
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Automated Behavioural Identification and Timing Verification of Pulse Gate Systems

Permalink
https://escholarship.org/uc/item/7sd402dj

Author
Mc Carthy, David

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sd402dj
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Automated Behavioural Identification and Timing

Verification of Pulse Gate Systems

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

David Donal Mc Carthy

Committee in charge:

Professor Forrest Brewer, Chair
Professor Luke Theogarajan
Professor Timothy Sherwood
Professor Tevfik Bultan

March 2022

The Dissertation of David Donal Mc Carthy is approved.

Professor Luke Theogarajan

Professor Timothy Sherwood

Professor Tevfik Bultan

Professor Forrest Brewer, Committee Chair

December 2021

Automated Behavioural Identification and Timing Verification of Pulse Gate Systems

Copyright © 2022

by

David Donal Mc Carthy

iii

This thesis is dedicated to my family - my parents Michael and

Elizabeth and my brother Tim.

iv

Acknowledgements

Firstly I would like to thank Prof. Forrest Brewer for being my advisor through this

research.

I would like to thank my parents Michael and Elizabeth and my brother Tim for their

unwavering love and support both through this research and in my life generally.

I would like to thank my committee, Prof. Luke Theogarajan, Prof. Tevfik Bultan

and Prof. Tim Sherwood for their insights.

I would like to thank Prof. Brewer, Prof. Philip Lubin and Prof. Theogarajan for

supporting me as a graduate student researcher at various times throughout my thesis.

Thanks also to the many professors with whom I have taught over the course of my PhD.

I would like to thank to the Electrical and Computer Engineering department for

many teaching assistant opportunities throughout my studies, and also for the ECE

dissertation fellowship. Thanks also to UCSB Graduate Division for the graduate division

dissertation fellowship.

I would like to thank to my colleagues in the Brewer Lab, especially Merritt, Aditya,

Prashansa and Carrie for their fruitful collaboration as we each worked on various aspects

of pulse gates. Thanks also to my colleagues in the Lubin lab and Theogarajan projects

for their collaborations on other research.

I would like to thank the friends I have made here at UCSB for their company and

support throughout my time here. Thanks also to my friends in Ireland for their continued

support.

v

Curriculum Vitæ
David Donal Mc Carthy

Education

2022 Ph.D. in Computer Engineering (Expected), University of Califor-
nia, Santa Barbara, United States.

2014 M.Eng.Sc. in Electrical and Electronic Engineering, University Col-
lege Cork, Ireland.

2013 B.E in Electrical and Electronic Engineering, University College
Cork, Ireland.

Publications This thesis is based on the following publications:

• Unit Time Modelling of Asynchronous and Pulse-Gate Circuits
IWLS 2021, D. McCarthy and F. Brewer.

• High-Performance IP Design Using Pulse Logic
Tutorial Presentation, VLSID 2021, F. Brewer, P. Mukim, D. Mc Carthy

• Automated Timing Constraint Generation for Pulse Gate Circuits
IWLS 2019, D. McCarthy, M. Miller and F. Brewer

• Impolite High Speed Interfaces with Asynchronous Pulse Logic
GLSVLSI 2018, M. Miller, C. Segal, D. McCarthy, A. Dalakoti, P. Mukim and F.
Brewer

Other than this thesis, I have published:

• ROST-C: Reliability driven Optimisation and Synthesis Techniques for Combina-
tional Circuits
ICCD 2015, S. Grandhi, D. McCarthy, C. Spagnol, E. Popovici and S. Cotofana

• Predictable, Low-power Arithmetic Logic Unit for the 8051 Microcontroller using
Asynchronous Logic
MIEL 2014, D. McCarthy N. Zeinolabedini, J. Chen and E. Popovici

Additionaly I provided experimental assistance on the following related works:

• Design and Analysis of Collective Pulse Oscillators
TVLSI 2019, P. Mukim, A. Dalakoti, D. McCarthy, C. Segal, M. Miller, J. Buck-
walter and F. Brewer

• Distributed Pulse Rotary Traveling Wave VCO:Architecture and Design
ISVLSI 2019, P. Mukim, A. Dalakoti, D. McCarthy, B. Pon, C. Segal, M. Miller, J.
Buckwalter and F. Brewer

vi

Abstract

Automated Behavioural Identification and Timing Verification of Pulse Gate Systems

by

David Donal Mc Carthy

This thesis addresses the problem of behavioural identification and timing verification for

asynchronous, pulse-gate circuits. In particular, the design of very high performance logic

and control functions such as time-to-digital, data-recovery, pipeline and FIFO control

logic are targeted. The objective of this work is to produce models that are sufficiently

general to include these hand designed circuits, amenable to automatic timing verification

and, if possible, encompass known pragmatic techniques for asynchronous closure.

To achieve this timing verification a pair of timing models are proposed. The “unit

time” model models the local behaviour of the circuit, and a “phrase” model models the

communication between the unit timed regions. The phrase model also leads to a model

for system level behaviour.

The “unit time” model allows the abstract system behaviour derived from symbolic

simulation of the circuit as the specification. This step uses the special behaviour of

pulse gates to create the symbolic abstraction, thus identifying possible nominal ‘states’ of

model predicted behaviour and through this agreed behavioural convention the behaviour

predicted by the model should agree with designer intended behaviour.

Next “phrases” are introduced as a model for communication between coherent unit

timed regions, while the whole ensemble system need not be coherent. The whole system

can be examined at a global level by modelling the set of phrases potentially currently

occurring and which phrases result from these. This describes a path towards system

level verification to ensure that behavioural escape does not occur due to overlaps of

vii

predicted local behaviours.

A ‘coherence depth’ property is defined to determine that gates in the local region

are sufficiently connected over all logic cases for this model to be self sufficient. A formal

proof that this property plus a set of critical path inequalities are sufficient to verify the

timing of the system.

A computer tool is presented to derive the necessary timing constraints. Results from

this tool are presented both to show the scale of problems it can handle, and that its

constraints are in good agreement with SPICE for small circuits.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Pulse Gates . 3
1.2 Unit Time Model . 4
1.3 Phrases . 6
1.4 Timing Proof . 7
1.5 Tool Implementation and Use . 8
1.6 Thesis Structure . 9
1.7 Permissions and Attributions . 10

2 Background 12
2.1 Related Work . 12
2.2 Pulse Gates . 19
2.3 Timing Constraints . 28

3 The Unit Time Model 31
3.1 Unit Time Model . 31
3.2 Validity and Applicability . 34
3.3 Coherence Depth . 35
3.4 Single Ancestor Timing Verification . 41
3.5 Conclusions . 43

4 Phrases 44
4.1 Phrases . 45
4.2 Completeness . 48
4.3 Unit time model of phrases . 49
4.4 Timing Constraints Across Regions . 51
4.5 Non-interference . 52
4.6 Conclusions . 55

ix

5 Timing Containment 56
5.1 Bi-Bounded Delay Model . 56
5.2 Ranked Order Labelling . 60
5.3 Proof Introduction . 63
5.4 General Timing Bound . 64
5.5 Specific Timing Bound . 68
5.6 Behavioural Correspondence . 70
5.7 Proof Conclusion . 72
5.8 Conclusion . 72

6 Tool Implementation 74
6.1 Tool Input . 75
6.2 Unit Time Model Details . 75
6.3 Static Checks . 79
6.4 Coherence Depth Determination . 80
6.5 Path Tracing . 83
6.6 Conclusions . 89

7 Results 90
7.1 Systems Results . 90
7.2 Spice Comparison . 93
7.3 Conclusions . 95

8 Conclusions 96
8.1 Completeness of Models . 97
8.2 Future Work . 98

A PySMV 99
A.1 AST Compilation . 100
A.2 BDD Model Compilation . 102
A.3 Model Manipulation . 103

B SMV Model Example 105
B.1 Circuit Netlist . 105
B.2 Phrases . 106
B.3 Basic Model . 106
B.4 “Speed” Model . 118

Bibliography 136

x

Chapter 1

Introduction

In this thesis, a two-part model is proposed for pulse-gate asynchronous circuit construc-

tion. This consists of a “unit time” local model and a “phrase” system-level/interface

model. The objective in designing these models is to be:

• Sufficiently general to include hand-designed pulse gate circuits.

• Amenable to automatic timing verification.

• If possible, encompassing known pragmatic techniques for asynchronous closure.

Hand designed asynchronous circuits tend to be arbitrarily complicated at a local

level. Nonetheless these designers include global symmetries that, if identified, can be

exploited to allow verification. From a topological point of view, local components are

strongly connected but global communication is much more organised.

Phrases are definitions of communications interfaces within the system. The phrases

divide up the system into local region, within each of which the local behaviour is evalu-

ated with the unit time model. Figure 1.1 shows this process. The phrases into and out

each region become boundary specifications on it, with the inputs defining its behaviour

1

Introduction Chapter 1

Unit Time Model 1

Unit Time Model 2

Unit Time Model 3

Phrase A

Phrase B

Phrase C

Figure 1.1: Example fragment of a pulse-gate circuit

and the outputs to be checked. Phrases also model system level communication and an

outer view of phrases can be used for global level verification.

The unit time model is proposed as a local model designed to capture complex local

behaviour. This model is based on the observation that designers must necessarily restrict

the timing build-up within their local blocks, otherwise variance would build up indefi-

nitely and the desired behaviour could not be guaranteed by any scheme. Thus, the unit

time model makes strong timing assumptions, and together with the input specification

from a phrase allows the nominal behaviours of the region to be inferred.

Timing verification in asynchronous circuits in general comes in two parts, verifying

that the circuit is contained within some model so that the timing hazards predicted by

the model are the only ones that can occur, and then verifying that those do not exist.

Different models balance this in different ways, but all models need both, since the set

of circuits that can work under completely arbitrary delay assumptions is behaviourally

incomplete. Further, it may be necessary to make more timing assumptions to enable

higher performance to be achieved.

Traditional approaches to asynchronous logic will be discussed in more detail later,

but can be broadly divided into 3 categories. Asynchronous state machines as the name

implies only consider local behaviours which can be descried as a state machine. Delay

2

Introduction Chapter 1

Insensitive and Quasi Delay Insensitive designs require handshaking all the way down

to the bottom level to eliminate as many timing assumptions as possible. Asynchronous

pipeline models again consider only a very limited family of local behaviour, namely

pipeline control elements and otherwise conventionally timed logic attached to them.

The desire to capture a general variety of hand designed circuits which make timing

assumptions freely for performance drove the need for a new model.

1.1 Pulse Gates

Pulse gates have signal propagation times that are 30-50% slower than conventional

CMOS gates. Nonetheless, pulse gates represent a methodology to create circuits that

operate at much higher rates than conventional CMOS logic in practice. This is due

to execution with localized timing that is electrically co-incident with the data signal.

Due to relatively high power density, high performance pulse circuits are not appropriate

for generic logic functions, but are admirably suited for smaller, critical logic such as

SERDES, link sub-circuits, FIFO/cache control and arbitration logic and selective clock

technologies such as elastic pipelines.

Circuit designers using pulse gates have not used them arbitrarily but have used

construction paradigms that allows exploitation of the high performance, but limits the

timing complexity to predictable local timing arcs at the gate level. At larger scales con-

ventional synchronisation strategies such as consensus, hand-shake and selective clocking

are used. Thus, pulses can be gated or indeed subsumed by earlier pulses, but pulse arrival

arbitration is handled by a separate circuit out of the timing model. These constraints act

to limit the complexity of timing verification, avoiding the factorial complexity growth

and logical incompleteness of general asynchronous circuits.

Several features of pulse gates motivated their design. They have relatively consistent

3

Introduction Chapter 1

propagation times. This means that circuit designers hand-designing circuits often make

implicit timing assumptions, hence the need to perform timing verification. The same

timing consistency also allows new timing models to be be explored. Pulse gate circuits

also include some topological constructions such as local loops that are avoided in most

(asynchronous) circuit construction strategies.

1.2 Unit Time Model

The unit time model is the local model of the circuit behaviour proposed. It is a

topologically derived finite state machine model of an asynchronous circuit. The circuit

is described as sequences of discrete “states”. A state is defined as the set of events

present nominally simultaneously in the circuit, as well as the value of the data signals

at that time. States are separated by the local sequencing of individual gates. The

successors of a state are defined as the sets pulses present in the circuit simultaneously

one topological, with latches updated if they have accepted pulses.

Given a circuit and an input specification, the unit time model through simulation

(symbolic or otherwise) can identify a possible behaviour of the circuit, which is what the

circuit would do if all gates in the circuit had the same constant nominal gate delay. In

this unit delay view, the events occurring in the unit time model are a near-simultaneous

group of pulses and the next state is the state of the circuit sampled one unit gate delay

later.

By inspecting the behaviour of the circuit under the strong behavioural assumption,

actions that need to occur in a certain order to produce that behaviour can be identified.

That is the pairs of actions that constitute a hazard as defined in chapter 2 can be

identified. Gate hazards are assumed to be a complete boundary on the space of event

times for which a gate will behave correctly. Then, a looser assumption can be made that

4

Introduction Chapter 1

the circuit behaviour will be reached provided those key event pairs occur in the correct

order, since for gate to behave differently would require a hazard to be violated.

The validity of this assumption, that the unit time model predicts an actual behaviour

the circuit can be made to have, depends on the following factors:

• Timing dispersion that always exists does not become too large. A verifiable “co-

herent” property of circuits will be established to deal with this.

• No gate interaction produces different results between unit time model and real

circuit. This is a restatement of the completeness of the hazard model ensuring

correct behaviour.

• The unit time model is the only activity in the circuit or region where it is being

applied.

The other issue is if the unit time model is applicable. That is, if the behaviour the

unit time model predicts can actually be enforced on the circuit, and that it is the same

behaviour the designer wanted. The assumption here is conservative. If the designer

creates a correct circuit that violated the hazard model, it cannot be verified. However,

a circuit that passes verification will exhibit behaviour compatible with the unit time

model if it passes. The unit time model is particularly applicable to pulse gate circuits

due to the typically narrow timing variance exhibited by a pulse gate set.

1.2.1 Coherence Depth

One of the key assumptions of the unit time model is that variance cannot build up

indefinitely in the circuit. One way the amount of variance that can build up can be

determined is to look at how long the pulses in the region of a system travel separately

before all pulses remaining in that region can attribute their timing back to one common

5

Introduction Chapter 1

ancestor, or have timings as if they did. This is called the “coherence depth”. If the

coherence depth is small then only a small amount of variance can occur. If it is larger

then there is more opportunity for variance to build up, but this variance is still bounded

by conservative estimation of gate properties. If the circuit is such that a common

ancestor cannot be determined, then variations of event timing can build up indefinitely.

If timing dispersion is injected into the pulses in the same unit time state, then after

the coherence depth states later, the circuit will have absorbed that dispersion and the

relative timing between the pulses in that later state will be the same as if no dispersion

had been injected since the pulses in the new state have picked either the pulse with the

dispersion or the one without as their common ancestor. This property is the teleological

value of the term ‘coherence’, it allows determination of when circuit behaviour allows

direct comparison of timing of circuit events and thus enforcement of timing hazards of

gates as well as completing the abstract notion of ‘state’ for the asynchronous circuit.

1.3 Phrases

The applicability of the unit time model is dependant on the coherence depth remain-

ing small. Trying to build a unit time model of a large system will have an excessively

large coherence and it would instead be better to build unit time models of different

regions of the circuit and then model the communicating between those regions. Thus

it is necessary to extend our unit time model to include communication. Since pulse

gate circuits make timing assumptions across interfaces as readily as they do within

themselves, it is necessary that coherence also be available across communication. On

the other hand, where there are long gaps in communication, it does not make sense to

preserve coherence and would be better to terminate that coherence reference and start

with fresh coherence when the next communication occurs, e.g. in a serialiser system

6

Introduction Chapter 1

the timing between bits within a word might be within the same coherence but a new

coherence models the timing of the bits of the next word.

Phrases are introduced as a system level model of communication. A “phrase” is a unit

timed series of pulses and data-changes that represents one communication interaction

between two regions of a circuit. A phrase consists of three parts:

• The “cut set”, a subset of the signals of the system.

• A regular language whose alphabet is logic cubes describing restrictions on the cut

set signals.

• A phrase coherence depth.

The “cut set” is a set of signals which describes the boundary over which the com-

munication is occurring. Using these cut sets, the circuit can be divided up into regions

which can be unit time modelled independently. The phrase then describes the inputs

into that region when executing the unit time model. The coherence depth for a phrase,

like for the unit time model, is the largest number of steps needed to get back to a

common ancestor between two events considered concurrent.

By considering which phrases produce each other, an outer system level model is

theorised. This model allows the non-interfering property of pulse gates to be validated.

This non-interference model means that a speed-independent view can be taken at the

phrase system level.

1.4 Timing Proof

Since the objective of this work is to perform timing verification, it is first necessary

to contain the amount of timing verification to be done. It is shown that for a unit

7

Introduction Chapter 1

time model with a finite coherence depth, it is sufficient to check single ancestor timing

constraints up to a certain length, specifically where the shorter arm is of length of at

most the coherence depth.

This is achieved by a three part induction building correspondence of both behaviour

and timing bound between unit timed traces and real time traces. Given the current step

exists behaviourally, applying the definition of coherence depth gives a general bound on

the time between two pulses considered in the same state. This is then refined further

by considering possible synchronising elements. This combined with the assumed timing

verification then gives that the next step occurs as predicted.

1.5 Tool Implementation and Use

In this work, timing verification of the unit time model is achieved by deriving a

complete database of path timing constraints that are checked post layout. This is in

keeping with the methodologies of timing-based layout and design. In practice, the layout

system creates an abstraction of the timing constraints to drive physical placement,

followed by constraint checking. A design passing this is assured of correct operation

assuming the timing assumptions are correct. It is also possible that a potentially correct

design will be unable to be placed without timing faults – indicating the need for circuit

or subsystem redesign.

1.5.1 Coherence Depth Evaluation

To measure the coherence depth, labels are added to a state in the unit time model

representing whether an action is faster or slower than nominal, and symbolic simulation

is performed to ensure these labels converge to the same at some future point. The

number of steps taken is the coherence depth.

8

Introduction Chapter 1

Since in the system level view, the coherence depth of a phrase depends on the region

producing it, which in turn depends on the coherence depth of the input phrase of the

region, the final answer must be found through iteration to a fixed point. The input

coherence depth of each region is initially assumed to be 1, or can be user specified to

be higher. Output coherence depths are measured similarly. If those output coherence

depths feed into a region, and tell us the coherence depth of that phrase is higher than

previously known we must retest that region to see if the increased input coherence depth

increases the region or its outputs coherence depths. This is iterated until upper fixed

point.

1.5.2 Hazard Tracing

The timing hazards that have to be verified against can be identified by inspection

of the circuit schematic. To find these paths inequalities that lead to those hazards,

a recursive backtracking search is performed over this to find possible ancestors of the

hazard events and thus find paths. This search is topologically driven, and state sets are

propagated throughout the search to ensure that states exist that lead to this trace.

Where a timing path in a region is traced back to the input boundary, this timing

constraint on the inputs is back propagated into the region that produced that phrase

and traced there as a new hazard. These are called ’through’ hazards. Whether the

correct signals occur is tested in the backtrace, and whether the output state agrees with

the input state in the next is checked during the CTL recheck of the path.

1.6 Thesis Structure

• In chapter 1, a general introduction to this thesis has been given.

9

Introduction Chapter 1

• In chapter 2 the background of this thesis will be discussed in two parts. One is

related work generally, and one is an analysis of the behaviours and construction

rules of pulse gate circuits

• In chapter 3 the “unit time model” is developed as a local model of pulse gate

behaviour.

• In chapter 4 “phrases” are developed as a system level model.

• In chapter 5 the soundness of the unit time model is proved.

• In chapter 6 the construction of computer tools to perform the timing analysis of

pulse gate circuits based on these models is discussed.

• In chapter 7 experimental results are presented

• Chapter 8 summarises the conclusions of this thesis.

• Appendix A describes the PySMV library constructed to facilitate this work.

1.7 Permissions and Attributions

1. Several pulse gate example circuits are form this work are from Merritt Miller’s

Thesis[1]. These are used with permission and are cited where relevant. It is the

circuit topology which has been reproduced, any drawings shown here are redrawn

by me.

Diagrams throughout this thesis were originally presented in my papers presented

at the International Workshop on Logic and Synthesis, 2019 and 2021. For this

workshop, copyright in the papers remains with the author so permissions are not

an issue.

10

Introduction Chapter 1

Table 2.1 is reproduced from a joint paper presented at the Great Lakes Sympo-

sium on VLSI 2018[2]. The conference proceedings for this are published by the

Association for Computing Machinery (ACM), and this re-use is permitted by the

ACM copyright policy, section 2.5 [3].

11

Chapter 2

Background

2.1 Related Work

2.1.1 Prior Pulse Gate Work

The pulse gate design style on which this work is based was initially introduced in [4].

It was first applied to high speed communications circuits [1]. It has also been applied to

high performance oscillator designs [5, 6, 7]. It has also been considered for applications

such as time-to-digital converters and multi-wire phase encoded links [8].

An alternative pulse gate timing algorithm appeared in [1]. This algorithm requires

identification of frames where each gate only fires once, this technique did allow for

looping behaviour (i.e. the circuit re-triggering itself), however, the manual placement

of timing frames allowed for potentially missing possible behaviours. It was a manual

methodology to organize the timing variables suitable for hand design. Further, that

model is incapable of modelling pulse absorption, a behaviour used in stabilizing high

performance clock phase generators.

12

Background Chapter 2

2.1.2 Other Pulse Gate Design Styles

The notion of self-resetting gates can be traced to work by Sites and others at the dawn

of NMOS technology[9]. The first systematic work was that of Martin and Nyström[10].

In that work, pulse gates were used as part of Quasi-Delay Insensitive design paradigm.

One of the main issues in that work and other asynchronous work is where level based

request-acknowledge handshakes are used, proper handling of the reset of the handshake

signals adds both circuit complexity and potentially lowers system performance.

Various pulse gate based micropipelines have been proposed, including Sutherland and

Fairbanks’s GasP[11] and Greenstreet’s Surfing Interconnect[12]. These circuits exhibited

the relatively high performance potential of pulse-gate designs, but beyond the pipeline

stage setup and hold issues, timing models were not developed.

Self Resetting CMOS is another pulse gate style aimed at data-path computation.

Computation is performed with overlapping wide pulses, implying many timing con-

straints to ensure pulse overlap[13]. However, such circuits treated these gates as dy-

namic gates, locked in a governing synchronous paradigm. Thus while there are unique

timing issues to this design style, the techniques used for timing static circuits can be

adapted readily.

This use enabled high stage performance of clocked designs, notably Intel Pentium 4

arithmetic pipelines[14] (Intel used the term self-resetting domino for this work). Again,

the governing synchronous clock (at 1/2 the state rate for Intel) cast the timing problem

back into the synchronous model.

