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ABSTRACT: Characterization of the elemental distribution of
samples with rough surfaces has been strongly desired for the analysis
of various natural and artificial materials. Particularly for pristine and
rare analytes with micrometer sizes embedded on specimen surfaces,
non-invasive and matrix effect-free analysis is required without surface
polishing treatment. To satisfy these requirements, we proposed a new
method employing the sequential combination of two imaging
modalities, i.e., microenergy-dispersive X-ray fluorescence (micro-
XRF) and Raman micro-spectroscopy. The applicability of the
developed method is tested by the quantitative analysis of cation
composition in micrometer-sized carbonate grains on the surfaces of
intact particles sampled directly from the asteroid Ryugu. The first
step of micro-XRF imaging enabled a quick search for the sparsely scattered and micrometer-sized carbonates by the codistributions
of Ca2+ and Mn2+ on the Mg2+- and Fe2+-rich phyllosilicate matrix. The following step of Raman micro-spectroscopy probed the
carbonate grains and analyzed their cation composition (Ca2+, Mg2+, and Fe2+ + Mn2+) in a matrix effect-free manner via the
systematic Raman shifts of the lattice modes. The carbonates were basically assigned to ferroan dolomite bearing a considerable
amount of Fe2+ + Mn2+ at around 10 atom %. These results are in good accordance with the assignments reported by scanning
electron microscopy−energy-dispersive X-ray spectroscopy, where the thin-sectioned and surface-polished Ryugu particles were
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applicable. The proposed method requires neither sectioning nor surface polishing; hence, it can be applied to the remote sensing
apparatus on spacecrafts and planetary rovers. Furthermore, the non-invasive and matrix effect-free characterization will provide a
reliable analytical tool for quantitative analysis of the elemental distribution on the samples with surface roughness and chemical
heterogeneity at a micrometer scale, such as art paintings, traditional crafts with decorated shapes, as well as sands and rocks with
complex morphologies in nature.

■ INTRODUCTION
The analysis of the elemental distribution is fundamental for
characterizing natural and artificial materials. However, these
materials often have surface roughness and a complicated
structure. Examples are environmentally polluting substances
with heavy metal elements, geo- and cosmo-chemical samples
with microcrystals of minerals, artworks and sculptures with
surface paintings, and fragments left on crime scenes.

For the quantitative analysis of the elemental composition of
materials, there are several bulk analytical techniques that give
precise values, such as inductively coupled plasma mass
spectroscopy (ICP−MS).1 However, heterogeneous character-
istics such as surface roughness and chemical heterogeneity of
the sample will be deprived by its dissolution procedures. The
obtained elemental composition averages the entire volume
sampled in the case of destructive analyses.

For the analysis of elemental distributions of the sample
surfaces, scanning electronmicroscopy with energy dispersive X-
ray spectroscopy (SEM−EDS), electron probe microanalyzer
(EPMA), and secondary ion mass spectrometry (SIMS)1 are
powerful analytical tools. Their imaging modalities enable us to
measure such physically and chemically heterogeneous samples
with excellent spatial resolution at a micrometer-to-nanometer
scale. However, they generally require pretreatments such as
sample sectioning, surface polishing, or metal/carbon coating to
avoid charging due to the irradiation of electron or ion beams
onto the sample surfaces. These pretreatments sometimes lose
information about surface roughness or porosity and affect the
accuracy of quantitative estimations of the spatially distributed
elements. Accordingly, a non-invasive analytical method is
strongly desired to evaluate the spatial distributions of elements
with their surface morphology intact. Here, “non-invasive” is
defined as a procedure not involving irreversible alternations by
physical or chemical processes in the pretreatments, such as
surface polishing or metal/carbon coating.

