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NUMERICAL METHODS FOR MEMORY FLUIDS: 
A CRITICAL SURVEY 

Roland Keunings 
Center for Advanced Materials 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, CA 94720 USA 

ABSTRACT 
We summarize our recent review of the'state of the art in the 

numerical analysis of. viscoelastic flows [11. After a description of the 
mathematical models used in computer simulations, we organize the 
spectrum of available numerical techniques on the basis of the two 
approaches of handling the memory of viscoelastic fluids: the coupled 
approach, where the constitutive model and the conservation laws are 
solved simultaneously, and the decoupled approach, where the 
computation of the viscoelastic stresses is done separately from that of 
the flow kinematics. These two methodologies have been used with 
both differential and single-integral constitutive models, and in 
conjunction with various discretization methods. We refer to a number 
of successful sim ulations where significant viscoelastic effects have been 
predicted. Finally, we briefly review the outstanding numerical, 
mathematical, and modeling problems in the field of viscoelastic flow 
computations. 

1. INTRODUCTION 
It is well established that the range of validity of the Newtonian 

constitutive equation is limited to low molecular weight liquids. The 
provocative flow phenomena observed with polymeric fluids cannot be 
predicted by the Navier-Stokes equations. Non-Newtonian behavior 
has many facets. Among them are the shear-rate dependence of the 
shear viscosity, the presence of normal stresses in viscometric flows, 
high resistance to elongational deformation, and memory effects 
associated with the elasticity of the material. Viscoelastic effects, i.e. 
flow phenomena that cannot be explained on the basis of linear or 
nonlinear purely-viscous behavior, can be important in polymer 
processing applications. Flow instabilities, for example, limit the rate 
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of production in many processing operations. The instabilities often 
occur at very 10w'Reynolds numbers, where corresponding flows of low 
molecular weight liquids are stable. Viscoelastic behavior is also 
responsible for complex flow patterns, such as large recirculation 
regions in confined geometries. These flow patterns can have a 
significant impact on product quality. An obvious example is that of 
the processing of fiber-reinforced polymer materials, where the flow­
induced distribution of fiber orientations determines the mechanical 
properties of the final product. 

Over the last ten years, much research activity has been focused 
on the development of numerical techniques for predicting the flow of 
viscoelastic fluids in complex geometries. Even though the flow of 
polymers often occurs at very low Reynolds numbers, the numerical 
prediction of viscoelastic effects in complex geometries has proven very 
difficult in view of nonlinearities related to the fluid memory. The 
convergence of numerical algorithms has long been restricted to small 
values of the Weissenberg number, a dimensionless group which 
quantifies the elastic character of the flow. As a result, significant 
viscoelastic effects seen in laboratory experiments or processing 
applications could not possibly be predicted. The situation has 
improved over the last three years or so. Numerical solutions are now 
available in the range of Weissenberg numbers covered in actual flow 
experiments. Some of these solutions do predict observed viscoelastic 
effects, at least qualitatively. Others do not agree with experimental 
observations, which indicates that uncertainties remain in the 
mathematical description of the physics of polymer flows. In addition, 
much progress has been made in the identification of the underlying 
causes of numerical difficulties and in the development of more 
accurate discretization techniques. The reader will find a 
cOIPprehensive review of the field of viscoelastic flow computations in 
the recent work by Keunings [1], of which the present paper is a brief 
summary. 