2.1.3 Finite State Machine Model Checking

Finite state machines (and similarly, finite automata) [15] are useful models for sys-

tems. The equivalence with regular languages allows switching easily between a state

13

Background Chapter 2

based and trace based view, and semantics for non-determinism are well established. A

large number of verification schemes exists for finite state machines. Symbolic Model

Checking[16] encodes sets of states and the transition relation of a state machine as

boolean functions, and thus allow checking of properties on sets of states of the state

machine simultaneously by logic operations. Existential Quantification is required, thus

Binary Decision Diagrams (BDDs)[17] are usually used as the logic representation since

existential abstraction is relatively efficient in BDDs. However use of BDDs for large

problems is limited by the fact that they are only efficient if a good variable order can

be found, and a good variable order may not always exists[18].

Bounded Model Checking[19] in its original form, unwinds many copies the transition

relation forward from the initial step to show that a violation cannot occur within a

certain number of steps. k-Induction[20] combines this with a second check unwinding

back from the set of property-violtating states, and thus allows the property to be proved

for all time. More modern approaches such as Property Directed Reachability[21] use

arrangements other than direct unrolling to achieve the same result more efficiently.

When model checking state machine models, the property to be checked can either be

an invariant on a checking signal built into the machine that must be always true or false,

or it can be a more general specification about state progression. Linear Temporal Logic

(LTL) and Computational Tree Logic (CTL)[22] are two logics commonly used to specify

such requirements. LTL specified requirements on traces produced by the state machine

(thus taking a language view), and allows specifications such requiring as a property to

be true eventually, always or in the next step of the trace. CTL imposes requirements on

properties from a starting state of an state machine, such as a property being eventually

true on all paths out of that state, or being always true for some path out of the state.

Symbolic Model Verifier (SMV)[16, 23] is the original state machine verifier, per-

forming BDD based symbolic model checking with CTL specifications. NuSMV[24] is a

14

Background Chapter 2

reimplementation that additionally supports bounded model checking. Additionally the

SMV input syntax is widely supported by newer solvers such as NuXMV[25] or eBMC[26]

due to its use for expressing model checking contest problems. For these reasons and to

allow the use of external tools, SMV syntax is used in this work.

The BDD operations underlying verification are widely implemented using the CUDD

(Colorado University Decision Diagrams) package[27]. For SAT solving the MiniSat[28]

solver is commonly used in automata tools (inlcuding NuSMV and property-directed

reachability) due to its stable programming interface. More recently PicoSAT[29] is also

used similarly. SAT solvers are an active area of research in themselves, yielding newer

solvers such as CaDiCaL[30] and the Maple family of SAT solvers[31]. These focus on

solving the largest possible single SAT instances and thus can have large overheads on

the many small-to-medium SAT instances that are repeatedly checked in model checking

problems, so MiniSAT and PicoSAT remain popular there.

2.1.4 Asynchronous Timing Verification

Asynchronous State Machines

Huffman’s Fundamental Mode circuits[32] took an asynchronous state machine ap-

proach, and consisted of circuits where signals must arrive either close together and

be considered part of the same transition, or be separated enough to arrive after that

transition has settled. Building such state machines required extensive hazard removal.

Burst Mode logic focused on enabling the design of such machines in a hazard free

fashion. This is achieved by limiting the communications between them to specified sets

of signals (”bursts”) all of which must change before the state machine transitions. It

was originally proposed by Coates, Davis and Stevens[33].

Nowick showed that two-level hazard free implementation of burst mode and extended

15

Background Chapter 2

burst mode automata is possible by careful state assignment [34].

Much work has been carried out on synthesising burst mode and similar asynchronous

state machine styles from various specifications is possible, often using Petri net style spe-

cific. In particular Chu[35] introduced the Signal Transition Graph specification style.

Wilcox [36] presented another synthesis approach using the same specification. Cor-

tadella’s Petrify[37] more explicitly embraces the Petri net nature of the specification.

Relative timing[38] is a method of identifying timing inequalities in extended burst-

mode circuits, to allow the optimisation of slower hazard free structures into faster ones

with hazards that can be checked. The overall approach is somewhat similar to this paper,

in that intended behaviour can be read from circuit structure. The local composition

rules used in that work imply that each signal is only used once and so inequalities can

be written in terms of the occurrence times of signals. In pulse gate circuits, designers

frequently include looping behaviour even on a local level so it is necessary to analyse

circuits where gates are used multiple times per analysis scope, leading to inequalities

based on paths rather than individual signals.

Speed Independent and Delay Circuits

Speed Independent[39] circuits are circuits whose behaviour remains equivalent under

arbitrary assignments of gate delays. Muller introduced the notion of speed independence,

and a lattice definition for behaviour equivalence. Muller also introduced the property

of “Semi-Modularity”, which is where the system does not allow gates that have been

excited (wanting to change their output) to become un-excited by any means other than

firing. Muller showed that this semi-modularity property is sufficient but not necessary

to give speed independence.

Delay Insensitivity[40] is the further requirement that the circuit be sound under

any assignment of wire delays. This was originally proposed by Molnar and Clarke in

16

Background Chapter 2

their “Macromodules” project. They proposed the construction of a small library of pre-

designed small modules, which could then be assembled into systems in delay insensitive

systems. Many different module sets have been considered in subsequent works, Patra

and Fussell[41] present one such set that is a minimal number of distance modules while

retaining behavioural completeness.

Martin showed that if a circuit is required to be delay-insensitive[42] down to indi-

vidual gates, then such circuits could only compute a very restricted set of functions.

This led to Quasi-Delay Insensitive (QDI)[43, 44] logic which was delay insensitive apart

from specific nodes where the wire delay is assumed to be matched. Applications of this

focused on compilation in a correct-by-construction fashion. The specifications used are

based on a hardware version of Hoare’s Communicating Sequential Processes[45] model.

Beerel’s Proteus[46] is a logic synthesis methodology for dynamic domino pipelines,

which intentionally sizes the domino gates to have a unit delay. This allows for timing

optimisation at a few-gate level but larger timing synchronisation is still achieved in a

Quasi-delay-insensitive manner

Asynchronous Pipeline Styles

Building the entire circuit in a delay insensitive fashion has a large overhead. A

variety of asynchronous pipeline control stages have been proposed, whereby the data

computation is a relatively conventional pipelined static logic pipeline, with the latches

being clocked by asynchronous handshakes. This was originally proposed by Sutherland

in his “Micropipelines” model [47].

In Sutherland’s original formulation of micropipelines, most of the logic complexity

was spent making dual-edge sensitive control structures to avoid the reset side of the

handshake. Thus various pulse versions have been considered to alleviate this, as has

been discussed above.

17

Background Chapter 2

Symbolic Time Verification

Belluomini[48] proposed an approach using numerical decision diagrams to represent

explicit values of event time, and a using a partially ordered set (POSET) to constrain

the timing problem.

Timed automata[49] are an extension to the standard automata model to allow ver-

ification of systems with time constraints. Real times are added to the input language

alongside the input symbols. The state of the system includes real time clocks in addition

to the usual state, which can be reset to zero by a transition being taken, and then count

up real time. Transition guards in the automata can include comparisons between these

clocks and a constant. UPPAAL is a verifier for such systems[50].

Maler[51] applied timed automata to verifying asynchronous circuits.

2.1.5 Other Relevant Work

One feature of pulse logic which will be discussed later is the extensive use of combi-

national loops within circuits. In conventional synchronous logic the “local” evaluation,

the static gates between the registers must be a directed acyclic graph. As has been

seen above it is also relatively rare in asynchronous logic. One work that did deal with

this is Riedel’s Cyclic Combinational Circuits[52]. Compared to usual assumption that

combinational circuits are acyclic, Riedel’s model allows circuits which have cycles in

their topology provided that the evaluation of the circuit is acyclic since any cycle must

be cut by the data values, e.g. muxes selecting inputs that do not form a cycle. In a

correct Riedel circuit, the order in which gates evaluate is allowed to be data dependent,

for each data assignment an evaluation order can be found with each gate evaluate to its

final value at most once.

18

Background Chapter 2

Critical Node

in out

Figure 2.1: Pulse gate implementation

2.2 Pulse Gates

In this section, pulse gate circuits as they are designed by human designers will be

discussed. Construction rules for pulse gate circuits will be discussed, as will the nature

of timing hazards in pulse gate circuits.

A pulse gate circuit consists of two types of gates, the pulse gates themselves and

pulse-actuated SR latches. A pulse gate is a self resetting CMOS gate. Figure 2.1 shows

the most basic example, a pulse buffer. An arriving pulse pulls down the critical node.

The output then starts rising. After the propagation delay of the reset loop, the critical

node is pulled back up by the reset transistor, and the output goes low to end the pulse.

The gate is sized so as the pulse is “round topped”, ensuring that rising and falling times

are independent of input excitation[4]. Thus the pulse shape is largely dependent only

on the arrival time of the actuating pulse, and not slope or amplitude.

In addition to the basic pulse buffer shown, logic in pulse gates is implemented in

two basic ways. One is by ANDing a pulses with a static level from a SR latch, or a

more involved guard combining multiple latch values, producing an output pulse only if

the latches have a required value when at the time the input pulses arrive. The other is

by ORing two different arriving pulses together, producing an output pulse when either

input pulse arrives. Both of these are achieved by replacing the in MOSFET with a

19

Background Chapter 2

A

A

F

F
B

A
F

A

F

B

A

A
F

F

D

D

S

R

QA F

A

F

C

A

B
F

A

F

B

A

B
F

A

F

B

&

(a) Pulse Buffer (b) Pulse OR Gate (c) Pulse AND Gate

(d) SR Latch (e) Pulse Consensus Gate (f) Pulse Conjunction Gate

Figure 2.2: Pulse gate logic elements

20

Background Chapter 2

either a series or parallel NMOS pull down network. More general gates (e.g. 22 And

Or) can also be constructed in this fashion.

Latches are typically CVSL-style SR latches sized to be correctly actuated by a pulse.

Earle latches with logic in the latch pull down network can also be built. Figure 2.2 shows

the basic pulse gate logical elements.

Several more elaborate pulse gate behaviours can be constructed for synchronisation.

A pulse consensus gate has two input pulses, and it only produces an output pulse after

both inputs have been activated. If only one is activated at a given time, it retains this in

internal state, and when a pulse arrives on the other input the output is then produced.

This is effectively a pulse equivalent to a Muller C element. A pulse conjunction gate

is a gate that only produces an output pulse when it receives two simultaneous or near

simultaneous pulse inputs.

When a pulse-OR gate is activated by two incoming pulses sufficiently nearby in time,

it will cleanly produce one output pulse. This behaviour is referred to as “Coalescence”

when it is designed. The timing of this pulse is based off the first arriving input pulse.

It can be used in a synchronising element where the margins can be ensured.

2.2.1 System Construction

A typical example of a pulse gate circuit is the binary counter shown in Figure 2.3

(from [1]). It takes an input pulse train, and uses Pulse And and Or gates to filter the

incoming pulse into pulse signals encoding both timing and state information that are

used to update latches creating the effective next-state data signals. There are many

possible ways to construct such a counter, with a trade-off between performance and

complexity. At one extreme, the circuit consists of a single pulse being routed between

pulse based toggle latches updating bits serially. At the other extreme multiple pulses

21

Background Chapter 2

S

R

Q

Q

S

R

Q

Q

S

R

Q

Q

clk

clk_out

d[1]

d[2]

d[0]s[0]

s[1]

r[0]

r[1]

s[2]

r[2]

done_0_1
done_0

Figure 2.3: Pulse Gate Binary Counter

are selectively produced and simultaneously update several bits in race in consensus

mode. The ability to readily produce data-laden signalling events which are locally timed

accounts for the potential high performance, and these behaviours must be addressed by

a practical verification strategy. Most commonly on a local level a 1-of-N code is used

but at a system level other codes, such as a pulse order code, have been investigated [8].

The construction rules for pulse gate circuits are:

• Pulse gate circuits are strictly typed so that timing information is strictly derived

from pulse gates, and not from latch outputs which are only used for guards.

• Two pulses arriving at a pulse gate are far enough apart to cause two completely

separate firings of the gate, unless intentionally designed to coalesce.

• Two pulses arriving at an Pulse SR latch do not arrive so close as to cause meta

stability or an indeterminate result.

• Data signals are stable when being sampled by a pulse.

22

Background Chapter 2

delay delay delay

d[0] d[1] d[2] d[3]

out_0 out_1

ser delay:

in

out

Figure 2.4: Pulse Gate 4-bit Serialiser

Several strategies for local coherence are used in pulse gate circuits, one is depositing

data in latches for another pulse to read (the pulse timing path going into the latch

terminating and timing then being defined by the other pulse path). The other is using

coalescence to pick the first of two pulses arriving at an OR gate. While this can only

accommodate a small amount of dispersion (before gate electrical rules are violated) it

can easily prevent these small amounts of dispersion from accumulating over time. At the

system level, pulse consensus gates are the most common since they can accommodate

arbitrarily large amounts of dispersion. Of course they can also be used at locally.

Many of the standard asynchronous design styles can be constructed with pulse gates

within these rules. However, pulse gates circuits are at present typically designed by

human designers and optimised for high performance, Thus these circuits typically violate

the assumptions made by most formal asynchronous design styles. For example, many

formal design styles of do not admit combinational looping behaviours. That is, within

the scope of one ”evaluation” of a local circuit, no signal changes more than once. An

example of a pulse gate circuit that admits looping behaviour is the serialiser in figure

23

Background Chapter 2

Gate FO4 delay Std. Dev Tg,min Tg,max

Repeater 29.9 ps 2.2 ps 27.7 ps 40.9 ps
Or 31.9 ps 2.7 ps 29.2 ps 45.4 ps
Single condition 31.5 ps 2.7 ps 28.8 ps 45.0 ps
2 condition AND 29.4 ps 2.6 ps 26.8 ps 42.4 ps
2-condition OR 29.1 ps 2.3 ps 26.8 ps 40.6 ps
2 OR w/conditions 33.3 ps 3.5 ps 29.8 ps 50.8 ps
SR latch 37.0 ps 3.3 ps 33.7 ps 53.5 ps

Table 2.1: Gate delays of a typical pulse gate library (from [2])

2.4 (again from [2])., in this case, finite looping behaviour.

2.2.2 Low variance

Pulse gates have low variance, both in terms of the spread of different possible nominal

delays of different pulse gates, and also the possible PVT (process voltage and tempera-

ture) variation of gates in implementation compared to that nominal. This can be seen in

the example timing measurements in table 2.1. Converting to a bi-bounded delay model

based on −1/+ 5σ, the minimum time is 26.8ps and the maximum is 53.5ps

One reason for this is that the propagation time is largely determined by the reset

loop which is common to most of the pulse gates in library, with only the input pull

down changing. This contrasts to say static CMOS where the whole gate changes with

function.

Thus pulse gate circuits can be designed with timing arcs that are assumed to remain

in the order they occur in the nominal case, and further that this nominal-case order is

that the would be suggested topologically, i.e. the event that has more gate to it in series

occurs later.

This contrasts with, for example, burst-mode design where the output depending on

the order of evaluation of the gates would be disallowed, or QDI design where a handshake

join would be added to ensure both signals have been computed before being combined.

24

Background Chapter 2

Un-timed Static Gates

One extension to the construction technique that is allowed is the addition of static

gates to combine data levels from a latch before being used in a pulse gate guard. Ar-

bitrary use of static gates particularity to process pulse signals could lead to electrical

errors by distorting the usual pulse shape. Even if this were designed for, they would

break the low variance assumption the above rules offer. Using static gates only for data

signals, combined with the above construction rules ensures the timing can not propa-

gate further than the receiving pulse gate, since that does not derive timing from the

data inputs. Effectively the static gate is treated as being part of an elaborate pull-down

network for the receiving pulse gate, albeit one that significantly increases the setup time

of data signal at that gate.

Production Rules of Pulse Gate Circuits

One gate level description asynchronous circuits, including pulse gate circuits, is a

“Production Rule System” [44].These are a set of pairs of input preconditions and the

output actions they cause. For level-based asynchronous circuits the output actions are

rising and falling transitions. For pulse circuits the production of an atomic pulse is also

a possible result of a production rule. Let an “action” be either a pulse or a data edge.

Similarly the guard for level-based circuits is a Boolean function of level signals, where

for pulse circuits the guard may also include pulse signals.

An event is is an action which is capable of causing further actions. That is, pulses

or level transitions capable of causing a production rule or satisfied and thus the gate

to perform its action is called an event. The typing rules discussed above for pulse gate

circuits mean that signals are either pulse or data signals. By their nature, short atomic

pulses do not have state that other gates can include in their guards. The transition

25

Background Chapter 2

actions on data signals are also not allowed to be events by the typing rules. Thus a

signal is used either for events or static state (in the production rule sense), never both

and never switching between them in a state-dependent way.

For multiple events arriving near-simultaneously at a gate, causality can be deter-

mined by applying them one-by-one and seeing which one results in the output action

being produced. The result of this procedure should result in the same output regard-

less of the order. Simultaneous arrival of events that would result in different outputs

depending on order is usually a hazard e.g. data change arriving at the same time as a

pulse in a pulse AND gate, unless an explicit arbiter is constructed.

2.2.3 Timing Hazards

There are two possible ways in which a pulse-gate circuit can escape its intended

function. The first is that an electrical error in the pulse gates can occur, where the

assumptions about its input types are violated and cause the pulse output to malfunction,

e.g. by producing runt or overly wide pulses, or two output pulses for one input. Logical

errors occur when pulse gates function electrically correctly but the system behaviour is

different from what was designed. Both these types of failures are produced from the

same hazards. Whether the failure is electrical or logical depends on the degree to which

the assumption is violated, as show in figure 2.5.

The different types of hazards that can lead to these errors are differentiated by the

typing of the signals being combined and the intended order of the combination. There

are 6 types of pulse gate hazards, enumerated here and shown in figure 2.6:

• A Hold hazard exists when a pulse is ANDed with a data signal, and the pulse

arrives and is expected to be combined with the old value of the data signal before

the data signal changes. If the pulse arrives later than nominal, or the data changes

26

Background Chapter 2

A

D

F

Intended Behavior Electrical Error Logical Error

D

F

A

D

F

A

D

F

A

Figure 2.5: Pulse gate errors: logical and electrical

Actual

Hold Setup

Separtaion

Designed

S

R

Q

SR Order

Conjunction
Coalescence /

Figure 2.6: Pulse gate Hazards

27

Background Chapter 2

S

R

Q

a1 a2 a3in
out

b1 d

Figure 2.7: Example fragment of a pulse-gate circuit

earlier, a hold violation occurs.

• A Setup hazard exists when a pulse is meant to be ANDed with the new value of

a data signal, after that data signal changes.

• A Retrigger hazard exists when a pulse gate fires for the second time too soon

after the first, such that the pulse loop is still resetting.

• A Set-Reset Order hazard exists when a SR latch is meant to receive a set and

reset activation in a certain order, but that order changes so the latch ends up

having the wrong value.

• A Coalesce hazard exists when two pulses are meant to arrive at the same time

at a gate and coalesce.

• A Conjunction hazards is similar to a Coalescence hazard, except for gates where

the arrival of both pulses is required to produce the output.

2.3 Timing Constraints

To ensure that the assumed behaviour in the nominal case is what actually occurs,

either the circuit must be constructed so that no timing dispersion is possible, which in

28

Background Chapter 2

general is incomplete and where possible is often slower than ideal. Where timing hazards

might possibly occur, timing verification must be performed to ensure that for the actual

delays that occur in practice, the circuit has the intended behaviour. Considering the

circuit in figure 2.7. The interaction between pulse a3 and data signal d at the output

gate needs to be constrained to occur in the designer intended order.

t(d) + tsetup < t(a3) at out

Since pulse gate circuits often have signals which occur many times within a local

scope of evaluation, stating such an inequality alone can be ambiguous. If multiple a3

pulses and d changes occur in a local looping fashion, each pair of d and a3 need to follow

that order but it perfectly allowed for, after the first a3, a second d change to occur. If a

simple inequality like the above were used it would not be possible to accommodate such

behaviours. Solutions such as indexing the first, second, etc., occurrence of the same

event are possible but difficult given that which events occur in a pulse gate circuit is

data dependant. This is particularly true due to the wide use of one hot encoding.

The solution chosen in this work is to express the timing constraint in terms of path

inequalities. If the timing behaviour is truly local, then one recent common ancestor can

be identified. The timing constraint can then be expressed as an inequality on the paths

from that common ancestor to the signals in question. For our current example in is the

common ancestor.

t(in→ b1→ d) + tsetup < t(in→ a1→ a2→ a3) at out

In general a pair of signals being compared may have several possible common an-

cestors and the timing from that ancestor to those two signals needs to be checked. The

fact that such common ancestor(s) exists and checking timing from them is sufficient is

29

Background Chapter 2

an assumption that will be elaborated on in the course of this thesis.

The enforcement of timing constraints such of these is generally achieved by charac-

terising each gate type used in the circuit, and then substituting appropriate numbers

into the derived timing constraints and checking the inequalities hold. Characterisation

tables for this include data on gate propagation times and the required timing margin

for the various hazard (for example, the setup and hold times of a Pulse AND gate).

The characterisation need of hazard margins needs to be not only such that the gate

operates electrically and logically correctly, but such that it meets the overall assumptions

of the model. For example when considering the rising edge setup hazard for a Pulse

AND gate, a situation can arise as the rising edge arrives later where it is on the tailing

edge of the pulse at the other input, but there is still enough of an overlap that the

gate fires. This is the electrically correct behaviour but violates time timing assumptions

of the construction rules that timing is based on pulses only. Thus for purposes of

characterisation this should still be considered a setup violation.

30

Chapter 3

The Unit Time Model

Now the “unit time model” is introduced. This is the local part of the model pair

proposed in this thesis. First the model itself will be proposed and specified formally.

The requirements for it to be valid and applicable are presented. The notion of coherence

and how it supports the unit time model is discussed. Lastly how the unit time model

can produce timing constraints and how those timing constraints validate the unit time

model is introduced briefly.

3.1 Unit Time Model

The unit time model of a pulse gate circuit (or a region of a pulse gate circuit) is

an finite state machine model of an asynchronous circuit. The circuit is described as

sequences of discrete “states”. A state is defined as the set of events present nominally

simultaneously in the circuit, as well as the value of the data signals at that time. States

are separated by the local sequencing of individual gates. The successors of a state are

defined as the sets pulses present in the circuit simultaneously one topological, with

latches updated if they have accepted pulses. Series chains of pulse gates become a shift

31

The Unit Time Model Chapter 3

a b c

e

d

a

b

c

d

e

D Q D Q D Q

D Q

a$ev b$ev c$ev d$ev

a$ev

b$ev

c$ev

d$ev

e$ev

e$ev

Model as

Figure 3.1: Simple pulse circuit and its unit time model

register. An example of this is shown in figure 3.1.

Given a circuit and an input specification, the unit time model through simulation

(symbolic or otherwise) can identify a possible behaviour of the circuit, which is what the

circuit would do if all gates in the circuit had the same constant nominal gate delay. In

this unit delay view, the events occurring in the unit time model are a near-simultaneous

group of pulses and the next state is the state of the circuit sampled one unit gate delay

later.

By inspecting the behaviour of the circuit under the strong behavioural assumption,

actions that need to occur in a certain order to produce that behaviour can be identified.

