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Summary

‘_ In Part-Ilvéf this paper we have éstablished'local stability and
convergence ériteria for the mixed explicit—impliqit finite element scheme
énd have shown that the proposed iterative method convérges under certain
conditioﬁs. Part II describes various practical aspects‘of the solution
strategy such as convergence criteria for terminating the itefations,
aﬁﬁomatic control of time step size, reclassification_of nodes from expli—‘
cit to impliéit during execution, estimation of time derivatives, and auto-
matic adjustment of the implicit weight factor. Several examples are
iqcluded to demonstrate certain aspects of the theory and illustrate the

capabilities of the new approach.
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Introduction

In Part I of this paperl we introduced the following explicit-implicit

-

finite element expression for diffusion-type problems. (see (27) in Part I):

' B . k k : *
Ahn = ) i n Anm [(hn - h ) + 0 (Ahn - Ahm)] + Qn,At/Dnn

Explicit part Implicit part

n o= 1,2, , N _ 1)

where hnk is the dependent variable (hydraulic head in the case of ground-

water flow) at node n and time step k, Ahn = hnkﬁi - h;k, Ammrepresents the off;
diagonal terms of a matrix [é} defined in equation.(7)'6f Part I, 6 is a
weighting factor defined within the range 0 < 6 <1, Qn is a siﬁk or source
term, and N is the total number of nodes. Application of the point acceler-
ated iterative method of Evans et al.2 to (1) leads to'the algorithm (see

(28) in Part 1)

_ h J *
2 A _ (< -n)-6 Ay (8 8n 7 +8nJ) +Q At/p

z
n +

n
g) L A )

where j is the number of iterations and g is an acceleration factor the opti-
mum value of which is approximately 0.2.

In Part 1 we have established local stability and converg-
ence criteria for the finite element scheme in (1) and have shown that the
iterative method in (2) converges under certain conditions. The purpose of
Part II is to describe various practical aspects of the solution strategy
including the iteration technique and associated convergence criteria,
automatic control of time step size, reclassification‘of nodes from explicit

to implicit during execution, estimation of time derivatives, and automatic
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adjustment of the impliqit.weight factor, 9. In addition, several examples
are included to demonstrate certain aspects of the theory and illustrate

the capabilities of the new approach.

Mixed Explicit-Implicit Solution Strategy

The local nature of the stability criteria for (1), together Qith the
use of a point iterative technique, suggest the interesting possibility of
sqlving the finite elemént‘equatiohs explicitly at éome'nodes and implicitly
at other nodes during é single time step. If At satisfies the stability
condition (18) in Part I for some node n, then equatiqn.(l) can be solved
expliditly for Ahn at that node. At nodes which do not satisfy the stability
criterion, Ah_ is determined iteratively by using the algqrithm in (2). A final
correction is then made to the'Ahﬁ vaiues calculatéd explicitly, when
reqﬁited‘to conserve mass. We refer to this approach as a mixed explicit-
implicit solution strategy.

The mixed strategy is very useful in dealing with meshes characterized
by a significantvspatial variability of element sizes and material properties.
For example, if the region of interest consists of two materials ha&ing
different conductivities and capacities, it may sometimes be possible to
solve explicitly in one material and implicitly iﬁ ;he other. :The mixed
approach is also useful when there is a sudden change in boundary conditioms.
In this case it is often desirable to use small At valuéé for a short period
of time until the systém reaches a certain level of_equilibrium, otherwise
‘thefevmay be a loss of accuracy. The attractive possibility of using an
:xplicit solution procedure during this period may lead to significant
savings in computer ﬁime. |

Tﬁe idea 6f combining explicit énd implicit calculations in a single
time step was previously used in conjunction with én integrated finite

difference scheme by Edwards.3 The procedure has been incorporated by



Edwards into a powerful computer program, called TRUMP, which can handle
mul tidimensional steady state and transient temperéthre distributions in
complex, non-uniform, and isotropic systems, takingvinto account conduction,
convection, and radiation. The program has also been applied by Edwards4
to darcian fluid floQ iﬁ porous media.l The conductioﬁ‘aspects of TRUMP are
based on a set of algebraic equations which have the same general form as o
(1). This made it possible for us to develop a computér program which
combines the advantages of the finite element method (shch as the ability to
treat anisotropic regions with complex geometry) with the remarkable logic
énd'facilities of TRUMP. The new program is called FiUMP, as a mnemonic
for Fiﬁite eLement and trUMP. |

In addition to the mixed explicit-implicit solutiqn strategy, the
user of.FLUMP has the option of using a fully explicit forward difference
scheme (8 = 0), a timé-centered Crank-Nicholson scheme (6 = 0.5), or a fully
impiicit backward diffe;ence schéme (6 =1.0), throughout.any part of the
bsolutiqn process. However; in practice'thesé options are seldom used
because FLUMP has the facility to adjust the weighf factor 6 automatically
during execution iﬂ a manner that ensures a high level of accuracy at each

time step. This, as well as other speciél features of FLUMP, are described

briefly below.

Iteration Technique

The iteration algorithm is based on equation (2). During a given time
step, At, the algorithm is applied only to a selected number of nodes (called
implicit nodes) which cannot be treated explicitly without endangering
stability. In the computer program the iterations are performed in terms of

3+ _

. . .
residuals, defined as €, Ath L Ath . Substituting these residuals



into (2) and rearranging leads to the computational algorithm

_ h| |
6 ¢ A _ (el +ed)
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For the first iteration (j = 0), tﬁe following initial gueéses are used,
M ® = h Bt
. n n
. (4)
Ah = B At
m m

where hn and hm are estimated time derivatives (a method for obtaining these
derivatives is described later in the text). The values of Ahnl are then
calculated using (2), and the first set of residuals is determined according

to the formula

e” = bh - -h At | | (5)

The next set of residuals, €n2, is calculated with (3), and Ahn2 is found from
the relation- .

j+1

o .
B R A Y VI IS (6)
n ) n

This ﬁrocedure is'continued with the aid of (3) and (6) until convergence is
achieved or, until 80 iterations have been completed. In the latter case,
the calculations are reﬁeated with half the original Value of At. This may
continue until At reaches a minimum specified value, in which case.execution
terminates with a diagnostic message.