Microenergy-dispersive X-ray fluorescence (micro-XRF)
allows us to visualize the heterogeneous spatial distribution of
elements at the micrometer scale without any pretreatments.2

Synchrotron radiation micro-XRF (SR-XRF)3 is of particular
advantage as a high-energy source with strong brightness and
excellent spatial resolution at a submicron scale. Furthermore,
X-ray absorption fine structure (XAFS) can be simultaneously
obtained with SR-XRF, which enables us to reveal the chemical
state of that sample. One notable disadvantage in SR-XRF is its
quite limited access to synchrotron light sources. Alternatively,
laboratory micro-XRF offers much easier access. However, the
primary X-rays focused by a glass capillary result in a spatial
resolution typically of 100 μm or, at best, 10 μm. When the size
of the analytes of interest is on the micrometer scale, these
spatial resolutions induce another drawback: the unwanted
overlap of signals from the matrix surrounding the micrometer-
sized analytes. Furthermore, compared to an electron or ion
beam, an X-ray penetrates further inside the analyte. Therefore,
when the analyte is thin, the detection area also expands into the
depth direction of the matrix. Consequently, three-dimensional

signal overlap reduces the accuracy of the quantitative
estimation of elements in the aimed analyte. In the present
paper, these problems, originating from both the instrumental
limitations of micro-XRF and sample size and morphology, are
all referred to as “matrix effects”.

Another candidate is Raman micro-spectroscopy. It is also a
non-invasive analytical technique that provides information on
slight changes in molecular or crystal structures with superior
lateral spatial resolution (normally 1 μm) to that of micro-XRF.
Furthermore, since the spectral patterns of Raman scattering
originate from molecular or crystal structures, we can
discriminatively measure these analytes in the focused area. In
other words, we can distinguish Raman signals of the targeted
molecules and crystals selectively from those of the matrix.
However, Raman micro-spectroscopy also has disadvantages in
measurement time due to its inherently weak signal. Thus, the
imaging area is quite limited by trading off its spatial resolution.
This disadvantage could be serious when the analyte is rare and
is heterogeneously and sparsely scattered on the surface of the
specimen on a millimeter or even larger scale.

To overcome these difficulties, we propose a new analytical
method of micro-XRF and Raman micro-spectroscopy. To
examine the capability of the proposed method, we studied the
samples directly collected from the asteroid Ryugu by the
Hayabusa2 spacecraft4,5 as a practical example of an extremely
rare, heterogeneous, and complex sample with rugged surfaces.
They have various micrometer-scaled grains of minerals sparsely
existing on the surface of the phyllosilicate matrix.6

Among the various minerals found on the Ryugu samples, we
focused on carbonates. This is because they are important
secondary minerals formed by aqueous alteration and are
expected to provide quite fruitful information on the aqueous
environments where they were formed in the early solar
system.7,8 In terrestrial environments, they are commonly found
in sedimentary rocks. Their chemical characteristics and cation
compositions help us understand the chemical histories of the
atmosphere, oceans, and climate change that they experienced.9

Furthermore, interestingly, the kinds of carbonate have many
variations depending on cation compositions, e.g., calcite,
magnesite, dolomite, and siderite.9 Some trace or minor
elements that preferentially occur in carbonate grains are
manganese, bromine, strontium, and yttrium.9 Among these
elements, the magnesium ion in dolomite can be easily
substituted by manganese or iron. In particular, previous studies
reported that this substitution frequently occurred on the
dolomites of the most primitive meteorites that were formed
during the early stages of the solar system.10−12

In recent studies, we have developed scales to quantitatively
evaluate the degree of cation substitution of carbonates that
occurred on natural dolomites using peak shifts of Raman
frequencies.13−15 Since natural dolomite forms dolomite
[CaMg(CO3)2]−ankerite [CaFe(CO3)2]3 solid solution sys-
tems,16,17 the quantitative estimation of Fe2+(+Mn2+) is
important to investigate the chemical environment where they
occurred. The present study demonstrates that micro-XRF
imaging realizes the efficient search of dolomite crystals on the
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Ryugu particles, and that the following Raman imaging at the
region of interest (ROI) area can estimate the cation
composition quantitatively without matrix effects. The proposed
method is sufficiently pragmatic to quantitatively estimate the
cation compositions of Ryugu dolomites in a matrix effect-free
and non-invasive manner.

