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Maximal Reliability for Unit-weighted Composites 

 

Although coefficient alpha is the most widely used measure of internal consistency, it 

does not optimally describe the unidimensional internal consistency of a composite.  Coefficients 

based on a one-factor model have been suggested as improved estimators of internal consistency 

reliability.  When the 1-factor model does not fit the data, however, the meaning of such a 

coefficient is unclear.  A new identification condition for factor analytic models is proposed that 

assures the composite can be modeled with only one common factor.  The associated 1-factor 

reliability is the maximal internal consistency coefficient for a unit-weighted composite.  The 

coefficient also describes k-factor reliability, the greatest lower bound to reliability, and 

reliability for any composite from a latent variable model with additive errors. 
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Maximal Reliability for Unit-weighted Composites 
 

Composite scores or scale scores are very frequently used in psychology and related 

social and behavioral sciences.  A composite variable is a sum of other variables.  In the typical 

case, a composite X is a simple sum of p unit-weighted components such as X = X1 + X2 +…+ 

Xp.1  Examples of composites include the total score on a test composed of items, an attitude 

score based on summed responses to a survey, and so on.  An internal consistency reliability 

coefficient describes the quality of the composite or scale in terms of hypothesized constituents 

of the components Xi.  These might represent true and error parts based on classical test theory 

(Xi = Ti + Ei), common and unique parts based on common factor analysis (Xi = Ci + Ui), or the 

loading of the component on its factor plus residual error (Xi = λi F + Ei). 

By far the most widely used measure of internal consistency is Cronbach’s (1951) 

coefficient α (Hogan, Benjamin, & Brezinski, 2000).  In the population, it is defined as 

 '
1

1 '
p 1 D1

p 1 1
α = −

− Σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where D is the diagonal of the covariance matrix Σ of the components Xi, and 1 is a column 

vector of unit elements which serves as a summing vector.  Thus 1’D1 is the sum of the 

variances of the p component variables, and 1’Σ1, the sum of all the elements of the p by p 

covariance matrix, is the variance of the total score X.  In practice, α  is applied by substituting 

the sample covariance matrix S in place of Σ, yielding what we might call α̂ .  The popularity of 

                                                 
1 Our discussion emphasizes the unit-weighted case, but our results also apply to non-unit equal weights.  
Generalization to differentially weighted composites is straightforward. 
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this coefficient stems from several facts: it can easily be computed, it is available in many 

program packages as a default, it can be applied without fitting or validating any specific model 

to the components Xi, and, importantly, it is a lower bound to reliability α≤  ρxx (see e.g., Lord & 

Novick, 1968).   The latter property arises if the components have a decomposition Xi = Ti + Ei, 

where Ti and Ei are uncorrelated with covariance matrices TΣ and diagonal EΨ , so that the 

component covariance matrix is decomposed into two orthogonal parts T EΣ = Σ +Ψ .  Then the 

composite has a similar decomposition X = T + E where 
1

p
iT T=∑ , 

1

p
iE E=∑ , and the 

reliability of the composite is defined as the ratio of var(T)/var(X), or 

2

2 1T T E

X
xx

1 1 1 1
1 1 1 1

σ
σ

ρ ′ ′Σ Ψ
= = −

′ ′Σ Σ
= . 

There are many good recent discussions of α, its problems, and its alternatives (e.g., 

Barchard & Hakstian, 1997; Becker, 2000; Bonett, 2003; Enders, 2003; Enders & Bandalos, 

1999; Feldt & Charter, 2003; Green, 2003; Green & Hershberger, 2000; Hakstian & Barchard, 

2000; Komaroff, 1997; Miller, 1995; Osburn, 2000; Raykov, 1997, 1998, 2001, 2004; Raykov & 

Shrout, 2002; Schmidt, Le, & Ileus, 2003; Schmitt, 1996; Shevlin, Miles, Davies & Walker, 

