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Abstract

Noise is ever-present in communication networks, both in technology and biology. Cell phone

networks, radio systems, and the brain all exhibit signals accompanied by random fluctuations

that seem to obfuscate transmitted data. Phone calls are dropped, radio signals compete with one

another, and synaptic currents vary stochastically as neurons attempt to communicate. However,

inherent randomness is not necessarily a nuisance — many randomized algorithms offer greater

computational efficiency than their deterministic counterparts without sacrificing performance. What

can be done to ensure that information is appropriately transmitted through noisy channels? In

what contexts can noise be used as a tool for computation? These questions are explored throughout

this dissertation.

In Chapter 2, I explore the problem of time-lagged sequence correlation minimization, which is

critical for robust signal identification and synchronization in the presence of noise. I classify the

family of sequence pairs that minimize a time-lagged correlation inequality and compute correlation

properties of these sequences. In Chapter 3, I investigate synaptic pruning in the brain, a process in

which unimportant neural connections are removed. I develop a noise-driven, biologically-plausible,

unsupervised pruning algorithm with strong theoretical guarantees for a class of recurrent neural

networks. In Chapter 4, I extend these ideas to pruning weights of nonlinear artificial neural networks

used in machine learning. Here, I develop a randomized pruning algorithm that can be applied to a

wider class of neural networks, and provide analytic error bounds for the output of feed-forward

neural networks with pruned weight matrices.
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CHAPTER 1

Introduction

Both biological and digital communication networks are affected by noisy interference. Sequences

with minimal correlation are used to circumvent noise in a multitude of applications such as

communication networks, cryptography, acoustic design, and remote sensing [28,43,46]. For digital

communication networks, finding signal encodings (sequences) that have minimal autocorrelation

(a measure of correlation between a sequence and itself) aids in network synchronization, in the

sense that a receiver can coherently recover the entirety of a sender’s signal. Similarly, finding

signal encodings with minimal crosscorrelation to other signals allows for more robust signal

identification in the presence of noise, so that distinct senders are not confused for one another.

Various studies have explored the simultaneous minimization of sequence autocorrelation and

crosscorrelation [41,44,45,77]. When designing a communication system, one is free to choose the

signal codes that represent users, so they should choose codes that are well-separated to reduce

the impact of noisy interference. This code selection is the primary focus of Chapter 2, in which

I classify the family of sequence pairs that minimize the so-called Pursley-Sarwate criterion [68],

which is a combined measure of autocorrelation and crosscorrelation.

Unlike radio systems and cell phone networks, the brain is not a communication system designed

by engineers; it is a biologically fine-tuned network that has evolved over millions of years in order

to exhibit the behavior we are familiar with today. Notably, the brain maintains remarkable energy

efficiency, incredibly sparse synaptic density, and a high degree of noise at multiple levels (e.g., via

stochasticity in synaptic currents, large background fluctuations in neural activity, and varying

responses to the same stimuli [16,21,48,81]). In fact, recent studies are suggesting that the energy

efficiency of the brain and its noisy synaptic failures may be related [78]. Since we can not simply

select the neural signals that the brain transmits in order to circumvent its inherent noise, we will

instead study the relationship between these transmitted signals and their noisy fluctuations. We

seek to further understand the role of noise in maintaining the brain’s computational efficiency and
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the extent to which it may contribute to synaptic density via pruning, which is the brain’s tendency

to remove unimportant connections. Noisy fluctuations will play a crucial role in developing the

biologically-plausible algorithms described in Chapters 3 and 4.

The algorithms devised throughout Chapters 3 and 4 are inspired by the neuroscientific notion

of synaptic pruning, which is the removal or weakening of unimportant synapses in the brain.

Neuroscience and artificial intelligence initially developed as inextricably linked academic fields due

to their joint origin stemming from the McCulloch-Pitts neuron, first described in 1943 [58], as

well as decades of rapid collaborative productivity [35]. However, in recent years, these disciplines

have increasingly found distinction as their disciplinary questions, tools, and practices continue to

evolve. As such, the reciprocal relationship between them is no longer what it once was. Synaptic

pruning has been explored in both biological and artificial settings, but with different goals and

constraints. For example, artificial neural network pruning prioritizes faster computation and reduced

storage requirements [36, 49]. However, the state-of-the-art pruning algorithms tend not to be

biologically plausible, and are thus unlikely to elucidate the brain’s pruning mechanisms. If we study

biologically-plausible pruning rules that facilitate efficient artificial neural network computation, we

may be able to arrive at an explanation for the brain’s sparse-yet-powerful structure. Conversely, if

we can understand how the brain finds and maintains its sparse network structure, we can hope to

replicate the remarkable energy efficiency it has in artificial neural networks.

Below is a brief overview of the chapters to follow.

1.1. Chapter Overview

Chapter 2. Pursley and Sarwate established a lower bound on a combined measure of autocor-

relation and crosscorrelation for a pair of binary sequences [68]. Sequences that have low values

of this combined correlation measure are useful for signal synchronization and identification, so

they have been studied numerously [41,44,45,77]. Golay complementary pairs are a family of

sequence pairs first discovered by Golay in 1949 for use in multislit spectrometry [26], and have since

found application in physics, combinatorics, and telecommunications (see [63] for a recent review). I

show that Pursley and Sarwate’s lower bound is met precisely for Golay complementary pairs in

the binary case. I also provide a generalization of their bound for when the sequence entries are
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arbitrary complex numbers, notably extending their result to polyphase (n-ary) sequences. Finally, I

investigate the autocorrelation and crosscorrelation distribution of various Golay complementary

pair construction algorithms, and find that these distributions are asymptotically identical as the

length of the sequences tends to infinity.

Chapter 3. Matrix sparsification is of interest to the neural network literature; when applied

to the weight matrix of a neural network, it corresponds to synaptic weight pruning of the network.

In 2011, Spielman and Srivastava developed a matrix sparsification algorithm that approximately

preserves the spectrum of a limited class of matrices while discarding a majority of its entries [83].

While powerful, Spielman and Srivastava’s algorithm requires computation of the (pseudo-)inverse

of the input matrix, meaning that the importance of each synapse depends on global information.

This is a property that biologically-plausible pruning algorithms can not afford, as rapid decay in

neural activity patterns prevents meaningful long-range information flow between distant neurons.

I generalize this pruning algorithm to a wider class of matrices while maintaining the theoretical

sparsity and spectral guarantees. Next, I show that applying the generalized algorithm in the context

of a linear (or rectified-linear) noise-driven recurrent neural network allows one to forego the matrix

inverse computation, instead relying on an empirical covariance matrix. This converts the pruning

rule to one that only requires information local to the synapse, thus indicating that the updated

pruning rule is biologically-plausible. These results indicate that noise may play a fundamental

probative role in synaptic pruning.

Chapter 4. Recurrent networks are natural candidates to consider pruning in Chapter 3 due to

the restricted nature of the pruning algorithm described there. Namely, the theoretical guarantees

in that chapter only apply to symmetric, thus square, matrices. Feed-forward networks are the

dominant structures in machine learning and artificial intelligence, but they are comprised of a

collection of dense rectangular weight matrices in general. Building upon an algorithm for square

matrices devised by Drineas and Zousiaz in 2011 [18], I construct a pruning algorithm that applies to

general rectangular matrices using the powerful matrix Bernstein inequality. This pruning rule also

provides strong theoretical guarantees about the spectra of the pruned matrices while eliminating

most of their entries. I then provide an analytic error bound comparing the output of a sparsified
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feed-forward network to that of its original counterpart. This bound can be made arbitrarily

small under mild conditions such as layer-wise sigmoid activation functions and unitary weight

matrices. Lastly, I extend these error bounds to discrete-time recurrent networks with both vector

and sequence-of-vector outputs.
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CHAPTER 2

Sequence Pairs with Lowest Combined Autocorrelation and

Crosscorrelation

Published in IEEE Transactions on Information Theory (July 2022).

Edited for this dissertation.

Joint work with:

Daniel J. Katz

Department of Mathematics

California State University, Northridge

Northridge, CA, 91330

daniel.katz@csun.edu

2.1. Abstract

Pursley and Sarwate established a lower bound on a combined measure of autocorrelation and

crosscorrelation for a pair (f, g) of binary sequences (i.e., sequences with terms in {−1, 1}). If f

is a nonzero sequence, then its autocorrelation demerit factor, ADF(f), is the sum of the squared

magnitudes of the aperiodic autocorrelation values over all nonzero shifts for the sequence obtained

by normalizing f to have unit Euclidean norm. If (f, g) is a pair of nonzero sequences, then their

crosscorrelation demerit factor, CDF(f, g), is the sum of the squared magnitudes of the aperiodic

crosscorrelation values over all shifts for the sequences obtained by normalizing both f and g to have

unit Euclidean norm. Pursley and Sarwate showed that for binary sequences, the sum of CDF(f, g)

and the geometric mean of ADF(f) and ADF(g) must be at least 1. For randomly selected pairs

of long binary sequences, this quantity is typically around 2. In this paper, we show that Pursley

and Sarwate’s bound is met for binary sequences precisely when (f, g) is a Golay complementary

pair. We also prove a generalization of this result for sequences whose terms are arbitrary complex
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numbers. We investigate constructions that produce infinite families of Golay complementary pairs,

and compute the asymptotic values of autocorrelation and crosscorrelation demerit factors for such

families.

2.2. Introduction

In this paper, we are interested in aperiodic correlation of sequences, so we define a sequence to

be a doubly-infinite list of complex numbers, f = (fj)j∈Z = (. . . , f−1, f0, f1, f2, . . .), in which only

finitely many of the terms fj are nonzero. The set of all sequences is a C-vector space with the

usual component-wise addition and C-scalar multiplication. The support of the sequence f , written

supp(f), is the set of j ∈ Z such that fj ̸= 0. We say that a subset S of Z is contiguous to mean

that, whenever S contains integers a and b, it also contains every integer c that lies between a and

b; the empty set is (vacuously) contiguous. We say that a sequence f is contiguous to mean that

its support is contiguous. If f = (fj)j∈Z is a sequence, then the length of f , written len f , is the

size of the smallest contiguous set that includes supp(f); so the length of the zero sequence is zero,

and otherwise len f = max supp(f)−min supp(f) + 1. Thus, len f = | supp(f)| if f is contiguous.

Certain types of sequences are especially interesting for applications. A unimodular sequence f is a

contiguous sequence where fj is unimodular (i.e., |fj | = 1) for every j ∈ supp(f). A unimodular

sequence in which every nonzero term fj is an mth root of unity is called an m-ary sequence, and a

binary sequence is a 2-ary sequence, so that every nonzero term is in {−1, 1}. Although our main

interest is in unimodular sequences, many of the constructions that are used to obtain unimodular

sequences with good properties have non-unimodular sequences in intermediate steps, and this is

why we must make these careful technical definitions and prove results that can handle sequences in

general.

If f = (fj)j∈Z and g = (gj)j∈Z are sequences, then for s ∈ Z, we define the aperiodic crosscorre-

lation of f with g at shift s to be

(2.1) Cf,g(s) =
∑
j∈Z

fj+sgj .

Only finitely many terms of the above sum can be nonzero due to the finite support of our sequences.

The aperiodic autocorrelation of f at shift s is Cf,f (s). For the rest of this paper, we simply say
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crosscorrelation (resp., autocorrelation) to mean the aperiodic crosscorrelation (resp., aperiodic

autocorrelation).

We write ∥f∥2 for the Euclidean norm of f , i.e., ∥f∥2 =
√∑

j∈Z |fj |2. Then note that the

autocorrelation at shift 0 is is the squared Euclidean norm of f ; that is,

Cf,f (0) = ∥f∥22 ,

which is always a nonnegative real number, and is equal to len f if f is unimodular. If f ̸= 0 and

one wants a scaled version of f that is a unit vector with respect to the Euclidean norm, then one

should divide the terms of f by ∥f∥2 =
√
Cf,f (0) to obtain the normalization of f . We say that a

pair (f, g) of sequences is isoenergetic to mean that f and g have the same Euclidean norm. Many

applications use isoenergetic pairs, which include pairs consisting of unimodular sequences of the

same length.

In applications, one is interested in pairs (f, g) of sequences where the crosscorrelation values of

f with g at all shifts are small in magnitude, so that f and g are easily distinguished. Furthermore,

one wants the autocorrelation values of f at all nonzero shifts to be small in magnitude, and similarly

with g; this aids in synchronization. There are two main ways that these goals of achieving smallness

of correlation are measured: l∞ and l2 methods. The l∞ (worst-case) measures look at the largest

magnitude among the undesirable correlations (i.e., autocorrelations of both sequences at nonzero

shifts and all crosscorrelations between the two sequences). The l∞ measure for autocorrelation of a

sequence f is called the peak sidelobe level (PSL), and gives the maximum of |Cf,f (s)| over all nonzero

s ∈ Z. The l∞ measure for crosscorrelation for a pair (f, g) is called the peak crosscorrelation (PCC),

and gives the maximum of |Cf,g(s)| over all s ∈ Z. The l2 measures of smallness of correlation can

be considered mean square measures and are often called demerit factors (or, in reciprocal form,

merit factors), and we shall define them in the next two paragraphs. Pursley [67], Burr [13], and

Kärkkäinen [41] all express the view that the l2 measure is a better indicator of performance than

the l∞ measure when evaluating the crosscorrelation of sequences in Code-Division Multiple Access

(CDMA) applications.

7



For a pair (f, g) of nonzero sequences, the crosscorrelation demerit factor of f with g is defined

by

(2.2) CDF(f, g) =

∑
s∈Z |Cf,g(s)|2

Cf,f (0)Cg,g(0)
.

This is the sum of squared magnitudes of all the crosscorrelation values for the normalization of

f with the normalization of g. Only finitely many terms of the sum are nonzero since Cf,g(s) = 0

whenever the shift s is not a difference between an element of supp(f) and an element of supp(g).

Note that CDF(g, f) = CDF(f, g) because Cg,f (s) = Cf,g(−s) for every s ∈ Z. The crosscorrelation

merit factor of f with g is the reciprocal of their crosscorrelation demerit factor.

For a nonzero sequence f , the autocorrelation demerit factor of f is defined by

(2.3) ADF(f) =

∑
s∈Z∖{0} |Cf,f (s)|2

Cf,f (0)2
= −1 + CDF(f, f).

This is the sum of squared magnitudes of all the autocorrelation values at nonzero shifts for the

normalization of f . The autocorrelation merit factor of f is the reciprocal of its autocorrelation

demerit factor.

Since we want pairs (f, g) of sequences with small magnitude autocorrelation values at nonzero

shifts and small magnitude crosscorrelation values at all shifts, we want ADF(f), ADF(g), and

CDF(f, g) all to be as small as possible. Pursley and Sarwate [68, eqs. (3),(4)] proved bounds

involving these three quantities when f and g are nonzero binary sequences of the same length; their

bounds are

−
√
ADF(f)ADF(g) ≤ CDF(f, g)− 1 ≤

√
ADF(f)ADF(g).(2.4)

In particular, the lower bound shows that

√
ADF(f)ADF(g) + CDF(f, g) ≥ 1.

This places a limitation on how low we can simultaneously make all three demerit factors. Sarwate

and Pursley later generalized their result to pairs of sequences with real terms [77, eqs. (8),(9)]. In

Theorem 2.1 below, we show that Pursley and Sarwate’s bounds hold for sequences whose terms are
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arbitrary complex numbers, and the sequences need not be of the same length. This generalized

bound could be obtained by going through Pursley and Sarwate’s proof and making appropriate

modifications, but we use a more efficient technique (based on Laurent polynomial representations

of sequences) to obtain the key relations in full generality.

In view of this bound, we define the Pursley–Sarwate criterion of any pair (f, g) of nonzero

sequences to be

PSC(f, g) =
√
ADF(f)ADF(g) + CDF(f, g),

so that

PSC(f, g) ≥ 1

for all pairs (f, g) of nonzero sequences.

Sarwate [76, eqs. (13),(38)] showed that a random binary sequence f of length ℓ (selected with

uniform distribution) has an expected value for ADF(f) of 1− 1/ℓ and a randomly selected pair

(f, g) of such sequences has an expected value for CDF(f, g) of 1. So for pairs of randomly selected

long binary sequences, we expect PSC(f, g) to be around 2.

Since we want both autocorrelation and crosscorrelation to be as low as possible, we would like

to know which pairs (f, g) of sequences have PSC(f, g) = 1. In fact, we find a complete classification

of such pairs. A pair of sequences (f, g) with Cf,f (s) + Cg,g(s) = 0 for all nonzero s ∈ Z is called a

Golay complementary pair in honor of Golay who introduced them in [26]. It turns out that Golay

complementarity is the key to achieving a Pursley–Sarwate criterion equal to 1.

Theorem 2.1. Let f and g be nonzero sequences. Then

−
√
ADF(f)ADF(g) ≤ CDF(f, g)− 1 ≤

√
ADF(f)ADF(g).

Both of these inequalities simultaneously become equalities if and only if we have min{len f, len g} = 1,

in which case PSC(f, g) = 1. If min{len f, len g} > 1, then equality is achieved in the lower bound

(i.e., PSC(f, g) = 1) if and only if there is some λ ∈ C such that (f, λg) is a Golay complementary

pair, in which case λ ̸= 0 and (f, |λ|g) is also a Golay complementary pair. In particular, if

min{len f, len g} > 1 and f and g are unimodular, then equality is achieved in the lower bound if

and only if (f, g) is a Golay pair, in which case len f = len g and ADF(f) = ADF(g).
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It should be noted that Pursley and Sarwate came close to this result, which comes from a

Cauchy–Schwarz inequality. In [68], they state that the Cauchy–Schwarz inequality becomes an

equality if and only if the two vectors are equal, and later in [77] they state that it becomes an

equality if and only if the first vector is a scalar multiple of the second. (The correct necessary and

sufficient condition is that one of the vectors must be a scalar multiple of the other, so Pursley and

Sarwate’s second formulation is much closer to being correct than their first, but it still neglects the

possibility that equality can occur when the second vector is zero and the first vector is nonzero.)

Pursley and Sarwate’s first formulation of the necessary and sufficient condition for equality in the

Cauchy–Schwarz inequality led them to state that it is impossible [68, p. 305] to meet the lower

bound in (2.4). When they realized that this first formulation was incorrect and stated the second

formulation, they noted [77, p. 49] the unsoundness of their earlier argument that asserted the

impossibility of meeting the lower bound in (2.4). But their second paper still does not show that

the lower bound is actually met, although they deduce the correct condition that would need to be

met in the case of binary sequences.

Once Theorem 2.1 is established, Turyn’s construction [92, Corollary to Lemma 5] supplies

Golay pairs for infinitely many lengths, so we obtain infinitely many pairs (f, g) of binary sequences

with PSC(f, g) = 1.

Corollary 2.2. If ℓ = 2a10b26c for some nonnegative integers a, b, c, then there is a pair (f, g) of

binary sequences, with each sequence of length ℓ, such that PSC(f, g) = 1.

Theorem 2.1 tells us that the pairs (f, g) of unimodular sequences of length greater than 1 that

have PSC(f, g) = 1 are precisely Golay complementary pairs. We are interested in the relative

magnitudes of ADF(f), ADF(g), and CDF(f, g) in Golay pairs.

Golay pairs are usually constructed by means of various transformations and combination rules

starting from a small set of initial pairs. We mention some of the simplest construction methods here.

If we have a sequence f = (fj)j∈Z with supp(f) ⊆ {0, 1, . . . , len f − 1}, then the conjugate reverse of

f , written f ‡, is the sequence with (f ‡)j = flen f−1−j for j ∈ {0, 1, . . . , len f − 1} and f ‡
j = 0 for all

other j. If both f = (fj)j∈Z and g = (gj)j∈Z are sequences of length ℓ whose supports are subsets of

{0, 1 . . . , ℓ− 1}, then the concatenation of f with g, written f |g, is the sequence c = (cj)j∈Z of length
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2ℓ with cj = fj for j ∈ {0, 1, . . . , ℓ− 1}, with cj = gj−ℓ for j ∈ {ℓ, ℓ+ 1, . . . , 2ℓ− 1}, and with cj = 0

for all other j. The interleaving of f with g, written f ≀ g, is the sequence h = (hj)j∈Z of length 2ℓ

with h2j = fj and h2j+1 = gj for j ∈ {0, 1, . . . , ℓ− 1}, and with hk = 0 for k ̸∈ {0, 1 . . . , 2ℓ− 1}.

The Golay–Rudin–Shapiro recursion, as typically employed, begins with an isoenergetic Golay

pair (f (0), g(0)) (known as a seed pair), both of whose sequences are of the same positive length, ℓ, and

have supports that are subsets of {0, 1, . . . , ℓ−1}. Then the Golay–Rudin–Shapiro recursion produces

a family (f (n), g(n))n≥0 of Golay pairs by the rule f (n+1) = f (n)|g(n) and g(n+1) = f (n)| − g(n). Thus,

the length of sequences doubles at each step, so that f (n) and g(n) are sequences of length 2nℓ. If

the seed pair has sequences that are unimodular (resp., binary), then the entire family will consist

of unimodular (resp., binary) sequences. If one begins with the seed pair (f (0), g(0)) where both

sequences are of length 1 with their nonzero terms equal to 1, then the construction produces the

Rudin–Shapiro sequences. One consequence of our Theorem 2.40 is that we know the asymptotic

behavior of the demerit factors for such a family.

Theorem 2.3. Let (f (n), g(n))n≥0 be a family of Golay pairs produced by the Golay–Rudin–Shapiro

recursion as described above. Then

lim
n→∞

ADF(f (n)) = lim
n→∞

ADF(g(n)) = 1/3, and

lim
n→∞

CDF(f (n), g(n)) = 2/3.

The simple Golay interleaving recursion, as typically employed, also begins with a seed Golay

pair (f (0), g(0)) that is isoenergetic, with both sequences of the same positive length, ℓ, and having

supports that are subsets of {0, 1, . . . , ℓ− 1}. The simple Golay interleaving recursion produces a

family (f (n), g(n))n≥0 of Golay pairs by the rule f (n+1) = f (n) ≀ g(n) and g(n+1) = g(n)‡ ≀ −f (n)‡. Thus

the length of sequences doubles at each step, so that f (n) and g(n) are sequences of length 2nℓ. If

the seed pair has sequences that are unimodular (resp., binary), then the entire family will consist of

unimodular (resp., binary) sequences. Our Theorem 2.54 shows that such families have the same

asymptotic behavior as those produced by the Golay–Rudin–Shapiro recursion.
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Theorem 2.4. Let (f (n), g(n))n≥0 be a family of Golay pairs produced by the simple Golay interleaving

recursion as described above. Then

lim
n→∞

ADF(f (n)) = lim
n→∞

ADF(g(n)) = 1/3, and

lim
n→∞

CDF(f (n), g(n)) = 2/3.

In fact, our Theorems 2.40 and 2.54 show that we obtain the same asymptotic behavior described

in Theorems 2.3 and 2.4 here even if we allow ourselves much greater freedom in constructing the

infinite families of pairs than indicated here. This freedom comes by applying a transformation to each

pair (f (n), g(n)) before applying the recursion rule that doubles the length of the sequences. These

transformations are inspired by the work of Golay, who showed that there are 64 transformations of

a binary pair (f, g) that preserve the Golay complementary property: these include exchanging f for

g, negating f , negating g, reversing f , reversing g, negating the terms with odd indices in both f and

g, and compositions of any selection of these transformations. These transformations also work for

Golay pairs with complex-valued sequences, provided that one uses the conjugate reverse operation

as the generalization of Golay’s reverse operation. Theorem 2.40 shows that one still gets the same

limiting values for demerit factors as attested in Theorem 2.3 if one applies such transformations at

each stage of the Golay–Rudin–Shapiro recursion before the next doubling of length by concatenation

(and one may use different transformations at different stages). Theorem 2.54 shows that the

interleaving construction also exhibits the same limiting behavior as in Theorem 2.4 when one uses

the transformations between doublings, although it places the restriction that whenever one conjugate

reverses the first sequence in a pair, one must also conjugate reverse the second sequence. Even

now, we have not indicated the full scope of Theorems 2.40 and 2.54, which allow for more general

choices of seed Golay pairs and transformations to be used at each step. It should also be noted that

Theorems 2.40 and 2.54 provide exact formulae for ADF(f (n)), ADF(g(n)), and CDF(f (n), g(n)) for

each n, from which one obtains the asymptotic results given in Theorems 2.3 and 2.4 here.

This paper is organized as follows. Section 2.3 introduces the formalism of viewing sequences as

Laurent polynomials, and provides the notations and conventions for the rest of the paper, along

with proofs of some preliminary facts. Section 2.4 is the proof of Theorem 2.1. Section 2.5 describes

a group that generalizes Golay’s collection of 64 transformations that preserve complementarity
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of pairs; this group is very useful in our proofs on the asymptotic behavior of demerit factors.

Section 2.6 describes a single construction for complex Golay pairs that is more general and simpler

to use than previous constructions of Golay and Turyn; this eases our proofs of asymptotic results.

2.7 has the proof 2.40 (of which 2.3 here is one corollary) on the behavior of demerit factors for

families produced by the Golay–Rudin–Shapiro recursion. Section 2.8 has the proof Theorem 2.54

(of which Theorem 2.4 here is one corollary) on the behavior of demerit factors for families produced

by the simple Golay interleaving recursion. Section 2.9 poses an open problem that asks whether all

families of Golay pairs consisting of binary sequences whose lengths tend to infinity have asymptotic

autocorrelation and crosscorrelation demerit factors that tend to 1/3 and 2/3, respectively. The same

question is also asked of the more general class of Golay pairs consisting of unimodular sequences.

2.3. Preliminaries

Recall from the Introduction the definition of a sequence, its support, its length, its Euclidean

norm, and its normalization. Also recall what it means for a subset of Z or a sequence to be

contiguous, as well as the definitions of contiguous, unimodular, m-ary, and binary sequences,

and of isoenergetic sequence pairs. We also continue to use the definitions of crosscorrelation and

autocorrelation, with their respective demerit factors, and the Pursley–Sarwate criterion. One should

also recall the definition of Golay complementary pairs, which are also simply called Golay pairs or

complementary pairs. All these definitions and their notations from the Introduction remain in force

throughout this paper. We use N to denote the set {0, 1, . . .} of nonnegative integers.

We identify the sequence f = (fj)j∈Z = (. . . , f−1, f0, f1, f2, . . .) with the Laurent polynomial

f(z) =
∑

j∈Z fjz
j in C[z, z−1], so that the definitions and notations for support, contiguity, length,

unimodularity, m-arity, binarity, Euclidean norm, being isoenergetic, correlation, demerit factors, the

Pursley–Sarwate criterion, and Golay complementarity all apply equally well to Laurent polynomials.

We also use the convention that any property defined for a sequence (Laurent polynomial) can be

predicated of a pair, in which case this is understood to mean that both sequences in the pair have

that property. So, for example, a unimodular Golay pair (f, g) with len(f, g) = 10 is a Golay pair

(f, g) where f and g are both unimodular and len f = len g = 10. A monomial is sequence of length

1, that is, some czj where c is a nonzero complex number and j ∈ Z.
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If f(z) ∈ C[z, z−1] is a nonzero Laurent polynomial, then its order, written ord f , is the smallest

j such that fj ̸= 0, while its degree, written deg f , is the largest k such that fk ≠ 0. We create two

new symbols, ∞ and −∞, and decree that ord 0 = ∞ and deg 0 = −∞. We extend the addition

operation from Z to Z ∪ {∞,−∞} by the following rules: (I) a+∞ = ∞+ a = ∞ for a ∈ Z ∪ {∞},

(II) b+ (−∞) = (−∞) + b = −∞ for b ∈ Z ∪ {−∞}, and (III) (−∞) +∞ = ∞+ (−∞) = 0. For

every f, g ∈ C[z, z−1], the first rules makes ord(fg) = ord f +ord g, the second rule makes deg(fg) =

deg f+deg g, and the third rule makes ord f(z)+deg f(z−1) = 0. Note that len f = deg f−ord f+1

for every nonzero f in C[z, z−1].