That is the pairs of actions that constitute a hazard as defined in chapter 2 can be

identified. A looser assumption can then be made that the same behaviour will be

reached provided those key event pairs occur in the correct order, since for gate to behave

differently would require a hazard to be violated. The time of the events in the same

state in real-time execution are allowed to spread out as long as the eventual behaviour

32

The Unit Time Model Chapter 3

is the same. It is this latter looser behaviour that is actually enforced on the circuit when

performing verification.

The unit time model of a gate circuit specified by productions rules is a state machine

model based on the topology of the circuit.

Definition 1. A state in the unit time model is the product of the following factors:

• For all signals, whether an action is occurring on that signal for that state. For a

pulse system this is the pulses and data changes.

• For signals that have a level, the value of that level (after the transitions have been

taken into account).

• Any internal state of gates, e.g. consensus gates (pulse and regular).

• The generating machine of the input.

• An output recogniser for output verification, reduced to deterministic form.

Definition 2. The Unit Time model is a state machine model of an asynchronous

circuit. The states of the unit time mode are as defined in definition 1. For a given state,

the successor state is given:

• Evaluating all the production rules of the gates to determine which actions occur in

the new state

• For those level signals where an action occurs, the new value of the level signal

applying the above actions

• Similarly for internal states, the new values after evaluating the production rules

affecting them.

• The next state of the input generator.

33

The Unit Time Model Chapter 3

• The appropriate next state of the recogniser.

Note that most components of the unit time model are deterministic. The input gen-

erator in general is non-deterministic to allow exploration of multiple possible executions.

The gate actions are deterministic except for arbiters, either designed or accidental.

3.2 Validity and Applicability

The unit time model is ultimately a topologically inspired model, based on the fact

that a near-simultaneous group of pulses in the nominal case will produce, one gate

later, another set of near-simultaneous pulses. In this sense the unit time model rounds

all events in the system into near-simultaneous bunches and simulates this. Even if only

the weaker behavioural assumption that the intended order of pairwise timing arcs is the

topological order, the unit time model is a good fit since it produces those events in that

order.

The validity of assuming the unit time model predicts an actual behaviour the circuit

can be made to have depends on the following factors:

• Dispersion that exists does not build up too much. A “coherent” property of circuits

will be established to deal with this.

• No gate interaction produces different results between unit time model and real

circuit.

• The unit time model is the only activity in the circuit or region where it is being

applied.

• The circuit does not break the construction rules already in the nominal case.

34

The Unit Time Model Chapter 3

The coherence property and timing verification issues will be introduced later in this

chapter and expanded later on in this thesis. The non-interference requirement will be

discussed in chapter 4.

The other issue is if the unit time model is applicable. That is, if the behaviour the

unit time model predicts can actually be enforced on the circuit, and that it is the same

behaviour the designer wanted. The unit time model is particularly applicable to pulse

gate circuits due to the narrow timing values for a typical pulse gate set discussed in

chapter 2.

Note that while the near-simultaneous assumption is superficially similar to the fun-

damental mode view, the fact that this simultaneity is not enforced, just the actual

hazards in the circuit means it is not a particularity good fit. In fact variance much

wider than a gate delays worth is allowed to build up provided it does not change the

behavioural outcome.

That the circuit follows the construction rules in the nominal case can be determined

by the examination of the states reached in the unit time model. If one of the reachable

states of the unit time model include a pulse occurring and in the same nominal state a

data signal that that pulse is ANDed with changing, then this violation of the rule that

data signals are stable when being sampled can be flagged. Similarly data gates with

set and reset actions trying to occur simultaneously is a violation since it is in effect an

implicit arbiter.

3.3 Coherence Depth

One of the key assumptions of the unit time model is that variance cannot build up

indefinitely in the circuit.

Definition 3. The “Coherence Depth” of a circuit or a region of a circuit is how many

35

The Unit Time Model Chapter 3

topological steps signals can travel separately before all signals remaining in a region can

attribute their timing back to one common ancestor.

This coherence depth property is a measure of the amount of variance that can build

up can in a circuit. If the coherence depth is small then only a small amount of variance

can occur. If it is larger then there is more opportunity for variance to build up, but still

bounded. If the circuit is such that the common ancestor cannot be enumerated, then

variation can build up indefinitely.

An intuitive understanding can be achieved by considering two pulses from the same

unit time state, and injecting a timing dispersion between them when they occur in the

actual real-time execution of the circuit. Then considering the resultant pulses a number

of unit states equal to the coherence depth later. The coherence depth properly assures

that the relative timing between the pulses in that later state will be the same as if no

dispersion had been injected.

This occurs because, for the circuit to have that coherence depth proper the pulses

in the new state will have picked the same one of the starting pulses as their timing

ancestor.The circuit can achieve this coherence in several ways. Paths can terminate

thus the timing dispersion on that path is absorbed. Otherwise synchronising elements

can be used.

Figure 3.2 shows some examples of how coherence can be achieved. All three have

coherence depth 3. a, b and (where relevant) c are pulses in the same unit time state at

time k, d and e are pulses in the immediate successor, f and g in state at time k+ 2, and

h and i in the state at time k + 3. All three will absorb an injected dispersion. Circuit

(a) does so since only one path back to the inputs remains at timestep k + 3. In circuits

(b) and (c) coherence is achieved by means of consensus gates, though any synchronising

gate would suffice. In (b) these form an explicit synchronising layer, in (c) there is no

36

The Unit Time Model Chapter 3

a

b

c C

C
C

C

C

b

a

S

R

Qb

a

(a) (b)

(c)

d

e

d

e

d

e

f

g

f

g

f

g

h

i

h

i

h

Figure 3.2: Coherence can be achieved by (a) Terminating all but one path (b) Explicit
synchronising step or (c) Distributed synchronisation

explicit synchronising layer but enough synchronising elements distributed throughout

the circuit that coherence is none the less achieved.

With respect to the unit time model, the coherence depth of a circuit is: starting

from any given state how many steps forward before all the resultant actions in the new

state have a common ancestor event in the first step, or have timings as if they did. The

same definition can be applied to a region of a circuit.

Figure 3.3 shows how the coherence of the circuit from figure 3.2 (c) is achieved

considering the real-time occurrences of the actual events. Under each set of nominally

simultaneously pulses from the unit time models, the relative time they occur is shown

on the graphs. For the first state, a dispersion is introduced arbitrarily into the times of

signals a, b and c. Additional dispersion from gate variance is not here considered so the

37

The Unit Time Model Chapter 3

a

b

c

f

g

C

C
C

d

e
i

h

Figure 3.3: Dispersion being absorbed by real time gates

38

The Unit Time Model Chapter 3

relative times are propopgated. The pulse consensus choose the later of the two input

pulse times. Thus by state k + 3 the two pulses on h and i occur at the same time.

If the a circuit is such that the behaviour can fork into separate regions which do not

communicate with each other for a long time, then the timing dispersion between these

two regions will be large, much larger than the timing dispersion within either region. It

is possibly unbounded if the regions do not communicate for an indefinite amount of time.

In these cases it makes sense to apply the unit time model to these regions individually

and resolve the communications between them in another fashion, this will be discussed

in chapter 4.

3.3.1 Fast-Slow labelling

The fast-slow labelling is an augmentation of the unit time model to carry information

about how variance propagates. This is a discrete model of the variance build-up consid-

ered above. A state in this rank-order labelled model consists of a unit time state plus a

label added to those signals that have an action occurring in that timestep. Labels where

applied are the atoms Fast and Slow, where for the pulses in a unit nominal timestep

the ones labelled Fast are advancing in notional real time compared to the ones that are

Slow. Labels are not applied to signals where events are not occurring in a given time

step.

The fast-slow labelling is added to trace under the unit time model, starting from

some state index in that trace. For the first state of the ranked-order, unique labels are

added to each event that occurs in that state. When considering models which receive

input, the coherence of the input must be considered. This will be address in chapter 4.

For the next state of the fast- order labelling, the unit time state component is

determined as for the regular time model. Gates that produce an action have labelling

39

The Unit Time Model Chapter 3

Fast Fast

Slow Slow

Fast

Slow
Fast

Slow

Slow
Slow

Fast

Fast
Fast

Fast

Slow

0

1

Slow

S Q

R

Slow
Slow
Change

C

Fast

Slow

Slow

Slow

Fast

Fast

C

C

C

Fast

Slow
Prior

Slow

Slow

Fast

Fast

Figure 3.4: Fast-slow labelling rules

as follows:

• For a single incoming event, the produced event has the same label as the incoming

event. This could be a buffer where there is only one input, or an OR gate where

only one of the inputs fires in the timestep.

• For a pulse consensus gate with both inputs arriving in the same timestep, the

output is fast only if all the inputs are fast, otherwise it will be labelled slow. Note

that it has no memory of labels, if the gate is activated by one prior and one current

event then the label of the current events will be used.

• For a pulse OR gate with multiple arriving timestep, if any of the inputs are fast

the output will be fast. Otherwise the output will be slow. This is subject to data

guards, labelling is never copied from an input event whose guard is not met.

• Latch changes are labelled similarly.

These rules are illustrated in figure 3.4. The labelling of latches facilitates correct

40

The Unit Time Model Chapter 3

measurement of the amount of dispersion possible on a data signal, and also allows

identification of hazards.

3.3.2 Coherence depth measurement

To measure the coherence depth of a circuit, the fast-slow labelling is used to model

an injected perturbation. Given a a state in the unit time model, fast slow labels are

added as described above. Then the labelled model is simulated forward until all the

actions at that later timestep have the same label, Fast or Slow. If the circuit has the

coherent property we need, this labelling will eventually converge to such a state. If it

does not, infinite variation build-up is possible and the unit time model does not apply

to this circuit.

The coherence depth for this starting step is maximum value this takes over all la-

bellings. This models the perturbation being absorbed as above. This process is illus-

trated for a simple example circuit in figure 3.5, this example state has coherence depth

3. The coherence depth of the circuit or region being modelled by the unit time model

is the maximum of the state coherence depths.

3.4 Single Ancestor Timing Verification

Now that the unit time model has been built, the timing hazards, pairs of events that

must occur in a certain order, can be built.

One of the simplest timing verifications that can be performed on a circuit is to check

that for each gate the circuit, whenever that gate fires, the fanout of that gate does not

create timing hazards in and of itself. This “Single Ancestor Timing Verification” may

be achieved in several ways, one way in which this might be enforced is by a set of path

constraints as described in chapter 2.

41

The Unit Time Model Chapter 3

a

b

c C

C
C

F

F

F

F

F
F

F

F

F

a

b

c C

C
C

F F F

F

S S S

S

S

a

b

c C

C
C

F

S S S

S

S

a

b

c C

C
C

S S S

S

S

S

S
S S

a

b

c C

C
C

S

S

S

S

S S

F

F

F

a

b

c C

C
C

S

S

S

S

S S

F F

S

a

b

c C

C
C

F

S S S

S

S

S
S S

a

b

c C

C
C

S

S

S

S S

F F

S

F

F

F F

a

b

c C

C
C

i

h

i

h

i

h

i

h

i

h

i

h

i

h

h

i

d

e

f

g

h

i

Figure 3.5: Coherence example

42

The Unit Time Model Chapter 3

From the definition of coherence depth, it can be postulated that only those paths

where the shorter “slow” side of the timing path is shorter than or equal to the coherence

depth need be considered. This will be proven in chapter 5, as will bounds on longer

“fast’ side of the path.

When considering input signals into the circuit, the ‘single ancestor’ may be a pair

of input signals possibly even on different timesteps. These have an unknown common

ancestor in the previous region. Thus whatever timing model is applied in the current

region it may produce a constraint on the input variables that then needs to be checked

in the source region of the input.

3.5 Conclusions

In this chapter the unit time model of a pulse gate circuit has been introduced,

as has the notion of the coherence depth. The validity of the unit time model has

been postulated to rest on the coherence depth, non-interference and timing verification.

Chapter 5 will prove that these are sufficient. The concept of coherence depth has

been introduced, and how it contains the timing dispersion in a unit time model of a

circuit. The requirements of what timing verification needs to be performed has also

been discussed.

43

Chapter 4

Phrases

The applicability of the unit time model is dependant on the coherence depth being

small. Trying to build a unit time model of a large system will have an excessively

large coherence and it would instead be better to build unit time models of different

regions of the circuit and then model the communicating between those regions. Thus

it is necessary to extend our unit time model to include communication. Since pulse

gate circuits make timing assumptions across interfaces as readily as they do within

themselves, it is necessary that coherence also be available across communication. On

the other hand, where there are long gaps in communication it does not make sense to

preserve coherence and would be better to terminate that coherence reference and start

with fresh coherence when the next communication occurs, e.g. in a serialiser system

the timing between bits within a word might be within the same coherence but a new

coherence for the bits of the next word.

44

Phrases Chapter 4

4.1 Phrases

Definition 4. A “phrase” is a unit timed series of pulses and data-changes that repre-

sents one communication interaction between two regions of a circuit. A phrase consists

of three parts:

• The “cut set”, a subset of the signals of the system.

• A regular language whose alphabet is logic cubes describing restrictions on the cut

set signals.

• A phrase coherence depth.

The “cut set” is a set of signals which describes the boundary over which the commu-

nication is occurring. This shows the patterns of unit timed signal events that constitute

the communication being described.

Phrase languages are expressed here using a syntax superficially similar to Martin’s

Communicating Hardware Processes, itself based on Hoare’s Communicating Sequential

Processes. A signal being mentioned means an action on that signal is expected to occur

in that state. A signal not being explicitly mentioned means it is assumed not to occur.

The alternation operator “|” means one signal or the other is expected to occur. The

parallel combination operator, “||” in traditional CHP, means both signals must occur.

In the phrase version “&” is used instead since it similarly means both signals must

occur. In the unit timed version used here, the “;” operator is added means exactly one

unit time step later, and either a blank state (nothing between two semicolons) or ∅

describes a unit time step with no events crossing the region boundary.

Note that phrases are still regular languages, or equivalently automata and this is

a syntactic choice since that syntax is better suited to the fact that each state in the

automata is a requirement on multiple signals. These requirements are cubes, though

45

Phrases Chapter 4

expressed with a slightly unusual syntax due to their sparseness. Further while pulse

events that are mentioned must occur, for data change actions the mentioning of a signal

by default means a don’t occur, since the producing region changing a data latch may

change the data from that value to the same value instead of necessarily toggling it. If

needed additional decorations could be added to imply must change or even must rise or

must fall.

Each phrase also has a coherence depth. This is the largest distance back between

common ancestors of any pair of nominally simultaneous signals in the phrase, or between

a current event and the unseen progenitor of a future event. This is at most the coherence

depth of the region generating the phrase, or it may be smaller depending on the structure

of the region.

For example a simple serial link system (serialiser and deserialiser) can be described

with 3 phrases. The first is the “go” phrase to start the serialiser. This has a language

of just d[0 : 7]; go. That is the data signals are set up in the first step of the phrase,

and the “go” The “done” phrase emitted the deserialiser is similar. In practice the “go”

and “done” phrase may also include the setup of the input and output data latches

respectively. They would remain one state long but that would have additional signals.

The more interesting phrase is the one describing a word on the pulse-based serial

link. Consider a 4-bit word with 4 unit gate delays between each symbol. This described

by the language:

(ser0|ser1);∅;∅;∅; (ser0|ser1);∅;∅;∅;

(ser0|ser1);∅;∅;∅; (ser0|ser1);

46

Phrases Chapter 4

Phrase

Go Pharse Serial Word Done Phrase

Serialiser Deserialiser

Figure 4.1: Phrases dividing up a SerDes circuit and regions derived from them

4.1.1 Regions by cut

Given a set of phrases for a system given by their languages we can identify the

regions associated with each phrase automatically. First the cut set can be obtained by

inspection of the language for what signals occur. Using the cut set as a starting point,

a topological flood fill up to the boundaries defined by the cut sets of the other phrases.

Thus we obtain a region that receives that phrase, computes on it, and emits zero or

more output phrases (of the one or more topologically possible output phrases found by

flood fill). This flood fill is shown for a SerDes system in figure 4.1

In general this procedure leads to overlapping regions, where two distinct phrases fan

out into the same gates. Further this overlap may mean that multiple technically distinct

regions may produce the same output phrase or phrases. Thus it is assumed that while

a particular phrase is being processed in a region, that the behaviour sponsored by that

phrase is the only activity in that region. All phrase activity from other phrases whose

fanout region overlaps must occur definitely before or definitely after the phrase under

consideration. System-level constructions for enforcing this are beyond the scope of this

paper.

47

Phrases Chapter 4

4.2 Completeness

To see that a phrase-based model can reasonably model general systems, the following

is asserted:

• Control forks can be achieved with a region that has one input phrase and two

output phrases.

• Control merges can be achieved by having two different regions produce the same

output phrase.

• Control joins can be achieved with two single-pulse phrases whose regions overall

and start with a consensus gate. The first pulse to arrive arms that leg of the

consensus gate, while not propagating to the rest of the region and thus producing

no output phrase. The second then fires the consensus gate and produces further

action and an output phrase. Figure 4.2 illustrates these two possibilities.

• Data can be passed in several ways. 1-hot encoding of data is useful for long physical

distance communication. Pipeline like data passing can be achieved by having the

data as part of the phrase cut. Also phrases can read “global” data from registers

assuming that it can be guaranteed that no other phrase that changes that data is

co-executed.

Patra and Fussel[41] discuss 5 blocks as being sufficient for delay-insensitive asyn-

chronous systems - Fork, Merge, Mutex, 2x1 Join and Mem. Forks, Merges and Join

have been here discussed. Memory can be handled quite flexibly in pulse gate systems

with latches in regions but, if desired, a traditional delay-insensitive memory region with

3 input phrases (write 1, write 0 and read) and acknowledgement output phrases could be

built. Mutexes are not currently supported by this model as they represent arbitration

48

Phrases Chapter 4

Iterative

Circuit

A

Iterative

Circuit

B

C

donego

go1

go2 done2

done1

Figure 4.2: System with non-trivial control flow

and the current version of the model does not model arbiters, but given a pulse arbiter

they could be constructed quickly.

4.3 Unit time model of phrases

Having determined the regions of the circuit, unit time models can be constructed

in each. The input phrase into the region provides the primary inputs that define the

behaviour of the region. In the unit time model, a phrase is represented as Moore

machine whose outputs are the events and levels of those signals. For the generating

machine, the machine is deterministic but is a generator (so supports transitions non-

deterministically). The initial state is (arbitrarily one of) the first state of the language.

The final state is a trap state which loops forever producing no events.

Knowing the behaviour of a region from this unit time model and its expected output

phrases from the flood fill, it can be determined that these are produced correctly. The

output recognizing machine or machines are non-deterministic recognisers. They can

start in either a waiting state to wait for output, or in the first state of the language for

49

Phrases Chapter 4

cases where the output begins immediately. An accepting state which loops as long as

no unexpected trailing output events are produced is appended.

Phrases also represent a transfer of control, both behavioural and timing across the

boundary. Before the predecessor region starts producing its output phrase, control is

within that region entirely. When it starts producing the phrase, activity in the successor

region can begin. While the phrase is ongoing, the unit time in the successor region is

defined with reference to the phrase pulses and thus to the predecessor region. When the

predecessor region completes its computation (i.e. goes quiescent), the phrase completes

and now control is in the successor region entirely and thus is free to define its own unit

time independently.

4.3.1 Coherence depth determination

To allow the coherence depth of a region receiving its input of a phrase to be quanti-

fied, labels must be applied to the signals coming out of the phrase. However the phrase

specification does not give insight into the nature of the phrase, only phrase coherence

depth, which for the input phrase of a region becomes the input coherence depth DIN .

Thus in the initial step of the labelling arbitrary labels are applied to all input signals,

and this generation of arbitrary labels continues up to an including step DIN . Upon

reaching DIN , the coherence depth definition now gives us that whatever the unknown

structure of the circuit before the input, those signals now have a common timing ances-

tor. Thus the signals in this step and later steps all have one common label, the label

that was assigned to that unseen common ancestor.

For the output phrase generated by a region, an output coherence depth may be

measured considering only the labels of output signals. This may be smaller than the

coherence depth of the region as a whole, e.g. if the region latches its outputs.

50

Phrases Chapter 4

S

R

Q
Delay

Figure 4.3: Example of a hazard crossing a region

Since the coherence depth of one phrase affects another through the region producing

it, a consistent set of coherence depths must be found for all the phrases and regions of

the system. This can be achieved by iterative re-computing coherence depths of phrases

and regions until an upper fixed point is reached.

The fact that the output phrase might have a smaller coherence depth than the region

is important here, as it enables the successor region to have a smaller coherence depth

than the current region. Otherwise the coherence depth determination in any looping

system would be artificially high or else no upper fixed point may be reached.

4.4 Timing Constraints Across Regions

In tracing back the paths of timing constraints in one region, it may be found that the

paths trace back to a pair of distinct pulses in the phrase. If this occurs, the inequality

can be rearranged into the form of t2−t1 > Then we can in all possible source regions

of that phrase trace all paths and enforce that requirement on t2− t1. Figure 4.3 shows

an example of such a constraint in a SerDes setup. The setup constraint between one bit

and the next in the deserialiser has its common ancestor in the serialiser.

51

Phrases Chapter 4

4.5 Non-interference

Of the four assumptions presented for the unit-time model to correctly model local

behaviour in chapter 3, the limited dispersion and different gate behaviour requirements

are resolved on a system level scale by propagating coherence depths and timing con-

straints across phrases as has already been discussed. The requirement for the circuit

to meet the construction rules is enforced within the unit time model as before. The

remaining requirement that must be addressed is that the unit time model describes all

gate activity in that region of the circuit for the time that unit time model is active. Thus

consideration must be given to an outer (exterior) model to ensure that combinations of

phrases that might co-execute do not use the same gates and thus interfere with each

other.

For a given phrase, possible successor phrases can be determined coarsely from topol-

ogy alone, and execution of the unit time model with output phrase recognisers allows

determinations which sets of output phrases can be produced simultaneously. The set of

phrases that can co-execute can then be determined using this information.

An execution of a phrase in a region will have a set of signals that fire (for pulses,

equivalently change for data signals or internal gate state) at some point in the trace

of that execution, and also a set of data signals and internal gate state that is “read”

in that execution, that is a pulse occurs where production rules exist that combine that

pulse and that state. If it is possible for two phrases to be co-executing then it must

be ensured that the no signal is in the fire set of both executions, or the fire set of one

and read set of the other. If both regions read the same signal without changing it, no

interference occurs.

This determination of read and fire sets must include some behavioural dependence,

determining the overall fire and read sets for each phrase and comparing them is too

52

Phrases Chapter 4

conservative. Behavioural joins intentionally include overlapping regions. If the system

is designed so that the overlapping gates are the synchroniser (e.g. consensus gate)

and gates after it, no interference occurs in practice. This behaviour is also needed for

behavioural completeness as discussed above. However the naive approach of considering

all behaviour of the two phrases would flag this behaviour as possible interference.