2. MATHEMATICAL MODELS 

2.1 Preliminaries 

In the context of a continuum mechanical approach, the flow of 
memory fluids can be formulated as a set of conservation and 
constitutive equations augmented with suitable boundary and initial 
conditions. The selection of a constitutive equation obviously 
constitutes a critical step in the modeling of viscoelastic flows. A large 
number of constitutive models have been developed (and indeed are 
still being developed) to describe the rheological behavior of polymeric 
fluids. It is however essential to be aware that none of these models 
leads to realistic predictions in all types of defor.mation of any 
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particular polymeric fluid. This is in marked contrast to Newtonian 
fluid mechanics, where the mathematical description of the flow is well 
established. The constitutive models that are used in numerical 
sim ulations are· classified as differential and single-integral models. 
Their predictive abilities in standard rheometrical flows range from 
very poor to excellent, depending of the type of motion and/or the 
class of materials. Another integral part of the modeling process is the 
selection of appropriate boundary conditions. This step is a complex 
one with viscoelastic fluids, for at least two reasons. First, the fluid 
memory requires that the pre-history of the fluid motion be specified in 
the analysis of flow problems with inlet boundaries. The motion pre­
history, if at all known, can be as complex as the flow problem under 
investigation. The second difficulty is related to the behavior of 
polymeric liquids near solid boundaries. In the analysis of highly­
viscous Newtonian flows, it is generally appropriate to assume that the 
fluid sticks to solid boundaries. Such is not always the case in polymer 
processing applications. Actually, flow phenomena associated with 
viscoelastic fluids (including low Reynolds number instabilities) may 
well find their origin not only in the non-Newtonian character of the 
bulk flow, but also in slip mechanisms at solid boundaries. To 
summarize, current mathematical formulations of the flow of 
polymeric fluids, both in the bulk and near solid surfaces, are likely to 
be altered as our understanding of the physics of polymer flow 
increases. 

2.2 Conservat£on Equations 

The vast majority of viscoelastic simulations have been for 
incompressible, isothermal flows. The Cauchy stress tensor (j is thus 
given by -Po + T, where P is the pressure, 0 is the unit tensor, and T 

is the extra-stress tensor. The set of conservation laws reduces to the 
continuity equation 

'V'v =0 , 

and the momentum equation 

t"':' Dv 
v" (j + p f = p-

Dt 

(1) 

(2) 

Here, v is the velocity vector, f is the body force per unit mass of fluid, 
and p is the fluid density. The operator D fDt is the material time 
derivative a fat + v' v. The set of governing equations (1-2) is closed 
with a constitutive model that relates the extra-stress T to the 
deformation experienced by the fluid. It is important at this stage to 
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distinguish between constitutive models which have or do not have a 
Newtonian viscosity. In general, we can decompose the extra-stress as a 
sum of a viscoelastic component Ty and a Newtonian compon.ent TN , 

i.e.T = Ty + TN' The Newtonian component is given by P,N ,,/, where 
~ is the rate of strain tensor (Vv + Vvt) and P,N is a constant 
viscosity coefficient. Viscoelastic fluid models without Newtonian 
viscosity (P,N = 0) can exhibit a variety of hyperbolic phenomena, 
including mathematical change of type and propagation of waves. 

2.3 D£fferent£al Constitutive Models 

Differential models used currently in numerical simulations can be 
written in the general form 

My . 
A(TY)'Ty + A 7= p'y "/ (3) 

Here, A is a relaxation time and p,y is a viscosity coefficient. They are 
usually taken as constants, but can also be made functions of the 
magnitude of the rate of strain tensor, if desired. The symbol A 
denotes a model-dependent tensor function. Finally, the operator Slot 
is an objective time derivative defined as a linear combination of the 
lower and upper-convected derivatives of TV given respectively by 

'(1) DTV t 
TV = Dt + TV ·VY + VY'Ty , 

DTy 
Ty {l) = Dt - TV . Vy - vyt·Tv. . (4 ) 

The generic constitutive equation (3) is readily extended to the case of 
a spectrum of relaxation times by writing TV as a finite sum of partial 
extra-stresses TV,k ob~ying (3) with material coefficients Ak and P,y,k' 

The simplest differential constitutive equations capable of 
predicting memory effects are the Maxwell models (A = 0). More 
complex constitutive equations of the type (3) include the models of 
Phan Thien and Tanner, and Giesekus. It should be noted that the 
addition of a Newtonian component TN is equivalent to introducing a 
retardation time. For example, the upper-convected Maxwell fluid plus 
a Newtonian viscosity yields the Oldroyd-B model. 