Two convérgence.criteria must be satisfied simdltaneously before

terminating the iterations. The first criterion is

max |e 3| < 107 mn - )
n n des _



where Ahdes is the desired maximum change in h at any.hode dufing a time
step (as will’bé seen later, At is adjusted during execution to maintain
the maximum change in h near the value of Ahdes’ and less than 2Ahdes).

The second criterion is based on the net correction to fluid content and

the net fluid capacity of all implicit nodes, defined as

j ; * i o .
AR | D e | | (8)
. * _ * B . 9
pnet - i Dnn o (%)

where the summation is taken over all implicit nodes. The iterative pro-
cedure is stopped when (7) is satisfied together with (10) below,

md < 1070 1d° M | (10)
net net des _

i.e., the net error in fluid content is less than 10'-5 of the amount of fluid

.  Experiments
es , :

feduired to change h at all impiicit_nodes by the amount‘Aha
by Edwar:ds3 on a large number of sample problems hsing TRUMP indicate‘that
the net cumulativé error in the average value of h tends to be no more than
0.01 Ahdes after several hundred time steps; the cumulative error at indi-
vidual nodes does not usually exceed 0.1 Ahdes’ and ié.mﬁch less if some
values of h ére fixed at the bdundary of the system.

After having completed the iterative procedure for all implicit nodes,

one must now correct the values of h at all explicit nodes connected to

implicit nodes, according to (see equation (1) )

AR explicit corrected _ Ah explicit + 6

n n ) Anm (Ahn - Ahm) (11)
_ m# n



where the summation is taken only over implicit nodes. This correction is
necessary for a correct material balance. Since in FLUMP internal fluxes
between adjacent subregiqns are calculated simultaneously with the h values
és explained in Part I,l these fluxes must also be corrected in a similar

manner.

Control of Time Step Size

.The size of At in FLUMP is controlled by several factors such as the
lower and upper limits specified by the user (Atlow and Athigh’ respectively),
the desired maximum change in h at any node during a time step (Ahdes), the
smallest time step allowed at any explicit node by the stability criterion

(18) in Part Il‘(Atstab)’ the average number of iterations required for con-

vergence, and the desired interval between printed outputs.

2

The first time step is always 10—l and is used primarily for checking

the input data, establishing time derivatives, and determining At (the

stab

‘latter is recalculated whenever the conductance or capacity matrices change).

The maximum allowed time step, Atm , is then set equal to 2/3 of At

ax stab °F
Athigh’ whichever 'is smallest (the use of 2/3 of Atstab instead of Atstab<
vvgreatly increases the accuracy in coarse meshes). The minimum allowed time

. -10 . .
step, Atmin’ is set equal to Atlow or 10 s whlchevgr is greater. If Atlow

is equal to or greater than At , the value of At_. is reduced to slightly
: max min
.

less than Atmax so as to prevent the input value from causing instabilities.
The default value for At is taken to be At /100.
‘ low max .
During the subsequent calculations the size of At is gradually adjusted

to obtain a maximum change in h close to Ah and not exceeding 2Ah to

des des’

maintain the maximum change in any tabulated material property in nonlinear

problems near 1% or less and not exceeding 2%, and to prevent the number of



iterations from averaging more than 40, the maximum allowed being 80. The
technique for doing this has been designed by Edwards3 so as to cause a
rapid decrease in At when the above limits are exceeded, with a more gradual
increase in At when changes are relatively slow. For this purpose, let § be
either the'largestvpercentage change that tbok place dﬁring the recent time
step in any tabulated property, or 1/40 of the number of iterations required

for convergence, whichever is larger. We then calculate the ratio

R AhdeS/max (mix IAhnl, S Ahdes) | .

and if R € 0.5 and At > 1.01 Atmiﬁ,'the entire computation for the recent
time step is repeated with a modified value of At. 1If all the nodes in the
mesh are set to be implicit, R is reduced by a factor of 100 for the first

time step to start the calculation out smoothly. If R < 1.0, the new time

step is calculated according to

_ 2
Atnew. = R Atold (;3)
whereas if R > 1, the'formula is
Atnew = 0.5 (1 +R) Atold . 14)
In both cases the adjustments are subject to the constraints At . < At <
. min new

At and 0.5 At < At £2.0 At
m new ol

ax old da’
An additional adjustment in the size of At may be required im order to
meet a desired interval between printed outputs. For details of this adjust-—

. 3
ment procedure the reader is referred to Edwards.



Rec]assif{cation of Nodes

If the recent time step was equal to Atmax and less than Athigh’ the
stability limits of all expliéit nodes are tested. All expliciﬁ nodes with
stability limits equal to or less than 1.8 Atmax are thén reclassified as
implicit nodes. Since Atmax = (2/3) Atstab’ the reclassification affects
all explicit nodes having stability limits from 1.0 to 1.2 times Atstab'
This range was chosen empirically by Edwards3 in an effort to minimize the
required computation time for a large group of test problems using TRUMP.

The rate at which the nodes are reclassified from explicit to implicit
dependg on the input parameter Ahdes; the larger is this parameter, the

faster is the increase in the size of At, and'therefore the stability limits

of most nodes are reached earlier.

Estimation of Time Derivatives

The initial guess of h for the iterative procedure requires a prelim-
inary estimate of the time derivatives, ﬁ, as has been indicated in (4). In
nonlinear problems, the time derivatives are also used fo estimate the averaée
values of h to be used in evaluating h-dependenﬁ parameters.'Rather than saving
hn values from several precéding time steps, thch could be used to calculate

more accurate time derivatives, a simpler method is used which requires less

memory space and machine time, and is sufficiently accurate for most problems.