■ EXPERIMENTAL SECTION
Elemental Imaging by Micro-XRF. Micro-XRF was

performed at HORIBA X-ray LAB with version 1.3.2.19
software (XGT-9000, HORIBA Co., Ltd.). An arrayed multi-
chamber cell (AMCC; see the following section for the details)
was loaded into the measurement position under vacuum
conditions. The primary X-rays were focused to 100 μm in
diameter with a glass polycapillary optic and vertically irradiated
the sample. The fluorescence X-rays from the samples were
measured by a silicon drift EDS detector at an angle of 45°. An
Rh target X-ray tube was used to generate the primary X-rays. A
specimen stage in the XGT-9000 scanned the sample position,
while obtaining a spectrum step by step. While the scanning step
was slightly varied depending on the desired imaging area, it was
typically 14 μm and, at its largest, 20 μm. A step size smaller than
the beam size (i.e., spatial resolution) was chosen for definitely
finding the Ca-rich spots. Namely, the XRF beam was not
spatially homogeneous, and hence, the center of the spot tends
to be preferentially probed. Conversely, if the step size was
comparable to the beam size, small Ca-rich spots located just
between the focused spots might accidentally fail to be found
because of the low X-ray photon density at the edge of the beam.
The step size being sufficiently smaller than the beam size helps
dispel such concerns. By processing the spectrum and
calculating the X-ray intensity of an element, the distribution
of the element was visualized; this process is called elemental
imaging or micro-XRF imaging in the present paper. The
measurement conditions of the X-ray tube voltage, the
measurement time, and X-ray working distance were 30 kV,
200ms per pixel, and 1.0 mm, respectively. The tube current was
set to 300 μA.
Raman Micro-spectroscopy. Micro-Raman measure-

ments were performed with LabRAM HR Evolution and
LabSpec 6 software (HORIBA Co., Ltd.). For the detector, a
Synapse EMCCD camera (HORIBA Co., Ltd.) was equipped.
The confocal optical arrangement of the microscope and
autofocusing stage-driving with the software enabled us to
obtain Raman mapping data with high spatial resolution even
from the samples with surface roughness and without any
pretreatment, such as surface polishing. Olympus LMPlanFN
(100x, NA 0.80, WD 3.4 mm) was used as an objective lens for
high-resolution Raman mapping with (sub)micrometer reso-
lution. The spatial resolution (focus size of the laser) would be
0.4 μm at best under an assumption that the beam size of the
incident light perfectly matched the pupil diameter of the
objective lens. While it is difficult to prove that the size matching
is perfect, the spot size (i.e., the spatial resolution) should not far
exceed 1 μm. The excitation wavelength and power were 532 nm
and 0.6−1.2 mW, respectively. The spectra were measured with
120 s exposure and averaged 2 times. The Raman signal from a Si
wafer (520.6 cm−1) and a sulfur flake (153.8, 219.1, and 473.2
cm−1) was used for calibrating the Raman wavenumber.
Estimating Cation Composition and Construction of

the Ternary Diagram. To determine the cation compositions
for terrestrial carbonates, the standard fundamental parameter
(FP) method18,19 was applied to the XRF spectra. The cation

compositions were calibrated by standard samples named JLk-1
and Dolomite (MV) for kutnohorite14 and dolomite,
respectively. The standard FPmethod can calibrate fundamental
parameters, including coefficients for elemental intensity, stored
in the instrumentation, which are subject to matrix effects. JLk-1
is lake sediment from Lake Biwa, Shiga, Japan, which is a
geostandard sample provided by the National Institute of
Advanced Industrial Science and Technology (AIST), Japan.
Dolomite (MV) is a dolomite stone mined in Morro Velho,
Brazil. A single crystal (0.1697 g) of Dolomite (MV) was used as
the standard, and its cation composition was determined by
inductively coupled plasma-atomic emission spectroscopy
(ICP-AES). The details of the ICP-AES experiment can be
found in the Supporting Information (SI). Each cation content
was finally given by the simple eq 1 below.