4.5.1 Speed-Independent Global Model

Given these requirements, a finite state machine global model is proposed. This

models a speed independent view of the excitement and resolution of phrases. A state

in such a model is for each phrase, whether that phrase is excited or not, and also a

designer selected subset of state bits (usually the internal state bits of consensus gates

used for global joins). To advance this model, one of the excited phrases is chosen non-

deterministically and evaluated. That is, the phrase itself becomes un-excited, output

phrases of the region of that phrase become excited. Global state bits that that phrase

execution changes in its local model are also updated. This models an atomic execution

of one phrase of the system.

By this construction, a phrase that is excited cannot become un-excited except by its

own firing. Thus they have the Semi-Modularity property proposed by Muller[39]. This

allows the possible circuit behaviour to be viewed as a lattice. When multiple phrases

are excited simultaneously then if the system is built correctly, any order of evaluating

them will lead to the same resultant state. Thus if a system of phrases has the required

non-interference property it is Speed Independent.

For each phrase of the system, global state bits that affect that phrases execution can

be determined. The fire and read sets can be determined for each phrase and assignment

of the relevant state bits, by considering all possible executions that have that particular

53

Phrases Chapter 4

state bit precondition. The global state dependent simulation of phrases also allows a

refinement of the possible successor phrases. Using this a reachability analysis can be

performed to determine which phrases can be co-executing.

From this speed-independent model, there are two possible sources of violations (pos-

sible interference between regions) that can be determined:

• If two phrases can be excited at the same time, the fire set of the two overlap or

the fire set of one overlaps with the read set of the other.

• If a phrase is already excited once and a second phrase is excited that would, if

executed, attempt to re-excite the first phrase. This indicates two overlapping

executions of the same phrase is possible

One consideration of real time that must be checked in addition to this otherwise speed

independent model is that checks for a given unit time region continues for significant

time after starting its output phrase, its direct descendants that could occur while it

continues executing must be checked for overlap. Some notion of time must be included

in this, else only acyclic system level structures would be permitted by this model. The

speed independent check covers all parallel cases because phrases are allowed to evaluate

as soon as they become excited or wait arbitrarily long. Thus if it is possible for them

to overlap they will in some one of the non-deterministic evaluations of global state both

be excited at the same time.

Thus the speed independent model plus this direct descendant timed checking is

sufficient to verify the system. Any interference between two parallel phrases will be

flagged by the speed independent model, and the timed checks describe check between

a phrase and its descendent (where the non-atomicity of phrases isn’t covered by the

speed independence). It is conservative because it will flag possible errors which have

54

Phrases Chapter 4

been excluded due to timing. If a more precise model is required, a version of this model

based on timed automata could be constructed to include more real time information.

4.6 Conclusions

In this chapter the notion of a “phrase” has been defined as a model of unit-timed

communication. It has been discussed how the local unit timed regions can be defined

from these phrases, with both the topology and behavioural being algorithmically de-

termined. The notion of coherence depth has been extended to include the coherence

depth of phrases, and the interaction between region and phrase coherence depths has

been discussed.

By considering which phrases produce each other, the requirements for an outer

system level model are detailed. This model allows the non-interfering requirement of

the unit time model to be validated. A speed-independent outer model is outlined, with

the non-interference property leading to semi-modularity.

55

Chapter 5

Timing Containment

In chapter 3 is was conjectured that the actual behaviour of the circuit is the same as the

behaviour of the circuit predicted by the unit time model, provided the assumptions of

that model are met. Those assumptions are measurable coherence depth, non-interference

and lack of direct violations, and also that a single ancestor timing verification has been

performed. In this chapter this result will be proven. First a the formal model for the

“actual” behaviour of the circuit will be specified as a bi-bounded model. This will

allow a precise meaning to be given to behavioural containment. The main result will

be established by a two-part induction where behavioural correctness leads to timing

correctness and timing correctness leads to future behaviour correctness. The proof itself

is constructed to be applied to all production rule systems, the examples that are given

for pulse gate systems.

5.1 Bi-Bounded Delay Model

A bi-bounded delay model is used. In this model each gate g, upon its production

rule becoming satisfied by an event at time tin it produces its output action (pulse event

56

Timing Containment Chapter 5

or data change) at time tout such that tin + tmin,g < tout < tin + tmax,g. When considering

the bi-bounded model in conjunction with the unit time mode, for an action on signal

g at timestep k in the unit model, let t(k, g) be the time that the corresponding event

occurs in the real time model.

For gates with multiple input events arriving near-simultaneous acting to produce

one output action, there are two possible behaviours. A delay maximizing gate is a gate

where the gate is activated by the last arriving of its input events. Thus for two input

events t1 and t2 then tin,eff = max(t1, t2). Let such behaviour in general be referred to as

a delay-maximising gate, and tin,eff + tmin,g < tout < tin,eff + tmax,g as above. Examples

of this behaviour in the pulse gate family is a conjunction gate, or a consensus gate when

both its inputs are arriving near-simultaneously.

The other possible behaviour is a delay-minimizing gate where the the gate is acti-

vated by the first event. Thus tin,eff = min(t1, t2). Examples of this behaviour in pulse

gates is a pulse OR gate performing coalescence.

Tmin = min
g
tmin,g and Tmax = max

g
tmax,g

The “Maximum hazard time” of a gate is the amount of time after an action arrives

at that gate that another action can definitely safely be accepted. For a data change

action into the gate, this is the setup time before an event can be accepted safely. For

pulse events, there are several hazards to consider - hold time before a data change can

occur and also coalescence etc. Usually the longest will be the retrigger time, that is

from one event which causes the gate to fire to another event that could. The maximum

hazard time of the system is the largest of the maximum hazard times of all the gates in

the system, or equivalently the maximum of the required margins of all types of hazard

of all gates in the system.

57

Timing Containment Chapter 5

thazard max,g1 = max(tsu,g1, thold,g1, . . .)

Thazard max = max
g
thazard max,g

As discussed earlier the circuit having coherence depth D and making the single

ancestor approximation gives that for two events in the same timestep:

|t2 − t1| <= D ∗ (Tmax − Tmin)

Where D is the coherence depth. Consider a hazard between g1 and a later event on

gate g3 which is resulting from g2k time steps later.

t2− t1 <= t1−D ∗ (Tmax − Tmin

t3− t1 <= Tmin ∗ k +D ∗ (Tmax − Tmin)

To guarantee the hazard does not occur:

t3− t1 >= thazard

If a sufficiently large number of steps is chosen this is always true for any hazard in

the circuit. Let such a number of steps be called the order depth DOrd

D ∗ (Tmax − Tmin) +DO ∗ Tmin >= Thazard,max

DOrd = ceil

(
D ∗ (

Tmax

Tmin

− 1) +
Thazard,max

Tmin

)

58

Timing Containment Chapter 5

Thus the timing constraints that need to be verified to limit the unit time length are

bounded in length. Only paths where the slow path is of length up to the coherence depth

D and fast path is of length up to the coherence depth plus the order depth D + DOrd

need to be considered.

5.1.1 Bi-Bounded Model of Phrases

For the events in the input phrase, the phrase is generated by a timed extension of the

usual generating state machine. It takes each state transition internally for some time

in between Tmin and Tmax. Let this state time represent the earliest time of the events

in the generating machine, noting this event may not be visible at the region boundary.

For a input phrase being generated with coherence depth DIN then the visible events of

the phrase are generated in the bi-bounded model with times:

tstate < tevent < tstate +Din ∗ (Tmax − Tmin)

This follows from the general coherence depth timing bound. The input timing model

may provide additional timing guarantees between specific pairs of signals, either mea-

sured by another instance of this theory or specified by another means.

For phrases arising from other parts of the system, that this model is followed can

be established by applying this theory to that predecessor region. For primary inputs it

must be established separately.

5.1.2 Wire Delay

The proof presented here does not include wire delay explicitly. However, it can be

made to apply to a model with wire delay by updating the gate times to include the wire

delay (assuming a single source for each wire). Let the occurrence time of a signal in the

59

Timing Containment Chapter 5

bi-bounded model refer to the time the gate is present at an output. The minimum of

propagation times of each gate are updated by adding the minimum and maximum time

of the incoming wires into that gate. For the hazard of the gate, a conservative estimate

can be estimated by adding the wire times for the fast path but not subtracting it for

the slow path, assuming wire delay will never be negative.

t′min,g1 = ming2∈fanin(g1) (tw,min,g2→g1 + tmin,g1)

t′max,g1 = maxg2∈fanin(g1) (tw,max,g2→g1 + tmax,g1)

t′hazard max,g1 = max
g2∈fanin(g1)

(tw,min,g2→g1 + max(tsu,g2, thold,g2, . . .))

The system wide quantities including the order depth can now be recomputed using

these new values.

5.2 Ranked Order Labelling

The ranked-order labelling is a augmentation added to the unit-time state machine,

like the fast-slow labelling discussed above. While the fast-slow labelling is useful for

intuitive reasoning about coherence, to prove the results that are to be proved a more

information dense representation will be useful. A state in this rank-order labelled model

consists of a unit time state plus a rank label lr(g) added to those signals that have an

action occurring in that timestep. Rank labels are small positive integers, with lower

values representing variance earlier in time and larger values later. Labels are not applied

to signals where action are not occurring in a given time step.

The ranked-order labelling is added to trace under the unit time model, starting from

some state index k0 in that trace. For the first state of the ranked-order, unique labels

60

Timing Containment Chapter 5

are added to each event that occurs in that state. When considering models with an

input phrase, there are three kinds of signals which must be labelled uniquely.

• The internal actions of the circuit and the input actions that occurs in the start-

of-labelling state

• Input actions in the next next DIN − 1 states. Here DIN is the coherence depth of

the input phrase.

• One label is assigned to all input actions thereafter.

If the unit time trace is being considered together with a real-time trace from the

bi-bounded model then lr(k0, g1) < lr(k0, g2) iff t(k0, g1) < t(k0, g2). If a unit time trace

is being considered in isolation, all possible orderings are considered.

For the next state of the rank order labelling, the unit time state component is

determined as for the regular unit time model. If gate gn produces an action:

• For a single causal event g1 activating the gate, lr(k, gn) = lr(k − 1, g1)

• For a delay-minimising gate g activated by two potentially causal input events g1

and g2, lr(k, gn) = min(lr(k − 1, g1), lr(k − 1, g2))

• For a delay-maximising gate with input g1 and g2, lr(k, gn) = max(lr(k−1, g1), lr(k−

1, g2))

5.2.1 Equivalence Between Labellings

While individual labelled traces carry different information, with the ranked ordering

carrying more, ensemble of each kind of trace contain the same information. Where one

specific ranked order labelling Lr is being considered, multiple passes of the fast-slow

61

Timing Containment Chapter 5

a

b

c

2 2 2

1

3

C

C
C

a

b

c C

C
C

3
3

3

3

F

F

F

F

F
F

F

F

F

a

b

c C

C
C

F F F

F

S S S

S

S

a

b

c C

C
C

F

S S S

S

S

a

b

c C

C
C

S S S

S

S

S
S S

S

S
S S

i

h

i

h

i

h

i

h

i

h

e

d
f

g

Figure 5.1: Equivalence between ranked order and fast-slow labellings

labelling can be applied to this . Let lf,i be a fast-slow labelling where lf,i(k0, g) = Fast

if and only if lr(k0, g) <= i. Then for k > k0 we can determine the ranked order label.

If lf,i(k, g) = Slow and lf,i+1(k, g) = Fast then lr(k, g) = i. This process is illustrated

in figure 5.1. Where all possible ranked order labellings are being considered, the same

information can be obtained from considering all possible fast-slow labellings applying

this procedure repeatedly.

Note the equivalence between the two labellings means results derived with one apply

to the other. Coherence depth can be measured with ranked order labels similar to fast-

slow labels and the circuit will have the same coherence depth measured both ways. This

equivalence allows the unit time model to be proven here with the rank-order labelling

abut computer implementation to rely on fast-slow labelling and have the proven results

apply.

62

Timing Containment Chapter 5

5.3 Proof Introduction

Consider a real-time trace TB from the bi-bounded model. It is required to show that

the behaviour of any such real-time trace is contained by the unit time model. Consider

also a unit-timed execution trace TU from the unit timed model started with the same

initial conditions and making the same decisions in the non-deterministic input generator.

Definition 5. A discrete time trace TU from the unit time model and a real-time trace

TB from the bi-bounded model are said to correspond if:

1. A one-to-one mapping can be made between the actions that happen in the bi-

bounded trace and the events that happen in unit time trace.

2. For two actions t1 and t2 from the real time model that are mapped to actions in

the same time-step of the unit time model, |t2− t1| < D ∗ (Tmax − Tmin).

A pair of traces can be said to be in correspondence for all time, or as a step towards

establishing that full result they can be said to be in correspondence up to a given time-

step n. Similarly a trace can contain another for all time, or up to time step n as a

partial result.

If they are in correspondence for all time, the desired behavioural containment is

achieved.

Theorem 1. Given a circuit C with finite coherence depth D that satisfies single-ancestor

timing constraints, any pair of unit time trace TU and bi-bounded trace TB from the same

initial conditions and where the input generator makes the same non-deterministic choices

are in correspondence for all time.

This will be established by induction. First, the base case will be built. Then the

induction will be established in three theorems.

63

Timing Containment Chapter 5

1. If the unit time trace contains the bi-bounded up to step n− 1 and the one-to-one

action mapping exists for step n, then step n also satisfies the timing bound and

thus the bi-bounded trace corresponds for step n.

2. Further to that general timing bound, it will be shown that the possible values

between two signals is bounded by the actual delays of gates fanning in to those

signals as opposed to the global minimum and maximum

3. Finally it will be shown that given these results a one-to-one mapping can be built

for the actions in unit time step n+ 1.

Theorem 2. For a circuit C, any pair of TB and TU are in correspondence for n = 0

and a one-to-one action mapping exist for timestep n = 1.

Proof. Consider the actions input into the circuit region and those internal to the region

separately. At n = 0 the generating state machine for both the unit-time and bi-bounded

produce the same actions, since the bi-bounded generating machine is defined by addition

of times to the unit-time one. Thus input actions correspond. The unit-time model has

no actions at timestep 0. The bi-bounded model similarly has no spontaneous internal

actions at the start, the first internal actions are those sponsored by the inputs, which will

later be corresponded with timestep 1. Thus the same actions exist in that timestep.

5.4 General Timing Bound

First knowing that the actions in the current unit time step exist behaviourally in the

bi-bounded model, it will be shown that those actions obey the general coherence timing

bound. This occurs since the circuit is known by precondition to have a finite measured

coherence depth, and the same synchronisation elements that captured the labels in the

64

Timing Containment Chapter 5

labelled unit time model will capture actual delay. This is trivially true considering only

the initial dispersion and not the dispersion collected along the paths. When considering

on-path delay it is possible that this might cause two actions to swap order in real time

compared to label. However if we consider the ranges of real time possible for each label

in each step, it can be seen that these ranges follow the labels since the inversion of actual

times requires the two events that swapped to have time within each others ranges.

Consider the example in figure 5.2. Part (a) shows that capture in nominal time

occurs as expected, and the ranges of spread of those signals due to on-path dispersion is

shown. Part (b) shows that adding on-path dispersion in some cases causes no issue as

before. In part (c) at the inputs to gate h, the timing of its inputs have shifted enough

that the earlier labelled input f is later in time and thus the timing on h is based on

that and not on g as predicted by the labelling. However this still results in output

timing which is within the range predicted from considering g as the input and thus is

still acceptable.

Theorem 3. Suppose that TB and TU have coherence depth D, corresponding actions for

timesteps k = 0..n and the delay bound from theorem 1 applies for timesteps k = 0..n−1.

Then for two actions t1 and t2 in timestep n, |t2− t1| < D ∗ (Tmax − Tmin).

Proof. Let k0 = n − D. Let TR be a rank-order trace derived from TU with the rank

orders applied at timestep k0 in conformity with TB. It will be shown by induction for

k >= k0 that if lr(k, g) = r and tr = t(k0, g2) such that lr(k, g2) = r then

tr + Tmin ∗ (k − k0) <= t(k, g) <= tr + Tmax ∗ (k − k0)

For k = k0, all signals have distinct labels and this statement collapses to t(k, g) <=

t(k, g) <= t(k, g) which is trivially true.

65

Timing Containment Chapter 5

a

b

c

f

g

2 2 2

1

3

C

C
C

3
3

3

3

d

e
i

h

(a) Nominal case

a

b

c

f

g

2 2 2

1

3

C

C
C

3
3

3

3

(b) Dispersion added

2 2 2

1

3

C

C
C

3
3

3

3

d
a

b

c
e

g

i

h

f

(c) Dispersion resulting in flip

Figure 5.2: Pulses may disperse in various ways but the ranges of possible values
follow the labelling

66

Timing Containment Chapter 5

Assuming the bound is true for all gates up to timestep k − 1, consider a gate gn in

timestep k, there are have 3 cases:

1. If gn has a single exciting event g1 causing its behavior, then lr(k, gn) = lr(k−1, g1)

and t(k − 1, g1) + Tmin <= t(k, gn) <= t(k − 1, g1) + Tmax. Thus

tr + Tmin ∗ (k − k0 − 1) + Tmin <=

t(k, gn) <= tr + Tmax ∗ (k − k0 − 1) + Tmax

2. If gn is a delay-minimising element for two input causal events g1 and g2. Let

t(k−1, g1) < t(k−1, g2). Thus t(k−1, g1)+Tmin <= t(k, gn) <= t(k−1, g1)+Tmax

and thus:

tr1 + Tmin ∗ (k − k0) <= t(k, gn) <= tr1 + Tmax ∗ (k − k0)

If lr(k−1, g1) <= lr(k−1, g2) then lr(k, gn) = lr(k−1, g1) and this is directly what is

required. If instead lr(k−1, g2) < lr(k−1, g1) then lr(k, gn) = lr(k−1, g2). The case

assumption implies tr2 <= tr1. Thus tr2+Tmin∗(k−k0) <= tr1+Tmin∗(k−k0) <=

t(k, gn)

For the other side of the inequality, consider (k − 1, g1) < t(k − 1, g2)) <= tr2 +

Tmax ∗ (k − k0 − 1) and thus (k, gn) < t(r2) + Tmax ∗ (k − k0 − 1) + Tmax giving the

desired inequality in the second case.

3. If gn is operating as a delay-maximiser of two input events g1 and g2 then a similar

argument applies in the opposite direction.

By the definition of coherence depth, we know that all lr(k, g) are equal for k >=

67

Timing Containment Chapter 5

...

...

...

...

...

Possible timing
Ancestors

Syncrhonization
Elements

Gates of

interest

C

C

g2

g1

g3

g4

g6

g5

Figure 5.3: Timing based on single ancestor

k0 +D = n then for k = n we have that

∃tr∀g
(
tr + Tmin ∗D <= t(k, g) <= tr + Tmax ∗D

)

Thus any two actions in the state n have real times that are at most D∗(Tmax−Tmin)

apart.

5.5 Specific Timing Bound

Now consider the timing separation between two pulses. From theorem 3 the weaker

result that t2 − t1 <= D ∗ (Tmax − Tmin) has already been established. Now it will be

shown in fact this is bounded to be based on the specific paths from single ancestors into

that gate. An example of this is shown in figure 5.3.

Theorem 4. Assuming TU and TB are in correspondence up to time step n, then for

two events g1 and g2 in timestep n at times t1 and t2, over all possible ancestors g3 in

68

Timing Containment Chapter 5

timestep k0 then:

t2− t1 <= ming3

(
tmax(g3→ ...→ g2)− tmin(g3→ ...→ g1)

)

Proof. From the definition of coherence depth, g1 and g2 have a common labelling an-

cestor g3 in timestep k0. Let g4 be another event in the starting timestep. Supposing

the label of g4 is lower numerically (earlier in time) than that of g3. The fact that the

label of g4 is eliminated means one of:

• There exists two delay maximising elements on the paths from g4 to g1 and g2 that

chose the label of g3 over that of g4,

• g4 does not have a path to influence the labelling of either g1 or g2.

• A mixture of delay minimising and maximising elements exist that always choose

the label of g3 over that of g4

For the delay maximising case, let g5 and g6 be the delay maximising elements on the

paths to g1 and g2 respectively, from both g3 and g4. If for the times in the bi-bounded

trace g5 and g6 both choose g3 then we have our result with g3 as the chosen ancestor

gate. Note that any decrease in time t4 of the event on gate g4 has no event it moves the

consensus gates further into the region where they choose g3. If the time t4 increasing

causes g6 to choose g4 as its ancestor instead, the inequality remains true since t2 is

increased making the inequality looser.

If t4 increasing causes both g5 and g6 to choose g4 instead of g3 as their answer the

inequality still holds but now with g4 as the ancestor gate. If t4 increasing causes g5 to

choose g4 but g6 to choose g3 then again we have our inequality still holding with g4 at

the common ancestor and t2 for that case reduced by the fact that t3 pulled g6 earlier.

69

Timing Containment Chapter 5

In the case where the label of g4 does not affect the labels of g1 and g2 due to the

lack of a path, the same lack of path prevents the actual timing from affecting t1 and t2,

so we have our result directly. For the mix of minimising and maximising cases, if these

elements are arranged to always choose the label of g3 then they will also always choose

its timing.

For cases when the chosen label of g3 is earlier than g4 and still chosen, this indicates

the presence of delay minimising elements and the same argument presented for delay

maximising elements applies for delay minimizing elements instead, except that it is t1

that can get earlier in time and still satisfy the version of the inequality considering g3,

if t2 gets early we have to switch to considering the g4 version of the inequality.

5.6 Behavioural Correspondence

Now that the timing bounds between events in the current state has been established,

it will be shown this and the local timing verification that is a precondition of the proof

combine to establish that the behaviour of the next unit time step is replicated in the

actual circuit and thus the one to one mapping of actions can be established.

Theorem 5. Assuming traces TB and TU are in correspondence up to timestep n, then

a one-to-one mapping exists for actions in timestep n+ 1

Proof. For each gate gn in timestep n + 1, the unit time model makes a prediction that

that gate is about to fire in the next step, and any current step events that could cause

the next gate to fire (under some non-causal preconditions).

For each of those events, for each data precondition g2 in those guards, to ensure the

bi-bounded model to have the same behaviour it is require tg2,n >= tg1,n + tsu,gn and

g2, n <= tg1,next + thold,gn . This is illustrated in figure 5.4.

70

Timing Containment Chapter 5

S

R

Q
g1

g2 gn

g2

g1

gn

Setup Hold

Figure 5.4: Timing based on single ancestor

For the setup constraint, the constraint can be met if t2 − t1 is constrained to the

maximum of its single ancestor value by theorem 4. Thus the single ancestor timing

verification database directly checks this.

For the hold constraint, there are two possibilities. One is that the next event to

change g2 is the same next event as predicted by the unit time model through a path

predicted by the unit time model. Thus, like the setup case, this is covered by timing

constraints. The other is the hypothetical creation of an unexpected earlier event on g2

but this requires a timing failure at the inputs of g2 which would be covered by timing

constraints.

Thus for each g1 and g2 driving gate gn the single ancestor timing model is sufficient

to ensure that the gate performs the same in the bi-bounded model as predicted by the

unit time model.

