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Abstract 

Atmospheric organic aerosols are highly misunderstood and have broad implications on 

our climate, air quality, and the health of humanity. Understanding the origins of organic 

aerosols and the mechanisms by which they are transformed is difficult due to the complexity of 

the multiphase chemistry within the species. Achieving such understanding will greatly advance 

the scientific community in tackling our global climate crisis. Recent advances in technology 

have allowed researchers to be more precise in categorization and characterization of organic 

aerosols and their sources. This project will be revisiting the data set of Zhang et al., 2018 using 

exploratory data analysis to examine: (1) if there exist more categories than have already been 

determined under monoterpene SOA; (2) under the previously determined categories, whether 

sub-groups of species could be created which inform unique formation pathways rather than just 

the sources; (3) claims of anthropogenic influence on biogenic secondary organic aerosol 

formation; and (4) mechanistic understandings of absence of new particle formation (highly 

relevant to cloud formation). 
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Personal Capstone Reflection 

While we were able to reveal novel information through EDA of our 830 x 254 dataset, 

the impetus of this project was to perform such analysis using machine learning. At the time of 

beginning the project, I had little to no coding experience, and even less with machine learning! I 

had simply been curious about the emerging field, and I felt that pursuing this topic for my 

Capstone project would allow me the opportunity to learn about these unfamiliar topics in the 

scope of my research interests. 

My first attempts at machine learning wished to utilize the K-Means Clustering algorithm 

to hopefully create new groupings that could inform subgroups of OAs or different formation 

pathways. While I was able to implement this algorithm on a variety of practice datasets, I found 

that this algorithm was not appropriate for my dataset for a variety of reasons. This method relies 

first on dimensionality reduction of my dataset from being 830 samples x 254 time points to 

being 830 samples x 2 principal components. For this method to work properly, the data reduced 

principal components should be able to describe at least 85% of the variance in the dataset, 

whereas my analysis could only attain ~60%. As a result, the PCA plot generated had datapoints 

extremely close to each other, whereas the K-Means Algorithm was unable to create meaningful 

separations. 

Aside from using machine learning, I also attempted to use neural networks on my 

dataset, without any cemented idea on what exactly I would be creating. I eventually was able to 

create a model that could semi-successfully predict which category an OA belonged to based on 

its timeseries, but such a model did not provide any insight into new subgroups nor formation 

pathways. This is commonly referred to as the black box problem in the field of data science. 
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While I could have optimized this model to give better predictions, I found this pursuit irrelevant 

to this project. 

While I did in fact learn many Python methods in exploratory data analysis and machine 

learning, I feel I learned more about myself as an independent researcher. This was a humbling 

experience that came with many moments of self-doubt. While I have only dipped my toes into 

the field of exploratory data analysis, machine learning, and neural networks, I am very grateful 

to have had this experience in trying to solve problems that are relevant to my research group 

using these novel methods. I undoubtedly will continue this pursuit, and I am confident that one 

day I will develop methods to remedy the drawbacks of this study. 
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Background 

Aerosol relevance  

Organic aerosols (OAs) and secondary organic aerosols (SOAs) contribute greatly to 

atmospheric fine particulate matter and have broad implications on our climate, air quality, and 

the health of humanity. Understanding the physical and chemical transformation of such aerosols 

is significant regarding research on cloud formation, the earth’s energy balance, and a variety of 

aerosol related illnesses.  

Cloud Formation 

 Cloud formation occurs when atmospheric water vapor condenses into suspensions of 

gaseous and particulate water, referred to as aerosols. This process is referred to as homogeneous 

water nucleation. While homogeneous water nucleation typically occurs under conditions of 

gaseous water supersaturation, OAs and SOAs can act as cloud condensation nuclei (CCN) and 

thus form clouds at supersaturations lower than those typically required for homogeneous water 

nucleation.1 Size distributions of cloud droplets can be predicted from the chemical composition 

and size distribution of the pre-cloud aerosols. Understanding CCN activity of OAs and SOAs is 

important in the quantification of their effects on the formation, lifetime, and radiative properties 

of clouds. Therefore, aerosol composition and size distribution have significant implications on 

the lifetime and radiative effects of clouds. While the cloud forming potential of the inorganic 

constituents are generally well known, the same cannot be said for the organic portions that 

contribute to 20-50% of the mass of fine aerosol particles.2 Additionally, SOA from photo 

oxidation of volatile organic compounds (VOCs) has been shown to contribute greatly to the 

organic portions.3 
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Earth’s Energy Balance 

 The radiative properties of clouds formed from OAs and SOAs have grand implications 

on the energy balance of the earth. Such effects depend on the light absorption and scattering 

properties of certain aerosols. 

