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Abstract of the Dissertation

Nonuniform and Non-Cartesian Sampling in

Multidimensional Magnetic Resonance

Spectroscopic Imaging

by

Neil Wilson

Doctor of Philosophy in Biomedical Physics

University of California, Los Angeles, 2015

Professor M. Albert Thomas, Chair

Magnetic resonance spectroscopy (MRS) is used to obtain localized biochemical

information noninvasively based on the principles of nuclear magnetic resonance.

1H in vivo spectra consist of a large number of metabolites in a relatively small

spectral range, making identification difficult. Multidimensional MRS incorpo-

rates a variable evolution period to enhance the information content and increase

spectral dispersion. Recently, multidimensional MRS has been combined with

echo planar gradient readout techniques to produce multidimensional magnetic

resonance spectroscopic imaging (MRSI). Despite the fast imaging acquisitions,

these scans are long for in vivo studies, so more efficiently sampling strategies

were investigated.

The first strategy consisted of nonuniform undersampling (NUS) of the vol-

ume spanned by the phase-encoded spatial dimensions and the indirect spectral

dimension in 5 dimensional (3 spatial + 2 spectral) MRSI. Nonlinear reconstruc-

tion was performed according to the theory of compressed sensing (CS) using the

split Bregman framework. Formulations that promoted sparsity of the data and

its spatial finite differences in 5D J-resolved brain studies were applied, and re-

sults were compared favorably to a time-equivalent single slice J-resolved scan.
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In 5D correlated MRSI calf studies, reconstruction minimized the group sparsity

of nearby points, which produced much better results than reconstruction that

minimized the overall sparsity of the data.

The second strategy used concentrically circular k-space trajectories instead

of the conventional rectilinear ones. Concentric circles have the advantages of re-

duced hardware demands, higher achievable spectral bandwidth, less sensitivity to

motion, and faster k-space coverage. Single slice 4D (2 spatial + 2 spectral) corre-

lated MRSI using concentrically circular trajectories was compared to a rectilinear

counterpart and showed similar data quality. An improved single slice J-resolved

MRSI sequence was presented. The new sequence used adiabatic refocusing pulses

that are less sensitive to RF field inhomogeneity and result in reduced chemical

shift displacement error compared to conventional pulses. Comparison was made

to the nonadiabatic sequence with the same echo time as well as with its minimum

echo time.
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CHAPTER 1

Introduction

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS)

are, loosely speaking, the in vivo applications of the broader field of nuclear mag-

netic resonance (NMR) and as such, are fundamentally based on the interactions

of atomic nuclei with magnetic fields. Both are, at the heart of it, spectroscopic

techniques. In MRS, the range of frequencies is provided by the differences in

chemical environment of different nuclei, while in MRI, the range of frequencies

is provided by the application of a spatially dependent external magnetic field.

Because of that, spectral or spatial resolution is not determined by the energy

of the electromagnetic radiation. For the magnetic fields in use, energy is in the

radio frequency (RF) range, which is non-ionizing and generally considered safe.

Pulse sequences control the application of the RF energy and the spatially de-

pendent magnetic fields, and they can be sensitized to a wide range of physiologic

parameters. Multidimensional MRS pulse sequences utilize a variable evolution

time to separate out nuclear interactions spectrally and can be combined with

spatially dependent gradient fields in multidimensional magnetic resonance spec-

troscopic imaging (MRSI). However, fully sampling the data over all the spatial

and spectral dimensions is often prohibitively long, even with advanced echo pla-

nar techniques. This thesis seeks to address the sampling of multidimensional

MRSI in two distinct ways.

The first uses the theory of compressed sensing (CS) and the inherent com-

pressibility of the MRSI data to accelerate acquisition by acquiring many fewer
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measurements. This is done by nonuniformly undersampling (NUS) the incremen-

tally acquired spatial and spectral dimensions and reconstructing the data using

sparsity-promoting, iterative nonlinear algorithms.

In the second way, the means in which the spatial frequency data is collected

shifts from a typical Cartesian grid to non-Cartesian concentric circles. Circu-

lar sampling covers the spatial frequencies twice as fast as rectilinear sampling.

Other advantages of circular sampling will be discussed with specific application

to MRSI.

These two methods are entirely distinct in their philosophy and application

and can be considered complementary.

1.1 Outline

Chapter 2 gives some background on the theory of NMR and sampling in MRI. A

quantum mechanical treatment is given as necessary to explain the two-dimensional

J-resolved and correlated spectroscopy sequences even though most of the imaging

aspects can be explained using classical theory applied to the bulk magnetization.

Iterative algorithms must be applied to reconstruct the NUS data in com-

pressed sensing. With the large dimensionality of the multidimensional MRSI

data from multichannel receivers, fast and efficient solvers must be used. Chapter

3 describes one such algorithm known as split Bregman and its applicability to

the various problem constructs.

Chapter 4 highlights the application of two standard split Bregman techniques

and applies them to five-dimensional (three spatial and two spectral dimensions) J-

resolved MRSI data. Comparisons are made between an algorithm that promotes

the self-sparsity of the reconstructed data and one that promotes the sparsity of

the finite differences of the data. Phantom scans with various retrospective NUS

are compared, and in vivo scans of the human brain are presented that acquired
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only 12% of the fully sampled data. This is the first application of any such

five-dimensional MRSI scan.

Chapter 5 uses a version of the split Bregman algorithm to minimize the spar-

sity of grouped data points in a five-dimensional correlated MRSI pulse sequence.

The algorithm was able to reconstruct scans sampled with only 6% of the data in

calf muscle. Also, a new coil transformation was applied to reduce the 15 physical

coils to five virtual ones without loss in signal, speeding up the algorithm and

reducing its computational burden.