71

Timing Containment Chapter 5

5.7 Proof Conclusion

Now the proof of Theorem 1 can be concluded by application of the sub-theorems

to achieve the induction proposed earlier.

Proof. By induction. Theorem 2 gives us correspondence for n = 0. Applying theorems

5 and 3 in turn gives us that if correspondence exists for timestep n then it exists for

timestep n+ 1.

5.7.1 Output Phrase Conformance

For each output phrase the region produces, the output phrase may have a coherence

depth Dout that is smaller than that of the whole region, for example if the region includes

extra latches to buffer its outputs. This can be obtained by a similar labelling process

to see how long the output signals settle down to the same label the whole system will

eventually settle down to. That the actions in the output phrase exist in the real-time

model exist follows from the fact that those actions occur in the unit time model, as

checked by its output recogniser, and the same events occur in the unit time model and

real time model by the overall result.

That the times between output pulses are proportionally smaller to their reduced

coherence depth can be seen by a similar argument to theorem3.

5.8 Conclusion

Earlier in this thesis it was conjectured that single ancestor timing verification was

sufficient to contain the behaviour of the circuit to that seen in the unit time model. That

result has now been proven. First what is meant by the real time behaviour of a pulse

gate circuit is formalised. Then a multiple part induction has been performed alternating

72

Timing Containment Chapter 5

between showing how behavioural correctness leads to two timing bounds and how those

timing bounds lead to behavioural correctness. Issues of wire delay, and the coherence

of output phrases of a region have also been discussed

73

Chapter 6

Tool Implementation

It has been established thus far the the unit time and phrase models reduce the require-

ments to ensure correct behaviour of the system to several aspects. In this chapter we

present a computer tool which verifies the coherence depths of the regions of the system,

and performs local timing verification. This is achieved by production of a set of path

based timing constraints which can be checked post-layout.

The analysis steps performed are

• From the given phrases and the system schematic, deriving the unit-timed regions

• Determining which output phrases they produce.

• Measuring coherence depths for regions in the system.

• Identifying possible hazards in the system.

• Tracing timing paths that lead to those hazards

This tool is implemented in Python[53] using a combination of calls to the NuSMV[24]

prover and a custom library called PySMV (described in the appendix) that allows direct

manipulations of state sets in the symbolic automata model.

74

Tool Implementation Chapter 6

VAR f#ev : boolean ;

ASSIGN init(f#ev) := FALSE ;

DEFINE f#ev_next := (a#ev) | (b#ev) ;

ASSIGN next(f#ev) := a$ev_next ;

DEFINE f#ev_next_because#a := (a#ev) ;

DEFINE f#ev_next_because#b := (b#ev) ;

DEFINE f#violation1 := FALSE ;

DEFINE f#violation := f#violation1 ;

a

b
p

Algorithm 1: SMV representation of a pulse OR gate

6.1 Tool Input

The circuit netlist is read using a custom JSON format. Gates are specified using a

cube representation of their pull-down network. The circuit description is hierarchical on

disk, so on loading it is flatted. The phrases are provided expressed in a user-provided

python script, and evaluated at runtime with helper functions provided to describe the

phrases. Having both the circuit and the phrases, the regions can be derived by flood fill

as discussed in chapter 4.

6.2 Unit Time Model Details

6.2.1 Gate Models

Pulse signals in the SMV model are one variable, the event signal. Data signals

become two variables, whether an transition is occurring (called an event in the model

for symmetry, even though its not a event in the theoretical sense). For all signals a

sig#ev state bit encodes whether an action is occurring or not, and for data signals a

sig#val state bit encodes the value of the gate.

A unit time model of a pulse gate OR gate, represented in NuSMV syntax is shown in

algorithm 1. By definition of the unit time model, this produces an event in the next state

75

Tool Implementation Chapter 6

--- Gate t ---

VAR t#ev : boolean ;

VAR t#val : boolean ;

ASSIGN init(t#ev):= FASLE ;

DEFINE t#set := (clk#ev & !t#val) ;

DEFINE t#reset := (clk#ev & t#val) ;

DEFINE t#ev_next := !t#val & t#set | t#val & t#reset ;

ASSIGN next(t#ev) := t#ev_next ;

ASSIGN next(t#val) := case

t#set: TRUE ;

t#reset: FALSE ;

TRUE: t#val ;

esac ;

DEFINE t#violation1 = t#set & t#reset ;

DEFINE t#violation = (clk#ev & t #ev) | t#violation1 ;

DEFINE t#set_because#clk := (clk#ev & !t#val) ;

DEFINE t#reset_because#clk := (clk#ev & t#val) ;

DEFINE t#ev_next_because#clk := !t#val & t#set_because#clk

| t#val & t#reset_because#clk ;

S

R

Q
t

clk

Algorithm 2: SMV representation of a pulse toggle latch

if either of its inputs The f#ev next define is a direct implementation of the production

rules for the gate input. The assign statement then uses this value to define the actual

next state of the state machine. This define is used rather than a direct approach so that

its value can be used later in computing the fast-slow labelling.

Additionally the “next because” defines show if that particular input could be re-

sponsible for the signal firing, for tracing purposes. Note that defines like this do not

represent overhead in extra variables or extra terms in the transition relation.

A pulse toggle gate is shown in algorithm 2. The set and reset production rules are

computed as above. A case statement defines the next value. Whether or not an action

occurs is based on the set and reset guard and the current value. A violation is detected

76

Tool Implementation Chapter 6

VAR done#ev : boolean ;

VAR done#arm1 : boolean ;

VAR done#arm2 : boolean ;

ASSIGN init(done#ev) := FALSE ;

DEFINE done#ev_pdn1 := (d1#ev) ;

DEFINE done#ev_pdn2 := (d2#ev) ;

DEFINE done#ev_next := (done#arm1 | done#ev_pdn1)

& (done#arm2 | done#ev_pdn2) ;

DEFINE done#arm1_next := (done#arm1 | done#ev_pdn1)

& ! done#ev_next ;

DEFINE done#arm2_next := (done#arm2 | done#ev_pdn2)

& ! done#ev_next ;

ASSIGN next(done#ev) := done#ev_next ;

ASSIGN next(done#arm1) := done#arm1_next ;

ASSIGN next(done#arm2) := done#arm2_next ;

DEFINE done#violation := FALSE ;

-- because terms trimmed

C

d1

d2
done

Algorithm 3: SMV model of a consensus gate

-- Basic gate model as above

VAR f#ev_fast : boolean ;

DEFINE f#ev_fast_next := (a#ev & a#ev_fast) | (b#ev & b#ev_fast) ;

ASSIGN next(f#ev_fast) := (meta#apply_speed_cur & f#ev_next) ?

f#ev_fast_next : (TRUE union FALSE) ;

END

Algorithm 4: SMV timed extensions to a pulse OR gate

if the inputs try to set and reset the gate at the same time. The “next because” defines

are more involved for a data gate, due to multiple sets of production rules.

Algorithm 3 shows the model of a pulse consensus gate. In addition to the output

state bit, the gate has internal state representing which of its two pull down networks

has been activated in a previous state and is waiting for the other PDN to pull down

before the gate produces its output.

77

Tool Implementation Chapter 6

6.2.2 Speed Models of Gates

Algorithm 4 shows the extra details added to a pulse gate to add the fast-slow la-

belling. This is based on the definition of the labelling that an action is labelled fast if

it would have been

The guard define is similar to the original function, but with the appearances of the

original event limited to only count those events if they were labelled fast. This models

the definition that a action is labelled fast if its occurrence would have been sponsored

only considering the fast input events.

Whenever fast slow labelling is being applied, it is applied on either the first or second

step of a trace. meta#apply speed cur is a global bit which represents if labelling is being

applied, it becomes true on the step where labelling is applied throughout. Labels are

applied and propagated on the first step of the trace for coherence depth determination.

They are applied on the second step of for path elimination by coherence, as will be

discussed below.

For phrase inputs, the phrase state machine is represented as one bit per state. A

one-hot invariant is applied, to ensure only one state is generated. The input signals are

initially declared as free variables and then constrained by invariants of the form ”if in

this input state, these actions occur”. For the output phrase recognisers, two bits are

used. A state possible bit is set by the transition relation based on the states recognised

in the previous step. A second bit then indicated if the state is actually recognised, based

on this possible bit and the signals observed in the system.

The speed labels on the phrase inputs are generated based on a thermometer code

counter that counts off the number of states from the start of labelling up to the input

coherence depth. In this window input signals take arbitrary labels. After that all input

signals have the same label taken from a global state bit which is set non-deterministically

78

Tool Implementation Chapter 6

at the start of simulation.

6.2.3 Model Versions

Using these constructions several variations of the automata model are constructed,

each containing variations and a subset of the features described to make the suited for

particular verification operations. The starting state of the SMV model can be either

the true initial state of the unit time model at the start of the input phrase, or after

the first model has been built this way a initial state of all reachable states can be

used. This is produced using the reachability analysis that can be performed using

NuSMV. Computing on this model gives an implicit LTL eventually operator around any

proposition, which is useful for bounding the required depth in bounded model checking.

The models constructed are:

• A “basic” model contains no speed information and its initial state is the start of

input.

• A “tracing” model contains doesn’t contain speed information, and its initial state

is the reachable set. This also omits the output recogniser for execution speed.

• A “speed” model contains speed information and its initial state is the reachable

set.

6.3 Static Checks

Having constructed the model, two properties can be checked immediately without

reference to the fast-slow labelling. One is that no gate violations occur. Gate violations

are where the inputs of a gate in a given state are invalid. For all gates, it must be

79

Tool Implementation Chapter 6

ensured that for any pulse in a pull down network, none of the data signals guarding

that pulse change at the same time as it. For pulse gates this is the only hazard. For

data gates, the case where both the set and reset inputs occur simultaneously must also

be handled.

In model construction, first a sig#violation1 is constructed describing the gate

type specific violations (i.e. simultaneous set and reset). Then a sig#violation is

constructed from the sum of that and the input pairs hazard that occurs for all gates.

A global “no violations” define is made as the negation of the sum of the gate violation

bits, and this is checked as an invariant in NuSMV.

Currently Pulse consensus gates have no type violation behaviour. One behaviour

this model includes is that the consensus gate silently absorb a second pules on the same

input before the other input arrives. This is allowed since that behaviour is sometimes

intended but this could be added as a violation if it were not intended.

The other check is that output phrases are correctly recognised. Two properties are

checked. One is that the recogniser machine always remains alive for all states. This is

checked as an invariant in NuSMV. Then it is checked that the output recogniser either

reaches a terminal state, for when that phrase is being produced in that execution, or

remains in the initial state for when that phrase is not produced in that trace. Since

regions may have multiple output states, these properties are checked for all outputs.

6.4 Coherence Depth Determination

If a model has coherence depth D then by the Dth step of any trace all signals will

have the same label. e.g. to check if the system has coherence depth 3, this can be

established by proving that no traces satisfy the CTL formula:

80

Tool Implementation Chapter 6

DEFINE meta#signals_coherent_fast := (!sig1#ev | sig1#ev_fast)

& (!sig2#ev | sig2#ev_fast) & ... ;

DEFINE meta#signals_coherent_slow := (!sig1#ev | !sig1#ev_fast)

& (!sig2\#ev |! sig2#ev_fast) & ... ;

DEFINE meta#input_coherent_fast := meta#input_done

| (meta#input_coherent & meta#input_fast) ;

DEFINE meta#coherent_fast := meta#signals_coherent_fast

& meta#input_coherent_fast ;

-- Similar defines for slow coherence --

DEFINE meta#is_coherent := meta#coherent_fast | meta#coherent_slow

Algorithm 5: Defines for determining slow coherence

(!meta#apply speed cur)| (EXEXEXmeta#is coherent)

Where meta#is coherent is defined as requiring all the signals to have settled to the

same label. Where the input is still ongoing, the input must have settled to coherence

itself, and that label must be the same as the signals within the circuit. Otherwise while

the circuit gates may presently have the same label the input may reintroduce the other

label later. By this definition, it is not needed to explicit specify that the model remains

coherent once it is, since by the definition of the labelling functions, it remains true once

set true.

This is checked against the ”speed” model described above, further constrained so

that the labels are applied from the initial state. This is checked with NuSMV’s BDD

based CTL checker, which was found to perform better than bounded model checking in

practice.

Given a region, its coherence depth D can be established given its input coherence

depth Din by building the ’speed’ model with an input generator with the correct depth.

Then we apply the above test for increasing depths D until a correct value is found. This

search definitely terminates since the behaviour within a region is required to be termi-

81

Tool Implementation Chapter 6

nating. Having established the coherence depth for the whole region, output coherence

depths for each output phrase can be established by testing that the output signals have

settled to the same label as the circuit eventually settles on. For example, to see if an

output phrase has coherence depth 2 in a region that has coherence depth 3 the following

formula is disproved:

(!meta#apply speed cur)|

(EXEX(meta#output0#coherent fast&EXmeta#coherent fast)) |

(EXEX(meta#output0#coherent slow&EXmeta#coherent slow)

Note that it is sufficient to only check the output is coherent on that one step and

not re-check it on all later steps. If a counter-example exists where the output becomes

coherent on the required step and then changes on a later one, the given formula will flag

that counter-example just from a different initial position of the trace.

Now that a procedure for determining one regions coherence depth has been described,

this can be used to obtain the actual coherence depths for each phrase and region found

in a system by iteration to an upper fixed point. It is initially assumed that each phrase

has coherence depth 1 unless an explicitly higher number has been given in the input.

Coherence depths for each region and output phrase are then computed, and the phrase

coherence depths are increased if they are generated as output with a larger coherence

depth than was previously seen. This is repeated until a fixed point is reached.

82

Tool Implementation Chapter 6

6.5 Path Tracing

6.5.1 Hazard Generation

An initial set of hazards that might occur in a region can be identified by inspection

of the circuitry. Specifically we look at each gate and take pairs of incoming signals. The

typing of the signals determines what type of hazards can occur. A hazard is identified by

this pair of signals, the nature of hazards, and as a consequence of the nature of whether

the signal in the slow path occurs in the same timestep as the fast one or as an earlier

one.

Timing constraints back-propagated from a later region also have information on the

states of the phrase that the events occur in, and how many timesteps are between them.

6.5.2 Path Tracing

The paths through the circuit that lead to a particular hazard can be found by a

search backwards in time from the final state where the hazard itself is. A node in the

search tree has the following information:

• A pointer to the hazard identity described above.

• The two current signals for this step in the trace.

• A set of SMV states where possible for that location in the trace.

• A pointer to the next point in the trace forward in time.

• The depth of the node in the tree.

The SMV state sets from this are implemented using the ’tracing’ model described

above. The signals can also be two atoms, ‘@past’ meaning the tracing has not reached

83

Tool Implementation Chapter 6

back to signal in past in the shorter trace, and ‘@input’ meaning this signal has been

traced back into the input region and tracing is continuing waiting for the other side of

the trace to cross the input. Since the tracing search happens backwards in time, the

next node forward in time is the search nodes parent.

To start tracing back a given node, a hazard identity is taken and used to build the

starting tracing node. The signals are the two signals of the hazard if simultaneous, or

the fast signal and ‘@past’ for the slow one if they are not.

To visit a node in the search tree, looping traces are detected, and if this occurs the

states from the state set that correspond to looping are eliminated. It is then checked

if the trace is a complete trace, that is both the traced signals are the same or both are

inputs. If so this trace is emitted for refinement as discussed below.

If it is not a complete trace, pairs of ancestor signals are generated topologically for

the two signals in the current node. “@past’ can trace back either to ’@past’ or to the

slow signal from the hazard id. Primary inputs and ‘@input’ trace back to ‘@input’,

assuming the other signal of the pair will trace back to a primary input later on. Having

generated the possible signal pairs, the current state set is stepped back in time and see

if there is a subset of that prior state set where the two candidate signals occur and the

data guards are such they can lead to their intended successors. If there is one, a further

search tree node is generated to visit later.

Searching back this search tree in a recursive fashion will lead to a series of candidate

traces to be further refined.

6.5.3 Tracing Example

Figures 6.1 through 6.5 show some examples of the path tracing algorithm. First

note in figure6.1 that while the same hazard may be identified at multiple gates inputs,

84

Tool Implementation Chapter 6

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(a)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(b)

Figure 6.1: Hold hazard between d[0] and go found at both r[0] and s[0]

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(a)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(b)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(c)

t(go→ r[0]→ d[0]) > t(go) + t hold at r[0], s[0]

Figure 6.2: Hold hazard traced back to one possible path inequality

85

Tool Implementation Chapter 6

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(a)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(b)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(c)

t(go→ s[0]→ d[0]) > t(go) + t hold at r[0], s[0]

Figure 6.3: The same hold hazard traced back to a different path inequality

86

Tool Implementation Chapter 6

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(a)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(b)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(c)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(d)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(e)

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

(f)

t(go..go) + t(go→ s[0]→ done 0) > t(go→ r[0]→ s[1]) + t retrig at done 0 1

Figure 6.4: A retrigger hazard traced back to the input phrase

87

Tool Implementation Chapter 6

S

R

Q

Q

S

R

Q

Q

go

d[1]

d[0]s[0]

s[1]

r[0]

r[1]

done_0_1
done_0

...

...

Figure 6.5: Example of a coalescence hazard that is topologically possible but does
not occur in the unit time model

the same tracing applies to all of them and only at path checking time must the path be

checked for each. Figure 6.2 and 6.3 shows the tracing of that hold hazard back to two

possible paths. Figure 6.4 shows the tracing of a retrigger hazard in the completion tree

of the counter, which traces back to the input hazard. Figure 6.5 shows a coalescence

hazard that is topologically possible (the gate has two pulse inputs) but does not occur

in the unit time model (since both of those input pulses never actually occur). It will be

generated by the hazard generator but eliminated in the first state of the tracing hazard.

6.5.4 Trace Refinement

Have generated a set of possible traces above from our search tree, the linked list

form of the trace tree if first confirmed into a linear form, which we call a hazard path.

For those hazard paths that terminate on primary inputs rather than on the internal

nodes, the tracing process established which input signals correspond to those nodes but

not which states of the generating machine do. Thus possible states of the input machine

on those two timesteps are generated and checked against the state set BDD to see if

they are plausible.

Finally all the generated traces are checked with a final linear model check. This is

performed using the ’speed’ model discussed above. The primary purpose of this is to

88

Tool Implementation Chapter 6

check if the trace is not in fact eliminated by some synchronisation mechanism and thus

only shorter paths (after that synchronisation mechanism) need apply. For this check the

labels are applied at the second timestep, not the first, since the first step is the common

ancestor before dispersion has built up. This is performed in NuSMV’s symbolic checking

using a CTL constraint.

For traces which come back from an output phrase, it is also this point that the

state information in the output trace is enforced, since the tracing BDD model omits the

recogniser for speed.

6.5.5 Tracing Through Regions

Having traced those hazards that occur topologically back to their origins, some of

those origins may be on the input of that region. If that input phrase is one that is

generated by another region in the circuit rather than a primary input, it is necessary to

quantify the timing relation between those two signals. An extra constraint is generated

and traced as described above in all the possible predecessor regions which generate the

phrase.

6.6 Conclusions

In this chapter the implementation of a computer tool based on the models discussed

thus far has been discussed. The implementation of the unit time model, including phrase

boundary conditions, into SMV is discussed. It is then shown how this model can be

used to check directly checkable violations. Then a coherence depth for the circuit can

be measured. Finally a backtracing search “tracing” procedure is described to find the

timing inequalities that must be enforced to ensure correct behaviour of the circuit.

89

Chapter 7

Results

In order to evaluate the methodology and the tool that have been presented, the tool

was run on several examples systems and the results are presented here. Further the tool

was run on a simple test circuit to identify the hazard in the circuit. The predictions

on when the circuit should operate under voltage noise was then compared with spice

results of the circuit under voltage noise.

7.1 Systems Results

The 3-bit counter from 2.3 discussed thus far is evaluated as a basic example. Two

different varieties of 4-bit pulse ser-des system were designed, one with a tree serialiser (as

was shown in figure 2.4 and one with a linear serialiser closer to what was implemented

in silicon in [1]. Both use tree deserialisers, as shown in figure 7.1.

A 4 bit ripple carry adder is also tested, implemented using a one-hot design style.

A version of the the circuit from figure 4.2 above was also tested, with the iterative

circuits being 3-bit counters looped on themselves until they overflow to achieve a delay

of approximately 40 cycles.

90

Results Chapter 7

S

R

Q

outA_0

outA_1

in_0

in_1

outB_0

outB_1

toggle

which_way

Figure 7.1: Pulse Tree Deserialiser

Circuit Setup Hold SR Ord. Retrig Thru
3-bit counter 2 8 2 8 0
4-bit Serialiser (tree) 4 0 0 16 24
4-bit Serialiser (linear) 4 0 0 20 24
4-bit Deserialiser 80 89 40 48 0
4-bit Ripple Carry Adder 241 0 0 0 0

Table 7.1: Details of the constraints found in some regions of the test circuits

Results are presented in two ways, since the tool analyses a whole system but produces

constraint databases per region. Table 7.2 shows the sizes and runtimes of the various

systems considered. Table 7.1 shows the number of hazards for some key regions of

interest in these circuits. Runtimes ranged from 3 sec for the binary counter to 32 sec for

the SerDes system with the linear serialiser. These results were obtained on a computer

with an Intel i7-4770 CPU at 3.40GHz and 32GB of DDR3 memory.

91

Results Chapter 7

Circuit System Size Largest Region Time
(gates) (gates) sec

Counter 12 12 3.0
Ser-Des system (linear) 54 31 27.1
Ser-Des system (tree) 52 29 26.5

4-bit ripple carry adder 28 28 24.1
Region join test 39 18 8.7

Table 7.2: Run-time results for various systems

S

R

Q

a2 a4a3 a5 a6

out

a1

in

b1 b2 b3

d

Power Domain 1

Power Domain 2

Figure 7.2: Circuit for SPICE Comparison Test

92

Results Chapter 7

7.2 Spice Comparison

To compare the timing constraints produced by the tool directly against actual circuit

behaviour, the circuit in figure 7.2 was constructed both in the tool presented and in

SPICE. It was based a pulse gate set in a 130nm process[1]. Given the available cell set,

the buffers were implemented as OR gates with one of the inputs tied to ground. In the

intended behaviour of this circuit, data signal d falls before pulse a5 and thus out is not

produced. Voltage noise is applied, consisting of 20% deviation around a 1.5V nominal

voltage, for a range of 1.2V to 1.8V. This voltage noise is applied symmetrically so that a

gate running at 1.2V had its ground at 0.15V and its supply is a 1.35V. These variations

are applied to the circuit in two power domains. The input pulse and the out gate are

held at the nominal 1.5V.

As designed, tracing the circuit in the tracing tool yields one hazard: t(in → a1 →

a2 → a3 → a4 → a5 → a6) > t(in → b1 → b2 → d3 → d) + t hold at r[0], s[0]

Incorrect behaviour occurs when the voltage in power domain 1 gets higher, causing the

intended later event a5 to occur earlier, or equivalently with the voltage in power domain

2 becomes lower and d changes later. The latch used happens to have a much longer

propagation delay than the pulse gates, hence the skewed hazard.

