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A variety of compounds, for example doped paraelectrics and polar metals, exhibit both ferroelec-
tricity and correlated electronic phenomena such as low-density superconductivity and anomalous
transport. Characterizing such properties is tied to understanding the quantum dynamics of inver-
sion symmetry breaking in the presence of itinerant electrons. Here, we present a comprehensive
analysis of the normal state properties of a metal near a quantum critical transition to a ferroelec-
tric state, in both two and three dimensions. Starting from a minimal model of electrons coupled
to a transverse polar phonon via a Rashba-type spin-orbit interaction, we compute the dynami-
cal response of both electrons and phonons. We find that the system can evince both Fermi and
non-Fermi liquid phases, as well as enhanced pairing in both singlet and triplet channels. Further-
more, we systematically compute corrections to one-loop theory and find a tendency to quantum
order-by-disorder, leading to a phase diagram that can include second order, first order, and finite-
momentum phase transitions. Finally, we show that the entire phase diagram can be controlled via
application of external strain, either compressive or volume-preserving. Our results provide a map
of the dynamical and thermodynamical phase space of quantum ferroelectic metals, which can serve
in characterizing existing materials and in seeking applications for quantum technologies.

I. INTRODUCTION

Common wisdom holds that metallicity and ferroelec-
tricity are mutually exclusive tendencies. The reason
for this is straightforward: ferroelectricity is associated
with a spontaneous formation and long-range ordering of
dipole moments, whereas free carriers in a metal screen
internal electric fields, including those associated with
the ferroelectric polarization. In similar vein, one may ar-
gue that even in the rare situation where ferroelectricity
coexists with a metallic state, the electronic and lattice
degrees of freedom should be only very weakly coupled.
This intuition is born out by a variety of microscopic
calculations (see e.g. Ref. 1 and references within).

In stark contrast to this view, in recent years dozens of
materials have been identified which evince clear signa-
tures of intertwined ferroelectricity and correlated elec-
tronic behavior [2]. These compounds, which we shall call
“quantum ferroelectric metals” (QFEMs), are typically
doped semimetals and semiconductors. At low tempera-
tures they undergo a phase transition to an inversion-
symmetry broken state, which can be driven to zero
temperature, i.e. to a putative quantum critical point
(QCP), by various external parameters like pressure,
strain, or doping. In the vicinity of the QCP, these

systems exhibit enhanced superconducting Tc as well as
anomalous transport signatures. Furthermore, some of
these compounds also have strong spin-orbit coupling
leading to topological band structures, either due to or
modified by the ferroelectric (FE) behavior. This rich
behavior marks out QFEMs as prime targets for basic
research, as well as very promising candidates to be ma-
terial platforms for quantum technologies.

There are three families of compounds of particular
interest, as they display both FE and metallic behav-
ior. One type are quantum paraelectrics, such as SrTiO3

or KTaO3, where quantum fluctuations prevent the un-
doped material from becoming polar [3, 4]. The transi-
tion into the FE phase is driven by strain or by chemical
substitution [5–7], and the carrier density is controlled
by doping or gating (in thin layers). The second fam-
ily are the IV-VI compounds such as PbTe, SnTe, or
GeSe [8, 9], which lie close to both FE and topological
quantum critical points [10]. A third family are certain
bilayer transition metal dicalchogenides (TMDs), which
are both metallic and polar by nature [11], but can be
tuned out of the polar state by doping and pressure
[12–14]. The latter two families host topological band
structures [15, 16], such as those of Weyl semimetals [17]
and topological insulators [18]. In all types of materi-
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als there also appears superconductivity at low tempera-
ture [1, 19–32]. One important difference between these
classes of systems is that, in the bilayer TMDs, the FE
transition usually onsets at high temperatures, such that
quantum FE fluctuations are unlikely to be driving their
low-temperature properties. For this reason, we focus on
quantum paraelectrics and IV-VI compounds as model
QFEMs.

In QFEMs the transition to the FE state typically oc-
curs by a condensation of a polar optical phonon that
breaks inversion symmetry, see Figs. 1a and 1b. This is
the same type of transition that occurs in conventional
insulating ferroelectrics and has been well studied in that
context. The transition is structural so that lattice ef-
fects are important, and may render the transition first
order [33–35]. More importantly, the strong lattice cou-
pling makes the system sensitive to strain, which is a
useful tuning parameter. The thermodynamics are well-
captured by a vector field η that serves as an order pa-
rameter and which represents either the induced electric
polarization or the atomic displacement associated with
the soft polar phonon. In the simplest case, it has a
Ginzburg-Landau description of the form [36],

F ∝ r|η|2 + u|η|4 − κηε
∑
ij

ηiεijηj + · · · , (1)

where εij is the elastic strain tensor, and r, u, κηε are
functions of temperature, stress, etc. In many cases the
transition temperature can be driven to low/zero temper-
atures, i.e. to a putative quantum critical point [1, 5, 13].
The quantum dynamics of these insulating systems has
also been studied extensively [37–40], and has a definite
impact on the critical behavior [34], captured by suitable
corrections to Eq. (1).

In QFEMs the long-range dipole fields are screened by
the itinerant electrons [41], but the inversion-symmetry-
breaking induced by the phonon remains and can be
described by η. Thus, the low energy dynamics are
described by a coupled system of soft bosonic fluctua-
tions of η and of itinerant electrons [1, 42–44]. Mod-
els of soft bosonic fluctuations mediating effective elec-
tronic interactions have long been recognized as paradig-
matic examples of both unconventional superconduc-
tors and non-Fermi liquids (nFLs) [45, 46]. Clas-
sic examples of these are the spin-fermion model [47]
and the Ising-nematic model [48, 49] used to describe
spin-fluctuation and nematic-fluctuation mediated su-
perconductivity, and with possible applications to the
cuprate and iron based superconductors. Accordingly,
soft FE fluctuations have been promoted in recent years
as a possible mechanism behind QFEM phenomenology
[29, 38, 40, 42, 50–53].

However, in contrast with classical models of boson-
fermion coupling, in QFEMs even the simplest such cou-
pling (which we will describe in detail later) is unique
for several reasons. The first reason is due to the struc-
tural properties of the parent ionic crystal. The soft FE
fluctuations are predominantly in the transverse (TO)

component of the polar phonon [54, 55], such that the
polarization and propagation direction of a fluctuating
mode are perpendicular. This is a property inherited
from the “parent” (insulating) ferroelectric, and is a re-
sult of the Coulomb interaction between dipoles, which
splits the longitudinal (LO) mode off from the TO mode.
In 3D this results in a hard gap [56], and in 2D, while
there is no gap at the Brillouin zone center [57], the dis-
persion curves are sharply separated [58, 59]. This effect
persists even in the doped compounds, provided the den-
sity of itinerant electrons is not too high to fully screen
the Coulomb interaction [60]. The second reason is that
the coupling is inherently odd under space inversion, and
thus entangles spin and orbital degrees of freedom [61].
This is required to ensure the breaking of inversion sym-
metry while preserving the time-reversal symmetry, so
that there is no creation of spontaneous currents [62]. A
proper treatment of the low energy properties of QFEMs
therefore requires a comprehensive quantum theory of
the coupled dynamics.

In this paper, we derive such a theory. We start from
a microscopic model representing itinerant fermions cou-
pled vectorially to the soft FE transverse phonon, and
derive an effective Ginzburg-Landau action and phase di-
agram. We focus on systems with Fermi surfaces (FSs),
relevant to describe quantum paraelectrics. For the IV-
VI compounds, the coupling to Dirac electrons is a more
appropriate starting point [63, 64]. In analogy with e.g.
the spin-fermion and Ising-nematic models, we take as a
starting point Eq. (1), describing a transverse phonon
near a QCP, and systematically calculate the quantum
corrections to the action from the coupling to electrons.

To obtain a qualitative picture of how a QFEM be-
haves, it is useful to think of another well-known model,
namely a ferromagnetic spin-fermion model (see e.g. [65–
68] and references within). Such models have been used
to describe itinerant ferromagnets such as the uranium
superconductors (see e.g. [69, 70] and references within)
and consist of a ferromagnetic bosonic field S minimally
coupled to itinerant electrons. Similar to η, the mode
S is a vector, which however fluctuates purely in spin
space. The phenomenology of S is by now well known,
and is a result of (a) the strong fluctuations at the QCP,
(b) the spin nature of the interaction, and (c) the vector
nature of S. At the critical point the fluctuations of S un-
dergo strong Landau damping. In response, a nFL state
arises, which also simultaneously mediates strong pairing
fluctuations. Because the mode is in the spin sector, it
contributes to spin-triplet rather than spin-singlet pair-
ing. The vector nature gives rise to further complexity,
because it implies the existence of soft Goldstone modes,
which also interact with the itinerant electrons. The ad-
ditional fluctuations modify both the normal state and
the superconducting state. In the normal state they al-
low the system to avoid the QCP either via a preemp-
tive first order transition or via a transition to a finite
momentum spin density wave state, a phenomenon of-
ten termed quantum order-by-disorder (QOBD). In the
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SC state, these additional modes affect both Tc and the
nature of the transition [71].

The QFEM is deceptively similar to an itinerant ferro-
magnet, but the devil is in the details. On the one hand,
it is described by a soft vector mode η near a QCP, like
S. On the other hand, this bosonic field acts both in
real and spin space and is transverse. Thus, it can in
principle mediate both singlet and triplet superconduc-
tivity. Moreover, in contrast to S, it has a restricted
fluctuation space. Indeed, in an SU(2) ferromagnet, via
a slow spatial modulation, i.e. a Goldstone mode, the
spin polarization can vary over the two-dimensional sur-
face of a sphere of constant magnetization. For a QFEM
the additional constraint of transverse polarization re-
stricts the modulations to a one-dimensional circle. Fur-
thermore, because η also acts in real space, geometric
considerations, such as real space momentum and energy
conservation also play a role and further complicate the
picture by restricting the phase space for FS scattering.
At the same time, this entangling of spin and real space
structure offers a convenient way to manipulate QFEMs:
similarly to insulating FEs, external strain allows one to
tune the properties of QFEMs and evince their rich phase
diagram. We will comment in detail on similarities and
differences to ferromagnetic systems as we present our
results.

Our central results can be summarized as follows. First
(as expected) we find that the low-energy response of η is
dominated by the coupling to electrons (Landau damp-
ing), which in turn leads to nFL behavior of the electrons
as well as enhanced superconductivity. This information
is encoded in the one-loop bosonic and fermionic self-
energies Π and Σ. However, in contrast to the case of
spin or Ising-nematic fluctuations, the QFEM bosonic
response depends on the dimensionality: in 3D it is over-
damped, but in 2D, it has two separate modes, one over-
damped and one underdamped. Such behavior is more
similar to XY nematics and is a result of the entangled
spin and orbital (momentum) degrees of freedom. Sec-
ond, we find pairing instabilities to both spin-singlet and
spin-triplet states, which have enhanced pairing tempera-
tures compared to BCS theory, i.e. compared to the clas-
sic exponential dependence on inverse coupling strength.
Here too there is a dependence on dimensionality. In 2D,
the singlet and triplet instabilities are almost degenerate.
In 3D, the singlet dominates, but applied strain can make
the two instabilities almost degenerate. Third, we find
that QFEMs have a low energy tendency to form pre-
emptive states either by a first-order transition to a ho-
mogeneous phase or by formation of a finite-momentum
state, i.e. a Ferroelectric Density Wave (FDW). This is a
manifestation of QOBD as described above. These orders
modify, but do not prevent, the enhancement of super-
conductivity arising from proximity to the QCP. Fourth,
we show that coupling of FE order to strain controls all of
the above properties, so that by applying external com-
pressive or tensile strain one may control the normal state
order, the fermionic behavior, and the dominant pairing

instability. We provide a schematic phase diagram in
Fig. 1, and several more detailed phase diagrams in the
remainder of the paper.

We derive these results by performing a field-
theoretical analysis of the model within the Eliashberg
formalism and analyzing the low-energy bosonic and
fermionic self-energies. Then, we go beyond the Eliash-
berg theory to identify the relevant quantum processes
for quantum order by disorder. Finally, we account for
the modification of the results by external strain. Thus,
our main contribution is to apply established techniques
of field-theoretical diagrammatic calculations to a rela-
tively unexplored quantum critical system. At almost
every step, we find features, some rather surprising, due
to the interesting nature of the space-odd transverse fluc-
tuations that characterize the FE QCP. Therefore, our re-
sults provide at least a semi-quantitative picture of how
the QFEM properties are expected to behave.

The paper is organized as follows. In Sec. II, we present
our minimal model for a QFEM. In Sec. III, we study
the two-dimensional problem. We calculate the bosonic
and fermionic self-energies in the normal state and the
pairing instabilities. Then we identify relevant soft fluc-
tuations driving QOBD. We consider the impact of ex-
ternal strain and generalize the results to finite tempera-
tures, thus constructing the schematic phase diagrams of
Figs. 5 and 6. In Sec. IV, we present the results for the
three-dimensional case. We end with a discussion of the
broader implications of our work in Sec. V.

II. MINIMAL MODEL FOR A QFEM

A description of a QFEM requires three ingredients.
First, the structural transition leading to a FE state is
described by a boson mode that softens at the transi-
tion. Because it is a property of the phonons, such a
description is valid regardless of whether the compound
is insulating or metallic. In order to construct a univer-
sal theory, we will assume from the start an isotropic,
rotationally invariant system, leaving a discussion of ac-
tual lattice effects to Sec. III E. Second, the low-energy
itinerant fermions are described by a Fermi liquid (FL).
Third, the two systems are coupled by an appropriate in-
teraction. The complete system is described by the field
theory with the dynamical action,

S =
∫
dτ

[∑
q
Lη(q) +

∑
p
LFL(p) +

(
a
L

)d ∑
p,q

Lint(p,q)

]
.

(2)
Here, τ is imaginary time in units with ℏ = 1; a, L are re-
spectively the lattice constant and the size of the system;
d is the dimensionality; and p,q denote respectively mo-
menta of fermionic and bosonic degrees of freedom. We
write out all of the relevant degrees of freedom directly in
momentum space, summing over the first Brillouin zone.
The various Lagrangian densities are described below.
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(a)

(b)

(c)

FIG. 1: Schematic description of a QFEM. (a) Caricature of the FE deformation in a two dimensional ionic lattice.
(b) Schematic of a polar deformation in a perovskite structure, e.g. SrTiO3, where Sr, Ti, O are depicted as blue,
gray, and green spheres. (c) Schematic phase diagram of a QFEM as a function of temperature and an external
“tuning” parameter r0, e.g. strain or doping, as calculated in this work. The phase diagram includes a paraelectric
(PE) phase above a ferroelectric (FE) phase which spontaneously appears at a temperature TFE via a second-order
transition. Within a mean-field picture, the FE phase transition line terminates at a QCP at r0 = rQCP , where
rQCP is a critical value of the tuning parameter. However, quantum fluctuation effects (specifically, QOBD) can
cause a first-order transition that preempts the second-order one, resulting in a tricritical point rTCP . The 1st-order
transition line terminates at some r∗ ̸= rQCP . Also within the mean-field picture, a superconducting (SC) dome
rises in the vicinity of rQCP , which can support both spin-singlet and spin-triplet superconducting states. We did
not investigate a possible shifting of the SC dome due to QOBD in this work. The schematic is taken from one of
the possible phases of a 2D QFEM (see Sec. III), but is qualitatively similar for a 3D QFEM, albeit with a much
narrower first-order region.

In this work, we assume that the transition to the FE
state is a displacive transition, i.e. driven by the soft-
ening of the transverse optical phonon discussed in the
introduction. The other main mechanism for ferroelec-
tricity is an “order-disorder” one, which is reminiscent
of an Ising or Heisenberg ferromagnetic transition. The
order-disorder scenario describes systems whose unit cells
are deformed along certain lattice-preferred orientations,
creating a series of “pseudospin” FE moments. The FE
transition is governed by the angular fluctuations of these
moments, rather than by a softening of their amplitude.
Since the displacive transition is more common at low
temperatures [40, 56] we focus on it here. The phonon
mode is described by the Lagrangian density

Lη = ηi(q)D
−1
0 a2

(
|q|2 − c−2∂2τ + c−2ω2

T

)
ηi(−q), (3)

where

ηi(q) = Pij(q̂)uj(q), Pij(q̂) = δij − q̂iq̂j (4)

describes a transverse component of a dimensionless
phonon displacement uj , with P a projection operator

onto the transverse sector, i.e., q̂ · η = 0. D0 is a con-
stant with units of inverse energy, c is the transverse
phonon velocity, and ωT is the transverse phonon exci-
tation energy, inversely proportional to the correlation
length, which softens to zero at the QCP. The model
of Eq. (3) gives rise to a Ginzburg-Landau free energy
similar to that of Eq. (1), with

r = (ωTa/c)
2. (5)

Note that while r measures how close the phonon system
is to the QCP compared to, e.g. another non-critical
insulator, it does not contain information about the crit-
icality of the electrons, as evidenced by the fact that the
Fermi momentum does not appear in its definition. This
is a consequence of the fact that η represents phonons,
which are microscopically an independent degree of free-
dom from the electrons. In many other models of quan-
tum criticality, the bosons represent an ordered state of
the electrons themselves, and have the same fundamental
energy scales as these electrons do. The relevant energy
scales for the coupled system show up in the renormaliza-
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tion of r, and in the electronic and bosonic self-energies,
as described later.

We describe the FL by the Lagrangian density

LFL = ψ†
α(p)(∂τ + ϵ(p))ψα(p), (6)

where the repeated index α denotes implicit summation
over spin indices. ϵ(p) can describe any rotationally in-
variant dispersion. For our purposes, to keep the discus-
sion general, we linearize the dispersion near the Fermi
surface (FS), ϵ(p) ≈ vF (|p| − kF ), where kF is the Fermi
wave-vector and vF is the FL effective velocity.

We now turn to the interaction term. In general we ex-
pect the condensation of η to break inversion symmetry
for the fermions as well. This is accomplished by a linear
coupling term which must also be polar from symmetry
considerations. In a FL such coupling can be in either
spin or charge sector. However, ordering in the charge
sector in a model with orbitals that have the same par-
ity would imply creation of spontaneous currents, thus
breaking time reversal symmetry, and would also require
fine-tuning to avoid Bloch’s theorem [72]. Hence, it is
natural to expect a coupling in the spin channel.