For example, light absorption from dust and black carbon results in a warming effect on 

climate, while light scattering from reflective species like nitrate, sulfate, and sea salt aerosols 

result in a cooling effect.4  A study in 2013 found that SOAs from a-pinene formed under typical 

atmospheric conditions generally do not absorb light, but also reports significant light absorption 

at 355 and 405 nm when the SOAs are formed from a-pinene + O3 + NO3 in the presence of 

highly acidic sulfate seed aerosols under dry conditions.4 Further, they state that no absorption 

was found when the relative humidity was higher than 27%. Multiphase reactions of SOAs can 

also affect their refractive index (RI), affecting their light scattering and absorbing properties. 

Such reactions in the presence of liquid water result in oligomer formation from glyoxal and 

methylglyoxal intermediates which further enhances the RI and thus the light-scattering 

properties of the SOA. 

Aerosol Illness 

SOAs can potentially be more dangerous than their OA precursors and can lead to a 

variety of illnesses including cardiovascular disease, respiratory system damage, lung cancer, 

and preterm birth. A 2006 study showed that a-pinene SOA increased the release of the 

proinflammatory mediator interleukin-8 (IL8) by respiratory epithelial cells.5 A 2019 study 

continued upon this and found that SOA derived from a-pinene, m-xylene, and trimethylbenzene 

increased the expression of both the heme oxygenase I (HMOXI) and IL8 genes, typical markers 

for oxidative stress and inflammatory responses, respectively.6 Another recent 2019 study 
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examined isoprene derived SOA and found that such SOA also induced the expression of 

oxidative stress and inflammation genes in human lung cells.7 These studies suggest that SOAs 

affect lung epithelial cells and macrophages through oxidative stress and inflammation and can 

contribute to a variety of illnesses. 

SOAS 2013 Background 

A field campaign in 2013, dubbed the Southern Oxidant and Aerosol Study (SOAS 

2013),  planned to quantify VOC, ozone, and NOx surface fluxes and reconcile differences with 

“blank-down” emission estimates to achieve a better understanding of 

Hox/NOx/ozone/organics/aerosol distributions, sources, and sinks.8  

One paper by Professor Haofei Zhang from UC Riverside comprehensively characterized 

OA composition with molecular-level details by doing complementary analyses of OAs collected 

in Centreville, Alabama during SOAS 2013.9 This study reports that SOA from monoterpene 

oxidation accounts for approximately half of summertime fine OA in Centreville, Al, a forested 

area in the southeastern United States which is influenced by anthropogenic pollution, and 

further, that different chemical processes occurring during days and nights, determine the mass 

of monoterpene SOA produced. The findings of this study shed light on the strong 

anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States 

and highlight the importance in reducing anthropogenic emissions. 

Recent analyses of the Southern Oxidant and Aerosol Study (SOAS) have demonstrated 

that anthropogenic (man-made) SO2 and NOx are responsible for 43-70% of total organic 

aerosol in the southeastern US during the summer10, and that monoterpene secondary organic 

aerosol accounts for about half of total fine organic aerosol9. Additionally, the studies indicate 
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that reducing anthropogenic SO2 and NOx emissions will reduce secondary organic aerosol in 

the southeastern United States. 

This goal of this research is to revisit the SOAS 2013 dataset to reveal (1) if there exist 

more categories than have already been determined under monoterpene SOA; (2) under the 

previously determined categories, whether sub-groups of species could be created which inform 

unique formation pathways rather than just the sources; (3) claims of anthropogenic influence on 

biogenic secondary organic aerosol formation; and (4) mechanistic understandings of absence of 

new particle formation (highly relevant to cloud formation). 

Methods, Results and Discussion  

Original Sample Collection and Analysis 

During SOAS 2013, 254 submicron aerosol samples were collected on quartz filters 

(prebaked at 600 C for 12 hrs to remove organics) using a sequential sampler at ~120 L/min 

every 4 hours from June 3 to July 15.9 Filters were stored in baked foil at -20 C before 

performing in-lab experiments. 

Categorization of aerosol samples was done using linear regression analysis; field 

samples from the SOAS campaign were correlated to known lab samples of monoterpene 

secondary organic aerosol. Under this method, 89 OA samples were identified as originating 

from monoterpene oxidation. Linear regression analysis of the remaining aerosols with those of 

the 89 samples was performed and any aerosols with a correlation coefficient (r2) greater than .60 

were assigned to be monoterpene SOA (MTSOA). 