If f(z) =
∑

j∈Z fjz
j ∈ C[z, z−1], then we write f(z) to mean

∑
j∈Z fjz

−j , where the inversion of

z comes about because we are interested in our polynomials on the complex unit circle. We sometimes

use f as a shorthand for f(z), and in this case f is a shorthand for f(z). We do not need or introduce

any notation for the operation that simply conjugates the coefficients of a Laurent polynomial

without also inverting the indeterminate. We also use the convention that if f(z) ∈ C[z, z−1], then

|f(z)|2 = f(z)f(z), and indeed, if k is any nonnegative integer, then |f(z)|2k = (f(z)f(z))k. When

we abbreviate f(z) by f , then |f |2 and |f |2k stand for |f(z)|2 and |f(z)|2k, respectively. Along

the same lines, if f(z) ∈ C[z, z−1], then Re f(z) is a shorthand for (f(z) + f(z))/2 (which can be

abbreviated Re f = (f + f)/2).

For any f(z) ∈ C[z, z−1], we use the convention that fs is the coefficient of zs in f(z). Sometimes

we use enclosing parentheses when the Laurent polynomial has a complicated form, for example if

f(z) and g(z) are Laurent polynomials, then (fg)s is the coefficient of zs in the product f(z)g(z). If

we write fk
s , then we mean the coefficient of zs in f(z)k, that is, we mean (fk)s. And similarly |f |2ks

means the coefficient of zs in |f(z)|2k, that is (|f |2k)s. Thus if c ∈ C and n is a nonzero integer, then

f(czn)nm = cmfm for every m ∈ Z; in particular f(czn)0 = f0. If, in addition, c is unimodular, then

|f(czn)|2mn = cm|f |2m for every m ∈ Z; in particular |f(czn)|20 = |f |20.

We now show how the correlation concepts, defined for sequences in the Introduction, are realized

in the Laurent polynomial interpretation. If f(z), g(z) ∈ C[z, z−1], we define the crosscorrelation of

f with g at shift s to be

(2.5) Cf,g(s) = (fg)s,
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which agrees with (2.1) when f and g are Laurent polynomials representing sequences. So the

Laurent polynomial fg records all the crosscorrelation values:

(2.6) fg =
∑
s∈Z

Cf,g(s)z
s.

When f = g, we call Cf,f (s) the autocorrelation of f at shift s. Note that

(2.7) Cf,f (0) = |f |20 =
∑
s∈Z

|fs|2 = ∥f∥22 ,

which is the squared Euclidean norm of f . Thus, a pair (f, g) ∈ C[z, z−1]2 is isoenergetic if and only

if Cf,f (0) = Cg,g(0). We record some basic facts about correlation.

Lemma 2.5. Let f(z), g(z) ∈ C[z, z−1] and s ∈ Z.

(i). Cf,f (0) = |f |20 = ∥f∥22 = 0 if and only if f = 0; otherwise Cf,f (0) is positive real.

(ii). If f is unimodular, then Cf,f (0) = |f |20 = ∥f∥22 = len f .

(iii). Cg,f (s) = Cf,g(−s).

(iv). Cf,f (s) = Cf,f (−s).

(v). If f, g ̸= 0 and either s > deg f − ord g or s < ord f − deg g, then Cf,g(s) = 0.

(vi). If f, g ̸= 0, then Cf,g(deg f−ord g) = fdeg fgord g ̸= 0 and Cf,g(ord f−deg g) = ford fgdeg g ̸= 0.

(vii). If |s| ≥ len f , then Cf,f (s) = 0.

(viii). If f ̸= 0, then Cf,f (len f − 1) = fdeg fford f ̸= 0 and Cf,f (1− len f) = ford ffdeg f ̸= 0.

Proof. One immediately obtains part (i) from (2.7), and part (ii) also follows from (2.7) since

the sum of the squared magnitudes of len f unimodular numbers is len f . From (2.5), we see

that Cf,g(−s) = (fg)−s = (fg)s = (gf)s, which by another application of (2.5) is Cg,f (s). This

proves part (iii), and if one sets g = f there, then part (iv) follows. If f, g ̸= 0, then the highest

degree terms in f and g are fdeg fz
deg f and gord gz

− ord g, respectively, while the lowest degree terms

in f and g are ford fz
ord f and gdeg gz

− deg g, respectively. Thus (2.5) shows that Cf,g(s) = 0 if

s > deg f − ord g or s < ord f − deg g, and shows that Cf,g(deg f − ord g) and Cf,g(ord f − deg g)

have the desired values. This proves part (v) and part (vi), and if one sets g = f in these and recalls

that len f = deg f − ord f + 1 and notes that C0,0(s) = 0 for all s ∈ Z, then one obtains part (vii)

and part (viii). □
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We can use (2.6) and (2.7) together to obtain

(2.8) |fg|20 =
∑
s∈Z

|Cf,g(s)|2.

Then comparing expressions (2.8) and (2.7) with the terms in the definition (2.2) of the crosscorrela-

tion demerit factor, we see that if f, g ̸= 0, then

(2.9) CDF(f, g) =
|fg|20
|f |20|g|20

,

and thus by (2.3)

(2.10) ADF(f) = −1 +
|f |40

(|f |20)2
.

Expressions (2.9) and (2.10) connect crosscorrelation and autocorrelation demerit factors to Lp

norms of polynomials on the complex unit circle; see [44, p. 515–516] for more details. We record a

simple criterion for vanishing autocorrelation demerit factor.

Lemma 2.6. Let f be a nonzero sequence. Then ADF(f) = 0 if and only if len f = 1.

Proof. Parts (vii) and (viii) of Lemma 2.5 show that Cf,f (s) = 0 for all nonzero s if and only

if len f ≤ 1. Since f is nonzero, this means that the numerator of ADF(f) in the expression in (2.3)

is zero if and only if len f = 1. □

The following lemma translates the definition of Golay complementary pair to the Laurent

polynomial interpretation.

Lemma 2.7. If (f, g) ∈ C[z, z−1]2, then (f, g) is a Golay pair if and only if |f |2 + |g|2 is constant,

in which case |f |2 + |g|2 = |f |20 + |g|20.

Proof. By (2.6), we have |f |2 + |g|2 =
∑

s∈Z(Cf,f (s)+Cg,g(s))z
s, which is constant if and only

if Cf,f (s) +Cg,g(s) = 0 for all nonzero s, that is, if and only if (f, g) is a Golay pair. And |f |2 + |g|2

is constant if and only if it equals its own constant term, which is |f |20 + |g|20. □

We should note that, with trivial exceptions, sequences that form a Golay pair must be the same

length.
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Lemma 2.8. If (f, g) is a Golay pair, then either len f = len g or else {len f, len g} = {0, 1}.

Proof. Suppose that (f, g) is a Golay pair. If one sequence has a length ℓ with ℓ > 1, then

Lemma 2.5(viii) shows that its autocorrelation at shift ℓ− 1 is nonzero, so that the Golay condition

forces the other sequence to have nonzero autocorrelation at shift ℓ− 1, which by Lemma 2.5(vii)

forces it to have length at least ℓ. Thus, if either sequence has length greater than 1, they both must

have the same length. □

We should also note that in many Golay pairs of interest, the autocorrelation demerit factors of

the two elements are the same.

Lemma 2.9. Let (f, g) be a Golay pair with f, g ̸= 0. If (f, g) is isoenergetic, then ADF(f) =

ADF(g). If ADF(f) = ADF(g), then (f, g) is isoenergetic or len f = len g = 1.

Proof. Since (f, g) is a Golay pair, we have Cf,f (s) = −Cg,g(s) for every nonzero s, and so∑
s∈Z∖{0} |Cf,f (s)|2 =

∑
s∈Z∖{0} |Cg,g(s)|2. Thus, if (f, g) is isoenergetic, then Cf,f (0) = Cg,g(0),

and then (2.3) shows that ADF(f) = ADF(g). Conversely, if ADF(f) = ADF(g), then (2.3) shows

that either Cf,f (0) = Cg,g(0) (so that (f, g) is isoenergetic) or ADF(f) = ADF(g) = 0, the latter of

which can only hold if len f = len g = 1 by Lemma 2.6. □

Unimodular Golay pairs are of particular interest and have many of the good properties discussed

above.

Lemma 2.10. If f, g are nonzero unimodular sequences such that (f, g) is a Golay pair, then

len f = len g = ∥f∥22 = ∥g∥22 (so that (f, g) is isoenergetic), |f |2 + |g|2 = 2 len f = 2 len g, and

ADF(f) = ADF(g).

Proof. Lemma 2.8 shows that len f = len g. Then Lemma 2.5(ii) shows that ∥f∥22 = |f |20 =

len f = len g = |g|20 = ∥g∥22, so that (f, g) is isoenergetic, and then Lemma 2.7 shows that |f |2+ |g|2 =

2 len f , while Lemma 2.9 shows that ADF(f) = ADF(g). □

2.4. Proof of Theorem 2.1

We now prove our first main result, Theorem 2.1. If len f = 1 (resp., len g = 1), then Lemma 2.6

shows that ADF(f) = 0 (resp., ADF(g) = 0) and one easily calculates CDF(f, g) = 1 from (2.9), so
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that both inequalities are achieved simultaneously and we have PSC(f, g) = 1. So henceforth we

assume that min{len f, len g} > 1.

Let Γ = (fgfg)0, which we can interpret in two different ways. If we group the terms as

Γ = (|f |2|g|2)0, and use (2.6) to interpret both |f |2 = ff and |g|2 = gg as sequences whose terms

are autocorrelation values, then (2.5) shows that Γ is the crosscorrelation of the autocorrelation

spectrum of f with the autocorrelation spectrum of g at shift 0, i.e., Γ =
∑

s∈ZCf,f (s)Cg,g(s). If

instead we choose to group the terms as Γ = |fg|20, then (2.7) shows that Γ is the sum of the squared

magnitudes of the coefficients of fg, so by (2.6) we have Γ =
∑

s∈Z |Cf,g(s)|2, which shows that Γ

is real. Now define ∆ = −Cf,f (0)Cg,g(0) + Γ. Since Γ, Cf,f (0), and Cg,g(0) are real, ∆ is a real

number with

∆ = −Cf,f (0)Cg,g(0) +
∑
s∈Z

|Cf,g(s)|2

=
∑

s∈Z∖{0}

Cf,f (s)Cg,g(s).
(2.11)

Now the Cauchy–Schwarz inequality tells us that

(2.12) |∆| ≤

√√√√√
 ∑

s∈Z∖{0}

|Cf,f (s)|2

 ∑
s∈Z∖{0}

|Cg,g(s)|2

.

Use the first equality in (2.11) to substitute for ∆ and divide by Cf,f (0)Cg,g(0) (which is positive

real since f, g ̸= 0), to obtain the equivalent inequality

(2.13) | − 1 + CDF(f, g)| ≤
√

ADF(f)ADF(g),

which is the bound we were to show.

The bound in the Cauchy–Schwarz inequality (2.12) and in the equivalent result (2.13) is met if

and only if there is some nonzero µ ∈ C such that Cf,f (s) = µCg,g(s) for every s ∈ Z ∖ {0}. (In

principle, it would also be met if Cf,f (s) = 0 for all s ∈ Z∖ {0} or if Cg,g(s) = 0 for all s ∈ Z∖ {0},

but these are impossible by Lemma 2.5(viii) because len f, len g > 1.) If we have such a µ, then we
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have

(2.14) ∆ =
∑

s∈Z∖{0}

Cf,f (s)Cg,g(s) = µ
∑

s∈Z∖{0}

|Cg,g(s)|2,

and since ∆ was shown to be real, this forces µ to be a real number.

If we have equality in (2.13) and µ is positive (resp., negative), then (2.14) shows that ∆ is positive

(resp., negative), so that ∆/(Cf,f (0)Cg,g(0)) = −1 + CDF(f, g) is positive (resp., negative), and

so −1 + CDF(f, g) =
√
ADF(f)ADF(g) and we meet the upper bound (resp., −1 + CDF(f, g) =

−
√
ADF(f)ADF(g) and we meet the lower bound). These two extremes cannot be achieved

simultaneously, as ADF(f)ADF(g) ̸= 0 because len f > 1 and len g > 1 (see Lemma 2.6). So,

when min{len f, len g} > 1, the necessary and sufficient condition for achieving the lower bound

−1 + CDF(f, g) = −
√
ADF(f)ADF(g) (i.e., PSC(f, g) = 1) is for there to be a negative real

number µ such that Cf,f (s) = µCg,g(s) for all nonzero s ∈ Z, which is to say, such that (f,
√
−µg)

is a Golay pair. So to meet the lower bound, it is necessary that there be some λ ∈ C such that

(f, λg) is a Golay pair. Conversely, if there is a λ ∈ C such that (f, λg) is a Golay pair, then we

know that λ ̸= 0 by Lemma 2.8, since len f > 1. Since (2.5) shows that scalar multiplication of a

sequence by a unimodular complex number (e.g., |λ|/λ) does not change its autocorrelation values,

(f, |λ|g) = (f,
√
−(−|λ|2)g) is also a Golay pair with −|λ|2 a negative real number, so we meet the

lower bound by what we have shown earlier in this paragraph.

For the rest of this proof, assume that f and g are unimodular with min{len f, len g} > 1. If (f, g)

is a Golay pair, then what we have already shown proves that our lower bound is met. Conversely,

if our lower bound is met, then we know that there is some nonzero λ ∈ C such that (f, |λ|g) is

a Golay pair. Lemma 2.8 shows that len f = len(|λ|g), so that len f = len g > 1, and we can use

Lemma 2.5(viii) to show that Cf,f (len f − 1) + C|λ|g,|λ|g(len f − 1) = fdeg fford f + |λ|2gdeg ggord g,

which must equal 0 by the Golay condition. The various coefficients of f and g that appear in

the last expression are all unimodular, so this forces |λ| = 1, and so (f, g) is a Golay pair. So we

meet the lower bound precisely when (f, g) is a Golay pair, in which case Lemma 2.10 shows that

len f = len g and ADF(f) = ADF(g). □
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Remark 2.11. Theorem 2.1 is reminiscent of a result of Liu and Guan [54, Theorem 1]. Liu and

Guan show that binary Golay pairs minimize a criterion that is different from the Pursley–Sarwate

criterion in that they do not use the geometric mean of autocorrelation demerit factors, but (if

their results are translated into the language of this paper) the arithmetic mean. Liu and Guan also

consider the generalization to families that can have more than two sequences, and they generalize

demerit factors to weighted versions. For the remainder of this remark, we restrict attention to

standard unweighted demerit factors of pairs (as in this paper) of binary sequences of the same

length (as in Liu and Guan’s paper), so we can compare their results with ours when both results are

specialized to those situations where both may be invoked. We translate their results into the notation

of this paper: if (f, g) is a pair of binary sequences of equal length, then Liu and Guan’s inequality

(11) becomes (after a significant amount of calculation)

CDF(f, f) + CDF(f, g) + CDF(g, f) + CDF(g, g)

4
≥ 1,

or equivalently, since CDF(f, f) = ADF(f) + 1, CDF(g, g) = ADF(g) + 1, and CDF(g, f) =

CDF(f, g),

(2.15)
ADF(f) + ADF(g)

2
+ CDF(f, g) ≥ 1.

Liu and Guan’s Theorem 1 asserts that this inequality becomes an exact equality if and only if {f, g}

is a complementary set. This result is similar to Theorem 2.1, but we note that Liu and Guan’s

inequality has the arithmetic mean of the autocorrelation demerit factors while Theorem 2.1 has the

geometric mean. Theorem 2.1 immediately implies Liu and Guan’s result by the arithmetic–geometric

mean inequality, but Liu and Guan’s result does not immediately imply Theorem 2.1.

2.5. Transformations of Golay Pairs

In this section, we summarize known transformations for Golay pairs and show how they influence

the autocorrelation and crosscorrelation behavior of the pairs. In [26, p. 496] and [27, p. 83], Golay

lists six transformations, each of which takes a binary Golay pair (f, g) to another binary Golay

pair; these transformations are interchanging the two sequences, reversing the order of the terms in

first sequence, reversing the order of the terms in the second sequence, negating the first sequence,
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negating the second sequence, and negating every other element in both sequences. To represent

these transformations in our Laurent polynomial formalism, if f(z) ∈ C[z, z−1], then we define

the conjugate reverse of f(z), written f ‡(z), to be f ‡(z) = zord f+deg ff(z). Recall our rule that

∞+ (−∞) = 0, so that 0‡ = 0. Conjugate reversal preserves degree and order (deg f ‡ = deg f and

ord f ‡ = ord f), is involutory (f ‡‡ = f), and |f ‡|2 = |zord f+deg ff |2 = |f |2 for every f ∈ C[z, z−1]. If

m,n are integers with m ≤ n and f(z) = fmzm+fm+1z
m+1+ · · ·+fnz

n ∈ C[z, z−1] with fm, fn ̸= 0,

then f ‡(z) = fnz
m + fn−1z

m+1 + · · · + fmzn, and so conjugate reverse of a contiguous sequence

has the same support as the original sequence, but the coefficients are conjugated and arranged in

reverse order. We believe that this is the most useful generalization to complex sequences of Golay’s

transformation that reverses the order of a binary sequence. Borwein and Mossinghoff [11, p. 1159]

use the reciprocal polynomial f∗(z) = zdeg ff(1/z) to reverse a polynomial f(z) representing a

binary sequence, and Katz, Lee, and Trunov (see [44, p. 514] and [45, p. 7728]) use the conjugate

reciprocal polynomial f †(z) (which is obtained from f∗(z) by conjugating every coefficient) as the

generalization for polynomials with complex coefficients, but neither of these operations is invertible

when one allows sequences whose constant coefficients equal zero, e.g., both z and z2 have reciprocal

(and conjugate reciprocal) equal to 1. Even if one’s main interest is in Golay pairs formed from binary

sequences represented by polynomials with nonzero constant coefficients, the most comprehensive

construction of such Golay pairs, due to Borwein and Ferguson [12, Sections 4–5], involves (in

intermediate steps) sequences that can have 0 for their constant coefficients. Since we require groups

of transformations that work on sequences such as these, the conjugate reversal operation defined

here can be used, while the reciprocal and conjugate reciprocal cannot.

If r(z) ∈ C[z, z−1], we define the transformation subsr : C[z, z−1]2 → C[z, z−1]2 by subsr(f(z), g(z)) =

(f(r(z)), g(r(z))), that is, subsr substitutes r(z) for the indeterminate z. We can now define general-

izations of Golay’s six original transformations.

Definition 2.12 (Elementary Golay transformations). The elementary Golay transformations are

the following transformations that map C[z, z−1]2 to itself.

(1) swap(f, g) = (g, f) (swap the sequences in a pair),

(2) conj(f, g) = (f, g) (conjugate the first sequence),

(3) conj′(f, g) = (f, g) (conjugate the second sequence),
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(4) crev(f(z), g(z)) = (f ‡, g) (conjugate reverse the first sequence),

(5) crev′(f(z), g(z)) = (f, g‡) (conjugate reverse the second sequence),

(6) srev(f(z), g(z))

= (zord f+deg ff(z−1), zord g+deg gg(z−1))

(simultaneously reverse the sequences),

(7) scalp,q(f, g)) = (pf, qg) (scale by any monomials p and q with |p|2 = |q|2), and

(8) subsr(f(z), g(z)) = (f(r(z)), g(r(z))) (substitute a monomial r(z) = wzd with |w| = 1 and

d ∈ {−1, 1} for the indeterminate z).

Golay’s six transformations are swap, crev, crev′, scal−1,1, scal1,−1, and subs−z.

Lemma 2.13. Each elementary Golay transformation is a permutation of C[z, z−1]2 whose inverse

is another elementary Golay transformation: swap, conj, conj′, crev, crev′, and srev are involutions,

the inverse of scalp,q is scal1/p,1/q, and the inverse of subswzd is subsw−dzd .

Proof. All of the claims are easy to check, and note that when p(z) and q(z) are monomials

with |p(z)|2 = |q(z)|2, then 1/p(z) and 1/q(z) are also monomials and have |1/p(z)|2 = |1/q(z)|2,

and if r(z) = wzd is a monomial with |w| = 1 and d ∈ {−1, 1}, then s(z) = w−dzd is a monomial of

the same degree with |w−d| = 1. □

Definition 2.14 (Golay group, Gol). The Golay group, written Gol, is the group of permutations of

C[z, z−1]2 generated by the elementary Golay transformations.

We also define another type of transformation of C[z, z−1]2 that is not, in general, invertible.

Definition 2.15 (Dilation). For a nonzero integer d, the dilation by d is the transformation subszd .

Definition 2.16 (Extended Golay monoid, EGol). The extended Golay monoid, written EGol, is

the monoid of maps from C[z, z−1]2 to itself generated by the Golay group Gol and the dilation maps

{subszd : d ∈ Z, d ̸= 0}.

We now examine sets of generators for Gol and EGol.
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Lemma 2.17. Let S be the set whose elements are swap, conj, crev, srev, scalp,q for all monomials

p and q with |p|2 = |q|2, and subsr for all monomials r = wzd with |w| = 1 and d ∈ {−1, 1}. Then

the monoid generated by S is Gol, and therefore the group generated by S is Gol. Let T be the set

whose elements are swap, conj, crev, srev, scalp,q for all monomials p and q with |p|2 = |q|2, and

subsr for all monomials r = wzd with |w| = 1 and d ̸= 0. Then the monoid generated by T is EGol.

Proof. Note that S is the set obtained by removing conj′ and crev′ from the set of elementary

Golay transformations, but since conj′ = swap ◦ conj ◦ swap and crev′ = swap ◦ crev ◦ swap, the

monoid generated by the S includes all the elementary Golay transformations, and since the set of

elementary Golay transformations is closed under inversion by Lemma 2.13, the monoid generated

by the S is Gol. Every transformation of the form subsr such that r(z) = wzd with |w| = 1 and

d ̸= 0 is in EGol, since subsr = subszd ◦ subswz, which is a composition of a dilation and an element

of Gol, and so T is a superset of S but a subset of EGol, so it generates a monoid including Gol and

included in EGol. The set T also contains all the dilations, so the monoid it generates must be all of

EGol. □

Golay was interested in his six original transformations because they map Golay pairs to Golay

pairs. We shall see that the same is true of elements of our extended Golay monoid, after recording

without proof some very straightforward principles.

Lemma 2.18. Let (a, b) ∈ C[z, z−1]2 and γ ∈ Gol, and set (f, g) = γ(a, b). If γ = swap, then

(|a|2, |b|2) = (|g|2, |f |2). If γ ∈ {conj, conj′, crev, crev′}, then (|f |2, |g|2) = (|a|2, |b|2). If γ = scalp,q

where p and q are monomials with |p|2 = |q|2, then |p|2 is a positive real number and (|f |2, |g|2) =

(|p|2|a|2, |p|2|b|2). If γ = srev, then |f |2k = |a|2−k and |g|2k = |b|2−k for every k ∈ Z. If γ = subsr where

r = wzd with |w| = 1 and d ̸= 0, then |f |2j = |g|2j = 0 for all j ∈ Z with d ∤ j, and |f |2dk = wk|a|2k
and |g|2dk = wk|b|2k for every k ∈ Z.

Now we prove that transformations from EGol preserve Golay complementarity.

Lemma 2.19. If (a, b) ∈ C[z, z−1]2 and γ ∈ EGol, then (a, b) is a Golay pair if and only if γ(a, b)

is a Golay pair.
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Proof. In view of Lemma 2.17, it suffices to show this in the case where γ is one of swap, conj,

crev, srev, scalp,q (for any monomials p, q with |p|2 = |q|2), subsr (for any nonconstant monomial r

with a unimodular coefficient). If γ is swap, conj, crev, or scalp,q, and we let (f, g) = γ(a, b), then

Lemma 2.18 shows that there is some positive real number λ such that {|f |2, |g|2} = {λ|a|2, λ|b|2},

and so |f |2 + |g|2 = λ(|a|2 + |b|2) is constant if and only if |a|2 + |b|2 is constant. If γ = srev,

then Lemma 2.18 shows that (|f |2 + |g|2)k = (|a|2 + |b|2)−k for every k ∈ Z, so |f |2 + |g|2 is

constant if and only if |a|2 + |b|2 is constant. If γ = subsr for r(z) = wzd with |w| = 1 and d ̸= 0,

then Lemma 2.18 shows that |f |2 + |g|2 only has terms whose degrees are multiples of d, and

(|f |2+ |g|2)dk = wk(|a|2+ |b|2)k for every k ∈ Z, so that |f |2+ |g|2 is constant if and only if |a|2+ |b|2

is constant. □

Our transformations also preserve the Pursley–Sarwate criterion.

Lemma 2.20. Let (a, b) ∈ C[z, z−1]2 with a, b ̸= 0, let γ ∈ EGol, and set (f, g) = γ(a, b). Then (f, g)

is isoenergetic if and only if (a, b) is isoenergetic. Also {ADF(f),ADF(g)} = {ADF(a),ADF(b)}

and CDF(f, g) = CDF(a, b), and thus PSC(f, g) = PSC(a, b).

Proof. In view of Lemma 2.17, it suffices to show this in the case where γ is one of swap,

conj, crev, srev, scalp,q (for any monomials p, q with |p|2 = |q|2), or subsr (for any nonconstant

monomial r with a unimodular coefficient). If γ is swap, conj, crev, or scalp,q, then Lemma 2.18

shows that there is some positive real number λ such that {|f |2, |g|2} = {λ|a|2, λ|b|2}. Thus

|f |20 = |g|20 if and only if |a|20 = |b|20, so by (2.7) we see that (f, g) is isoenergetic if and only

if (a, b) is. Also {|f |40/(|f |20)2, |g|40/(|g|20)2} = {|a|40/(|a|20)2, |b|40/(|b|20)2}, and so by (2.10) we have

{ADF(f),ADF(g)} = {ADF(a),ADF(b)}. Similarly, |fg|20/(|f |20|g|20) = |ab|20/(|a|20|b|20), and so by

(2.9) we have CDF(a, b) = CDF(f, g).

Now assume either that γ = srev, in which case

(f(z), g(z)) = (zord a+deg aa(z−1), zord b+deg bb(z−1)),

or that γ = subsr, in which case (f(z), g(z)) = (a(r(z)), b(r(z))). In either case (|f(z)|2, |g(z)|2) =

(|a(s(z))|2, |b(s(z))|2) for some nonconstant monomial s(z) with a unimodular coefficient. Thus, for

every h(z) ∈ C[z, z−1], the fact that s(z) is a nonconstant monomial with a unimodular coefficient
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makes |h(s(z))|20 = |h|20. If we consider h = a (resp., h = b) and look at (2.7), we see that

∥a∥2 = ∥f∥2 (resp., ∥b∥2 = ∥g∥2), and so (f, g) is isoenergetic if and only if (a, b) is isoenergetic.