A number of important remarks should be made at this point. 
First, the differential models (3) are implicit in the extra-stress TV' As 
a result, it is impossible to substitute the extra-stress out of the 
momentum equation (2), as one does with a Newtonian fluid to obtain 
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the classical Navier-Stokes equations. Second, we note that any fluid 
mechanical problem involving a constitutive equation of the type (3) is 
inherently nonlinear, even in the absence of inertia terms in the 
momentum equation. This is due in part to the nonlinear coupling 
between extra-stresses and velocities embedded in the definition of the 
convected derivatives. Finally, in the particular case of steady-state 
flows, equation (3) constitutes a set of first-order hyperbolic equations 
with the streamlines as characteristic curves. When the flow domain 
contains an inlet boundary, one must thus specify values of the extra­
stress along a line crossing the incoming streamlines in order to obtain 
a well-posed problem. These initial stresses contain in a disguised form 
the necessary information on the flow pre-history. 

1!..4 Single-Integral Constitutive Models 
Let us consider a fluid particle whose position at present time t is 

given by x(t). The fluid motion can be described by the vector relation 
x(t') = X(x(t),t,t') which gives the particle position x(t') at historical 
time t' ranging between -00 and t. The relative deformation gradient 
F t and the right Cauchy-Green strain tensor C t are given respectively 
by Ft(t') = aX/Ox and Ct(t') = Fi(t')·Ft(t'). 

Single-integral constitutive equations give the viscoelastic extra­
stress TV at a fluid particle through a time integral of the deformation 
history. In numerical studies, researchers have used integral models of 
the form 

t 

TV (t) = J m(t-t') St(t') dt' (5) 
-00 

Here, the operator f . dt' is a time integral taken along the particle 
path parameterized by the historical time t'. The kernel St is a 
deformation-dependent tensor of the form 

(6) 

where Ct"I, the inverse of C t , is the Finger strain tensor. The 
functions <PI and <P'2 are dimensionless scalar functions that depend on 
the invariants II = tr(Ct"I) and 12 = tr(Ct). FinaIly, the function 
m(t-t') appearing in (5) is the time-dependent memory function of 
linear viscoelasticity. It is usuaIly expressed as a sum of exponential 
functions involving the relaxation times Ak and the viscosity 
coefficients f-lV,k : 
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(7) 

This definition illustrates the notion of /ad£ng memory, i.e. the 
deformations experienced by a fluid element in the recent past 
contribute more to the current stress in that element than those 
deformations which took place in the distant past. 

One of the simplest integral constitutive equations is the so-called 
rubberlike liquid model developed by Lodge. It is obtained by setting 
¢J1 = 1 and ¢J2 = 0 in (6). When used with a memory function of the' 
form (7), Lodge's equation is equivalent to the upper-convected 
differential Maxwell model. A more realistic model of the type (5) is 
the factorized BKZ model in which the kernel functions ¢J1 and ¢J2 
derive from a potential. The BKZ equation includes the model of Doi 
and Edwards as a particular case. 

Single-integral constitutive equations present interesting 
computational challenges. First, the particle paths needed for the 
computation of the memory integral are unknown a priori. This 
particularity leads to flow problems which are inherently nonlinear, 
and in a sense akin to free surface flows. The second challenge is quite 
new in computational fluid dynamics: integral models are formulated 
in a Lagrangian form which does not involve the Eulerian velocity field 
explicitly. For this reason only, one would expect that numerical 
schemes aimed at computing the flow of integral fluids differ 
drastically from classical techniques for Newtonian fluids. 

3. BASIC COl\tfPUTATIONAL APPROACHES 
The solution of viscoelastic flow problems presents different 

numerical challenges whith differential and integral constitutive 
models. A common feature, however, is the nonlinear character of the 
governing equations brought about by the fluid memory. Two basic 
approaches have been adopted to handle this nonlinearity. Herafter, 
we shall refer to them as the coupled and decoupled approaches. In the 
coupled approach, the discretized governing equations are solved 
simultaneously for the whole set of primary variables, usually by 
means of Newton's iterative scheme. In the decoupled approach, the 
computation of the viscoelastic extra-stress is performed separately 
from that of the flow kinematics. From known kinematics, one 
calculates the viscoelastic extra-stress by integrating the constitutive 
equation. The kinematics are then updated by solving the conservation 
equations, and the procedure is iterated upon. The update scheme is 
usually akin to Picard's iterative algorithm. 