2000; and Vautier & Jmel, 2003).  For the purposes of the current paper, two issues are 

important.  First, the lower-bound property α≤  ρxx has been questioned.  When correlated errors 

are present so that EΨ  is not diagonal, α can actually overestimate reliability.  Second, the size 

of α  provides no information on the degree of unidimensional reliability, sometimes called 

homogeneity, that is, reliability due to the main or only underlying common true score factor.  In 

order to deal with both of these problems, the recent theoretical literature has suggested 

abandoning coefficient α  and using a coefficient based on a theoretical decomposition of the 

component covariance matrix. 
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In this approach, the covariance matrix of the true scores is presumed to be 

unidimensional, that is T λλ′Σ = , where λ  (px1) is the factor loading vector of the p variables on 

a single common factor.  Hence the covariance matrix of the observed scores is decomposed as 

uλλ′Σ = +Ψ , 

where uΨ is the covariance matrix of the unique variables or residual errors.  Then  

22 2
1

2

( )( ) 1
p

i uT

X
11

1 11 1 1
1 1 1 1 1 1 1 1

λσ λλ λ
σ

ρ ′′ ′ ′ Ψ
= = = = −

′ ′ ′ ′Σ Σ Σ Σ
= ∑  

defines reliability 11ρ  ( ≤  ρxx )  based on the hypothesis of a unidimensional latent variable (see, 

e.g., Jöreskog, 1971, p. 112).  Typically, uΨ is taken to be a diagonal matrix representing the 

hypothesis of uncorrelated error components, but in some circumstances correlated errors may be 

hypothesized.  In practice, of course, 11ρ  is not operational.  In order to make it operational, the 

model uλλ′Σ = +Ψ is fit to a sample covariance matrix S , and estimators λ̂  and Ψ̂ are obtained.  

These are plugged into the defining formula, yielding ˆ11ρ .  The approach also provides 

important information about the contribution of a given component variable to reliability via the 

factor loading îλ .  Recent discussions of this approach are given by Kano and Azuma (2003) and 

Raykov (2004). 

 Although 11ρ  is certainly an improvement overα, it has a serious and fundamental flaw 

that has been overlooked.  In realistic applications of covariance structure analysis, especially 

with a large number of variables Xi such as might be used in a reliability study, the null 

hypothesis uλλ′Σ = +Ψ  of a single common factor may hardly be tenable.  If this null 

hypothesis is rejected, it is hard to know what 11ρ  describes.  We would argue that if 
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uλλ′Σ ≠ +Ψ , estimating ˆ11ρ  based on an incorrect 1-factor model is inappropriate.  In this 

paper, we propose an extension of factor-based reliability so that it yields an appropriate 

coefficient of unidimensional internal consistency for all covariance matrices that can be fit by 

an exploratory factor analytic model.  We show that among coefficients based on unit-weighted 

composites, it gives the largest reliability. 

Proposed Identification Condition for Factor Models 

 Suppose that an exploratory factor analysis model of the type 

′Σ = ΛΛ +Ψ  

holds in the population.  Here we allow the factor loading matrix Λ to be (pxk), where the 

number of factors ( 1)k p≤ −  can be any appropriate number.  When standard approaches to 

estimation of factor models are used, k has to be small enough so that there are positive degrees 

of freedom when fitting the model to a sample covariance matrix S.  We will call this the “small-

k” situation.  In such a case, it is well-known that without further restrictions this model is not 

identified (e.g., Jöreskog, 1967).  Based on the partition of the factor loading matrix 

into [ | ]λΛ = Λ , where λ is (px1) and Λ is (px(k-1)), we propose the following identification 

conditions: 

1) λ  contains unrestricted free parameters. 

2) 01′Λ = , that is, the k-1 columns of Λ  sum to zero. 

3) Λ contains free parameters subject to (k-1)(k-2)/2 restrictions.  Some examples of such 

restrictions are: 

a. 1−′Λ Ψ Λ is diagonal.  This is similar to the standard identification condition in 

exploratory maximum likelihood factor analysis, where it is based on all k factors. 
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b.  Λ contains free parameters except for an upper triangle of fixed zero elements, 

e.g., if k=5, the first 4 rows (out of p) are given as 

* 0 0 0
* * 0 0
* * * 0
* * * *

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 , where “*” 

represents a free parameter and “0” is a fixed zero.  An advantage of this approach 

is that any structural equation modeling program can be used to estimate the free 

parameters of the model.   

c. Rotational criteria are imposed on Λ so that it is in some simple structure form.  If 

oblique transformations are considered, the defining model may contain 

correlated factors, that is, ′Σ = ΛΦΛ +Ψ , where Φ  is the covariance matrix of 

the factors.  In this approach, the factor corresponding toλ  remains uncorrelated 

with the remaining factors. 