On the other hand, if we consider h ∈ {a2, a} (resp., h ∈ {b2, b}) and look at (2.10), we see that

ADF(f) = ADF(a) (resp., ADF(g) = ADF(b)), and if we consider h ∈ {ab, a, b} and look at (2.9),

we see that CDF(f, g) = CDF(a, b). □

Sometimes we are only interested in the transformations that preserve certain properties of pairs,

so we define some special subgroups of Gol.

Definition 2.21 (Stationary Golay Group, SGol). The stationary Golay group, written SGol, is

the subgroup of Gol generated by swap, crev, crev′, srev, all transformations scalu,v where u, v are

nonzero complex numbers with |u| = |v|, and all transformations subswz, where w is a unimodular

complex number.

Remark 2.22. Suppose that (a, b) ∈ C[z, z−1]2, γ ∈ SGol, and (f, g) = γ(a, b). Then one easily

sees that

{(ord f,deg f), (ord g,deg g)}

= {(ord a,deg a), (ord b,deg b)}

since all the generators and inverses of generators of SGol except for swap preserve the orders

and degrees of both sequences in the pair, while swap swaps the two sequences and the pair. In

particular, transformations in SGol preserve the minimum and maximum values of order (or of

degree, or of length) for the two sequences in the pair. Therefore, if ord a = ord b (resp., deg a = deg b,

len a = len b), then ord(f, g) = ord(a, b) (resp., deg(f, g) = deg(a, b), len(f, g) = len(a, b)).

Definition 2.23 (Unimodular Golay Group UGol). The unimodular Golay group, written UGol,

is the subgroup of Gol generated by swap, crev, crev′, srev, all transformations scalu,v where u, v

are unimodular complex numbers, and all transformations subswz where w is a unimodular complex

number.
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Remark 2.24. If (f, g) ∈ C[z, z−1] and γ ∈ UGol, then one readily sees (f, g) is unimodular if and

only if γ(f, g) is unimodular. Also, UGol is clearly a subgroup of SGol, and so it has the properties

mentioned in Remark 2.22.

Definition 2.25 (Binary Golay Group BGol). The binary Golay group, written BGol, is the subgroup

of Gol generated by swap, crev, crev′, srev, scal−1,1, scal1,−1, and subs−z.

Remark 2.26. The binary Golay group is simply the group generated by Golay’s six transformations

along with srev, but one should note that if we are applying transformations in BGol to sequences

with real terms, then srev has the same effect as crev ◦ crev′. Clearly BGol is a subgroup of UGol,

since it is generated by a subset of UGol’s generators. If (f, g) ∈ C[z, z−1] and γ ∈ BGol, then one

readily sees (f, g) is binary if and only if γ(f, g) is binary. Also, BGol is clearly a subgroup both of

SGol and of UGol, and so it has the properties mentioned in Remarks 2.22 and 2.24.

2.6. Constructions of Golay Pairs

In this section we describe construction methods, each of which takes two Golay pairs, (a, b) and

(c, d), and produces another Golay pair (f, g). Golay, Turyn, and Borwein–Ferguson gave various

methods of this kind. We devise a single simple method which, using the transformations from the

extended Golay monoid and the pair (1, 1) (which is obviously Golay), can construct all Golay pairs

obtainable by these earlier methods.

Construction 2.27 (Weaving). Let a, b, c, d ∈ C[z, z−1]. Then the weave of (a, b) with (c, d), denoted

(a, b)⋉ (c, d) or (c, d)⋊ (a, b), is the pair (f, g), where

f(z) = a(z)c(z) + b(z)d(z)

g(z) = a(z)d(z)− b(z)c(z).

We want to show that this construction produces Golay pairs when the inputs are Golay pairs.

26



Lemma 2.28. Let a, b, c, d ∈ C[z, z−1] and let (f, g) = (a, b)⋉ (c, d). Then

|f |2 = |ac|2 + |bd|2 + 2Re(acbd)

|g|2 = |ad|2 + |bc|2 − 2Re(acbd), and

|f |2 + |g|2 = (|a|2 + |b|2)(|c|2 + |d|2).

Proof. Since f = ac+ bd, we have |f |2 = |ac|2 + |bd|2 + acbd+ acbd, which verifies the first

formula. And since g = ad− bc, we have |g|2 = |ad|2 + |bc|2 − acbd− acbd, which verifies the second

formula. And then

|f |2 + |g|2

= |ac|2 + |bd|2 + 2Re(acbd) + |ad|2 + |bc|2 − 2Re(acbd)

= (|a|2 + |b|2)(|c|2 + |d|2). □

Corollary 2.29. Let a, b, c, d ∈ C[z, z−1]. If both (a, b) and (c, d) are not equal to (0, 0), then

(a, b)⋉ (c, d) is a Golay pair if and only if both (a, b) and (c, d) are Golay pairs. If (a, b) = (0, 0) or

(c, d) = (0, 0), then (a, b)⋉ (c, d) = (0, 0), which is a Golay pair.

Proof. The claim when (a, b) or (c, d) is (0, 0) is clear, so suppose neither is (0, 0), and let

(f, g) = (a, b)⋉ (c, d). Lemma 2.28 shows that |f |2 + |g|2 is constant if both |a|2 + |b|2 and |c|2 + |d|2

are. By (2.7) and the fact that (a, b), (c, d) ̸= (0, 0), we see that |a|2 + |b|2 and |c|2 + |d|2 have

nonzero constant terms. If either of them were nonconstant, then their product |f |2 + |g|2 would

have more than one monomial, and hence be nonconstant. So |f |2 + |g|2 is a constant if and only if

both |a|2 + |b|2 and |c|2 + |d|2 are, so the result follows from Lemma 2.7. □

The following technical lemma, which will be used later, considers how the weaving construc-

tion influences expressions that appear in our Laurent polynomial formulae (2.10) and (2.9) for

autocorrelation and crosscorrelation demerit factors.
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Lemma 2.30. If a, b, c, d ∈ C[z, z−1] and (f, g) = (a, b)⋉ (c, d), then we have

|f |4 = |ac|4 + |bd|4 + 4|abcd|2

+ 4(|ac|2 + |bd|2)Re(acbd) + 2Re((acbd)2),

|g|4 = |ad|4 + |bc|4 + 4|abcd|2

− 4(|ad|2 + |bc|2)Re(acbd) + 2Re((acbd)2),

and

|fg|2 = |ab|2(|c|4 + |d|4) + |cd|2(|a|4 + |b|4)− 2|abcd|2

− 2(|a|2 − |b|2)(|c|2 − |d|2)Re(acbd)− 2Re((acbd)2).

Proof. By Lemma 2.28, we have |f |2 = |ac|2 + |bd|2 + 2Re(acbd). Square this and use the

identity 4Re(u)2 = 2Re(u2) + 2|u|2 to obtain the result for |f |4. One obtains the result for |g|4 the

same way by replacing c and d with d and −c, respectively. From our expressions for |f |4 and |g|4,

we have

|f |4 + |g|4 = (|a|4 + |b|4)(|c|4 + |d|4) + 8|abcd|2

+ 4(|a| − |b|2)(|c|2 − |d|2)Re(acbd) + 4Re((acbd)2).

Then note that

|fg|2 = (|f |2 + |g|2)2 − (|f |4 + |g|4)
2

,

and then we use the expression for |f |2 + |g|2 from Lemma 2.28 and our expression for |f |4 + |g|4 to

deduce the expression for |fg|2. □

Now we describe the historical methods that were used to construct binary Golay pairs. We

present them in slightly more general forms than the originals so as to make them also suitable

for constructing Golay pairs with complex terms. The first two constructions are due to Golay:

see [27, eqs. (10),(11)].
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Construction 2.31 (Golay concatenation). If (a, b) and (c, d) are Golay pairs with ord c+ deg c =

ord d+ deg d, and m and n are integers with m ̸= 0, and we let f(z) = a(z)c(zm) + zmnb(z)d(zm)

and g(z) = a(z)d‡(zm)− zmnb(z)c‡(zm), then (f, g) is

scal1,zm(ord c+deg c) ((scal1,zmn(a, b))⋉ (subszm(c, d))) ,

which is a Golay pair. In particular, if (a, b) and (c, d) are unimodular (resp., binary) Golay pairs

with len(a, b) = m, len(c, d) = n, ord a = ord b, and ord c = ord d, then (f, g) is a unimodular (resp.,

binary) Golay pair with len(f, g) = 2mn.

Proof. It is not difficult to check the formula for (f, g), from which it follows that (f, g) is

Golay via Lemma 2.19 and Corollary 2.29. The second claim is clear if (a, b) or (c, d) is (0, 0),

and otherwise follows from the fact that the coefficient of zj in f(z) (resp., g(z)) is 0 unless

ord a+m ord c ≤ j ≤ mn+ deg a+m deg c, in which case it is the either the product of a nonzero

coefficient of a with one of c or the product of a nonzero coefficient of b with one of d (resp., either

the product of a nonzero coefficient of a with the conjugate of one of d or the product of a nonzero

coefficient of b with the conjugate of one of c). □

Construction 2.32 (Golay interleaving [27]). If (a, b) and (c, d) are Golay pairs with ord c+deg c =

ord d + deg d, and m is a nonzero integer, and we let f(z) = a(z)c(z2m) + zmb(z)d(z2m) and

g(z) = a(z)d‡(z2m)− zmb(z)c‡(z2m), then (f, g) is

scal1,z2m(ord c+deg c) ((scal1,zm(a, b))⋉ (subsz2m(c, d))) ,

which is a Golay pair. In particular, if (a, b) and (c, d) are unimodular (resp., binary) Golay pairs

with len(a, b) = m, len(c, d) = n, ord a = ord b, and ord c = ord d, then (f, g) is a unimodular (resp.,

binary) Golay pair with len(f, g) = 2mn.

Proof. It is not difficult to check the formula for (f, g), from which it follows that (f, g) is

Golay via Lemma 2.19 and Corollary 2.29. The second claim is clear if (a, b) or (c, d) is (0, 0),

and otherwise follows from the fact that the coefficient of zj in f(z) (resp., g(z)) is 0 unless

ord a+ 2m ord c ≤ j ≤ m+ deg a+ 2mdeg c, in which case it is the either the product of a nonzero

coefficient of a with one of c or the product of a nonzero coefficient of b with one of d (resp., either
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the product of a nonzero coefficient of a with the conjugate of one of d or the product of a nonzero

coefficient of b with the conjugate of one of c). □

The next construction was presented by Borwein and Ferguson [12, p. 975] as being Golay’s

interleaving construction. In fact, it is a slightly different (but still valid) way of combining two

Golay pairs to get a longer one.

Construction 2.33 (Borwein-Ferguson interleaving [12]). If (a, b) and (c, d) are Golay pairs with

ord c+deg c = ord d+deg d and m is a nonzero integer, and we let f(z) = a(z2)c(z2m)+zb(z2)d(z2m)

and let g(z) = a(z2)d‡(z2m)− zb(z2)c‡(z2m), then (f, g) is

scal1,z2m(ord c+deg c) ((scal1,z subsz2(a, b))⋉ (subsz2m(c, d))) ,

which is a Golay pair. In particular, if (a, b) and (c, d) are unimodular (resp., binary) Golay pairs

with len(a, b) = m, len(c, d) = n, ord a = ord b, and ord c = ord d, then (f, g) is a unimodular (resp.,

binary) Golay pair with len(f, g) = 2mn.

Proof. It is not difficult to check the formula for (f, g), from which it follows that (f, g) is

Golay via Lemma 2.19 and Corollary 2.29. The second claim is clear if (a, b) or (c, d) is (0, 0),

and otherwise follows from the fact that the coefficient of zj in f(z) (resp., g(z)) is 0 unless

2 ord a+ 2m ord c ≤ 1 + 2deg a+ 2m deg c, in which case it is the either the product of a nonzero

coefficient of a with one of c or the product of a nonzero coefficient of b with one of d (resp., either

the product of a nonzero coefficient of a with the conjugate of one of d or the product of a nonzero

coefficient of b with the conjugate of one of c). □

The final construction is due to Turyn [92, Lemma 5].a

Construction 2.34 (Turyn). If (a, b) and (c, d) are Golay pairs with ord a+ deg a = ord b+ deg b

and m is a nonzero integer, and we let

f(z) = a(z)

(
c(zm) + d(zm)

2

)
− b‡(z)

(
c(zm)− d(zm)

2

)
aNote that Turyn uses the notation A×B to denote the tensor product B ⊗A; this is clear when one compares his
summaries (immediately preceding Lemma 5) of Golay’s constructions with the originals in [27, eq. (10),(11)].
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and

g(z) = b(z)

(
c(zm) + d(zm)

2

)
+ a‡(z)

(
c(zm)− d(zm)

2

)
,

then (f, g) is

scal1/2,−zord a+deg a/2

((
subszm

(
(c, d)⋉ (1, 1)

))
⋉
(
scal1,−1 crev

′(a, b)
))

,

which is a Golay pair. In particular, if (a, b) is a unimodular (resp., binary) Golay pair and (c, d) is

a binary Golay pair, and if len(a, b) = m, len(c, d) = n, ord a = ord b, and ord c = ord d, then (f, g)

is a unimodular (resp., binary) Golay pair with len(f, g) = mn.

Proof. It is not difficult to check the formula for (f, g), from which it follows that (f, g) is

Golay via Lemma 2.19, Corollary 2.29, and the fact that (1, 1) is a Golay pair. The second claim is

clear if (a, b) or (c, d) is (0, 0). Otherwise, we first note that (c+ d)/2 and (c− d)/2 are sequences

whose coefficients for zj both vanish unless ord c ≤ j ≤ deg c, in which case precisely one of them

vanishes and the other is in {−1, 1}. Thus the coefficient of zj in f(z) (resp., in g(z)) is 0 unless

ord a+m ord c ≤ j ≤ deg a+mdeg c, in which case it is equal to plus or minus either a nonzero

coefficient of a or else the conjugate one of b (resp., plus or minus either a nonzero coefficient of b or

else the conjugate of one of a). □

For arbitrary nonnegative integers a, b, and c, one can construct a binary Golay pair of length

2a10b26c using Turyn’s construction and the following sequence pairs (represented using + to denote

+1 and − to denote −1).

• Length 1:
+
+

• Length 2:
++
+−

• Length 10:
+++++−+−−+
++−−+++−+−
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or
++−+++++−−
++−+−+−−++

• Length 26:

++++−++−−+−+++++−+−−−++−−−
++++−++−−+−+−+−−+−+++−−+++

We have listed two Golay pairs of length 10 that are inequivalent modulo the action of the binary

Golay group BGol (all other binary Golay pairs of length 10 are equivalent to one of these); for the

other lengths listed above there is only one binary Golay pair of that length modulo the action of

BGol (see [19, Table 1]). We note that each sequence in the second Golay pair of length 10 above

can be obtained from the corresponding sequence in the first Golay pair of length 10 by selecting the

next-to-leftmost term and then selecting every third term, proceeding cyclically (cf. [27, p. 86]).

Ðoković [19, Definition 2.1] defines a constructible binary Golay pair to be one that is equivalent,

modulo the action of the binary Golay group BGol, to a binary Golay pair that can be generated

from two smaller binary Golay pairs via a variant of Turyn’s construction. In addition to the binary

Golay pairs of lengths 1, 2, 10, and 26 displayed above, Ðoković shows that (up to equivalence

modulo BGol) there are two non-constructible binary Golay pairs of length 16, one of length 20, and

forty-four of length 32. Borwein and Ferguson [12, pp. 975–978] devise a procedure that produces

all binary Golay pairs of length less than 100 starting from a set of only five starting binary Golay

pairs. Their procedure, based on Constructions 2.31 and 2.33 and transformations from BGol, allows

for non-binary Golay pairs whose terms are in {1,−1, 0} in intermediate steps, and their starting

binary Golay pairs are the pairs of lengths 1, 10, and 26 listed above, along with the following pair

of length 20.

• Length 20:

++++−+++++−−−+−+−++−
++++−+−−−++−−++−+−−+

Since Borwein and Ferguson obtain every binary Golay pair of length less than 100 starting from

the specific Golay pairs of lengths 1, 10, 20, and 26 listed above by means of the transformations in

BGol along with Constructions 2.31 and 2.33, the fact that these constructions can be obtained from

the weaving construction and transformations in EGol shows that every binary Golay pair of length
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100 can be obtained from Borwein and Ferguson’s five starting Golay pairs, the transformations in

EGol, and the weaving construction.

2.7. Iterated Golay-Rudin-Shapiro Construction

In this section we show how the demerit factors of sequences in Golay pairs change when we

repeatedly apply a simple construction that produces longer and longer Golay pairs. Before Golay

presented Construction 2.31, he had already devised [26, p. 469] the special case of it where the

second pair used in the construction is (c, d) = (1, 1) and the parameter n is 1. At almost the

same time, Shapiro [80, pp. 39–40] devised the same special case of Construction 2.31 in his studies

of Littlewood polynomials with small L∞ norm on the complex unit circle, and this was later

rediscovered by Rudin [75, eq. (1.5)]; for this reason we call this special case of Construction 2.31

the Golay–Rudin–Shapiro construction.

Construction 2.35 (Golay-Rudin-Shapiro). If (a, b) ∈ C[z, z−1]2 and m is an integer, then we set

GRS((a, b),m) = (scal1,zm(a, b))⋉ (1, 1)

= (a+ zmb, a− zmb).

We prove some properties of our construction.

(i). If (a, b) is a Golay pair, then so is GRS((a, b),m).

(ii). If ord a = ord b and m > 0, then GRS((a, b),m) is a pair of order ord a.

(iii). If len a = len b = m and ord a = ord b, then GRS((a, b),m) is a pair of length 2m and order

ord a.

(iv). If (a, b) is a unimodular (resp., binary) pair with len a = len b = m and ord a = ord b, then

GRS((a, b),m) is a unimodular (resp., binary) pair of length 2m and order ord a.

Proof. The claim that GRS((a, b),m) is a Golay pair whenever (a, b) is follows from Lemma 2.19

and Corollary 2.29 and the fact that (1, 1) is a Golay pair, and the other claims are clear from the

second expression for GRS((a, b),m). □

We now iterate the previous construction, also allowing for the application of transformations

from EGol.
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Construction 2.36 (Iterated Golay-Rudin-Shapiro). Let (a, b) ∈ C[z, z−1]2, let m ∈ Z, and let

γ = (γ0, γ1, . . .) be a sequence of transformations from EGol. For n ∈ N, we define GRSnγ ((a, b),m)

recursively by setting GRS0γ((a, b),m) = γ0(a, b) and for n > 0 setting

GRSn+1
γ = γn+1(GRS(GRSnγ ((a, b),m), 2nm)).

We prove some properties of our iterated construction.

(i). If (a, b) is a Golay pair, then so is GRSnγ ((a, b),m) for every n ∈ N.

(ii). If ord a = ord b and m > 0, and γj ∈ SGol for every j ∈ N, then GRSnγ ((a, b),m) is a pair of

order ord a for each n ∈ N.

(iii). If len a = len b = m, ord a = ord b, and γj ∈ SGol for every j ∈ N, then GRSnγ((a, b),m) is a

pair of order ord a and length 2nm for each n ∈ N.

(iv). If (a, b) is unimodular (resp., binary), len a = len b = m, ord a = ord b, and γj ∈ UGol (resp.,

BGol) for every j ∈ N, then GRSnγ((a, b),m) is a unimodular (resp., binary) pair of order

ord a and length 2nm for each n ∈ N.

Proof. Each claim is proved inductively using Construction 2.35 along with Lemma 2.19 (for

the first claim), Remark 2.22 (for the second and third claims), and Remark 2.24 (resp., Remark 2.26)

for the parts of the fourth claim not already established in the third claim. □

Example 2.37. We consider some examples of how Construction 2.36 can be used to construct

Golay pairs. To easily encode Golay pairs, we represent each binary sequence f of length 2n (for

n ∈ N) as a Boolean function in n variables. This is a very convenient formalism developed by

Davis and Jedwab [14] that captures all the known Golay pairs whose lengths are powers of 2;

these pairs were already known to Golay [27, pp. 85–86], who obtained them via a closely related

formalism. We use the same idea as these previous authors, but with a slightly more convenient

indexing. We let F2 be the binary field, and write a Boolean function from Fn
2 to F2 as a polynomial

F (x0, x1, . . . , xn−1) ∈ F2[x0, x1, . . . , xn−1], where x0, x1, . . . , xn−1 are n indeterminates, none of

which appears with a power greater than 1 in our polynomial F (x0, x1, . . . , xn−1). We use the

convention that if we evaluate F with inputs from Z, we mean that those elements should be

reduced modulo 2 (and so mapped into F2) before evaluation. With this convention, the sequence
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f =
∑

j∈Z fjz
j associated to F has fj = (−1)F (j0,j1,...,jn−1) whenever j0, . . . , jn−1 ∈ {0, 1} ⊆ Z with

j =
∑n−1

u=0 ju2
u (and fj = 0 when j ̸∈ {0, 1, . . . , 2n − 1}). Note this concept even works for the

the sequences 1 and −1 of length 1: these correspond to the Boolean functions in zero variables

(i.e., constants) F = 0 and G = 1, respectively. Note that negation (resp., substitution of −z

for z, conjugate reversal) of the binary sequence of length 2n associated with Boolean function

F (x0, . . . , xn−1) changes it into the binary sequence of length 2n associated with Boolean function

F (x0, . . . , xn−1) + 1 (resp., F (x0, . . . , xn−1) + x0, F (x0 + 1, . . . , xn−1 + 1)).

If (a, b) is a binary Golay pair of length 2n whose sequences correspond to Boolean functions

A(x0, . . . , xn−1) and B(x0, x1, . . . , xn−1), respectively, then it is not hard to show that GRS((a, b), 2n)

is the binary Golay pair of length 2n+1 whose sequences correspond to the Boolean functions

(1− xn)A(x0, . . . , xn−1) + xnB(x0, . . . , xn−1)

and

(1− xn)A(x0, . . . , xn−1) + xnB(x0, . . . , xn−1) + xn,

respectively. Therefore, if we start with (a, b) equal to the binary Golay pair (1, 1) of length 1,

and if we let γ = (γ0, γ1, . . .) where every γj is the identity transformation, then it is not hard to

use induction to show that GRSnγ((a, b), 1) is the binary Golay pair of length 2n whose sequences

correspond to the Boolean functions 0 and 0 (if n = 0) or

n−2∑
j=0

xjxj+1 and
n−2∑
j=0

xjxj+1 + xn−1

(if n ≥ 1), where we construe empty sums as 0 when n = 1. These are the Boolean functions

associated to the original sequence pairs of Golay and Shapiro.

On the other hand, we can obtain very different sequences starting from the same initial pair

(1, 1) if we use some non-identity transformations between the stages of Golay concatenation. Now

we let γj be the identity map for all even j, but let γj = crev for all odd j. Then it is not hard to

show by induction that if (a, b) is the binary Golay pair (1, 1) of length 1, then GRSnγ ((a, b), 1) is the

binary Golay pair of length 2n associated to the Boolean functions 0 and 0 (for n = 0), 0 and x0 (for
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n = 1), or C(x0, . . . , xn−1) and D(x0, . . . , xn−1) (for n ≥ 2), where

C(x0, . . . , xn−1) = x0x1 +

⌊(n−3)/2⌋∑
j=0

x2j+1x2j+2 +

⌊(n−4)/2⌋∑
j=0

x2jx2j+3 + x0 + x2⌊(n−1)/2⌋,

and

D(x0, . . . , xn−1) = C(x0, . . . , xn−1) + xn−2+(−1)n ,

and we construe empty sums as 0 when n is small.

We are interested in the autocorrelation and crosscorrelation demerit factors of GRSnγ ((a, b),m)

as a function of the inputs. We begin with a useful technical result.

Lemma 2.38. Let (a, b) be an isoenergetic Golay pair with a, b ̸= 0. Then

|a|40 + |b|40
(|a|20 + |b|20)2

=
ADF(a) + 1

2

=
ADF(b) + 1

2

= 1− CDF(a, b)

2
.

Proof. Since (a, b) is isoenergetic we have |a|20 = |b|20, and Lemma 2.9 shows that we have

ADF(a) = ADF(b), and so

|a|40 + |b|40
(|a|20 + |b|20)2

=
|a|40

4(|a|20)2
+

|b|40
4(|b|20)2

=
ADF(a) + 1

4
+

ADF(b) + 1

4

=
ADF(a) + 1

2
,

where we used (2.10) in the second equality. Since (a, b) is a Golay pair with ADF(a) = ADF(b),

Theorem 2.1 shows that ADF(a) = 1−CDF(a, b), and substituting this in our expression completes

the proof. □

Now we show the effect of one step of Construction 2.36 on the demerit factors.

Proposition 2.39. Let (a, b) be an isoenergetic Golay pair with ord a = ord b ̸= ∞, and let m be

an integer with max(len a, len b) ≤ m. Let σ ∈ SGol. If (f, g) = σ(GRS((a, b),m)), then (f, g) is an
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isoenergetic Golay pair with ord(f, g) = ord(a, b) ̸= ∞, max(len f, len g) ≤ 2m, ADF(f) = ADF(g),

and

ADF(f)− 1

3
= −1

2

(
ADF(a)− 1

3

)
CDF(f, g)− 2

3
= −1

2

(
CDF(a, b)− 2

3

)
.

Proof. First of all, note that m > 0 since the condition that ord(a, b) ̸= ∞ gives a and b

positive lengths. Let (c, d) = GRS((a, b),m), so that (f, g) = σ(c, d). From Construction 2.35

and we know that (c, d) is a Golay pair with ord(c, d) = ord(a, b) ̸= ∞, and then we can see that

(c, d) = (a+ zmb, a− zmb) has max(len c, len d) ≤ 2m. Then by Lemma 2.19 and Remark 2.22, we

see that (f, g) is a Golay pair with ord(f, g) = ord(a, b) ̸= ∞ and max(len f, len g) ≤ 2m.

Since (c, d) = GRS((a, b),m) = (a, zmb) ⋉ (1, 1), we apply Lemma 2.28 and Lemma 2.30 and

extract the constant coefficients to obtain

|c|20 = |a|20 + |b|20 + 2Re(z−mab)0

|d|20 = |a|20 + |b|20 − 2Re(z−mab)0

|cd|20 = |a|40 + |b|40 − 2Re((z−mab)2)0.

Since a and b are of length m or less and ord a = ord b, only monomials of negative degree occur in

z−mab, so there is no constant term in Re((z−mab)k) for any k > 0. Thus we have

|c|20 = |a|20 + |b|20

|d|20 = |a|20 + |b|20

|cd|20 = |a|40 + |b|40.

In view of (2.7), the first two equations show that (c, d) is isoenergetic, so Lemma 2.9 shows that

ADF(c) = ADF(d). Furthermore we use (2.9) and the expressions above with Lemma 2.38 to see
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that

CDF(c, d) =
|a|40 + |b|40

(|a|20 + |b|20)2

= 1− CDF(a, b)

2
,

which means that

CDF(c, d)− 2

3
= −1

2

(
CDF(a, b)− 2

3

)
.

Since (c, d) is a Golay pair with ADF(c) = ADF(d), Theorem 2.1 tells us that CDF(c, d)+ADF(c) = 1,

and similarly CDF(a, b) + ADF(a) = 1 because ADF(a) = ADF(b) by Lemma 2.9, so we can negate

both sides of the last equation to obtain

ADF(c)− 1

3
= −1

2

(
ADF(a)− 1

3

)
.