The vast majority of coupled techniques have been developed for 
differential models. Actually, it is quite difficult to use a coupled 
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approach with integral models. The main advantage of coupled 
techniques lies in the iterative procedure itself. Newton's scheme has 
well-known convergence properties, and it usually converges in a few 
iterations when initial estimates are computed by a continuation 
method. Furthermore, there is a well-established methodology based 
on Newton's scheme for investigating the temporal stability of the 
numerical solutions, tracking irregular points in solution families (e.g. 
turning points), and computing bifurcating solution branches. This 
methodology can also be used to explain possible convergence 
difficulties with Newton's method. The main disadvantage of coupled 
techniques is related to simulation cost. Coupled techniques are 
generally very demanding in terms of computer storage and execution 
time. As a result, coupled techniques for differential models have not 
been used with a spectrum of relaxation times. 

Decoupled techniques have been developed for both differential 
and integral models. Some of them are much cheaper than coupled 
techniques, so much so that they can be used on micro-computers. In 
general, the use of a spectrum of relaxation times does not increase 
simulation costs significantly. Another advantage of the decoupled 
approach is the breakup .of the governing equations into a Newtonian 
problem (i.e. the conservation equations with known viscoelastic 
extra-stresses), and the constitutive equations. One can thus use well­
established methods to discretize the conservation equations. 
Viscoelasticity only enters through a model-dependent stress 
integrator. The main disadvantage of decoupled techniques lies in the 
iterative procedure. Picard-type schemes (or improvements thereof) are 
often slow to converge, and their convergence is never guaranteed. 
Furthermore, they do not provide any information on the qualitative 
behavior of the numerical solutions (i.e. stability, multiplicity, etc.). 

In conjunction with the coupled and decoupled approaches, 
researchers have used a broad spectrum of discretization techniques 
that include finite element, boundary element, finite difference, and 
spectral methods. It should be mentioned, however, that the majority 
of published simulations have been carried out with finite element 
techniques. 

4. COUPLED TECHNIQUES 

4·1 Differential Models 

Almost all coupled techniques for differential models are based on 
a mixed Galerkin/finite element solution of (1-3). In one formulation, 
which we call IvfFE1, approximations of the finite element type are 
defined for the viscoelastic extra-stress, the velocity, and the pressure. 
Discretization of the governing equations is performed by means of the 
Galerkin method. The appropriate selection of shape functions is a 

. ,. 



delicate task which remains the subject of active investigation. A 
popular choice is the use of cO_p2 interpolations for velocity and 
stress, with cO_pI elements for pressure. The mixed formulation 
NIFEI has been extended to the case of transient free surface flows. 

Two alternative Galerkin/finite element formulations of (1-3) are 
available, which we call NIFE2 and MFE3. It should be pointed out 
that no argument has yet been offered that would conclusively dictate 
which of the three formulations is best in terms of numerical accuracy. 
A spectral/GalerKin/finite element technique has also been developed 
recently; it shows a remarkable increase in accuracy relative to current 
mixed finite element methods for flows endowed with smooth velocity 
and stress fields. In all cases, Newton's iterative technique is the 
method of choice for the solution of the discrete equations . 

. .;. 2 Integral Models 

The development of coupled methods for integral models is 
difficult for at least two reasons: the constitutive equation (5) is given 
in a Lagrangian form and the particle paths are unknown a priori. To 
date, only two techniques have been proposed in the literature. One is 
based on an Eulerian formulation of (5) valid for flows without 
recirculation regions; the streamlines are treated as primary unknowns 
together with velocities and pressures. The other method is more 
general and uses the Lagrangian formulation of the conservation laws; 
the primary kinematical variables are the particle positions x( t), and 
the domain of integration is a time-dependent material volume. Both 
techniques are based on the Galerkin/finite element method. 