In FLUMP, the time derivatives for any time step Atk+l = tk+1 - tk

are estimated from the maximum rates of change in h occurring during the two

preceding time steps, Atk =t - tk—l and Atk—l = tk-l - tk—Z' For this

purpose let us define the two ratios

hnk _ hnk—l hnk--l _ hnk-z
= max | ————— max (15)
g n by n bty -
c . Atk + 8t 6)
t At + At
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where 0.5 S_Rt < 2.0 because, as will be recalled, At is not allowed to vary
from one time step to another by more than a factor of 2. If Rk < 1.0, the
maximum rate of change in h is decreasing with time, and the estimate is
based on the assumption that all h values are approaching equilibrium ,

o

exponentially according to the formula h(t) = h(o)e” t. Since e ¥ =

]l/t

[ﬁ(t)/ﬁ(o) , it follows that

. R . '
est t
Re T R - an
where Riii < 1 is the estimated value of Rk+1' If Rk > 1, the maximum rate
of change in h is increasing, and the estimate is based on the assumption :-

that all h values vary quadratically according to the formula h(t) = h(o)

+ ﬁ(o)t + atz. Since ﬁ(t)/ﬁ(o) - 1= 2at/h(o), it follows that

est _ _u -1
Ry = 1+ Q@ -R )R | (18)

where 1 S.Riii X3 due to the limits imposed on Rt' Equation (18) gives a

more conservative estimate of the maximum rate of change in h than (17) does.
The estimated time derivative at each node is calculated as the product of

' e . , , est
the actual derivative during the previous time step and Rk+1 s

s _ _est n n - :
hn N Rk+1 At | . 19)

Numerical experiments with TRUMP led Edwards3 to conclude that it is
advisable to keep Riii = 1.0 during the first two time stéps (a) at the
beginning of each problem, (b) after repeating a time stép with a quified
At, and (c) after a node has been reclassified from explicit to implicit.
Edwards further concluded that the time derivatives should be set equal to

~-12
zero or a very small number during the initial time step (At = 10 1 ) as
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well as when they change sign. It was also found that more accurate results

can be obtained for implicit nodes having stability limits smaller than Atk

by estimating their time derivatives during the first two time steps accord-
ing to

k ) (20)

.‘ - . -— . k-l .. : —
h = (hn - hn )/Atk 1 z om
n#mnm

n

where the values of Xnm correspond to the time step just completed, Atk.

Estimation of Implicit Weight Factor
~ 'In most implicit procedures it is cusfomary to employ either a time-
centered scheme with 6 = 0.5, or a backward differencé'scheme with 6 = 1.0.
_In FLUMP, O is allowed to be zero for explicit nodes, or to vary between
0.57 and l.O for implicit nodes. Experience indicates that small oscilla-
- tions caused by rapid changes in boundary conditions or variable parameters
;endvto pefsist wheﬁ 6 is close to 0.5. The lower limit of 0.57.was chosen
empiricéliy by Edﬁardss to eliminate persistent oscillations and to optimi;e
thé éﬁébiiity and accufacy of a 1arge number of teét problems using TRUMP.

The average value of h at any node during a time step is calculated
- k 1

in the program as h = h = + ) (hnk+

0 N - hnk). Let us assume that h approaches

equilibrium exponentially. Then for small time steps and for time steps

during which the slopeof h remains nearly constant,.the correct average

value is obtaiqéd'with 0 0.5. On the other’hand, for large time steps near
equilibrium,_the correct average value is obtained with 6 = 1.0. Thus, 6
should be in thé‘vicinity of 0.57 during the period when'rapid changes in h
take place, and sﬁould gradually shift toward 1.0 as equilibrium is approached,

otherwise there may be a loss of accuracy. One way to accomplish this is by

using the empirical formula
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6 = max [0.57, max (1.0, R;51)/(1.0 + Riii)] (21)

suggested by Edwards3 and this is the approach adopted in FLUMP.

Experiménés conducted by Edward83 on a large number of problems using
TRUMP have shown that approach to equilibrium is usuallyvtoo rapid when a
forward differeﬁce or time-centered scheme is used, and much more accurate
vresults can be obtained with a variable 6. His experiments also showed that
6 should be.sét équal to 1.0 during the initial time step (At = 10_12) as
well as during any time step following a rejected time step. This enables
nodes with émall stability limits to reach equilibrium with their neighbors
when there is a rapid change in a boundary condition or a‘variable para-
meter, without overshoot which may lead to damped oscillations. |

As mentioned earlier, the computer program also provides an option to fix
the value of 6 at 0.5, or 1.0 for the entire period of qomputation,'corréspond—
ing to e#plicit forward difference, time-centered, or backward diffefence
schemes, respecfively. However, experiments conducted by_Edwards3 using TRUMP
as well as the exambles given in this paper indicate that thisvtends to reduce

accuracy and increase computer time, and is therefore not advisable. The pur-

pose of including these options is to allow the calculatjonal results and

machine time to be compared with other methods using é'fixed value of 0.

Additional Features of FLUMP

The iferative nature of our solution process makes it ideally suited
for the handling of quasilinear diffusion-type prdblems. Althoﬁgh this
feature of the program will not be demonstrated here, we mention in passing
‘that FLUMP can handle problems in which nodal conductivities, capacities,
and sources or sinks are tabulated functions either of time or of the depend-
ent variable, h. The boundary conditions can also be.controlled in a similar

manner by tabulating them as functions of time or h.
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The printed output of FLUMP provides information on the nodal values
of h,‘Ah, and-éstimated.values of ﬁ at discrete timé intervals specified
by tﬁe user. Additional information includes the amount of fluid con-
;ained in-the'exclusiQe subdomain of each node, change in the amount of
.fluid iﬁ each subdomain during At ;s well as from the start of the problem,
total fluid content in the system, flux across the boundary of the system,
and the neg flux into or out éf the exclusive subdomain of each node. This
makes it possible to mainfain a continuous check on material Bélance in the
subdomain of each node as well as‘in the sysfem as a whole.

The program also includes a built—inrsafety féaturé to warn the user
about nodes at which the matrix [&J is not diagonally dominantf If the dégree
of deviation from local diagonal dominance is significant,vthere is a risk
that the solution may be locally unstable (if the node is explicit) and
inaccurate, and that convergence will be relatively slow.‘ The problem can
always be remedied by locally redesigning the finite element mesh according
to the guidelines given in Part I.1 Since the numbering of nodes and ele-
ments is completely arbitrary (as opposed to direct méthods such as
Gaussian elimination in which numbering has an effect on the band width),
local modificaﬁions of the mesh can be easily introduced merely by changing

a few cards in the data deck.

Examples

The purpose of the following examples is to demonstrate certain aspects
of the theory and illustrate some of the dapabilities of our new approach.