In Chapter 6, a correlated spectroscopic imaging with concentric circular echo

planar trajectories (COSI-CONCEPT) sequence is presented and compared with

a rectilinear echo planar correlated spectroscopic imaging (EP-COSI) sequence in

calf muscle. Some of the theoretical benefits of circular sampling are discussed.

This is the first application of circular sampling with multidimensional MRSI.

Chapter 7 takes a J-resolved concentric circular (JRESI-CONCEPT) sequence

and replaces the traditional refocusing pulses with pairs of adiabatic ones that have

higher bandwidth and are less susceptible to artifacts due to RF field inhomogene-

ity. The sequence is compared both to a non-adiabatic JRESI-CONCEPT with

the same echo time, as well as to one with its minimum echo time. Adiabatic

refocusing pulses can used to improve all the other pulse sequences described in

this dissertation.

Multidimensional MRSI provides more spectral information than single dimen-

sion MRSI. However, actual metabolite quantification can only be improved if this

information is used maximally through prior knowledge-based fitting. Chapter 8

illustrates prior knowledge fitting of single voxel correlated and J-resolved spec-

troscopy to look for metabolic differences in pediatric HIV patients.

Lastly, Chapter 9 summarizes this dissertation and provides insight into future

work and applications to further develop these techniques.
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CHAPTER 2

Background

2.1 The NMR phenomenon

NMR is a result of certain nuclei interacting with magnetic fields. While this in-

teraction is most definitely quantum mechanical on the individual atom scale, the

large number of identical atoms (referred to as an ensemble) can be treated clas-

sically for nearly all MRI applications and many MRS applications. Nevertheless,

for a thorough understanding of 2D MRS experiments, a quantum mechanical pre-

sentation must be considered and is presented here. More detailed explanations

can be found elsewhere [1, 157, 94, 88, 31, 44].

2.1.1 Nuclear spin

Spin is a quantum mechanical form of angular momentum, similar to the classical

orbital angular momentum of rotating bodies. In NMR, it is the net nuclear spin

only that we are concerned with. Each nucleon (proton or neutron) has spin-

1/2. 1H, which is the nuclei of interest in this dissertation, has a single proton

nucleus and therefore is also spin-1/2. In nuclei with multiple nucleon, the Pauli

exclusion principle must be considered (i.e. two protons will pair antiparallel to

give a net nuclear spin of 0). However, a single proton and a single neutron

are different particles and are not bound by the Pauli principle, and they align

parallel, producing a nonzero net nuclear spin. Thus, nuclei with an odd number

of nucleons are spin-1/2, nuclei with both an even number of protons and an even
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number of neutrons are spin-0, and nuclei with both an odd number of protons

and neutrons are integer spin > 0.

The magnetic moment vector µ of a nucleus is proportional to its nuclear spin

I

µ = γI (2.1)

with the constant of proportionality being equal to the gyromagnetic ratio 2.67×

108 s−1 · T−1 (often written as −γ = 42.6 MHz/T in frequency units).

A nucleus with spin I has associated substates described by the spin quantum

number mI ∈ {−I,−I + 1, ..., I}. In the absence of a magnetic field, these 2I + 1

substates have degenerate energy. In the presence of a static magnetic field B,

this degeneracy is broken through the Zeeman effect

E = −µ ·B (2.2)

As the spin is quantized, the magnetic moment and also the energy levels are

quantized. By convention, the external field is defined to be pointing in the z

direction (B = B0ẑ), so the energy levels are given by

E = −γB0Iz (2.3)

2.1.2 The wavefunction

Quantum mechanically, a measurement is calculated by applying an operator to

the wavefunction of the particle or system. The wavefunction Ψ is a mathematical

construct that captures all the physically relevant information. For instance, to

measure the z component of spin of a nucleus, we apply Iz to Ψ, with the result

being one of the values of mI .

Iz |Ψ〉 = mI~ |Ψ′〉 (2.4)
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For spin-1/2, there are two value of mI and therefore, there are two eigenvalue

equations for the operator Iz

Iz |α〉 = +
1

2
~ |α〉

Iz |β〉 = −1

2
~ |β〉

(2.5)

where ~ is Planck’s constant divided by 2π. These eigenstates |α〉 and |β〉 of Iz

have definite z components of angular momentum and are commonly referred to

as spin up and spin down, respectively. Here, it should be noted that the operators

Ix and Iy have distinct eigenstates and that application of either operator to the

spin up or spin down states is fundamentally unpredictable whether the result will

be +1/2 ~ or -1/2 ~.

The eigenstates form an orthonormal basis for the general wavefunction. In

the same way that any 2D plane vector can be written as a sum of its x and y

components, any general wavefunction can be written as a sum of its eigenstate

components, which for spin-1/2 can be

|Ψ〉 = cα |α〉+ cβ |β〉 (2.6)

where |cα|2 and |cβ|2 give the probabilities of measuring the z angular momentum

to be +1/2 ~ and -1/2 ~, respectively.

2.1.3 Time dependent Schrodinger equation

The evolution of the wavefunction is governed by the time dependent Schrodinger

equation (TDSE)
d

dt
|Ψ〉 = − i

~
H |Ψ〉 (2.7)

where H is the Hamiltonian (energy operator). From this point forward, we will

consider natural units in which ~ = 1 for convenience except where explicitly

noted. For a time independent Hamiltonian, the solution to Eq. (2.7) is given by

|Ψ(t)〉 = exp(−iHt) |Ψ(0)〉 (2.8)

6



2.1.4 External spin Hamiltonian terms

Equation (2.7) expresses the full quantum state of the wavefunction and its evolu-

tion due to a Hamiltonian that comprises all the interactions in the entire system.