5. DECOUPLED TECHNIQUES 

5.1 Basic Procedure 

The idea behind a decoupled technique is to separate the 
computation of the viscoelastic extra-stress from that of the 
kinematics. Of course, an iterative procedure is needed to arrive at a 
solution of the full set of governing equations. Most decoupled 
methods are based on the following iterative scheme: 

step 1: solve the constitutive equation for the viscoelastic 
extra-stress using the kinematics calculated at the previous 
iteration, 

step 2: update the kinematics by solving the conservation 
laws with the viscoelastic extra-stress computed in step 1, 

step 3: check for convergence; if needed, return to step 1. 

Step 2 amounts to solving a Newtonian flow problem with a known, 
fictitious body force. We refer to this step as the perturbed Newtonian 
problem. Well-established procedures have been used to solve the 
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perturbed Newtonian problem, including the velocity-pressure 
Galerkin/finite element technique, the boundary element method, and 
the stream function/vorticity finite difference technique. Let us now 
discuss step 1, i.e. the computation of viscoelastic extra-stresses at 
integration or grid points from a known velocity field. 

5.2 Differential Models 

In steady flow, the differential model (3) is a set of first-order 
hyperbolic equations with the streamlines as characteristic curves. 
First-order hyperbolic equations are most naturally solved by the 
method of characteristics, whereby the original set of partial 
differential equations is transformed into a set of ordinary differential 
equations to be solved along the characteristic curves. We can re-write 
(3) in the form 

dTv 
A I v I dt = B(TV,V,VV) , (8) 

where B is a model-dependent tensor function, l is the arc length along 
a streamline and v is the velocity field computed at the previous 
iteration. Equation (8) defines an initial-value problem for TV which 
can be integrated accurately by means of standard procedures (e.g. 
fourth-order Runge-Kutta's method). In the case. of non-closed 
streamlines, the initial values correspond to the inlet extra-stress 
boundary conditions discussed in Section 2.3. Closed streamlines are 
difficult to handle with this technique, for they would require a 
shooting method. Note that the use of a spectrum of relaxation times 
involves the integration of (8) for each partial extra-stress TV,k; this 
task can be fulfilled without a significant increase of storage. This is 
not true with the mixed methods of Section 4. 

5.3 Integral l'..!odels 

Integral models have been used in conjunction with both finite 
difference and finite element solutions of the perturbed Newtonian 
problem. Available techniques are based on the Lagrangian description 
(5). Schematically, the computation of viscoelastic extra-stresses at 
integration or grid points is performed in three steps: 

(1) tracking: on the basis of a known steady-state velocity 
field, compute the upstream trajectory and the travel time of 
each integration or grid point, 

(2) strain evaluation: at selected past times, compute the 
deformation gradient F t and from it the integrand of (5), 

(3) stress evaluation: compute the integral (5) numerically, 
using the results of step 2. 

~J 
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Steps 1 and 3 are readily carried out using, respectively, the velocity 
field known from the previous iteration, and a Gauss-Laguerre 
quadrature rule. The main difficulty lies in the computation of the 
strain history. The latter can be evaluated through the streamline 
integration of 

(9) 

with the initial condition F t( t) = 8. Accurate procedures have been 
proposed recently in the context of the finite element solution of the 
perturbed Newtonian problem. One is based on a low-order finite 
element interpolation of the velocity field which makes it possible to 
perform the tracking procedure as well as the strain computation 
analytically within each element. The other consists in the numerical 
solution of (9) along the particle paths. 

6. COMPLETED WORK 
The numerical techniques described in this paper have been 

applied to a number of steady-state flow problems, including entry 
flows, extrusion flows, flows over a transverse slot, flows past 
submerged objects such as spheres and cylinders, and flows in a 
journal bearing. A few time-dependent flows have been computed, 
such as the squeeze film problem and the breakup of jets. In view of 
the significant computer resources involved in viscoelastic 
computations, available simulations are for twcrdimensional or three­
dimensional axisymmetric flows. No fully three-dimensional results 
have been reported yet. 