Theory Behind New Groupings 

 Despite the utilization of state-of-the-art analytical instrumentation during SOAS 2013, 

the study’s analytical method of linear regression, while standard in the scientific community, is 
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considered quite simple relative to emerging analytical methods. I hypothesize that there exists 

more information within the SOAS 2013 dataset that could be revealed through exploratory data 

analysis (EDA) and machine learning (ML) methods. 

Python Data Analysis 

 Analysis of the SOAS 2013 dataset was powered by Python in Anaconda’s Jupyter 

Notebook utilizing SciPy which includes the Pandas, NumPy, and matplotlib libraries.11 While 

the original goal of this project was to perform machine learning analysis, such analysis was 

found to be inviable for a variety of reasons. This will be expanded upon in a later segment. This 

study instead focused on a simpler exploratory data analysis approach that still reveals novel 

information from the SOAS 2013 Dataset. 

SOAS 2013 Dataset 

 The dataset I was provided with for this analysis is an 830 x 254 matrix with the 830 

rows representing individually identified samples and the 254 columns representing each 4-hour 

time step from June 3 to July 15, 2013. Additionally, Professor Haofei Zhang provided me with a 

previously unused tracer dataset from SOAS 2013 which is a 52 x 254 matrix with the 52 rows 

representing various tracer species such as isoprene, a-pinene, nitrates, carbon monoxide, and 

ozone, and the 254 columns representing the time steps. From this supplemental dataset, I will be 

utilizing the sample time (the time the sample was taken) to perform a diurnal dataset split to 

examine differences in aerosol correlation during daytime and nighttime hours. Additionally, I 

will be utilizing the wind direction (direction of wind during time of sample collection) to 

perform a wind-direction dataset split to examine differences in aerosol correlation during 

varying wind directions. 
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Exploratory Data Analysis 

To explore different conditions within the full SOAS 2013 dataset, various subsets 

representing different environmental conditions were created. Such datasets and their respective 

dimensions are as follows: full dataset (830 x 254), daytime (830 x 127), night time (830 x 127), 

northeast winds (830 x 36), southeast winds (830 x 88), southwest winds (830 x 99), northwest 

winds (830 x 28), east winds (830 x 127), west winds (830 x 127), north winds (830 x 67), and 

south winds (830 x 187).  

 An important thing to notice is that the number of aerosols analyzed does not change, but 

rather the number of time steps.  Essentially, we are selecting which quartz filters to perform 

analysis on depending on environmental conditions of interest. Additionally, individual OA 

samples were correlated with each tracer within each dataset to examine how such environmental 

conditions affect OA correlation individually. 

Results  

To examine correlations between OAs and tracer species, this study used Pearson 

correlation (r2) from the SciPy package as the primary metric. As in Zhang et. al., 2018, An r2 of 

+.6 or greater indicated correlation between the two species. The r2 values are calculated between 

two time series: a (1 x 254) sample series, and a (1 x 254) tracer series from the (830 x 254) and 

(52 x 254) datasets respectively. If at least 50 OAs reach this .6 correlation threshold within a 

given tracer group, such OAs are considered to be a part of such tracer group. Further, such 

group is considered to be significant in regard to elucidating new OA groupings. In the following 

distributions, the x-axis is populated with each tracer species, while the y-axis represents 

frequency. Such distributions do not show individual OA activity, but rather OA to tracer 

correlations on a macro scale. Individual OA tracer correlations within each dataset for the first 
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110 species were also examined. The changes in OA tracer correlation are quite chaotic on a 

micro scale and could be the topic of future studies. The table following the distributions will 

demonstrate this novel activity. 
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Tracer Name (unit) Description 

AMS-BBOA factor (ug/m3) AMS PMF factor of biomass burning OA 

(BBOA) 

AMS-IEPOX factor (ug/m3) AMS PMF factor of IEPOX-derived OA (a 

major pathway in isoprene oxidation) 

AMS-LOOOA factor (ug/m3) AMS PMF factor of less oxidized (LO) 

oxygenated OA (OOA) 

AMS-MOOOA factor (ug/m3) AMS PMF factor of more-oxidized (MO) 

oxygenated OA (OOA) 

AMS-NH4 (ug/m3) total aerosol ammonium (NH4) mass 

measured by AMS 

AMS-SO4 (ug/m3) total aerosol sulfate (SO4) mass measured by 

AMS 

BrC (ug/m3) brown carbon 

HNO3 (ppb) nitric acid in the gas phase 

AMS-IEPOX factor (ug/m3) AMS PMF factor of IEPOX-derived OA (a 

major pathway in isoprene oxidation) 