Example 1:  Our first example concerns the solution of a one~
dimensional problem with a two-dimensional finite element network. The

problem is to solve the partial differential equation
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0<x<1l ; t>0 (22)

N

Q

t
we

subject to the initial and boundaryvconditions

h (x,0) =1
: -(23)
h (O, t) = h(@,t) = 0 '
The exact solution is given by O'Brien et al.S as
. 0 . 2 2 .
h (x, t) = %- z n ! e ™ T togin (n T x) ' - (24)
' ‘n=1,3,5-.. . ' '

Physically, this:may represent the.decline 6f hydraulic head in a_roc?‘corg
samble having a hydraulic conductivity and compressive éapacity pf unity.

The two-dimensional finite element hetwork.used.to solve the pfoblem
is showh:as anvinset in Figure 1 (only one half of the flow fiéld needévpo
be éonsidered because the solution is symmetric about x = 0.5). »Theithickness
of tﬁe network in the'y direction was arbitrarily setveQUal to 0.2. The sta—
bility limit of all internal nodes in this mesh was\calculated by FLUMP to be_
0.004; the stability limits of the four nodes lyiﬁg‘on the boundary (x = 0
and x = 0.5) were'different due to the asymmetry of tﬁe mesh, and these nodes
Qere therefore treated as implicit at all times.

In order to check-whether our method of calculafing stability limits
is correct, we solved the problem ﬁsing various fixed At values while main-
taining 6 at all internal nodes equal to zero (i.e., treating these nodes
explicitly at all times). Figure 1 shows the analytical solution for
x = 0.4 together with nﬁmerical results calculated éxplicitly at node 9

(see inset) by using fixed At values equal to 0.001, 0.004, 0.005, and

0.008. It is seen that the solutions corresponding to At < 0.004 (i.e.,
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Figure 1. One-dimensional problem:

node 9.
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less than or equal to the theoretical stability limit) are stable as we
would expect. The solution corresponding to At = 0.005, which slightly
exceeds the stabiiity limit, is less accurate and exhibits low—amplitude
oscillations. fhe solﬁtion obtained with At = 0.068 is completely unstable.
Figure 1 also shows results obtained with the @ixed explicit-implicit

approach which usés a variable At, with the maximum value of At set equal to

O;Oi. In terms of accuracy, these results are .comparable to thoée obtained
explicitly with a much smaller time step, At = 0.00i. In terms éf execuﬁion
timé; the-mixed épproach is-fastef: It required 0.527.seconds on the CDC
7600, whereas the explicit scheme Qith At = 0.001 required 6;823”seconds to

reach the maximum time of t = 0.1.

Figure 2 shows a comparison between thé mixed expliéit-implicit
scheme and two implicié schemes, time-centered.and baékward differenqe.
All three solutio@s’were obtained with a variable At, the maximum allowed
time step being 0.01. It is seen that the mixed scheme is the most accu-
rate at early'tiﬁe, and is comparable in accuracy to the time-centered
scheme at-laterlfimes; the backward difference scheme gives'the least accu-
rate results. Thé mixed approach is also the most economical one from the
standpoint of computer time: It reached t = 0.1 in 20 time steps and 118
iterations, requiring 0.527 seconds for execution on the CDC 7600. The
time-centered séheme reached t = b.l in 26 time steps and 133 iterations,
requiring 0.571 seéonds for execution, whereas the backward differénce
scheme reached t = 0.1 in 25 time steps and 191 iterations, requiring
0.587 seconds for execution.

Example 2: 1In the second example we want to solve the ﬁartial differ-
ential equation

2 02
L at21‘+1<A_,8.t21=a—h; 0<x,y<l; t20" ‘ (25)
ox Y ey £ | :
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Figure 2. One-diménsional problem: Comparison of results at

" node 9 obtained by backward difference, time-
centered, and mixed explicit-implicit schemes.
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subject to the initial and boundary conditions

h (x,y,0) =0
h(,y,t) = h(x,0 t) = 1 (26)
R0y, )= 1, 0) =0

The exact solution can be obtained from Olsén and Schultz6 and is given by

Bruch and Zyvoloéki7 as

h(x,y,¢ = 1+ I . I C_ cos [0.5 (2n-1) mx] cos [0.5 (2m-1) 7y]
' . n=1 m=1 : :
, 2 2 2
. exp:{—0.25 Tt [Kx (2n-1)° + Ky 2m-1)"7} 27)
where
c B ; 16 (_1)n+1 (_1)m+1
o 2 on-1) (2m-1)

Physically, this may repreSéﬁt>the rise of hydraulic head in an infinite
anisotropic porodé medium of square cross secfion‘with its principal conduc—~
tivities oriented parallel to the sides of the square.and having a compressive
capacity of unifyfb We will cbnsider two caéesvwith different ratios between
theiconductivities K.x and Ky.
Case 1: _The first case is that of an isotropic medium with Kx = Ky = 1.
The finite element nétwork used to solve the problem is shown as an inset in
Figufe 3. Tﬁe st;bility limit of all but one of the nodes at which h is
unknown was calculatéd by FLUMP to be 0.0025; only at one corner node was
the limit lower and this node was therefore set to be implicit at all times.
To check the validity of this theoretical stability limit, we solved

the problem usiﬁg various fixed At values by treating all but one corner
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node explicitly at all times. Figure 3 shows the analytical solution for

X =.0.9 and y = Q.l together with numerical results calculated explicitly at
node 101 (see inset) by using fixed At values equal to 0.0025, 0.0027, and
0.003. It is seen that fhe solution corresponding fo At = 0.0025 (i.e.,
equal to the theoretical stability limit) is stable as we would expect. The
solution corrésponding'to At = 0.0027, which slightly exceeds the stability
limit, becomes unstable after t = 0.2. The solution obtained with At = 0.003
becomes unstable at an earlier time, t = 0.1.

Figure 4 has beeQ included to illustrate the nature of the spatial
instabilities that may develop when an explicit scheme is used with too large
a time step. The results c&frespond to two cross sectioms, A-A', at t = 0.05.

Figuré 3 also shows results obtained with the mixed explicit-implicit
approach which uses a variable At, with the maximum value of At set equal to
0.05. 1In terms»of accuracy, these results are comparable to those obtained
explicitly with a much smallerltime step, At = 0.0025. In terms of execution
time? the mixed approach is fastef: It required 2.351 seconds on the CDC 7600
té reach t = 1.0, whereas the expiicit scheme with At = 0.0025 required 4.653
seconds to reach the same time.