Next the gates used were characterised. This was achieved placing each gate in a

separate test jig in SPICE. The main parameter characterised for was propagation delay.

A summary of data is shown in table 7.3, though the actual characterisation is based

on 7 voltage points in 0.1V intervals. For pulse signals, the propagation times is based

on when the pulse rises through 70% of nominal supply voltage. This was chosen based

on this 70% point at the input corresponding to the start of internal switching in the

critical node of the gate. This minimises the effect of slope on the results, otherwise a

multi-dimensional characterisation would be needed. For data signals a 50% switching

93

Results Chapter 7

Voltage 1.2 V 1.5 V 1.8 V
PulseOrHH 36.2 ps 29.3 ps 25.2 ps
PulseAndHH 38.9 ps 30.2 ps 25.7 ps
PulseLatch 123.9 ps 103.9 ps 94.8ps

Table 7.3: Summary of Characterisation data for gates used

1.2 1.3 1.4 1.5 1.6 1.7 1.8

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Domain 1 Voltage (V)

D
o
m

a
in

 2
 V

o
lt
a
g
e
 (

V
)

Tool predicts working, SPICE works

Tool predicts failure, SPICE works

Tool predicts working, SPICE fails

Tool predicts failure, SPICE fails

Figure 7.3: Circuit function for different conditions, as predicted by this tool and
measured by SPICE

point is used.

The setup time for falling data inputs of the PulseAndHH gate was also measured,

and found to be -10ps. That is, the correct behaviour (no output) is achieved even when

the data signal changes 10ps after the pulse input. For this characterisation test to give

a strict bound, correct behaviour is defined as the output not rising above 0.15V (10%

of nominal supply voltage). This characterisation is strict for the reasons discussed in

chapter 2.

The behaviour of the circuit was then simulated in SPICE sweeping both power

domains independently from 1.2V to 1.8V in 0.1V steps. Correct behaviour here is

determined by the more liberal definition of placing an extra gate in series with the

94

Results Chapter 7

output and ensuring that out does not rise sufficiently to trigger any behaviour from

that gate, as this is what would matter in practice. A script was also written to load

the inequalities produced by the timing tool and the characterisation data and substitute

appropriately to predict whether the circuit should work under those conditions. The

result is shown in figure 7.3. It can be seen that the tool broadly agrees with the SPICE

predictions, and where it differs it is more conservative, predicting the circuit will fail

when it actually succeeds in SPICE. This difference is possibly due to errors in the model

(the computed propagation times on the path differ from spice measurements by up to

3%) or due to the conservative hazard time characterisations.

7.3 Conclusions

In this chapter, the results of applying the models and tools thus far in this work have

been discussed. The tool has been applied to several medium-sized example systems

producing comprehensive databases of timing constraints for those. The tools results

have also been compared with SPICE for a small circuit. Even with the simplified

characterisation performed here good agreement is achieved between tool predictions

and actual SPICE.

95

Chapter 8

Conclusions

In this theis the objective is to design models for asynchronous circuits to be:

• Sufficiently general to include hand-designed pulse gate circuits.

• Amenable to automatic timing verification.

• If possible, encompass known pragmatic techniques for asynchronous closure.

To this end, two models have been presented for timing verification of pulse gate

systems. First the “unit time” model has been presented to capture local behaviour

making strong timing assumptions and then the “phrase” model has been introduced to

model system behaviour and also describe the communication between the unit timed

regions.

A notion of “coherence depth” to measure how much dispersion can build up in a

circuit has been introduced, and it has been proven how this property can limit the

amount of timing checks that need to be done.

A computer tool to verify against the timing dispersion that does build up has been

presented, and it achieves this by ensuring that the coherence depth of each region of

the circuit is finite and then producing timing path inequalities. This allows the tool

96

Conclusions Chapter 8

to be run once before layout and this timing inequality database to be used to inform

placement and routing. Results from this computer tool have been discussed.

The system level implications of the phrase model have been discussed, how they

enable a top level view of the circuit to be taken.

8.1 Completeness of Models

Here the assumptions that are made by timing models in this thesis, and how they

have been addressed.

• To show dispersion is finite, coherence depth has been defined and determination

of coherence depth by computer has been implemented.

• Preventing static violations of gate behaviour has been implemented in through

gate violation invariants in the unit time model.

• Verification of the timing hazards that do occur has been implemented in the tool

through tracing of timing path inequalities, which can then be substituted into with

values from a timing library post route.

• Proving that phrases describe the possible communications that occur in the system

has been implemented by dividing up the system into regions based on phrases,

and verifying that the output phrases do contain the regions outputs with language

containment.

• Proving the non-interference between regions by an outer speed implemented has

been discussed in theory but not yet implemented. This also requires some ex-

tensions to be added to the unit time modelling part of the tool, in particular

precondition case analysis and determination of reached signals.

97

Conclusions Chapter 8

• One final issue that would have to be addressed with that speed independent model

is the fact that phrases are not atomic actions, and thus could proceed in an over-

lapping manner. This does not present an issue for immediate predecessor-successor

regions since the phrase model describes all interaction, but the second next suc-

cessor if it assumed phrases were atomic may try to re-use signals from the first

region while that had not yet quiesced. Parallel version of this are not an issue due

to the speed independent assumption of the model, all overlaps will be reached by

this.

8.2 Future Work

The most immediate future work is scaling the tool presented up to larger examples

circuits. This should be relatively straightforward as earlier versions of the tool had much

better performance before the move to the SMV based version (which was necessary to

implement the current phrase model).

The implementation of a tool to perform the presented speed-independent system

level theory would be the next step towards a tool suite providing complete verification

coverage of pulse gate systems.

One omission from the model that was not obvious from considering hand designed

circuits was that of an arbiter. However most theory on asynchronous system complete-

ness assume some sort of arbiter, if not directly then as a mutual exclusion block. Adding

this would allow completeness proofs such as [41] to apply to this model.

98

Appendix A

PySMV

PySMV is a library for dealing with SMV models of automata directly within a program

and directly manipulating sets of states. For the automata models used in this work, it

was desirable to construct them in a fashion that would allow both analysis in existing

state machine analysis tools and also allow the software being developed to directly

manage state information. The NuSMV solver was chosen to prove pre-packaged analysis.

A compiler for a subset of its input language was then implemented to allow the same

model with direct access to sets of states. The SMV language was chosen due to its

wide use in different automata verifiers, the fact that it directly implements synchronous

logic(as opposed to say Verilog which is an event simulator language that people happen

to write synchronous logic in).

Specifically, a subset of the language was implemented. The only variable types

allowed are individual boolean variables. None of the integer types or bit vectors or

arrays are supported. These were not implemented since they were not needed for the

models in this work, but could be readily added if needed.

PySMV is a library for the PythonPython[53] programing language. A BDD rep-

resentation of the sets of states is used, implemented using CUDD[27] through the

99

PySMV Chapter A

PyCUDD[54] wrapper. PyCUDD as used in this project has been adapted from the

published Python 2 version to work with Python 3.

THe PySMV library exports two entry points, pysmv.read file or pysmv.read str

which take a SMV model, bt filename or text respectively and compile this to a SMVAbstrctModel

object. This object contains a abstract syntax tree that has had all necessary backend-

independent processing it. The compilation can then be finished by calling that objects

to bdd() method which compiles that AST into a BDD model SmvStateSetModel BDD.

This architecture was designed to allow potential future other backends but none were

implemented as these analysis were performed with NuSMV.

Once a BDD model has been constructed, a starting set of states can be obtained from

the model, either the initial states or reachable states. This SMVStateSet BDD object can

then be manipulated with usual set operations, a subset that satisfies a certain predicate

constraint take, or temporal operations (backwards and forwards sets and the CTL exists-

eventually operators)

A.1 AST Compilation

The SMV is first tokenised and parsed using a lexer and parser implemented with

the PLY (Python Lex-Yacc) library [55]. As its name suggests this is python version of

the traditional UNIX Lexx lexer generator and YACC parser generator. It first performs

regular expression based tokenisations and then a LALR grammar parsing. From this an

initial abstract syntax tree is produced.

After this the syntax tree is processed with a series of visitor-pattern passes. First,

if the design has multiple modules it is flattened. Modules are topologically sorted using

the toposort library, then for each module in that topological sort order it is examined

and the submodules calls in that module are expanded into the parent module, with the

100

PySMV Chapter A

expressions being copied over and variable names in them either substituted if they are

arguments or else prefixed with the parent modules instance name of the submodule,

plus a dot.

Next the statements of SMV module are separated into their categories, since these

need to be treated differently in the BDD compilation:

• INIT statements specify formulae that are true in the initial state.

• TRAN statements give parts of the transition relation of the system.

• INVAR statements specify invariant formula that hold throughout the model.

• ASSIGN statements can be any of the above three depending on their form of their

left-hand side, in all cases defining a specific variable in that context

– A LHS of init(var) gives the initial value of a variable

– A LHS of next(var) gives the next value of a variable in the transition rela-

tion.

– A LHS of var gives that that variable is invariantly equal to the the given

formula.

• DEFINE statements give a name to a sub-formula to allow its re-use in multiple

statements.

A name checking pass ensures names are not redefined.

Since defines are substituted into other formulas, and define statements can poten-

tially by defined in terms of other defines. Thus an order is found whereby defines that

depend on other defines are compiled later. A “sort defines” pass produces this evalua-

tion order for the define statements in the model using a topological sort. If defines are

cyclic an error is thrown.

101

PySMV Chapter A

Finally one particular feature of the NuSMV syntax is that in general transition

relations, the next() function can wrap arbitrarily formula indicating that formula is

true in the next state rather than the current state of the transition relation. Since this

operation distributes over other boolean operations this pass finds calls to “pushes” next

to the variable leaves of the parse tree.

A.2 BDD Model Compilation

Having a abstract syntax tree, the next step is to compile a BDD model. The first

step in compiling a BDD design is to allocate BDD variable numbers for the variables in

the design. Two bits are allocated for each variable, one for the current state value and

one for the next state version in transition relations. No variable ordering is currently

performed in PySMV, the variables are allocated in the order presented in the model

file. Ordering can be applied when generating the model file as necessary. Four ancillary

variables aux1to aux4 are also allocated for use in intermediate products. These variables

are all dereferenced once in a throw-away fashion to ensure they are pre-allocated, since

CUDD does not allow the permute operation to make new variables with higher indexes

than it has seen before. Since the number of variables in the model is now known

Then statements are evaluated, first the define statements are evaluated and the

results stored for re-used. For each define the result is stored for future re-used. Then

initial, transition and invariant statements are compiled and initial, transition relation

and invariant BDDs are made as a product of this. Statement evaluation is performed

recursively. The intermediate value at each step is not the value itself, but rather the

relationship aux1⇔ value. This is done to facilitate non-determinism with SMVs union

operator. When a variable or constant is referenced, this formulation is directly applied

to give the intermediate value. To implement a deterministic operation op the inputs

102

PySMV Chapter A

are relabelled into aux2, aux3, etc. These and also the relationship aux1⇔ aux2opaux3

are producted together. aux2 and aux3 are then existentially abstracted out of this

result. The union operator is implemented similarly, with the relationship is (aux1 ≡

aux2) ∨ (aux1 ≡ aux2) used instead. This construction is from the original SMV[23].

For defines, the resulting formula is stored in this aux1 relationship form, since it is

intended to be referenced in the AST like this. For other formulas we are only interested

in the truth of the formula so they are anded with aux1 and then that is existentially

abstracted out to give the bare proposition.

A.3 Model Manipulation

State sets from the model can then be manipulated using opaque objects. The initial

state is based on the product of the initial constraints and invariants in the model.

The reachable states are produced using the obvious step-forward and union fixed point

algorithm. The first time this is requested it is computer and cached in the model so

subsequent requests do not recompute it.

The state set objects support a constraint method, which takes a subset of that

state where a given variable has a given value. Constrains can also be applied to require

a d. The binary set operations of intersection, union and difference are also supported. A

temporal step forward operation is supported. This is implemented in the usual symbolic

way of ANDing with the transition relation, existentially abstracting the current state,

permuting the next state to the current state and then ANDing invariants onto that

result. A temporal step backwards is similarly implemented.

Lastly a method is provided to compute the CTL operator EF (exists eventually) on

the given set of states. This computes the set of states that have a path to eventually

reach one of the states in the input set. This is implemented using the standard step

103

PySMV Chapter A

backwards and union fixed point algorithm.

104

Appendix B

SMV Model Example

In this appendix we present the complete source code of a model. Specifically the circuit

netlist and the phrase defintion are included as are the NuSMV models produced by

the tool presented for this. Specifically the basic and “speed” models are presented, the

tracing model is a subset of the basic model. The circuit preseneted is the binary counter

from figure 2.3

B.1 Circuit Netlist

{" modules ": [{

"name": "main",

"inputs ": ["clk"],

"outputs ": [" clk_out", "d0", "d1", "d2"],

"events ": ["clk", "s0", "s1", "s2", "r0", "r1", "r2", "done_0",

"done_0_1", "clk_out"],

"data": ["d0", "d1", "d2"],

"pgates ": {

105

SMV Model Example Chapter B

"s0" : ["clk !d0"],

"r0" : ["clk d0"],

"s1" : ["r0 !d1"],

"r1" : ["r0 d1"],

"s2" : ["r1 !d2"],

"r2" : ["r1 d2"],

"done_0 ": ["s0"],

"done_0_1 ": [" done_0", "s1"],

"clk_out ": [" done_0_1", "s2", "r2"]

},

"dgates ": {

"d0": ["s s0", "r r0"],

"d1": ["s s1", "r r1"],

"d2": ["s s2", "r r2"]

}}

], "phrase_file ": "binary_counter_phrases.py"}

B.2 Phrases

clk_sig = sig(’clk ’)

input_state = state ().sig(clk_sig)

input_state.wait (5).sig(clk_sig).wait (5).done()

input_phrase = phrase ().start(input_state)

B.3 Basic Model

MODULE main

106

SMV Model Example Chapter B

--- Gate s0 ---

DEFINE s0#violation := (clk#ev&d0#ev)|s0#violation1 ;

VAR s0#ev : boolean ;

ASSIGN init(s0#ev) := FALSE ;

DEFINE s0#ev_next := (clk#ev & !d0#val) ;

ASSIGN next(s0#ev) := s0#ev_next ;

DEFINE s0#violation1 := FALSE ;

DEFINE s0#ev_next_because#clk := (clk#ev & !d0#val) ;

--- Gate r0 ---

DEFINE r0#violation := (clk#ev&d0#ev)|r0#violation1 ;

VAR r0#ev : boolean ;

ASSIGN init(r0#ev) := FALSE ;

DEFINE r0#ev_next := (clk#ev & d0#val) ;

ASSIGN next(r0#ev) := r0#ev_next ;

DEFINE r0#violation1 := FALSE ;

DEFINE r0#ev_next_because#clk := (clk#ev & d0#val) ;

--- Gate s1 ---

DEFINE s1#violation := (r0#ev&d1#ev)|s1#violation1 ;

VAR s1#ev : boolean ;

ASSIGN init(s1#ev) := FALSE ;

DEFINE s1#ev_next := (r0#ev & !d1#val) ;

ASSIGN next(s1#ev) := s1#ev_next ;

DEFINE s1#violation1 := FALSE ;

DEFINE s1#ev_next_because#r0 := (r0#ev & !d1#val) ;

--- Gate r1 ---

DEFINE r1#violation := (r0#ev&d1#ev)|r1#violation1 ;

VAR r1#ev : boolean ;

ASSIGN init(r1#ev) := FALSE ;

107

SMV Model Example Chapter B

DEFINE r1#ev_next := (r0#ev & d1#val) ;

ASSIGN next(r1#ev) := r1#ev_next ;

DEFINE r1#violation1 := FALSE ;

DEFINE r1#ev_next_because#r0 := (r0#ev & d1#val) ;

--- Gate done_0 ---

DEFINE done_0#violation := done_0#violation1 ;

VAR done_0#ev : boolean ;

ASSIGN init(done_0#ev) := FALSE ;

DEFINE done_0#ev_next := (s0#ev) ;

ASSIGN next(done_0#ev) := done_0#ev_next ;

DEFINE done_0#violation1 := FALSE ;

DEFINE done_0#ev_next_because#s0 := (s0#ev) ;

--- Gate d0 ---

DEFINE d0#violation := d0#violation1 ;

VAR d0#val : boolean ;

VAR d0#ev : boolean ;

ASSIGN init(d0#ev):= FALSE ;

DEFINE d0#set := (s0#ev) ;

DEFINE d0#reset := (r0#ev) ;

DEFINE d0#ev_next := !d0#val & d0#set | d0#val & d0#reset ;

ASSIGN next(d0#ev) := d0#ev_next ;

ASSIGN next(d0#val) := case

d0#set: TRUE ;

d0#reset: FALSE ;

TRUE: d0#val ;

esac ;

DEFINE d0#violation1 := d0#set & d0#reset ;

DEFINE d0#set_because#s0 := (s0#ev) ;

DEFINE d0#reset_because#s0 := FALSE ;

108

SMV Model Example Chapter B

DEFINE d0#ev_next_because#s0 := !d0#val & d0#set_because#s0 | d0#val &

d0#reset_because#s0 ;

DEFINE d0#set_because#r0 := FALSE ;

DEFINE d0#reset_because#r0 := (r0#ev) ;

DEFINE d0#ev_next_because#r0 := !d0#val & d0#set_because#r0 | d0#val &

d0#reset_because#r0 ;

--- Gate s2 ---

DEFINE s2#violation := (r1#ev&d2#ev)|s2#violation1 ;

VAR s2#ev : boolean ;

ASSIGN init(s2#ev) := FALSE ;

DEFINE s2#ev_next := (r1#ev & !d2#val) ;

ASSIGN next(s2#ev) := s2#ev_next ;

DEFINE s2#violation1 := FALSE ;

DEFINE s2#ev_next_because#r1 := (r1#ev & !d2#val) ;

--- Gate r2 ---

DEFINE r2#violation := (r1#ev&d2#ev)|r2#violation1 ;

VAR r2#ev : boolean ;

ASSIGN init(r2#ev) := FALSE ;

DEFINE r2#ev_next := (r1#ev & d2#val) ;

ASSIGN next(r2#ev) := r2#ev_next ;

DEFINE r2#violation1 := FALSE ;

DEFINE r2#ev_next_because#r1 := (r1#ev & d2#val) ;

--- Gate done_0_1 ---

DEFINE done_0_1#violation := done_0_1#violation1 ;

VAR done_0_1#ev : boolean ;

ASSIGN init(done_0_1#ev) := FALSE ;

DEFINE done_0_1#ev_next := (done_0#ev) | (s1#ev) ;

ASSIGN next(done_0_1#ev) := done_0_1#ev_next ;

109

SMV Model Example Chapter B

DEFINE done_0_1#violation1 := FALSE ;

DEFINE done_0_1#ev_next_because#done_0 := (done_0#ev) ;

DEFINE done_0_1#ev_next_because#s1 := (s1#ev) ;

--- Gate d1 ---

DEFINE d1#violation := d1#violation1 ;

VAR d1#val : boolean ;

VAR d1#ev : boolean ;

ASSIGN init(d1#ev):= FALSE ;

DEFINE d1#set := (s1#ev) ;

DEFINE d1#reset := (r1#ev) ;

DEFINE d1#ev_next := !d1#val & d1#set | d1#val & d1#reset ;

ASSIGN next(d1#ev) := d1#ev_next ;

ASSIGN next(d1#val) := case

d1#set: TRUE ;

d1#reset: FALSE ;

TRUE: d1#val ;

esac ;

DEFINE d1#violation1 := d1#set & d1#reset ;

DEFINE d1#set_because#s1 := (s1#ev) ;

DEFINE d1#reset_because#s1 := FALSE ;

DEFINE d1#ev_next_because#s1 := !d1#val & d1#set_because#s1 | d1#val &

d1#reset_because#s1 ;

DEFINE d1#set_because#r1 := FALSE ;

DEFINE d1#reset_because#r1 := (r1#ev) ;

DEFINE d1#ev_next_because#r1 := !d1#val & d1#set_because#r1 | d1#val &

d1#reset_because#r1 ;

--- Gate clk_out ---

DEFINE clk_out#violation := clk_out#violation1 ;

VAR clk_out#ev : boolean ;

110

SMV Model Example Chapter B

ASSIGN init(clk_out#ev) := FALSE ;

DEFINE clk_out#ev_next := (done_0_1#ev) | (s2#ev) | (r2#ev) ;

ASSIGN next(clk_out#ev) := clk_out#ev_next ;

DEFINE clk_out#violation1 := FALSE ;

DEFINE clk_out#ev_next_because#done_0_1 := (done_0_1#ev) ;

DEFINE clk_out#ev_next_because#s2 := (s2#ev) ;

DEFINE clk_out#ev_next_because#r2 := (r2#ev) ;

--- Gate d2 ---

DEFINE d2#violation := d2#violation1 ;

VAR d2#val : boolean ;

VAR d2#ev : boolean ;

ASSIGN init(d2#ev):= FALSE ;

DEFINE d2#set := (s2#ev) ;

DEFINE d2#reset := (r2#ev) ;

DEFINE d2#ev_next := !d2#val & d2#set | d2#val & d2#reset ;

ASSIGN next(d2#ev) := d2#ev_next ;

ASSIGN next(d2#val) := case

d2#set: TRUE ;

d2#reset: FALSE ;

TRUE: d2#val ;

esac ;

DEFINE d2#violation1 := d2#set & d2#reset ;

DEFINE d2#set_because#s2 := (s2#ev) ;

DEFINE d2#reset_because#s2 := FALSE ;

DEFINE d2#ev_next_because#s2 := !d2#val & d2#set_because#s2 | d2#val &

d2#reset_because#s2 ;

DEFINE d2#set_because#r2 := FALSE ;

DEFINE d2#reset_because#r2 := (r2#ev) ;

DEFINE d2#ev_next_because#r2 := !d2#val & d2#set_because#r2 | d2#val &

d2#reset_because#r2 ;

111

SMV Model Example Chapter B

--- Input Signals ---

VAR clk#ev : boolean ;

--- Input Phrase input_phrase ---

VAR input#state#input_state : boolean ;

ASSIGN init(input#state#input_state) := (TRUE union FALSE) ;

ASSIGN next(input#state#input_state) := case

input#state#__phrase0_prelude: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state | (clk#ev) ;

VAR input#state#input_state__1 : boolean ;

ASSIGN init(input#state#input_state__1) := FALSE ;

ASSIGN next(input#state#input_state__1) := case

input#state#input_state: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__1 | (!clk#ev) ;

VAR input#state#input_state__2 : boolean ;

ASSIGN init(input#state#input_state__2) := FALSE ;

ASSIGN next(input#state#input_state__2) := case

input#state#input_state__1: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__2 | (!clk#ev) ;

VAR input#state#input_state__3 : boolean ;

ASSIGN init(input#state#input_state__3) := FALSE ;

ASSIGN next(input#state#input_state__3) := case

input#state#input_state__2: (TRUE union FALSE) ;

112

SMV Model Example Chapter B

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__3 | (!clk#ev) ;