In systems with strong spin-orbit coupling, these
couplings were shown [43, 61, 73] to have the form

ψ†
α(p)F̂αβ [p]ψβ(p), where F̂ encodes a type of spin-orbit

coupling. Based on the transformation properties under
mutual rotation of spin and momentum, it may take the
form F̂ = σ · p, σ × p, σ ⊗ p, ..., where σ is a vector of
Pauli matrices, corresponding to scalar, vector, tensor,
etc. couplings. We note that strictly speaking σ here is
not spin, since it is not a good quantum number in spin-
orbit coupled systems. However, in the presence of both
time-reversal and inversion symmetries (which is the case
in this paper), the Bloch states remain doubly degenerate
at each crystal momentum k, thus allowing to introduce
a “pseudospin” basis σ, which we refer to as “spin” for
simplicity hereafter. The most natural coupling is the
vector one, since it couples linearly to the phonon dis-
placement vector η (for any other type of coupling, we
need to introduce either a nonlinearity or break the sym-
metry explicitly to couple to a vector). Thus we have

Lint =
λ

kI
ηi(q)ψ

†
α(p+ q/2)(p×σαβ)iψβ(p− q/2), (7)

where λ has units of energy and kI is a parameter in-
troduced for convenience to rescale the interaction con-
stant. It is important to note that the typical interaction
strength in Eq. (7) goes down if we decrease the Fermi
momentum, since |p| ∼ kF . However, since this distinc-
tion will not be important in this paper, we henceforth
set kI = kF for simplicity. We note that the scalar form
of coupling is what is expected for an Ising-type transi-
tion, e.g. an order-disorder one, and that the tensor form
is just the spin-nematic from a traditional FL that has
been studied previously [74, 75].

Equations (3)-(7) form a complete model for a QFEM.
We chose this model both for universality and for sim-
plicity. It can be readily checked that our conclusions

from the study of this model generalize to more realis-
tic forms of interactions, band structures, lattices and so
forth. For instance, the microscopic origin of the coupling
constant λ in the quantum paraelectric STO has been re-
cently discussed in Ref [53]. The model makes sense in
any dimension where a cross-product can be defined. We
now proceed to study its dynamics. As we shall see, the
unique properties of QFEMs are most transparently seen
in 2D, and it is also easier to study the model analyt-
ically in 2D than in 3D. For this reason, we will next
concentrate on the 2D effective low-energy theory.

III. LOW-ENERGY THEORY OF A 2D QFEM

In this section we perform a comprehensive analysis of
a 2D QFEM. Before proceeding, we need to define pre-
cisely what is meant by a 2D system, since the interaction
term in Eq. (7) is inherently three-dimensional. In this
work, we will assume that the 2D system is a thin film
of a material, which we take to be aligned with the xy
plane. This configuration splits the transverse phonon
into an Ising-like out-of-plane mode and an XY-like in-
plane mode, corresponding to out-of-plane or in-plane
polarization. It is convenient to assign to every vector k
in the 2D plane the three orthonormal vectors

k̂ =

 k̂x
k̂y
0

 , k̂t = ẑ × k̂ =

 −k̂y
k̂x
0

 , ẑ =

 0
0
1

 , (8)

such that the components transverse to k̂ are k̂t and ẑ.
Similarly, we can decompose the spin degrees of freedom
into

σk;l = k̂·σ = k̂xσx+k̂yσy, σk;t = k̂t ·σ = k̂xσy−k̂yσx, σz,
(9)

where henceforth we will for clarity suppress the k sub-
script. Then, the interaction splits into

k̂ × σ = ẑσt − k̂tσz. (10)

The transverse phonon,denoted in the previous section
by η, creates a structural distortion in the lattice, de-
picted schematically in Fig. 2a. When η condenses, i.e.
when it acquires a nonzero static expectation value, the
maximum energy gain is in a configuration where the
polarization direction η̂, the fermionic ordering vector k,
and the associated Zeeman splitting σ, are all perpen-
dicular to one another, see Eq. (7). This means that, if
the phonon condensation results in an out-of-plane dis-
placement, it will result in an in-plane spin-orbit split-
ting, whereas if the displacement is in-plane, the spin-
orbit splitting will be out-of-plane. We denote these two
modes the “z” and “t” modes, and depict these geometric
constraints in Fig. 2b. Since the 3D rotational symmetry
is explicitly broken, the distance to the QCP of these two
modes will be different, and we denote them by rz, rt. In



6

(a) (b) (c)

FIG. 2: The QFEM model in 2D and its geometrical constraints. (a) A schematic of the distortion caused by a
transverse phonon mode. The red and blue balls represent a toy model of an ionic lattice. The transverse phonon
propagates in direction q and induces a distortion, creating local dipole moments, in the direction of η(q). η
scatters electrons most strongly when their Fermi vector kF ⊥ q. In the limit |q| → 0, η becomes the homogeneous
polar distortion depicted in Fig. 1a. (b) The two possible polarizations for η, and the associated spin-orbit splitting
of the electronic dispersion parametrized by (kF × σ). In the z polarization, the spin is in-plane, while in the t
polarization, the spin is out-of-plane. (c) The geometric constraints on scattering of electrons by the phonon modes.
The t mode has suppressed scattering, because it is not possible for η to efficiently scatter electrons parallel to the
Fermi surface, see Eq. (12).

other words, at the QCP, only one of the modes will be
soft.

In what concerns static properties, these geometric
constraints do not play an important role. However, once
we consider dynamical properties arising from the scat-
tering of electrons by the phonon modes, the situation
changes. The reason is that η couples most strongly
to low-energy particle-hole excitations parallel to the FS
(Fig. 2a), which generates Landau damping. Thus, the
momentum transfer vector q must be perpendicular to
both kF , to maximize scattering, and to η, since the
phonon mode is transverse. As long as η ∝ ẑ (the z
mode), this condition can be satisfied. In contrast, for
the t mode, it is impossible to place three vectors in a
plane that are all perpendicular to each other, as shown
in Fig. 2c. Consequently, scattering is suppressed in the
t channel, which is the source of most of the unique prop-
erties of QFEMs as compared to, say, a quantum ferro-
magnetic metal.

To see this more clearly, we rewrite the interaction
term, Eq. (7), in terms of the decomposition into the
two modes,

L(d=2)
int =

λ

kI

[
ηz(q)ψ

†(p+ q/2)σtψ(p− q/2)

+ (ηxpy − ηypx)ψ
†(p+ q/2)σzψ(p− q/2)

]
, (11)

In principle, the coupling constant λ can take different
values for the z and t sectors, but for simplicity we neglect
this difference here. The angular form-factor in the t
sector can be rewritten as

k−1
I (ηxpy − ηypx) ≈ ±

√
η2x + η2y cos(θp − θq), (12)

where we assumed that the fermionic momentum |p| =
kF resides on the FS and denoted the in-plane angles

of q,p as θq, θp. We also used the fact that the angle
between q and ηt must be ±π/2. We see that the in-
teraction term in the z channel is similar to that of an
Ising ferromagnet, in the sense that there is no explicit
momentum dependence of the coupling constant. How-
ever, the coupling constant in the t channel depends on
cos(θq − θp), which vanishes precisely at the angles π/2
where we expect electron-phonon scattering to be the
strongest.
The ramifications of this result for the quantum criti-

cal (QC) behavior of the system are as follows. Consider
first the z mode. Since there is no geometric constraint
on the scattering, it behaves rather similar to other itiner-
ant quantum critical systems: it evinces strong Landau
damping of η, which in turn generates strong non-FL
self-energy for the fermions. Then, most of the behav-
ior of the system is determined by the competition be-
tween strong scattering, leading to e.g. strong pairing,
and strong damping. On the other hand, the t mode has
a different behavior. The Landau damping is suppressed,
resulting in an underdamped boson. Consequently, the
fermions remain coherent even near the QCP. The result
is that correlation effects like pairing are still enhanced,
but the mechanism is completely different from the stan-
dard QC scenario. In the next sections, we perform a
quantitative analysis that corroborates the expectations
from this qualitative assessment.

A. Disordered phase: self-energies to one-loop
order

We begin with analyzing the dynamics in the disor-
dered phase and calculate the bosonic and fermionic self-
energies to one-loop order. The bosonic self-energy is
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obtained from the one-loop fermionic bubble, which from
Eq. (7) has the form,

Πlk
0 (q) = ḡT

k2
F
Tr
∑
p
(p× σ)lG(p− q/2)G(p+ q/2)(p× σ)k.

(13)

Here the trace is over spin indices and G(k) are fermionic

propagators. Here and henceforth,
∑

p ≡
(
a
L

)2∑
p

∑
p0

denotes a sum over the three-vector p = (p0,p), where
p0 is a Matsubara frequency and p is a 2D vector (we
leave the frequency normalization out of the sum to make
the dimensional analysis more transparent.) Finally, ḡ =
λ2D0 is the effective fermion-boson vertex, which we take
to be small, ḡνF ≪ 1, in order to control our calculations.
Here, νF is the 2D FS local density of states summed over
both spins,

νF =
kFa

2

πvF
, (14)

which for later convenience we define with a factor of a2

to obtain a quantity with units of inverse energy.
We replace the sum over Matsubara frequencies and

momenta by its infinite-system, zero-temperature limit
T
∑

p → a2
∫
d3p/ (2π)

3
, except where we explicitly treat

finite T effects. We then assume that the integral over
fermionic momentum can be separated into an integral
transverse to and parallel to the FS, which is the so-
called Eliashberg approximation employed in many pre-
vious studies [47]. Then, the transverse momenta are
restricted to the vicinity of the FS, which results in (see
Appendix A 1):

Π̂0(q) = ḡνF

∫
dθp
2π

vF q cos(θp − θq)

iq0 − vF q cos(θp − θq)
P̂(p̂). (15)

Here and henceforth we present matrices in momentum
(not spin) space with a ˆ· · · symbol. The projection ma-
trices arise from the spin trace and the momentum de-
pendence of the interaction. Performing the various sum-
mations and integrations we obtain,

Π̂0(q) = −ẑẑ [δrz − δΠz(q0/vF |q|)] (16)

− q̂tq̂t [δrt − δΠt(q0/vF |q|)]− q̂q̂ [δrt − δΠl(q0/vF |q|)]

where we explicitly wrote the nonzero components of Π̂0

in unit-vector form, with q̂t defined in Eq. (8). In Eq.
(16), δr are the static corrections to the energies of the
phonon modes (or, equivalently, to the distance to the
QCP),

δrz = ḡνF = 2δrt, (17)

and δΠ are given by

δΠz(x) = ḡνF |x|l0(x),
δΠt(x) = ḡνF |x|l1(x),
δΠl(x) = δΠz(x)− δΠt(x). (18)

corresponding respectively to the dynamical contribu-
tions to the polarization in the out-of-plane z sector,
the planar transverse t sector, and the planar longitu-
dinal l sector. Here l0(x) = (1 + x2)−1/2 and l1(x) =
|x|(1− |x|l0(x)) are well known from the Lindhard func-
tions of a 2D FL [75].
We emphasize that the static interaction renormalizes

the energy of the phonon modes according to

rz → rz − δrz, rt → rt − δrt, (19)

so that the z and t sectors are split even if in the absence
of electronic interactions their original splitting is negli-
gible. In that case, the z sector reaches the QCP first,
since the gap in the t sector remains finite,

rz = 0 ⇒ rt = ḡνF /2. (20)

In practice, though, as we discussed above, lattice effects
provide their own splitting between the z and t modes,
and can change the order of the transition. Moreover,
we will show later that external strain tunes the energies
of the two phonon modes in a controllable way. For this
reason, we treat rz and rt as parameters and continue our
analysis for both the case when the z mode goes critical
first and for the case when the t mode goes critical first.
Importantly, because l0(x → 0) → 1 whereas l1(x →

0) → |x|, the t phonon mode is underdamped while the
z phonon mode is overdamped. This can be seen by con-
tinuing to the real ω axis, in which case the z phonon
has a classic Landau overdamped Γz ∼ iω/vF |q| behav-
ior while the planar mode is almost ballistic. This should
be compared to the usual FL case [75], where it is known
that in the p−wave channel the longitudinal mode is un-
derdamped and the transverse mode is overdamped.
To obtain the bosonic self-energy, we project the

particle-hole bubble Π̂0 onto the transverse component,

Πij(q) = −Pik(q̂)Πlk
0 (q)Pjl(q̂). (21)

yielding the renormalized bosonic propagator,

D̂−1(q) = D−1
0

(
ẑẑD−1

z (q) + q̂tq̂tD
−1
t (q)

)
, (22)

D−1
z (q) = rz + (|q|a)2 + (q0a/c)

2 + δΠz, (23)

D−1
t (q) = rt + (|q|a)2 + (q0a/c)

2 + δΠt. (24)

Next, we calculate the fermionic self-energy Σ(k), which
has a different form depending on which phonon sector
becomes critical first. It has the form,

Σαβ(k) = σ0,αβΣ(k)

≈ ḡa2

D0k2F

∫
d3p

(2π)
3 (k× σαγ)i

×G(k − p)Dij(p)(k× σγβ)j . (25)

The splitting of the interaction, as in Eq. (10), also splits
the contributions to the self-energy. Performing the sum-
mations we find

Σ(k) ≈ ḡa2
∫

d3p
(2π)3

G(k − p)
(
Dz(p) + cos2(θk − θp)Dt(p)

)
.

(26)
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The cos2(θk − θp) term arises from the projection of k̂t
onto p̂t. This is very different from a transverse boson
interacting via a conventional current-type coupling, in
which case we would get a sin2(θk − θp) term [75, 76].
This difference is important because, when the fermions
are restricted to the FS, the condition θk − θp ≈ ±π/2 is
enforced. Thus, in contrast to the usual current-like cou-
pling, the one-loop contribution to the self-energy from
Dt is greatly suppressed, as it comes from scattering of
fermions on the FS to states away from the FS (and
vice versa). As a result, the two sectors yield different
fermionic behaviors. In the z sector, directly at the QCP
(rz = 0), the system displays nFL behavior with the self-
energy

Σz(k0) = −iω1/3
z |k0|2/3sgn(k0), (27)

where

ωz =
ḡ2

24
√
3π2vF kF

∼ ḡ2/EF (28)

characterizes the typical energy scale at the QCP. Away
from the QCP, where rz is finite but small, the self-energy
will only have the characteristic QC form at frequencies
k0 ≫ ωr,z, where

ωr,z = r3/2z vF ka/(ḡνF ) ∝ r3/2z (E2
F /ḡ), (29)

At lower frequencies k0 ≪ ωr,z the self-energy has the
standard FL form

Σz = −i ḡ

4πvF ka
√
rz
k0. (30)

where we defined

ka =
1

a
(31)

to make the units more transparent (see Appendix A 1
for details).

In contrast, the self-energy at the t channel QCP (rt =
0) is given by

Σt(k0) = −i ωt

8kF vF
k0 log

(
ωt

|k0|
Z2
UV

)
, (32)

where

ωt =
√
ḡνF kavF ∝

√
ḡEF (33)

characterizes the typical energy scale at the QCP. Here,
ZUV = min(1, c/vF ) denotes whether the high-energy
cutoff in the system is given by the bare bosonic speed
of sound or by the Landau damping. For finite but small

rt, i.e. away from the t-channel QCP, Eq. (32) is only
correct for k0 ≫ ωr,t, with

ωr,t = rtkavF /
√
ḡνF ∝ rt(E

2
F /ḡ)

1/2. (34)
For low frequencies, k0 ≪ ωr,t the self-energy is linear
and obeys the usual FL behavior

Σt(k0) = −i ωt

8vF kF
k0 log

(
ωt

ωr,t
Z2
UV

)
. (35)

Equation (32) represents a marginal FL. We note that
Eqs. (32) and (35) are valid as long as the argument of
the log is large, i.e. max{k0, ωr,t} ≪ ωtZ

2
UV .

The total electronic self-energy is thus the sum of the
contributions from the two sectors,

Σ(k0) = Σz(k0, rz) + Σt(k0, rt). (36)

The consequences of Eq. (36) are as follows. With-
out fine-tuning, only one of the sectors can become fully
critical, while the other one retains a finite r. If rz → 0,
the system displays nFL behavior due to the contribu-
tion from the z-sector, analogous to that of an Ising fer-
romagnet, since the contribution from the t sector just
renormalizes the FL parameters. On the other hand, if rt
goes to zero, then the system is a marginal FL, since the
nFL contribution from Σz is cut off by the finite value of
rz, leaving just a linear FL-like contribution.
Our results were obtained under the simplifying as-

sumption of a single fermion-boson coupling constant ḡ,
see Eq. (12) and the discussion after Eq. (15). Simi-
larly to rz, rt, lattice effects can also split the coupling,
which will just modify somewhat the prefactors to the
various self-energies. We neglect all such effects in our
work. We also explicitly computed vertex corrections
within the model to check that they do not qualitatively
modify the one-loop results. In Appendix A2 we show
that while vertex corrections can be divergent (as is the
case in several other boson-fermion models [90]), they do
not invalidate the results in this section.

B. Pairing in 2D QFEMs

We now investigate superconductivity arising from QC
FE fluctuations. In this paper, we will not make a
comprehensive study of the superconducting phase of a
QFEM, since our focus is on the normal state quantum-
critical properties. Instead, we will study the pairing
instabilities via a linearized gap equation to determine
which properties are unique to QFEMs and which ones
are similar to other QC unconventional superconductors,
like the ferromagnetic and nematic ones. In doing this,
we go beyond the FL regime, which has been at least par-
tially studied previously, see e.g. Refs. [43, 53, 77, 78].
As in Sec. III A, we assume that both rz and rt are pa-
rameters that can be tuned to criticality independently.
The pairing equation is given by
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Φαβ(k) =
ḡT

k2FD0

∑
p

γiνα

(
−k− p

2

)
Gνκ(−p)Φκµ(p)Gµσ(p)γ

j
σβ

(
k+ p

2

)
Dij(k − p), (37)

irrep Matrix form Fnj(k̂) Inv. symmetry z t
n = 0 1 even + +

n = 1 k̂ · σ odd – –

n = 2 k̂xσ
y − k̂yσ

x odd + –
n = 3 {kyσz, kxσ

z} odd – +

TABLE I: Table of the first four irreducible
representations of a rotationally invariant model with
inversion symmetry. The last two columns denote
whether the pairing channel is attractive (+) or

repulsive (–).

where

γiαβ(k) = (k× σ)iαβ . (38)

At first sight, the pairing interaction seems
to be repulsive in the singlet channel, since

γiνα

(
−k−p

2

)
γjσβ

(
k+p
2

)
= −γiνα

(
k+p
2

)
γjσβ

(
k+p
2

)
.