Figure 5 shows a comparisonvbetween the mixedbexplicit—implicit scheme
and two implicit schemes, time-centered and backward difference, at node 61
(see inéet). All three solutions were obtained Vith a variable At, the
maximum allowed time step being 0.05. It is seen that the mixed and time-
centered schemes are extremely accurate, whereas the backward difference
scheme is slightly in error. ihe mixed approach is the fastest: It
reached t = 1.0 in 36 time steps and 509 iterations, requiring 2.351

seconds for execution on the CDC 7600. The time-centered scheme reached
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t = 1.0 in 43 time éteps and 507 iterations, requiring 2.493 seconds for
execution, whereas the backward differenée scheme used 50 time steps and
904 iterations, requiring 3.617 seconds for execution.

Bruch and Zyvoloski7 published results obtained by them at t = 0.75
with a constant time step, At = 0.05, by using rectangﬁlar prism elements
in the space-time domain. Table I compares our results with theirs and
shows that the use of a variaBle At leads to more accufate results. Bruch
and Zyvoloski7'also réported thét by using a constant time step, At = 0.05,
they obtained physically unreasonable values of h (greater than 1) near the
constant h boundaries at the eﬁdlof-the first time step, resulting in
damped oscillations for Several subsequént time steps. A similar phenomenon
was observed by Carnahan et al.8 in solving this problem with the alternéting
direction implicit procedure. Such difficulties are av&ided in FLUMP owing
to the manner in which At is controlled by the progfamf

Case 2: The second case is that of an anisotropic medium with Kx =1
and Ky = 100. The problem was first solved by adoﬁfing the éame:finité
element network as that used for the isotropic problem (see inset in Figure
3). Since contracting the network pafallel to the y axis or expanding it
parallel to the x axis does not cause any of the angles_to become obtuse,
the matrix Lé] is diagonally dominant, and we therefore expect the solution
process to converge..

Tables II and III compare results obtained with thé mixed, time-
centered, and backward difference schemes at t = 0.002 and t = 0.01,
respectively. All three sets qf results wefe obtained with a variable At,

the maximum allowed time step being At = 0.002 for 0 < t < 0.016 and

At = 0.01 for 0.016 < t < 0.04. It is seen that the mixed scheme is only
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slightly less accurate than the time—centered-scheme, and both are consid-
erabiy more'accuréte than backward differences. The mixed appréach is
again the fastest: It reached t = 0.04 in 36 time stéps and 547 itéragions,
réquiring 2.459 seconds for execution oﬁ the CDC 7600. - The time-centered
scheme used 43 time steps and 581 iterations requiring 2.596 seconds for
execution, whereas: the backward difference scheme used 50 time steps and
926 iterations which took 3.422 seconds to éxecute.

In order to check the effect of diagonal dominance on thg quality of
the reSults;’we‘soiﬁgd the same problem with three different meéhes"having
nearly the same number Qf elements and nodes, as-illustrated in Figﬁre 6.
if we'coﬁtraqt the mésh.in Figure 6A by a factor of tenvparallei‘to the.y
'céordinate so as to see what shape it takes in‘the equivalent iéotropic
domain, we find.fﬁét most of the triangles include a‘laige obtuse angle.
..As.a result of this, the matrix [AJ is nowhere diagoﬂally dominant (a
check onvdiagOhal dominance is performed by FLUMP at each node). The mesh
in Figure 6B leads to a matrix which is diagonally dominant everywhere
except at nodes lying in the immediate neighborhood of the bottom (y = 0)
and top (y = 1) boundaries, whereas the matrix resulting from the mesh in.
.Figure 6C is diégohally dominént at all nodgs.

The results obtained from all three meshes at t = 0.002 and t = 0.01
are compared with the analytical solution in Tables IV and V, respectively.
The number of time steps, number of iterations, aﬁd.execution time required
to reach t = 0.04 are compared in Table VI. It is evident from these
tables that as the relative number‘of nodes at which [é} is diagonally
dominant increases, thg time required for execution decréases, and the

quality of the results improves considerably.
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Figure 6.
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‘Mesh configurations used in solv1ng two=- d1men51ona1

anisotroplc problem.
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Here we would like to reiterate the fact that owing to the iterative
approach used iﬁ our work, there is no need to renumber the nodes and ele-
ments whilé modifying the mesh from thaﬁ in-Figure 6B fo that in Figufe 6C;
the mesh configuration can be modified locally merely by‘adding or changing
a few cards in the original data deck.

Examgie 3: The third example is devoted té a hon—uniform region with

complex anisotropy. The governing partial differential equation is

2, 2. CN2
L gxg»+x‘a—‘2‘=%*l; 0<x<15
XX 9% ‘ y y yy ay t
0y<08; t2>0 (28)

subject to the following initial and boundary conditions

h (xs Y 0) = 0

h (1,>Y, 0) = h (x, 0, t) = 1 (29)
h o o, ¢y - b _

% 0, vy, t) = 5y (x, 0.8, t) = 0

The lower half of the flow region has principal conductivities Kl = 25 and
Ké =1 oriehted parallel to the coordinates, as shown in Figure 7. The

upper half has principal conductivities Kl = 16 and K2 % 1 oriented at a
450 angle relaﬁive to the coordinates.  The mixed derivative in (28) arises
from the inclined 6rientation of the principal conductivities in the upper
region.

.The purpose of this example is to.illﬁstrate our method of construct-

ing a finite element mesh for a complex anisotropic system in a manner that

will ensure diagonal dominance. Figure 7A shows a rectangular mesh in
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which each recténgle is subdivided into two triangles.along a NW-SE direc-
tion. This.mesh does not lead to a diagonally dominant_matrix because if
we contract the upper region by a factor of 4 parallel to the direction of
Kl = 16, we obtéin triangles with }afge obtuse éngleé; ‘If the rectangles:
are éubdividéd into t;iangles alohg a NE-SW direction, contracting the mesh
paralielitd Ki will still lead to felatively 1arge.qbt§sevangles{

The Waysﬁo overcome thévdifficulty is to (a) édﬁtfact the uépef-
’ 1° (b) construét'a.mesh withoutrbbtgse

region by a.factOr of 4 parallel to K
énglesvin tﬁe'gransformed domain, and (c) expand tﬁis:mesh tb the Qriginal
~anisotropic domain, as shown iﬁ Figure 8. The complete mesh is depicted in
 Figure 7B and f‘LUMP indicates that the resulting inéitix [A] is indeed dia-
gonally dominant at each node.