Since (c, d) is isoenergetic and ADF(c) = ADF(d), Lemma 2.20 shows that (f, g) = σ(c, d) is

isoenergetic, that ADF(f) = ADF(g) = ADF(c), and that CDF(f, g) = CDF(c, d). □

Now that we have seen how a single step of Construction 2.36 transforms the ADF and CDF of

its input pair, we shall now investigate the effect of multiple steps.

Theorem 2.40. Let (f, g) be an isoenergetic Golay pair with ord f = ord g ̸= ∞, let m be an

integer with max(len f, len g) ≤ m, and let γ = (γ0, γ1, . . .) be a sequence of transformations from

SGol. Let (f (n), g(n)) = GRSnγ((f, g),m) for each n ∈ N. Then for each n ∈ N, the pair (f (n), g(n))

is an isoenergetic Golay pair with ord(f (n), g(n)) = ord(f, g) ̸= ∞, max(len f (n), len g(n)) ≤ 2nm,

ADF(f (n)) = ADF(g(n)), and

ADF(f (n))− 1

3
=

(
−1

2

)n(
ADF(f)− 1

3

)
CDF(f (n), g(n))− 2

3
=

(
−1

2

)n(
CDF(f, g)− 2

3

)
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for each n ∈ N. Thus

lim
n→∞

ADF(f (n)) = lim
n→∞

ADF(g(n)) =
1

3
,

lim
n→∞

CDF(f (n), g(n)) =
2

3
.

Proof. The asymptotic results follow immediately from the preceding formulae for the demerit

factors, and the proof of all the non-asymptotic results proceeds by induction on n. If n = 0, then

Lemma 2.9 shows that ADF(f) = ADF(g), and then Lemmas 2.19 and 2.20 and Remark 2.22

show that (f (0), g(0)) = γ0(f, g) is an isoenergetic Golay pair with ord(f (0), g(0)) = ord(f, g) ̸= ∞,

max(len f (0), len g(0)) = max{len f, len g} ≤ m, ADF(f (0)) = ADF(g(0)) = ADF(f) = ADF(g), and

CDF(f (0), g(0)) = CDF(f, g). If n > 0 and we assume that our conclusions hold for (f (n−1), g(n−1)),

then Proposition 2.39 shows that our conclusions hold for (f (n), g(n)). □

Remark 2.41. Let m be a positive integer and let (f, g) be be a unimodular Golay pair of length m

with ord f = ord g. Let γ = (γ0, γ1, . . .) be a sequence of transformations from UGol. Then (f, g),

m, and γ satisfy the hypotheses of Theorem 2.40, and in addition to the conclusions therefrom, we

also know that for each n ∈ N the pair (f (n), g(n)) is unimodular and length 2nm. To see this, note

that (f, g) is isoenergetic by Lemma 2.10, that f and g are of positive length and equal order, so

ord f = ord g ̸= ∞, and that UGol is a subgroup of SGol, so that (f, g), m, and γ satisfy all the

hypotheses of Theorem 2.40, while Construction 2.36 shows that (f (n), g(n)) is unimodular and of

length 2nm for every n ∈ N.

Remark 2.42. Let m be a positive integer and let (f, g) be be a binary Golay pair of length m with

ord f = ord g. Let γ = (γ0, γ1, . . .) be a sequence of transformations from BGol. Then (f, g), m,

and γ satisfy the hypotheses of Theorem 2.40, and in addition to the conclusions therefrom, we also

know that for each n ∈ N the pair (f (n), g(n)) is binary and length 2nm. To see this, note that binary

sequences are unimodular and BGol is a subgroup of UGol, so we may use Remark 2.41, and then

Construction 2.36 shows that the pair (f (n), g(n)) is binary for every n ∈ N.
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2.8. An Iterated Golay Interleaving Construction

In this section, we shall explore how an iterated interleaving construction for Golay pairs influences

demerit factors. In the previous section, we looked at the Golay-Rudin-Shapiro construction, which

was noted to be a special case of Golay’s concatenation construction. We present the analogous

special case of Golay’s interleaving (Construction 2.32), where we use 1 for the parameter m and

(1, 1) for the first pair (a, b) in that construction.

Construction 2.43 (Simple Golay interleaving). If (a, b) ∈ C[z, z−1]2 with ord a+ deg a = ord b+

deg b, then we set

SGI(a, b) = scal1,z2(ord a+deg a) ((scal1,z(1, 1))⋉ (subsz2(a, b)))

=
(
a(z2) + zb(z2), b‡(z2)− za‡(z2)

)
.

We prove some properties of our construction.

(i). If (a, b) is a Golay pair, then so is SGI(a, b).

(ii). If len a = len b, then SGI(a, b) is a pair of order 2 ord a and length 2 len a.

(iii). If (a, b) is a unimodular (resp., binary) pair with len a = len b, then SGI(a, b) is a unimodular

(resp., binary) pair of length 2 len a.

Proof. The claim that SGI(a, b) is a Golay pair whenever (a, b) is follows from Lemma 2.19

and Corollary 2.29 and the fact that (1, 1) is a Golay pair. In the second and third claims,

the additional assumption that len a = len b along with the original assumption ord a + deg a =

ord b+ deg b imply that ord a = ord b, and then the second expression for SGI(a, b) makes clear that

ord SGI(a, b) = 2 ord a and len SGI(a, b) = 2 len a and that SGI(a, b) is unimodular (resp., binary) if

(a, b is unimodular (resp., binary). □

We now iterate the previous construction, also allowing for the application of transformations

from SGol.

Construction 2.44 (Iterated simple Golay interleaving). Let (a, b) be a pair in C[z, z−1]2 with

len a = len b and ord a = ord b and let γ = (γ0, γ1, . . .) be a sequence of transformations from SGol.
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For n ∈ N, we define SGInγ(a, b) recursively by setting SGI0γ(a, b) = γ0(a, b) and for n > 0 setting

SGIn+1
γ = γn+1(SGI(SGInγ (a, b))). We prove some properties of our iterated construction.

(i). If (a, b) is a Golay pair, then so is SGInγ (a, b) for every n ∈ N.

(ii). SGInγ (a, b) is a pair of length 2n len a and order 2n ord a for every n ∈ N.

(iii). If (a, b) is a unimodular (resp., binary) pair and γj ∈ UGol (resp., γj ∈ BGol) for every j ∈ N,

then SGInγ(a, b) is a unimodular (resp., binary) pair of length 2n len a and order 2n ord a for

every n ∈ N.

Proof. Throughout this proof, it is useful to note that if two sequences, f and g, meet any two

of the three conditions (I) len f = len g, (II) ord f = ord g, or (III) ord f+deg f = ord g+deg g, then

they must also meet the third condition. This is clear because the pair (f, g) = (0, 0) meets all three

conditions, a pair consisting of one zero sequence and one nonzero sequence meets neither (I) nor (II),

and a pair (f, g) of two nonzero sequences has len f = deg f − ord f +1 and len g = deg g− ord g+1.

For pairs of sequences with matching lengths and orders, transformations from SGol preserve the

length and order (see Remark 2.22) while SGI doubles the length and order (see Construction 2.43),

so one can inductively establish the second claim for each n ∈ N, which allows the recursive

construction to carry on to the next step, since the input of SGI must be a pair (f, g) with

ord f + deg f = ord g + deg g. The third claim follows from the second along with an induction

using the final result in Construction 2.43 along with Remark 2.24 (for unimodular sequences) or

Remark 2.26 (for binary sequences). The first claim is proved by induction using Lemma 2.19 and

Construction 2.43. □

Example 2.45. We consider how Construction 2.44 can be used to construct Golay pairs, using

the same Boolean function formalism described in Example 2.37. If (a, b) is a binary Golay pair of

length 2n whose sequences correspond to Boolean functions A(x0, . . . , xn−1) and B(x0, x1, . . . , xn−1),

respectively, then it is not hard to show that SGI(a, b) is the binary Golay pair of length 2n+1 whose

sequences correspond to the Boolean functions

(1− x0)A(x1, . . . , xn) + x0B(x1, . . . , xn)
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and

(1− x0)B(x1 + 1, . . . , xn + 1) + x0A(x1 + 1, . . . , xn + 1) + x0,

respectively. Therefore, if we start with (a, b) equal to the binary Golay pair (1, 1) of length 1, and

if we let γ = (γ0, γ1, . . .) where every γj is the identity transformation, then it is not hard to use

induction to show that SGInγ(a, b) is the binary Golay pair of length 2n whose sequences correspond

to the Boolean functions 0 and 0 (if n = 0), 0 and x0 (if n = 1), or

xn−2xn−1 +
n−3∑
j=0

xjxj+2 +
n−3∑
j=0

xj and

xn−2xn−1 +
n−3∑
j=0

xjxj+2 +
n−3∑
j=0

xj + x1 + 1

(for n ≥ 2), where we construe empty sums in these expressions as 0 when n = 2.

On the other hand, we can obtain very different sequences starting from the same initial pair

(1, 1) if we use some non-identity transformations between the stages of simple Golay interleaving.

Recall from Example 2.37 that conjugate reversal of the binary sequence of length 2n associated with

Boolean function F (x0, . . . , xn−1) changes it into the binary sequence of length 2n associated with

Boolean function F (x0 + 1, . . . , xn−1 + 1). Now we let γj be the identity map for all even j, but let

γj = crev for all odd j. Then with some care one can prove by induction that if (a, b) is the binary

Golay pair (1, 1) of length 1, then SGInγ(a, b) is the binary Golay pair of length 2n associated to the

Boolean functions 0 and 0 (for n = 0), 0 and x0 (for n = 1), x0x1 and x0x1 + x1 + 1 (for n = 2), or

C(x0, . . . , xn) and D(x0, . . . , xn) (for n ≥ 3), where

C(x0, . . . , xn) = xn−3xn−1 +

⌊(n−2)/2⌋∑
j=0

xn−2−2jxn−1−2j

+

⌊(n−5)/2⌋∑
j=0

xn−5−2jxn−2−2j

+
n−4∑
j=0

xj + xn−2 + (n+ 1)x0 +

(
n− 1

2

)
,

and

D(x0, . . . , xn) = C(x0, . . . , xn) + nx0 + (n+ 1)x2,
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and we construe empty sums as 0 when n is small.

Now we investigate how a single step of Construction 2.44 affects demerit factors.

Proposition 2.46. Let (a, b) be an isoenergetic Golay pair with len a = len b > 0 and ord a = ord b.

Let σ ∈ SGol. If (f, g) = σ(SGI(a, b)), then (f, g) is an isoenergetic Golay pair with len(f, g) =

2 len(a, b) > 0, ord(f, g) = 2 ord(a, b), ADF(f) = ADF(g), and

ADF(f)− 1

3
= −1

2

(
ADF(a)− 1

3

)
+W (a, b)

CDF(f, g)− 2

3
= −1

2

(
CDF(a, b)− 2

3

)
−W (a, b),

where

W (a, b) =
2Re(z(ab)2)0
(|a|20 + |b|20)2

.

Proof. Let (c, d) = SGI(a, b), so that (f, g) = σ(c, d). From Construction 2.43 we know that

(c, d) is a Golay pair with len(c, d) = 2 len(a, b) > 0 and ord(c, d) = 2 ord(a, b). Then by Lemma 2.19

and Remark 2.22, we can see that (f, g) = σ(c, d) is a Golay pair with len(f, g) = 2 len(a, b) > 0 and

ord(f, g) = 2 ord(a, b).

Let (c′, d′) = (1, z)⋉ (a(z2), b(z2)) so that (c, d) = scal1,z2(ord a+deg a)(c′, d′). Because |z|2 = 1, we

see that |c|2, |d|2, and |cd|2 are the same as |c′|2, |d′|2, and |c′d′|2, respectively, and we can calculate

these by using Lemmas 2.28 and 2.30 on (c′, d′) to obtain

|c|20 = |a(z2)|20 + |b(z2)|20 + 2Re
(
za(z2)b(z2)

)
0

|d|20 = |a(z2)|20 + |b(z2)|20 − 2Re
(
za(z2)b(z2)

)
0

|cd|20 = |a(z2)|40 + |b(z2)|40 − 2Re

((
za(z2)b(z2)

)2)
0

.

Notice that only monomials of odd degree occur in za(z2)b(z2), so there is no constant term in it or

its conjugate. Thus the final term in each of the first two expressions vanishes. Further, we note
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that Re((za(z2)b(z2))2)0 = Re(z(ab)2)0. As such,

|c|20 = |a|20 + |b|20

|d|20 = |a|20 + |b|20

|cd|20 = |a|40 + |b|40 − 2Re
(
z(ab)2

)
0
.

In view of (2.7), the first two equations show that (c, d) is isoenergetic, so Lemma 2.9 shows that

ADF(c) = ADF(d). Now we use (2.9) and the expressions above to see that

CDF(c, d) =
|a|40 + |b|40(
|a|20 + |b|20

)2 −
2Re

(
z(ab)2

)
0(

|a|20 + |b|20
)2 .

Then use Lemma 2.38 and the definition of W (a, b) in the statement of this lemma to see that

CDF(c, d) = 1− CDF(a, b)

2
−W (a, b),

and then we can subtract 2/3 from both sides to obtain

CDF(c, d)− 2

3
= −1

2

(
CDF(a, b)− 2

3

)
−W (a, b).

Since (c, d) is a Golay pair with ADF(c) = ADF(d), Theorem 2.1 tells us that CDF(c, d)+ADF(c) = 1,

and similarly CDF(a, b) + ADF(a) = 1 because ADF(a) = ADF(b) by Lemma 2.9, so we can negate

both sides of the last equation to obtain

ADF(c)− 1

3
= −1

2

(
ADF(a)− 1

3

)
+W (a, b).

Since (c, d) is isoenergetic and ADF(c) = ADF(d), Lemma 2.20 shows that (f, g) = σ(c, d) is

isoenergetic, that ADF(f) = ADF(g) = ADF(c), and that CDF(f, g) = CDF(c, d). □

We now wish to investigate the autocorrelation and crosscorrelation demerit factors of SGInγ (a, b)

from Construction 2.44 by applying the last proposition multiple times, but the term W (a, b) that

appears in that proposition can make calculations troublesome. We find that if we restrict σ to

come from a carefully selected subgroup of SGol, then when we use the output pair (f, g) from the

proposition as an input into the same proposition (for the next step of Construction 2.44), we will
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find that W (f, g) = 0, thus simplifying the calculation. We first describe the subgroup of SGol that

allows for this simplification.

Definition 2.47 (Restricted Golay Group RGol). The restricted Golay group, written RGol, is

the subgroup of SGol generated by swap, crev ◦ crev′, srev, all transformations scalu,v where u, v are

nonzero complex numbers with |u| = |v|, and all transformations subswz, where w is a unimodular

complex number.

Remark 2.48. The only difference between the generating set of RGol and that of SGol is that RGol

has the single generator crev ◦ crev′ in place of the two generators crev and crev′ for SGol. Thus

RGol is a subgroup of SGol, and indeed a proper subgroup because it is straightforward to show that if

(a, b) = (1+z+z2−z3, 1+z−z2+z3) and (f, g) = γ(a, b) for some γ ∈ RGol, then fg has terms of both

even and odd degree, but a‡b has only terms of even degree, so γ(a, b) = (f, g) ̸= (a†, b) = crev(a, b),

and so crev ∈ SGol∖RGol.

Definition 2.49 (Restricted Unimodular Golay Group RUGol). The restricted unimodular Golay

group, written RUGol, is RGol∩UGol.

Remark 2.50. Note that RUGol contains swap, crev ◦ crev′, srev, all transformations scalu,v where

u, v are unimodular complex numbers, and all transformations subswz, where w is a unimodular

complex number, because all these transformations are in both RGol and UGol.

Definition 2.51 (Restricted Binary Golay Group RBGol). The restricted binary Golay group,

written RBGol, is RGol∩BGol.

Remark 2.52. Note that RBGol contains swap, crev ◦ crev′, srev, scal−1,1, scal1,−1, and subs−z,

because all these transformations are in both RGol and BGol. Recall that crev ◦ crev′ and srev have

the same effect when applied to sequences with real terms.

The following lemma shows that if we use a transformation σ from RGol in Proposition 2.46,

then the output pair (f, g) from that proposition has the property that W (f, g) = 0 when we use

(f, g) again as an input pair for that proposition.
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Lemma 2.53. Let (a, b) ∈ C[z, z−1]2 with ord a + deg a = ord b + deg b, let σ ∈ RGol, and let

(f, g) = σ(SGI(a, b)). Then Re(z(fg)2)0 = 0.

Proof. Let (c, d) = SGI(a, b), so that (f, g) = σ(c, d). From the formula for SGI(a, b) in

Construction 2.43, and using the hypothesis that ord a+ deg a = ord b+ deg b, we see that

cd =
(
a(z2) + zb(z2)

) (
z−2(ord b+deg b)b(z2)− z−2(ord a+deg a)−1a(z2)

)
,

so that

cd = −z−2(ord a+deg a)−1(a(z2)2 − z2b(z2)2),

which has only odd degree terms. We say that a Laurent polynomial x(z) is parity-pure to mean that

x(z) does not have both a term of even degree and a term of odd degree, and we say that a pair (x, y)

of Laurent polynomials is parity-pure to mean that the Laurent polynomial xy is parity-pure. So (c, d)

is parity-pure. We claim that (f, g) = σ(c, d) is also parity-pure. Recall the generating set of RGol

specified in Definition 2.47. Since this set of generators is closed under inversion (see Lemma 2.13,

and note that crev ◦ crev′ is an involution), σ is a composition of some of these generators. We claim

that any such generator η, when applied to a parity-pure pair (x, y) ∈ C[z, z−1]2 , produces another

parity-pure pair (x′, y′) = η(x, y), because of the following considerations.

• If η = swap, then x′y′ = yx = xy, which is parity-pure.

• If η = crev ◦ crev′, then x′y′ = x‡y‡ = zordx+deg x−ord y−deg yxy, which is parity-pure.

• If η = srev, then

x′y′ = zordx+deg x−ord y−deg yx(z−1)y(z−1)

= zordx+deg x−ord y−deg y(xy)(z−1),

which is parity-pure.

• If η = scalu,v where u and v are nonzero complex numbers, then x′y′ = uvxy, which is

parity-pure.

• If η = subswz where w is a unimodular complex number, then x′y′ = x(wz)y(wz). But if we

let h = y, then y(wz) = h(w−1z) = h(wz), so that x′y′ = (xy)(wz), which is parity-pure.
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Thus we conclude that (f, g) = σ(c, d) is parity-pure, and so z(fg)2 has only terms of odd degree, so

that Re(z(fg)2)0 = 0. □

Now we can use Proposition 2.46 with Lemma 2.53 to analyze demerit factors of pairs produced

by Construction 2.44.

Theorem 2.54. Let (f, g) be an isoenergetic Golay pair with len f = len g > 0 and ord f = ord g.

Let γ = (γ0, γ1, . . .) be a sequence of transformations from RGol. Let (f (n), g(n)) = SGInγ(f, g)

for each n ∈ N. Then for each n ∈ N, the pair (f (n), g(n)) is an isoenergetic Golay pair with

len(f (n), g(n)) = 2n len(f, g) > 0, ord(f (n), g(n)) = 2n ord(f, g), and ADF(f (n)) = ADF(g(n)). We

have ADF(f (0)) = ADF(f) and CDF(f (0), g(0)) = CDF(f, g), and for n > 0 we have

ADF(f (n))− 1

3
=

(
−1

2

)n(
ADF(f)− 1

3

)
+

(
−1

2

)n−1

W0

and

CDF(f (n), g(n))− 2

3
=

(
−1

2

)n(
CDF(f, g)− 2

3

)
−
(
−1

2

)n−1

W0,

where

W0 =
2Re((z(f (0)g(0))2)0

(|f (0)|20 + |g(0)|20)2
.

Thus

lim
n→∞

ADF(f (n)) = lim
n→∞

ADF(g(n)) =
1

3
,

lim
n→∞

CDF(f (n), g(n)) =
2

3
.

Proof. The asymptotic results follow immediately from the formulae for the demerit factors,

and the proof of all the non-asymptotic results proceed by induction on n. If n = 0, then Lemma 2.9

shows that ADF(f) = ADF(g), and then Lemma 2.19, Lemma 2.20, and Remark 2.22 show that

(f (0), g(0)) is an isoenergetic Golay pair with len(f (0), g(0)) = len(f, g) > 0, ord(f (0), g(0)) = ord(f, g),

ADF(f (0)) = ADF(g(0)) = ADF(f) = ADF(g), and CDF(f (0), g(0)) = CDF(f, g). For n = 1,

Proposition 2.46 gives us all the desired results. If n > 1 and we assume the results hold for

(f (n−1), g(n−1)), then we apply Proposition 2.46, which immediately tells us that (f (n), g(n)) is an
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isoenergetic Golay pair of length 2n len(f, g) and order 2n ord(f, g) with ADF(f (n)) = ADF(g(n)).

Furthermore, since Lemma 2.53 tells us that W (f (n−1), g(n−1)) = 0, the demerit factor formulae that

Proposition 2.46 supplies become

ADF(f (n))− 1

3
= −1

2

(
ADF(f (n−1))− 1

3

)
CDF(f (n), g(n))− 2

3
= −1

2

(
CDF(f (n−1), g(n−1))− 2

3

)
,

into which we substitute the values of ADF(f (n−1)) and CDF(f (n−1), g(n−1)) from the induction

hypothesis to obtain the desired result. □

Remark 2.55. Let (f, g) be a unimodular Golay pair of nonzero sequences with ord f = ord g.

Let γ = (γ0, γ1, . . .) be a sequence of transformations from RUGol. Then (f, g) and γ satisfy the

hypotheses of Theorem 2.54, and in addition to the conclusions therefrom, we also know that for

each n ∈ N the pair (f (n), g(n)) is unimodular. To see this, note that Lemma 2.10 shows that (f, g)

is isoenergetic and len f = len g (which is nonzero since the sequences are nonzero), and note that

RUGol is a subgroup of RGol, so that (f, g) and γ satisfy all the hypotheses of Theorem 2.54, while

Construction 2.44 shows that (f (n), g(n)) is unimodular for every n ∈ N.

Remark 2.56. Let (f, g) be a binary Golay pair of nonzero sequences with ord f = ord g. Let

γ = (γ0, γ1, . . .) be a sequence of transformations from RBGol. Then (f, g) and γ satisfy the

hypotheses of Theorem 2.54, and in addition to the conclusions therefrom, we also know that for

each n ∈ N the pair (f (n), g(n)) is binary. To see this, note that binary sequences are unimodular

and RBGol is a subgroup of RUGol, so we may use Remark 2.55, and then Construction 2.44 shows

that the pair (f (n), g(n)) is binary for every n ∈ N.

2.9. Open Problems

In Sections 2.7 and 2.8, we observed that we can find infinitely many families of unimodular

(or binary) Golay pairs whose sequences have autocorrelation demerit factors and crosscorrelation

demerit factors that tend to 1/3 and 2/3, respectively, as the length of the sequences tends to infinity.

So far, we have been unable to find a construction that creates a family of Golay pairs that deviates

from these asymptotic demerit factor values. This leaves us with two open problems about the
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existence of such a families of Golay pairs. Recall from Lemma 2.10 that if p = (f, g) is a unimodular

Golay pair consisting of nonzero sequences, then len f = len g and ADF(f) = ADF(g), so we can

write len p and ADF(p) for the common values.

Open Problem 2.57. Let {pn}∞n=1 be a sequence of binary Golay pairs with nonzero sequences such

that len pn → ∞ as n → ∞. Must it be true that limn→∞ADF(pn) = 1/3 and limn→∞CDF(pn) =

2/3?

Similarly, there is the open problem for the more general unimodular case.

Open Problem 2.58. Let {pn}∞n=1 be a sequence of unimodular Golay pairs with nonzero se-

quences such that len pn → ∞ as n → ∞. Must it be true that limn→∞ADF(pn) = 1/3 and

limn→∞CDF(pn) = 2/3?
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3.1. Abstract

Many networks in the brain have sparse connectivity, and the brain prunes synapses during

development and learning. With the complex inter-connectivity the brain possesses, determining

which synapses it can safely prune is a difficult problem dependent on higher-order information

than direct synaptic weights alone. How does the brain determine which synapses are redundant,

and which are structurally vital? Noise is pervasive in neural systems, often considered an irritant

to overcome. In this chapter, our results suggest that noise could contribute to synaptic pruning

mechanisms, allowing the brain to probe its own network structure. We construct an anti-Hebbian,

stochastic, local, unsupervised plasticity rule that either strengthens or prunes synapses using only

synaptic weight and the noise-driven covariance of the neighboring neurons. For diagonally-dominant

and symmetric linear and rectified-linear recurrent networks, we prove that this rule preserves the

50



spectrum of the original dense connectivity matrix, even when the fraction of pruned synapses

asymptotically approaches 1. Finally, the plasticity rule is biologically-plausible and suggests a

probative role for noise in neural computation.

3.2. Introduction

Pruning, or the elimination of synaptic connections, was first experimentally observed in the

brain almost five decades ago, notably occurring dramatically during puberty and moderately in

old age [38,42,65,86]. Not only is pruning known to occur within the brain, but it is also studied

outside of the biological context in order to create sparsely connected artificial networks able to

perform computation more efficiently than their dense counterparts, while simultaneously consuming

less memory [10,71]. In addition, synaptic density is disrupted across a variety of diseases such

as autism and schizophrenia, leading clinical investigators to hypothesize that atypical synaptic

sparsity levels may be related to the development of some mental disorders [64,66,94,96]. If we

can understand how the brain determines and maintains its sparse network structure, perhaps we

can explain the experimentally observed changes in connection density through aging and disease.

Furthermore, if we can bridge the gap between biological and artificial pruning algorithms, we may

be able to replicate the remarkable energy efficiency the brain has in artificial neural networks, and

ideally discover more about the brain by studying these artificial networks.

Unlike the hierarchical feed-forward nature of most artificial networks, highly-recurrent networks

such as those in the brain have multiple pathways of information flow. This makes it difficult to

classify which synapses are redundant and thus able to be safely pruned, and which are crucial to

the function of the network. For example, even if a synapse between two neurons is strong, it may be

the case that information can travel between these neurons through alternate pathways, rendering

the aforementioned synapse redundant and safe to discard. A biologically-plausible pruning rule

must determine this higher-order structure using only information locally available at the synapse.

In a highly-recurrent network with multiple pathways of information flow, it is difficult to

determine which synapses are redundant and can be safely pruned, and which are important and

should be retained. For example, even if a synapse between two neurons is strong, if information

can travel between the neurons by alternative pathways then the synapse is redundant and can be
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removed. A biologically-plausible pruning rule must determine this higher-order structure using

information locally available at the synapse, both in space and time [5].

As far as the literature currently stands, neural systems seem noisy at multiple levels: neural

activity contains large background fluctuations, responses to the same stimulus can be quite variable,

and synapses often fail to propagate a signal [16,21,48,81]. In this chapter, we postulate that

noise could play a vital computational role in synaptic pruning. Specifically, the pattern of activity

correlations in a noise-driven network reflects higher-order network structure in precisely the manner

required to prune redundant synapses (as predicted by a theoretical argument). We construct a local

plasticity rule that either strengthens or prunes synapses with a probability given by the synaptic

weight and the noise-driven variance and covariance of the two neighboring neurons. The plasticity

rule is unsupervised and task-agnostic, and manages to yield a sparse network that preserves existing

network dynamics, whatever they are. Thus, it could act alongside learning or during separate

background pruning epochs (e.g., sleep).