This is nothing but the well-known statement that
a current-like interaction (i.e. with form-factor k) is
repulsive. However, the spin summation in Eq. (37)
gives another −1 factor, reflecting the fact that a
magnetic-mediated pairing interaction is generally repul-
sive. Thus, the total pairing interaction is attractive in
the singlet channel precisely because of the spin-charge
mixing, even though each component by itself would be
repulsive.

It is convenient to decompose the pairing function into
irreducible representations

Φ(k) = iσy
∑
nj

ϕnj(k0)F
j
n(k̂), (39)

where F j
n(k̂) is a 2×2 matrix function encoding the jth

member of representation n (see Table I for the first few
representations in the case of a fully rotationally and in-
version symmetric system) [63, 77]. In this notation, each
representation has its own transition temperature, which
is obtained from the gap equation, and Tc is set by the
highest one. Table I reveals that the z mode is attractive
in the n = 0 singlet channel and the n = 2 nodeless triplet

channel, which is a superposition of the mz = ±1 spin-
triplet channels in the ℓ = 1 spin sector of the Cooper
pair. The t mode is attractive in the singlet channel and
in the n = 3 doublet, which is the mz = 0 spin-triplet
channel. These results follow qualitatively from the “dou-
ble repulsive” nature of the pairing interaction discussed
above. Since the t mode has a σz spin dependence, it is
attractive in the channels for which a z-axis Ising spin
mode would be repulsive, namely spin-singlet and t spin-
triplet, but repulsive in the channels for which the spin
mode would be attractive, namely spin-polarized chan-
nels. Conversely, the z mode is attractive only in the
singlet and in the z-axis spin-polarized channels, since it
has t spin polarization.
To discuss the superconducting transition temperature

Tc resulting from Eq. (37), we consider two scenarios
rz ≫ rt → 0 and rt ≫ rz → 0 separately. As we will
show, there is a qualitative difference between the pair-
ing promoted by the z and t modes at the QCP. In the
case of the out-of-plane z mode, QC pairing arises from
the standard interplay of a singular interaction with re-
duced fermionic coherence from the non-FL self-energy.
The case of the t mode is different because of the cos2

term in the effective interaction. In what concerns the
normal-state properties, as we showed in the previous
section, this angular-dependent term suppresses both the
interaction strength and the fermionic incoherence. As
for the pairing instability, the angular term implies that
there is no pairing between two fermions exactly on the
FS, removing the weak-coupling FS instability towards
pairing. On the other hand, the bosonic mode is under-
damped, again because of the reduced phase-space for
scattering. This enhances the pairing attraction strength
and gives rise to a logarithmic divergence, similar to the
Cooper instability, but stemming from the bosonic de-
grees of freedom. Pairing is strong only near the QCP,
and completely vanishes away from it.
We start with the case where rz → 0, and consider

only the attractive channels, n = 0, 2. In agreement with
Refs. 77 and 78 we find that the two channels are degen-
erate. To estimate Tc we assume that the gap equation
is purely local in momentum space on the FS, neglect all
nonsingular p dependence in the gap equation and inte-
grate over p. For the z mode we find, after the angular
integration,

ϕnj(k0) =
πḡTνF
kF

∑
p0 ̸=k0

∫ ∞

0

dp

2π

1

|p0|+ |Σ(p0)|
ϕnj(p0)

rz + p2/k2a + ḡνF |p0 − k0|/(vF p)
. (40)

Equation (40) has the same form as the linearized gap equation of other itinerant QC systems, e.g. ferromag-
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nets and nematics. The pairing instability results from
the (|p0|+ |Σ|)−1 term arising from the fermionic Green’s
function, which in the FL regime yield the Cooper loga-
rithm. Note that we have removed the diagonal k0 = p0
term representing thermal fluctuations; we will comment
on this shortly. Integrating over p results in a gap equa-
tion local in θk and with a purely frequency dependent
effective interaction Ueff ∝ |p0−k0|−1/3 at the QCP. The

solution is well known and obeys [79–82],

Tc,z =

 az
ḡ2

kF vF
rz ≪ ωz/ωr,z

bz
r3/2z

ḡνF
vF ka exp

(
− 4kF

√
rz

ḡνF ka

)
rz ≫ ωz/ωr,z

.

(41)

The parameters az, bz are O(1) and are discussed in more
detail in Appendix B 1. To obtain Eq. (41) and also the
estimates appearing later in this section, we assumed for
simplicity that the upper cutoff for the pairing logarithm,
when it exists, is given by the interplay between momen-
tum and the Landau damping induced polarization, and
that the lower cutoff is just 2πTc. We also note that
some of the numerical coefficients we presented are ob-
tained while neglecting the frequency dependence of ϕnz,
which is not justified at the critical point.
Let us now turn to the case of rt → 0, again restricting

to the attractive n = 0, 3 channels which are approxi-
mately degenerate at the critical point. Now, however,
the angular integration yields

ϕnj(k0) =
πḡTνF
vF kF

∑
p0 ̸=k0

∫ ∞

0

dp

2πp
l1

(
p0
vF p

)
ϕnj(p0)

rt + p2/k2a + ḡνF (k0 − p0)2/(vF p)2
, (42)

where l1(x) is defined below Eq. (18). Note the disap-
pearance of the Cooper instability, which is replaced by
p−1l1(p0/vF p), which in turn is non-singular at small p or
small p0. The reason for this is that for small angle scat-
tering, the interaction is proportional to cos2(θk−θp) and
vanishes exactly when the fermion is scattered parallel to
the FS in the small angle scattering limit. Since the QC
contribution to the Cooper instability in the vicinity of
the QCP arises precisely from this regime of scattering,
it is suppressed. Consequently, away from the critical
point there is no logarithmic divergence and the pairing
instability is absent. At criticality, however, the singular
nature of the interaction balances this vanishing factor
and causes a logarithmic divergence, with Tc given by

Tc,t = atZ
2
UV vF ka

√
ḡνF exp

(
− 8kF
ka

√
ḡνF

)
, (43)

where at is detailed in Appendix B 2 and ZUV was defined
after Eq. (33). Note that the same caveats specified after
Eq. (41) apply here as well.

Thus, superconductivity is enhanced compared to the
naive BCS type Tc ∼ exp(−1/V0), where V0 ∼ ḡνF /r,
but only in an exponentially narrow region around the
QCP. At finite but small rt we find Tc,t → Tc,t − δTc,t,

where δTc,t ∼ rt
vF ka√
ḡνF

. Thus the pairing vanishes when

rt ∼ Z2
UV ḡνF exp(−8kF /(ka

√
ḡνF )).

We finish this section by commenting on the dropping
of the diagonal k0 = p0 term in the gap equations, rep-

resenting thermal fluctuations. They are formally diver-
gent, since Dz, Dt both diverge at the QCP at zero fre-
quency. It can be shown that for singlet pairing, these
terms drop out of the gap equation, as they are cancelled
by similar fluctuations renormalizing the self-energy Σ
[83, 84]. This effect is just a manifestation of Anderson’s
theorem, since static thermal fluctuations can be consid-
ered a form of nonmagnetic disorder. However, in triplet
channels this exact cancellation does not take place, and
can result in a reduction of Tc or in a first order transi-
tion [83]. We verified, by calculating corrections to the
self-energy, that in our model there is an approximate
cancellation as long as rz, rt are sufficiently separated
(see Appendix A 2), which justifies dropping the diago-
nal terms. We did not study in detail additional insta-
bilities that may arise within the superconducting state
due to this non-exact cancellation. We similarly leave
a detailed investigation of the effect of rz ∼ rt on the
superconducting state for a later work.

C. Quantum order-by-disorder phases

Our analysis so far has concentrated on establishing
the properties of QFEMs within a one-loop approxima-
tion. This is justified in 2D when there is a large splitting
between the out-of-plane (z) sector and the in-plane (t)
sector, since there is little feedback between the two chan-



11

nels. However, if rz ∼ rt, feedback effects may not be
neglected. There are three reasons to study this regime
in detail. First, one may expect that if the lattice energy
scale ωT is smaller than or of order of EF , the splitting
between the sectors will not be large in comparison with
the typical energy scale associated with electronic fluc-
tuations, i.e. ḡ. Second, as we show later, the splitting
between sectors can be tuned by strain, so even a system
with ωT ≫ EF may be brought into a state with rt ∼ rz.
Finally, in 3D (e.g. for a cubic lattice) there is no split-
ting between the sectors at all, so that it is helpful to
study the degenerate case in 2D as a warm-up for the 3D
problem. We will therefore now turn to the case where
the splitting is comparable with the electronic scale, and
for simplicity will study the fully degenerate case rt = rz.

It is known that for a metallic system near a QCP,
the expected nFL behavior may not be realized for sev-
eral reasons. First, there is the issue of pairing, which
may preempt the nFL region [81, 85]. Second, unless the
ordered phase breaks a discrete symmetry, the soft Gold-
stone modes that accompany the second order QCP have
their own dynamics, which when coupled to the fermions
can give rise to additional orders, in a mechanism known
as quantum-order-by-disorder (QOBD) [68]. The idea
is that since fluctuations diverge near the QCP, sponta-
neously breaking the symmetry introduces a finite cutoff
to the fluctuations, which reduces their energy cost. This
can happen either via a first-order transition or by shift-
ing the wave-vector of the instability to a non-zero value.

QOBD has been extensively studied for magnetic sys-
tems [65–68, 74, 83, 86, 87]. Its main signature is
the emergence of nonanalytic terms in the magnetic
correlations generated by soft particle-hole excitations
that are cut-off by the preemptive order. In a two-
dimensional ferromagnetic system, these generate respec-
tively a −|M|2+a term in the magnetic free energy (where
M is the magnetic order parameter) and a −|q|a term in
the (inverse) magnetic correlation function, where a = 1
at higher temperatures and a = 3/2 in the nFL region,
weakening the transition. In three dimensions the nonan-
alytic behavior is logarithmic and therefore much weaker
(see Sec. IVC).

The situation for a QFEM is more complex than the
ferromagnetic one. First and foremost, as we discussed
in Sec. III A, the z and t sectors are split due to the spin-
momentum mixing, see Eq. (20). This is in contrast
with a magnetic system, where in the absence of an ex-
plicit magneto-elastic coupling, reducing the dimension-
ality of the lattice does not break the SU(2) spin sym-
metry. Thus, in a magnetic system, the soft fluctuation
space is three-dimensional, and upon condensing at the
QCP, there are still 2D soft Goldstone fluctuations. For
QFEMs, the transverse phonon is constrained to only
two soft directions, similar to an XY magnet, such that
soft fluctuations are one-dimensional. In ferromagnets,
even a 1D soft fluctuation is enough to trigger QOBD. In
QFEMs, though, fluctuations along the remaining dimen-
sion are also gapped out, as noted above, due to the z/t

FIG. 3: The ladder diagrams yielding nonanalytic
contributions to the free energy in the ordered state,
which promote a tendency to a first-order transition.

FIG. 4: The lowest-order diagrams in the disordered
phase that contribute a negative term proportional to
−|q| in the bosonic inverse propagator, promoting an
instability towards a FDW (i.e. finite-q) state.

splitting from the electronic polarization, see Eq. (17).
This provides an intrinsic IR (infrared) cutoff to the fluc-
tuations, which however can be of the order of the typi-
cal electronic scale ḡνF . On the other hand, we already
saw that a QFEM can remain a FL down to the QCP,
which gives rise to stronger quantum fluctuations than in
a nFL with strongly damped fermions. As we shall show,
the end result is that the system does in general enter a
QOBD phase, but that it is easy to tune the system (e.g.
via strain) out of this phase.
To perform our detailed calculations we will follow the

methods of Ref. [87]. We will seek for both a first-
order instability to a homogeneous state and a finite-
wavevector transition to a Ferroelectric Density Wave
(FDW) state (which remains second order within our
approach). To identify the propensity to a first-order
transition we shall compute nonanalytic corrections to
the free energy by self-consistently generating an effec-
tive action [88] in a ladder approximation (see Fig. 3).
In order to identify finite-q FDW instabilities, we will
calculate the leading order corrections to the one loop
calculations from Sec. IIIA in the disordered phase. The
reason for this is that we were unable to generalize the
method of effective action to the finite-q QFEM scenario.
The effective-action method has been used in the mag-
netic case to study finite-q behavior, but the method uti-
lizes the spin/charge decoupling, so it cannot be applied
to the QFEM case.

1. Instability towards a first-order transition

We consider the possibility of a preemptive first-order
transition by calculating the effective free energy of the
coupled phonon-fermion system in the presence of static
FE order. A first-order transition will occur if the dy-
namical fluctuations generate terms that drive the free
energy negative even in the presence of a finite mass
term. We integrate out the fermions to generate an effec-
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tive bosonic action for the FE modes, and then integrate
out FE fluctuations to obtain an effective action for the
static FE order parameter. This procedure is equivalent
to summing up the series of diagrams in Fig. 3 (the first-
order diagram was already included in Sec. III A). To
make the calculations more transparent we assume that
the fermions are in a FL state. As discussed above, this
description is correct down to the QCP for the t mode
but not for the z mode. However, the distinction turns
out to be not very important, and we will comment on
the nFL situation later.

To proceed, we introduce a static FE order parameter

∆j = ληj(|q| = 0,Ω = 0), (44)

where j = z, t. Equation (44) should be understood as
the term obtained by first taking the static Ω → 0 limit
and then the uniform |q| → 0 limit, such that the trans-
verse q̂ · ηj = 0 nature of the phonon is obeyed. Note
that the procedure is well defined since there is only one
state with q = 0, corresponding to the q = 0 term in
the interaction, Eq. (7). This term modifies the effective
fermionic action by inducing a Rashba splitting,

LFL = ψ†
α(p) [(ip0 − vF (|p| − kF ))δαβ

− ∆j · p̂× σαβ ]ψβ(p), (45)

where for convenience we already wrote the FL form of
the bare propagator linearized near the FS. We then in-
tegrate out the fermions to obtain the effective bosonic
action. It has two parts. First, a static free energy for ∆,

F∆ =
rj
ḡ
|∆j |2 +

ujD0

2ḡ2
|∆j |4, (46)

where again j = z, t depending on the mode, and we also
phenomenologically added a quartic term to ensure the
stability of the free energy. The ḡ factors arise because
we incorporated factors of λ into the definition of ∆.
The second part is a dynamical effective action for the
phonons,

LP = ηi(q)D
−1
0

[
ẑẑD−1

z (q,∆j)

+q̂tq̂tD
−1
t (q,∆j)

]
ij
ηj(−q). (47)

There are no ẑq̂t, q̂tẑ cross-terms in the action in the 2D
case, as we show explicitly later. Here,

D−1
z (q,∆j) ≈ rz + k−2

a |q|2 + δΠ∆;z

(
q0

vF |q|
,
|∆j |
vF |q|

)
,

(48)

D−1
t (q,∆j) ≈ rt + k−2

a |q|2 + δΠ∆;t

(
q0

vF |q|
,
|∆j |
vF |q|

)
(49)

are the renormalized propagators in the presence of static
FE order, where ka is a reciprocal of the lattice spacing,
see Eq. (31). For simplicity we removed the quadratic
frequency terms which are irrelevant in the low-energy

regime. The correction to the free energy from the pres-
ence of static FE order is obtained by tracing out the
bosonic action. Recalling that ηi(q) = P̂ij(q̂)uj(q) is just
a phonon already projected onto its transverse compo-
nent, the effective free energy density is the sum of the
bare energy (46) and a correction from the trace-log of
the propagator in LP , namely

δF (∆j) = T
∑
q

[
logD−1

z (q,∆j) + logD−1
t (q,∆j)

]
−F0,

(50)
where F0 is the bare energy.

The free energy correction will have a different form
depending on whether ∆ condenses in the t or z config-
uration. Without loss of generality we will pick

∆z = ẑ∆ or ∆t = x̂∆, (51)

where ∆ > 0, depending on which type of transition
we consider. We then calculate Eqs. (47)-(50) for both
cases, thus checking whether one order has a stronger
tendency to an instability than the other (we will find
that the z mode is typically more unstable).

a. The free energy for an out-of-plane FE transition.
Let us begin with the simpler case of ∆z = ẑ∆. To gain
insight into this problem, it is convenient to consider the
ferromagnetic analogue of this situation, in which case
the coupling of ∆ to the fermions has a form factor σ in-
stead of (p×σ) in Eq. (45). In the ordered phase, when
∆ > 0, the magnetic response splits into two sectors -
an out-of-plane (longitudinal magnetic) sector represent-
ing intraband excitations that is independent of ∆, and
an in-plane (transverse magnetic) sector representing in-
terband spin-flips. The transverse response is nothing
but the Goldstone mode in the ordered state, and hence
remains gapless but with a nontrivial functional depen-
dence on ∆. To obtain the contributions to the free en-
ergy from the magnetic fluctuations it is enough to log-
trace out the magnetic inverse susceptibilities. When this
is done, one finds that the contributions from the trans-
verse sector generate nonanalytic ∆-dependent terms in
F . Importantly, the contributions arise from fluctuations
with vF |q| ∼ Ω ∼ ∆, which is a different regime than the
fluctuations giving rise to quantum critical behavior and
pairing instabilities, in which typically vF |q| ≫ Ω [87].
In Fig. 3 we depict the diagrams which are summed up
in the ladder approximation as we discussed in the intro-
duction to this section.