The problem was solﬁed with the mixed explicit;iﬁplicit method using'
both meshes in Figure 7. The results weré quite diffefent from each other
and, in the absence of an analytical solution to séfﬁé as a'check on the
accuracy of the numericai solutipn, we can only suspecﬁithat the results N
obtained with the mesh in Figure 7B are more accurate than those obtéined
with the rectangular mesh. However, there is little doﬁbt about the super-
iority of the mesh_in Figure 7B when execution'times'afe compared: With
this mesh, t ="0.1.was reaéhed in 34 time steps, 43i-iterations, and 0.903
secon&s of exeéution time on the CDC 7600. With thé.rectangular ﬁesh'in
Figure 7A the séme time was reached in 39 time'steps and 571 iterations;
requiring 1;708fseconds for execution (i.e., nearly double the time

required with the inclined mesh).
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Conclusions

1.  The mixed explicit-implicit iterative fiﬁité.élement scheme -
proposed in ;his work has been implemented in a computer program entiﬁled’_
FLUMP..VThe prégram can coﬁveniently treat two—dimeﬂéidnal and axiéymﬁétric'
problems involving non-uniform regions with complex geometry and érbitfary
anisotropy;:.Qﬁasilinear problems can also be handled. N

,.2' The ﬁixed explicit-implicit approach is_esﬁecially well suited
for.pfoﬁlems that might'otherwisé involve matrices_with large bénd widthé,v
probleﬁs in whiéh the boundary conditions or forcing fﬁnctioﬁs vary:often
and rapidly with time, problems characterized by a.signifieant spatial
variébility of e1ement sizes and material propefties; and qqasilinear pro-
blems in which the coéfficients vary with the dependeqf variable.

3. The ﬁerformance of the mixed éxplicit—implicit'schéme 15 stronglya
afféc;ed by the way in which tﬁefiniteeleﬁent mesh is'constructéd..

4. 1If the finite element mésh is constructed in a manner that leads
to a diagonally'dominant [Ajjmatrix, then the mi#ed scheme ié capable of
yiélding highly accdrate=results. The mixed scheme can achieve‘a high‘
degree of accuracy by'requiring a lesser amount of.Computér'timé thaﬂ»
other explicit or iterative implicit methods. | | |

5. By fdilowing a few simplé»guidelines, one can always construct a

finite -element mesh that results in a diagonally dominant [é] matrix.
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Table I: Solutions of equations (25) - (26)
' at t = 0.75 with Kx = Ky =1..

A. Analytical solution.

.960  .960  .962  .964  .968  .972  .976  .982  .988  .994

960  .961  .962  .965  .968  .972  .977  .982  .988 .99
962 962  .964  .966  .969  .973 . .978  .983  .988 = .994
.964  .965  .966  .968  .971  .975  .979 .98  .989  .99%
.968  .968  .969  .971  .974  .977  .981  .985  .990  .995
972 .972  .973  .975  .977  .980  .983 - .987 . .991 = .996
.976  .977 . .978  .979 .98l  .983  .986  .989  .993  .996
.982  .982  .983  .983  .985  .987  .989  .992 .99  .997
.988 . .988  .988 = .989  .990  .991  .993 .99 . .996  .998
.994 .994 .994 .994 .995 .996 .996  .997 .998 .999

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B. Deviation of results obtained by Bruch and Zyvoloski’

from analytical solution.

-.007 -.007 -.007 =.006 -.006 ~-.005 ~-.004 -.003 -.003 -.00l

-.007 -.007 -.006 =-.007 -.006 -.005 ~-.004 =-.003 -.002 -.001
~.007 =-.006 ~-.007 -.006 =-.005 =-.005 -.004 ~-.003 -.002 ~-.001
-.006 -.007 ~-.006 ~-.006 =-.005 ~-.005 =-.004 -.003, =-.002 ~-.00l
-.006 -.006 =-.005 -.005 -.005 ~-.004 -.004 -.002 -.002 ~-.001
-.005 -.005 =-.005 =-.005 =-.004 =-.004 =-.003 =-.002 -.001 -.001
-.004 -.004 -.004 =-.004 ~-.004 -.003 -.002 =-.002 ~-.002 -.001
-.003 -.003 =-.003 -.002 ~-.002 =-.002 -.002 -.002 =-.00l ~-.001
-.003 =-.002 -.002 -.003 =-.002 =-.001 -.002 =-.00l  ~-.00l

-.001 -.001 ~-.001 ~-.001 =-.001 ~-.001 0 0 0 0

0 v 0 0 o 0 0 0 0 A 0 0

e R N o o = T R SV
©O O 0O O D o O 0 O O O

©C © O o o O 0O o o O ©



0
0
-.001
-.001
-.001
~-.001

-.001
-.001
0
0

0
-.001
-.001
-.001

-.001

~.001
-.001

-.001
0
0

- C.
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"Table I (continued)

Deviation of mixed explicit-implicit

results from analytical solution.
-.001 =-.001 -.001 -.00L 0 -.001
-.001 -.001 =-.001 -.001 ~-.001 0
-.001 -.001 =-.001 -.001 -.001 -.00l
-.001 -.001 =-.001 =-.001 =-.001 =-.001
-.001 -.001 =-.001 -.001 -.001 0
- -.001 .001 -.001 0 0 -
-.001 -.001 -.001 0 0
-.001 0 0 0 0
0 0 0 0
0 0 0 ~.001 0 0
0 0 0 0 0 0

.001
.001

o O O O O O o O o

o O O O ©o

.001

O O O O ©

© ©O O O © O O O O o ©o
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Table II: Solutions of eduations (25) —:(26)
at t = 0.002 with Kx = 1 and Ky = 100.

