/2
T ‖[[tr ? σH ]]‖∂T ≤ C‖σ − σH‖Tt ,

where Tt is the set of all triangles sharing a boundary with T . The first is equation

(5.7) and the second is a result of equation (5.12) in [18]. Substituting πAσH for

σ, noting that σ ∈ Z⊥(M) implies πAσ ∈ Z⊥(MA), similar results for πAσH follow

[18]. Then, using the boundedness of iA, the remainder of the proof is identical to

[23].

The following lemma will be important in proving a continuity result used

in showing convergence of our adaptive algorithm. It is nearly identical to an

estimator efficiency proof in [18], but the subtle difference is that we make use of

σH , the solution on the less refined mesh, and σ is not used in our arguments.

Lemma 3.6.3. Given f ∈ L2Ωm(M) in B and nested triangulations Th and TH ,
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let σh = L−1
h fh and σH = L−1

H fH . Then for T ∈ Th

C2

∑
T∈Th

(hT‖[[tr ? (πAσh−πAσH)]]‖2
∂T +h2

T‖δ(πAσh−πAσH)‖2
T ) ≤ ‖πAσh−πAσH‖2.

(3.37)

Proof. Follows [23].

Theorem 3.6.4. (Continuity of the Error Estimator) Given f ∈ L2Ωm(M) in B

and nested triangulations Th and TH , let σh = L−1
h fh and σH = L−1

H fH . Then we

have:

β(η2(σh, Th)− η2(σH , Th)) ≤ ‖πAσh − πAσH‖2 + osc2(πAfh, TH) (3.38)

Proof. Follows [23].

3.6.2 Continuous and Discrete Upper Bounds

The following proofs have a similar structure to the continuous and discrete

upper bounds proved in [3, 13]. A key element of the proof will be comparisons

between the discrete solution σH = L−1
H fH and the solution to the intermediate

problem, σ̃ = L−1fH . We begin by looking the orthogonal decomposition of σ̃−σH ,

σ̃ − σH = (σ̃ − PZ⊥σH)− PBk−1σH − PHk−1σH

which allows the norm to be rewritten

‖σ̃ − σH‖2 = ‖(σ̃ − PZ⊥σH)‖2 + ‖PBk−1σH‖2 + ‖PHk−1σH‖2.

Lemmas 3.6.5, 3.6.6 and 3.6.7 will each bound a portion of this orthogonal decom-

position. Then Theorem 3.6.8 will combine these results in proving the desired

error bound.

Lemma 3.6.5. Given an f ∈ L2Ωm(M) in B. Let σ̃ = L−1fH and σH = L−1
H fH .
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Then

‖(σ̃ − PZ⊥σH)‖2 = 0. (3.39)

Proof. See [23].

The next lemma uses the quasi-interpolant ΠH described in [18], and also

applies integration by parts in the same standard fashion that [18] use when bound-

ing error measured in the natural norm, ‖u−uh‖HΛk(Ω)+‖σ−σh‖HΛk−1(Ω)+‖p−ph‖.
In [18], coercivity of the bilinear-form is used to separate components of the error,

whereas here we simply analyze the orthogonal decomposition of σ − σH . In [18],

the Galerkin orthogonality implied by taking the difference between the continuous

and discrete problems is employed in order to make use of Πh. Here we are able

to introduce the quasi-interpolant by simply using the fact that σH ⊥ Bk−1
H .

Lemma 3.6.6. Given an f ∈ L2Ωm(M) in B. Let σH = L−1
H fH . Then

‖PBk−1σH‖2 ≤ Cη2(σH , TH). (3.40)

Proof. Follow the same steps as [23] using ‖πA(PBk−1σH)‖2. Next use the bound-

edness of πA to relate to ‖PBk−1σH‖2.

Lemma 3.6.7. Given an f ∈ L2Λk(Ω) in Bk. Let σ̃ = L−1fH and σH = L−1
H fH .

Then

‖PHk−1σH‖2 ≤ C‖σ̃ − σH‖2, C < 1. (3.41)

Proof. See [23].

Now we have the tools to prove the continuous upper bound for the B problems.

Theorem 3.6.8. (Continuous Upper-Bound) Given an f ∈ L2Ωm(M) in Bm. Let

σ̃ = L−1fH and σH = L−1
H fH . Then

‖σ − σH‖2 ≤ C1η
2(σH , TH). (3.42)

Proof. See [23].
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Theorem 3.6.9. (Discrete Upper-Bound) Given f ∈ L2Ωm(M) in B and nested

triangulations Th and TH , let σh = L−1
h fh and σH = L−1

H fH . Then

‖σh − σH‖2 ≤ C1η
2(σH , TH). (3.43)

Proof. The proof requires the same ingredients needed to prove the continuous

upper bound. The same intermediate steps are taken by performing analysis on

the W k−1
h orthogonal decomposition of σ̃h − σH .