We have already shown that when the coupling to elec-
trons drives the z mode to the critical point rz = 0, rt
remains finite but small, even if the bare z and t masses
were equal. This implies that any generated nonanalytic
terms are always sensitive to the finite correlation length
in the t sector. Let us demonstrate how this happens
in practice. The first step is to compute Πij

∆ , the polar-
ization bubble projected onto the transverse sector (see
Eq. (21)), in the presence of the finite FE order parame-
ter. The bubble, before projection, has a nontrivial spin
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texture,

Πlk
0 (q) =

ḡT

k2F
Tr
∑
p

(p× σ)lG∆(p− q/2)(p× σ)k·

G∆(p+ q/2), (52)

where G∆ represents the fermionic propagator in
Eq. (45). To proceed, we diagonalize the propagators
via the p−dependent transformation ψ → Uψ, where

U = e−
i
2σz(θp+π/2)e−

i
2σy(π/2) (53)

⇒ G−1
∆ = (ip0 − vF (|p| − kF ))σ0 −∆σz. (54)

As a result the interaction form factor changes to

(p̂× σ) → U†(p̂× σ)U = p̂tσx + ẑσz. (55)

Thus, the polarization splits into in-plane and out-of-
plane sectors, as was the case for the disordered phase
calculation, see Eq. (10), with the z sector behaving
as an effective Ising spin. Furthermore, since spin-flip
processes occur only for the σx form-factor, the z and
t sectors are analogous to the longitudinal and trans-
verse components of the magnetic system. Performing
the various summations we find Eqs. (47) and (48) (see
Appendix C 1) with

δΠ∆;z(x, y) = ḡνF |x|l0(x),

δΠ∆;t(x, y) =
ḡνF
2

|x|l1(x− 2iy) + c.c., (56)

where li(x) are the same functions given after Eq. (18).
Now we can compute the corrections to the free energy

in Eq. (50). Clearly, the contribution from Dz is zero, as
it does not depend on ∆ even in the ordered state. All
that is left is the contribution from Dt, which has the
form

δF = T
∑
q

(
logD−1

t (q,∆ẑ)− logD−1
t (q, 0)

)
= k−2

a

∫
d3q

(2π)
3 log

[
rt + |q|2 + δΠ∆;t

rt + |q|2 + δΠ0;t

]
(57)

where ka was defined in Eq. (31). There are several fea-
tures to note here. First, an expansion of the integrand in
powers of ∆ yields even powers ∆2,∆4, · · · . Nonanalytic
terms can be generated if there is nonanalytic behavior
related to the lower limit of integration. Second, F has
a ∆2 term that arises from the UV (ultraviolet) limit
of the momentum integration, which can be checked by
expanding in powers of ∆/vF |q|. This term can be in-
corporated into rz. Third, the remainder of the integral
is convergent and peaked at q0 ∼ vF |q| ∼ ∆, so that for
small enough ∆ we may neglect the analytic |q|2 terms
in the propagator in comparison with the q0/vF |q| terms
in δΠ. Finally, as we discussed in the opening statements
to this section, we are assuming that before coupling to
electrons rz = rt, so that after the coupling is included,

when rz = 0 then rt = ḡνF /2, see Eq. (20). This means
the integral is completely dimensionless, since both rt
and δΠ∆;t have the same ḡ/νF prefactor (this remains
true so long as |rz − rt| ≪ ḡνF before the coupling to
electrons). After appropriate rescaling we find,

δFz(∆) =
∆3

v2F k
2
a

∫ ∞

0

x2dxdz

2π2
×

log

[
1 + z

(
l1(z + 2ix−1) + l0(z − 2ix−1)

)
1 + 2zl1(z)

]

≈ −0.18
∆3

v2F k
2
a

, (58)

where the prefactor was computed numerically, see Ap-
pendix C 1. The final form of the free energy is

F ≈ 1

ḡ

(
rz∆

2 − 0.56
ḡνF
vF kF

∆3 +
uzD0

2ḡ
∆4

)
. (59)

The cubic term with a negative coefficient implies a first-
order transition. Therefore, fluctuations in the ordered
state drive a preemptive first-order transition before the
QCP is reached.
b. The free energy for an in-plane FE transition.

We now calculate what happens when rt = 0 but rz
remains finite and small. For concreteness we take
rz = ḡνF /2, i.e. exactly the opposite limit to what we
assumed in the previous calculation. The result does not
change significantly as long as rz ∼ ḡνF . The calcula-
tion proceeds in a similar manner as for the out-of-plane
transition. The splitting introduced by the static order
is

(∆x̂) · p̂× σ = sin θpσz. (60)

The fermionic Green’s function is already diagonal, and
the form-factor for the interaction is given by Eq. (10).
Clearly, in this case the role of “longitudinal” and “trans-
verse” between the z and t sectors is reversed. Performing
the calculation we find (see Appendix C 1)

δΠ∆;t(x, y) = ḡνF |x|l1(x),

δΠ∆;z(x, y, θq) = ḡνF
|x|
2
l0(x− 2iy cos θq) + c.c.. (61)

The appearance of a renormalized Zeeman field ∆ cos θq
is just the result of the suppression of forward scattering
in the t sector discussed previously. However, since there
is a significant angular phase space where cos θq = O(1),
the ∆3 term is still generated. The free energy correction
is now

δFt(∆) = T
∑
q

(
logD−1

z (q,∆x̂)− logD−1
z (q, 0)

)
≈ 0.09 δFz(∆). (62)

Consequently, we obtain the nonanalytic cubic term, like
in the z sector case, but with a significantly reduced nu-
merical prefactor (Eq. (59)). This is due to both the
different forms of l0, l1 appearing in δΠ and the averag-
ing over θq in Eq. (61) (see Appendix C 1).



14

2. Instability towards a ferroelectric density-wave state

We now determine whether an instability to a FDW
(i.e. finite-q) state is driven by fluctuations. This is done
by computing the leading order diagrams in the disor-
dered state. As we discussed in the beginning of this
section, the instability to a finite-q state arises from a
similar mechanism to the one that gives rise to the first-
order transition. Namely, if finite-q order exists in the
system, it cuts off the IR divergence of fluctuations near
the QCP. At a technical level, the effect is manifested
by the generation of negative nonanalytic momentum-
dependent terms in the inverse boson propagator. There-
fore, to study this instability it is not necessary to intro-

duce FE order, but to compute the leading order correc-
tion to the RPA susceptibility at Ω = 0, |q| > 0. The
relevant diagrams are shown in Fig. 4. Note that the so-
called Aslamazov-Larkin diagrams which are important
for the ferromagnetic QCP case [66] are omitted from
Fig. 4 as they give zero due to the form-factor of the cou-
pling term. As in the previous section, if the diagrams in
Fig. 4 contribute a negative, nonanalytic term at finite
|q|, an instability towards FDW order preempts the FE-
QCP. Because we have already given a detailed account
of the process for the case of a first-order transition, here
we only provide the main steps of the calculation in the
cases of both z and t transitions.
The diagrams in Fig. 4 acquire the following forms,

for small external momenta q and near the QCP,

Πij
q (q, 0) = dij1 (q, 0) + dij2 (q, 0), (63)

dij1 (q = (q, 0)) = 2
ḡ2T 2

k4FD0

∑
p,k

G(k − q)G(k − p)G2(k)Dmn(p)F imnj
0 (k), (64)

dij2 (q = (q, 0)) =
ḡ2T 2

k4FD0

∑
p,k

G(k − q)G(k − p)G(k)G(k − p− q)Dmn(p)F imjn
0 (k). (65)

Here, we introduced the form-factors for the self-energy and vertex diagrams,

F imnj
0 = Tr(k× σ)i(k× σ)m(k× σ)n(k× σ)j . (66)

Although d1 and d2 seem to have different propagator dependence on momentum and frequency, they can be recast into
a more compact form. This is a result of a Ward identity for the density-density correlation function, which imposes
a certain analytic structure on the three diagrams even though the correlator we compute is not the density-density
one (see e.g. [89]). After algebraic manipulation (see Appendix C 2), we find

Πij
q (q, 0) = 2

ḡ2T 2

k4FD0

∑
p,k

G(k − q)G(k − p)G2(k)Dmn(p)F imnj(k), (67)

F imnj(k) = Tr(k× σ)i(k× σ)m
[
(k× σ)n, (k× σ)j

]
. (68)

If we replaced k× σ → σ0, then we would obtain zero, since the commutator would vanishes. This turns out to be a
requirement of the Ward identity mentioned above. Performing the spin traces we find

Π̂q = 8ḡ2T 2
∑
p,k

G(k − q)G(k − p)G2(k)
[
ẑẑ cos2(θp − θk)Dt(p) + k̂tk̂tDz(p)

]
(69)

where we assumed that |k| ≈ kF . Although the dia-
grams contributing to the finite-q instability are different
from those that we evaluated to obtain the first-order
instability in the previous section, the physics is quali-
tatively the same. First, the fluctuation contribution to
the out-of-plane mode comes from the in-plane fluctua-
tions (and vice-versa). Second, note that the expression
in Eq. (67) has the form of a self-energy correction to the
polarization bubble. It involves a secondary scattering of
an excited electron-hole pair with momentum q, which

serves as an IR cutoff for the fluctuations. Making use
of these insights, the evaluation is straightforward but
tedious, yielding (see Appendix C 2),

Π̂q = −ḡνF
|q|
kF

(0.03ẑẑ + 0.003q̂tq̂t) , (70)

where the prefactors were evaluated numerically. Thus,
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the static propagators for the two modes have the form

D−1
z = rz + k−2

a q2 − 0.03ḡνF k
−1
F q,

D−1
t = rt + k−2

a q2 − 0.003ḡνF k
−1
F q. (71)

Minimization with respect to the momentum results in
a non-zero wave-vector, corresponding to a preemptive
FDW transition before the QCP is reached. Note that
this effect is stronger for the z mode than for the t mode.
In the derivation above, we assumed a FL form for

the fermionic self-energy, which is not justified at the
QCP. Indeed, for the ferromagnetic QCP case, it has been
shown [66, 87] that both the first-order and finite-q tran-
sitions are modified at the QCP, with the nonanalytic
terms scaling as ∆7/2, |q|3/2 due to nFL contributions.
We now argue that this is not the case for the FE QCP.
The reason is that the change in power law for the fer-
romagnetic QCP case can be traced to the singular form
of the polarization bubble, see Eq. (56) for the case of a
first-order transition. In the FL regime, the typical fre-
quency and momentum scales are Ωn ∼ vF |q| ∼ ∆. By
power counting this gives rise to a ∆3 contribution to the
free energy. In the nFL regime [87], the scaling changes

to Σ(Ωn) ∼ vF |q| ∼ ∆, and since Σ ∼ Ω
2/3
n , this changes

the free-energy contribution to ∆7/2.
However, such a scaling analysis neglects vertex cor-

rections, which are necessary to maintain both spin and
charge conservation and can cancel out self-energy con-
tributions. It has been shown that for a ferromagnetic
QCP, vertex corrections do not restore the FL form of
the nonanalytic terms [66, 87, 90]. The reason for this
is that within a spin-fermion model, the spin associated
with ferromagnetic order is not conserved independently,
but only in combination with the fermionic spin. In the
FE case, the t and z modes have different behaviors near
the QCP. Because the t mode remains FL all the way
down to the QCP, the polarization bubble retains its
qualitative form, up to logarithmic factors that can be
neglected. The z mode does give rise to nFL behavior.
However, this mode behaves qualitatively like an Ising
degree of freedom, which to a first approximation is con-
served separately from the fermionic spin-orbit moment.
Thus, vertex corrections ensure that the FL form of the
polarization bubble remains approximately the same (see
Appendix A2), and that the nonanalytic terms retain
their form. In this sense, the FE and the ferromagnetic
QCPs are qualitatively different.

D. The phase diagram

Based on the results of this section, we can now con-
struct the phase diagram of a 2D QFEM, which consists
of a normal paraelectric and ferroelectric state, and a su-
perconducting dome. In addition, the second-order FE
transition may be preempted by a first-order one, or by
a transition to a finite-q FDW state. As usual, the phase
diagram for either z or t modes depends on the mass

terms rz and rt in the action, see e.g. Eqs. (22)–(24).
Up to now, we treated rz and rt as independent param-
eters which can be tuned by e.g. doping or pressure.
To extend the analysis to finite temperatures, we include
a phenomenological temperature dependence, which for
concreteness we assume to have the usual Curie-Weiss
form,

rj = α(T − Tj), (72)

where Tj is the transition temperature to the FE state
after renormalization due to the coupling to electrons. At
T = 0, rj = −αTj is just the tuning parameter used in
the previous sections, such that when Tj < 0 the system
is in the disordered phase and when Tj > 0 the system is
in the ordered phase. Explicitly, Tj is given by,

αTj = −r0,j + δrj , r0,j =

(
ωT,j

kac

)2

, (73)

where the sound velocity c was defined in Sec. II, see
Eq. (5), and ωT,j are the transverse phonon optical fre-
quencies at T = 0, which in our previous treatment we
considered to be equal for simplicity ωT,z = ωT,r = ωT ,
see Eq. (5). δrj were defined in Eq. (19). Thus, α has
units of inverse energy and r0,j is a “tuning parameter”
towards the QCP as determined by e.g. pressure or dop-
ing. While the temperature dependence in Eq. (72) may
not capture the actual behavior near the FE critical point
[38], our results are not qualitatively changed by assum-
ing another T dependence.
While the phase diagrams for the z or t modes are sim-

ilar overall, there are some qualitative differences. First,
δrz = 2δrt, so even when the purely bosonic system has
r0,z = r0,t, as we assumed for the analysis above, the orig-
inally degenerate transitions are shifted to two different
critical points. Second, the superconducting dome for the
t mode occupies an exponentially smaller area than the
z mode dome, due to the unconventional form of Tc,t, see
Eq. (43). Except for that, however, both modes display
the “standard” QCP picture of an ordered state tapering
down to a SC dome.
To understand how the presence of QOBD modifies the

phase diagram, we assume that the back action of SC on
QOBD is weak enough that we can analyze the two ten-
dencies independently. Consider first T = 0 in the nor-
mal state. Starting from the case where the bare masses
are identical, rt,0 = rz,0, the changes in the renormalized
masses due to the coupling to electrons are such that
the z mode reaches the quantum critical point first. The
first-order transition occurs when F = 0, ∂∆F = 0, and
the FDW transition occurs when D−1

z = 0, ∂qD
−1
z = 0.

Performing these calculations, we find that the first-order
transition occurs at

∆∗
j = aj(ḡνF )

2E0, r∗j =
a2j
2
ḡ3E0ν

4
F

k2a
k2F

, (74)

where E0 =
k2
a

uD0k2
F

is an UV scale of the system, u is

the quartic coefficient defined in Eq. (47), and az =
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(a) (b)

FIG. 5: The schematic phase diagram for the 2D QFEM. (a) The phase diagram for the z-mode transition,
corresponding to out-of-plane FE, tuned by the parameter r0,z, see Eq. (73). The black line and gray shading
denote a second-order transition to the FE state, terminating at the putative QCP, while the red line and shading
denote the first-order transition, which extends the transition line to r∗. A SC dome rises above the first-order
transition line. (b) The phase diagram for the t-mode transition, corresponding to in-plane FE, tuned by the
parameter r0,t. The shading and labels are the same as for panel (a). For the t mode, the termination point is
shifted to a lower value compared to the z mode, and the SC dome, if present, is buried in the ordered state. For
both figures, the purple arrows show the direction along which the first-order transition line moves when the ratio
rt/z/ḡνF is changed, where rt/z define the mass of the non-critical mode. For rt/z/ḡνF ≫ 1, the first-order line is
suppressed almost entirely.

1.76, at = 0.14. The FDW transition occurs for

q̃j = bj(ḡνF )
k2a
kF

, r̃j = b2j (ḡνF )
2 k

2
a

k2F
(75)

where bz = 0.015, bt = 0.0015.
From Eqs. (74) and (75) it appears that because r̃j is

proportional to a lower power of ḡνF than r∗j , the tran-
sition to the FDW state is preferred. However, for typi-
cal cases where E0νF = O(1), ḡνF = O(1), the numeri-
cal prefactors bj in r̃j render it very small, favoring the
first-order transition. To complete the picture, we ex-
tend our T = 0 analysis of the first-order transition to
finite temperatures. We show in Appendix C 1 that for
finite temperatures, the nonalytic term in the free energy
scales as ∆3fT (T/∆), with fT (0) = 1 and fT (x) ∝ 1/x
for x ≫ 1. Thus, the tendency to a first-order transi-
tion weakens with increasing temperature. This implies
that if T 0

j = α−1r0,j (see Eq. (73)) is positive and large
enough, the transition occurs at a high enough temper-
ature that the cubic term is absent from the free energy
and the transition is second-order. The tricritical point
occurs at a temperature (see Appendix C 1)

TTCP,j ≈
aj
4π

(ḡνF )
2E0. (76)

Interestingly, this temperature is of order of the super-
conducting Tc for the z mode. Thus, we can expect that
the SC dome will rise above the first-order transition line
for the case we just analyzed, i.e. when the z mode is un-
stable. For the case where the tmode is unstable, we may

expect the SC phase to be buried inside the ordered FE
state. The two schematic phase diagrams are depicted
in Fig. 5, of which a simplified version appeared already
in the introduction. We emphasize that these phase di-
agrams are constructed without taking into account the
feedback between the ordered FE state and superconduc-
tivity.

E. Lattice properties and strain effects

We now discuss how the phase diagram for the QFEM
derived in the previous section is modified by the lat-
tice degrees of freedom. The existence of an underlying
2D crystal has two main implications. First, the phonon
polar modes couple nonlinearly to the strain tensor, so
that applying external stress also modifies the phonon
propagator. We shall see that this property allows one
to control the phase diagram of a QFEM. Second, the ro-
tational symmetry is broken down to a discrete one, im-
plying a mixing between the longitudinal and transverse
modes away from high-symmetry directions. In what fol-
lows, we will assume that the lattice only weakly perturbs
the rotationally invariant modes, so that we only need to
calculate the effect of the lattice anisotropies projected
onto the transverse mode. We will also neglect addi-
tional instabilities arising from the coupling between the
polar phonon modes and elastic fluctuations, such as the
Larkin-Pikin [35, 91] instability, as these effects are unre-
lated to the coupling to electrons. Instead, our focus will
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FIG. 6: Schematic phase diagram of a 2D QFEM in the
presence of external strain parametrized by a
volume-changing symmetry-preserving component ε0
and a volume-preserving symmetry-breaking component
εd. At zero strain, the system is assumed to be at a z
mode FE+SC state, as depicted in Fig. 5(a), with
rz ≈ 0, rt ≈ ḡνF /2. Upon applying compressive
(tensile) ε0 strain, rz and rt are both shifted positively
(negatively), but the magnitude of the negative shift for
rt is greater, thus driving a z to t transition for
compressive strain. Upon applying εd strain, rt is
shifted negatively in a preferred direction, see Eq. (81).
The dashed line depicts the response to uniaxial strain.
See Appendix E for numerical parameters.

be on the impact of externally applied uniform strain on
the QC behavior of the coupled system.