In principle, though, we can restrict this equation to one of the nuclear spin state

evolution under the influence of the nuclear spin Hamiltonian only, since the time-

scales between nuclear and electronic motions are so different, and nuclear energies

are generally too small to appreciably affect electron or molecular motion.

There are three prominent external magnetic fields in MRI/MRSI:

1. The large static and homogeneous field, B0

2. Smaller, position dependent linear gradient fields Bx,y,z (e.g Bx = Gxx)

3. An oscillating field in the RF range, B1

2.1.4.1 Main magnetic field

As previously mentioned, the static field is conventionally given by B0 = B0ẑ, and

its Hamiltonian is given by

H0 = −γB0Iz (2.9)

Since H is proportional to Iz, they commute with each other and have the same

eigenstates, |α〉 and |β〉. The general states then evolve according to exp(iγB0tIz),

which is a rotation around the z axis at an angular frequency of

ω0 = −γB0 (2.10)

known as the Larmor frequency.
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2.1.4.2 Gradient fields

The gradient fields are spatially dependent with the following Hamiltonian repre-

sentations

Hx = −γGxxIz

Hy = −γGyyIz

Hz = −γGzzIz

(2.11)

Though the spatial dependence can be either x, y, or z, the field is always in the

z direction, so gradient fields act similarly to the main magnetic field and cause

precession around the z-axis at a frequency of

ω(x, y, z) = ω0 − (Gxx+Gyy +Gzz) (2.12)

2.1.4.3 RF field

The RF field is different from the previous two external field types in that it acts

in the transverse plane and has a frequency component (i.e. is time dependent).

The RF Hamiltonian is given by

H1(t) = ω1 [cos(ωrf t+ φ)Ix + sin(ωrf t+ φ)Iy] (2.13)

where ωrf is the carrier frequency, φ is the phase of the pulse (0 for x pulse,

π/2 for y pulse), and ω1 is the nutation frequency that is proportional to the B1

amplitude.

2.1.5 Rotating frame of reference

In order to calculate the effect of the time dependent RF Hamiltonian, the sys-

tem is shifted to a rotating frame of reference in which the Hamiltonian appears

stationary. At that point, the TDSE in Eq. (2.7) can be applied as before.

Consider a reference frame rotating around the z-axis at frequency ωref . A
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general Hamiltonian in this frame is given by

Hr = exp(iωref tIz)H exp(−iωref tIz)− ωrefIz (2.14)

The TDSE is the same in the rotating frame provided that the Hamiltonian is

given by Eq. (2.14) and the wavefunction is also transformed to the rotating

frame, |Ψr〉 = exp(iωref tIz) |Ψ〉.

Before continuing, we pause to consider the first term in Eq. (2.14) that

consists of an operator sandwiched by two rotation operators of opposite sign.

This type of expression appears routinely in NMR and is often simplified with the

following relationship given without proof

exp(−iθA)B exp(iθA) = B cos(θ) + C sin(θ) (2.15)

where C = −i[A,B].

2.1.5.1 Free precession under B0

The rotating frame Hamiltonian of the main magnetic field is given by plugging

Eq. (2.9) and (2.10) into Eq. (2.14)

Hr
0 = ω0 exp(iωref tIz)Iz exp(−iωref tIz)− ωrefIz (2.16)

Iz and the rotation operator exp(iωref tIz) commute with each other, so the order

of the product can be flipped, leading to the cancellation of the rotator terms and

a particularly simple Hamiltonian

Hr
0 = (ω0 − ωref )Iz = ΩIz (2.17)

where Ω is known as the offset frequency. If the frame rotates at the resonant

frequency, the offset Ω = 0, and the Hamiltonian Hr
0 is also 0, indicating no

evolution, as expected. Otherwise, the states undergo apparent precession at the

offset frequency.
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2.1.5.2 RF fields in the rotating frame

First, using the sandwich formula in Eq. (2.15), rewrite Eq. (2.13) as

H1(t) = ω1 exp[−i(ωrf t+ φ)Iz]Ix exp[i(ωrf t+ φ)Iz] (2.18)

Then, plugging it into Eq. (2.14) yields

Hr
1 = ω1 exp(iωref t) exp[−i(ωrf t+ φ)Iz]Ix exp[i(ωrf t+ φ)Iz] exp(iωref t)− ωrefIz

(2.19)

If the frame of reference rotates at the same frequency as the RF field oscillates

(ωref = ωrf ), then the Hamiltonian simplies to

Hr
1 = ω1 exp(−iφIz)Ix exp(iφIz)− ωrefIz (2.20)

and again to

Hr
1 = ω1(Ix cosφ+ Iy sinφ)− ωrefIz (2.21)

after applying the sandwich formula once more. This rotating frame Hamiltonian

has now been rendered time independent and can be applied in the TDSE.

In actuality, the main magnetic field is present even during an RF pulse, and

the spins do precess as they nutate. Therefore, the Hamiltonian should also include

a term for H0, which simply modifies the Hamiltonian with the offset frequency

Hr
0,1 = ω1(Ix cosφ+ Iy sinφ) + ΩIz (2.22)

When the offset is 0, the axis of rotation is in the transverse plane, and the flip

angle is given by ω1t. However, when the offset is not 0, the axis of rotation is at

an angle

θ = arctan
(ω1

Ω

)
(2.23)

from the z-axis, and the flip angle is given by

flip angle =
√
ω2

1 + Ω2 t (2.24)

Interestingly, the flip angle actually gets larger with greater offset. However, the

rotation is less effective as it is around an oblique axis.
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2.1.6 Internal spin Hamiltonian terms

The previous section talked about the applied fields and their subsequent Hamil-

tonians. However, the nuclei also experience significant magnetic fields that orig-

inate from the molecules themselves. In NMR/MRS, these internal interactions

are much weaker than the interaction with the main magnetic field and represent

perturbations to those results.