A. Analytical solution.

.228  .228 ~ .228 ~ .228  .228  .228  .228  .228  .229  .316 1.000
.237  .237  .237  .237  .237  .237 . .237  .237  .238  .324 1.000
.264  .264  .264  .264  .264  .264  .264  .264  .265  .348  1.000.
.308  .308  .308  .308  .308  .308  .308  .308  .309 © .387  1.000
1,370 .370  .370 .370 .370 .370  .370  .370  .371 .44l  1.000
AT LGAT 44T W4T 44T 44T L44T  L447 L448 510 1.000
.538  .538  .538  .538  .538  .538  .538  .538  .539  .591 1.000
642 642 .642 .642  .642  .6h2  .6h2  .642  .643  .683 1.000
.756  .756  .756 . .756  .756  .756 . .756  .756  .756  .784 - 1.000
.876  .876  .876  .876  .876  .876  .876  .876  .876  .890  1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
'B. Deviation of mixed explicitFimplicit
results from analytical solution.
.006 -.007 -.008 -.008 ~-.008 =-.008 ~-.008 =-.008  .003  .032 - 0
.003 -.007 ~-.008 ~-.008 -.008 -.008 -.008 -.008  .003  .032 0
0 -.008 -.008 -.008 -.008 -.008 ~-.008 -.009 .002  .030 O
-.001 -.008 =-.009 -.009 =-.009 -.009 -.009 -.009  .00L . .027 0
-.004 -.010 -.010 =-.010 -.010 =-.00 =-.010 ~-.011 -.001  .024 0
-.005 ~-.010 ~-.011 ~-.011 -.009 -.011 ~-.011 ~-.011 ~-.003 = .019 . O
-.006 -.011 =-.009 ~-.011 -.011 -.0l1 -.0l1 ~-.012 =~-.005  .0l4 0
-.007 -.012 -.012 -.008 -.012 -.012 -.012 -.013 =-.007  .008 - O
-.007 -.013 =-.007 -.013 =-.013 ~-.013 -.013 =-.013 =-.009 .00l 0
-.007 -.012 -.013 ° -.013 -.013 -.013 -.013 -.012 ~-.011 -.004 0
0

o - o0 0 0 0 0 0 0 0 0



.008
.005
.002
.001
~.001
-.003
-.003
-.004
-.006
-.006

.004

.001
-.003
.006
.002
-.013
.04
-.014
-.013
" -.010

.005
.005
.006
.006.
.007
.008
.008
.010
.011
.012

.008
.008
.012
.012
.016
.018
.019
.019
.019
.016

00 vod404754
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Table II (continued)

Deviation of time-centered results

from analytical solution.

.006 -.006 -.006- -.006 -.006 ~-.005

.006 -.006 -.006 -.006 ~-.006 ~-.005

.006 -.007 -.007 =-.007 -.006 -.006

.006 -.007 -.007 . -.007 -.006 -.006

.008 -.008 -.008 -.007 -.008 -.007

.008 -.008 -.008 ~-.008 ~-.008 -.008 -.
.009 -.009 -.009 -.009 -.009 -.008 -.
.010 -.010 -.010 -.010 -.010 -.010 -.
.011 -.011 ~-.011 =-.011 - -.011 -.011 -.
012 -.012 -.012 =-.012 =-.012 -.0l12 -.
0 0 0 0 0o 0

D; Deviation of backward difference results
from analytical solution.

.009  -.009 -.009 -.009 -.009 -.008

.009 -.009 -.009 -.009 -.009 -.008

.011 -.011 -.011 -.011 -.011 =-.010 -.
.013  -.013 -.013 -.013 -.013 -.012 -.
.016 -.016 -.016 -.016 ~-.016 ~-.0l5 ~-.
.018 -.018 -.018 -.018 ~-.018 -.018 -.
.019  -.019 -.019 -.019 -.019 -.019 -.
.020 -.020 -.020 -.020 -.020 ~-.019 -.
.019 -.019 -.019 -.019 =-.019 -.019 -.
.016 -.016 -.016 =-.016 -.016 ~-.0l6 -
0 0 0 0 0 0

.005
.005
.004
.003
.001

001
003
005
007
011

.002
.002

001
003
007
011
013
015
015

.016

.035
.034
.033
.030
.027
.022
.016
.010
.003
-.003

.027
.026
.023
.020
.015
.009
..003
-.001
-.006
-.008

o O O O O O o O o o o

o O O O O O o o O o ©



.892
.893
.897
. 904
.913

. 924

.937
.951
.967
.983

1.000

-.002
-.002
-.003
-.003
-.003
-.003
-.003
-.002
-.002

-.001

.892
.893
.897

.904
.913

.924
.937

.951

. 967
.983
1.000

-.007
-.007
-.006
-.007

-.007
-.006
-.004
~.004
-.003
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Table III: Solutions of equations (25) - (26)

o

at t = 0.01 with Kx =1 gnd Ky = 100.
‘A. Analytical solution..

.892 .892 .892 .892 .893 .896  .909

.893  .893  .893  .893  .894  .897  .910

.897  .897  .897  .897  .898 .90l  .913

.904 .904 .904 .904 ©  .904  .907 . .919

.913  .913  .913 .913 913 .916  .926

924 924  .924.  .924  .924  .926 - .936
.937 . .937  .937.  .937  .937 .939  .947

951  .951  .951  .951 . .951  .953  .959

.967  .967  .967  .967  .967  .968 ~ .972

.983. .983  .983  .983  .983  .984  .986
1.000 1.000 1.000 1.000 1.000 1.000 1.000
B. Deviation of mixed explicit¥implicit'results

from analytical solution.
-.008 -.009 -.008 -.009 =-.009 ~-.008 ~-.006
-.008 -.008 -.008 =-.008 ~-.008 ~-.008 -.006
-.008 -.008 -.008 =-.008 ~-.008 =-.007 ~-.005
-.008 -.008 -.008 -.008 ~-.007 -.007 -.005
-.008 -.008 -.008 -.008 =-.007 < -.007 =.005
-.007 =.007 =-.007 -.007 =-.006 -.005 -.005
-.006. '-.007 -.007 -.006 -.006 ~-.005 -.005
-.005 -.005 ~-.005 ~-.005 =-.005 -.005 ~-.004
-.004 -.004 -.004 =-.004 =-.004 ~-.004 -.003
-.003  -.003 -.003 =-.003 ~-.003 -.003 ~-.002
0 0 0 0 0