The coupling to strain can be treated within a contin-
uum theory. It is convenient to start from a 3D isotropic
crystal, which is characterized by two elastic constants,
namely, the bulk modulus and the shear modulus. Strain
is defined as εij = (∂iũj + ∂j ũi)/2, where ũ is the lat-
tice displacement vector (not to be confused with the
displacement u associated with the polar mode). The
coupling between the FE order parameter and the strain
tensor in an isotropic 3D crystal is then given by:

Lε,3D = ui(q)D
−1
0

[
λ0ε0δij + λ1

(
εij −

ε0
3
δij

)]
uj(−q).

(77)
Here, ε0 = Trεij is the symmetry-preserving longitudinal
strain and εij− ε0

3 δij is the d-wave rank-2 traceless tensor
corresponding to symmetry-breaking shear strain. Note
that uj is the polar mode before being projected onto
the transverse and longitudinal components. Moreover,
λ0 and λ1 are coupling constants.

To go to the 2D limit, we need to establish the bound-
ary conditions for the out of plane direction ẑ. One pos-
sibility is a thin film that is clamped on one face and free
on the other. In that case, the strain tensor has nonzero z
components that can be replaced by their value averaged
over the z direction, e.g. ⟨εzx⟩ = ⟨εyz⟩ = 0, ⟨εzz⟩ ̸= 0,
assuming no shear stresses are present. Another possi-
bility is to have both faces clamped, such that we can
set ⟨εzi⟩ = 0. For simplicity, we will assume the latter
scenario. Upon taking the 2D limit, the d-wave tensor
splits into a symmetry-preserving r2 − 3z2 term and a
symmetry-breaking xy, x2 − y2 doublet. Similarly, we
expect λ1 to split in two terms, λ1z and λ1t. Then, de-
composing uj into its components, and projecting on the
transverse sector, we get,

Lε,2D = ηi(q)D
−1
0

[(
λ0tε0 +

λ1t
2
q̂t · ε̂d · q̂t

)
q̂tq̂t

+λ0zε0ẑẑ]ij ηj(−q), (78)

where the 2D “d-wave” strain tensor is ε̂d =
((x̂x̂− ŷŷ)(εxx − εyy) + 2(x̂ŷ + ŷx̂)εxy). Clearly, longi-
tudinal compressive or tensile strain ε0 ̸= 0 shifts the
gaps of both modes but by different amounts, which al-
lows for external control of the phases. On the other
hand, shear strain only affects the t mode.
To see these effects, we analyze a simple case where

none of the couplings in 2D are modified from their 3D
values. In that case we find λ0t = λ0 + λ1/6, λ0z = λ0 −
λ1/3, λ1t = λ1. Symmetry-preserving volume-changing
strain, which corresponds to ε0 = εxx + εyy ̸= 0, εxx −
εyy = εxy = 0, shifts the phonon mode gaps such that

r → r + ε0(λ0 − λ1/12)

∆r → ∆r − ε0λ1/2, (79)

where 2r = rz + rt, ∆r = rz − rt. The effect is most pro-
nounced when |λ1| ≫ |λ0|, in which case the t mode is
favored by compressive strain and the z mode, by tensile
strain, assuming λ1 > 0 (for λ1 < 0, the role of ten-
sile and compressive strains switch). For concreteness,
we consider λ1 ≫ λ0 > 0 and the situation where the
mass terms obey rz ≪ rt ≈ ḡνF /2, as it would be the
case if the splitting between the modes was dominated
by the effects of the electronic renormalization. Apply-
ing compressive ε0 < 0, the transition for the t mode is
triggered when λ1|ε0|/6 ≈ ḡνF /2. For this strain value,
the z mass will be rz ≈ λ1|ε0|/3 ≈ ḡνF . This means
that rz is still small in the sense discussed in the pre-
vious section, resulting in a first-order transition due to
QOBD mechanism promoted by the soft fluctuations as-
sociated with the z mode. Upon further increasing |ε0|,
the z mode fluctuations are no longer soft, and the tmode
transition becomes second-order. In the opposite limit,
λ0 ≫ |λ1|, volume-changing symmetry-preserving strain
ε0 can drive the system in and out of the FE state i.e.
change the sign of r̄), but will not in general affect the
hierarchy of the phonon gaps (i.e. the sign of ∆r).
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If, instead, we apply a volume-preserving symmetry-
breaking strain, e.g. εxx = −εyy = εd/2, εxy = 0, the t
mode acquires a preferred direction and is always favored
over the z mode, whose gap remains unchanged. To see
this, we rewrite ε̂d in the q̂, q̂t basis to get

ε̂d = εd cos 2θq (q̂q̂ − q̂tq̂t) (80)

The implication is that the tmode has a directional mass,

rεt = rt −
λ1tεd
2

cos 2θq. (81)

The system will condense in the q̂ = ±x̂ or q̂ = ±ŷ con-
figuration when |λ1εd| = 2rt, where the choice of axis
depends on the sign of λ1tεd. Interestingly, the ten-
dency to QOBD is not modified by the volume-preserving
symmetry-breaking strain, since the fermionic polariza-
tion, which drives the QOBD, is independent of the dy-
namics of η and only cares about the direction of the
static polarization. Furthermore, as we discussed in
Sec. III C, the instability of the t mode to QOBD is
driven by fluctuations of the z mode, whose dynamics
are not affected by the volume preserving symmetry-
breaking strain.

When both ε0 and εd are present and can be indepen-
dently controlled, it is possible to drive both the z and t
modes away from criticality, and then compensate by an
appropriate εd to tune the t mode to the critical point
while keeping the other one non-critical. In this case,
the system is driven through a second-order transition,
since when |rz − rt| ≫ ḡνF the QOBD tendencies are
suppressed. We present the schematic phase diagram in
the ε0, εd plane in Fig. 6, for a situation where λ0z, λ0t
and λ1t are all non-negligible.
Finally, let us discuss the most common case of in-

plane uniaxial strain, parametrized by εxx = εuni, εyy =
−νεuni where ν is the Poisson ratio, which is typically
ν < 0.5. In that case, both ε0, εd are nonzero, and
changing εuni basically traces a straight line through the
phase diagram of Fig. 6.
Before completing this section, let us briefly comment

on the effect of including a finite lattice anisotropy in the
calculation. The lattice anisotropy breaks down the rota-
tionally invariant propagators and the shear strain term
ε̂d to representations of the discrete C4 rotations of the
lattice (in the case of a square lattice). The main effect
on the phonon propators is the introduction of diagonal
anisotropic terms of the form

Ll =
∑
i

ui(q)(D0k
2
a)

−1(c2i − c2)/c2q2i ui(−q), (82)

where ci are modifications of the phonon velocities
around the major axes (clearly cx = cy for a square lat-
tice). These do not qualitatively change our preceding re-
sults, as the bare momentum dependence of the phonons
is negligible in our treatment of the QOBD phases, as
are non-Fermi liquid effects. Of course, if the anisotropic
terms are much larger than the dynamical contribution of

the electrons, the correlation effects will be suppressed.
From a technical viewpoint, this will take place when
the angular integration in the various terms is strongly
suppressed by the anisotropy.

IV. THEORY OF AN ISOTROPIC 3D QFEM

The three-dimensional case differs from the 2D case
in two ways. First, in the disordered phase there is no
preferred direction, such as ẑ, which we picked for the
out-of-plane direction in our treatment of the 2D system.
As a result, there is no z, t splitting in the disordered
phase and the response of the system is qualitatively the
same as that of a ferromagnet, i.e. the bosonic response
is Landau overdamped. Once an ordered state sets in
with the polarization, e.g. in the ẑ direction again, it
itself provides a preferred direction, splitting the response
into z, t modes. The second difference from 2D is the
usual weakness of 3D QC fluctuations compared to 2D
ones. This gives rise to logarithmic rather than algebraic
divergencies, e.g. leading to marginal FL rather than
nFL behavior near the QCP [84, 92, 93].

Except for these issues, the qualitative behavior in 3D
is essentially the same as in 2D. The transverse t mode
introduces the splitting ∆ as an IR cutoff, giving rise to
QOBD. In terms of pairing, the QC fluctuations give rise
to enhanced Tc. However, all the effects are much weaker
than in 2D.

We now summarize the main results for the 3D case.
Since the behavior is similar as in 2D, and only the al-
gebra is more complex, we leave all calculation details to
the Appendix D.

A. The disordered phase

In the disordered phase, the polarization after projec-
tion onto the transverse sector is

Π̂0(q) = Π0(q)P̂(q̂) (83)

where

Π0(q) = δr − δΠ(q0/vF |q|), (84)

and

δr =
2

3
ḡνF ,

δΠ(x) =
1

2
ḡνFxf(x). (85)

Here νF = k2F /π
2vF k

3
a is the total 3D DOS at the Fermi

level, and

f(x) = x− (x2 − 1) arctan(1/x). (86)

It follows that at the lowest frequencies, Π̂ has a Landau
overdamped form, δΠ ∼ |q0|/vF |q|, which is standard for
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irrep Matrix form Fnj(k̂) Inv. symmetry Int. sign
n = 0 1 even +

n = 1 k̂ · σ odd –

n = 2 k̂ × σ odd 0

TABLE II: Table of the first three irreducible
representations of a rotationally invariant model with
inversion symmetry in three spatial dimensions. The

last column denotes the sign of the interaction for each
representation compared to the s-wave attraction.

Thus, negative sign implies a repulsive interaction and
zero implies a marginal interaction.

|q| = 0 QCPs. Similarly, the electronic self-energy at the
QCP is that of a marginal FL

Σ(k0) ≈ −iḡνF
k2a

12k2F
k0 log

∣∣∣∣ωΛ

k0

∣∣∣∣ , (87)

where ωΛ = vFΛ3

ḡνF k2
a
and Λ is an UV momentum cutoff.

Since the logarithmic divergence is rather weak, we will
neglect it when computing the order-by-disorder mecha-
nism.

Before proceeding to discuss pairing and QOBD in 3D
systems, it will be convenient to construct a vector basis
to decompose the interaction, similar to what we did in
two dimensions, see Eqs. (8)-(12). We will construct this
basis in a way that is convenient not just in the disordered
state, but also in the presence of FE order, which chooses
a preferred direction. To account for fluctuations in the
ordered state, we assume a FE order parameter polarized
along the ẑ direction,

∆ = ẑ∆. (88)

Accordingly, we define for every vector k a right-angle
trio

k̂u, k̂t, k̂, (89)

where

k̂t =
ẑ × k̂

|ẑ × k̂|
, k̂u = k̂t × k̂. (90)

Here k̂t has been chosen to be in the xy plane that is

perpendicular to the polarization vector, and k̂u has the

same projection on the xy plane as k̂ itself (see Fig. 7).
The interaction form factor is now

γ(k̂) = k̂ × σ = σuk̂t − σtk̂u, (91)

where σt = k̂t · σ, σu = k̂u · σ.

B. Pairing in 3D QFEMs

Next, we discuss the pairing in 3D. As was done in
the 2D case, we focus on the disordered state and ne-
glect the weak effect of the possible first-order transi-
tion. The pairing equation has the same structure as

FIG. 7: The basis (Eq. (89)) for describing the
transverse fluctuations in the 3D system. A given

vector k̂ (blue) has two transverse vectors: k̂t in the xy

plane (yellow), and k̂u , whose projection on the xy

plane is parallel to the projection of k̂ itself, with a

length cos θk, where θk is the polar angle of k̂ (orange).
The polarization vector of the FE order parameter
(dashed, purple) is aligned along the z axis, such that
the amplitude of a transverse fluctuation mode is
proportional to its projection on the plane
perpendicular to the polarization, i.e. the xy plane.

in 2D, Eq. (37). In principle, the 3D pairing problem
near a QCP is quite different from the 2D case. The
reason is that in 2D the pairing interaction mediated by
the critical mode is peaked at small momentum transfer,
giving rise to an effectively local (in momentum space)
pairing potential, stemming from the effective 1D regime
for fluctuations transverse to the FS. In 3D, because of
the extra dimension, the mode is not really limited to
small momentum transfer and is only cut off logarith-
mically at the UV. Nevertheless, previous work [84] has
shown that to a leading approximation the interaction is
still effectively local in momentum space, because of the
limitation that electrons scatter parallel to the FS. Such
arguments can be made rigorous by a large-N expansion
for the fermions. Here, we will just assume the validity
of the local interaction and proceed.
To identify the relevant pairing channel, we need to

compute the summation over spin and momentum indices
in the gap equation
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Φαβ(k) ≈
ḡT

D0

∑
q

G(−k − q/2)G(k + q/2)D(q)Pij(q̂)γiδα(−k̂)Φδµ(k)γ
j
µβ(k̂). (92)

The equation is the same as Eq. (37), up to a shift in
momentum for convenience and an approximation |q| ≪
|k|. Following the analysis in 2D, we first write the gap
function as a sum over irreducible representations

Φ(k) = iσy
∑
nj

ϕnj(k0)F
j
n(k̂) , (93)

and Tc is set by the representation that develops a
non-trivial solution at the highest temperature. Equa-
tion (93) is again identical in form to Eq. (39) from
2D, but the F j

n should be understood as the representa-
tions in 3D (see Table II). By restricting the momentum
transfer q to the plane that is tangent to the FS and
keeping the leading order in q/kF we obtain that to lead-
ing order only the singlet channel (n = 0) is unstable to
pairing. This result should be contrasted with the situa-

tion far from criticality, where standard BCS theory can
be employed [77, 78]. In that case odd-parity fluctua-
tions induce relatively strong pairing in some non-s-wave
odd-parity channels.

To understand this result we can simplify the expres-
sion for Φ in Eq. (92), by recalling that the momentum
q can be factored into components parallel and perpen-
dicular to the FS, and that the pairing fluctuations are
largest when q̂ is approximately parallel to the FS. Since

k̂u and k̂t form a basis to this parallel plane, we can ap-
proximately expand q̂ as

q̂ ≈ cosϕqk̂u + sinϕqk̂t, (94)

from which we immediately obtain,

Pij(q̂)γiδα(−k̂)Φδµ(p0,k)γ
j
µβ(k̂) = −(cosϕqσ

T
t − sinϕqσ

T
u )Φ(cosϕqσt − sinϕqσu) , (95)

where (·)T denotes a transpose and we dropped the spin index summation. After integrating over ϕq only the diagonal
terms remain, i.e.

Pij(q̂)γiδα(−k̂)Φδµ(p0,k)γ
j
µβ(k̂) → −1

2
(σT

uΦσu + σT
t Φσt) =

1

2
iσyσt

∑
nj

ϕnjF
j
n(k̂)

σt + (t↔ u), (96)

where we used the fact that σT
j iσy = −iσyσj . Let us

perform the spin matrix products explicitly. Expanding
σ in our basis we find

σtσσt = σtk̂t − σuk̂u − σkk̂, (97)

σuσσu = −σtk̂t + σuk̂u − σkk̂, (98)

σt,uσ0σt,u = σ0. (99)

Plugging them back into Eq. (96) and keeping only the
lowest order in k representations n = 0, 1, and 2 (cor-
responding to the scalar, pseudoscalar, and vector) we
obtain

Φ = +2iσy

[
ϕ0F0 − ϕ1F1(k̂)

]
. (100)

Thus, as discussed above, only the singlet (n = 0) chan-
nel is attractive, and the triplet n = 2 channel ismarginal
- neither attractive nor repulsive, as evidenced by its ab-
sence from Eq. (100). The intuition for this is that the
effect of the u, t modes on the triplet pairing channels are
opposite: each promotes pairing in its own spin polariza-
tion, and suppresses pairing in the other polarizations,

due to the “double-repulsive” nature of the pairing inter-
action, as we discussed for the 2D case.

It is fairly straightforward to estimate Tc for the 3D
QFEM. Plugging Eq. (97) back into Eq. (37), we see that
the pairing equation just describes an isotropic system
coupled to a 3D QCP via an isotropic interaction. We
can therefore just take the result from the literature [84],

Tc ≈ ωΛe
−π2

√
3

vF ka
ḡ (101)

where ωΛ was defined after Eq. (87). Here we have the
well-known BCS-like result, but with a dependence on√
ḡ/(kavF ) rather than ḡ/(kavF ) resulting from the log-

arithmic divergence of the pairing interaction (see Ap-
pendix D). Interestingly, we also found a square-root-
BCS Tc for the t mode in the 2D system. However,
the physical mechanism there was completely different
and arose from the singular strength of the bosonic
interaction with no Cooper instability. For finite r
we recover a BCS-like transition temperature, Tc ≈
ωr exp(−vF ka/gr), where gr = ḡ log(Λ2/(k2ar))/(8π

2)

and ωr = min
(

ckar
1/2

2π , 2r
3/2vF ka

π2ḡνF

)
is a UV cutoff set ei-
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ther by Landau damping or by the bare bosonic speed of
sound.

C. Quantum Order by Disorder in 3D

Next, we consider whether a first-order transition or
FDW phase preempt the second-order FE transition.
Without loss of generality, we take the FE polarization
in the ordered state to be along the z axis, see Eq. (88).

We compute the polarization in the presence of FE
order. It has the form

Π̂∆(q) = (Πt(q,∆)) q̂tq̂t

+
(
sin2 θqΠ0(q) + cos2 θqΠu(q,∆)

)
q̂uq̂u, (102)

where θq is the polar angle of q̂. St and Su have a com-
plicated form (see Appendix D). However, as long as the
polar angle is not too big, they can be approximated by,

Πu ≈ Πt ≈
1

2
δr − 1

2
ḡνF s0

(
q0 + 2i∆̃

vF |q|

)
+ c.c.,

∆̃ =
√
2/3∆, (103)

where s0(x) = arctan(1/x). The meaning of Eqs. (102)
and (103) is as follows: Πt and Πu encode the transverse
response, which comes from processes with q̂ perpendic-
ular to the ordering vector, i.e. in the xy plane. By
construction q̂t is in the xy plane, but the projection of
q̂u on the xy plane is |q̂| cos θq (see Fig. 7), which is the
source of the cos2 θq prefactor to Πu in Eq. (102).
From the above discussion, it is already clear that there

will be a QOBD effect, since Πt and Πu are nonanalytic
functions and ∆ is an infrared cutoff. Performing the
calculations numerically for the exact Πt and Πu we find

δF (∆) ≈ −0.19
∆4

v3F k
3
a

log

∣∣∣∣vFΛ∆
∣∣∣∣ , (104)

where Λ is a UV momentum cutoff. Up to a numerical
prefactor, this is the same result one finds for QOBD in
3D ferromagnets. Since the 3D system is isotropic, there
is no splitting between the t and u sectors. Thus, the free
energy has the form

F∆ =
1

ḡ

[
r∆2 +

(
−1.88

ḡνF
k2F v

2
F

log

∣∣∣∣vFΛ∆
∣∣∣∣+ ujD0

2ḡ

)
∆4

]
.