2.1.6.1 Chemical shift

In addition to interacting with atomic nuclei, the main magnetic field interacts

with the electron clouds, causing currents surrounding the nuclei. These currents

then induce their own magnetic fields which are usually opposite B0. The preces-

sional frequency of the nuclei due to the sum of these fields with the main field is

written as

ω = ω0(1 + δ) (2.25)

since the effective shielding scales linear with the main field strength. The chem-

ical shift δ is much smaller than 1 and is usually expressed as parts per million

(ppm). By convention, chemical shift is defined with reference to 2,2-dimethyl-2-

silapentane-5-sulfonate (DSS) and calculated for each resonance as

δ =
ω − ωDSS
ωDSS

· 106 (2.26)

As with the gradient fields mentioned in the previous section, the chemical

shift acts as a perturbation to the main magnetic field that somewhat changes the

precessional frequency. Unlike gradients, chemical shift is not spatial dependent

in isotropic solution, and chemical shift can not be turned off or reversed.
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2.1.6.2 J-coupling

Scalar or isotropic J-coupling is the result of energy changes in a system of bonded

nuclei due to the pairing of the electron spins. In the absence of bonding, it is

slightly favorable energetically for electrons to polarize in the same direction as

a nearby nucleus because they have opposite gyromagnetic ratios. However, the

Pauli exclusion principle requires bonded electrons to have opposite spin quantum

numbers, which can force the spin system into a slightly higher or lower energy

state. Only nuclei separated by a few bonds or less are close enough to experience

J-coupling.

The Hamiltonian for this interaction is given by

HJ = 2πJI1 · I2

= 2πJI1zI2z (weak coupling)
(2.27)

The value of J is typically given in Hz and does not vary with field strength.

2.1.6.3 Dipole-dipole coupling

Dipole-dipole coupling is the direct influence of the magnetic field generated by a

nuclear spin on spins that are nearby. Dipole-dipole coupling only depends on the

proximity between the coupled spins and therefore can be intra or intermolecular.

In isotropic solution, motional averaging causes the dipole-dipole Hamiltonian

HDD to be approximately 0. Nevertheless, these interactions are primarily re-

sponsible for the slight field perturbations that cause relaxation and result in a

nonzero thermal equilibrium magnetization described later.

2.1.7 Spin ensembles and the density operator

The preceding sections detailed the effects of the MRI/MRS Hamiltonians on

single wavefunctions. However, direct application to each wavefunction would
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require calculations over all of the spins in a tissue or sample, which is highly

impractical. As mentioned in the previous section, the main magnetic field and

the RF field greatly dominate the equations of motion, and therefore, the spins

in the tissue can be considered an ensemble of identical, independent spins. Since

all the measurements we are interested in are macroscopic, calculations can be

done on the quantum state of the entire ensemble without worrying about the

individual spins.

To see how this is done, we first consider the expectation value of an observable

operator Q for a spin with a single wavefunction.

〈Q〉 = 〈Ψ|Q |Ψ〉

=
∑
j=α,β

∑
j′=α,β

〈ψj′| c∗j′Qj′,jcj |ψj〉

=
∑
j=α,β

∑
j′=α,β

c∗j′cjQj′,j 〈ψj′|ψj〉

=
∑
j=α,β

∑
j′=α,β

c∗j′cjQj′,j

= Tr
{
|Ψ〉 〈Ψ|Q

}
(2.28)

where ψj are the basis states, and Tr is the trace. For an ensemble of spins, this

calculation is summed over all the different spin states weighted by their fractional

populations wi

〈Q〉 =
∑
i

wi 〈Ψi|Q |Ψi〉

=
∑
i

Tr
{
wi |Ψi〉 〈Ψi|Q

}
= Tr

{∑
i

(
wi |Ψi〉 〈Ψi|

)
Q

}
= Tr{ρQ}

(2.29)

where the density operator is defined as

ρ =
∑
i

(
wi |Ψi〉 〈Ψi|

)
(2.30)
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The time evolution of Eq. (2.30) is given by

d

dt
ρ =

d

dt

∑
i

wi |Ψi〉 〈Ψi|

=
∑
i

wi
d

dt

(
|Ψi〉 〈Ψi|

)
=
∑
i

wi

(
d

dt
|Ψi〉 〈Ψi|+ |Ψi〉

d

dt
〈Ψi|

)
=
∑
i

wi

(
− iH |Ψi〉 〈Ψi|+ |Ψi〉 〈Ψi| iH

)
= −i

(
H
∑
i

wi |Ψi〉 〈Ψi| −
∑
i

wi |Ψi〉 〈Ψi|H
)

= −i [H, ρ]

(2.31)

which is called the Liouville-von Neumann equation (LVNE). The solution to the

LVNE for a time independent Hamiltonian is given by

ρ(t) =
∑
i

(
wi |Ψi(t)〉 〈Ψi(t)|

)
=
∑
i

(
wi exp(−iHt) |Ψi(0)〉 〈Ψi(0)| exp(iHt)

)
= exp(−iHt)

(∑
i

wi |Ψi(0)〉 〈Ψi(0)|
)

exp(iHt)

= exp(−iHt)ρ(0) exp(iHt)

(2.32)

Though the density operator carries all the information necessary for any

macroscopic measurements on the ensemble, it is not uniquely specified by the

ensemble. Entirely different spin systems can have the same density operator

provided that these spin systems cannot be distinguished by macroscopic mea-

surements. For instance, an unpolarized ensemble could be composed of 50% spin

up wavefunctions and 50% spin down wavefunctions or of general wavefunctions

whose moments point in arbitrary directions as shown in Fig 2.1, with the latter

being the correct interpretation physically.
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Figure 2.1: Figure representing the magnetic moments of nuclear spins in an

unpolarized sample. Reproduced with permission from [75].