It follows from the above that the number of identification conditions imposed on the model is 

(k-1) + (k-1)(k-2)/2, which equals  k(k-1)/2, the precise number imposed on the standard 

exploratory factor analysis model.  Thus the proposed representation is simply an alternative 

form of the exploratory factor model. 

However, the coefficient is defined more generally.  It also holds under conditions where 

the number of factors generates negative degrees of freedom, i.e., exceeds the Ledermann 

(1937) bound of .5(2 1 8 1)p p+ − +  in the standard exploratory factor model.  We will call this 

the “large-k” situation, which may require a number of factors near p.  Such a large number of 

factors does not occur in ordinary exploratory factor analysis, but it occurs in such contexts as 

minimum trace factor analysis (e.g., Bentler, 1972; Shapiro, 1982; Shapiro & ten Berge, 2000), 

constrained minimum trace factor analysis (e.g., Bentler & Woodward, 1980, 1983; ten Berge, 
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Snijders, & Zegers, 1981; Shapiro, 1982), or minimum rank factor analysis (e.g., della Riccia & 

Shapiro, 1982; ten Berge & Kiers, 1991; Shapiro & ten Berge, 2002).  See also ten Berge 

(2000).  In the large-k situation, identification condition three is not used since its primary 

purpose is to enable standard exploratory factor analytic estimation with positive degrees of 

freedom. 

 Reliability based on Proposed Parameterization 

The internal consistency reliability of the total score X under the k-factor model is defined 

as the proportion of common to total variance.  Under the model and its proposed 

parameterization, this is 

22 2
1

2

( )( ) 1
p

iT

X
kk

1 1 1 1 1
1 1 1 1 1 1 1 1

λσ λ
σ

ρ ′ ′ ′ ′ΛΛ Ψ
= = = = −

′ ′ ′ ′Σ Σ Σ Σ
= ∑ . 

It is apparent that the reliability coefficient depends only on the size of the factor loadings on the 

first factor.  The remaining k-1 factors contribute nothing at all to reliability.  This occurs 

because identification condition two has the consequence 

[ | ] [ | ] [ | 0]1 1 1 1 1λ λ λ′ ′ ′ ′ ′Λ = Λ = Λ = . 

Only loadings on the first factor contribute to total common variance.  As a result, the reliability 

coefficient kkρ  based on k factors in this parameterization actually describes the internal 

consistency of the composite score based only on the unidimensional latent factor of interest.  

While the identification conditions require more than one factor (k>1), the actual number of 

factors k is irrelevant. 

 In practice, the model under the proposed parameterization has to be estimated from the 

data, and a number k chosen so that the model-reproduced covariance matrix Σ̂  under the given 
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identification conditions approximates the sample covariance matrix S closely enough from a 

statistical point of view.  Then the above formula yields the estimator 

ˆ ˆ ˆ
1ˆ ˆˆkk

1 1 1 1
1 1 1 1

ρ ′ ′ ′ΛΛ Ψ
= −

′ ′Σ Σ
=  . 

As noted above, in the standard situation of exploratory factor analysis, k will be a 

relatively small number.  Also, then ˆ SΣ ≠ .  In contrast, in minimum trace or minimum rank 

modeling situations, k will be quite large and while ′Σ = ΛΛ +Ψ  as before, also ˆ SΣ = .  As a 

result, λ̂  as well as the estimated total variance ˆ1 1′Σ  being explained under the types of models 

(small-k vs. large-k) are liable to be different, and hence these diverse approaches no doubt will 

yield different sample estimates ˆkkρ . 