(105)
A similar logarithmic dependence is found for the FDW
(finite-q) transition, whose expressions we omit for sim-
plicity.

D. The phase diagram in 3D and coupling to strain

Based on the results of the preceding sections, the
phase diagram of the 3D system is similar to the 2D

one, consisting of a normal paraelectric and ferroelec-
tric state, and a superconducting dome. Moreover, the
second-order FE transition may be preempted by a first-
order one, or by a transition to a finite-q FDW state,
which for simplicity we ignore like we did in 2D (see the
discussion in Sec. IIID).
The free energy for the 3D case was given in Eq. (105).

As the discussion above has made clear, as far as the nor-
mal state and QOBD go, the QFEM in 3D is very sim-
ilar to its ferromagnetic counterpart. In particular, the
first-order transition is extremely weak, characterized by

a jump ∆∗ ∼ e−a3D/ḡ2ν2
F , where a3D is some constant.

Moreover, as is known for the ferromagnetic case, the
nFL state near the QCP should further weaken the non-
analyticity that gives rise to the QOBD [87]. Hence, the
SC phase, which at the critical point has a Tc at a much
higher temperatures than the energy scale set by ∆∗, see
Eq. (101), should rise above the first-order transition.
This implies that the phase diagram in 3D is somewhat
similar to the case of the 2D z mode, as shown in Fig.
5a, with a far narrower first-order region.
Next, we consider the effect of external strain. In the

3D system, uniaxial strain along one of the coordinate
axes splits the t and u modes. As a result, the transition
will remain second-order as QOBD is frozen out. To see
this, it is enough to consider the expression for strain
in an isotropic medium, Eq. (77). It is readily checked
that strain ε0 shifts the mass of both t and u modes by
a constant shift λ0ε0. In the case of uniaxial strain that
is volume-preserving, we have:

εuni = εxx = εyy = −2εzz, εi̸=j = 0. (106)

Then, the strain contribution to the action, after remov-
ing purely longitudinal components, is

Lε = ui(q)D
−1
0 λ1εuni

(
Î − 3ẑẑ

)
ij
uj(q) (107)

≈ ηi(q)D
−1
0 λ1εuni

(
q̂tq̂t + (1− 3 sin2 θq)q̂uq̂u

)
ij
ηj(q),

where in the first line Î is the identity matrix, and in the
second line we dropped all longitudinal components.
The impact of the strain depends on the sign of λ1εuni.

For λ1εuni > 0, the energy can be minimized by selecting
θq = π/2. Then, the t mode is pushed away from the
QCP but the u mode is pushed towards it,

rt = r + λ1εuni, ru = r − 2λ1εuni. (108)

Since q̂ is in-the-plane, the polarization of the mode is
out-of-plane η̂ = ±ẑ, such that the order parameter is
Ising-like. If the strain-induced splitting is large enough,
the system will be truly Ising-like and display a second-
order transition, whereas if the splitting is small, QOBD
can still render the transition weakly first-order. On the
other hand, for λ1εuni < 0 the energy is minimized when
θq = 0, π, in which case the two transverse modes remain
degenerate and are both pushed towards the QCP. Thus,
the system orders in an easy-plane XY-like configuration,
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η̂ = cosϕx̂+sinϕŷ, and QOBD still renders the transition
weakly first-order.

Strain dramatically modifies the picture for pairing. As
we saw in Sec. IVB, only spin-singlet pairing is attractive
in 3D at the critical point, and the spin-triplet pairing
is neither attractive nor repulsive. In the presence of
uniaxial strain, with λ1εuni > 0, the t and u modes split
and only the u mode remains relevant. Furthermore,
it is softest for fluctuation wavevectors in the xy plane,
see Eq. (107). The strain breaks the isotropy of the
FS, so solving the pairing equation for the entire FS is
challenging. Fortunately, since the pairing attraction is
effectively local in momentum space (i.e. it does not
couple distant FS momenta), we can obtain information
about Tc just by considering the specific points on the
FS where pairing is maximal, which turn out to be the
points on the circle where the FS cuts the xy plane. This
is because q̂ should be in the xy plane as discussed above,
and also parallel to the FS as usual, which implies q̂u =
−ẑ. Therefore, the projection of the interaction on the

u mode q̂u · k̂ × σ = k̂yσx − k̂xσy is maximal if k̂ is also
in the plane. Going back to Eq. (97) and neglecting the
q̂t contributions, we find that now both spin-singlet and
a single spin-triplet mode are degenerate, with

Φ = iσy

(
ϕ0F0 + ϕ2zF

2z
(
k̂
))

. (109)

V. DISCUSSION

In this work, we constructed a theory of a ferroelectric
metal in the vicinity of a QCP, starting from a mini-
mal theory of a FE transverse polar phonon interacting
with low-energy electrons via a dynamical Rashba spin-
orbit coupling. We found three properties that determine
the qualitative behavior of the coupled system: the spin-
charge mixing arising from the coupling term; the non-
linear coupling between FE modes and strain; and the
geometric constraint imposed by the transverse nature
of the phonon, the coupling term, and the prevalence of
forward scattering for fermions on the FS. In particular,
the spin-charge mixing gives rise to attraction in both
spin-singlet and spin-triplet pairing channels and also a
tendency to QOBD. Strain, on the other hand, acts as a
convenient tuning parameter for the phase diagram. As
for the geometric constraints, they have a profound im-
pact on the phase diagram, giving rise to a qualitatively
different behavior for 2D and 3D systems.

In 2D, there are two distinct FE modes, the z and t
modes corresponding to out-of-plane and in-plane polar-
izations, respectively. While the former is Landau over-
damped and creates a nFL, the latter remains under-
damped even at the QCP, rendering the fermionic sys-
tem a marginal FL. Both z and t modes are unstable
to pairing in both spin-singlet and spin-triplet channels,
which are degenerate to leading order. However, the pair-
ing mediated by the t mode is much weaker due to the
geometric constraint. Finally, each mode by itself does

not give rise to QOBD. Instead, QOBD arises due to the
interaction between the two modes when they are close
in energy, and therefore will typically appear only in the
for appropriate values of external strain. In contrast, in a
3D system, the two transverse modes are degenerate and
QOBD is always present (albeit weakly), unless the ex-
ternally applied strain is too strong. On the other hand,
spin-triplet pairing only appears in the presence of strain
in 3D, which however can be used to make the singlet
and triplet pairing channels almost degenerate.

Many properties of our theory rely on the splitting be-
tween the LO and TO polar modes that is a hallmark of
3D FE materials. However, in our analysis, we also con-
sidered 2D QFEMs, both because their behavior is more
straightforward to determine and because conventional
wisdom tells us that the effects of quantum fluctuations
are stronger in reduced dimensions (as we found). We
therefore need to comment on the relevance of our model
to “real” 2D materials where there is no LO-TO gap.

In 2D materials, the LO-TO gap is replaced by a
square-root singularity in the dispersion, so that the in-
verse propagator for the LO mode is given by D−1

LO ∝
q2 + c−2q20 + (ωT /c)

2 + qLOq, where qLO ≈ 2πQ2 and
Q is the ionic charge per site [59]. The additional linear
term in the inverse propagator is enough to render the
LO mode irrelevant. The reason is that fluctuations are
not confined to small momenta and are therefore weak
at weak coupling, as can be seen from a straightforward
dimensional analysis. For example, even though the LO
mode is Landau overdamped, by itself it does not cause
the electrons to form a nFL. Moreover, it can be verified
that the prefactor for the self-energy is parametrically
smaller than that generated by the t mode, because the
t mode fluctuations are dominated by the IR limit, and
the marginal FL is a result of the lack of a FS singularity,
as discussed in detail in Sec. III A. Finally, we can for-
mally take the limit qLO/ka ≫ 1 as a control parameter
and remove the effects of the LO mode entirely from the
theory. We do note that including the LO mode in 2D
will modify the QOBD effect in the t channel, since the
dispersion of the phonons is irrelevant for the generation
of the nonanalytic terms in the free energy. Thus, we
expect QOBD to be somewhat stronger for the t mode
than predicted in our work (but still small).

In our work, we have not concentrated on specific ma-
terial realizations, despite mentioning several different
QFEM compounds. Indeed, many QFEM candidates
have not been sufficiently well characterized for us to
attempt a quantitative comparison of our theory with
experiment. Rather, we expect our theory to provide
insights into the search for and engineering of materials
that display QFEM properties. As a specific example,
we now briefly discuss the relevance of our results to the
3D quantum paraelectric SrTiO3 (STO).

Recent calculations have shown that the dynamic
Rashba coupling in STO is significant, of the order of
several meV. However, it is not clear that this Rashba
coupling can explain the normal state transport and SC
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properties of STO, at least at low doping levels [53, 94].
It is similarly unsettled whether two-phonon processes
may be a more important mechanism for SC, despite be-
ing formally irrelevant at the QCP [52, 95]. At the same
time, strain significantly enhances the superconducting
Tc and also may promote a tendency to triplet pairing
[25, 96, 97]. This is consistent with our results. A rough
estimate for the distance of STO from the QCP yields a
typical wavevector |q|a ∼ √

r0 = ωTa/c ∼ 0.4 [98, 99].
This should be contrasted with the typical momentum
transfer for fluctuations near the QCP, which in 2D is
of the order of ḡνF and, in 3D, is bounded from above
by a cutoff of the order of kFa. For a carrier density of
n ∼ 1018cm−3, below which a single band is occupied in
SrTiO3, Ref. 53 estimated kFa ∼ 0.15 and ḡνF ∼ 0.01,
suggesting that the electronic system should not evince
QC behavior. On the other hand, our theory predicts
that strain drives the system closer to the QCP and that
a tendency to triplet pairing exists only in 2D and in
strained 3D systems. We cannot directly compare our
theory to the experiments in Refs. [25, 96, 97] as the
strain in those experiments was enough to drive the ma-
terial into the FE state. Naively, in the ordered state
one expects FE to compete with SC, but this may not be
the case for the FE mode [64]. We expect our theory to
be easier to compare with experiment in very thin films
or heterostructures, provided that the issues of epitaxial
strain and breaking of inversion symmetry by the sub-

strate are avoided – e.g. by appropriately capping the
film. We note that the current theory does not apply
to Dirac fermions at the charge neutrality point, which
was studied in Refs. [63, 64], but it does apply to doped
Dirac systems provided the FS is well established (i.e.
EF ≫ T ). Overall, our work establishes a solid frame-
work to elucidate the fascinating properties of QFEMs.
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Appendix A: Detailed calculations for Sec. III

1. One-loop self-energies in the disordered phase

In this Appendix we present details of the calculations for the one-loop self-energies within the Eliashberg approx-
imation. The bosonic self-energy is given by Eqs. (21) and (15), the latter of which we reproduce here:

Πlk
0 (q) =

ḡT

k2F
Tr
∑
p

(p× σ)lG(p− q/2)G(p+ q/2)(p× σ)k

≈ 2ḡa2
∫

d3p

(2π)
3

1

iΣ̃(p0 − q0/2)− ϵ(p− q/2)

1

iΣ̃(p0 + q0/2)− ϵ(p+ q/2)

|p|2

k2F
P̂ lk(p̂).

(A1)

Here ḡ = λ2D0, kF , and a are respectively the effective fermion-boson coupling, the Fermi wavenumber which we
assume constant for simplicity, and the lattice constant, all as defined in the main text. We have also defined the
shorthand notation for the generalized electron self-energy,

iΣ̃(k) = ik0 − Σ(k0,k) ≈ ik0 − Σ(k0). (A2)

Henceforth we implicitly assume that the self-energy does not depend on the momentum, which is justified if we treat
vF as the renormalized Fermi velocity. In principle, Eq. (A1) should be evaluated self-consistently with the fermionic
self-energy and also with vertex corrections (which are not shown here). However, we will assume (and later verify),

that both these modifications can be neglected. In that case we can integrate over p0, and Π̂0 has the well-known
form of the Lindhard function:

Πlk
0 (q) ≈ 2ḡa2

∫
d2p

(2π)
2

Θ(−ϵ(p+ q))−Θ(−ϵ(p))
ϵ(p+ q)− ϵ(p)− iq0

|p|2

k2F
P̂ lk(p̂), (A3)
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where Θ(x) is the Heaviside step function. Linearizing near the FS and performing the energy integral we obtain Eq.
(15), where for our model

νF =
m∗a2

π
≡ 1

πvF kF
(kFa)

2, (A4)

with m∗ denoting the FL effective mass. Adding and subtracting iq0 in the numerator of Eq. (16), we find

Π̂0(z) ≈ ḡνF

∫
dθp
2π

[
1 + iz

1

cos(θp − θq)− iz

]
P̂(θp), (A5)

where

z =
q0

vF |q|
. (A6)

We change variables to θ = θp − θq and decompose p̂ onto q̂, q̂t, and ẑ directly, so that

P = Î − p̂p̂ = q̂q̂ sin2 θ + q̂tq̂t cos
2 θ + ẑẑ − sin θ cos θ(q̂q̂t + q̂tq̂). (A7)

Performing the integral in Eq. (A5) then gives Eqs. (16)-(18).
Next we calculate the fermionic self-energy, given in Eq. (25):

Σαβ(k) ≈
ḡa2

D0k2F

∫
d3p

(2π)
3 (k× σαγ)iG(k − p)D(p)(k× σγβ)j

= (σ0)αβ ḡa
2

∫
d3p

(2π)
3

Dz(p) + cos2(θk − θp)Dt(p)

iΣ̃(k0 − p0)− vF p cos(θk − θp)
(A8)

Unsurprisingly, we see that the self-energy depends on both modes, even though only one of them is at the QCP. For
simplicity, we will from now on drop the σ0. Since Dz and Dt depend on |p| only, we can perform the angular integral
exactly, yielding

Σ(k) = Σz(k) + Σt(k), (A9)

Σz(k) = −i ḡa2

vF (2π)
2

∫ ∞

−∞
dp0

∫ ∞

0

dp
sgn(Z)√
1 + Z2

Dz(p),

Σt(k) = −i ḡa2

vF (2π)
2

∫ ∞

−∞
dp0

∫ ∞

0

dp Z

(
1− |Z|√

1 + Z2

)
Dt(p),

where

Z = Σ̃(k0 − p0)/vF |p|. (A10)

The self-energy contribution from Dz is well known from the context of e.g. ferromagnetic or nematic QCPs, while
the contribution from Dt is distinct. The conventional way to solve the integral over Dz is to note that the sgn(Z)

term limits the p0 integral to a scale of k0, which in turn implies that |Z| ≪ 1, allowing one to neglect the
√
1 + Z2

contribution from the fermionic sector. Thus, the p integral only involves Dz, yielding an effective local frequency-
dependent interaction. The separation of scales given by the sign function is the root of the Eliashberg approximation.
Here, we proceed a bit differently, so as to treat both Σz and Σt on an equal footing, solving first the integral with
the more familiar Dz. We assume and then verify that we may neglect self-energy corrections to Eqs. (A9), i.e. that
a self-consistent treatment yields the same result as a non-self-consistent treatment with Z ≈ |k0 − p0|/vF |p|. Then
we shift the frequency integral and change variables, such that,

Σz(k) = i
ḡa2

(2π)
2

∫ ∞

−∞
dZ

∫ ∞

0

pdp
sgn(Z)√
1 + Z2

Dz(p, |Z + k0/vF p|)

= −i ḡa
2

(2π)
2

∫ ∞

0

pdp
dZ√
1 + Z2

 1

p2a2 + rz + ḡνF

∣∣∣Z − k0

vF p

∣∣∣ − 1

p2a2 + rz + ḡνF

∣∣∣Z + k0

vF p

∣∣∣


= −i ḡ

(2π)
2
vF ka

k0

∫ ∞

0

dp
dZ√

1 +
k2
0

v2
F k2

ap
2Z2

[
p

p3 + prz +
ḡνF k0

vF ka
|Z − 1|

− p

p3 + prz +
ḡνF k0

vF ka
|Z + 1|

]
. (A11)
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In Eq. (A11) we dropped for simplicity the c−2(k0 − p0)
2 frequency term from the bosonic bare propagator. This

term does not contribute to the low-energy theory for the z mode and only appears as a logarithmic cutoff for the t
mode, as we show below. Here, we also defined, as in the main text,

ka = a−1 (A12)

to make the dimensional analysis more transparent. For simplicity, consider rz = 0. Then, it follows that p ∼ k
1/3
0 and

Z ∼ 1, justifying neglecting the square root term, and also justifying our neglect of the self-energy in the fermionic
propagator and of the bare bosonic frequency dependence in the bosonic propagator. Rescaling momentum gives

Σz(k) = −i ḡ

(2π)
2
vF ka

k0

(
ḡνF k0
vF ka

)−1/3 ∫ ∞

0

dp dZ

[
p

p3 + |Z − 1|
− p

p3 + |Z + 1|

]
= −iω1/3

z k
2/3
0 , (A13)

where

ω1/3
z =

1

2
√
3

(
ḡ2

π2vF kF

)1/3

. (A14)

For finite rz, when the frequency k0 is small enough, the integral over the bosonic momentum in Eq. (A11) is
dominated by rz, leading to a linear self-energy as shown in the main text, Eq. (30). Now, we repeat the treatment
for Σt(k). Going through the same steps yields

Σt(k) = −i ḡ

(2π)
2
k2a

∫ ∞

0

pdpdZZ

(
1− |Z|√

1 + Z2

) 1

p2/k2a + rt + ḡνF

(
Z − k0

vF p

)2 − 1

p2/k2a + rt + ḡνF

(
Z + k0

vF p

)2
 .