AMS-ISOPOOH factor (ug/m3) AMS PMF factor of ISOPOOH-derived OA 

(a minor pathway in isoprene oxidation) 

LWC (ug/m3) liquid water content in the particle phase 

MTR monoterpene reactivity 

NO (ppb) nitric oxide 

NO2 (ppb) nitrogen dioxide 

NOx (ppb) generic nitrogen oxides 

NOy (ppb) NOy = NO + NO2 + NOz 

NOz (ppb) NOz = HNO3 + HONO + 2N2O5 + HO2NO2 

+ PAN + NO3 + Organic Nitrates 

O3 (ppb) ozone 

SO2 (ppb) sulfur dioxide 

WSOC (ug/m3) total water-soluble organic compounds in the 

particle phase 

a-pinene (ppb) alpha-pinene 

b-pinene (ppb) beta-pinene 

benzene (ppb) benzene 

black carbon (ug/m3) black carbon 

H2SO4 (ppb) Sulfuric acid 

orgNO3 (ppb) total organic nitrate in the gas phase 

total monoterpene (ppb) total monoterpene, including alpha-pinene, 

beta-pinene, limonene, and several other 

minor monoterpenes 

Table 1. Tracer names and descriptions. Only the most relevant tracers are shown. 
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Dataset split distributions:  

 

Fig 1. Distribution of selected aerosols within the entire dataset (830 x 254). 

 Relevant tracer: WSOC 

 

Fig 2. Distribution of selected aerosols within the daytime dataset (830 x 127).  

Relevant tracers: benzene, WSOC 
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Fig 3. Distribution of selected aerosols within the nighttime dataset (830 x 127).  

Relevant tracers: NOz, HNO3, orgNO3, WSOC, black carbon, organosulfates (OS), IEPOX, 

ISOPOOH 

 

 

Fig 4. Distribution of selected aerosols within the northeast wind direction dataset (830 x 36).  

Relevant tracers: a-pinene, b-pinene, total monoterpene, WSOC 
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Fig 5. Distribution of selected aerosols within the southeast wind direction dataset (830 x 88). 

 Relevant tracers: benzene, NOy, NOz, NH3, HNO3, orgNO3, O3, CO, SO2, WSOC, black carbon, 

BrC, OS, H2SO4, IEPOX, ISOPOOH 

 

 

Fig 6. Distribution of selected aerosols within the southwest wind direction dataset (830 x 99). 

Relevant tracers: AMS-LOOOA, AMS-MOOOA, AMS-BBOA, WSOC, BrC 
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Fig 7. Distribution of selected aerosols within the northwest wind direction dataset (830 x 28). 

Relevant tracers: temperature, AMS organics, AMS-SO4, AMS-NH4, AMS-IEPOX factor, AMS-

LOOOA factor II, AMS-MOOOA factor, AMS-BBOA factor, NOz, NH3, orgNO3, WSOC, BrC, 

OS, OHR, LWC, C3 amine, IEPOX, ISOPOOH 

 

 

Fig 8. Distribution of selected aerosols within the east wind direction dataset (830 x 127). 

Relevant tracers: NOz, orgNO3, SO2, WSOC, black carbon 
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Fig 9. Distribution of selected aerosols within the west wind direction dataset (830 x 127). 

Relevant tracers: AMS-LOOOA factor II, AMS-MOOOA factor, WSOC 

 

 

Fig 10. Distribution of selected aerosols within the north wind direction dataset (830 x 67). 

Relevant tracer: WSOC 
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Fig 11. Distribution of selected aerosols within the south wind direction dataset (830 x 187). 

Relevant tracers: WSOC, black carbon 

Wind Direction Relevant Tracers 

Northeast a-pinene, b-pinene, total monoterpene, WSOC 

Southeast benzene, NOy, NOz, NH3, HNO3, orgNO3, 

O3, CO, SO2, WSOC, black carbon, BrC, 

OS, H2SO4, IEPOX, ISOPOOH 

Southwest 

 

 

AMS-LOOOA, AMS-MOOOA, AMS-

BBOA, WSOC, BrC 

 

Northwest temperature, AMS organics, AMS-SO4, 

AMS-NH4, AMS-IEPOX factor, AMS-

LOOOA factor II, AMS-MOOOA factor, 

AMS-BBOA factor, NOz, NH3, orgNO3, 

WSOC, BrC, OS, OHR, LWC, C3 amine, 

IEPOX, ISOPOOH 

East NOz, orgNO3, SO2, WSOC, black carbon 

West MS-LOOOA factor II, AMS-MOOOA factor, 

WSOC 

North WSOC 

South WSOC, black carbon 

 

Table 2. Relevant tracers for each wind direction condition. 
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Table 3. Table showing index 7-10 OAs and their tracer correlations in different wind direction 

datasets. Empty brackets indicate no tracer correlations. Notice how samples 8 and 10 both 

correlate with the WSOC tracer in NE, SE, E, N, and S winds, and have different tracer 

correlations in the SW, NW, and W winds. 