VAR input#state#input_state__4 : boolean ;

ASSIGN init(input#state#input_state__4) := FALSE ;

ASSIGN next(input#state#input_state__4) := case

input#state#input_state__3: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__4 | (!clk#ev) ;

VAR input#state#input_state__5 : boolean ;

ASSIGN init(input#state#input_state__5) := FALSE ;

ASSIGN next(input#state#input_state__5) := case

input#state#input_state__4: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__5 | (clk#ev) ;

VAR input#state#input_state__6 : boolean ;

ASSIGN init(input#state#input_state__6) := FALSE ;

ASSIGN next(input#state#input_state__6) := case

input#state#input_state__5: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__6 | (!clk#ev) ;

VAR input#state#input_state__7 : boolean ;

ASSIGN init(input#state#input_state__7) := FALSE ;

ASSIGN next(input#state#input_state__7) := case

input#state#input_state__6: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__7 | (!clk#ev) ;

113

SMV Model Example Chapter B

VAR input#state#input_state__8 : boolean ;

ASSIGN init(input#state#input_state__8) := FALSE ;

ASSIGN next(input#state#input_state__8) := case

input#state#input_state__7: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__8 | (!clk#ev) ;

VAR input#state#input_state__9 : boolean ;

ASSIGN init(input#state#input_state__9) := FALSE ;

ASSIGN next(input#state#input_state__9) := case

input#state#input_state__8: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__9 | (!clk#ev) ;

VAR input#state#input_state__10 : boolean ;

ASSIGN init(input#state#input_state__10) := FALSE ;

ASSIGN next(input#state#input_state__10) := case

input#state#input_state__9: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__10 | (!clk#ev) ;

VAR input#state#__phrase0_prelude : boolean ;

ASSIGN init(input#state#__phrase0_prelude) := FALSE ;

ASSIGN next(input#state#__phrase0_prelude) := case

input#state#__phrase0_prelude: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#__phrase0_prelude | (!clk#ev) ;

VAR input#state#__phrase0_done : boolean ;

ASSIGN init(input#state#__phrase0_done) := FALSE ;

ASSIGN next(input#state#__phrase0_done) := case

114

SMV Model Example Chapter B

input#state#input_state__10: (TRUE union FALSE) ;

input#state#__phrase0_done: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#__phrase0_done | (!clk#ev) ;

DEFINE meta#input_done := input#state#__phrase0_done ;

INVAR input#state#input_state | input#state#input_state__1 | input#

state#input_state__2 | input#state#input_state__3 | input#state#

input_state__4 | input#state#input_state__5 | input#state#

input_state__6 | input#state#input_state__7 | input#state#

input_state__8 | input#state#input_state__9 | input#state#

input_state__10 | input#state#__phrase0_prelude | input#state#

__phrase0_done ;

INVAR !input#state#input_state | !input#state#input_state__1 ;

INVAR !input#state#input_state | !input#state#input_state__2 ;

INVAR !input#state#input_state | !input#state#input_state__3 ;

INVAR !input#state#input_state | !input#state#input_state__4 ;

INVAR !input#state#input_state | !input#state#input_state__5 ;

INVAR !input#state#input_state | !input#state#input_state__6 ;

INVAR !input#state#input_state | !input#state#input_state__7 ;

INVAR !input#state#input_state | !input#state#input_state__8 ;

INVAR !input#state#input_state | !input#state#input_state__9 ;

INVAR !input#state#input_state | !input#state#input_state__10 ;

INVAR !input#state#input_state | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state | !input#state#__phrase0_done ;

INVAR !input#state#input_state__1 | !input#state#input_state__2 ;

INVAR !input#state#input_state__1 | !input#state#input_state__3 ;

INVAR !input#state#input_state__1 | !input#state#input_state__4 ;

INVAR !input#state#input_state__1 | !input#state#input_state__5 ;

INVAR !input#state#input_state__1 | !input#state#input_state__6 ;

115

SMV Model Example Chapter B

INVAR !input#state#input_state__1 | !input#state#input_state__7 ;

INVAR !input#state#input_state__1 | !input#state#input_state__8 ;

INVAR !input#state#input_state__1 | !input#state#input_state__9 ;

INVAR !input#state#input_state__1 | !input#state#input_state__10 ;

INVAR !input#state#input_state__1 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__1 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__2 | !input#state#input_state__3 ;

INVAR !input#state#input_state__2 | !input#state#input_state__4 ;

INVAR !input#state#input_state__2 | !input#state#input_state__5 ;

INVAR !input#state#input_state__2 | !input#state#input_state__6 ;

INVAR !input#state#input_state__2 | !input#state#input_state__7 ;

INVAR !input#state#input_state__2 | !input#state#input_state__8 ;

INVAR !input#state#input_state__2 | !input#state#input_state__9 ;

INVAR !input#state#input_state__2 | !input#state#input_state__10 ;

INVAR !input#state#input_state__2 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__2 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__3 | !input#state#input_state__4 ;

INVAR !input#state#input_state__3 | !input#state#input_state__5 ;

INVAR !input#state#input_state__3 | !input#state#input_state__6 ;

INVAR !input#state#input_state__3 | !input#state#input_state__7 ;

INVAR !input#state#input_state__3 | !input#state#input_state__8 ;

INVAR !input#state#input_state__3 | !input#state#input_state__9 ;

INVAR !input#state#input_state__3 | !input#state#input_state__10 ;

INVAR !input#state#input_state__3 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__3 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__4 | !input#state#input_state__5 ;

INVAR !input#state#input_state__4 | !input#state#input_state__6 ;

INVAR !input#state#input_state__4 | !input#state#input_state__7 ;

INVAR !input#state#input_state__4 | !input#state#input_state__8 ;

INVAR !input#state#input_state__4 | !input#state#input_state__9 ;

INVAR !input#state#input_state__4 | !input#state#input_state__10 ;

116

SMV Model Example Chapter B

INVAR !input#state#input_state__4 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__4 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__5 | !input#state#input_state__6 ;

INVAR !input#state#input_state__5 | !input#state#input_state__7 ;

INVAR !input#state#input_state__5 | !input#state#input_state__8 ;

INVAR !input#state#input_state__5 | !input#state#input_state__9 ;

INVAR !input#state#input_state__5 | !input#state#input_state__10 ;

INVAR !input#state#input_state__5 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__5 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__6 | !input#state#input_state__7 ;

INVAR !input#state#input_state__6 | !input#state#input_state__8 ;

INVAR !input#state#input_state__6 | !input#state#input_state__9 ;

INVAR !input#state#input_state__6 | !input#state#input_state__10 ;

INVAR !input#state#input_state__6 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__6 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__7 | !input#state#input_state__8 ;

INVAR !input#state#input_state__7 | !input#state#input_state__9 ;

INVAR !input#state#input_state__7 | !input#state#input_state__10 ;

INVAR !input#state#input_state__7 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__7 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__8 | !input#state#input_state__9 ;

INVAR !input#state#input_state__8 | !input#state#input_state__10 ;

INVAR !input#state#input_state__8 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__8 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__9 | !input#state#input_state__10 ;

INVAR !input#state#input_state__9 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__9 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__10 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__10 | !input#state#__phrase0_done ;

INVAR !input#state#__phrase0_prelude | !input#state#__phrase0_done ;

117

SMV Model Example Chapter B

DEFINE meta#outputs_alive := TRUE ;

DEFINE meta#outputs_accept := TRUE ;

--- Defines to help violation checking ---

DEFINE meta#no_violation := !(s1#violation|r1#violation|done_0_1#

violation|r2#violation|s0#violation|clk_out#violation|r0#violation|

s2#violation|done_0#violation|d1#violation|d0#violation|d2#violation

) ;

B.4 “Speed” Model

MODULE main

--- Gate s0 ---

DEFINE s0#violation := (clk#ev&d0#ev)|s0#violation1 ;

VAR s0#ev : boolean ;

DEFINE s0#ev_next := (clk#ev & !d0#val) ;

ASSIGN next(s0#ev) := s0#ev_next ;

DEFINE s0#violation1 := FALSE ;

DEFINE s0#ev_next_because#clk := (clk#ev & !d0#val) ;

DEFINE s0#ev_next_fast := (clk#ev & clk#ev_fast & !d0#val) ;

VAR s0#ev_fast : boolean ;

ASSIGN next(s0#ev_fast) := (meta#apply_speed_cur & s0#ev_next) ? s0#

ev_next_fast: (TRUE union FALSE) ;

--- Gate r0 ---

DEFINE r0#violation := (clk#ev&d0#ev)|r0#violation1 ;

VAR r0#ev : boolean ;

DEFINE r0#ev_next := (clk#ev & d0#val) ;

ASSIGN next(r0#ev) := r0#ev_next ;

DEFINE r0#violation1 := FALSE ;

118

SMV Model Example Chapter B

DEFINE r0#ev_next_because#clk := (clk#ev & d0#val) ;

DEFINE r0#ev_next_fast := (clk#ev & clk#ev_fast & d0#val) ;

VAR r0#ev_fast : boolean ;

ASSIGN next(r0#ev_fast) := (meta#apply_speed_cur & r0#ev_next) ? r0#

ev_next_fast: (TRUE union FALSE) ;

--- Gate s1 ---

DEFINE s1#violation := (r0#ev&d1#ev)|s1#violation1 ;

VAR s1#ev : boolean ;

DEFINE s1#ev_next := (r0#ev & !d1#val) ;

ASSIGN next(s1#ev) := s1#ev_next ;

DEFINE s1#violation1 := FALSE ;

DEFINE s1#ev_next_because#r0 := (r0#ev & !d1#val) ;

DEFINE s1#ev_next_fast := (r0#ev & r0#ev_fast & !d1#val) ;

VAR s1#ev_fast : boolean ;

ASSIGN next(s1#ev_fast) := (meta#apply_speed_cur & s1#ev_next) ? s1#

ev_next_fast: (TRUE union FALSE) ;

--- Gate r1 ---

DEFINE r1#violation := (r0#ev&d1#ev)|r1#violation1 ;

VAR r1#ev : boolean ;

DEFINE r1#ev_next := (r0#ev & d1#val) ;

ASSIGN next(r1#ev) := r1#ev_next ;

DEFINE r1#violation1 := FALSE ;

DEFINE r1#ev_next_because#r0 := (r0#ev & d1#val) ;

DEFINE r1#ev_next_fast := (r0#ev & r0#ev_fast & d1#val) ;

VAR r1#ev_fast : boolean ;

ASSIGN next(r1#ev_fast) := (meta#apply_speed_cur & r1#ev_next) ? r1#

ev_next_fast: (TRUE union FALSE) ;

--- Gate done_0 ---

DEFINE done_0#violation := done_0#violation1 ;

VAR done_0#ev : boolean ;

DEFINE done_0#ev_next := (s0#ev) ;

119

SMV Model Example Chapter B

ASSIGN next(done_0#ev) := done_0#ev_next ;

DEFINE done_0#violation1 := FALSE ;

DEFINE done_0#ev_next_because#s0 := (s0#ev) ;

DEFINE done_0#ev_next_fast := (s0#ev & s0#ev_fast) ;

VAR done_0#ev_fast : boolean ;

ASSIGN next(done_0#ev_fast) := (meta#apply_speed_cur & done_0#ev_next)

? done_0#ev_next_fast: (TRUE union FALSE) ;

--- Gate d0 ---

DEFINE d0#violation := d0#violation1 ;

VAR d0#val : boolean ;

VAR d0#ev : boolean ;

DEFINE d0#set := (s0#ev) ;

DEFINE d0#reset := (r0#ev) ;

DEFINE d0#ev_next := !d0#val & d0#set | d0#val & d0#reset ;

ASSIGN next(d0#ev) := d0#ev_next ;

ASSIGN next(d0#val) := case

d0#set: TRUE ;

d0#reset: FALSE ;

TRUE: d0#val ;

esac ;

DEFINE d0#violation1 := d0#set & d0#reset ;

DEFINE d0#set_because#s0 := (s0#ev) ;

DEFINE d0#reset_because#s0 := FALSE ;

DEFINE d0#ev_next_because#s0 := !d0#val & d0#set_because#s0 | d0#val &

d0#reset_because#s0 ;

DEFINE d0#set_because#r0 := FALSE ;

DEFINE d0#reset_because#r0 := (r0#ev) ;

DEFINE d0#ev_next_because#r0 := !d0#val & d0#set_because#r0 | d0#val &

d0#reset_because#r0 ;

DEFINE d0#set_fast := (s0#ev & s0#ev_fast) ;

DEFINE d0#reset_fast := (r0#ev & r0#ev_fast) ;

120

SMV Model Example Chapter B

DEFINE d0#ev_next_fast := !d0#val & d0#set_fast | d0#val & d0#

reset_fast ;

VAR d0#ev_fast : boolean ;

ASSIGN next(d0#ev_fast) := (meta#apply_speed_cur & d0#ev_next) ? d0#

ev_next_fast: (TRUE union FALSE) ;

--- Gate s2 ---

DEFINE s2#violation := (r1#ev&d2#ev)|s2#violation1 ;

VAR s2#ev : boolean ;

DEFINE s2#ev_next := (r1#ev & !d2#val) ;

ASSIGN next(s2#ev) := s2#ev_next ;

DEFINE s2#violation1 := FALSE ;

DEFINE s2#ev_next_because#r1 := (r1#ev & !d2#val) ;

DEFINE s2#ev_next_fast := (r1#ev & r1#ev_fast & !d2#val) ;

VAR s2#ev_fast : boolean ;

ASSIGN next(s2#ev_fast) := (meta#apply_speed_cur & s2#ev_next) ? s2#

ev_next_fast: (TRUE union FALSE) ;

--- Gate r2 ---

DEFINE r2#violation := (r1#ev&d2#ev)|r2#violation1 ;

VAR r2#ev : boolean ;

DEFINE r2#ev_next := (r1#ev & d2#val) ;

ASSIGN next(r2#ev) := r2#ev_next ;

DEFINE r2#violation1 := FALSE ;

DEFINE r2#ev_next_because#r1 := (r1#ev & d2#val) ;

DEFINE r2#ev_next_fast := (r1#ev & r1#ev_fast & d2#val) ;

VAR r2#ev_fast : boolean ;

ASSIGN next(r2#ev_fast) := (meta#apply_speed_cur & r2#ev_next) ? r2#

ev_next_fast: (TRUE union FALSE) ;

--- Gate done_0_1 ---

DEFINE done_0_1#violation := done_0_1#violation1 ;

VAR done_0_1#ev : boolean ;

DEFINE done_0_1#ev_next := (done_0#ev) | (s1#ev) ;

121

SMV Model Example Chapter B

ASSIGN next(done_0_1#ev) := done_0_1#ev_next ;

DEFINE done_0_1#violation1 := FALSE ;

DEFINE done_0_1#ev_next_because#done_0 := (done_0#ev) ;

DEFINE done_0_1#ev_next_because#s1 := (s1#ev) ;

DEFINE done_0_1#ev_next_fast := (done_0#ev & done_0#ev_fast) | (s1#ev &

s1#ev_fast) ;

VAR done_0_1#ev_fast : boolean ;

ASSIGN next(done_0_1#ev_fast) := (meta#apply_speed_cur & done_0_1#

ev_next) ? done_0_1#ev_next_fast: (TRUE union FALSE) ;

--- Gate d1 ---

DEFINE d1#violation := d1#violation1 ;

VAR d1#val : boolean ;

VAR d1#ev : boolean ;

DEFINE d1#set := (s1#ev) ;

DEFINE d1#reset := (r1#ev) ;

DEFINE d1#ev_next := !d1#val & d1#set | d1#val & d1#reset ;

ASSIGN next(d1#ev) := d1#ev_next ;

ASSIGN next(d1#val) := case

d1#set: TRUE ;

d1#reset: FALSE ;

TRUE: d1#val ;

esac ;

DEFINE d1#violation1 := d1#set & d1#reset ;

DEFINE d1#set_because#s1 := (s1#ev) ;

DEFINE d1#reset_because#s1 := FALSE ;

DEFINE d1#ev_next_because#s1 := !d1#val & d1#set_because#s1 | d1#val &

d1#reset_because#s1 ;

DEFINE d1#set_because#r1 := FALSE ;

DEFINE d1#reset_because#r1 := (r1#ev) ;

DEFINE d1#ev_next_because#r1 := !d1#val & d1#set_because#r1 | d1#val &

d1#reset_because#r1 ;

122

SMV Model Example Chapter B

DEFINE d1#set_fast := (s1#ev & s1#ev_fast) ;

DEFINE d1#reset_fast := (r1#ev & r1#ev_fast) ;

DEFINE d1#ev_next_fast := !d1#val & d1#set_fast | d1#val & d1#

reset_fast ;

VAR d1#ev_fast : boolean ;

ASSIGN next(d1#ev_fast) := (meta#apply_speed_cur & d1#ev_next) ? d1#

ev_next_fast: (TRUE union FALSE) ;

--- Gate clk_out ---

DEFINE clk_out#violation := clk_out#violation1 ;

VAR clk_out#ev : boolean ;

DEFINE clk_out#ev_next := (done_0_1#ev) | (s2#ev) | (r2#ev) ;

ASSIGN next(clk_out#ev) := clk_out#ev_next ;

DEFINE clk_out#violation1 := FALSE ;

DEFINE clk_out#ev_next_because#done_0_1 := (done_0_1#ev) ;

DEFINE clk_out#ev_next_because#s2 := (s2#ev) ;

DEFINE clk_out#ev_next_because#r2 := (r2#ev) ;

DEFINE clk_out#ev_next_fast := (done_0_1#ev & done_0_1#ev_fast) | (s2#

ev & s2#ev_fast) | (r2#ev & r2#ev_fast) ;

VAR clk_out#ev_fast : boolean ;

ASSIGN next(clk_out#ev_fast) := (meta#apply_speed_cur & clk_out#ev_next

) ? clk_out#ev_next_fast: (TRUE union FALSE) ;

--- Gate d2 ---

DEFINE d2#violation := d2#violation1 ;

VAR d2#val : boolean ;

VAR d2#ev : boolean ;

DEFINE d2#set := (s2#ev) ;

DEFINE d2#reset := (r2#ev) ;

DEFINE d2#ev_next := !d2#val & d2#set | d2#val & d2#reset ;

ASSIGN next(d2#ev) := d2#ev_next ;

ASSIGN next(d2#val) := case

d2#set: TRUE ;

123

SMV Model Example Chapter B

d2#reset: FALSE ;

TRUE: d2#val ;

esac ;

DEFINE d2#violation1 := d2#set & d2#reset ;

DEFINE d2#set_because#s2 := (s2#ev) ;

DEFINE d2#reset_because#s2 := FALSE ;

DEFINE d2#ev_next_because#s2 := !d2#val & d2#set_because#s2 | d2#val &

d2#reset_because#s2 ;

DEFINE d2#set_because#r2 := FALSE ;

DEFINE d2#reset_because#r2 := (r2#ev) ;

DEFINE d2#ev_next_because#r2 := !d2#val & d2#set_because#r2 | d2#val &

d2#reset_because#r2 ;

DEFINE d2#set_fast := (s2#ev & s2#ev_fast) ;

DEFINE d2#reset_fast := (r2#ev & r2#ev_fast) ;

DEFINE d2#ev_next_fast := !d2#val & d2#set_fast | d2#val & d2#

reset_fast ;

VAR d2#ev_fast : boolean ;

ASSIGN next(d2#ev_fast) := (meta#apply_speed_cur & d2#ev_next) ? d2#

ev_next_fast: (TRUE union FALSE) ;

--- Input Signals ---

VAR clk#ev : boolean ;

VAR clk#ev_fast : boolean ;

INVAR !meta#input_coherent | !clk#ev | (clk#ev_fast = meta#input_fast)

;

--- Input coherence ---

VAR meta#input_fast: boolean ;

ASSIGN next(meta#input_fast) := meta#input_fast ;

VAR meta#input_coherence_count_1 : boolean ;

ASSIGN init(meta#input_coherence_count_1) := FALSE ;

124

SMV Model Example Chapter B

ASSIGN next(meta#input_coherence_count_1) := meta#

input_coherence_count_1 | meta#apply_speed_cur ;

DEFINE meta#input_coherent := meta#input_coherence_count_1 ;

--- Input Phrase input_phrase ---

VAR input#state#input_state : boolean ;

ASSIGN next(input#state#input_state) := case

input#state#__phrase0_prelude: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state | (clk#ev) ;

VAR input#state#input_state__1 : boolean ;

ASSIGN next(input#state#input_state__1) := case

input#state#input_state: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__1 | (!clk#ev) ;

VAR input#state#input_state__2 : boolean ;

ASSIGN next(input#state#input_state__2) := case

input#state#input_state__1: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__2 | (!clk#ev) ;

VAR input#state#input_state__3 : boolean ;

ASSIGN next(input#state#input_state__3) := case

input#state#input_state__2: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__3 | (!clk#ev) ;

VAR input#state#input_state__4 : boolean ;

ASSIGN next(input#state#input_state__4) := case

input#state#input_state__3: (TRUE union FALSE) ;

125

SMV Model Example Chapter B

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__4 | (!clk#ev) ;

VAR input#state#input_state__5 : boolean ;

ASSIGN next(input#state#input_state__5) := case

input#state#input_state__4: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__5 | (clk#ev) ;

VAR input#state#input_state__6 : boolean ;

ASSIGN next(input#state#input_state__6) := case

input#state#input_state__5: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__6 | (!clk#ev) ;

VAR input#state#input_state__7 : boolean ;

ASSIGN next(input#state#input_state__7) := case

input#state#input_state__6: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__7 | (!clk#ev) ;

VAR input#state#input_state__8 : boolean ;

ASSIGN next(input#state#input_state__8) := case

input#state#input_state__7: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__8 | (!clk#ev) ;

VAR input#state#input_state__9 : boolean ;

ASSIGN next(input#state#input_state__9) := case

input#state#input_state__8: (TRUE union FALSE) ;

TRUE: FALSE ;

126

SMV Model Example Chapter B

esac ;

INVAR !input#state#input_state__9 | (!clk#ev) ;

VAR input#state#input_state__10 : boolean ;

ASSIGN next(input#state#input_state__10) := case

input#state#input_state__9: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#input_state__10 | (!clk#ev) ;

VAR input#state#__phrase0_prelude : boolean ;

ASSIGN next(input#state#__phrase0_prelude) := case

input#state#__phrase0_prelude: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#__phrase0_prelude | (!clk#ev) ;

VAR input#state#__phrase0_done : boolean ;

ASSIGN next(input#state#__phrase0_done) := case

input#state#input_state__10: (TRUE union FALSE) ;

input#state#__phrase0_done: (TRUE union FALSE) ;

TRUE: FALSE ;

esac ;

INVAR !input#state#__phrase0_done | (!clk#ev) ;

DEFINE meta#input_done := input#state#__phrase0_done ;

INVAR input#state#input_state | input#state#input_state__1 | input#

state#input_state__2 | input#state#input_state__3 | input#state#

input_state__4 | input#state#input_state__5 | input#state#

input_state__6 | input#state#input_state__7 | input#state#

input_state__8 | input#state#input_state__9 | input#state#

input_state__10 | input#state#__phrase0_prelude | input#state#

__phrase0_done ;

INVAR !input#state#input_state | !input#state#input_state__1 ;