(A15)
Upon setting rt = 0 and rescaling, as before, Z → Zk0/(vF kap), we find that the Z integral diverges logarithmically.
Thus, the main contribution to Σt is from the region Z ≫ (k0/vF p), which allows us to just expand the contribution
in the square brackets to leading order as

Σt(k) ≈ −i ḡ

(2π)
2

∫ ∞

ZIR

pdpdZZ

(
1− |Z|√

1 + Z2

)
1

(p2 + ḡνFZ2)2
4ḡνF k0Z

vF kap
(A16)

= −i ḡ

4π(ḡνF )1/2vF ka
k0

∫ ZUV

ZIR

dZ

Z

(
1− |Z|√

1 + Z2

)
.

(A17)

In Eq. (A17) the lower cutoff is determined by the lower cutoff of the momentum and given by Z2
IR = k0/(vF ka

√
ḡνF ).

The upper cutoff ZUV is of order one if the bare frequency dependence of the bosonic propagator is neglected, as in
the previous section. If the latter is taken into account, the upper cutoff is

ZUV = min

(
1,

c

vF

)
, (A18)

and the final result is

Σt(k) ≈ −i
√
ḡνF ka
8kF

k0 log

(
Z2
UV

√
ḡνF vF ka
|k0|

)
, (A19)

in agreement with Eq. (32) of the main text. Note that the logarithm is IR divergent so that the theory
is fully self-consistent. For finite rt, we notice from Eq. (A16) that the lower cutoff is simply replaced by
Z2
IR = max(k0/(vF ka

√
ḡνF ), rt/ḡνF ), so that the system is in a FL regime at the lowest frequencies.

2. Vertex corrections

In order to assess whether the expressions for Π̂ remain valid near the QCP, we evaluate the particle-hole vertex
correction. The reason for this is that in magnetic systems, the form of the Landau damping term changes when
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the system goes into the nFL phase, so that e.g. q0/
√
v2F |q|2 + q20 becomes q0/

√
v2F |q|2 +Σ(q0)2. On the other

hand, the Landau damping term in the charge channel remains unchanged due to the Ward identity reflecting charge
conservation. The form of the Landau damping term is important in determining the nonanalytic terms in the free
energy, and as a result vertex corrections can change the power-law behavior of these terms near the QCP. In this
section, we show that the QFEM polarization operator is almost unaffected by vertex corrections.

The fully dressed vertex has the form,

Γ̂(k, q) = ẑΓz(k, q)σt − k̂tΓt(k)σz, (A20)

where we recall that γ̂ = ẑσt − k̂tσz is the bare vertex, see Eq. (10). The polarization bubble has the form

Πlk
0 (q) =

ḡT

k2F
Tr
∑
p

Γl(p, q)G(p− q/2)γk(p)G(p+ q/2)

=
ḡT

k2F
Tr
∑
p

(ẑẑΓz(p, q) + p̂tp̂tΓt(p, q))klG(p− q/2)G(p+ q/2)

=
ḡT

k2F
Tr
∑
p

(ẑẑΓz(p, q) + p̂tp̂tΓt(p, q))kl
ip0 − (Σ(p0 + q0/2)− Σ(p0 − q0/2))− vF p̂ · q

[G(p− q/2)−G(p+ q/2)] . (A21)

Upon integrating over fermionic energies, the Green’s functions on the right just give Fermi distribution functions
(becoming Heaviside step functions at T = 0). The implication is that if the vertex functions obey

Γi(p, q)

ip0 − (Σ(p0 + q0/2)− Σ(p0 − q0/2))− vF p̂ · q
=

1

ip0 − vF p̂ · q
, (A22)

then the polarization bubble is not changed by a finite or even divergent self-energy. For the case γ = σ0, i.e. just the
charge vertex, this is well established [89, 90]. For the QFEM case, we note that the vertex equation has the form

Γ̂(k, q) = γ̂(k) + δΓ̂(k, q), (A23)

where

δΓαβ(k, q) =
ḡT

D0k2F

∑
p

γiαδ(k)Γ
l
δη(k, q)γ

j
ηβ(k)D

ij(p)G(k + p− q/2)G(k + p+ q/2). (A24)

Here, we assumed q ≪ k and neglected the q dependence in the bare vertex. After performing the various summations
we find

δΓ̂(k) =
ḡT

D0k2F

∑
p

[
Dz(p)(ẑσtΓz − k̂tσzΓt) + cos2(θk − θp)Dt(p)(k̂tσzΓt − ẑσtΓz)

]
G(k + p− q/2)G(k + p+ q/2).

(A25)

A careful analysis of the term inside the brackets reveals that, for each channel, the correction arising from its own
channel comes with a positive sign whereas the corrections arising from the other channel comes with a negative sign.
Thus, assuming that only one channel is critical, this implies that we may neglect the contribution of the non-critical
channel and obtain

δΓz(k) =
ḡT

D0k2F

∑
p

Γz(p, q)

ip0 − (Σ(p0 + q0/2)− Σ(p0 − q0/2))− vF p̂ · q
[G(k + p− q/2)−G(k + p+ q/2)]Dz(p), (A26)

δΓt(k) =
ḡT

D0k2F

∑
p

Γt(p, q) · cos2(θp − θq)

ip0 − (Σ(p0 + q0/2)− Σ(p0 − q0/2))− vF p̂ · q
[G(k + p− q/2)−G(k + p+ q/2)]Dt(p). (A27)

Using Eq. (A22) as an ansatz, expanding p̂tp̂t = cos2(θp = θq)q̂tq̂t + · · · , and going back to the definition of the
self-energies, we find

δΓj(p, q) =
− (Σj(p0 + q0/2)− Σj(p0 − q0/2))− vF |q| cos(θp − θq)

ip0 − vF |q| cos(θp − θq)
, (A28)

which proves the ansatz. Thus, the polarization bubble retains its bare form.
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Appendix B: Details of the calculations in Sec. III B

In this Appendix we provide a detailed calculation of the solution of the pairing equations. In Sec. III B, we found
that both the z and t modes have two nearly degenerate pairing channels, a singlet and a triplet. In this section, we
calculate the degenerate pairing Tc in the leading order. In practice, the two channels are typically split by subleading
terms in the pairing equation [82, 100], but we shall not deal with that issue here.

1. Pairing near the z mode QCP

The pairing equation is given by,

ϕnj(k) = ḡT
∑
p

Dz(k − p)ϕnj(p)G(p)G(−p), (B1)

where ϕnz was defined in Eq. (37) and Table I. We shift the momentum integration, p → p+k and integrate over θp
to obtain

ϕnj(k0, θk) =
πḡTνF
kF

∑
k0 ̸=p0

∫ ∞

0

dp

2π

1

|p0|+ |Σ(p0)|
ϕnj(p0, θk)

rz + p2/k2a + ḡνF |p0 − k0|/(vF p)
. (B2)

As we did for the normal state properties, we neglected for simplicity the bare (p0 − k0)
2/c2 bosonic frequency term.

Away from the QCP, we may neglect the Landau damping component of Dz and the self-energy, so the gap equation
reads,

ϕnj(k0, θk) =
πḡTνF ka
4kF

√
rz

∑
k0 ̸=p0

ϕnj(p0, θk)

|p0|
, (B3)

which is a standard BCS-type equation. The p0 sum yields a logarithm that is cut off by the Landau damping at

p0 ∼ vF ka

ḡνF
r
3/2
z , which yields the FL limit in Eq. (41). At the QCP, rz ≈ 0, the integral over dp yields

ϕnj(k0, θk) =
πḡTνF ka

3
√
3kF

∑
k0 ̸=p0

ϕnj(p0, θk)

(|p0|+ |Σ(p0)|)
(

ḡνF |k0−p0|
vF ka

)1/3 . (B4)

Similar equations appear in a class of QC pairing models called γ− models, with γ = 1/3 characterizing the power
law of the pairing interaction, and 2γ the nFL self-energy. Similar results hold for pairing from nematic fluctuations.
The result for Tc is known and we write it explicitly in Eq. (41) (with az, bz = O(1)) [85].

2. Pairing near the t mode QCP

For the t mode, the gap equation is given by

ϕnj(k) = ḡT
∑
p

(
k̂ · k− p

|k− p|

)2

Dt(k − p)ϕnj(p)G(p)G(−p). (B5)

Again shifting momenta and integrating over angles yields

ϕnj(k0, θk) =
πḡTνF
vF kF

∑
p0 ̸=k0

∫ ∞

0

dp

2πp
l1

(
p0
vF p

)
ϕnj(p0, θk)

rt + p2/k2a + ḡνF (p0 − k0)2/(vF p)2
. (B6)

As discussed in the main text, there is no logarithmic 1/p0 term from the fermions, neither in the FL nor in the
marginal FL regime. Since the bosonic propagator has a dynamic critical exponent z = 2, p ∼

√
p0 − k0, we may

safely assume that vF p≫ p0 and approximate l1(p0/(vF p)) ≈ 1. Then, integrating over p, we find

ϕnj(k0, θk) =
πḡTνF
vF kF

∑
p0 ̸=k0

ϕnj(p0, θk)
√
ḡνF

vF ka
|p0 − k0|

Y

(
rt

√
ḡνF

vF ka
|p0 − k0|

)
, (B7)



28

where Y is the function,

Y(x) =

∫ ∞

0

dy

2πy
(x+ y2 + y−2)−1 =

1

2
√
4− x2

−
tan−1

(
2+x√
4−x2

)
π
√
4− x2

(B8)

with asymptotic behaviors

Y(x) =

{
1/8 x→ 0
log(x)/(2πx) x→ ∞ . (B9)

In the FL regime, the gap equation then reads

ϕnj(k0, θk) =
πḡTνF
vF kF

∑
p0 ̸=k0

1

2rt
ϕnj(p0, θk) log

(
rt

√
ḡνF

vF ka
|p0 − k0|

)
, (B10)

and the upper limit for the frequency sum is just vF kart/
√
ḡνF . The frequency sum is not divergent, so there is no

solution for the gap equation unless ḡνF ∼ 1. On the other hand, for rt → 0, the gap equation reads

ϕnj(k0, θk) =
π
√
ḡνFTka
8kF

∑
p0 ̸=k0

ϕnj(p0, θk)

|p0 − k0|
. (B11)

As written here, the upper cutoff for the frequency sum is p0 ∼ vF ka
√
ḡνF , which is obtained from the l1 function in

Eq. (B6). A more careful calculation including the previously neglected bare bosonic frequency term yields a modified
cutoff p0 ∼ Z2

UV vF ka
√
ḡνF , where ZUV was defined in Eq. (A18). This leads directly to Eq. (43), with at = O(1). To

see how Tc vanishes with finite rt, we expand Y(x) ≈ 1
8 (1− x/π) and convert to a frequency integration with k0 ≈ 0

to obtain

1 ≈
√
ḡνF ka
8kF

(
log

vF ka
√
ḡνF

2πTc
− 1

π

rt
2πTc

)
. (B12)

For rt = 0 we obtain

2πTc,t ≈ vF ka
√
ḡνF e

− 8kF√
ḡνF ka (B13)

in accordance with Eq. (43). Expanding Tc = Tc,t − δTc,t we obtain

2πδTc,t ≈
rt

π
√
ḡνF

vF ka (B14)

leading to the expressions following Eq. (43).

Appendix C: Detailed calculations for Sec. III C

In this Appendix we give a detailed derivation of the results in Sec. III C on the order-by-disorder induced phases.

1. The first-order transition

In the main text, we noted that to obtain the nonanalytic terms in the free energy we must (a) assume that the
system has spontaneously formed static uniform order, (b) compute the polarization bubble in the presence of that
order, and (c) calculate the correction to the free energy from that polarization. Let us proceed step by step.

The polarization bubble is given by Eq. (52), which upon performing the rotation in Eq. (53) has the form, for
T → 0,

Πkl
∆ =

ḡ

k2a
Tr

∫
d3p

(2π)
3 (p̂tσx + ẑσz)

k

[(
Ep +

1

2
εq

)
σ0 −∆σz

]−1

(p̂tσx + ẑσz)
l

[(
Ep −

1

2
εq

)
σ0 −∆σz

]−1

, (C1)
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where

Ep = ip0 − vF (|p| − kF ), εq = iq0 − vF p̂ · q (C2)

give the fermionic dispersions near the FS. As the Green’s functions are diagonal in spin space the crossterms between
σx and σz vanish upon tracing over the spin indices, yielding a two-block diagonal polarization. Performing the
frequency and then momentum integrals yields

Π̂∆(q) =
ḡνF
2

∫
dθp
2π

[
p̂tp̂t

(
vF |q|p̂ · q̂ − 2∆

vF |q|p̂ · q̂ − 2∆− iq0
+

vF |q|p̂ · q̂ + 2∆

vF |q|p̂ · q̂ + 2∆− iq0

)
+ 2ẑẑ

vF |q|p̂ · q̂
vF |q|p̂ · q̂ − iq0

]
. (C3)

The global factor 1/2 in Eq. (C3) is due to the definition of νF in Eq. (A4) to include spin summation. Changing
variables and projecting onto q̂, q̂t, and ẑ as we did in the disordered case we find,

Π̂∆(q) =
ḡνF
2

(q̂tq̂tΠ∆;t + q̂q̂Π∆;l + 2ẑẑΠ∆;z) , (C4)

where

Π∆;t = 1 + δΠ∆;t,

Π∆,l = 1 + δΠ∆;z − δΠ∆;t,

Π∆;z = 1 + δΠ∆;z, (C5)

and δΠ∆ given in Eq. (56) of the main text.
For a t transition, the polarization bubble has the form (see Eqs. (10) and (60))

Πkl
∆ =

ḡ

k2a
Tr

∫
d3p

(2π)
3 (ẑσp;t − p̂tσz)

[(
Ep +

1

2
εq

)
σ0 +∆sin θpσz

]−1

(ẑσp;t − p̂tσz)

[(
Ep −

1

2
εq

)
σ0 +∆sin θpσz

]−1

=
ḡνF
2

∫
dθp
2π

[
ẑẑ

(
vF |q|p̂ · q̂ − 2∆ sin θp

vF |q|p̂ · q̂ − 2∆ sin θp − iq0
+

vF |q|p̂ · q̂ + 2∆sin θp
vF |q|p̂ · q̂ + 2∆sin θp − iq0

)
+ 2p̂tp̂t

vF |q|p̂ · q̂
vF |q|p̂ · q̂ − iq0

]
. (C6)

Obviously, the roles of t and z modes are simply reversed, with the z mode acting as a transverse fluctuation
to the t mode order. In addition, the integral for the ẑẑ component is dominated by the region cos(θp − θq) ∼
max(∆/(vF |q|), q0/(vF |q|). In all the computations of the free energy, these quantities are ≲ 1. Therefore we may
safely assume cos(θp − θq) is small, and replace ∆ sin θp → ∆cos θq, effectively neglecting some small quantitative
corrections. Projecting p̂t onto q̂, q̂t, and ẑ and performing the angular integrals yields Eqs. (C4) and (C5), where this
time δΠ∆ is given in Eq. (61). Note that we are using the same notations for δΠ∆ in both t and z cases to minimize
the notation burden.

To compute the RPA free energy, we plug Eq. (C4) into the relevant expression, Eq. (50), neglecting the longitudinal
δΠl component, which contributes to the gapped-out longitudinal mode. Only one of the sectors (z or t) depends on
∆. For the z case, the free energy is given by Eq. (57), which we reproduce here for clarity,

δF = T
∑
q

(
logD−1

t (q,∆ẑ)− logD−1
t (q, 0)

)
= k−2

a

∫
d3q

(2π)
3 log

[
rt + |q|2 + zq

2 (l1(zq + 2i∆q) + c.c.)

rt + |q|2 + zql1(zq)

]
, (C7)

where

zq =
q0

vF |q|
, ∆q =

∆

vF |q|
. (C8)

The integrand in Eq. (C7) is even in ∆, so that a power expansion yields only even powers ∆2,∆4, · · · . However,
l1(x) is not analytic, which dramatically affects the result. To see this, we change variables to z = zq. Then, the
integral in Eq. (C7) is of the form

δF ∝
∫ ∞

0

dz

∫ Λ

0

q2dq

(
f1(z)

∆2

v2F q
2
+ f2(z)

∆4

v4F q
4
+ · · ·

)
. (C9)
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FIG. 8: Computation of fT (x). The dots are obtained from the numerical evaluation of the nonanalytic term at
finite T . The solid blue line is the asymptotic expression with the exact numerical prefactor, and the solid yellow
line is Eq. (C12).

Here, f1, f2, . . . are convergent functions of z and Λ is some UV cutoff which will not play a role in the final result.
We see that the first term in the expansion is quadratic in ∆ and UV divergent. Thus, it merely generates some
correction to rz which we ignore. The second term, however, is IR divergent, and since the integrand is not analytic
we cannot extend the q contour over the complex plane. Instead, we may estimate it by introducing an IR cutoff
q∆ ∼ ∆/vF , which immediately gives us the nonanalytic ∆3 correction to the free energy. Successive terms in the
expansion all diverge in the same manner, so they all give the same ∆3 contribution. To compute Eq. (C7) exactly,
we rescaled it by x = vF q/∆ and explicitly subtracted the second-order expansion term in x−1. The resulting integral
is convergent, yielding the final line of Eq. (58).

For the in-plane (t) transition, the treatment is analogous. The rescaled summation is given by

δF = T
∑
q

(
logD−1

∆,z − logD−1
z

)
≈ k−2

a

∫
d3q

(2π)
3 log

[
1 +

zq
2 (l0(zq − 2i∆q cos θq) + c.c.)

1 + zql0(zq)

]
=
k−2
a

2π2

∫ ∞

0

dz

∫ ∞

0

x2dx

∫ 2π

0

dθq
2π

|cos θq|3 log

[
1 + z

2

(
l0(z + 2ix−1) + c.c.

)
1 + zl0(z)

]
. (C10)

We subtracted the second-order term and computed the numerical prefactor exactly, obtaining Eq. (62).