σ̃h − σH = (σ̃h − PZ⊥h
σH)− PBk−1

h
σH − PHk−1

h
σH .

The discrete version of Lemma 3.6.5 uses δh rather than δ, but is otherwise iden-

tical. The discrete version of Lemma 3.6.6 is identical. The discrete version of

Lemma 3.6.7 follows the same structure but makes use of Corollary 3.3.8. The

final step in the proof uses the discrete stability result, Theorem 3.5.11.

3.7 Convergence of AMFEM

After presenting the adaptive algorithm, the remainder of this section proves

convergence and then optimality. The results in this section follow ideas already

in the literature [43, 31, 32, 20, 13], with Theorem 3.7.3 following [23] in proving

reduction in a quasi-error using relationships between data oscillation and the

decay of a second type of quasi-error. The following algorithm and analysis of

convergence deal specifically with the case k = m. In presenting our algorithm we

replace h with an iteration counter k.

Algorithm:[TN , σN ] = AMFEM(T0, f, ε, θ): Given a fixed approximating surface

of M , an initial shape-regular triangulation T0, and a marking parameter θ, set

k = 0 and iterate the following steps until a desired decrease in the error-estimator

is achieved:
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(1)(uk, σk, pk) = SOLV E(f, Tk)

(2){ηT} = ESTIMATE(f, σk, Tk)

(3)Mk = MARK({ηT}, Tk, θ)

(4)Tk+1 = REFINE(Tk,Mk)

3.7.1 Convergence of AMFEM

The following notation will be used in the proofs and discussion of this

section:

ek = ‖σ − σk‖2, Ek = ‖σk+1 − σk‖2, ηk = η2(σk, Tk),

ok = osc2(f, Tk), ôk = osc2(fk+1, Tk),

where fk = Pkf = PBkf since k = m.

Lemma 3.7.1.

βηk+1 ≤ β(1− λθ)ηk + Ek + ôk. (3.44)

Proof. This follows from continuity of the error estimator (3.38), and properties

of the marking strategy, i.e. reduction of the summation on a finer mesh due to

smaller element sizes on refined elements. The proof can be found in [13]. λ < 1

is a constant dependent on the dimensionality of the problem.

For convenience, we recall the quasi-orthogonality (3.30) the continuous

upper-bound (3.42) equations,

(1− δ)ek+1 ≤ ek − Ek + C0ôk, for any δ > 0,

ek ≤ C1ηk.

With these three ingredients, basic algebra leads to the following result,
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Theorem 3.7.2. When

0 < δ < min{ β

2C1

θ, 1}, (3.45)

there exists α ∈ (0,1) and Cδ such that

(1− δ)ek+1 + βηk+1 ≤ α[(1− δ)ek + βηk] + Cδôk. (3.46)

Proof. Follows the same steps as [13].

With the above result we next prove convergence.

Theorem 3.7.3. (Termination in Finite Steps) Let σk be the solution obtained in

the kth loop in the algorithm AMFEM, then for any 0 < δ < min{ β
2C1

θ, 1}, there

exists positive constants Cδ and 0< γδ < 1 depending only on given data and the

initial grid such that,

(1− δ)‖σ − σk‖2 + βη2(σk, Tk) + ζosc2(f, Tk) ≤ Cqγ
k
δ ,

and the algorithm will terminate in finite steps.

Proof. See [23].

3.7.2 Optimality of AMFEM

Once Theorem 3.5.8, Theorem 3.3.10, (3.43), (3.30) and (3.36) are estab-

lished, optimality can be proved independent of dimension following the proof of

Theorem 5.3 in [43].

Theorem 3.7.4. (Optimality) For any f ∈ L2Ωm(M) in B, shape regular T0 and

ε > 0, let σ = L−1f and [ σN , TN ] = AMFEM( TH , fH , ε/2, θ). Where [TH , fH ] =

APPROX( f, T0, ε/2 ). If σ ∈ As and f ∈ Aso, then

‖σ − σN‖ ≤ C(‖σ‖As + ‖f‖Aso)(#TN −#T0)−s. (3.47)

Proof. Follows directly from [13].
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The key components in the optimality of a method are the rate of the

convergence and the decaying constant, and (3.47) is a good model equation for

analysis. Placing no restrictions on node placement substantially increases degrees

of freedom and computational cost to the subspace approximation. We thus restrict

our discussion of optimality to the two basic cases; evolving surfaces with element

nodes lying on the approximated surface, and the scheme used above.