2.1.7.1 Liouville-von Neumann equation in the rotating frame

The LVNE equation can be solved in the rotating frame using a similar equation

to (2.31)
d

dt
ρr = −i [Hr, ρr] (2.33)

provided that the Hamiltonian is transformed to the rotating frame using Eq.

(2.14) and the density operator is also transformed by the following

ρr = exp(iωref tIz)ρ exp(−iωref tIz) (2.34)

2.1.8 Populations and coherences

Diagonal elements of the density operator matrix are called populations, while

off-diagonal elements are called coherences. The populations are real, positive,

and normalized so that

ρα + ρβ = cαc
∗
α + cβc

∗
β = 1 (2.35)
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It is tempting to look at ρα as the fraction of spins that are spin up and ρβ as

the fraction of spins that are spin down. However, we know that the individual

spin states are in a superposition of those two states. What ρα actually represents

is the fraction of measurements of z angular momentum would give +~/2, while

ρβ is the fraction of measurements that would give −~/2. Alternatively, ρα gives

the fraction of energy measurements that would give −~ω0/2, and ρβ gives the

fraction that would give +~ω0/2. The difference between the populations gives

the net longitudinal polarization.

The coherences, on the other hand, are complex numbers associated with

transverse magnetization. Coherence exists between two eigenstates and is char-

acterized by its order number, which is the difference in angular momentum be-

tween those eigenstates. For the non-interacting spin-1/2 particles described here,

there are only two coherences with two orders, ±1-quantum coherences. The +1-

quantum coherence is given by

ρ+ = cαc∗β (2.36)

and the −1-quantum coherence is given by

ρ− = cβc∗α (2.37)

The ±-quantum coherences are conjugates of each other as seen from (2.36) and

(2.37).

Though populations and coherences seem distinct, they are really two of the

same thing, representing polarization. The population difference described above

in the basis of eigenstates of z angular momentum would appear as coherence in

another basis.

As coherences are actually a type of phase coherence between spins, gradients

can be used to dephase them by fanning out the spins over a tissue volume.

Dephasing is proportional to both the gradient moment and the coherence order,

so gradients are a means to select a coherence transfer pathway in a single shot
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as opposed to phase cycling.

2.1.9 Thermal equilibrium

Thermal equilibrium is the state of the ensemble after a long time without exter-

nal probing. In thermal equilibrium, the coherences, and therefore the transverse

magnetization, are zero, and the populations are given by the Boltzmann distri-

bution

ρj =
exp(−mj~ω0/kBT )∑

j′=α,β exp(−mj′~ω0/kBT )
(2.38)

Since ~ω0/kBT ≡ B ∼ 10−4, there is very little difference in the populations.

Using the first two terms in the power series expansion of the exponentials shows

that

ρα =
1

2
+
B
4

ρβ =
1

2
− B

4

(2.39)

All the coherences are 0 at thermal equilibrium because of the random transverse

orientations of the magnetic moments. These thermal equilibrium conditions are

illustrated in Fig. 2.2.

For any spin that is in a large B0 field, the solution to the TDSE in Eq.

(2.8) shows that the magnetic moment precesses around the z-axis at the Larmor

frequency. This is true of any wavefunction and continues indefinitely without

any change. It is reasonable then to question where the population difference at

equilibrium comes from. While its true that the main magnetic field dominates

the inter and intramolecular interactions, those internal interactions contribute to

the overall magnetic field and can alter its direction on the order of thousandths

of a degree. These alterations fluctuate very quickly and act in random directions,

yet they are able to shift the precession cone of a spin over time. Because of the

slight energy preference for spins to align with the field, more spins are shifted up

than down.
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Figure 2.2: Illustration of the magnetization at thermal equilibrium. Spins are

oriented almost isotropically in three dimensions, but there is a small net polariza-

tion in the vertical direction indicated by the thick green arrow. All spins precess

around the z-axis as indicated by the red arrow. Reproduced with permission

from [75].

18



The macroscopic magnetization vectors are related to the elements of the den-

sity operator by

Mz =
2

B
(ρα − ρβ)

Mx =
4

B
Re(ρ−)

My =
4

B
Im(ρ−)

(2.40)

2.1.10 Product operators

Just as the wavefunction in Eq. (2.6) can be written as a linear combination of

orthonormal basis states, the density operator can be written as a linear combi-

nation of orthonormal basis operators A.

ρ(t) =
4N∑
k=1

ak(t)Ak (2.41)

where N is the number of independent spins in the system. For instance, Ix,

Iy, and Iz make up a basis along with the identity matrix for an ensemble of

independent (N = 1) spins. Writing the density operator as a sum naturally

extends the expectation value (Eq. (2.29)) and LVNE (Eqs. (2.31) and (2.32)) to

〈Q〉 =
∑
k

akTr{AkQ} (2.42a)

d

dt
ρ(t) = −i

∑
k

ak(t) [H,Ak] (2.42b)

ρ(t) =
∑
k

ak(0) exp(−iHt)Ak exp(iHt) (2.42c)

There are several advantages to writing the density operator this way. First,

the magnetization is easily read off from the coefficients without having to compute

the sum

Mz = az, Mx = ax, My = ay (2.43)

(ignoring physically meaningless scale factors). Secondly, we only have to consider

a finite number of evolutions in Eq. (2.42c) since we are only concerned with a few
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Hamiltonians and the number of basis operators is limited to N . Lastly, this ex-

pansion scales easily to higher order spin systems. By contrast, the density matrix

is 4N × 4N and becomes very large as the number of spins increases. Calculating

the basis operator matrices for a higher order spin system is done by taking the

Kronecker product of all the combinations of 1-spin operator matrices (hence the

name product operators). For example, a 2-spin system has basis operators like

2I1xI2y, 2I1zI2z, and 11I2x. (The 2 is simply for normalization purposes, and the 1

is the identity matrix.) For multiple spin systems, operators with more than one

transverse component represent multiple quantum coherences, while those with

exactly one transverse component represent single quantum coherences.