Properties of the Coefficient 

The coefficient kkρ  can be computed without imposing our proposed identification 

conditions.  That is, /kk 1 1 1 1ρ ′ ′ ′= ΛΛ Σ  is invariant to any particular rotation or transformation of 

the matrix Λ .  Only the product ′ΛΛ  is required, and this product is invariant to orthogonal or 

oblique transformations.  Any factor solution is good enough.  Representation of the latent 

factors using the proposed set of identification conditions is not needed for defining or 

computing kkρ .  With an arbitrary Λ , however, the coefficient is interpretable as the proportion 

of variance attributable to all k factors.  Thus it actually is a k-factor internal consistency 

coefficient.  Furthermore, if Λ is based on minimum trace factor analysis, it is Bentler’s (1972) 

dimension-free coefficient, and when based on constrained minimum trace factor analysis, it will 

be the greatest lower bound to reliability (Jackson & Agunwamba, 1977).  
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Nonetheless, if interest centers on unidimensional reliability, then a given factor of 

interest must be chosen so that the proportion of variance due to this particular factor can be 

determined and interpreted.  Under our proposed identification conditions, the factor loading 

matrix has the structure [ | ]λΛ = Λ  and unidimensional internal consistency refers to the 

proportion of total score variance that is due to the factor whose factor loadings are given byλ .  

We now show that this variance is maximum.  To see this, we start with some arbitrary factor 

loading matrix Λ and finding a maximizing rotation. 

Theorem.  Let ′Σ = ΛΛ +Ψ , and let t be a normal vector ( 1)t t′ = .  Then the factor 

loading vector tλ = Λ  that maximizes 2( )1 λ′  is given by 1/ 2( )1 1 1λ −′ ′ ′= ΛΛ ΛΛ , and the residual 

factors Λ , where λλ′ ′ ′ΛΛ = ΛΛ − , have zero column sums ( 0).1′Λ =  

Proof.  Let 2( ) ( 1)1 t tφ λ µ′ ′= − − .  Taking derivatives /φ µ∂ ∂  and setting to zero establishes 

1.t t′ =   Then / tφ∂ ∂ yields the eigenequation ( ) 0.11 I tµ′ ′Λ Λ − =   Solving this 

yields ( )1 1µ ′ ′= ΛΛ  and 1/ 2( )t 1 1 1−′ ′ ′= ΛΛ Λ .  Substituting into tλ = Λ  and simplifying gives 

1/ 2( )1 1 1λ −′ ′ ′= ΛΛ ΛΛ .  It follows that ( ) 0,1 1λλ′ ′ ′ΛΛ = ΛΛ − =  which means that 0.1′Λ =   

Finally, 2( )1 λ′  is maximized rather than minimized since the minimum φ  occurs with 0.λ =  

The proposed identification conditions one and two are thus not arbitrary.  They are 

necessary to finding the maximal unidimensional internal consistency coefficient for a unit-

weighted sum of observed variables.  The meaning of “unidimensional internal consistency” can 

be clarified by determining the factor structure of the composite based on the factor structure of 

its components.  Let us make the typical assumption that the covariance structure under our 

identification conditions ′Σ = ΛΛ +Ψ  arises from a structure of the underlying variables 

1 2( , ,..., )px X X X ′= as 
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x ξ ε= Λ +  

where ( ) , ( ) 0,E I Eξξ ξε′ ′= =  and ( ) .E εε ′ = Ψ   Then the composite X 1 x′=  has the simple 

factor analytic decomposition 

 ( | ) * *X 1 1 1 1 1λ
λ

ξξ ε λ ε λ ξ ε
ξΛ

⎛ ⎞
′ ′ ′ ′ ′= Λ + = Λ + = +⎜ ⎟

⎝ ⎠
 

where 
1

* p
iλ λ=∑ is a scalar factor loading, λξ  is the factor score that corresponds toλ , and 

1
* p

iε ε=∑  is a scalar.  In other words, even if the components are multidimensional, the 

composite can be interpreted to be a function of only a single common factor – the most reliable 

factor.  The theorem also shows that the maximal reliability factor can be obtained as a rotation 

from any starting factor solution. 