C

(ion Mg, Ca, Mn, or Fe)

W
M

W

M
W
M

W
M

W
M
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ion
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Fe

Fe

=
+ + +

= (1)

Cion: cation content [atom %], Wion: elemental concentration
[wt %], and Mion: atomic weight.
ArrayedMulti-chamber Cell. To implement two measure-

ments of micro-XRF and Raman micro-spectroscopy sequen-
tially, we have developed a sample holder called AMCC (Figure
S1 in the Supporting Information). Specifically, we drilled holes
0.5 mm deep with diameters ranging from 0.5 to 1.2 mm at 0.1
mm pitch (Figure S1a−c). When loading the sample(s), we
carefully chose a hole that would fit the size of the Ryugu
particles. This is because the Ryugu particles might be lost in the
instrument chambers due to air flowing upon vacuuming or due
to static electricity. When the AMCC was placed on the
specimen stage of the respective microscope, AMCC jigs were
used (Figure S1d,f). During the micro-XRF measurement, the
pressure in the sample chamber was simultaneously monitored
to keep it below tens of Pa. When transferring the AMCC from
micro-XRF to a Raman microscope, the pressure in the sample
chamber was gradually released to atmospheric pressure, and the
AMCC was carefully detached from the stage to reduce the risk
of sample loss. When the sample amount is as small as or less
than 1 mg, the holes may be unfit due to static electricity.
Therefore, a 0.5 mm thick aluminum cell frame was set to load a
single Ryugu particle into a hole with an appropriate diameter.
As for measuring the reference minerals, they were fixed by
acrylic cell frames. Note that the reference minerals were large
enough not to worry about the risk of sample loss.
Samples. A Ryugu particle picked up from the A0107

aggregate sample collected at the first touchdown site (TD1)
was measured in this study.5

The mined locations of the geostandard and terrestrial
carbonates are summarized as follows. JLk-1 is from Lake Biwa,
Shiga, Japan. Calcite is from Garo, Hokkaido, Japan. Magnesite
is from Goat Hill Magnesia Quarries, Pennsylvenia, USA.
Kutnohorite (SH) is from Sterling Mine, New Jersey, USA.
Kutnohorite (W) is from Wissels Mine, Northern Cape, South
Africa. Dolomite (MV) is from Morro Velho Mine, Minas
Gerais, Brazil. Ferroan dolomite (EM) is from Eagle Mine,
Colorado, USA. Their optical images are shown in Figure S2 in
the Supporting Information.
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■ RESULTS AND DISCUSSION
Mn−Ca Colocalization on the Ryugu Particle. Figure 1

shows the elemental imaging of the Ryugu particle (from
A0107) with micro-XRF. As shown in Figure 1, Mg and Fe were
predominantly present. In contrast, the distribution of Ca was
sparse and heterogeneous. Mn also showed a spatial distribution
similar to that of Ca; the bright spots ofMn overlapped well with
those of Ca. Based on previous studies,10−12 this spatial
matching of Ca and Mn strongly suggests that these spots
correspond to the positions where carbonate grains exist. The
other two major cations in carbonates, i.e., Mg and Fe, are also
abundantly included in the matrix of phyllosilicate minerals.
Therefore, elemental images of Ca and Mn help us find the
locations of carbonate grains on the matrix. However, since the
carbonates are identified with Ca, Mg, and Fe + Mn, it is hard to
identify carbonate species based only on Ca and Mn
distribution.

In Figure 1, it should be noted that not only the bright spots of
Ca and Mn match spatially well but also the brightness of each
element varies depending on the locations. This result implies
that there are a variety of cation compositions in each carbonate
grain at the Ca−Mn colocalization sites. However, we must
remark that the brightness variation might simply derive from
the matrix effects, which indicates the difficulty in estimating
cation compositions merely through micro-XRF.
Raman Spectra Measured at Ca−Mn-Rich Spots. To

confirm whether carbonate grains actually exist at the Ca−Mn
colocalization spots, we then measured Raman spectra at the
Ca−Mn rich spots appearing in the top panel of Figure 2. Note
that probing the identical spots for micro-XRF and Raman
microscopes was achieved through the use of the identical
AMCCmentioned above. It is also noteworthy that from optical
microscopic images, i.e., without the help of the elemental map
observed by XRF, carbonate grains on Ryugu as well as on other
meteorites are generally indistinguishable from those of other
minerals such as silicates and iron oxides. As shown in Figure 2,
three or four sharp peaks with a broad fluorescence background
appeared in the Raman spectra at all measured colocalization
spots. The peak wavenumbers for these bands were around 174,
295, 724, and 1094 cm−1, as summarized in Table 1. (Note that,
strictly speaking, the “wavenumber” should be referred to as the
relative wavenumber to that of incident light or conventionally
“Raman shift”. In the present paper, however, we use
“wavenumber” because the words “relative” and “shift” have
started to be avoided in recent years, presumably as they make

an impression that the wavenumber can change due to some
perturbations such as temperature and pressure changes.) These
bands are characteristic to carbonates, and each peak is
assignable to translational lattice mode (T), librational lattice
mode (L), CO3