Product operator calculations routinely make use of the relationship in Eq.

(2.15). Shown below are example calculations under different Hamiltonians on

the Ix operator

Ix
θIy−−→ cos θ Ix − sin θ Iz (RF pulse)

Ix
ΩtIz−−→ cos(Ωt) Ix + sin(Ωt) Iy (chemical shift)

Ix
2πJ12tI1zI2z−−−−−−−→ cos(πJ12t) Ix + sin(πJ12t) 2I1yI2z (weak J-coupling)

(2.44)

For product operators on multiple spin systems, the same rules can be applied to

the active part only. For example,

I1,xI2z
θI1y−−→ (cos θ I1x − sin θ I1z) I2,z (RF pulse) (2.45)

The product operator formalism allows intuitive and relatively simple calculation

of the effects of various pulse sequences. One drawback though is that the J-

coupling rules are strictly valid only for the weak coupling regime.

2.1.11 Observable operators

From Eq (2.43), it is clear that operators Ix and Iy give rise to the observable

signal for a single spin system, while the operator Iz does not. The situation is
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less obvious for a coupled spin system though, so a more general approach will be

shown.

The observation operator representing the complex magnetization is given by

I+ = Ix + iIy, so the measured signal is given by

〈I+〉(t) = Tr{ρ(t)I+}

= Tr{ρ(t)Ix}+ i Tr{ρ(t)Iy}

= ax(t) + i ay(t)

(2.46)

since the basis operators are all orthogonal and again ignoring meaningless scal-

ing. This result is general and shows that the observable signal is always the

instantaneous sum of the Ix and Iy coefficients.

2.1.11.1 In phase terms

Consider a experiment in which ρ = Ix at the start of acquisition. For a single

spin system, ax(t) = cos(Ωt) and ay(t) = sin(Ωt), and the signal precesses around

the complex unit circle with frequency Ω in the rotating frame

exp(iΩt) (2.47)

as known classically.

If the system consists of two weakly coupled spins, the free precession Hamil-

tonian must be the sum of chemical shift terms for each spin and a coupling term

between spins

Hr = Ω1I1z + Ω2I2z + 2πJI1zI2z (2.48)

These terms commute with one another and can therefore be taken in any order.

If we consider the signal that evolves from an I1x operator, the I2z chemical shift

Hamiltonian has no influence. The I1z Hamiltonian leads to

I1x
Ω1tI1z−−−→ I1x cos(Ω1t) + I1y sin(Ω1t) (2.49)
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Now, consider the J coupling Hamiltonian term acting on the result

I1x cos(Ω1t)+I1y sin(Ω1t)
2πJtI1zI2z−−−−−−→

I1x cos(Ω1t) cos(πJt) + 2I1yI2z cos(Ω1t) sin(πJt)

+I1y sin(Ω1t) cos(πJt)− 2I1xI2z sin(Ω1t) sin(πJt)

(2.50)

The observable signal is then read off as

cos(Ω1t) cos(πJt) + i sin(Ω1t) cos(πJt) = exp(iΩ2t) cos(πJt)

= exp(iΩ2t)
1

2

{
exp(iπJt) + exp(−iπJt)

}
=

1

2

{
exp(i[Ω1 + πJ ]t) + exp(i[Ω1 − πJ ]t)

}
(2.51)

Three things are noteworthy in Eq (2.51):

1. J coupling caused the single resonance frequency in Eq (2.47) to split in

units of πJ (the separation between peaks is 2πJ or simply J in units of

Hz)

2. Each peak is reduced in amplitude by half

3. Both peaks have the same polarity

This doublet is referred to as in phase. Similar results are obtained from starting

operators I1y, I2x, and I2y.

2.1.11.2 Antiphase terms

We showed in the last sections that only Ix and Iy operators yield observable

magnetization and that a readout that starts at one of them results in an in phase

doublet for a two spin system. Now, we show what happens during readout to an

operator such as 2I1xI2z, considering the same Hamiltonian in Eq (2.48)

2I1xI2z
Ω1tI1z−−−→ 2I1xI2z cos(Ω1t) + 2I1yI2z sin(Ω1t) (2.52)
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Since the spin two contributions to the operators are in the z direction only,

the I2z chemical shift Hamiltonian does not evolve the system. The J coupling

Hamiltonian evolution gives rise to

2I1xI2z cos(Ω1t)+2I1yI2z sin(Ω1t)
Ω2tI2z−−−→

2I1xI2z cos(Ω1t) cos(πJt) + I1y cos(Ω1t) sin(πJt)

+2I1yI2z sin(Ω1t) cos(πJt)− I1x sin(Ω1t) sin(πJt)

(2.53)

and the signal is therefore

− sin(Ω1t) sin(πJt) + i cos(Ω1t) sin(πJt) = i exp(iΩ1t) sin(πJt)

= i exp(iΩ1t)
1

2i

{
exp(iπJt)− exp(−iπJt)

}
=

1

2

{
exp(i[Ω1 + πJ ]t)− exp(i[Ω1 − πJ ]t)

}
(2.54)

The peaks in Eq (2.54) have the same splitting and reduction in amplitude as those

in Eq (2.51). However, the polarity of the peaks are now opposite one another.

This doublet is referred to as antiphase. Similar results are obtained starting with

the operators 2I1yI2z, 2I1zI2x, and 2I1zI2y.