.944

.944
L1947

.950

.955
- 960

.967 -
2974

.983
.991

1.000

-.004
.004

-.004
-.004

.004

© =.004

-.003
=.002
-.002

-.001

i L o T R o R S R

.000
.000 -
.000
.000
.000
- 000

.000
.000
.000

1.000

© 00 oo o0 o o o o oO°

.000.. -



.002
.002
.002
.001

-.001
-.001

-.018

-.018
- -.018
-.018
.016
-.015
© -.013
-.010
.007
-.004

-.002
~.002
~.002
-.002
~.003
~.003
-.003

-.002 -

-.002
-.002

-.023

=.023
-.022
- =.021

-.020
-.017
-.015
-.012
-.009
-.006

- -.004

Deviation of time-centered results
from analytical solution.
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Table IITI (continued)

-.004 =-.004 ~-.004 =-.004 -.003
-.003 ~-.004 ~-.004 ~ -.004 =-.004 =~.002
-.003 -.004 -.004 -.004 -.004 -.003
~.006 ~-.004 =-.004 -.004 =-.003 ~-.002
~.004 -.004 -.004 -.004 ~-.003 —.003
-.004 -.004 =-.004 =-.004 =-.003 ~-.002
-.003 -.004 ~-.004 -.004 -.003 ~-.003
-.003 -.003 =-.003 ~-.003 ~-.002 ~-.003
-.003  -.003 =-.003 -.003 -.003 -.002
-.002 -.002 -.002 -.002 -.002 =-.002
0 0 0 0 0 0
D Deviation of backward difference results
from analytical solution.
-.025 -.025 -.025 =-.025 =-.025 -.024
-.024 -.024 =-.024 -.024 -.024 -.024
-.023 -.024 -.024 -.024. -.024 -.023
-.022 -.023 -.023 -.023 -.022 -.021
-.021 -.021 -.021 -.022 -.020 ~-.020
-.019 =-.019 =-.019 -.019 ~-.018 =-.017
-.016 -.016 ~-.016 =-.016 =-.016 =-.015
-.013 -.013 -.013 -.013 =-.012 -.012
-.010 -.010 ~-.010 ~-.010 ~-.009 -.009
-.006 =-.006 ~-.006 -.006 =-.005 ~-.006
0. 0 0 0 0 0

.001
.001
.001
.002
.001
.002
.002
.002
.002
.002

.023
.022
.021
.021
.018
.017
.015
.012
.008
.005

.001
.001
.002
.001
.002
.001
.001
.001.
.001
.001

.018
.017
.017
.016
.015
.013
.011
.008
.007
.004

o O O O O O O O O o o

O O O O O O O O O o o



.022
.019
.006

-.007

-.008

-.011

-.013.

-.014

-.003
-.005
-.010
-.014

-.012
-.014
-.017
-.019

-.018
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Table IV: Deviation of mixed explicit-implicit results

at t = 0.002 from analytical solution in Table II.

-.026

-.027

-.028

-.028

-.028

-.011

-.013
-.017

-.025

Using mesh in Figure 6A.

 -.054

-.052

-. 049
-.043

e 033

-.079
-.078
-.073
-.062

-.048

Using mesh in Figure 6B.

-.087
-.083.

-.075

-.060

-.039

-.053
-.053
-.052
-.047

-.039

e 015

-.021

~.024

=.024

~-.013

-.015

-.018
-.022

-.025

-.011

-0014

-.019

-.022

-.003
-.007
-.013
--019

-.024

.048

.040

.024

.006.

-.013

-.046
~.042
-.039
~.0%

-.027

.228
-216
.180
.‘126

.058

.085
.063‘
.048
.037

.030

.387
.350
'7277
.175

.054

3231
176
.116
.061

.011
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Table IV (continued)

C. Using mesh in Figure 6C.

-.005 -.006 -.007 -.006 -.007 ~-.006 -.007 ~-.005 .004 .034

~.009 . -.009 -.009 -.008 - -.032
-.006 -.008 -.008 -.008 S -.002

-.010 . -.010 -.010 -.010 -.025
-.007 ) -.010 . -.010 ~.010 -.002

-.012 -.013 -.013 -.012 -.016
-.008 -.012 -.012 -.012 -.006

-.013 -.013 -.013 ~.013 -.006
-.008 © -.013 -.013 . -.013 . -.010

-.012 -.012 -.012 - -.012° ~.004



-.017

-.016

-.015

-.012

-.008

-.012
-.011
-.010
-.008

-.006

—0021

-.020
-.017
-.012

-.006

-.013
-.013

-.011

- -.008

-.004

Table V: -
at t =

-.025

-.024

3

8

Deviation of mixed explicit-implicit results

.01 from analytical solution in Table II.

Using mesh in Figure 6A.

-.025

- -.023

-.021

=.017

-.020

~.006

-.011

-.015
-.014

-.013

-.008

-.022

-.021

-.019

-.010

Using mesh in Figure 6B.

.013
.012
.011
014

.005

.001

~ -.001

-.002

-.015

-.014

- -.012

-.011

-.008

-.009

-.005

-.015

-.015

-.014

-.011

-.008

.016

.015

.012

.010

.006

-.018

-.016 -
-, 014

-.012

-.008

.018
.001
.016

.012

.027

.013
.012
.008
.009

. 004

.031.
.029
.QZS
.017

.008

.016-
.014
.012
-010

.007

.025
f022
.018
.011

.003

.002

.001

-.001



-.009

-.008

-.008

-.006

-.004

P
0 ¢

-.009 -.010
-.009

-.009
-.009

-.009
-.008

-.007
-.005

-.005
-.003

0 0

Table V (continued)

C. Using ﬁesh

in Figure 6C.

-.010 -.010 -.

-.010 -.
-.009

-.009 -.
| -.009

-.008 -.
-.007

-.006 -.
-.005

-.003 C-

0 0

009 -.010
009

-.009
009

-.008
008

-.007
006

-.005
003
0 0

.008
.008

.008

.006

.005

.003

-.008

-.007

-.006

-.006

-.004

.006
.005 .

.005

.004

.003

.002

Table VI. Compérison of performance

using three difference meshes.

Using mesh

in Figure
6A

6B

6C

Number of
time steps
to t = 0.04
79
37

36

Number of
iterations
to t = 0.04
934
329

332

Execution time
in seconds

5.442

1.091

1.192
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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