We prove that, for diagonally-dominant, undirected linear and rectified linear networks, the

pruning rule preserves multiple useful properties of the original network (including the spectrum and

steady-state firing-rate variances), even when the fraction of removed synapses approaches 1. The

theoretical results link neural network pruning and noise-driven dynamical systems to a powerful

body of results in sampling-based graph sparsification [6,83,84] and to random matrix concentration

of measure techniques [1,73,74,90].

3.3. Problem Setup

In this chapter, we will primarily consider linear neural networks of the form

dx

dt
= −Dx+Wx+ b(t) = Ax+ b(t)(3.1)

The vector x represents the firing rate of N neurons, with each xi the firing rate of the i-th neuron.

The vector-valued function b(t) is the external input to the neurons (including biases), which we

allow to vary over time. W is the connectivity matrix of synaptic weights between the neurons, with

Wij the connection strength from the j-th to the i-th neuron. D is a diagonal matrix representing the
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intrinsic leak of activity (or the excitability of the neuron). Finally we define the matrix A = −D+W .

We discuss generalizations to rectified linear networks in Section 3.7.

The pruning rule we describe in the following section manages to generate a sparse network with

corresponding matrix Asp with two properties. First, the number of edges in the pruned network

(i.e., number of non-zero entries in Asp) will be O(N logN). Indeed, this is dramatically fewer

connections than the O(N2) possible edges in the original network. Second, the dynamics of the

pruned network

(3.2)
dx

dt
= Aspx+ b(t)

will be similar to the dynamics of the original network in Eq. 3.1 (as demonstrated in Fig. 2).

To measure the similarity of A and Asp, we adopt the notion of spectral similarity [83,84] from

the field of graph sparsification. That is, for any degree of error ϵ > 0, we want to generate an Asp

that satisfies

(3.3) |xT (Asp −A)x| ≤ ϵ|xTAx| ∀x ∈ RN .

This notion of similarity is stronger than one might expect. For symmetric matrices, it requires that

the eigenvalues of Asp approximate the eigenvalues of A (and hence all the timescales of the resulting

dynamics) to within a multiplicative factor of 1+ ϵ (see Appendix Section 3.9.1.3). It also manages to

approximately preserve the orientation of the corresponding eigenspaces (again, see Appendix Section

3.9.1.3). This closeness is much stronger than low rank approximation (e.g., Principal Component

Analysis), which only preserves the largest eigenvalues, or the fastest timescales. The timescales and

activity patterns of the dynamical system in Eq. 3.1 are determined by the spectrum of A, and thus

spectrum-preserving sparsification will approximately preserve dynamics as well.

3.4. An Unsupervised Noise-Driven Anti-Hebbian Pruning Rule

Let us consider the network in Eq. 3.1 when driven by independent noise at each node. We set

b(t) = b+ σξ(t) where b is an arbitrary vector of constant background input to the network, ξ(t) is

a vector-valued function of IID unit variance Gaussian white noise at each point in time, and σ is

the standard deviation of the input noise. Let C = Et[xx
T ] be the covariance matrix of the firing
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rates in response to this white noise input (and note that this expectation is taken over time). For

the synapse from neuron j to neuron i with weight wij , we define the sampling probability

(3.4) pij =


Kwij (Cii + Cjj − 2Cij) for wij > 0 (i.e., an excitatory synapse)

K|wij | (Cii + Cjj + 2Cij) for wij < 0 (i.e., an inhibitory synapse).

Here Cii and Cjj are the variances over time of the ith and jth neurons, and Cij is their covariance

over time. K is a proportionality constant that determines the density of the pruned network, which

will have NK/2 total connections on average and thus average degree of K/2 per neuron (for unit

variance noise and symmetric networks). Indeed, K will depend on the degree of approximation we

desire, ϵ.

Now consider a pruning process that independently preserves or discards each edge with proba-

bility pij or (1− pij), respectively, yielding Asp. That is, for i ̸= j,

(3.5) Asp
ij =


Aij/pij with probability pij

0 otherwise.

It is worth noting that preserved edges are strengthened in magnitude, thanks to dividing by pij < 1.

For the diagonal terms (i.e., leak / excitability) Asp
ii , we either preserve the original diagonal and set

Asp
ii = Aii, or define the perturbation ∆i =

∑
j ̸=i |A

sp
ij | −

∑
j ̸=i |Aij | (which is the change in total

input to neuron i after pruning) and set Asp
ii = Aii −∆i. ∆i has zero mean and is likely to be small,

so both of these processes will yield comparable diagonal elements. The interest in ∆i is due to it

biologically corresponding to changing the excitability of neuron i in response to a change in total

input, and excitability is known to be homeostatically regulated in the brain [91]. We will refer to

these as the “original diagonal” and “matched diagonal” settings respectively. The proofs apply to

the “matched diagonal” setting. However, empirically, we observe similar results in the “original

diagonal” regime, so we include it for its algorithmic simplicity. We will also refer to the pruning

rule defined by Eqs. 3.4, 3.5 (in both diagonal settings) as noise-prune going forward.

The noise-prune rule is derived from a theoretical argument in the next section of this chapter,

but it has an appealingly simple interpretation aside from the nuance of its proof. We now provide

some intuition for why it might work. First, note that the probability to preserve a synapse depends
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Algorithm 1 noise-prune, original diagonal setting

Input: A ∈ RN×N and error tolerance ϵ > 0.
1. For each index (i, j) with i ̸= j set pij as in Eq. 3.4.
2. Define the sparse random matrix Asp with off-diagonal entries

Asp
ij =

{
Aij

pij
with probability pij

0 with probability 1− pij .
,

and diagonal entries Asp
ii = Aii.

Output: Asp ∈ RN×N .

Algorithm 2 noise-prune, matched diagonal setting

Input: A ∈ RN×N and error tolerance ϵ > 0.
1. For each index (i, j) with i ̸= j set pij as in Eq. 3.4.
2. Set ∆i =

∑
j ̸=i |A

sp
ij | −

∑
j ̸=i |Aij |.

3. Define the sparse random matrix Asp with off-diagonal entries

Asp
ij =

{
Aij

pij
with probability pij

0 with probability 1− pij .
,

and diagonal entries Asp
ii = Aii −∆i.

Output: Asp ∈ RN×N .
Note: If A is symmetric and diagonally dominant, we are guaranteed

|xT (Asp −A)x| ≤ ϵ|xTAx| ∀x ∈ RN .

on the magnitude of its weight, |wij |. Thus, holding all else equal, synapses with larger weight are

more important and thus more likely to be preserved. The other factor in the sampling probability

is (Cii + Cjj ± 2Cij) = 2C̃ij(1± Cij/C̃ij), where C̃ij = (Cii + Cjj)/2 is the mean variance of nodes

i and j. We will refer to this factor as the combination-of-covariances (or “comb-cov”) term. With

the comb-cov term written as above, it becomes clear that preservation probability is proportional

to C̃ij , indicating that nodes with higher variance are considered more important. As such, their

connections are more likely to be preserved (as in a PCA-like approximation). Finally, there is an

anti-Hebbian term that, for excitatory synapses, takes the form (1− Cij/C̃ij). Synapses are thus

likely to be preserved if they are weakly or anti-correlated despite having an excitatory connection.

The equivalent term for inhibitory synapses is (1 + Cij/C̃ij). The sign of the covariance is flipped,

reflecting that inhibitory connections are expected to have anti-correlated neurons.

The covariance of neurons i and j depends both on the magnitude of the direct connection

between them (i.e., |wij |) and on indirect connections through the rest of the network. Neurons

55



a b

weights x di�-cov

c

=

= + +

+ +

p1 p2 p3

Asparse = +low cov.

high cov.

weights covariance

di�-covariance prob

low

high

Figure 1: A noise-driven unsupervised synaptic pruning rule. (a) Schematic of a network
where noisy fluctuations reflect higher-order connectivity structure. Network has 3 densely-connected
clusters, with a few long-range connections. Covariance between neurons within a cluster is high
compared to neurons participating in different clusters. (b) Pruning rule uses weights and covariances
to identify important synapses. Top left: connection weights in a network with 3 densely-connected
clusters and sparse connections between clusters. Also note the presence of a few strong connections
within each cluster. Top right: covariance when driven by noise. Bottom left: difference of covariances
(as in Eq. 3.4). Bottom right: sampling probabilities from pruning rule. The rule correctly identifies
that the sparse connections between clusters are important and assigns them higher probability,
along with the handful of exceptionally strong connections within a cluster. Most connections within
a cluster are redundant and given lower probability. (c) Schematic of proof strategy. The original
network (shown as a matrix in the top row and as a graph in the middle row) can be written as a
sum of edge pieces. The edges are assigned sampling probabilities (p1, p2, p3) that depend on weight
and covariance. A given application of noise-prune yields a sparse network (bottom row) where some
connections are preserved and strengthened (first and third edges) and others are pruned (second
edge). For appropriate probabilities, the spectrum of Asp is close to that of the original network.

that are highly correlated are likely to have multiple indirect connections, suggesting that the direct

connection between them is redundant and can be pruned (see graphics in Fig. 1a,b). In a sense,

the pruning rule can be understood as probing whether neurons are more correlated than expected

given the weight of their direct connection. If they are, the connection is likely to be redundant, and

is thus likely to be pruned by noise-prune.

3.5. Proofs

We derive this pruning rule from a two-part theoretical argument, largely inspired by Spielman

& Srivastava (2011), with slight extension to signed symmetric diagonally-dominant neural network

matrices (rather than Graph Laplacians, which their work was focused on). We begin by considering

a sampling-based approach to pruning that independently strengthens or removes each synapse of
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a network with some sampling probability (as in Eq. 3.5) and show that these probabilities that

preserve network dynamics. Following this, we show that these theoretically-derived probabilities

can be simply written in terms of the covariance of the network activity when driven by noisy

fluctuations. This representation of sampling probabilities in terms of covariance is novel to this

study, and perhaps of special note, as they make the pruning algorithm local in nature. Thus,

there exists a simple and biologically-plausible way for neural networks to compute the sampling

probabilities using only local information available to the synapse.

We note that the proof we present requires the matrix A to be symmetric (corresponding to

an undirected graph) and diagonally-dominant (corresponding to highly leaky neurons), but the

noise-prune rule itself need not have the same theoretical restrictions. These are strong restrictions

that do not typically apply to neural networks, and we discuss generalizations and limitations later,

including preliminary empirical results that show that noise-prune can perform quite well on networks

with asymmetric, general diagonal matrices (see Fig. 2).

3.5.1. Derivation of Probabilities. Assume that the connectivity matrix A from Eq. 3.1

is both symmetric (Aij = Aji) and diagonally-dominant (|Aii| ≥
∑

j ̸=i |Aij | =
∑

j ̸=i |wij |). The

diagonal entries of A are negative, reflecting the inherent leakiness of the neurons, and thus A is

negative definite. We pause to note that the eigenvalues of A must be negative for the linear system

to be stable (which is generally desirable in neuroscience to avoid non-biological neural activity), but

the argument can be extended to non-invertible matrices by restricting to the subspace of nonzero

eigenvalues, i.e. the range of A [83]). For notational convenience of working with positive definite

matrices rather than negative definite ones, we define the positive definite matrix B = −A and

consider B instead of A in this section.

Given an index (i, j), i > j, with weight wij , define the edge matrix X(i,j) to have ith and jth

diagonal entries X
(i,j)
ii = X

(i,j)
jj = |wij |. Set the (i, j)th and (j, i)th off-diagonal entries X

(i,j)
ij =

X
(i,j)
ji = −wij and remaining entries 0 (Fig. 1c for a schematic). That is, X(i,j) has off-diagonal

entries equal to negative edge weight and diagonal entries equal to edge weight magnitude. Next,

for diagonal indices (i, i), define the single-entry diagonal matrix X
(i,i)
ii = Bii −

∑
j ̸=i |wij |, with

remaining entries 0. Since B is diagonally-dominant with positive diagonal, the single non-zero entry

of X(i,i) is positive. For simplicity, we consider matrices where X(i,i) = 0 (i.e., Bii =
∑

j ̸=i |wij |, so
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that the leakiness of neurons is equal to their input weights), but it is straightforward to include

non-zero X(i,i) where the leak is stronger (Appendix Section 3.9.1.1). Using these newly defined

X(i,j), B can be written as a sum over edge matrices as B =
∑

i>j X
(i,j).

Now define the random matrix X̃ij with a single Bernoulli entry as

(3.6) X̃ij =


X(i,j)/pij with probability pij

0 with probability 1− pij ,

and define Bsp =
∑

i>j X̃
ij . For any choice of pij , E[Bsp] = B because

E[Bsp] =
∑
i>j

E[X̃ij ] =
∑
i>j

(
X(i,j)

pij
pij + 0(1− pij)

)
=
∑
i>j

X(i,j) = B.

Furthermore, note that the average number of edges (not including diagonal elements) in Bsp is

E[Nedges] =
∑

i>j pij .

If the pij are close to 1, then most edges will be included in any realization of Bsp and it will

inevitably be quite close to B, but not sparse. If the pij are small, then Bsp will be sparse but might

be a poor approximation to B in the spectral sense. A good algorithm will choose the pij ’s to ensure

both that Bsp is close to B and that the number of non-zero edges is small relative to the total

unpruned number of edges.

To determine strong sampling probabilities that maintain spectral properties while deleting

most edges, we follow Spielman & Srivastava (2011) and first transform B to the identity matrix.

Note that I = B−1/2BB−1/2, where I is the identity matrix and B−1/2 is the matrix that squares

to B−1 (note that B−1/2 is well-defined because B is symmetric and positive definite). Define

Ỹ ij = B−1/2X̃ijB−1/2 and Ĩ =
∑

i>j Ỹ
ij = B−1/2BspB−1/2. Note that E[Ĩ] = I.

A commonly used formulation of the matrix Chernoff inequality [1, 73, 74, 90] bounds the

probability that Ĩ is far from I. Let M be an upper bound on the Ỹ (i,j)’s, so that 0 ≤ ||Ỹ (i,j)||2 ≤ M .

Let λ̃min and λ̃max be the minimum and maximum eigenvalues of Ĩ. For any given 0 < ϵ < 1, the

matrix Chernoff inequality guarantees that

(3.7) P
[
λ̃min ≤ (1− ϵ)

]
≤ N

(
e−ϵ2/2

)1/M
and P

[
λ̃max ≥ (1 + ϵ)

]
≤ N

(
e−ϵ2/3

)1/M
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With this in mind, we can see that a good approximation thus requires that M be small, as the

bounds on these probabilities get smaller as M decreases (because e−ϵ2/2 and e−ϵ2/3 are smaller

than 1). On the other hand, since the sampled pieces are rescaled by 1/pij , a sparser approximation

(smaller pij) corresponds to larger M , highlighting the difficulty of balancing M .

For each (i, j), the maximum value that ||Ỹ (i,j)||2 takes is 1
pij

||B−1/2X(i,j)B−1/2||, because it is

equal to 0 otherwise. Set

(3.8)
pij
Kdeg

= ||B−1/2X(i,j)B−1/2|| = tr(B−1X(i,j)) = |wij |(B−1
ii +B−1

jj − sign(wij)2B
−1
ij ),

for some constant Kdeg, where the second equality holds since the trace is cyclic and equal to the

2-norm of a rank-1 positive semi-definite matrix. This equalizes the maximum value across Ỹ (i,j),

yielding M = 1/Kdeg.

For any given ϵ, ensuring that the probabilities in Eq. 3.7 are small requires that Kdeg ≥

4 log(N)/ϵ2 (where the constant 4 is chosen somewhat arbitrarily to ensure small probability for

reasonable N , but other values larger than 3 can be chosen with a small alteration in expected number

of edges). Thus Kdeg = 4 log(N)/ϵ2 guarantees that the eigenvalues of Ĩ lie within [1− ϵ, 1 + ϵ] with

high probability (w.h.p.). Consequently, w.h.p., we have

(3.9) (1− ϵ)yTy ≤ yT Ĩy ≤ (1 + ϵ)yTy ∀y ∈ RN .

Given any x ∈ RN , set y = B1/2x to see that, w.h.p.,

(3.10) (1− ϵ)xTBx ≤ xTBspx ≤ (1 + ϵ)xTBx ∀x ∈ RN .

Finally, recalling that B = −A yields the desired approximation.

The average number of edges in the pruned network ⟨Nedges⟩ =
∑

i>j pij . Note that

∑
i>j

||B−1/2X(i,j)B−1/2|| = N (proof in Appendix Section 3.9.1.1).

Hence ⟨Nedges⟩ =
∑

i>j pij = NKdeg. Consequently, if Kdeg = 4 log(N)/ϵ2 then ⟨Nedges⟩ =

4N log(N)/ϵ2.
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As with the sparsification of graph Laplacians [83], for a fixed degree of approximation ϵ, the

expected number of edges in Asp need only be O(N log(N)). We now make the strength of this level

of sparsity apparent. If the original network is dense, then it has N(N − 1)/2 = O(N2) edges in the

symmetric/undirected case (and N(N − 1) edges in the directed case). Thus, the expected fraction

of edges needed (for a fixed ϵ) goes to 0 as N → ∞. Similarly, if we fix the ratio of edges of A and

expected edges of Asp, then the approximation becomes arbitrarily strong (i.e., ϵ → 0) as N → ∞.

3.5.2. Probabilities from noise-driven covariance. Consider the network of Eq. 3.1 when

driven by uncorrelated white noise of variance σ2 at each node. Set the constant background

input b = 0 for simplicity (this just shifts the steady-state mean to 0). The covariance matrix

C of the resulting dynamics is C = Et[xx
T ] − Et[x]Et[x

T ] = Et[xx
T ] and satisfies the Lyapunov

equation [23,89]:

(3.11) AC + CA∗ = −σ2I.

Let A be a normal matrix, meaning AA∗ = A∗A, where A∗ is the conjugate transpose of

A (note that every symmetric matrix is indeed normal). Define the symmetrization of A by

Asymm = (A + A∗)/2. It is straightforward to show that C ∝ A−1
symm (see Appendix Section

3.9.1.2 for details). In particular, if A is symmetric then C = −σ2A−1/2. Substituting 2C/σ2 for

B−1 = −A−1 in Eq. 3.22 yields

(3.12) pij = K|wij |(Cii + Cjj − sign(wij)2Cij),

with K = 2Kdeg/σ
2. In other words, perhaps surprisingly, the pattern of noise-driven correlations

exactly encodes the optimal sampling probabilities needed for our application of the matrix Chernoff

inequality.

3.6. Numerical Results

In Fig. 2 we show the performance of noise-prune (in the matched diagonal regime) on diagonally-

dominant networks with clustered structure (parameters in figure caption). We compare it to a

control case in which edges are sampled and either strengthened or pruned (as in Eq. 3.5) but with

probabilities just proportional to weight (i.e., without a covariance term and thus without accounting
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for higher-order network structure). The proportionality constant for the control is chosen to match

the expected number of edges preserved by noise-prune.

The box plots in the first columns of Fig. 2a,b show the distribution of relative change in

eigenvalues of the pruned network when compared to the original network, given by ϵλi
=
∣∣∣ λ̃i
λi

− 1
∣∣∣,

where λ̃i is the ith eigenvalue of Asp, and λi is the ith eigenvalue of A. The box plots in the

second column compare the relative change in quadratic forms ϵvi =
∣∣∣vTi Aspvi

vTi Avi
− 1
∣∣∣ = ∣∣∣vTi Aspvi

λi
− 1
∣∣∣

for the two approximations, where (vi, λi) is the ith eigenvector-eigenvalue pair of A. Lastly, the box

plots in the third column measure how close the eigenvectors of the original network are to being

eigenvectors of the pruned network using the normalized dot products of the eigenvectors before and

after applying Asp: cos(θi) =
|vTi Aspvi|
∥Aspvi∥ . In all cases, noise-prune performs better than the control,

with the performance improving as the networks get larger (panel a vs. b).

We also compare the dynamical response of networks to various inputs before and after pruning.

In Fig. 2c we show the response of symmetric clustered networks to random inputs before and after

pruning, and find that noise-prune preserves both the responses of individual nodes (left panel)

and the network response trajectory as a whole (right panel). We also find similar preservation

for structured inputs directed along the slow eigenvectors of the network coupling matrix, which

reflect integrative shared dynamical modes that may be used for computation, Fig. 2d. Moreover,

noise-prune significantly outperforms the purely weight-based strategy (red vs. blue) and thus using

the higher-order structure reflected in the noise covariances dramatically improves the preservation

of dynamics in the pruned network.

The theoretical results apply to the case of symmetric matrices but the pruning rule itself is

quite general. We thus empirically characterize noise-prune on non-symmetric clustered networks for

both random and eigenvector inputs, Fig. 2e and f. Again, noise-prune preserves network dynamics

and does much better than a control strategy that relies only on weight, suggesting that good

performance extends beyond the theoretical guarantees.

3.7. Extensions

We next briefly describe some extensions of the framework described above (and provide further

details in SI).
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Figure 2: Noise-prune performance on clustered symmetric and non-symmetric networks.
(a) Performance of noise-prune (left box in each panel) and weight-based pruning (right box in each

panel) on networks pruned to 10% density. The left network of size N = 3, 000 contains 3 clusters of
size 100 and 1 cluster of size 2700, with dense within-cluster connections (60%,∼ N(1, 1)) and sparse
long-range connections (5000 total,∼ U(0, 1)). From left to right, panels show distribution of ϵλi

,
ϵvi and cos(θi) (defined in text). Note that good performance corresponds to ϵλi

and ϵvi near 0 and
cos(θi) near 1. Boxes show upper and lower quartiles, filled circles show outliers, violin plots show
density estimate. (b) As in (a) but for larger clustered network (N = 10, 000, contains 10 clusters
of size 100 and 1 cluster of size 9000). (c-f) Dynamical response for networks with three clusters
(1000, 200, and 800 nodes; connections distributed as in (a)). (caption continued on next page)
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Figure 2: Black traces are the original unpruned network; red traces are networks pruned to 20%
sparsity with noise-prune in the matched diagonal setting; blue traces are networks pruned to 20%
sparsity using probabilities depending solely on weights. (c) Response of symmetric clustered network
to random inputs. Panel shows trajectories from dynamical system dx

dt = Ax+ b+ ξ(t), where b is a
small constant background input (0.0002), ξ(t) is gaussian white noise, and the initial condition
x(0) is chosen with uniformly random entries U(0, 1). Left: response of two sample neurons for
the three conditions. Right: mean (lines) and standard deviation (shaded area) of relative errors
||xorig(t)− xnp(t)||2/||xorig(t)||2 (red) and ||xorig(t)− xw(t)||2/||xorig(t)||2 (blue) over 20 different
initial conditions and pruning runs. Here xorig,xnp,xw are dynamical responses of the original,
noise-pruned, and weight-pruned network respectively. (d) As in (c), but with b = x(0) = vi where
vi is the eigenvector corresponding to the ith largest eigenvalue of A (or, equivalently, the ith smallest
eigenvalue of B). Results averaged over the 20 eigenvectors corresponding to the slowest timescales
(i = 1, . . . , 20). (e), (f) are analogous to (c), (d) respectively but for networks with non-symmetric
connections.

3.7.1. Approximate probabilities. Our pruning rule is robust to approximate probabilities (as

with graph Laplacian sparsification [83]). We first discuss underapproximated sampling probabilities

first. Recall that the probabilities (a) determine the upper bound M used in Eq. 3.7 and (b)

determine ⟨Nedges⟩ through their sum. Consequently, if some (or all) of the edges are undersampled

by a multiplicative factor α < 1 (i.e., probabilities p̂ij = αpij where the pij ’s are the probabilities in

Eq. 3.33) then the bound M will be scaled by a factor of 1/α and Eq. 3.10 will still hold albeit

with a slightly larger ϵ̂ = ϵ/
√
α, while the pruned network will have fewer edges. In general, if we

sample some (or all) edges with a probability higher than the pij ’s, the bound in Eq. 3.10 will

remain unharmed; all that will change is simply an increase in the expected number of preserved

edges. In particular, any subset of the probabilities can be set to 1 without harming our theoretical

guarantees; thus the pruning rule can be naturally applied only to a subset of connections. For more

details on these arguments see Appendix Section 3.9.1.4.

3.7.2. Near-diagonally dominant networks. Given a matrix A with eigenvalues λi and

some constant γ, note that the matrix Aγ = A+ γI has eigenvalues λi+ γ and the same eigenvectors

as A. If A is not diagonally-dominant, the application of noise-prune to A can be analyzed by

considering its effect on Aγ , with γ chosen large enough that Aγ is diagonally-dominant. There are

two additional sources of error in the analysis: first, the probabilities are derived from the covariance

matrix of A and are thus sub-optimal for Aγ (but if biological plausability is of no concern, one can

simply use the inverse of Aγ to compute pij ’s directly); second, the approximation of Eq. 3.10 holds
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for Aγ with some ϵ and the corresponding equation for A includes an additive term of magnitude ϵγ

(see Appendix Section 3.9.2.1 for details).

3.7.3. Rectified linear units. Let [·]+ = max[0, ·] be a rectified linear activation function and

consider the recurrent neural network

dx

dt
= −Dx+ [Wx+ b(t)]+ .(3.13)

As before, define A = −D + W . Let Asp be the result of applying noise-prune to A using the

probabilities from the linear network defined by A (consequently Eq. 3.15 holds for A, Asp).

Let Γ(t) = {i :
∑

j Wijxj + bj(t) > 0} be the indices of neurons that receive suprathreshold

input at time t. Define AΓ(t) and Asp
Γ(t) to be the submatrices produced by removing the rows and

columns of A and Asp corresponding to indices not in Γ(t) (i.e., those indices corresponding to

neurons receiving subthreshold input at time t). The dynamics of the network in Eq. 3.13 are

approximately determined by the set of linear systems with connectivity matrices AΓ(t), A
sp
Γ(t) (proved

in Appendix Section 3.9.2.2). Here, we note that the approximation Eq. 3.15 for A, Asp implies the

same approximation for AΓ(t) and Asp
Γ(t) (and show this carefully in SI). Specifically, given some Γ(t)

with cardinality |Γ(t)|, let Γ(t, j) be the index of the j-th active neuron. Now given y ∈ R|Γ(t)|, define

a corresponding x ∈ RN as x(Γ(t, j)) = y(j) and remaining entries 0. Then yTAsp
Γ(t)y = xTAspx,

and similarly for AΓ(t) and A. Substituting into Eq. 3.15 shows that the approximation holds for

AΓ(t), A
sp
Γ(t).

3.8. Discussion

The structure of the sampling argument, the notion of spectral approximation, and the use of

matrix concentration of measure tools was inspired by a rich collection of studies in the realm of

graph sparsification [6,83,84], particularly that of the highly influential paper written by Spielman

& Srivastava (2011). Our study expands on these results and connects them to neural networks

and noisy dynamical systems. In the graph Laplacian context, the counterpart of the comb-cov

matrix (see Eq. 3.4) is “effective resistance”, which measures the electrical resistance between nodes

if the graph is used to model a weighted resistor network. Effective resistance has multiple nice

properties [25,83], such as forming a natural metric between nodes [47], and the comb-cov matrix
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may be similarly useful for neural networks. There may be further useful connections to be drawn

between this set of ideas and noise-driven dynamics in neural networks.

Task-dependent pruning of connections in artificial neural networks has been widely studied in

recent years, often with very compelling task-performance results [7,9,10,17,22,34,36,49,50,61,71].