Note that this antiphase doublet is unrelated to the phase of the Lorentzian

lineshape and cannot be removed by any phase correction. Antiphase multiplets

are problematic in vivo where the broad linewidths blend the two peaks, and

signal cancellation occurs. In contrast, broad linewidths make in phase multiplets

appear as large singlets.

The operators that give rise to observable magnetization are single quantum

coherences, either directly (in phase) or through evolution (antiphase). Zero and

multiple quantum coherences are not observable.
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2.2 Sampling overview

2.2.1 Cartesian sampling

Conventionally, sampling is a periodic measurement of a continuous signal. Be-

cause of the discrete nature of k-space sampling, the Fourier transform results in

a periodic repetition of the image. For a bandwidth (BW) limited signal, if the

sampling is done faster than the Nyquist rate

∆t =
1

2 BW
(2.55)

the image repetitions will appear outside the object. If sampling does not satisfy

the Nyquist rate, image repetitions will occur on top of the object, and aliasing

occurs. This is illustrated in Fig 2.3, comparing a Nyquist sampled image with

one from 2x undersampling in the vertical direction. The point spread function

(PSF) of each sampling pattern is shown, indicating the periodicity. For the fully

sampled data, the PSF in Fig 2.3c shows a spike in the center with no other spike

a within the field of view (FOV ). For the undersampled PSF in Fig 2.3d, the

spikes occur at a distance of half the FOV apart.

The theory of compressed sensing shows that exact image reconstruction can

be obtained for sub-Nyquist sampled data using nonuniform sampling (NUS) along

with iterative reconstructions that promote sparsity [28, 48]. As NUS does not

sample at the Nyquist rate, aliasing artifacts do occur. However, they are inco-

herent and give the appearance of noise. An image that was 2x undersampled

randomly with uniform density is shown in Fig 2.4a with an image that was un-

dersampled with a variable density in Fig 2.4b. The periodicity of the images are

the same as the fully sampled image in 2.3a. Both PSFs are similarly incoherent,

yet the variable density NUS samples more of the high SNR data and therefore,

is more recognizable.
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(a) (b)

(c) (d)

Figure 2.3: (a) Periodic sampling at the Nyquist rate. (b) Periodic sampling at

half the Nyquist rate in the vertical direction results in coherent aliasing. (c-d)

Point spread functions (PSF) of (a-b). PSFs were computed from the Fourier

transform of the sampling pattern.
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(a) (b)

(c) (d)

Figure 2.4: Incoherent aliasing artifacts with random, uniform density NUS (a)

and variable density NUS (b). (c-d) PSFs of (a-b).
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2.2.2 Non-Cartesian polar sampling

The conditions to satisfy the Nyquist criteria for polar sampling schemes are

derived. In each case, it is assumed that the FOV of the final image is square (i.e.

FOVx = FOVy) and that the k-space location furthest from the origin is kmax.

Figure 2.5 shows reconstruction from fully sampled polar data as well as from

radially and circularly undersampled. It also shows the corresponding PSFs, high-

lighting the relative incoherence of radial undersampling compared to circular,

though both are more incoherent than periodic Cartesian undersampling shown

in Fig 2.3d.

2.2.2.1 Concentric circles

Here, it is envisioned that k-space has been sampled in concentric circles. In

particular, each ring covers all four quadrants with an angular range [0, 2π]. The

natural definition of the field of view uses the radial component

FOV =
1

∆kr
(2.56)

The largest ring satisfies

kmax = Nr∆kr =
Nr

FOV
(2.57)

where Nr is the number of rings, and ∆kr is the spacing of the rings. The number

of angular samples Nθ satisfies

Nθ∆θ = 2π (2.58)

for full circular sampling.

The incremental k-space sampling in the angular direction is dependent on the

ring

∆kθ = kr∆θ ≤ kmax∆θ (2.59)
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From this point on, we will only consider the maximal angular spacing, and will

require kmax∆θ ≤ FOV −1 which can be rearranged to

∆θ ≤ 1/ (FOV · kmax) (2.60)

Substituting in Eq (2.58) results in

2π/Nθ ≤ 1/ (FOV · kmax) (2.61)

which can be rearranged to give

Nθ ≥ 2π · FOV · kmax (2.62)

Substituting in Eq (2.57) gives the final result

Nθ ≥ 2πNr (2.63)

2.2.2.2 Radial spokes

Here, it is envisioned that k-space has been sampled radially, line-by-line. In

particular, each line cuts through the origin from [−kmax,+kmax], with a range

of projections from [0, π]. Most of the ideas are the same as the previous section

except now Eq (2.57) and (2.58) are replaced by

kmax =
Nr

2

1

FOV
(2.64)

and

Nθ∆θ = π (2.65)

In essence, Nθ,rad → Nθ,cir/2 and Nr,rad → 2Nr,cir. Substituting these values

into Eq (2.63) gives the relationship

2Nθ ≥ 2π
Nr

2
(2.66)

which can be rewritten in final form as

Nθ ≥
π

2
Nr (2.67)

28



Figure 2.5: The top row shows fully sampled (left), radially undersampled (center),

and circularly undersampled (right) polar data. The bottom row is the respective

PSFs.

This relationship is equivalent to Eq (2.63) in the previous section as long as the

correct definitions for Nθ and Nr are applied.

2.2.3 Sensitivity encoding

In certain cases, the incoherent aliasing caused by nonuniform sampling described

in the previous section can be removed through iterative reconstruction. Those

types of sparsity-promoting reconstructions cannot remove coherent aliasing though.

This problem is illustrated in Fig 2.6 where there is no way to determine the rel-

ative contributions of the separate pixels from the left to the aliased pixel on the

right.