The rate rate of decay, s, is an intrinsic property related to a functions

approximation class for a given refinement method. The map between surfaces is

a Hilbert complex isomorphism, and thus HΩk(M) will be mapped to HΩk(MA),

analogous to mapping between similar Sobelev spaces. For example, when k =

m − 1 elements in H(div) on M will be mapped to H(div) on MA. Also, since

the mapping is smooth between the two surfaces, preserving the differentiability

properties of the forms. The relationship between the smoothness of the solution

and data f to their approximation class is discussed in [8, 9].

Next we look at the multiplicative constant. One advantage of the evolving

surface approximation is that the multiplicative bounds in Theorem 3.4.1 improve

with better surface approximations. If the initial surface approximation is good,

however, this constant is negligible in terms of computation cost. Other inefficien-

cies may arise by building the initial surface approximation without much analysis

of the PDE. Interpolation of the surface can be done in a standard efficient manner,

and as long as the initially surface isn’t excessively precise, then the impact on C

in (3.47) will not be significant. The other portion of the multiplicative constant

is related to the norm of f and σ mapped to the approximating surface, and this

value should be reasonable by the same arguments used for the rate of decay.

3.8 Conclusion and Future Work

Surface finite element methods, in their nature, have additional complexities

which introduce difficulties developing a generic adaptive algorithm. Surfaces, for

instance, can be described in different manners and, depending on the access to

surface quantities, algorithms that are ideal in one case may be infeasible in others.
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Also, when refining a mesh, element nodes are not necessarily required to lie on the

approximated surface, or even alter the approximating surface between iterations.

Continually improving the surface approximation has desirable features, but it

also complicates the analysis of convergence and optimality. Along these lines,

developing a method similar to [17] where the nodes of the mesh are require to

lie on M , and thus the surface approximation continually improves, would be of

interest.

As was the case in [23], in this paper we have focused on the error ‖σ−σh‖
for the Hodge Laplacian in the specific case k = m. The results in [23], with

the exception of the stability results, applied to general B problems and such a

generalizing the theory to this class of problems would be a desirable results. The

proofs above introduce no additional complications in generalizing methods for B

problems to surfaces, and therefore an extension of the results in [23] would likely

generalize to surfaces.

Analysis of adaptivity in the natural norm, ‖u−uh‖HΩk(M)+‖σ−σh‖HΩk−1(M)+

‖p−ph‖, is another direction of interest. Such indicators on polygonal domains are

analyzed in [18], and using the results from [24, 25], these results can be extended

to surfaces with additive geometrical terms. Analysis of algorithms using these

indicators is another area of interest.
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4.1 Introduction

In this chapter we give a basic computational example of the method intro-

duced in Chapter 2. Implementation, in the cases n = 2, 3, is accomplished with

the help of a collection of tools from the FEniCS Project[28, 29, 2]. The infrastruc-

ture is developed in a general fashion, and can be extended to higher dimensions

in the presence of higher-dimensional elements. In the following section we will

step through an example in the case n = 2, and show the algorithm achieves an

optimal rate of convergence.

4.2 Computational Example

The following example uses data f = −∆u, in the case

u = −sin(πx)× sin(πy)× 1

(x− 1)2 + (y − 1)2 + .001
.

The domain will be the combination of unit squares meeting at (1, 1). Figure 4.1

shows a plot of the data f on the given domain. It is clear that specific areas of

the domain have much different features with respect to the differentiation of u.

As we will show, this allows the adaptive method to gain efficiency when compared

to refining the elements uniformly.

Figure 4.1: Example Problem: Data f on a domain with corners.

Figure 4.2 shows the initial mesh of the domain and the mesh generated
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adaptively with 12,254 elements. It is clear that the adaptive method is allocating

more degrees of freedom near the point (1, 1). This follows intuition, as the values

of σ in the region are larger and change rapidly.

Figure 4.2: Initial mesh and adaptively refined (13,254 elements) mesh

Figure 4.3 and Figure 4.4 show plots of σ = du, in the cases using 3K

and 161K elements. These plots help show why an accurate approximation of σ

requires a finer mesh in certain sections of the domain.

Figure 4.3: Approximation of σ with 3K Elements.
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Figure 4.4: Approximation of σ with 161K Elements.