Current state-of-the-art approaches in machine learning typically train a network to good performance

on a task, assign a measure of importance to each connection in the network (typically involving

a function of weight and sometimes a measure of impact on the task cost function e.g. elements

of the Hessian), remove connections from the network according to this importance measure, and

then repeat the cycle of training and pruning until task performance stabilizes with minimal non-

zero weights (see [10] for a recent review). These iterative train-and-prune algorithms have been

incredibly successful in constructing highly sparse networks while approximately preserving task

performance. Our work is complementary to these artificial network pruning studies in three ways.

First, these studies focus on the supervised, typically feedforward setting, and algorithms are not

usually biologically plausible. On the other hand, this study develops an unsupervised, biologically-

plausible algorithm for recurrent networks. Second, most existing studies tend to seek good empirical

performance in quite challenging real-world applications rather than robust theoretical results, while

we focus on developing strong theoretical results in an idealized setting. Ideally, our theoretical

foundation will help provide the backbone for a new collection of pruning algorithms. Finally,

existing weight pruning algorithms typically do so either based on connection weight or a nonlocal

measure of cost function sensitivity. Contrasting this, we combine weight with a local expression that

extracts a connection’s importance to the network from noisy activity fluctuations. There have been

other unsupervised approaches in the literature that are reminiscent of our study, but they merge or

remove highly correlated neurons [3,57,85]. The setting, algorithms and theoretical guarantees of

these works are noticeably different from ours, and we consider weight pruning rather than removing

entire neurons. Note that we do not expect noise-prune to be competitive with state-of-the-art

supervised approaches in machine learning when measured by preserving performance on a given task

(rather than preserving dynamics). This is natural, as the supervised approaches have the luxury

of optimizing their network to perform well on their desired tasks. However, the novel perspective
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provided by noise-prune and the theoretical results may be useful in developing more powerful

algorithms for task-driven pruning in the future.

The proofs apply to the limited case of symmetric diagonally-dominant linear and rectified linear

recurrent networks. While certain networks in the brain may potentially be modeled as diagonally-

dominant (e.g., in the high-conductance regime when membrane time constants are very small,

indicating high neuronal leak [15]), it is unclear how appropriate this approximation will be. More

importantly, connections in biological neural networks are not symmetric, as synaptic connections

are rarely reciprocal. With that in mind, our undirected framework may apply more naturally to

excitatory (or inhibitory) sub-networks with a higher probability of reciprocal connectivity [82].

Finally and perhaps most notably, biological networks are highly nonlinear. Thus, while we present

some preliminary results for ReLu activiation functions, the theoretical framework presented in

this Chapter is far from general. We do provide a further analysis of appropriate nonlinearities in

Chapter 4.

Despite these limitations, we highlight two reasons for optimism toward future work. First, in the

limited regime where the theory applies, results are very strong and robust (as in graph Laplacian

sparsification [83,84]), asymptotically preserving the entire spectrum of the network, even as the

fraction of retained edges goes to 0. Preservation of the entire spectrum is likely stronger than

is actually needed for neural networks, which often show redundant coding and low-dimensional

dynamics. It may be possible to more weakly approximate a broader family of networks, and this

is explored in Chapter 4 as well. Second, the noise-prune rule itself (Eq. 3.4) does not require

particular network structure and can in principle be applied to any recurrent network (note that

covariance for a general normal matrix is determined by the symmetric part of the matrix). Indeed,

we empirically find that noise-prune preserves dynamics in non-symmetric clustered networks, Fig.

2e, f, and thus shows powerful performance beyond the limited regime where theoretical guarantees

hold. A more exhaustive empirical characterization of noise-prune is beyond the scope of the present

study, but this is a natural direction for future work.

The pruning rule uses randomness in two distinct places. First, it uses noisy fluctuations in

neural activity to probe network structure and make global information locally available in the form

of activity correlations between pairs of neurons. Second, it randomly decides whether to preserve
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(and strengthen) or prune a connection. Randomized algorithms such as noise-prune have found

application in a wide domain during recent years, often outperforming deterministic algorithms [4,79].

This use of randomness in our algorithm is inspired by seemingly ubiquitous noise at multiple levels

in neural systems, both internally and externally [16,21,48,81]. It remains unclear how much

of this “noise” reflects the encoding of unknown variables (i.e., is actually “signal”) as opposed to

genuine randomness, and to what degree noise is averaged away as opposed to being used as a

computational resource. However, randomized algorithms are often appealingly simple, powerful

and easy to parallelize, and it is both plausible and widely speculated that brains have evolved to

take computational advantage of biological noise [21,59].

Unlike pruning rules that deterministically remove (typically weak) synapses and simply preserve

the others, the synapses targeted by noise-prune are either removed or strengthened, reminiscent of

observations that small dendritic spines on neurons (often proxied by synaptic weights in neural

models) are highly variable and liable to either vanish or grow and stabilize [37]. More generally, a

strengthen-or-prune rule like that of our Eq. 3.5 can be applied with different sampling probabilities,

which may be appropriate for different settings, and synapses can be strengthened or weakened

rather than pruned away entirely. If weights and probabilities are chosen to preserve synaptic weights

on average, then the approach approximately preserves total synaptic input to and output from a

neuron as well as the dynamics resulting from a given input or network activity state. The theoretical

approach may thus be more generally useful in settings where synaptic weight is redistributed across

synapses (such as in some homeostatic mechanisms [91]). Because total weight mass is preserved by

our homeostatic pruning mechanism, there may be interesting work to do in an optimal transport

setting as well.

In this study we have focused on pruning synapses while preserving existing network dynamics,

thus approaching pruning primarily as homeostatic resource conservation. Pruning in the brain

may serve other functions as well, such as making networks faster, better at generalization, or more

robust to noise. Given that the pruned network needs to carry out a similar set of input-output

transformations to the original network, dynamical patterns being similar between unpruned and

pruned networks as proposed in this study could be used as a building block to investigate more

complex pruning algorithms that optimize other features of network trajectory. In fact, we continue
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to study pruning rules that guarantee similar trajectories of pruned and unpruned networks in

Chapter 4.

The approach presented here suggests decomposing into two pieces the difficult problem of

learning a sparse network solution to a task. First, a greedy task-driven learning epoch that adds

synapses where they might be needed, regardless of efficiency (such as would be expected from

correlational [Hebbian] learning processes). Following this, a noisy, task-agnostic, anti-Hebbian epoch

during which a subset of synapses enter a labile state and are either consolidated or pruned. The

second regime is reminiscent of recent theories of sleep [51,88]. It would be interesting to attempt to

connect sleep phenomenology with unsupervised algorithms such as the one presented in this study.

3.9. Appendix

In this section we expand on the arguments that would have detracted from the flow of the main

text. Note that, for completeness, some portions of the main text are repeated here.

3.9.1. Theoretical framework underlying noise-prune. We consider the N ×N coupling

matrix of the linear system

(3.14)
dx

dt
= Ax+ b(t),

and describe how to construct a sparse matrix Asp whose spectrum (and hence dynamics) are similar

to A.

To measure the similarity of A and Asp, we adopt the notion of spectral similarity [83,84] from

the field of graph sparsification and require that for some small ϵ > 0,

(3.15) |xT (Asp −A)x| ≤ ϵ|xTAx| ∀x ∈ RN .

The primary theoretical insights of this section are that (a) results on the sparsification of

graph Laplacians [83,84] can be applied, with slight generalization, to pruning signed symmetric

diagonally-dominant linear neural networks and (b) that the covariance matrix of the network when

driven by noise provides appropriate pruning probabilities. We also discuss what properties of

the original network are preserved after sparsifying the matrix A, as well as how these maintained

properties are affected when the sampling probabilities are changed.
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3.9.1.1. Sparsification of symmetric, diagonally-dominant networks. In this section we show how

to construct spectral sparsifiers of A. We follow the proof of [83], with some adaptation.

Let A be the coupling matrix of a linear system, as in Eq. 3.1. Note that in order for the

linear system to be stable, all the eigenvalues of A must have negative real part (and hence the

matrix must be invertible). A non-invertible coupling matrix would correspond to a network with an

unrealistically long (i.e., infinite) time-constant.

We impose the further restrictions that A be a symmetric, diagonally-dominant matrix; that is,

Aij = Aji and |Aii| ≥
∑

j ̸=i |Aij |. In the main text, we focused on the case where this inequality

was saturated (i.e., |Aii| =
∑

j ̸=i |Aij |). Here, we expand the proof to include a strictly diagonally-

dominant A, thus satisfying |Aij | >
∑

j ̸=i |Aij | (note that the argument is essentially the same

and also that both the original and matched diagonal cases of noise-prune simply preserve any

excess weight along the diagonal). The diagonal entries of A reflect the intrinsic leak of activity

and are negative. Combined with the strict diagonal-dominance requirement, the negative diagonal

also implies that the eigenvalues of A are negative, as can be seen from, e.g., a Gershgorin disk

argument. Note that the diagonal dominance condition is stronger than the requirement of negative

eigenvalues. In the event that A satisfies |Aii| =
∑

j ̸=i |Aij | as in the main text, invertibility is no

longer guaranteed by the Gershgorin disk argument but we assume invertibility based on the stability

of the equivalent linear system. We can also relax the invertibility condition by considering the

pseudoinverse of A and working in the subspace orthogonal to the nullspace of A (as done for graph

Laplacians [83]). To sum up, A is negative definite since it is symmetric with negative eigenvalues.

For notational convenience, set B = −A (and note that B is positive definite). The non-zero

off-diagonal entries bij = −aij = −wij correspond to the connections in the network (note that

throughout wij refers to the weight in A, i.e., −bij ; the argument can be rewritten without introducing

B at the cost of extra minus signs).
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Edge decomposition For each of these undirected connections (i, j) with i > j, we define the

edge matrix X(i,j) by

(3.16) X
(i,j)
kℓ =


|wij | if (k, l) = (i, i) or (j, j)

−wij if (k, l) = (i, j) or (j, i)

0 otherwise.

Note that there is no restriction on the sign of wij . Also notice that X(i,j) can be written as vijv
T
ij

where vij ∈ RN has ith entry
√
|wij | and jth entry − sgn(wij)

√
|wij |. Thus X(i,j) a rank-1 matrix.

Moreover, since the non-zero eigenvalue is positive, the matrix is positive semidefinite. Also note

that specifying i > j above is simply a manner of convention to not double-count connections in the

symmetric matrix.

We also define the matrix X(i,i) for all i to have only a single non-zero entry X
(i,i)
ii = Bii −∑

j ̸=i |wij |. Because B is diagonally-dominant with positive diagonal, the single non-zero entry of

X(i,i) is positive, again implying that X(i,i) is rank-1 positive semidefinite. We include these diagonal

pieces in the sampling argument for completeness but will usually simply treat them as fixed.

The original matrix B is the sum of these edge matrices, B =
∑

i≥j X
(i,j) (where the notation∑

i≥j sums over all existing edge pairs where i ≥ j).

Sampling edges Now, for i ≥ j, define the random matrix X̃ij as

(3.17) X̃ij =


X(i,j)/pij with probability pij

0 otherwise,

where 0 < pij ≤ 1 is some probability we will determine below. Observe that, regardless of the choice

of the pij ’s, E[X̃ij ] = pijX
(i,j)/pij = X(i,j). Correspondingly, for any set of probabilities, p, we can

define the matrix Bsp,p =
∑

i≥j X̃
ij and we have E[Bsp,p] = B (note that Bsp,p will only be sparse

if the pij are small).

Transformation to identity Analogous to Spielman & Srivastava (2011), we implement their

argument in our framework by first transforming B into the identity matrix I and finding an

appropriate approximation Ĩ, with the goal of transforming back and arriving at our desired sparsifier
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Bsp. This step is crucial for preserving the entire spectrum (as required by Eq. 3.15), rather than

only the largest eigenvalue (and leads to the comb-cov term in the probabilities).

First observe that I = B−1/2BB−1/2, where B−1/2 is the matrix whose square is B−1 (B−1/2

exists since B is invertible and diagonalizable and moreover is real-valued since B is positive definite).a

Then, defining Y (i,j) = B−1/2X(i,j)B−1/2, we have

(3.18) I = B−1/2BB−1/2 =
∑
i≥j

B−1/2X(i,j)B−1/2 =
∑
i≥j

Y (i,j).

This gives motivation to define the random matrices Ỹ ij = B−1/2X̃ijB−1/2 and Ĩ =
∑

i≥j Ỹ
ij . Note

that E(Ĩ) = I.

Now, for given 0 < ϵ < 1, our goal will be to choose pij in order to guarantee that

(3.19) yT (1− ϵ)Iy ≤ yT Ĩy ≤ yT (1 + ϵ)Iy ∀y ∈ RN ,

with high probability (w.h.p.). If we can do so, then for a given x ∈ RN , we can set y = B1/2x in

order to arrive at, w.h.p.,

(3.20) xT (1− ϵ)Bx ≤ xTBspx ≤ xT (1 + ϵ)Bx ∀x ∈ RN ,

where Bsp = B−1/2ĨB−1/2 =
∑

i≥j X̃
ij , which provides the desired approximation.

Probabilities from matrix Chernoff bound We want our pij to be as small as possible

while still maintaining the inequalities Eq. 3.19, 3.20. To derive good choices for the pij ’s, we apply

the matrix Chernoff bound [1,73,74,90] to bound the fluctuations of Ĩ =
∑

i≥j Ỹ
ij around its

expectation value, I. Let M be an upper bound on the Ỹ ij ’s, so that 0 ≤ ||Ỹ ij ||2 ≤ M . Let λmin

and λmax indicate minimum and maximum eigenvalues. The bound then guarantees that

aIf the eigenvector decomposition of B is UDU−1 then B−1/2 can be constructed as UD−1/2U−1, where the entries
of D−1/2 are the inverse square roots of the corresponding entries of D).
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P

λmin

∑
i≥j

Ỹ ij

 ≤ (1− ϵ)

 ≤ N

(
e−ϵ

(1− ϵ)(1−ϵ)

)1/M

≤ Ne−ϵ2/2M for 0 < ϵ < 1,

P

λmax

∑
i≥j

Ỹ ij

 ≥ (1 + ϵ)

 ≤ N

(
eϵ

(1 + ϵ)(1+ϵ)

)1/M

≤ Ne−ϵ2/3M for 0 < ϵ(3.21)

The hypothesis of the bound requires the spectral norm of the Ỹ ij ’s to be uniformly bounded

across all edges; i.e., ||Ỹ ij || ≤ M . Moreover ||Ỹ ij || depends on 1/pij , so smaller probabilities lead to

a larger bound M . Thus we choose the pij in order to minimize M .

Since ||Ỹ ij || is either 1
pij

∥∥Y (i,j)
∥∥ or 0, choose pij to equalize the upper bound on ||Ỹ ij || across

all i ≥ j:

(3.22) pij = Kdeg

∥∥∥Y (i,j)
∥∥∥ = Kdeg||B−1/2X(i,j)B−1/2||

where Kdeg is some constant. This guarantees that ||Ỹ ij || ≤ M = 1/Kdeg. Thus, if we take

Kdeg ≥ 4 log(N)/ϵ2, the probabilities in Eq. 3.21 are guaranteed to be smaller than 1/N and 1/N1/3,

respectively. Consequently, this choice of probabilities guarantees that Eqs. 3.19, 3.20 are satisfied

w.h.p., as desired.

Note that the constant 4 is chosen somewhat arbitrarily here, with a larger constant corresponding

to faster-decaying probabilities in Eq. 3.21 but also a larger number of edges expected to be sampled

(since each Ỹ ij is less likely to take on the value of 0).

Bound on number of edges Since edge (i, j) is independently included with probability pij ,

the expected number of edges in the network is ⟨Nedges⟩ =
∑

i>j pij (note the strict inequality here,

as i = j does not correspond to edges, but rather the leak in neuronal activity).

We have

(3.23)
∑
i>j

pij ≤
∑
i≥j

pij = Kdeg

∑
i≥j

∥∥∥Y (i,j)
∥∥∥ = Kdeg

∑
i≥j

∥∥∥B−1/2X(i,j)B−1/2
∥∥∥
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Note that Y (i,j) = uiju
T
ij , where uij = B−1/2vij and vij is the vector defined after Eq. 3.16.

Consequently, Y (i,j) is rank-1 with positive eigenvalue and
∥∥Y (i,j)

∥∥ = trY (i,j). This yields

(3.24)∑
i≥j

∥∥∥Y (i,j)
∥∥∥ =

∑
i≥j

trY (i,j) = tr

B−1/2
∑
i≥j

X(i,j)B−1/2

 = tr(B−1/2BB−1/2) = tr(I) = N.

Thus we have

(3.25) ⟨Nedges⟩ =
∑
i>j

pij =
∑
i>j

Kdeg

∥∥∥Y (i,j)
∥∥∥ ≤ NKdeg.

Simple expression for probabilities Note that ||B−1/2X(i,j)B−1/2|| = tr
(
B−1/2X(i,j)B−1/2

)
=

tr
(
B−1X(i,j)

)
, again using the fact that the trace of a positive semi-definite rank-1 matrix is

its spectral norm, and that the trace is cyclic (and B−1/2B−1/2 = B−1 by definition). The

product B−1X(i,j) has only two non-zero diagonal terms: its ith diagonal element is given by

|wij |B−1
ii − wijB

−1
ij and its jth diagonal element is given by −wijB

−1
ji + |wij |B−1

jj . Using the trivial

decomposition wij = sgn (wij)|wij | and adding these two diagonal elements together, we see that

(3.26) pij = Kdeg tr
(
B−1X(i,j)

)
= Kdeg|wij |(B−1

ii +B−1
jj − sgn(wij)2B

−1
ij ),

where we note that B−1
ij = B−1

ji , since the inverse of a symmetric matrix is symmetric.

Similarly, the pii are observed to be

(3.27) pii = Kdeg||B−1/2X(i,i)B−1/2|| = Kdeg tr
(
B−1/2X(i,i)B−1/2

)
= Kdeg tr

(
B−1X(i,i)

)
where we again use the cyclic property of the trace. Since the product B−1X(i,i) has only the

single non-zero diagonal element B−1
ii (Bii −

∑
j ̸=i |wij |), we arrive at the simple expression pii =

KdegB
−1
ii

(
Bii −

∑
j ̸=i |wij |

)
. Note that in practice we simply set this probability to 1, but include

it here for completeness.

Finally, recall that B = −A and note that Asp = −Bsp is the outcome of the pruning applied to

A. Substituting for B in terms of A, the sampling probabilities are

(3.28) pij = −Kdeg|wij |(A−1
ii +A−1

jj − sign(wij)2A
−1
ij )

73



3.9.1.2. Sampling probabilities from noise-driven covariance. The matrix inverse term −A−1 in

Eq. 3.28 has a natural interpretation in terms of the covariance matrix of the corresponding linear

dynamical system when driven by white noise. When the network is driven by noise, the dynamics

are

(3.29)
dx

dt
= Ax+ σξ(t),

where ξ is unit variance Gaussian white-noise at each neuron and σ is the standard deviation of the

noise (note that this is a stochastic differential equation).

The covariance matrix of the resulting dynamics is given as the solution to the Lyapunov

equation [23,89]:

(3.30) AC + CA∗ = −σ2I.

Assume that A is normal, meaning that A∗A = AA∗, where A∗ is the conjugate transpose of A.

Note that all symmetric matrices are normal. Since A is normal it can be diagonalized as A = UΛU∗,

where Λ is a diagonal matrix of eigenvalues and U is unitary.

Substituting the decomposition of A into Eq. 3.30 we have

−σ2I = UΛU∗C + CUΛ∗U∗(3.31)

so that multiplying this equation through by U∗ on the left and U on the right and defining

C̃ = U∗CU , we arrive at

−σ2I = ΛU∗CU + U∗CUΛ∗ = ΛC̃ + C̃Λ∗.(3.32)

Since Λ is diagonal, the equation can be solved for the entries of C̃. C̃ is diagonal, with diagonal

entries C̃ii = − σ2

λi+λ∗
i
, where λi and λ∗

i are the i-th diagonal entries of Λ and Λ∗ respectively (i.e.,

the i-th eigenvalue of A). By definition C = UC̃U∗ and thus C has the same eigenvectors as A, with

eigenvalues given by the diagonal entries of C̃.

Define the symmetric part of A to be Asymm = 1
2 (A+A∗) and observe that this has eigenvalues

1
2 (λi + λ∗

i ). Thus, C = −σ2

2 A−1
symm. In particular, for the symmetric matrices considered in the
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previous section, C = −σ2

2 A−1. Substituting into the theoretically-derived form for the sampling

rule and absorbing σ2

2 into the overall constant yields

(3.33) pij = K|wij |(Cii + Cjj − sign(wij)2Cij)

3.9.1.3. What is preserved. The notion of spectral sparsification that we adopt from the graph

Laplacian literature [83,84] (see Eq. 3.15) is quite strong and here we briefly discuss some of the

properties it entails.

Recall that, given 0 < ϵ < 1, Eq. 3.20 guarantees that

(3.34) xT (1− ϵ)Bx ≤ xTBspx ≤ xT (1 + ϵ)Bx ∀x ∈ RN ,

so that substituting A = −B and rearranging yields the approximation from the main text

(3.35) |xT (Asp −A)x| ≤ ϵ|xTAx| ∀x ∈ RN ,

where we use the fact that A is negative definite to see that −xTAx = |xTAx|.

By definition, Eq. 3.35 approximately preserves A as a quadratic form and thus apart from the

eigenvalues and products described below, it also preserves properties of the dynamical system that

depend on A as a quadratic form, such as the resting state variances, the diagonal elements of A

and the combination-of-covariances (comb-covs).

Eigenvalues Let λ1 ≤ λ2 ≤ · · · ≤ λN and λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃N be the eigenvalues of B and Bsp

respectively.

Let S denote the collection of subspaces U ⊂ RN with dimU = k, and consider the functions

fB, fBsp : S → R given by

(3.36) fB(U) = max
x∈U
∥x∥=1

xTBx, fBsp(U) = max
x∈U
∥x∥=1

xTBspx.

Let U ∈ S be a given subspace of RN with dimension k. Since (1−ϵ)xTBx ≤ xTBspx ≤ (1+ϵ)xTBx

for all x ∈ RN , we can take the maximum over all x ∈ U ⊂ RN with unit norm to see that

(3.37) (1− ϵ)fB(U) ≤ fBsp(U) ≤ (1 + ϵ)fB(U).
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Since this inequality holds for any subspace, taking a minimum over all subspaces in S still preserves

the inequality:

(3.38) (1− ϵ)min
U∈S

fB(U) ≤ min
U∈S

fBsp(U) ≤ (1 + ϵ)min
U∈S

fB(U).

Thus, by the Courant-Fischer Theorem, we arrive at

(3.39) (1− ϵ)λk ≤ λ̃k ≤ (1 + ϵ)λk, ∀1 ≤ k ≤ N

Thus all eigenvalues are preserved within a multiplicative factor of ϵ.

Eigenvectors Here we show that the angle between eigenvectors is preserved up to a factor

depending on the arbitrarily small degree of spectral approximation ϵ. First, note that a rearrangement

of the Davis-Kahan theorem states

(3.40)

√
1− 4||A−Asp||2

δ2i
≤ cos∠(vi, ṽi), for all i

where vi and ṽi are the ith eigenvectors of A and Asp respectively, and

(3.41) δi = min
j:j ̸=i

|λi(A)− λj(A)| > 0.

Fix γ > 0. Now, setting ϵ = γ
2λmax

and constructing the corresponding Asp, we know

(3.42) ||A−Asp|| = sup
||x||=1

|xT (A−Asp)x| ≤ sup
||x||=1

ϵ|xTAx| = ϵλmax =
γ

2

where the first equality holds since A−Asp is Hermitian. Thus, we have

(3.43)

√
1− γ2

δ2i
≤

√
1− 4||A−Asp||2

δ2i
≤ cos∠(vi, ṽi).

Since γ > 0 was arbitrary, this quantity can be made arbitrarily close to 1. That is, we can guarantee

that corresponding eigenvectors of A and Asp point in nearly the same direction.

Preserved matrix-vector products First, note that there exist N linearly independent vectors

{w1, . . . ,wN} (i.e., a basis for RN ) for which the matrix vector products are preserved between B and

Bsp (or A and Asp) to within ϵ. Let vk be an eigenvector of Ĩ with eigenvalue 1+δk (note that, from Eq.
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3.39, |δk| ≤ ϵ). Define wk = B−1/2vk and note that Bwk = B1/2vk. Now Bspwk = B1/2ĨB1/2wk =

B1/2Ĩvk = (1 + δk)B
1/2vk = (1 + δk)Bwk. Consequently, ||(B −Bsp)wk|| ≤ ϵ||Bwk||.

Second, note that the eigenspaces of B and Bsp are close, as we show empirically in Fig. 2 of

the main text, though precise bounds will depend on how close the corresponding eigenvalue is to

another eigenvalue in the spectrum.

Finally, scalar concentration of measure arguments suggests that a rule of the form in Eq. 3.5

should preserve dense matrix-vector products, provided the entries in the matrix do not grow too

large (as for the matrix concentration of measure case). Note, however, that the products of B and

Bsp with sparse vectors may be quite different (as will be true for any sparse matrix approximation),

because these products are determined by the sum of only a few entries in B and Bsp.

3.9.1.4. Partial sampling and robustness to changing probabilities.

Oversampling. The Chernoff bound in Eq. 3.21 depends on the sampling probabilities only

through the upper bound on the norm of the edge matrices, requiring 0 ≤ ||Yij || ≤ 1/Kdeg. In

particular, if the derived pij for an edge is < 1 then the same bound holds for any p̃ij ≥ pij (see

below for pij > 1). Consequently, the probabilities described in Eq. 3.22 above are a lower bound,

for a given desired degree of approximation (ϵ). If some of the edges are sampled with a greater

probability than the theoretical result derived, the approximation equation Eq. 3.22 will still hold

(though some of the terms in the sum of Eq. 3.18 will have norm less than 1/Kdeg).

The only consequence of over-sampling synapses is that the number of connections in the pruned

network will be greater, but the increase is as well behaved as could be desired, corresponding exactly

to the degree of over-sampling as ⟨Nedges⟩ =
∑

i>j pij . Furthermore, there is no harm in setting

all of the pii to 1, as these probabilities do not correspond to edges, but rather the diagonal terms,

which relate to the intrinsic leak in the activity of neurons in Eq. 3.1.

Moreover, as long as the sampling probabilities are above the theoretically-derived bound, they

can be chosen completely independently at each synapse and do not need to compensate for each

other in any way.

Misspecified probabilities. Sampling-based sparsification is quite robust to misspecified

sampling probabilities [83]. Again, this robustness emerges because probabilities only affect the
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Chernoff bound through their effect on the norm of the edge matrices. If some synapses are under-

sampled using probability p̂ij = αpij , with α < 1, the bound on the ||Ỹ ij ||’s inflates by a factor of

1/α and the degree of approximation becomes ϵ̂ = ϵ/
√
α while preserving the same bound on the

probabilities in Eq. 3.21 (thus maintaining the likelihood of our approximation occuring w.h.p.). To

see this, observe that

(3.44) P [λmin ≤ (1− ϵ̂)] ≤ N
(
e−ϵ̂2/2

)α/M
= N

(
e−ϵ2/2

)1/M
,

and similarly for the other inequality in Eq. 3.21. Note here that we could instead choose to maintain

our original degree of approximation ϵ, but this would correspond to the larger upper bound

(3.45) P [λmin ≤ (1− ϵ)] ≤ N
(
e−ϵ2/2

)α/M
which means that Eq. 3.20 would occur with lower probability.