2− bending mode (ν4), and CO3
2− stretching

mode (ν1), respectively.
20,21 The appearance of the set of these

peaks ensures that there are indeed carbonate grains at all of the
Ca−Mn colocalization spots. Furthermore, the peak wave-
numbers are known to shift, depending on the cation
compositions in the carbonates. By comparing the peak

Figure 1. Optical image of the Ryugu particle in AMCC (left, scale bars: 0.5 mm) and the corresponding elemental images for Ca, Mn, Fe, and Mg
(four panels in right, scale bars: 0.5 mm).

Figure 2.Ca bright spots on the surface of the Ryugu particle by micro-
XRF imaging and their corresponding Raman spectra by a Raman
microscope. The inset in each spectrum is the corresponding optical
image (scale bars: 20 μm). Grayish grains on black matrices are
carbonates.
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wavenumbers with those observed in previous studies,13−15 we
assigned these carbonates essentially to dolomite CaMg(CO3)2.
Note that Mg in dolomite is often partially substituted by Fe or
Mn, forming dolomite [CaMg(CO3)2]−ankerite [CaFe-
(CO3)2]−kutnohorite [CaMn(CO3)2] solid solution series.16,17

In fact, the peak wavenumbers summarized in Table 1 slightly
deviated from each other, implying different degrees of cation
substitution occurring at each carbonate grain. The slightly
lower wavenumbers of the ν1 mode compared to that of
terrestrial dolomite would be also due to the substitution. The
cation substitution will be quantitatively discussed in detail in
the following section.
Estimation of Fe + Mn Content in Ryugu Dolomites.

The partial substitution of Mg for Fe or Mn was suggested by
both micro-XRF and Raman microspectroscopy. However,
since Mg and Fe exist everywhere in the matrix, it is difficult to
selectively quantify the amount of these cations in carbonates
solely with micro-XRF. On the other hand, in our previous
studies, it was found that the cation composition of carbonates
can be uniquely determined from their Raman wavenumbers of
T- and L-modes within an error of 1.7%.14,15 While a couple of
conversion equations were proposed in the previous stud-
ies,13−15,22−27 it is essential to first qualitatively identify the type
of carbonates (i.e., major cations contained) in order to choose
the most suitable equation.

For this purpose, the T- and L-mode frequencies of Ryugu
carbonates are biaxially plotted together with those of terrestrial
carbonates belonging to the dolomite-ankerite-kutnohorite solid
solution series (Figure 3). In Figure 3, two kurnohorites labeled
(SH) and (W), which were collected at Sterling Hills (USA) and
Wissels Mine (South Africa), respectively, are shown because

their cation compositions were noticeably different (XRF
spectra can be found in Figure S3 in the Supporting
Information). A wide distribution of the T- and L-mode
wavenumbers found for terrestrial ferroan dolomite [EagleMine
(EM), USA; data taken from ref 13] is due to heterogeneity of
cation composition in a sample. The cation compositions of the
terrestrial carbonates are summarized in Table S1 in the
Supporting Information. By comparison of the results for
terrestrial and Ryugu carbonates, Ryugu carbonates are
assignable to ferroan dolomite, while their wavenumbers also
slightly depend on the measurement position, reflecting their
heterogeneity.