Viscoelastic simulations have long been plagued by a fundamental 
difficulty, i.e. the divergence of all numerical iterative schemes beyond 
some critical value of the Weissenberg number We, the dimensionless 
group which quantifies the elastic character of the flow. One usually 
defines We as the product of a characteristic relaxation time of the 
fluid and a characteristic velocity gradient of the flow. The critical 
value of We usually depends on the flow problem, the numerical 
method, the iterative scheme, the grid, and the constitutive equation; 
it has long been so low that the provocative flow patterns observed 
with polymeric fluids could not possibly be predicted. This frustrating 
state of affairs has improved recently, in the sense that several 
simulations have now been performed successfully over a range of 
\Veissenberg numbers which covers the experimental range. In isolated 
cases, the simulations were interrupted not by lack of convergence of 
the iterative process, but by lack of interest in pursuing expensive 
computations to higher values of We. Also, a few numerical 
simulations have been reported which predict dramatic viscoelastic 
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effects on both stress and velocity fields (e.g. die swell computations, 
flows through sudden contractions, and the jet breakup problem). 

7. THE HIGH WEISSENBERG NUMBER PROBLEM 
Despite the recent progress, most numerical simulations can be 

carried out only up to a critical value of the Weissenberg number, 
beyond which the iterative scheme ceases to converge. Our 
understanding of the so-called high Weissenberg number problem 
(H\VNP) has increased dramatically over the last three years. 
Furthermore, important mathematical results have been obtained 
which shed considerable light on the numerical difficulties associated 
with viscoelastic simulations. 

The existence of turning points in discrete solution families has 
clearly been identified as the cause for the I:IWNP in various 
sim ulations with coupled techniques. In some cases, but not all, these 
turning points are numerical artifacts generated by excessive 
discretization errors. It is JIlore difficult to identify the actual cause 
for the divergence of decoupled iterations. Turning points (or other 
irregular points which may cause the divergence of decoupled 
iterations, such as bifurcation points) may well be present in the 
discrete solution families, but they cannot be tracked unambiguously 
with Picard-type schemes. 

Researchers have identified two classes of basic causes for 
discretization problems in viscoelastic computations: (i) the existence 
of flow regions endowed with high stress or velocity gradients 
(including possibly non-integrable singularities), and (ii) the hyperbolic 
character of viscoelastic problems, which can, in particular, induce 
local changes of type of the governing equations as well as loss of 
evolution. These difficult topics cannot be treated adequately in the 
present summary; a detailed discussion can be found in [1]. 

8. CONCLUSIONS 

The field of large-scale viscoelastic simulations has progressed 
significantly in recent years. It is no longer true that all numerical 
techniques fail to provide solutions at high Weissenberg numbers. 
Actually, a few simulations have been reported which predict observed 
viscoelastic effects either quantitatively or qualitatively. The range of 
discretization methods applied to viscoelastic problems has also been 
considerably enlarged. Further progress is likely to occur with the 
development of more accurate. discretization methods and the use of 
more realistic, and thus more complex, constitutive equations. 

Despite the evident progress, the numerical prediction of complex 
viscoelastic flows remains a difficult task whose success is not 
guaranteed. Recent mathematical and numerical results have 
identified a number of difficult challenges for the numericist. 

[J 
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Boundary layers, stress singularities, bifurcations, turning points, 
changes of type, and loss of evolution are potential features of current 
formulations of viscoelastic flows. Some of these features may reflect 
the actual physics of polymer flows, while others may only signal the 
inadequacy of the mathematical model. Uncertainties regarding the 
mathematical description of polymer flows constitute in our opinion 
the major difficulty facing those involved in the prediction of 
viscoelastic effects. Much research is needed at both experimental, 
theoretical, and numerical levels before the· numerical simulation of 
viscoelastic flows realize its full potential and become a routine design 
tool in the polymer processing industry. 
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