Fixed edges. The sampling argument can be applied to only a subset of edges in several ways.

A particularly natural approach is to simply set the sampling probability for a fixed edge p̃ij = 1 and

note that, if pij < 1 the bound ||Ỹ ij || ≤ M still holds and so do the subsequent theoretical results.

A second way to apply the argument to a subset of edges is to write the matrix A as Afixed +

Asample, where Afixed is the submatrix of edges that are to be preserved and Asample is the submatrix

of edges to be either pruned or strengthened. The argument in Section 3.9.1.1 can then be applied

to Asample (note that Asample is diagonally dominant and positive semidefinite). This formulation

has the disadvantage that the predicted sampling probabilities depend on the covariance matrix

determined by Asample rather than A, but this covariance matrix may be natural in certain contexts.

Furthermore, while the diagonal terms sampled with probability pii do not correspond to edges,

we can still fix them with no harm to our theoretical results (i.e., set pii = 1 as noted earlier in the

oversampling paragraph of this section).

Synapses with probabilities greater than 1. A calculated probability term for a synapse

pij that is > 1 can be handled in two ways. One solution is to convert each synaptic weight into

pieces with predicted probability < 1 and rewrite the sum in Eq. 3.18 as involving multiple pieces

corresponding to the edge (i, j) each sampled with probability 1. Note that this will increase Kdeg

slightly but does not change the actual form of the sampling rule (the edge is just preserved). A
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second approach is to split the matrix into a deterministic and a sampled piece, and apply the

argument to the sampled piece (as in the argument for fixed edges above). Again this has the

drawback that the predicted sampling probabilities would not be given by the covariance matrix of

the entire network.

3.9.2. Extensions.

3.9.2.1. Near-diagonally-dominant networks. Let the matrix A be a (not necessarily diagonally-

dominant) symmetric negative definite matrix corresponding to the coupling matrix of a linear

system such as in Eq. 3.1. We analyze the effect of applying noise-prune to A in terms of its distance

from a diagonally dominant matrix.

As before, we let B = −A and analyze the effect of the rule on B. Note that the noise-driven

matrix of the linear system C ∝ −A−1 = B−1, and that the sampling probabilities yielded by

noise-prune are pij = K|wij |(Cii + Cjj − 2 sgn(wij)Cij) = Kdeg|wij |(B−1
ii + B−1

jj − 2 sgn(wij)B
−1
ij )

for i > j. We will also set any excess diagonal probabilities pii = 1 (note that this is implicitly done

in both the original and matched diagonal settings of noise-prune in the main paper).

Set γ > 0 and define the matrix Bγ = B + γI. Let B have eigenvalues λk and eigenvectors

vk and observe that Bγ has eigenvalues λi + γ and the same eigenvectors as B. Moreover, note

that applying noise-prune to B with some set of probabilities to yield Bsp is equivalent to applying

noise-prune to Bγ with the same set of probabilities to yield Bsp=Bsp+γI (though these are not the

optimal probabilities for Bγ).

Now take γ large enough so that Bγ is diagonally dominant (the approximation described below

will be good if γ is small). The framework described in Section 3.9.1.1 can then be applied to

Bγ and the probabilities saturating the Chernoff bound are p
(γ)
ij = Kdeg|wij |([Bγ ]

−1
ii + [Bγ ]

−1
jj −

2 sgn(wij)[Bγ ]
−1
ij ).

In particular, note that

(3.46) [Bγ ]
−1
ij =

(∑
k

1

λk + γ
vkv

T
k

)
ij

=
∑
k

1

λk + γ

(
vkv

T
k

)
ij
=
∑
k

1

λk + γ
(vk)i(vk)j ∀i, j
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and similarly

(3.47) B−1
ij =

(∑
k

1

λk
vkv

T
k

)
ij

=
∑
k

1

λk

(
vkv

T
k

)
ij
=
∑
k

1

λk
(vk)i(vk)j ∀i, j,

where (vk)ℓ denotes the ℓth entry of the kth eigenvector vk. Then we can see that, for i > j,

p
(γ)
ij = Kdeg|wij |

∑
k

1

λk + γ

(
(vk)

2
i + (vk)

2
j − 2 sgn(wij)(vk)i(vk)j

)
= Kdeg|wij |

∑
k

1

λk + γ
((vk)i − sgn(wij)(vk)j)

2

≤ Kdeg|wij |
∑
k

1

λk
((vk)i − sgn(wij)(vk)j)

2

= pij ,

where the inequality follows from the fact that 1
λk+γ ≤ 1

λk
and the rest of the terms in the expression

are all nonnegative.

Thus p
(γ)
ij ≤ pij for all i ≥ j and sparsifying Bγ using the probabilities pij yields Eq. 3.20 for at

most the same degree of error ϵ we would get if we used the p
(γ)
ij ’s instead (see Section 3.9.1.4 for

more details on oversampling). That is,

(3.48) (1− ϵ)xTBγx ≤ xT (Bγ)
spx ≤ (1 + ϵ)xTBγx ∀x ∈ RN .

Now observing that (Bγ)
sp = Bsp + γI allows us to subtract xTγIx through our inequality to arrive

at

(3.49) (1− ϵ)xTBx− ϵγxTx ≤ xTBspx ≤ (1 + ϵ)xTBx+ ϵγxTx ∀x ∈ RN .

In other words, sparsifying B using the same probabilities we used for Bγ guarantees a result similar

to that of Eq. 3.20, but with an additional additive error of ϵγxTx. In particular, if x has unit

norm then the additive error is simply ϵγ.
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3.9.3. Rectified linear units. Define the rectified linear activation function [·]+ = max[0, ·]

and consider the recurrent neural network

(3.50)
dx

dt
= −Dx+ [Wx+ b(t)]+.

As before, define A = −D +W , and let Asp be the result of applying noise-prune to A using the

probabilities from the linear network defined by A (so that Eq. 3.20 holds for A and Asp).

Let Γ(t) = {i :
∑

j Wijxj + bj(t) > 0} be the indices of neurons that receive suprathreshold

input at time t. Define AΓ(t) and Asp
Γ(t) to be the submatrices produced by removing the rows and

columns of A and Asp corresponding to indices not in Γ(t). We will show that the dynamics of the

network in Eq. 3.50 are approximately determined by the set of linear systems (indexed by t) with

coupling matrices AΓ(t), A
sp
Γ(t). In other words, the dynamics of a rectified linear network switch

among the dynamics of a set of linear networks, with the appropriate linear network at a moment in

time determined by the subset of neurons that receive suprathreshold input (see [31,32] for more on

this argument).

For convenience, let Γ(t)c be the complement of Γ(t); that is, Γ(t)c is the collection of neurons

that receive zero input. The neurons in Γ(t)c either have zero activity (and thus can be ignored) or

have nonzero activity but receive zero input (and thus contribute feedforward input to the rest of

the network that can be absorbed into the input vector). Define xΓ(t) and bΓ(t) to be the vectors

produced by removing the entries of x and b corresponding to the indices in Γ(t)c, as well as xΓ(t)c

to be the vector produced by removing the entries of x corresponding to the indices in Γ(t). Lastly,

define δbΓ(t) to be the feedforward contribution of xΓ(t)c (more precisely, the ith entry of this vector

is given by
∑

j∈Γ(t)c Wijxj with i ∈ Γ(t) listed in increasing order) that we will absorb into the new

input vector for our smaller system in R|Γ(t)|, defined to be b̃Γ(t) = bΓ(t) + δbΓ(t).

Now the dynamics of the network in some small time interval around t are determined by the

linear system,

dxΓ(t)

dt
= AΓ(t)xΓ(t) + b̃Γ(t).(3.51)

And the nodes in Γ(t)c either have 0 activity or are decaying to 0 with the leak time constant.
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Note that Eq. 3.20 holds for AΓ(t), A
sp
Γ(t) as well. Let Γ(t, j) be the index of the j-th active

neuron at time t. Given xΓ(t) ∈ R|Γ(t)|, consider the natural extension vector x ∈ RN whose entry in

Γ(t, j) is the j entry of xΓ(t) and whose entries in Γ(t)c are 0. Then xT
Γ(t)A

sp
Γ(t)xΓ(t) = xTAspx (and

similarly, xT
Γ(t)AΓ(t)xΓ(t) = xTAx), so the fact that Eq. 3.20 holds for A,Asp implies that it holds

for AΓ(t), A
sp
Γ(t) (for all t). Thus, among other quantities, the spectrum of AΓ(t) is approximately

preserved (to within ϵ) by Asp
Γ(t). Thus, we see that noise-prune preserves the dynamics of linear

systems described the submatrices AΓ(t). Finally, b̃Γ(t) depends on the weights through δbΓ(t), which

may be perturbed in the sp system, though it is preserved in expectation. However, perturbations

are likely to be small because this additional feedforward input comes from the small subset of

low-activity neurons in xΓ(t)c that receive sub-threshold input and are approaching zero activity but

have not completely decayed yet (which they do so with time-constant given by the leak). In short,

the dynamics of a rectified linear network are approximately preserved when its coupling matrix is

sparsified in the same manner as that of a linear network.
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CHAPTER 4

Unrestricted Pruning and Error Bounds for Pruned Nonlinear

Networks

4.1. Abstract

Network sparsification via weight pruning is a technique used to reduce model size and compu-

tation time, ideally while maintaining performance. Matrix concentration of measure inequalities

are powerful sparsification tools, but are currently underutilized in neural network literature due to

their recent emergence. We present a sparsification algorithm using the matrix Bernstein inequality,

vastly reducing the number of non-zero entries of rectangular weight matrices while approximately

preserving their spectrum. This algorithm applies to rectangular matrices in general, an improvement

on the idealized conditions of the results in Chapter 3. Following this result, we produce an analytic

argument that bounds the error between a pruned network’s output and that of its original, dense

counterpart. Under mild conditions such as sigmoid activation functions, this bound is a linear

combination of the layer-wise spectral errors guaranteed by our sparsification algorithm. This error

bound also applies to any activation layer, not only the output of a network; thus, the bound is useful

in the context of both feed-forward neural networks and discrete-time recurrent neural networks.

4.2. Introduction

Neural network pruning has a rich history dating back to the 1980s, originally motivated by

the desire to reduce network complexity while empirically maintaining performance [36,49]. As

networks with heavy storage requirements and computationally intensive structures have become

increasingly popular, a recent surge of empirical pruning work has appeared in the literature

[7,9,10,17,22,34,50,61,71]. In Frankle and Carbin’s highly influential empirical work of 2019, they

conjectured the Lottery Ticket Hypothesis (LTH). The LTH claimed the existence of subnetworks

that, when trained in isolation of the original randomly initialized network, can match test accuracy
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comparable to that of the original network after training for similar number of training epochs [22].

Following this, Ramanujan et al.’s empirical pruning study led to their conjecture of the aptly

named strong-LTH, which postulated the existence of such subnetworks, but included the additional

assumption that they need not be further trained to reach these comparable accuracy levels [69].

Several theoretical pruning studies have emanated from these conjectures in the last few years,

each providing pruning algorithms with theoretical guarantees on the performance of the pruned

network, as well as bounds on the number of connections in the network. Namely, Malach et al.

proved (a technical formulation of) the strong-LTH in 2020 for fully-connected, randomly initialized

networks with ReLu activation functions [56]. They show that a ReLu network with ℓ layers can be

well-approximated by a subnetwork of a random network with 2ℓ layers; they first “over-parametrize”,

doubling the number of layers of their network, then prune these layers deterministically to arrive at

a “sparse” network that approximates the original network arbitrarily well. However, these networks

are still quite dense, and are twice as deep as the original networks. Lastly, there is another line of

theoretical work that involves sampling-based pruning schemes for neural networks, but they each

use scalar concentration of measure inequalities to sample their networks’ parameters [7,8,53].

Contrasting the work described above, we present a pruning algorithm largely powered by the

powerful matrix-valued Bernstein inequality [70,90]. This result comes from a family of matrix

concentration inequalities that have been used in a variety of applications such as matrix completion

and sparsification, semi-definite program solvers, and approximate eigenvector computation [18].

However, these matrix-valued concentration of measure inequalities have yet to make their way

into the neural network pruning literature, despite providing powerful theoretical guarantees about

preserved matrix spectral norm. Unlike the results in Chapter 3 [60], which were limited to square,

symmetric, diagonally-dominant weight matrices, the matrix Bernstein inequality applies to general

rectangular matrices. We then show that applying this matrix pruning algorithm to each weight

matrix of a feed-forward neural network provides an output error bound between the pruned network

and the original that can be made arbitrarily small under mild conditions (such as sigmoid activation

functions and unitary weight matrices). Finally, we discuss these error bounds in the context of

discrete-time recurrent neural networks.
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4.3. Problem Setup

Let G(x;Θ) be a feed-forward neural network with activation function g(·) applied after each

layer. The input of this network is x ∈ RN0 , and it has parameters

Θ = (W (1),W (2), . . . ,W (n), b(1), b(2), . . . , b(n)),

where W (ℓ) ∈ RNℓ×Nℓ−1 and b(ℓ) ∈ RNℓ . That is, the activity at layer ℓ is given by

x(ℓ) = g(W (ℓ)x(ℓ−1) + b(ℓ)) for ℓ = 1, . . . , n,

so that x(n) = G(x(0);Θ) ∈ RNn .

We are seeking a pruning algorithm that can sparsify each layer’s weight matrix, yielding a

network G(x;Θsp) with parameters

Θsp = (W (1,sp),W (2,sp), . . . ,W (n,sp), b(1), b(2), . . . , b(n)).

In addition, we want the sparsified network to still transform inputs in a manner similar to its

original dense counterpart. In other words, we desire

(4.1)
∥∥∥G(x(0);Θ)−G(x(0);Θsp)

∥∥∥
2
≤ ϵ,

where ϵ is small. By utilizing sparse weight matrices, both computation time and memory require-

ments of the network can be vastly reduced with minimal impact on performance.

Our algorithm, largely inspired by that of Drineas and Zouzias (2011), will guarantee that each

layer’s sparsification W (ℓ,sp) has O(n log n
∥∥W (ℓ)

∥∥2
F
δ−2
ℓ ) expected edges, where n = max{Nℓ, Nℓ−1}

and δℓ > 0. At the same time, it guarantees the linear operator bound∥∥∥W (ℓ) −W (ℓ,sp)
∥∥∥
2
≤ δℓ

for each ℓ = 1, . . . , n. Here, each δℓ can be made arbitrarily small, at the cost of an increase in

expected remaining edges (which grows inversely proportional to δ2ℓ ). However, caution should be

exercised when decreasing δℓ; if
∥∥W (ℓ)

∥∥
F

is large, the sparsification guarantee could hold trivially

(see Appendix [Section 4.9.2]).
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Our next contribution will show that, once we have our hands on these layer-wise linear bounds,

we can convert them into a network-level nonlinear bound of the form Eq. 4.1, using only the

additional assumption that the nonlinear activation function is a contraction (see Appendix [Section

4.9.1] for our definition of contractions, which includes traditionally popular neural network activation

functions such as sigmoids, ReLu, etc.). This argument, while technically cumbersome, is rooted in

the simple idea that the error between two objects is made smaller when these objects are passed

through a contraction. As such, repeat applications of (sparsified) affine transformations followed by

contraction nonlinearities only mildly distort network input. The overall degree of approximation ϵ

is simply a linear combination of each δℓ, and thus can also be made as small as desired. Perhaps

surprisingly, if we consider a network with sigmoid activation function and unitary weight matrices,

ϵ is merely a scaled sum of all δℓ (see Corollary 4.8 for the details of this special case).

4.4. An Unrestricted Pruning Rule for Rectangular Matrices

We will focus on the development of a pruning algorithm used to sparsify a single rectangular

matrix (and in Section 4.6, we will apply this pruning algorithm to each of the weight matrices of a

network). That is, given a matrix A ∈ RM×N and a desired degree of spectral approximation δ > 0,

we seek to construct a sparse matrix Asp ∈ RM×N satisfying ∥A−Asp∥2 < δ. We begin by stating

the sparsification algorithm below. Note that we use the notation [n] = {1, . . . , n} for n ∈ N.

Algorithm 3 Rectangular Bernstein Matrix Sparsification Algorithm

Input: A ∈ RM×N and error tolerance δ > 0.
1. Set B = A and set Bij = 0 if Aij ≤ δ/2n.
2. Set s = 128

3δ2
n ln(

√
2n) ∥A∥2F .

3. For each index (i, j) ∈ [M ]× [N ], set

pij =

s
B2

ij

∥B∥2F
if sB2

ij ≤ ∥B∥2F
1 if sB2

ij > ∥B∥2F .

4. Define the sparse random matrix Asp with entries

Asp
ij =

{
Bij

pij
with probability pij

0 with probability 1− pij .

Output: Asp ∈ RM×N satisfying ∥A−Asp∥2 < δ.
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We now describe the algorithm at a high-level. First, in the same manner as [18], we zero

out the “small” entries of A. Then, we deterministically preserve the “large” entries, because we

need to ensure that our sampling probabilities remain in [0, 1]. Lastly and perhaps most notably,

we independently randomly sample the majority of entries of A (i.e., without replacement), with

sampling probabilities proportional to the square of the entry. The entries that are preserved are

strengthened by the reciprocal of the sampling probability.

Theorem 4.1. Let δ > 0, A ∈ RM×N be a matrix, and let n = max{M,N}. Define s =

128
3δ2

n ln(
√
2n) ∥A∥2F . The random matrix Asp constructed in Algorithm 3 satisfies

∥A−Asp∥2 ≤ δ

with high probability. Furthermore, Asp has s = O(n log n ∥A∥2F ) expected number of non-zero entries.

The proof of Theorem 4.1 is fairly involved, so we postpone it until Section 4.5. We pause here

to note that Theorem 4.1 provides an absolute error bound, while noise-prune guarantees a relative

error bound

∥A−Asp∥2 ≤ δ ∥A∥2 (See Eq. 3.42).

Actually, because the matrix A can be fixed before choosing the error tolerance δ, we can simply

choose δ as a function of ∥A∥2, so both Theorem 4.1 and noise-prune can be formulated with either

relative or absolute errors via a simple scaling argument. Below we present the relative error version

of Theorem 4.1.

Corollary 4.2. Let δ̃ > 0, A ∈ RM×N be a matrix, and let n = max{M,N}. Define s =

128
3δ̃2

n ln(
√
2n)

∥A∥2F
∥A∥22

. The random matrix Asp constructed in Algorithm 3 satisfies

∥A−Asp∥2 ≤ δ̃ ∥A∥2

with high probability. Furthermore, Asp has s = O(n log n
∥A∥2F
∥A∥22

) expected number of non-zero entries.

Proof. Let δ̃ > 0 be fixed. Define δ = δ̃ ∥A∥2 and

s =
128

3δ2
n ln(

√
2n) ∥A∥2F =

128

3δ̃2
n ln(

√
2n)

∥A∥2F
∥A∥22

.
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By Theorem 4.1, we have that

∥A−Asp∥2 ≤ δ = δ̃ ∥A∥2 ,

with high probability. □

The quantity ∥A∥2F
∥A∥22

is sometimes called the stable rank of A, because the squared Frobenius norm

is the sum of squared singular values of A while the squared 2-norm is simply the largest squared

singular value of A. This stability is in the numerical sense. As an example, a stable rank of 3 is

implied when approximately 3 singular values are on the order of magnitude of the largest singular

value.

Before we prove Theorem 4.1, we describe the powerful rectangular matrix inequality that

provides us the machinery to do so.

4.4.1. The Rectangular Matrix Bernstein Inequality. Like many other concentration of

measure inequalities, the matrix Bernstein inequality was originally proven for symmetric (hence

square) matrices by Gross et al. in 2010 [29]. This lack of generality leaves those working with

neural networks wanting, as weight matrices are rarely symmetric, and are rectangular in general

due to the non-uniformity of layer sizes. Fortunately, Recht and Tropp independently extended

the inequality to rectangular matrices soon afterward in 2011, cleverly importing the technique of

self-adjoint dilation from operator theory [70,90]. This formulation is the one that is useful for our

purposes. We state the rectangular Bernstein inequality below.

Theorem 4.3. Let X1, . . . , XL be independent zero-mean random matrices of dimension M ×N ,

such that ∥Xk∥2 ≤ R almost surely for all k ∈ [L]. For any t ≥ 0, we have

P

[∥∥∥∥∥
L∑

k=1

Xk

∥∥∥∥∥ ≥ t

]
≤ (M +N) exp

(
− t2/2

σ2 +Rt/3

)
,

where σ2 = max
{∥∥∥∑L

k=1XkX
T
k

∥∥∥
2
,
∥∥∥∑L

k=1X
T
k Xk

∥∥∥
2

}
.

We will describe precisely how we utilize this inequality in the proof of Theorem 4.1.

88



4.5. Proof of Theorem 4.1

Because of its reliance on the rectangular matrix Bernstein inequality and many technical lemmas,

the proof of Theorem 4.1 will have the entirety of this section devoted to it. For brevity in lemma

statements, we always refer to a fixed δ > 0, M,N ∈ N, and A ∈ RM×N . We follow a modification of

the overall proof strategy used in [18]. Our algorithm samples matrix entries without replacement, so

the distribution of each random matrix used in Theorem 4.3 is Bernoulli in one entry (and identically

0 in all other entries), rather than uniform over all entries. This algorithmic distinction leaves the

equivalent of Lemma 4.4 unchanged, but requires the manipulation of different bounds on R and σ2

in Lemmas 4.5 and 4.6. The theoretical guarantees on expected non-zero entries remains unchanged.

The structure of the overall argument will bound ∥A−Asp∥2 using a standard δ/2-argument:

∥A−Asp∥2 = ∥A−B +B −Asp∥2

≤ ∥A−B∥2 + ∥Asp −B∥2

≤ δ

2
+

δ

2
= δ.

Lemma 4.4 will provide the bound on ∥A−B∥2, while Theorem 4.3 will provide the high-probability

bound on ∥Asp −B∥2 through Lemmas 4.5 and 4.6. Following this, we will compute the expected

number of non-zero entries in Asp.

4.5.1. Bounding ∥A−B∥2. The construction of B simply deterministically prunes away

sufficiently small entries. This subtle step is necessary to find an upper bound on the reciprocal of

our weights, which is utilized in the proof of Lemma 4.5.

Lemma 4.4. Define the matrix B by

Bij =


Aij if |Aij | ≥ δ

2n

0 if |Aij | < δ
2n .

Then, we have

∥A−B∥2 ≤
δ

2
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Proof. Since

(A−B)ij =


0 if |Aij | ≥ δ

2n

Aij if |Aij | < δ
2n ,

we can see that (A−B)ij ≤ δ
2n for each (i, j).

Recalling that the 2-norm is bounded by the Frobenius norm, we have

∥A−B∥22 ≤ ∥A−B∥2F =
M∑
i=1

N∑
j=1

(A−B)2ij ≤
M∑
i=1

N∑
j=1

δ2

4n2
=

δ2MN

4n2
≤ δ2

4
,

so

∥A−B∥2 ≤
δ

2
.

□

4.5.2. Bounding ∥Asp −B∥2 with the matrix Bernstein inequality. We will apply Theo-

rem 4.3 to the matrices {X(i,j)} indexed by (i, j) ∈ [M ]× [N ], where each X(i,j) has all entries equal

to 0 except the (i, j)th entry, given by

X
(i,j)
ij =


Bij

pij
−Bij with probability pij

−Bij with probability 1− pij .

Note that E[X(i,j)] = 0, since E[X(i,j)
ij ] =

(
Bij

pij
−Bij

)
pij + (−Bij)(1− pij) = 0, and all other entries

are identically 0. Note also that
∑

(i,j)X
(i,j) = Asp −B, with Asp defined as in Algorithm 3:

Asp
ij =


Bij

pij
with probability pij

0 with probability 1− pij .

Hence, taking t = δ/2, Theorem 4.3 describes the inequality

(4.2) P

[
∥Asp −B∥ ≥ δ

2

]
≤ (M +N) exp

(
− δ2/8

σ2 +Rδ/6

)
.

If we can guarantee that the right-hand-side of Eq. 4.2 is O(1/n), then we have

∥Asp −B∥ <
δ

2
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with high probability, as desired. Thus, the next two subsections focus on bounding R and σ2

respectively.

4.5.3. Bounding R.

Lemma 4.5. For each (i, j) ∈ [M ]× [N ], we have∥∥∥X(i,j)
∥∥∥
2
≤ 4n

δs
∥B∥2F .

Proof. Notice that
∥∥X(i,j)

∥∥
2
≤
∥∥X(i,j)

∥∥
F
≤ max

{
|Bij

pij
−Bij |, |Bij |

}
≤ |Bij

pij
|+ |Bij |. Then, we

have

|Bij

pij
|+ |Bij | =

∥B∥2F
s|Bij |

+ |Bij | by definition of pij

≤
∥B∥2F
s|Bij |

+ ∥B∥F by definition of ∥·∥F

≤ 2n

δs
∥B∥2F + ∥B∥F since |Bij | ≥

δ

2n
.

So, it remains to show that ∥B∥F ≤ 2n
δs ∥B∥2F .

To see that this must be true, suppose for contradiction that ∥B∥F > 2n
δs ∥B∥2F . Rearranging

this inequality reveals that

∥B∥F <
δs

2n
,

which is a contradiction as long as B has at least s non-zero entries, since each element of B is at

least δ/2n in magnitude by construction (note: if B has less than s entries, we do not need to prune

it, as it is already as sparse as Theorem 4.1 guarantees it’s sparsification would be). Putting this

together with our string of inequalities, we have∥∥∥X(i,j)
∥∥∥
2
≤ 2n

δs
∥B∥2F + ∥B∥F

≤ 2n

δs
∥B∥2F +

2n

δs
∥B∥2F

=
4n

δs
∥B∥2F ,

as desired. □
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4.5.4. Bounding σ2.

Lemma 4.6. Given σ2 = max
{∥∥∥∑(i,j) E

[
X(i,j)(X(i,j))T

]∥∥∥
2
,
∥∥∥∑(i,j) E

[
(X(i,j))TX(i,j)

]∥∥∥
2

}
, we

have

σ2 ≤ 2n

s
∥B∥2F .

Proof. We first focus on bounding
∥∥∥∑(i,j) E

[
X(i,j)(X(i,j))T

]∥∥∥
2

(and will later show that∥∥∥∑(i,j) E
[
(X(i,j))TX(i,j)

]∥∥∥
2

is bounded by the same quantity). For each (i, j), we have

E
[
X(i,j)(X(i,j))T

]
= pij(Bij(

1

pij
− 1)eie

T
j )(Bij(

1

pij
− 1)eje

T
i )

+ (1− pij)(−Bijeie
T
j )(−Bijeje

T
i )

= B2
ijpij(

1

p2ij
− 2

pij
+ 1)eie

T
i +B2

ij(1− pij)eie
T
i

= B2
ij(

1

pij
− 1)eie

T
i .