Finite-temperature phase diagram

To create the schematic finite-temperature phase diagram, we also solved Eq. (C7) in the finite-temperature regime.
This can be done numerically by rescaling both q and ∆ with T . Clearly, the result will be that

δF ∝ −∆3fT (T/∆), (C11)

where fT (0) = 1. Expanding in large T/∆, one readily finds that fT (x) = az/x for x≫ 1, showing that, as expected
the nonanalytic term vanishes at high temperature. The pre-factor az can be evaluated numerically, giving az ≈ 0.16.
Furthermore, to excellent numerical accuracy we found that

fT (x) =
2

π
tan−1

(
bz
x

)
. (C12)

with bz ≈ 1/4. In Fig. 8 we depict the numerical evaluation of fT along with the exact asymptotic expression and
the fitted expression given by Eq. (C12). The result is similar for the t mode, with at ≈ 0.19 and bt ≈ 0.28.
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FIG. 9: Numerical evaluation of the self-consistency equation, Eq. (C17). The parameters used were a = 1, b = 1,
α = 1.

Using the expression for fT (x), we are able to fully determine the phase diagram. The free energy has at T = 0
the following form

F = r∆2 − a∆3 + b∆4, (C13)

where we suppress all z/t subscripts. The prefactors (for the z mode) are given in Eq. (59), and the first-order phase
transition is given by

0 = ∂∆F ∝ 2r − 3a∆+ 4b∆2,

0 = F ∝ r − a∆+ b∆2. (C14)

The solution is

∆∗ =
a

2b
, r∗ =

a2

4b
. (C15)

The finite-temperature phase diagram can be obtained by introducing a temperature-dependent coefficient for the ∆3

term in Eq. (C13),

a→ aT = afT (T/∆). (C16)

For small a, the correction to Eq. (C14) is negligible, and Eq. (C15) still represents an approximate solution provided
a → aT . Plugging the solution back into Eq. (C16) and using our exact expression for fT , Eq. (C12), results in a
self-consistency equation for the transition temperature T = TFE ,

aT = a
2

π
tan−1

(
1

4

aT

2b
a2
T

4bα + T0

)
, (C17)

where we used Eq. (73) to express the temperature in terms of r∗. Taking the denominator to zero recovers the correct
T = 0 result αT0 = r∗. Taking the large T0 limit, we obtain the tricritical temperature in Eq. (76). In Fig. 9, we
show how the self-consistency equation can be used to compute the entire phase transition line. The phase diagram
for the t mode can be obtained using exactly the same treatment.

2. The FDW (finite-q) transition

The three diagrams that we computed were presented in Fig. 4 of the main text. Their values are given by Eq.
(63), which we reproduce here,
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Πij
q (q, 0) = dij1 (q, 0) + dij2 (q, 0), (C18)

dij1 (q = (q, 0)) = 2
ḡ2T 2

k4FD0

∑
p,k

G(k − q)G(k − p)G2(k)Dmn(p)F imnj
0 (k), (C19)

dij2 (q = (q, 0)) =
ḡ2T 2

k4FD0

∑
p,k

G(k − q)G(k − p)G(k)G(k − p− q)Dmn(p)F imjn
0 (k), (C20)

where

F imnj
0 = Tr(k× σ)i(k× σ)m(k× σ)n(k× σ)j . (C21)

Up to a form factor, d
(2)
ij can be cast into the same form as d

(1)
ij . To see this, we utilize the identity, which holds in

the FL regime,

G(k)G(k − q) = G(q) (G(k)−G(k − q)) . (C22)

Then we find∑
k

G(k)G(k − p)G(k − q)G(k − p− q) =
∑
k

G(k)G(k − p)G(p)[G(k − p− q)−G(k − q)] =∑
k

G(k)G(k − q)G(p)[G(k + p)−G(k − p)] =
∑
k

G(k)G(k − q)G(p)[(G(k + p)−G(k))− (G(k − p)−G(k))]

= −
∑
k

G(k)2G(k − q)[G(k + p) +G(k − p)]. (C23)

If we assume further that |p| ≪ |k|, so that the momentum shifts in Eq. (C23) do not change F0, we find Eq. (69)
of the main text, which we reproduce here,

Π̂q = 8ḡ2T 2
∑
p,k

G(k − q)G(k − p)G2(k)
[
ẑẑ cos2(θp − θk)Dt(p) + k̂tk̂tDz(p)

]
. (C24)

As discussed in the main text, we see that the z mode polarization is renormalized only by the t mode and vice versa.

To solve the integrals, we specialize to the case where rz ≪ rt, thus dropping the contribution proportional to k̂tk̂t.
Since q0 = 0, the fermionic poles are split only when p0 and k0 are in separate half-planes. We assume that k is near
the FS and split the integral as 2k−2

a

∫
d2k/ (2π)

2
= νF

∫
dεkdθk/ (2π). Integrating over εk and then k0 yields∫

dεkdk0G(k)
2G(k − q)G(k − p) =

2πip0
(vF |p| cos θp + ip0 − vF |q| cos θk)(vF |p| cos θp + ip0)2

, (C25)

where without loss of generality we picked q̂ = x̂ and shifted θp → θp + θk. Integrating over θk we find

Πq,z =
2ḡ2νF

πvF k2a|q|

∫
d3p|p0|
(2π)

3

cos2 θpDt(p)l0 ((vF |p| cos θp + ip0)/(vF |q|))
(vF |p| cos θp + ip0)2

, (C26)

where Πq,z denotes the z mode component and zpq = (vF |p| cos θp + ip0)/(vF |q|). Equation (C26) shows that Πq,z

has a constant term which is cut off in the UV, which we incorporate into rz. By dimensional analysis, its convergent
part is linear in vF |q|, which can be obtained by differentiating the integrand,

δΠq,z = −vF |q|
2ḡ2νF
πk2a

∫
d3p|p0|

(2π)
3
(vF |q|)4

cos2 θp (l0(zpq) + zpql
′
0(zpq))

z2pq(rt + δΠt(p))
, (C27)

where we wrote out Dt explicitly and neglected the analytic |p|2 term. The integrand in Eq. (C26) is convergent and
dimensionless. Furthermore, because rt = ḡνF /2, the two contributions to D−1

t are of the same order. After a change
of variables we find

δΠq,z =
|q|
ka

16ḡ

πvF ka

∫ ∞

0

dr

∫ π

0

dθ

∫ π/2

0

dϕ
r2 sinϕ cosϕ

(2π)
3

cos2 θ (l0(ζ) + ζl′0(ζ))

ζ2(1 + 2 tan2 ϕl1(tanϕ))
, (C28)
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where ζ = r(sinϕ+ i cosϕ cos θ). Performing the numerical integral yields the z mode contribution in Eq. (70).
The case of the t mode is analogous to the z mode case. We start with Eq. (C24) and keep only the t mode

contribution, proportional to Dz(p). The integrals over εk and k0 are identical to the z case and yield the same

result as Eq. (C25). The only difference is the integral over θk, which now averages over the k̂tk̂t term. It yields a
component proportional to q̂q̂ and a component proportional to q̂tq̂t. We drop the first one and are left with

δΠq,t = −vF |q|
2ḡ2νF
πk2a

∫
d3p|p0|

(2π)
3
(vF |q|)4

(l1(zpq) + zpql
′
1(zpq))

z2pq(rz + δΠz(p))

=
|q|
ka

4ḡ

πvF ka

∫ ∞

0

dr

∫ π

0

dθ

∫ π/2

0

dϕ
r2 sinϕ cosϕ

(2π)
3

(l1(ζ) + ζl′1(ζ))

ζ2(1 + tanϕl0(tanϕ))
. (C29)

Performing the integral we obtain the t mode contribution of Eq. (70).

Appendix D: Detailed calculations for Sec. IV

In this Appendix we present the detailed calculations for a 3D QFEM. First we compute the polarization bubble,
assuming right away the presence of order (along the z axis, e.g. ∆ = ẑ∆ for the homogeneous transition). Then we
compute both normal and pairing self-energies simultaneously.

The 3D polarization bubble in the presence of ∆ is given by a similar expression to that of the 2D case, Eq. (52),
and the diagonalization transformation is identical to the one for the z mode in the 2D case, Eqs. (53) and (54). The
interaction changes to

(p̂× σ) → U†(p̂× σ)U = p̂t(sin θpσx − cos θpσy)− p̂uσz, (D1)

where we defined the azimuthal and polar variables ϕp, θp. For convenience, we write down explicit expressions for
the basis vectors

p̂t = − sinϕpx̂+ cosϕpŷ, p̂u = cos θp cosϕpx̂+ cos θp sinϕpŷ − sin θpẑ. (D2)

Note that p̂u is perpendicular to p̂ but its projection on the xy plane is parallel to the projection of p̂ on the plane,
hence it does not cause spin-flip processes. The polarization bubble is

Πkl
∆ =

ḡ

k3a
Tr

∫
d4p

(2π)
4 (p̂t(sin θσx − cos θσy)− p̂uσz)

[(
Ep +

1

2
εq

)
σ0 +∆pσz

]−1

×(p̂t(sin θσx − cos θσy)− p̂uσz)

[(
Ep −

1

2
εq

)
σ0 +∆pσz

]−1

, (D3)

where

∆p = ∆sin θp (D4)

is the Zeeman-like splitting for p̂. After tracing out and integrating over frequency and energy we obtain

Π̂∆(q) =
ḡνF
2

∫
d cos θpdϕp

4π

[
p̂tp̂t

(
vF |q|p̂ · q̂ − 2∆p

vF |q|p̂ · q̂ − 2∆p − iq0
+

vF |q|p̂ · q̂ + 2∆p

vF |q|p̂ · q̂ + 2∆p − iq0

)
+ 2p̂up̂u

vF |q|p̂ · q̂
vF |q|p̂ · q̂ − iq0

]
,

(D5)

where

νF =
m∗kF
π2k3a

(D6)

is the 3D density of states. To evaluate Eq. (D5) it is convenient to add and subtract a p̂tp̂t term next to the p̂up̂u
term the right-hand side. Then, the polarization is seen to consist of two contributions,

Π̂∆(q) = Π̂0(q) + δΠ̂∆(q). (D7)
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Here, Π̂0 has the same form as the polarization in the disordered phase, namely

Π̂0(q) = ḡνF

∫
d cos θpdϕp

4π
(p̂tp̂t + p̂up̂u)

vF |q|p̂ · q̂
vF |q|p̂ · q̂ − iq0

. (D8)

By rotating q̂ to the ẑ axis and back, we find

Π̂0(q) = ḡνF

[
2

3
+ zq

(
1

2
(s0(zq) + s1(zq))(q̂tq̂t + q̂uq̂u) + (s0(zq)− s1(zq))q̂q̂

)]
, (D9)

where

s0(x) = arctan(1/x) (D10)

s1(x) = x− x2 arctan(1/x) (D11)

and zq defined in Eq. (C8). This result gives Eq. (83) of the main text.
The ∆-dependent contribution is obtained from the spin-flip p̂tp̂t part of the polarization in Eq. (D14). To compute

it, we expand p̂t in the q̂ basis,

p̂t = cos(ϕ)q̂t − sin(ϕ)(cos θq q̂u + sin θq q̂), (D12)

where ϕ = ϕp − ϕq, such that,

p̂tp̂t = cos2 ϕq̂tq̂t + sin2 ϕ cos2 θq q̂uq̂u + · · · , (D13)

where the ellipsis denotes terms that either vanish upon angular integration or belong to the longitudinal sector. The
meaning of Eq. (D13) is that spin-flip contributions in the q̂uq̂u sector depend on the polar alignment of q̂, and are
maximal when q̂ itself is in the ẑ direction. Thus, plugging the above into Eq. (D8) we obtain

δΠ̂∆(q) =
ḡνF
2
zq(St(|q|,∆)q̂tq̂t + cos2 θqSu(|q|,∆)q̂uq̂u + c.c.). (D14)

St and Su are given by rather cumbersome expressions,

St =
1

2

∫
d cos θ

sin θq sin θ
[l1 (Zq,∆)− l1 (Zq,0)] ,

Su =
1

2

∫
d cos θ

sin θq sin θ
[l0 (Zq,∆)− l1 (Zq,∆)− l0 (Zq,0) + l1(Zq,0)] , (D15)

where

Zq,∆(θ) =
q0 − 2i∆sin θ − vF |q| cos θq cos θ

vF |q| sin θq sin θ
, (D16)

and l0 and l1 are just the Lindhard functions we obtained for the 2D problem, see Eq. (18). While it is possible to
work out the asymptotics of St,u in detail, it will not be necessary for our calculations and so we omit them. Instead,
we note that in the regime of small angles, cos θq ≫ sin θq, both functions have the approximate form

Su ≈ St ≈
1

2
s0

(
q0 − 2i∆̃

vF |q|

)
− 1

2
s0

(
q0

vF |q|

)
. (D17)

Here we replaced ∆p from Eq. (D4) with ∆p ≈ ∆̃ =
√

2/3∆, see Eq. (102) in the main text, by taking the angular
average of the sin term. Equation (D17) shows that the system exhibits both Landau damping and a nonalytic
dependence that generates the QOBD terms, as discussed in the main text. Equations (D7) and (D14) are equivalent

to Eq. (102) of the main text, and are obtained by defining Πt = St(q,∆)+ q̂t ·Π̂0(q) · q̂t, Πu = Su(q,∆)+ q̂u ·Π̂0(q) · q̂u.
The free energy in the presence of finite ∆ is obtained just as in the 2D case, by tracing over the action, see Eq. (50).

As we saw previously, typical scales for the trace are vF |q| ∼ q0 ∼ ∆. Thus, at the critical point and for small enough
∆, the analytic r + q2/k2a terms in the propagators are negligible, and the free energy correction is

δF ≈
∑
q

(
log

Πt(q,∆)

Πt(q, 0)
+ log

Πu(q,∆)

Πu(q, 0)

)

=
1

(2π)
4
k3a

∫ ∞

0

dq0

∫ Λ

0

q2dqdΩq

(
log

Πt((q,∆)

Πt(q, 0)
+ log

Πu(q,∆)

Πu(q, 0)

)
. (D18)
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Similarly to the 2D case, both Πt and Πu are functions of q0/(vF q) and ∆/(vF q) only. Hence, by dimensional analysis,
the logarithmic terms have an expansion of the form A/q2+B/q4+ · · · , where A,B, . . . are functions of ω and ∆. The
quadratic terms are UV divergent, and the quartic terms are logarithmically divergent. To evaluate them, we rescale
q0 → vF qz, q → ∆y/vF , which renders the polarization functions dimensionless, e.g. Πt(q,∆) = Πt(z, θq, 1/y), such
that

δF ≈ ∆4

(2π)
3
(vF ka)3

∫ ΛvF
∆

0

y3dy

∫ ∞

0

dz

∫ π

0

sin θdθ

(
log

Πt((z, θ, y
−1)

Πt(z, θ, 0)
+ log

Πu(z, θ, y
−1)

Πu(z, θ, 0)

)
. (D19)

We evaluated the integrand numerically as a function of y by integrating over z and θ. Then, we fitted the result to
a series of power laws and obtained at y ≫ 1 that the integrand has the form

− A

y2
− B

y4
+ · · · , A = 0.70± 0.01, B = 46.7± 0.9. (D20)

This yields the expression in Eq. (104).
The pairing equation is given by Eq. (37). In order to compute it, we first write down the (linearized) equations

for both the normal self-energy and the pairing vertex,

Σαβ(k) = Σ(k)δαβ , Φαβ(k) = f(k)(iσy)αβ , (D21)

where

Σ(k) =
ḡ

k3aD0
T
∑
p0

∫
d3p

(2π)
3G(p)D(p− k), (D22)

f(k) =
ḡ

k3aD0
T
∑
p0

∫
d3p

(2π)
3 f(p)G(p)G(−p)D(p− k). (D23)

Here, we already performed spin summations and projected onto the transverse component. Furthermore, we used
the facts that only the spin-singlet channel is attractive and that

D(p) = D0(r + |p|2/k2a + δΠ0(p))
−1 (D24)

is the boson propagator in the disordered phase. We assume that the momentum integration for both Σ and f
factorizes to components parallel and transverse to the FS, and obtain the effective frequency-dependent propagator

d(q0) =

∫ Λ

0

pdp
1

p2 + πḡνF |q0|
4vF kap

= log

(
1 + (Λ/ka)

3 4vF ka
πḡνF |q0|

)1/3

. (D25)

The zero-temperature normal-state self-energy is then found to be

Σ(k0) ≈ −i ḡ

vF ka

k0
4π2

log
Λ/ka

( ḡνF |k0|
vF ka

)1/3
, (D26)

which gives Eq. (87) of the main text. At finite temperatures, both f and Σ have similar forms,

Σ(k0) = −i ḡ/vF ka
4π

T
∑
p0

d(p0 − k0)sgn(p0), (D27)

f(k0) =
ḡ/vF ka

4π
T
∑
p0

d(p0 − k0)
f(p0)

|p0 +Σ(p0)|
. (D28)

It may be verified that this is precisely the form of Eq. 7 in Ref. 84. To connect the two problems, one may define

g =
ḡ

12π2vF ka
, ωΛ =

vFΛ
3

k2aḡνF
. (D29)

Then Tc is given by Eq. (27) in that paper, namely

Tc ≈ ωΛ exp

(
− π

2
√
g

)
. (D30)
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For finite r that is large enough to neglect the Landau damping term, the logarithmic frequency-dependent enhance-

ment of the interaction is replaced by a constant logarithm, d(q0) ≈ d0 = log
(
1 + Λ2

k2
ar

)1/2
, and Tc goes back to a

BCS-like form,

Tc ≈ ωre
− 1

3gd0 , ωr = min

(
ckar

1/2

2π
,
2r3/2vF ka
π2ḡνF

)
. (D31)

Appendix E: Numerical parameters for Fig. 6

The qualitative shape of the phase diagram in the presence of strain depends on a variety of parameters. For clarity,
we present here the numerical parameters used in constructing the phase diagram of Fig. 6.

To create the figure, we used the following dimensionless parameters. The second order gaps were rt = 0.0, rz =
−0.05, and the first order transitions were given by r∗j = rj − δr, where δr = 0.05. The elastic couplings were
λ0z = 0.8, λ0t = 1, λ1t = 0.2. We picked the parameters for visual clarity rather than physical significance. Finally, for
simplicity, we did not account for the complicated dependence of the border between the first-order and second-order
regions of the t mode on ∆r, r. Instead we used a simple linear relation (which is justified very near the critical point
at small strains), r∗j = ρrj − δr, with ρ = 0.9. The size of the SC phase in the figure is not to scale.
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