As already reported in our previous studies,13,14 the cation
compositions of ferroan dolomites can be obtained by the T-
and L-mode wavenumbers. For CFe+Mn, it is

C 0.02273 6.836Fe Mn L= ++ (2)

where L is the L-mode wavenumber in inverse centimeters.13

For CCa, although we had reported a similar equation (ˆC 0.03155 0.02768 2.13220Ca T L= + ),14 here it is
revised as

ˆC 0.03139 0.01867 0.419Ca T L= + + (3)

where T̂ is the T-mode wavenumber in inverse centimeters.
The reason for this revision is that the Ca content in a standard
sample was overestimated in the previous study.14 The
coefficients of eq 3 were derived in the same way as those in
the previous study, but a more reliable standard was used here by
changing the reference dolomite from JDo-1 (dolostone) to a
dolomite crystal (Morro Velho Mine, Brazil). The details of the
derivation of eq 3 and the reason for the modification can be
found in SI with a Raman spectrum of JDo-1 (Figure S4). We
should remark that this revision decreases the calculated Ca
content by about 8 ± 2 atom % from those calculated by the
original one. Note that the reason for the overestimation of Ca
content in the previous equation is that JDo-1 contains a
noticeable amount of calcite, even though it is provided as a
“dolomite rock”. Namely, while CCa was provided as 0.57 by the
public organization AIST, some of theCa originates from calcite,
not dolomite. Although it is quite difficult to obtain CCa of the
dolomite portion in JDo-1 because it is a powder mixture of
dolomite and calcite, by assuming it is 0.50 such as in the ideal
case of dolomite CaMg(CO3)2, the previous equation should
overestimate CCa about 0.07 (7 atom %). The coincidence
between this rough estimation (7 atom %) and the experimental
results (8 ± 2 atom %) supports that the revised equation is
more reliable. By determining CCa and CFe+Mn, CMg can be
derived from eq 1, namely, CCa + CMg + CFe+Mn = 1. One may

Table 1. Raman Frequencies for Ryugu Carbonate Grains and Terrestrial References (unit: cm−1)

T L ν4 ν1

A(a) 176.4 298.9 724.9 1096.8
A(b) 173.7 296.0 721.7 1094.8
A(c) 171.6 289.7 722.3 1095.0
B 173.8 295.0 1095.3
C 175.0 296.1 1095.6
D 175.1 296.3 1095.0
E 175.0 294.6 1094.6
F 174.5 296.1 1094.7
calcite 154.6 ± 0.9 280.9 ± 0.9 711.6 ± 0.8 1086.0 ± 0.8
magnesite 212.5 ± 1.0 329.3 ± 1.0 738.2 ± 1.1 1094.4 ± 1.0
Dolomite (MV) 174.1 ± 0.2 296.7 ± 0.2 724.3 ± 0.1 1096.8 ± 0.2

Figure 3. Biaxial plotting and comparison for Ryugu dolomites and
terrestrial references with T- and L-mode wavenumbers. For Ryugu
dolomites, the black filled markers represent those obtained at grains
A(a)-F, while the open markers represent those obtained at several
different spots within grain B. Dol stands for dolomite, and FD stands
for ferroan dolomite.
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concern oneself with the reliability and the significant digits in
eqs 2 and 3. Our previous study demonstrated that the error of
the equations is 0.04 (4 atom %) at worst. Therefore, the last
digits of the composition obtained by the equations should be on
the order of 0.01. Because the rounding should be taken after the
summation, the significant digits of the coefficients were
determined for the last digits of each term of the right hand in
eqs to be 0.001. Note that the accuracy of the peak wavenumber
in the present study was typically around 0.2 cm−1, and it gives
rise to a composition error of less than 1 atom% according to the
error propagation theory. Therefore, the composition error due
to the Raman measurement would be negligible as long as the
Raman spectra are properly measured.

The cation compositions of Ryugu dolomites derived by eqs
1−3 are plotted in the ternary diagram (Figure 4a). The results
indicate that themajority of Ryugu dolomites contain about 10−
15% Fe orMn. In a recent study, a ternary diagram (Ca, Mg, and
Fe + Mn) of Ryugu dolomites reported with SEM−EDX
measurements showed on average 10−20% for CFe+Mn.

28,29

The distribution is in good accordance with that in the present
study. This consistency ensures the reliability of the proposed
analytical method. Furthermore, the present method does not
require pretreatments of samples, such as surface polishing. It is
worth highlighting that the quantitative estimation was achieved
in the totally non-invasive manner without matrix effects.