Figure 4.5 demonstrates the advantage of the adaptive algorithm over uni-

form refinement, and also shows that the adaptive method achieves optimal order

of convergence. Initially, when using a small number of elements, the adaptive

method and uniform refinement produce similar results. As the number of itera-

tions increases, however, it becomes clear that the adaptive method can achieve

equivalent error reduction with less than 5-percent of the elements needed using

uniform refinement. The optimal order of convergence using the most basic linear

elements is N−
1
2 , and the red line shows that the adaptive method is achieving this

rate of convergence.
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Figure 4.5: Error reduction: ‖σ − σh‖, adaptive versus uniform refinement.
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[11] J. Brüning and M. Lesch. Hilbert complexes. J. Funct. Anal., 108(1):88–132,
1992.

[12] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal
convergence rate for an adaptive finite element method. SIAM J. Numer.
Anal., 46(5):2524–2550, 2008.

[13] L. Chen, M. Holst, and J. Xu. Convergence and optimality of adaptive mixed
finite element methods. Math. Comp., 78(265):35–53, 2009.

[14] S. H. Christiansen and R. Winther. Smoothed projections in finite element
exterior calculus. Math. Comp., 77(262):813–829, 2008.

[15] P. G. Ciarlet. The Finite Element Method for Elliptic Problems, volume 4 of
Studies in Mathematics and its Applications. North-Holland Publishing Co.,
Amsterdam-New York-Oxford, 1978.

[16] A. Demlow. Higher-order finite element methods and pointwise error estimates
for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805–827, 2009.

[17] A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace-
Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal.,
45(1):421–442 (electronic), 2007.

[18] A. Demlow and A. N. Hirani. A posteriori error estimates for finite element
exterior calculus: The de rham complex. arXiv:1203.0803v3, pages 1–30, 2012.

[19] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM
Journal on Numerical Analysis, 33:1106–1124, 1996.

[20] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM
J. Numer. Anal., 33(3):1106–1124, 1996.

[21] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces.
In Partial differential equations and calculus of variations, volume 1357 of
Lecture Notes in Math., pages 142–155. Springer, Berlin, 1988.

[22] P. W. Gross and P. R. Kotiuga. Electromagnetic theory and computation: a
topological approach, volume 48 of Mathematical Sciences Research Institute
Publications. Cambridge University Press, Cambridge, 2004.

[23] M. Holst, A. Mihalik, and R. Szypowski. Convergence and optimality
of adaptive methods in the finite element exterior calculus framework.
http://arxiv.org/pdf/1306.1886.pdf, pages 1– 24, 2013.

[24] M. Holst and A. Stern. Geometric variational crimes: Hilbert complexes, finite
element exterior calculus, and problems on hypersurfaces. Found. Comput.
Math., 12(3):263–293, 2012.



99

[25] M. Holst and A. Stern. Semilinear mixed problems on Hilbert complexes and
their numerical approximation. Found. Comput. Math., 12(3):363–387, 2012.
Available as http://arxiv.org/abs/1010.6127.

[26] M. Holst, G. Tsogtgerel, and Y. Zhu. Local convergence of adaptive methods
for nonlinear partial differential equations. Submitted for publication, 2008.

[27] T. Kato. Perturbation theory for linear operators. Springer-Verlag, Berlin,
second edition, 1976. Grundlehren der Mathematischen Wissenschaften, Band
132.

[28] A. Logg, K. Mardal, G. Wells, and e.t. all. Automated solution of differential
equations by the finite element method. http://fenicsproject.org, 2012.

[29] A. Logg and G. Wells. Dolfin: Automated finite element computing. ACM
Transactions on Mathematical Software, 37(2), 2010.

[30] D. Mitrea, M. Mitrea, and S. Monniaux. The Poisson problem for the exterior
derivative operator with Dirichlet boundary condition in nonsmooth domains.
Commun. Pure Appl. Anal., 7(6):1295–1333, 2008.

[31] P. Morin, R. H. Nochetto, and K. G. Siebert. Convergence of adaptive finite el-
ement methods. SIAM Rev., 44(4):631–658 (electronic) (2003), 2002. Revised
reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Nu-
mer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)].

[32] P. Morin, R. H. Nochetto, and K. G. Siebert. Local problems on stars: a
posteriori error estimators, convergence, and performance. Math. Comp.,
72(243):1067–1097 (electronic), 2003.

[33] P. Morin, K. Siebert, and A. Veeser. A Basic Convergence Result for Conform-
ing Adaptive Finite Elements. Mathematical Models and Methods in Applied
Sciences, 18(5):707–737, 2008.

[34] P. Morin, K. G. Siebert, and A. Veeser. Convergence of finite elements adapted
for weak norms. Preprint, University of Augsburg, 2007.
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