In other words, each term E
[
X(i,j)(X(i,j))T

]
contributes only to the diagonal elements of the resulting

summation over (i, j). Indeed, if we define C =
∑

(i,j) E
[
X(i,j)(X(i,j))T

]
, we see that Cij = 0 when

i ̸= j, and

Cii =

N∑
j=1

B2
ij(

1

pij
− 1).
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As a result of C being a diagonal matrix, ∥C∥2 is simply the maximum of its diagonal elements, so

we can bound it as follows:

∥C∥2 = max
1≤i≤M

 N∑
j=1

B2
ij(

1

pij
− 1)


≤ max

1≤i≤M

 N∑
j=1

B2
ij

pij
+B2

ij


≤ max

1≤i≤M

 N∑
j=1

B2
ij

pij
+

B2
ij

pij

 since 0 < pij < 1

= max
1≤i≤M

 N∑
j=1

2B2
ij

pij


≤ max

1≤i≤M

 N∑
j=1

2 ∥B∥2F
s


=

2N

s
∥B∥2F ≤ 2n

s
∥B∥2F .

Following a very similar argument, if we define D =
∑

(i,j) E
[
(X(i,j))TX(i,j)

]
, we find that

E
[
(X(i,j))TX(i,j)

]
= B2

ij(
1

pij
− 1)eje

T
j ,

which allows us to see that D is a diagonal matrix with entries

Djj =
M∑
i=1

B2
ij(

1

pij
− 1).

As such, we find that

∥D∥2 ≤
2M

s
∥B∥2F ≤ 2n

s
∥B∥2F .

In any case, we find that

σ2 = max{∥C∥2F , ∥D∥2F } ≤ 2n

s
∥B∥2F .

□
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4.5.5. Tying together R, σ2, and Eq. 4.2. Now that we have found an expression for R

and a bound for σ2, we can continue to inspect Eq. 4.2:

P

[
∥Asp −B∥ ≥ δ

2

]
≤ (M +N) exp

(
− δ2/8

σ2 +Rδ/6

)

= (M +N) exp

(
− δ2/8

σ2 + 4n
δs ∥B∥2F

δ
6

)
since R =

4n

δs
∥B∥2F

≤ 2n exp

(
− δ2/8

2n
s ∥B∥2F + 2n

3s ∥B∥2F

)
since σ2 ≤ 2n

s
∥B∥2F

≤ 2n exp

(
−s

3δ2

64n ∥B∥2F

)

≤ 2n exp

(
− ln(2n2)

∥A∥2F
∥B∥2F

)
since s =

64

3δ2
n ln(2n2) ∥A∥2F

≤ 2n exp
(
− ln(2n2)

)
since ∥B∥F ≤ ∥A∥F by construction

=
1

n
.

Hence, with high probability, we have ∥Asp −B∥2 <
δ
2 . This completes the proof that ∥A−Asp∥2 ≤ δ.

It is perhaps worth noting that the choice of s is somewhat arbitrary, in the sense that we could

choose a larger s to arrive at a lower failure probability than 1/n (and similarly, we could choose a

smaller s to arrive at a higher failure probability). This is noteworthy because s governs the sparsity

of the pruned matrix, as we will see in the next subsection.

4.5.6. Bounding the number of nonzero entries of Asp. Recall that Asp is given by

Asp
ij =


Bij

pij
with probability pij

0 with probability 1− pij

with

pij =


s

B2
ij

∥B∥2F
if sB2

ij ≤ ∥B∥2F

1 if sB2
ij > ∥B∥2F .

As such, note that the expected number of nonzero entries of Asp is simply
∑

(i,j)∈[M ]×[N ] pij . We will

partition [M ]× [N ] by considering the pij that are smaller than 1 and the pij that are identically 1.
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That is, let S = {(i, j) ∈ [M ]× [N ] : sB2
ij ≤ ∥B∥2F } so that Sc = {(i, j) ∈ [M ]× [N ] : sB2

ij > ∥B∥2F }.

With this notation in mind, we can readily see that

∑
(i,j)∈[M ]×[N ]

pij =
∑

(i,j)∈S

pij +
∑

(i,j)∈Sc

pij

=
∑

(i,j)∈S

s
B2

ij

∥B∥2F
+

∑
(i,j)∈Sc

1

≤
∑

(i,j)∈S

s
B2

ij

∥B∥2F
+

∑
(i,j)∈Sc

s
B2

ij

∥B∥2F
since sB2

ij > ∥B∥2F when (i, j) ∈ Sc

=
∑

(i,j)∈[M ]×[N ]

sB2
ij

∥B∥2F

=
s

∥B∥2F

∑
(i,j)∈[M ]×[N ]

B2
ij

= s since
∑

(i,j)∈[M ]×[N ]

B2
ij = ∥B∥2F .

Hence, the expected number of non-zero entries of Asp is at most s, which completes the proof.

4.6. Error Bounds for Pruned Feed-Forward Neural Networks

Now that we have the ability to create sparse rectangular weight matrices with similar spectral

properties to their original dense counterparts, we consider the error between the output of a

feed-forward network comprised of pruned weight matrices and that of the original, dense network.

In fact, we construct error bounds that apply at any activity layer of a deep network, allowing us to

easily analogize our result to discrete-time recurrent neural networks. Throughout Sections 4.6 and

4.7, we follow the convention that ∥·∥ = ∥·∥2 unless otherwise stated.

Theorem 4.7. Let G(x,Θ) be a feed-forward neural network with a contraction activation function

g(·) (i.e., g has Lipschitz constant 0 ≤ k ≤ 1) applied after each layer with input x ∈ RN0 and

parameters

Θ = (W (1),W (2), . . . ,W (n), b(1), b(2), . . . , b(n)),
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where W (ℓ) ∈ RNℓ×Nℓ−1 and b(ℓ) ∈ RNℓ . That is, the activity at layer ℓ is given by

x(ℓ) = g(W (ℓ)x(ℓ−1) + b(ℓ)) for ℓ = 1, . . . , n,

so that x(n) = G(x(0),Θ) ∈ RNn. Furthermore, assume G(x,Θsp) is a layer-wise pruned neural

network with parameters

Θsp = (W (1,sp),W (2,sp), . . . ,W (n,sp), b(1), b(2), . . . , b(n))

where
∥∥W (ℓ) −W (ℓ,sp)

∥∥ ≤ δℓ for each ℓ = 1, . . . , n. The activity at layer ℓ is given by

x(ℓ,sp) = g(W (ℓ,sp)x(ℓ−1,sp) + b(ℓ)) for ℓ = 1, . . . , n.

For any layer ℓ such that 1 ≤ ℓ ≤ n, if x(0) = x(0,sp), we have the error bound

(4.3)
∥∥∥x(ℓ) − x(ℓ,sp)

∥∥∥ ≤
ℓ−1∑
j=0

kj+1δℓ−j

∥∥∥x(ℓ−1−j,sp)
∥∥∥ · j−1∏

i=0

∥∥∥W (ℓ−i)
∥∥∥ .

Proof. Let 1 ≤ ℓ ≤ n be fixed. More generally, we claim that

(4.4)∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ ≤

∥∥∥x(ℓ−m) − x(ℓ−m,sp)
∥∥∥ km·

m−1∏
j=0

∥∥∥W (ℓ−j)
∥∥∥+m−1∑

j=0

kj+1δℓ−j

∥∥∥x(ℓ−1−j,sp)
∥∥∥·j−1∏

i=0

∥∥∥W (ℓ−i)
∥∥∥

for all m = 1, . . . , ℓ (note: in the case m = 1, we follow the convention that an empty product is

equal to 1). Once we show Eq. (4.4), taking m = ℓ achieves the result stated in the theorem, since

x(0) = x(0,sp) by assumption. We show the base case m = 1 below.∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ =

∥∥∥g(W (ℓ)x(ℓ−1) + b(ℓ))− g(W (ℓ,sp)x(ℓ−1,sp) + b(ℓ))
∥∥∥

≤ k
∥∥∥W (ℓ)x(ℓ−1) + b(ℓ) − (W (ℓ,sp)x(ℓ−1,sp) + b(ℓ))

∥∥∥
≤ k

∥∥∥W (ℓ)x(ℓ−1) −W (ℓ,sp)x(ℓ−1,sp)
∥∥∥

≤ k
∥∥∥W (ℓ)x(ℓ−1) − (W (ℓ) −W (ℓ) +W (ℓ,sp))x(ℓ−1,sp)

∥∥∥
≤ k

(∥∥∥W (ℓ)
∥∥∥∥∥∥x(ℓ−1) − x(ℓ−1,sp)

∥∥∥+ ∥∥∥W (ℓ) −W (ℓ,sp)
∥∥∥∥∥∥x(ℓ−1,sp)

∥∥∥)
≤ k

(∥∥∥W (ℓ)
∥∥∥∥∥∥x(ℓ−1) − x(ℓ−1,sp)

∥∥∥+ δℓ

∥∥∥x(ℓ−1,sp)
∥∥∥)
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Now suppose Eq. (4.4) holds for m− 1 ∈ {1, . . . , ℓ− 1}. We will show that it holds for m as well.

By the inductive hypothesis, we have

∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ ≤

∥∥∥x(ℓ−m+1) − x(ℓ−m+1,sp)
∥∥∥ km−1 ·

m−2∏
j=0

∥∥∥W (ℓ−j)
∥∥∥

+

m−2∑
j=0

kj+1δℓ−j

∥∥∥x(ℓ−1−j,sp)
∥∥∥ · j−1∏

i=0

∥∥∥W (ℓ−i)
∥∥∥

=
∥∥∥g(W (ℓ−m+1)x(ℓ−m) + b(ℓ−m+1))− g(W (ℓ−m+1,sp)x(ℓ−m,sp) + b(ℓ−m+1))

∥∥∥ km−1 ·
m−2∏
j=0

∥∥∥W (ℓ−j)
∥∥∥

+

m−2∑
j=0

kj+1δℓ−j

∥∥∥x(ℓ−1−j,sp)
∥∥∥ · j−1∏

i=0

∥∥∥W (ℓ−i)
∥∥∥ .

Now, consider the expression∥∥∥g(W (ℓ−m+1)x(ℓ−m) + b(ℓ−m+1))− g(W (ℓ−m+1,sp)x(ℓ−m,sp) + b(ℓ−m+1))
∥∥∥ ,

which is bounded above by

≤ k
∥∥∥W (ℓ−m+1)x(ℓ−m) −W (ℓ−m+1,sp)x(ℓ−m,sp)

∥∥∥
= k

∥∥∥W (ℓ−m+1)x(ℓ−m) − (W (ℓ−m+1) −W (ℓ−m+1) +W (ℓ−m+1,sp))x(ℓ−m,sp)
∥∥∥

≤ k
(∥∥∥W (ℓ−m+1)

∥∥∥∥∥∥x(ℓ−m) − x(ℓ−m,sp)
∥∥∥+ ∥∥∥W (ℓ−m+1) −W (ℓ−m+1,sp)

∥∥∥∥∥∥x(ℓ−m,sp)
∥∥∥)

= k
(∥∥∥W (ℓ−m+1)

∥∥∥∥∥∥x(ℓ−m) − x(ℓ−m,sp)
∥∥∥+ δℓ−m+1

∥∥∥x(ℓ−m,sp)
∥∥∥) .

Thus, we have

∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ ≤ k

(∥∥∥W (ℓ−m+1)
∥∥∥∥∥∥x(ℓ−m) − x(ℓ−m,sp)

∥∥∥+ δℓ−m+1

∥∥∥x(ℓ−m,sp)
∥∥∥) km−1 ·

m−2∏
j=0

∥∥∥W (ℓ−j)
∥∥∥

+
m−2∑
j=0

kj+1δℓ−j

∥∥∥x(ℓ−1−j,sp)
∥∥∥ · j−1∏

i=0

∥∥∥W (ℓ−i)
∥∥∥

=
∥∥∥x(ℓ−m) − x(ℓ−m,sp)

∥∥∥ km ·
m−1∏
j=0

∥∥∥W (ℓ−j)
∥∥∥+ m−1∑

j=0

kj+1δℓ−j

∥∥∥x(ℓ−1−j,sp)
∥∥∥ · j−1∏

i=0

∥∥∥W (ℓ−i)
∥∥∥ ,

precisely as desired, proving the result by induction. □
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4.7. Corollaries of Theorem 4.7

Theorem 4.7 is presented in the most general sense, with no concrete activation function and

no restriction on the weight matrices. We now highlight how the error bound Eq. 4.1 is affected

by choosing bounded Lipschitz activation functions with 0 ≤ k ≤ 1, such as the standard sigmoid.

We also highlight the simplicity of the error bound when weight matrices are unitary, and that the

bound applies to discrete-time recurrent neural networks as well; this point is especially salient, as

networks of this form are now frequently called unitary recurrent neural networks (URNNs), and

they have become quite popular [2,20,40,52,97]. URNNs have been shown to be as expressive

as general RNNs [20,97], while largely circumventing the exploding/vanishing gradient problem

that traditionally plagues recurrent networks [2]. In essence, the unitary limitation on weight matrix

norm is not nearly as limiting as one might believe, and they make our results far more appealing

due to our error bounds being functions of the matrix norms.

Corollary 4.8. Let G(x,Θ) and G(x,Θsp) be as defined in Theorem 4.1. Furthermore, assume

that the sigmoid g(·) is given by the entrywise logistic function g : R → R with g(x) = ex

ex+1 .

For any layer ℓ such that 1 ≤ ℓ ≤ n, if x(0) = x(0,sp) with
∥∥x(0)

∥∥ ≤ 1, we have the error bound

(4.5)
∥∥∥x(ℓ) − x(ℓ,sp)

∥∥∥ ≤
ℓ−1∑
j=0

δℓ−j ·
j−1∏
i=0

∥∥∥W (ℓ−i)
∥∥∥ .

Moreover, if each of the original weight matrices are unitary, we have the bound

(4.6)
∥∥∥x(ℓ) − x(ℓ,sp)

∥∥∥ ≤
ℓ∑

j=1

δj .

Proof. We begin by noting that g(·) has Lipschitz constant k = 1, because the one-dimensional

g(x) has Lipschitz constant k = 1 (see Proposition 4.12 in the Appendix for a proof of this). Thus,

in order to convert Eq. 4.3 to Eq. 4.5, it suffices to observe the bound of each layer’s activity of the

sparsified network: ∥∥∥x(j,sp)
∥∥∥ ≤ 1 for j = 0, . . . , ℓ− 1

Note that j = 0 holds by assumption. Now, recall that∥∥∥x(j,sp)
∥∥∥ =

∥∥∥g(W (j,sp)x(j−1,sp) + b(j))
∥∥∥ ≤ 1 for j = 1, . . . , ℓ− 1,
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simply because the sigmoid function is always bounded by 1. So we arrive at the desired inequality

∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ ≤

ℓ−1∑
j=0

δℓ−j ·
j−1∏
i=0

∥∥∥W (ℓ−i)
∥∥∥ .

Now, if each of the weight matrices are unitary (i.e.,
∥∥W (ℓ−i)

∥∥ = 1 for i = 0, . . . , j − 1), we

immediately arrive at ∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ ≤

ℓ−1∑
j=0

δℓ−j =

ℓ∑
j=1

δj ,

completing the proof. □

That is, given a desired degree of approximation ϵ > 0, if we want∥∥∥x(ℓ) − x(ℓ,sp)
∥∥∥ ≤ ϵ,

we can simply choose δj =
ϵ
ℓ for j = 1, . . . , ℓ, as long as our weight matrices are unitary. In that

case, each matrix in our network will have O(ℓ2Nj logNjϵ
−2) non-zero entries, which means that

the total number of parameters in the network is O(ℓ3Nmax logNmaxϵ
−2), where Nmax = maxj Nj .

We note that a similar result can be shown for any contraction g that is bounded, but chose the

logistic function because it is bounded by 1 for simplicity. We now show that Theorem 4.7 can be

ported into the recurrent neural network setting in the next corollary.

Corollary 4.9. Let x(t+1) = g(Wx(t) + b(t)) be a discrete-time recurrent neural network with weight

matrix W ∈ Rn×n, bias vectors (i.e., “input”) b(t) ∈ Rn, and activation function g(·) : Rn → Rn with

Lipschitz constant 0 ≤ k ≤ 1. Furthermore, assume x(t+1,sp) = g(W spx(t+1,sp) + b(t)) is a pruned

recurrent neural network satisfying ∥W −W sp∥ ≤ δ. For any time-step t ≥ 1, if x(0) = x(0,sp), we

have the error bound ∥∥∥x(t) − x(t,sp)
∥∥∥ ≤ δ

t−1∑
j=0

kj+1
∥∥∥x(t−1−j,sp)

∥∥∥ ∥W∥j .

Proof. Let t ≥ 1 and define the feed-forward network G(x,Θ) with t layers, where each

W (ℓ) = W and b(ℓ) is indexed by ℓ = 1, . . . , t. Next, construct its sparse counterpart G(x,Θsp) with

each W (ℓ,sp) = W . Note that ∥∥∥W (ℓ) −W (ℓ,sp)
∥∥∥ = ∥W −W sp∥ ≤ δ.
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Then, applying Theorem 4.7 with each δℓ−j = δ and
∥∥W (ℓ−i)

∥∥ = ∥W∥, we have

∥∥∥x(t) − x(t,sp)
∥∥∥ ≤ δ

t−1∑
j=0

kj+1
∥∥∥x(t−1−j,sp)

∥∥∥ ∥W∥j ,

as desired. □

Corollary 4.9, as presently stated, bounds the norm of the difference of activities at the t-th

timestep, and may be useful for vector-to-vector recurrent network structures that are only interested

in such outputs. For example, Hopfield networks tend to only concern themselves with the steady-

state output, a single vector, typically encoding a single image (sometimes called a pattern or

memory).

Some recurrent networks are trained to perform on tasks that consider their “input” to be the

sequence of bias vectors (as noted in the corollary statement), and these tasks are formulated in

such a way that they tend to consider their “output” to be the sequence of neural activity given by

X = (x(1), . . . ,x(t)), which can be thought of as a matrix with iT -th entry XiT = x
(T )
i . Sequence-

to-sequence architectures of this sort are often used to solve problems in speech recognition and

natural language processing and are an extremely active area of research [24,30,39,55,87]. We

note that we can extend Corollary 4.9 to bound the error of outputs in the sequence-to-sequence

setting in Frobenius norm.

Corollary 4.10. Let x(t+1) = g(Wx(t)+b(t)) be a discrete-time recurrent neural network with weight

matrix W ∈ Rn×n, bias vectors (i.e., “input”) b(t) ∈ Rn, and activation function g(·) : Rn → Rn

with Lipschitz constant 0 ≤ k ≤ 1. Furthermore, assume x(t+1,sp) = g(W spx(t+1,sp) + b(t)) is a

pruned recurrent neural network satisfying ∥W −W sp∥ ≤ δ. For any time-step t ≥ 1, define the

sequence-of-activity matrix X with iT -th entry XiT = x
(T )
i , where i = 1, . . . , n and T = 1, . . . , t.

Similarly, define Xsp with it-th entry Xit = x
(t,sp)
i . If x(0) = x(0,sp), we have the error bound

∥X −Xsp∥F ≤ δ

√√√√√ t∑
T=1

T−1∑
j=0

kj+1
∥∥x(T−1−j,sp)

∥∥ ∥W∥j
2

.
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Proof. By the definition of the Frobenius norm, we have

∥X −Xsp∥2F =
t∑

T=1

n∑
i=1

∣∣∣x(T )
i − x

(T,sp)
i

∣∣∣2
=

t∑
T=1

∥∥∥x(T ) − x(T,sp)
∥∥∥2 by definition of ∥·∥ = ∥·∥2

≤ δ2
t∑

T=1

T−1∑
j=0

kj+1
∥∥∥x(T−1−j,sp)

∥∥∥ ∥W∥j
2

by Corollary 4.9,

so that taking the square root of the inequality achieves the desired result. □

4.8. Discussion

Over the last decade, there has been a large body of work developing around concentration

of measure inequalities. Though their applications are wide-ranging, we discuss others’ results in

matrix sparsification. As noted throughout this chapter, the Bernstein pruning algorithm was largely

inspired by the work of Drineas and Zouzias (2011). They applied the square matrix Bernstein

inequality to create a pruning algorithm that sampled entries with replacement, and created an

updated version of the algorithm in order to successfully prune the matrix in one-pass. We circumvent

this issue by sampling without replacement, which naturally allows our algorithm to only need to

pass through each entry of the matrix once (see [29] for a review on sampling with or without

replacement using Matrix concentration inequalities). Both our algorithm and theirs guarantee

an expected number of nonzero entries O(n log n
∥A∥2F
ϵ2

) (where n = max{M,N} in our rectangular

setting). The matrix Bernstein inequality is definitely not the only useful concentration inequality

in the context of pruning. Notably, there has been matrix sparsification work done with matrix

inequalities of Bernstein, Khintchine, and Chernoff [18,60,62]. It will be interesting to see how

these can be creatively ported into the neural network literature, especially as scholars recognize

that they can be generalized to rectangular matrices.

As in [60], we saw that the matrix Chernoff inequality can be applied to a symmetric, diagonally-

dominant matrix A ∈ RN×N to arrive at the inequality

|xT (A−Asp)x| ≤ ϵ|xTAx| for all x ∈ RN ,
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and while we did state that this does imply ∥A−Asp∥ ≤ ϵ ∥A∥, it is in fact a stronger statement.

Indeed, by the Courant-Fischer theorem, we can see that

|λi − λ̃i| ≤ ϵ|λi| for all i,

where λi and λ̃i are the ith eigenvalues of A and Asp respectively. In other words, the spectral

similarity guaranteed in Chapter 3 guarantees that each eigenvalue is approximately preserved

relative to the size of the original corresponding eigenvalue. On the other hand, our Bernstein

pruning algorithm can only guarantee a relative bound of ∥A−Asp∥ ≤ ϵ ∥A∥. We can still receive a

bound on the distance between ith eigenvalues thanks to Weyl’s inequality [95], but it only reveals:

|λi − λ̃i| ≤ ∥A−Asp∥ ≤ ϵ ∥A∥ = ϵλmax,

which is a comparably loose bound for smaller eigenvalues. As such, in the context of symmetric,

diagonally dominant matrices, noise-prune still provides stronger theoretical results.

Discrete-time recurrent networks with unitary weight matrices, now known as URNNs, have

had a recent surge in popularity due to their ability to circumvent the exploding (or vanishing)

gradient problem while outperforming LSTMs and other state-of-the-art networks in hard tasks

involving long-term dependencies [2,72]. Our results also apply to networks of this architecture,

because discrete-time RNNs can be represented as (infinitely) deep feed-forward networks with

identical weights and biases each layer. Indeed, it would be interesting to explore how pruned URNN

architectures compare to general RNNs in task-dependent contexts, but that is outside the scope of

this present study.

Though the idea to work with contractions/Lipschitz functions in the context of neural networks

was entirely an idea developed independently, some recent work has been done discussing “contractive”

RNNs [20]. They require that both the activation function and the connectivity matrix act as

contraction mappings, whereas the results in this work only require that the activation function

is a contraction mapping (though our results are strengthened in the event that the connectivity

matrices act as contractions/unitary matrices, as observed in Corollary 4.8). However, there does

not seem to be any work in the literature that considers pruning these contractive RNNs. The work

in this chapter shows that this may be a fruitful future direction for research, as well.
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Lastly, it would be interesting to explore a pruning algorithm that mixes the sampling probabilities

of the results in Chapters 3 and 4. Specifically, the sampling probabilities in noise-prune take into

account higher-order information than weights alone thanks to the comb-cov term. On the other

hand, the Bernstein algorithm presented here depends on the square of weights rather than simply

the magnitude of weights, so it penalizes small weights more heavily (and favors preserving “larger”

weights with higher probability). Perhaps an updated noise-prune that emphasizes preserving larger

entries would be worth exploring. It is unlikely that this pruning rule would be predicted by any

theoretical argument involving current concentration of measure inequalities, but it may be powerful

empirically if the results from Chapter 3 are any indication.

4.9. Appendix

4.9.1. Contractions. Some of the usual activation functions used in neuroscience and machine

learning are nonlinearities such as ReLu and sigmoids (i.e., the logistic function, arctangent, and

hyperbolic tangent). We will be referring to this collection of functions often, so we define C =

{ReLu, σ, tan−1, tanh}.

Each of these nonlinearities are originally functions from R to R, but when used as activation

functions in neural networks, they are applied in an element-wise fashion at each neuron. That is, we

can consider them as functions from RN to RN by simply defining g(x) = (g(x1), g(x2), . . . , g(xN )),

where g ∈ C. We review the notion of a contraction mapping below.

Definition 4.11. A contraction g from RN to RN has the property that there exists some constant

k with 0 ≤ k ≤ 1 such that

∥g(x)− g(y)∥p ≤ k ∥x− y∥p ,

for all x,y ∈ RN . The constant k is said to be the Lipschitz constant of g(·).

It is worth noting that some authors reserve the term contraction for 0 ≤ k < 1, and consider

allowance of k = 1 to instead define a non-expansion, but k = 1 does not affect the results in this

chapter. Indeed, it is the case that k = 1 for e.g. ReLu and the Logistic function. Thus, to be

inclusive of these functions in our definition of contractions, we are best served including k = 1 in

our definition.
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Intuitively, contractions keep the error between two quantities smaller than the error between

the two linear quantities themselves. We now present a simple result that allows us to see that the

entry-wise nonlinearities typically used in neural networks (which are one-dimensional contractions)

stay contractions when we vectorize them.

Proposition 4.12. If g is a contraction from R to R with Lipschitz constant k under ∥·∥p = | · |,

then g : RN → RN is a contraction from RN to RN with Lipschitz constant k under ∥·∥p, where

g(x) = (g(x1), g(x2), . . . , g(xN )).

Proof.

∥g(x)− g(y)∥pp = |g(x1)− g(y1)|p + |g(x2)− g(y2)|p + · · ·+ |g(xN )− g(yN )|p

≤ kp|x1 − y1|p + kp|x2 − y2|p + · · ·+ kp|xN − yN |p

= k ∥x− y∥pp ,

where monotonicity of (·)p and nonnegativity of k is used in the inequality. Raising both sides of

this inequality by the power 1/p yields the desired result. □

We solely apply this result for the spectral norm (p = 2), but state it for general p-norms for any

reader that finds this useful.

Below we define some contraction nonlinearities that the results in the chapter apply to. The

ReLu function is given by

ReLu(x) = max(0, x).

A sigmoid function is a bounded, differentiable, function from R to R that has a non-negative

derivative at each point, and has exactly one inflection point [33]. A common example of a sigmoid

function is the logistic function

σ(x) =
1

1 + e−x
=

ex

ex + 1
.

The tanh function also satisfies the definition of a sigmoid function, and it is given by

tanhx =
sinhx

coshx
=

ex − e−x

ex − e−x
=

e2x − 1

e2x + 1
.

tan−1 is also a sigmoid function.
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4.9.2. Sparsity Guarantees in terms of
∥∥W 2

F

∥∥. When we apply Theorem 4.1 to a matrix

W with an error tolerance of δ, we are guaranteed an expected number of nonzero entries equal to

O(n log n ∥W∥2F δ−2). Note that ∥W∥2F = rσ2
avg, where r is the rank of W and σavg = 1

r

∑r
i=1 σ

2
i

(where σ2
i is the i-th singular value of W ). Then, the expected number of nonzero entries is on the

order of

O(n log n ∥W∥2F δ−2) ∝ rn log n
σ2
avg

δ2
.

Clearly, if r = O(n), this expression grows as n2 log(n), which is larger than the number of

non-zero entries in the original matrix. As such, the natural matrix candidates for application of

Theorem 4.1 seem to be those with r = O(log n); that is, when W is of logarithmic rank. Such

low-rank matrices have cropped up in statistics and machine learning throughout recent years [93].
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