For the grain whose Fe + Mn composition is about 25% (the
one labeled “Irregular” in Figure 4a), it should be noted that the
Raman peaks obtained at the spot [A(c)] were significantly
broader than those typically obtained. The reason for the band
broadening is unclear, but a plausible explanation is the low
crystallinity of the dolomite grain at this spot. Because it is

difficult to determine the peak position for the broad bands, it
cannot be concluded currently whether the irregularly high
concentration (∼25%) of Fe and Mn was true or just an artifact
due to the broadened Raman band. It is worth keeping in mind
that an adequate quality of the spectra (i.e., enough peak
intensity and the sharpness of the peak without irregular
broadening) is necessary for the estimation of accurate
composition. This point is essential, especially when this
technique is automatically applied to Raman mapping data.
While the automatic analysis may provide a peak wavenumber
even if the spectral quality is not sufficient, its reliability should
be carefully checked by the signal-to-noise ratio, signal-to-
background ratio, and sharpness of the bands. It is also
unsatisfactory that Fe and Mn are indistinguishable due to
their similarity in ionic radii and masses.13,14 However, it is
worth noting that such quantitative analysis is achieved not by
signal intensity but by the Raman shifts of the signals. As Raman
shifts are influenced by neither the matrix effect nor the total
amount of the sample, the composition can be accurately
estimated.

As mentioned above, carbonate grains are crucial as evidence
of experienced aqueous alteration, and the heterogeneity of
cation abundance should provide important information to infer
the aqueous environment. In the present paper, the elemental
imaging of micro-XRF enhances efficient searching of sparsely
distributed carbonates without pretreatments such as surface
polishing and metal/carbon coating. Thanks to the sample
selectivity and characteristic shifts of Ramanmicrospectroscopy,
it is also advantageous to quantitatively estimate the
heterogeneity of cation composition in the same carbonate
grain simultaneously. Raman spectra at a few spots within spot B

Figure 4. Cation composition for Ryugu dolomites. (a) Cation compositions of Ryugu dolomites plotted on a ternary diagram. The filled and open
markers represent those obtained at the spot A(a) to F and those within the spot B, respectively. (b) Raman spectra measured at the spots showing
typical and irregular compositions. “Typical” spectrum is of the spot A(a) while “Irregular” is of the spot A(c).
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were measured (Figure S5 in the Supporting Information) and
analyzed, and it turned out that the cation compositions were
heterogeneous even inside a single dolomite grain, as shown in
Figures 3 and 4a. The proposedmethod, based on the sequential
combination of XRF and Raman microscopes, would provide an
initial analysis tool for evaluating the microheterogeneity of rare
and pristine samples with surface roughness without any
pretreatments.

■ SUMMARY
The sequential analysis of micro-XRF and Raman spectroscopy
on the surfaces of Ryugu intact particles at the same
measurement positions revealed that the Ca−Mn colocalized
spots were found to be carbonate grains, and most of them can
be assigned to ferroan dolomites, where the Fe−Mn ratio was
estimated to be around 10−15%. These results indicate that the
Ryugu dolomites have features similar to those found on CI-
class meteorites, where Fe and Mn are considerably included.
From an analytical point of view, we demonstrated that the
sequential analysis of micro-XRF and Raman spectroscopy
greatly enhanced finding and quantitatively characterizing
important minerals that sparsely existed at the micrometer
scale on the sample surfaces. The non-invasive manner of these
two spectroscopies does not require pretreatments such as
surface polishing before measurements. These points are
favorable for the initial analysis of such extremely rare samples
before performing further precise but invasive or destructive
analyses to grasp the general features of the analytes and enhance
the reliability of quantitative data estimated by other conven-
tional methods. Moreover, a noteworthy advantage of the
proposed method is that it provides a versatile tool to
demonstrate the microregion heterogeneity of composition,
while avoiding any matrix effects due to sample characteristics
which are sometimes problematic in analyses utilizing X-rays.
The proposed analytical approach is also applicable to a variety
of samples of artwork and geo- or cosmo-chemical specimens.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.3c03463.

Experimental details of ICP-AES and micro XRF,
derivation of eq 3, cation compositions for terrestrial
carbonates, detailed pictures of AMCC itself and samples
loaded on AMCC, XRF spectra of the terrestrial samples,
and Raman spectrum of JDo-1 (PDF)
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