Discussion 

 In examining the distributions of OA to tracer correlations within our different datasets, 

we find that the distribution of aerosols that significantly correlate with certain tracers varies 

under different environmental conditions. 

Diurnal Differences 

 Our exploratory data analysis into daytime and nighttime hours verifies diurnal activity 

reported by Zhang et al., 2018. Relevant day time tracers include benzene and WSOC (Fig 2), 

while relevant nighttime tracers include NOz, HNO3, orgNO3, WSOC, black carbon, OS, IEPOX, 
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and ISOPOOH (Fig 3). The differences in these distributions demonstrate the enhanced 

nighttime activity of nitrates, which has been previously observed and described in the field of 

atmospheric chemistry. Aside from increased activity of nitrate correlations, the nighttime 

dataset shows that OS, IEPOX, and ISOPOOH are also relevant. Therefore, further investigation 

into nighttime aerosol correlations for such tracers could be the topic of future research. 

Wind Direction Differences 

 Investigation into our aerosol to tracer correlations as a function of wind direction reveals 

that tracer correlations vary under different wind direction conditions. Table 2 summarizes 

relevant tracers under each wind condition, and Figures 4 – 11 illustrate the unique tracer 

distributions under each differing wind condition.  The differences between distributions indicate 

that wind direction affects formation of OAs and therefore plays a role in the reaction dynamics 

of such OAs. Therefore, future research should account for wind direction during sampling and 

analysis of OAs to confirm this novel activity.  

Individual Aerosol Activity 

 In addition to performing macroanalysis on aerosol to tracer correlations within each 

dataset, microanalysis on individual aerosols and their tracer correlations was also performed. In 

this method, we are examining a specific OA’s tracers within each wind direction. This analysis 

was performed for the first 110 OAs in the provided dataset, as these OAs are more 

atmospherically relevant. Table 3 provides an example of varying individual aerosol to tracer 

correlations for aerosols index 7-10. It is important to notice that while some aerosols may 

correlate together under one condition, they do not necessarily correlate in others. This 

demonstrates the complex nature of the transformation of organic aerosols. With that said, there 

are certain aerosols that partially or completely share relevant tracers in certain wind directions, 
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but gaining insight into this activity requires further advanced analysis and is outside of the 

scope of this project.  

Answering original goals of SOAS 2013 / Conclusion 

 This research contributes to answering a fundamental question posed by SOAS 2013: 

What are the chemical and physical processes that control the oxidation of biogenic volatile 

organic carbons? This research confirmed diurnal differences found between our distributions 

which results from the presence of different oxidants during daytime and nighttime. This 

research additionally sheds light on the relevance of atmospheric dynamics toward our 

understanding of multiphase OA chemistry and hopefully aids in building more robust models of 

our atmosphere. 

Drawbacks of this Study 

 In generating datasets to represent different environmental conditions, certain conditions 

resulted in datasets with a severely reduced number of columns. For example, since the condition 

of northwest winds was very sparse, the number of time points used for this analysis was only 28 

(Fig 7). Since our primary metric of correlation was the Pearson coefficient, it’s important to 

note that as the number of time points decreases, the Pearson coefficient is artificially inflated 

toward 1. To combat this issue, future research should perform sampling over a longer timescale, 

or more frequently, to ensure a satisfactory number of datapoints for analysis. 

 It was previously stated that our investigation revealed that wind direction affects 

formation of OAs and therefore plays a role in the reaction dynamics of such OAs. It is possible 

that wind direction does not affect such, but rather affects our OA sampling process. For 

example, if a filter were in one static position and the wind direction was directly perpendicular 

to the surface of the filter, the described filter would have a greater amount of analyte deposited 
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onto in comparison to a similar filter in a static position with the wind direction parallel to the 

surface of the filter. This could explain the correlation activity observed, rather than wind 

direction having direct implications on OA multiphase chemistry. Future research should utilize 

filters that are capable of rotation in such a way that they always face perpendicular to the 

direction of the wind. 
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