127

SMV Model Example Chapter B

INVAR !input#state#input_state | !input#state#input_state__2 ;

INVAR !input#state#input_state | !input#state#input_state__3 ;

INVAR !input#state#input_state | !input#state#input_state__4 ;

INVAR !input#state#input_state | !input#state#input_state__5 ;

INVAR !input#state#input_state | !input#state#input_state__6 ;

INVAR !input#state#input_state | !input#state#input_state__7 ;

INVAR !input#state#input_state | !input#state#input_state__8 ;

INVAR !input#state#input_state | !input#state#input_state__9 ;

INVAR !input#state#input_state | !input#state#input_state__10 ;

INVAR !input#state#input_state | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state | !input#state#__phrase0_done ;

INVAR !input#state#input_state__1 | !input#state#input_state__2 ;

INVAR !input#state#input_state__1 | !input#state#input_state__3 ;

INVAR !input#state#input_state__1 | !input#state#input_state__4 ;

INVAR !input#state#input_state__1 | !input#state#input_state__5 ;

INVAR !input#state#input_state__1 | !input#state#input_state__6 ;

INVAR !input#state#input_state__1 | !input#state#input_state__7 ;

INVAR !input#state#input_state__1 | !input#state#input_state__8 ;

INVAR !input#state#input_state__1 | !input#state#input_state__9 ;

INVAR !input#state#input_state__1 | !input#state#input_state__10 ;

INVAR !input#state#input_state__1 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__1 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__2 | !input#state#input_state__3 ;

INVAR !input#state#input_state__2 | !input#state#input_state__4 ;

INVAR !input#state#input_state__2 | !input#state#input_state__5 ;

INVAR !input#state#input_state__2 | !input#state#input_state__6 ;

INVAR !input#state#input_state__2 | !input#state#input_state__7 ;

INVAR !input#state#input_state__2 | !input#state#input_state__8 ;

INVAR !input#state#input_state__2 | !input#state#input_state__9 ;

INVAR !input#state#input_state__2 | !input#state#input_state__10 ;

INVAR !input#state#input_state__2 | !input#state#__phrase0_prelude ;

128

SMV Model Example Chapter B

INVAR !input#state#input_state__2 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__3 | !input#state#input_state__4 ;

INVAR !input#state#input_state__3 | !input#state#input_state__5 ;

INVAR !input#state#input_state__3 | !input#state#input_state__6 ;

INVAR !input#state#input_state__3 | !input#state#input_state__7 ;

INVAR !input#state#input_state__3 | !input#state#input_state__8 ;

INVAR !input#state#input_state__3 | !input#state#input_state__9 ;

INVAR !input#state#input_state__3 | !input#state#input_state__10 ;

INVAR !input#state#input_state__3 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__3 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__4 | !input#state#input_state__5 ;

INVAR !input#state#input_state__4 | !input#state#input_state__6 ;

INVAR !input#state#input_state__4 | !input#state#input_state__7 ;

INVAR !input#state#input_state__4 | !input#state#input_state__8 ;

INVAR !input#state#input_state__4 | !input#state#input_state__9 ;

INVAR !input#state#input_state__4 | !input#state#input_state__10 ;

INVAR !input#state#input_state__4 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__4 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__5 | !input#state#input_state__6 ;

INVAR !input#state#input_state__5 | !input#state#input_state__7 ;

INVAR !input#state#input_state__5 | !input#state#input_state__8 ;

INVAR !input#state#input_state__5 | !input#state#input_state__9 ;

INVAR !input#state#input_state__5 | !input#state#input_state__10 ;

INVAR !input#state#input_state__5 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__5 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__6 | !input#state#input_state__7 ;

INVAR !input#state#input_state__6 | !input#state#input_state__8 ;

INVAR !input#state#input_state__6 | !input#state#input_state__9 ;

INVAR !input#state#input_state__6 | !input#state#input_state__10 ;

INVAR !input#state#input_state__6 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__6 | !input#state#__phrase0_done ;

129

SMV Model Example Chapter B

INVAR !input#state#input_state__7 | !input#state#input_state__8 ;

INVAR !input#state#input_state__7 | !input#state#input_state__9 ;

INVAR !input#state#input_state__7 | !input#state#input_state__10 ;

INVAR !input#state#input_state__7 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__7 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__8 | !input#state#input_state__9 ;

INVAR !input#state#input_state__8 | !input#state#input_state__10 ;

INVAR !input#state#input_state__8 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__8 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__9 | !input#state#input_state__10 ;

INVAR !input#state#input_state__9 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__9 | !input#state#__phrase0_done ;

INVAR !input#state#input_state__10 | !input#state#__phrase0_prelude ;

INVAR !input#state#input_state__10 | !input#state#__phrase0_done ;

INVAR !input#state#__phrase0_prelude | !input#state#__phrase0_done ;

DEFINE meta#outputs_alive := TRUE ;

DEFINE meta#outputs_accept := TRUE ;

--- Start from all reachable states ---

INIT (! input#state#__phrase0_prelude & case

s0#ev : (((((((((((((((((((((((! r0#ev & !s1#ev) & __expr0) &

__expr1) & __expr2) & __expr3) & __expr4) & __expr5) &

__expr6) & __expr7) & __expr8) & __expr9) & __expr10) &

__expr11) & __expr12) & __expr13) & __expr14) & __expr15) &

__expr16) & __expr17) & __expr18) & __expr19) & __expr20) &

__expr21);

r0#ev : ((((((((((((((((((((((! s1#ev & __expr0) & __expr1) & d0

#val) & __expr3) & __expr4) & __expr5) & __expr6) & __expr7)

& __expr8) & __expr9) & __expr10) & __expr11) & __expr12) &

__expr13) & __expr14) & __expr15) & __expr16) & __expr17) &

130

SMV Model Example Chapter B

__expr18) & __expr19) & __expr20) & __expr21);

TRUE : ((! input#state#input_state__1 & !input#state#

input_state__6) & case

s1#ev : ((((((((((((((((((((__expr0 & __expr1) & __expr2) & d0#

ev) & __expr4) & __expr5) & __expr6) & __expr22) & __expr7)

& __expr8) & __expr9) & __expr10) & __expr11) & __expr13) &

__expr14) & __expr15) & __expr17) & __expr18) & __expr19) &

__expr20) & __expr23);

r1#ev : (((((((((((((((((((__expr1 & __expr2) & d0#ev) &

__expr4) & __expr5) & __expr6) & d1#val) & __expr7) &

__expr8) & __expr9) & __expr10) & __expr11) & __expr13) &

__expr14) & __expr15) & __expr17) & __expr18) & __expr19) &

__expr20) & __expr23);

done_0#ev : (((((((((((((((((d0#val & d0#ev) & __expr4) &

__expr5) & __expr6) & __expr7) & __expr8) & __expr9) &

__expr10) & __expr11) & __expr13) & __expr14) & __expr15) &

__expr17) & __expr18) & __expr19) & __expr20) & __expr23);

TRUE : (((__expr3 & __expr12) & __expr16) & case

d0#val : ((((__expr4 & __expr5) & __expr7) & __expr9) & case

done_0_1#ev : ((((((((__expr8 & __expr10) & __expr11) &

__expr14) & __expr15) & __expr18) & __expr19) & __expr20) &

__expr24);

TRUE : ((__expr13 & __expr17) & __expr27);

esac);

s2#ev : ((((((((((((((__expr5 & __expr6) & __expr22) & d1#ev) &

__expr8) & !d2#val) & __expr9) & __expr10) & __expr11) &

__expr14) & __expr15) & __expr18) & __expr19) & __expr20) &

__expr24);

r2#ev : (((((((((((((__expr6 & __expr22) & d1#ev) & __expr8) &

d2#val) & __expr9) & __expr10) & __expr11) & __expr14) &

__expr15) & __expr18) & __expr19) & __expr20) & __expr24);

131

SMV Model Example Chapter B

done_0_1#ev : (((((((((((d1#val & d1#ev) & __expr8) & __expr9)

& __expr10) & __expr11) & __expr14) & __expr15) & __expr18)

& __expr19) & __expr20) & __expr24);

TRUE : (((__expr7 & __expr13) & __expr17) & case

d1#val : (__expr9 & __expr27);

clk_out#ev : ((((((d2#ev & __expr10) & __expr11) & __expr15) &

__expr19) & __expr20) & __expr25);

TRUE : (((__expr9 & __expr14) & __expr18) & __expr26);

esac);

esac);

esac);

esac) ;

DEFINE __expr10 := !clk#ev ;

DEFINE __expr27 := case

clk_out#ev : (((((__expr10 & __expr11) & __expr15) & __expr19) &

__expr20) & __expr25);

TRUE : ((__expr14 & __expr18) & __expr26);

esac ;

DEFINE __expr11 := !input#state#input_state ;

DEFINE __expr24 := case

input#state#input_state__3 : __expr17;

TRUE : input#state#input_state__8;

esac ;

DEFINE __expr1 := !done_0#ev ;

DEFINE __expr3 := !d0#ev ;

DEFINE __expr16 := !input#state#input_state__7 ;

DEFINE __expr0 := !r1#ev ;

DEFINE __expr15 := !input#state#input_state__5 ;

DEFINE __expr6 := !done_0_1#ev ;

DEFINE __expr5 := !r2#ev ;

DEFINE __expr8 := !clk_out#ev ;

132

SMV Model Example Chapter B

DEFINE __expr18 := !input#state#input_state__9 ;

DEFINE __expr2 := !d0#val ;

DEFINE __expr19 := !input#state#input_state__10 ;

DEFINE __expr20 := !input#state#__phrase0_done ;

DEFINE __expr23 := case

input#state#input_state__2 : __expr16;

TRUE : input#state#input_state__7;

esac ;

DEFINE __expr22 := !d1#val ;

DEFINE __expr17 := !input#state#input_state__8 ;

DEFINE __expr13 := !input#state#input_state__3 ;

DEFINE __expr9 := !d2#ev ;

DEFINE __expr25 := case

input#state#input_state__4 : __expr18;

TRUE : input#state#input_state__9;

esac ;

DEFINE __expr26 := case

clk#ev : ((__expr19 & __expr20) & case

input#state#input_state : __expr15;

TRUE : input#state#input_state__5;

esac);

TRUE : ((__expr11 & __expr15) & case

input#state#input_state__10 : __expr20;

TRUE : input#state#__phrase0_done;

esac);

esac ;

DEFINE __expr12 := !input#state#input_state__2 ;

DEFINE __expr14 := !input#state#input_state__4 ;

DEFINE __expr21 := case

input#state#input_state__1 : !input#state#input_state__6;

TRUE : input#state#input_state__6;

133

SMV Model Example Chapter B

esac ;

DEFINE __expr7 := !d1#ev ;

DEFINE __expr4 := !s2#ev ;

--- Defines to help cohrence depth testing ---

DEFINE meta#signals_coherent_fast := (!s1#ev| s1#ev_fast) & (!r1#ev| r1

#ev_fast) & (! done_0_1#ev| done_0_1#ev_fast) & (!r2#ev| r2#ev_fast)

& (!s0#ev| s0#ev_fast) & (! clk_out#ev| clk_out#ev_fast) & (!r0#ev|

r0#ev_fast) & (!s2#ev| s2#ev_fast) & (!clk#ev| clk#ev_fast) & (!

done_0#ev| done_0#ev_fast) & (!d1#ev| d1#ev_fast) & (!d0#ev| d0#

ev_fast) & (!d2#ev| d2#ev_fast) ;

DEFINE meta#signals_coherent_slow := (!s1#ev|!s1#ev_fast) & (!r1#ev|!r1

#ev_fast) & (! done_0_1#ev|! done_0_1#ev_fast) & (!r2#ev|!r2#ev_fast)

& (!s0#ev|!s0#ev_fast) & (! clk_out#ev|! clk_out#ev_fast) & (!r0#ev|!

r0#ev_fast) & (!s2#ev|!s2#ev_fast) & (!clk#ev|!clk#ev_fast) & (!

done_0#ev|! done_0#ev_fast) & (!d1#ev|!d1#ev_fast) & (!d0#ev|!d0#

ev_fast) & (!d2#ev|!d2#ev_fast) ;

DEFINE meta#input_coherent_fast := meta#input_done | (meta#

input_coherent & meta#input_fast) ;

DEFINE meta#input_coherent_slow := meta#input_done | (meta#

input_coherent & !meta#input_fast) ;

DEFINE meta#coherent_fast := meta#signals_coherent_fast & meta#

input_coherent_fast ;

DEFINE meta#coherent_slow := meta#signals_coherent_slow & meta#

input_coherent_slow ;

DEFINE meta#is_coherent := meta#coherent_fast | meta#coherent_slow ;

--- Variables to govern application of speed labelling ---

VAR meta#apply_speed_cur: boolean ;

VAR meta#apply_speed_next: boolean ;

INVAR !meta#apply_speed_cur | meta#apply_speed_next ;

134

ASSIGN next(meta#apply_speed_cur) := meta#apply_speed_next ;

--- Defines to help violation checking ---

DEFINE meta#no_violation := !(s1#violation|r1#violation|done_0_1#

violation|r2#violation|s0#violation|clk_out#violation|r0#violation|

s2#violation|done_0#violation|d1#violation|d0#violation|d2#violation

) ;

135

Bibliography

[1] M. Miller, Realization and formal analysis of asynchronous pulse communication
circuits. PhD thesis, Dept. Elec. and Computer Engineering, Univ. California
Santa Barbara, 2015.

[2] M. Miller, C. Segal, D. Mc Carthy, A. Dalakoti, P. Mukim, and F. Brewer, Impolite
high speed interfaces with asynchronous pulse logic, in Proceedings of the 2018 on
Great Lakes Symposium on VLSI, GLSVLSI ’18, (New York, NY, USA),
pp. 99–104, ACM, 2018.

[3]

[4] M. Miller, G. Hoover, and F. Brewer, Pulse-mode link for robust, high speed
communications, in 2008 IEEE International Symposium on Circuits and Systems,
pp. 3073–3077, May, 2008.

[5] A. Dalakoti, Collective Pulse Dynamics: A New Timing Circuit Strategy.
University of California, Santa Barbara, 2018.

[6] P. Mukim, Analysis and Design of Precision Timing Circuits using Pulse Mode
Event Signaling. PhD thesis, UC Santa Barbara, 2020.

[7] P. Mukim, A. Dalakoti, D. McCarthy, C. Segal, M. Miller, J. F. Buckwalter, and
F. Brewer, Design and analysis of collective pulse oscillators, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 28 (2019), no. 5 1242–1255.

[8] P. Mukim and F. Brewer, Multiwire phase encoding: A signaling strategy for
high-bandwidth, low-power data movement, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems (2021).

[9] F. Brewer. Private Communication.

[10] M. Nyström, Asynchronous pulse logic. Kluwer Academic Publishers, Boston, 2002.

[11] I. Sutherland and S. Fairbanks, Gasp: A minimal fifo control, in Proceedings
Seventh International Symposium on Asynchronous Circuits and Systems. ASYNC
2001, pp. 46–53, IEEE, 2001.

136

[12] M. R. Greenstreet, Surfing interconnect, in 12th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC’06), pp. 9 pp.–106, March, 2006.

[13] V. Narayanan, B. A. Chappell, and B. M. Fleischer, Static timing analysis for self
resetting circuits, in Proceedings of International Conference on Computer Aided
Design, pp. 119–126, Nov, 1996.

[14] G. Hinton, M. Upton, D. J. Sager, D. Boggs, D. M. Carmean, P. Roussel, T. I.
Chappell, T. D. Fletcher, M. S. Milshtein, M. Sprague, S. Samaan, and R. Murray,
A 0.18-/spl mu/m cmos ia-32 processor with a 4-ghz integer execution unit, IEEE
Journal of Solid-State Circuits 36 (Nov, 2001) 1617–1627.

[15] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algorithms.
Springer Science & Business Media, 2007.

[16] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, Symbolic model checking:
1020 states and beyond, Information and Computation 98 (1992), no. 2 142–170.

[17] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers C-35 (1986), no. 8 677–691.

[18] R. E. Bryant, On the complexity of vlsi implementations and graph representations
of boolean functions with application to integer multiplication, IEEE Transactions
on Computers 40 (1991), no. 2 205–213.

[19] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, Bounded model
checking, .

[20] M. Sheeran, S. Singh, and G. St̊almarck, Checking safety properties using induction
and a sat-solver, in International conference on formal methods in computer-aided
design, pp. 127–144, Springer, 2000.

[21] N. Een, A. Mishchenko, and R. Brayton, Efficient implementation of property
directed reachability, in 2011 Formal Methods in Computer-Aided Design
(FMCAD), pp. 125–134, 2011.

[22] E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization
skeletons using branching time temporal logic, in Workshop on Logic of Programs,
pp. 52–71, Springer, 1981.

[23] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
checking. MIT press, 2018.

[24] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, Nusmv: a new symbolic
model checker, International Journal on Software Tools for Technology Transfer 2
(2000), no. 4 410–425.

137

[25] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta, The nuxmv symbolic model checker, in International
Conference on Computer Aided Verification, pp. 334–342, Springer, 2014.

[26] D. Kroening and M. Purandare, “Ebmc: The enhanced bounded model checker.”
online, 2017.

[27] F. Somenzi, Cudd: Cu decision diagram package-release 2.4. 0, University of
Colorado at Boulder (2004).

[28] N. Eén and N. Sörensson, An extensible sat-solver, in International conference on
theory and applications of satisfiability testing, pp. 502–518, Springer, 2003.

[29] A. Biere, Picosat essentials, Journal on Satisfiability, Boolean Modeling and
Computation 4 (2008) 75–97. 2-4.

[30] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020, in Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions (T. Balyo, N. Froleyks,
M. Heule, M. Iser, M. Järvisalo, and M. Suda, eds.), vol. B-2020-1 of Department
of Computer Science Report Series B, pp. 51–53, University of Helsinki, 2020.

[31] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, Learning rate based
branching heuristic for sat solvers, in International Conference on Theory and
Applications of Satisfiability Testing, pp. 123–140, Springer, 2016.

[32] D. Huffman, The synthesis of sequential switching circuits, Journal of the Franklin
Institute 257 (1954), no. 3 161–190.

[33] W. S. Coates, A. L. Davis, and K. S. Stevens, Automatic synthesis of fast compact
self-timed control circuits, in IFIP Working Conference on Design Methodologies,
pp. 193–208, Citeseer, 1993.

[34] R. M. Fuhrer and S. M. Nowick, Sequential optimization of asynchronous and
synchronous finite-state machines: Algorithms and tools. Springer Science &
Business Media, 2012.

[35] T.-A. Chu, Synthesis of self-timed VLSI circuits from graph-theoretic specifications.
PhD thesis, Massachusetts Institute of Technology, 1987.

[36] S. P. Wilcox, Synthesis of asynchronous circuits, tech. rep., University of
Cambridge, Computer Laboratory, 1999.

[37] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev,
Petrify: a tool for manipulating concurrent specifications and synthesis of
asynchronous controllers, IEICE Transactions on information and Systems 80
(1997), no. 3 315–325.

138

[38] K. S. Stevens, R. Ginosar, and S. Rotem, Relative timing [asynchronous design],
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11 (Feb,
2003) 129–140.

[39] D. E. Muller, A theory of asynchronous circuits, Report 75, University of Illinois
(1956).

[40] W. A. Clark, Macromodular computer systems, in Proceedings of the April 18-20,
1967, spring joint computer conference, pp. 335–336, 1967.

[41] P. Patra and D. S. Fussell, Efficient building blocks for delay insensitive circuits, in
Proceedings of 1994 IEEE Symposium on Advanced Research in Asynchronous
Circuits and Systems, pp. 196–205, IEEE, 1994.

[42] A. J. Martin, The limitations to delay-insensitivity in asynchronous circuits, in
Beauty is our business, pp. 302–311. Springer, 1990.

[43] A. J. Martin, M. Nystrom, and C. G. Wong, Three generations of asynchronous
microprocessors, IEEE Design & Test of Computers 20 (2003), no. 6 9–17.

[44] A. J. Martin and M. Nystrom, Asynchronous techniques for system-on-chip design,
Proceedings of the IEEE 94 (2006), no. 6 1089–1120.

[45] C. A. R. Hoare, Communicating sequential processes, Communications of the ACM
21 (1978), no. 8 666–677.

[46] P. A. Beerel, G. D. Dimou, and A. M. Lines, Proteus: An asic flow for ghz
asynchronous designs, IEEE Design Test of Computers 28 (2011), no. 5 36–51.

[47] I. E. Sutherland, Micropipelines, Communications of the ACM 32 (1989), no. 6
720–738.

[48] W. Belluomini and C. J. Myers, Verification of timed systems using posets, in
International Conference on Computer Aided Verification, pp. 403–415, Springer,
1998.

[49] R. Alur and D. L. Dill, A theory of timed automata, Theoretical computer science
126 (1994), no. 2 183–235.

[50] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, Uppaal—a tool
suite for automatic verification of real-time systems, in International hybrid
systems workshop, pp. 232–243, Springer, 1995.

[51] O. Maler and A. Pnueli, Timing analysis of asynchronous circuits using timed
automata, in Advanced Research Working Conference on Correct Hardware Design
and Verification Methods, pp. 189–205, Springer, 1995.

139

[52] M. D. Riedel, Cyclic combinational circuits. California Institute of Technology,
2004.

[53] Python Core Team, “Python: A dynamic, open source programming language.”
Online, 2019. Python version 3.9.5.

[54] S. Haynal, G. Hoover, A. Vijayakumar, K. Arya, M. Miller, and F. Brewer,
“Pycudd.” Online, 2015.

[55] D. Beazley, Writing parsers and compilers with ply, PyCon’07 (2007).

140

	Curriculum Vitae
	Abstract
	Introduction
	Pulse Gates
	Unit Time Model
	Phrases
	Timing Proof
	Tool Implementation and Use
	Thesis Structure
	Permissions and Attributions

	Background
	Related Work
	Pulse Gates
	Timing Constraints

	The Unit Time Model
	Unit Time Model
	Validity and Applicability
	Coherence Depth
	Single Ancestor Timing Verification
	Conclusions

	Phrases
	Phrases
	Completeness
	Unit time model of phrases
	Timing Constraints Across Regions
	Non-interference
	Conclusions

	Timing Containment
	Bi-Bounded Delay Model
	Ranked Order Labelling
	Proof Introduction
	General Timing Bound
	Specific Timing Bound
	Behavioural Correspondence
	Proof Conclusion
	Conclusion

	Tool Implementation
	Tool Input
	Unit Time Model Details
	Static Checks
	Coherence Depth Determination
	Path Tracing
	Conclusions

	Results
	Systems Results
	Spice Comparison
	Conclusions

	Conclusions
	Completeness of Models
	Future Work

	PySMV
	AST Compilation
	BDD Model Compilation
	Model Manipulation

	SMV Model Example
	Circuit Netlist
	Phrases
	Basic Model
	``Speed'' Model

	Bibliography