It might be noticed that that the factor loading matrix [ | ]λΛ = Λ  is in a form very similar 

to that obtained with centroid factor analysis.  For a recent discussion of certain aspects of this 

very old method and relevant references, see Choulakian (2003).  However, centroid factor 

analysis was developed as a method of factor extraction.  In the above defining formulae, 

nothing has been stated about what method of estimation is used to provide estimates of the 

factor loadings.  The theoretical coefficient kkρ  is independent of any estimation method, while 

the estimator ˆkkρ  can be obtained from a factor solution obtained by any appropriate method of 

factor analysis.  In the small-k situation, it may be based on maximum likelihood, generalized 

least squares, or least squares estimation, while in the atypical large-k situation, it will be based 

on minimum trace, minimum rank, or a similar methodology. 
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Illustration 

Table 1 gives the correlation matrix for the widely known nine psychological variables (Harman, 

1976, p. 244), which we take as a covariance matrix for purposes of illustration.  A one-factor 

maximum likelihood solution is presented in the left part of Table 2.  This solution does not fit  

 
Insert Tables 1 and 2 about here 

 
 

the data.  It has a likelihood ratio 2
27 190.6χ = .  Nonetheless, 11ρ  was estimated, yielding 

ˆ .880.11ρ =   Actually, this coefficient for the factor that does not explain the data is not an 

improvement over ˆ .886.α =   A three-factor model fits these data extremely well, with 2
12 1.6.χ =   

The maximal reliability factor λ̂  for this model is given in the right part of Table 2.  It will be 

seen that the sum of factor loadings is larger than was the case for the 1-factor model.  The 

corresponding ˆ .939.kkρ =    

Discussion 

 Like the 1-factor based internal consistency reliability coefficients, the proposed 

approach requires modeling the sample covariance matrix.  This must be a successful enterprise, 

as estimation of reliability only makes sense when the model does an acceptable job of 

reproducing the sample covariances.  Of course, since a k-factor model rather than a 1-factor 

model would typically be used in the proposed approach, the odds of adequately modeling the 

sample covariance matrix are greatly improved.  The selected model can be a member of a much 

wider class of models.  Whatever the resulting dimensionality k, and whether the typical “small-

k” or theoretical alternative “large-k” approach is used, the proposed identification conditions 

assure that the resulting internal consistency coefficient ˆkkρ  represents the proportion of 



 13

variance in the unit-weighted composite score that is attributable to the common factor with 

maximal internal consistency.  The proposed coefficient can be interpreted as representing 

unidimensional reliability even when the instrument under study is multifactorial, since the 

composite score can be modeled by a single factor as * *X λλ ξ ε= + .  Nonetheless, we remind 

that it equally well has an interpretation as summarizing the internal consistency of the k 

dimensional composite. 

 When the large-k approach is used to model the covariance matrix, the theory of 

dimension-free and greatest lower bound coefficients can be applied.  This is based on a 

tautological model that defines factors that precisely reproduce the covariance matrix.  As these 

theories have been developed in the past, reliability is defined on scores that are explicitly 

multidimensional.  However, we have shown here that the dimension-free and greatest lower-

bound coefficients can equivalently be defined for the single most reliable dimension among the 

many that are extracted.  Based on this observation, new approaches to these coefficients may be 

possible. 

 The coefficient developed here also applies to composites obtained from any latent 

variable covariance structure model with p-dimensional additive errors.  We may write such a 

model in the form ( )θΣ = Σ +Ψ , where ( )θΣ  and Ψ are nonnegative definite matrices.  Then we 

can decompose ( )θ ′Σ = ΛΛ  and proceed as described previously.  The maximal reliability 

coefficient for a composite from such a model, as well as from those models previously 

described in this paper, has been available in EQS 6 for several years. 
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Table 1 

Correlation Matrix of Nine Psychological Variables 

1.00 

 .75 1.00 

 .78 .72 1.00 

 .44 .52 .47 1.00 

 .45 .53 .48 .82 1.00 

 .51 .58 .54 .82 .74 1.00 

 .21 .23 .28 .33 .37 .35 1.00 

 .30 .32 .37 .33 .36 .38 .45 1.00 

 .31 .30 .37 .31 .36 .38 .52 .67 1.00 
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Table 2 

Factor Loadings for First Factor in Two Solutions 

   Variable
   Number

       1-Factor
         Model 

         3-Factor 
           Model 

   
1 .636 .727 
2 .697 .738 
3 .667 .754 
4 .867 .789 
5 .844 .767 
6 .879 .803 
7 .424 .492 
8 .466 .597 
9 .462 .635 
   

       Sum 5.942 6.302
   
   

 

 