Fortunately, there are other reconstruction techniques that can remove co-

herent aliasing artifacts specific to MRI by taking into account the receive coil

sensitivities in a multichannel array [132, 161, 70, 103]. In order to visualize how
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Figure 2.6: 2x undersampling in the vertical direction results in two pixels on

the left summing to form the aliased pixel on the right. Here, there is no way to

separate out the pixels from the image on the right.

this works in sensitivity encoding (SENSE) [132], consider a two coil array in which

the first coil is located on the top of the image, and the second coil is located on

the bottom of the image. Each coil will then see the actual image modulated by

its sensitivity profile. Pixels near the top will appear brighter in the first coil, and

pixels near the bottom will appear brighter in the second as illustrated in Fig 2.7.

For Nx-fold undersampling in the x direction and Ny-fold undersampling in the y

direction, the aliased image pixels, a(x, y), can be expressed as a weighted sum of

the pixels from the true image u(x, y) for each coil c

ac(x, y) =
Nx−1∑
nx=0

Ny−1∑
ny=0

Sc(x+ nx
FOVx

2
, y + ny

FOVy
2

) u(x+ nx
FOVx

2
, y + ny

FOVy
2

)

(2.68)

where Sc are the coil sensitivity profiles. The specific pixel illustrated in Fig 2.7

can therefore be written as the system of equations

a1 = S1(low) u(low) + S1(upp) u(upp)

a2 = S2(low) u(low) + S2(upp) u(upp)
(2.69)

where “low” is the lower pixel, and “upp” is the upper pixel. This illustrates how
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Figure 2.7: Sensitivity weighted images from a coil above the image (top) and one

below the image (bottom). In the top image, the top pixel contributes more to the

aliased pixel, while in the bottom image, it is the bottom pixel that contributes

more.

the SENSE formalism can be written as a matrix inversion

u = (S ′S)−1S ′a (2.70)

For maximal image SNR, a coil noise correlation matrix, Ψ, can be included to

whiten the data if the system is overdetermined

u =
(
S ′Ψ−1S

)−1
S ′Ψ−1a (2.71)
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2.2.4 Signal-to-noise

There are many factors that affect the signal-to-noise (SNR) of the final recon-

structed data. Some are physical (field strength, coils, temperature, etc.), others

are sequence-based (timing, flip angles, voxel size, resolution, sampling, etc.),

while others are processing dependent (apodization, regularization, etc.). In this

section, we will restrict the discussion to those due to undersampling.

For any N -fold undersampling, there is an SNR penalty proportional to
√
N

simply due to the reduction in acquired data. This goes hand-in-hand with an

N -fold acceleration in the same way that halving the number of averages also

cuts the SNR by
√

2. There are also additional SNR enhancements or penalties

depending on the reconstruction.

2.2.4.1 Nonuniform undersampling

With NUS, we have already seen from Fig 2.4 that the particular sampling den-

sity can affect the SNR when the higher signal points are preferentially sampled.

However, the biggest influence on the SNR of NUS data is the reconstruction

parameters. Generally speaking, compressed sensing reconstructions consist of

a minimization problem featuring regularization terms and a data consistency

term. Sparsity-promoting regularization terms such as total variation are effec-

tive at denoising [146], so CS reconstructions are also associated with an increase

in the apparent SNR.

Some CS reconstructions solve an unconstrained optimization problem. In

that case, the relative weighting of the data consistency term is crucial. An

appropriate level of denoising enhances the image appearance, but the wrong

weighting can lead to noisy images with residual artifacts if the data consistency

term is overweighted. The problems with an underweighted data consistency term

can be more subtle though, since the images produced will have the highest SNR
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and look very clean. However, they are also accompanied by a loss of resolution

and the removal of low amplitude signal that is potentially diagnostic. Therefore,

it is best to be cautious and err towards overweighting the data consistency term.

Other reconstruction algorithms enforce a certain level of data consistency.

Projection onto convex sets (POCS) is one that enforces strict data consistency in

every iteration which can slow its convergence. The split Bregman algorithm [66]

detailed in the next chapter solves the constrained problem by terminating as the

data consistency term monotonically decreases to the desired level, allowing some

flexibility in the level of denoising. Again, it is best to be cautious in deciding

when to terminate the algorithm.

2.2.4.2 Sensitivity encoding

With SENSE reconstruction, there is a noise correlation between pixels as the

encoding operator is no longer unitary [132], resulting in spatially dependent noise

amplification. The reconstructed SNR is given by

SNR =
SNRfull

g
√
N

(2.72)

where g ≥ 1 is the additional noise penalty beyond that of undersampling and is

known as the geometry factor since it is highly dependent on coil geometry. The

geometry factor at pixel p is given by

gp =
√

[(S ′Ψ−1S)−1]p,p (S ′Ψ−1S)p,p (2.73)

and is shown in Fig 2.8 for the example shown in Fig 2.7.
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Figure 2.8: Geometry factor map for the undersampled coil images shown in Fig

2.7. The color scale is from 1 to 2.
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CHAPTER 3

Iterative Nonlinear Reconstruction using Split

Bregman Algorithms

3.1 Introduction

Formulating the compressed sensing problem is only a beginning step in the recon-

struction. There are a nearly uncountable number of solvers, some general, some

specific to certain regularizers or acquisition domains. Some solve the uncon-

strained problem only. For multidimensional spectroscopic imaging, the choice

of solver is nontrivial as the datasets are much larger than those typically en-

countered in imaging and tend to require a higher number of iterations. In this

dissertation, the split Bregman algorithm of Goldstein and Osher [66] was chosen

for the majority of the processing due to its computational speed, adaptability

to a variety of different regularizers, and scalability to large datasets. The split

Bregman algorithm is from the class of Alternating Direction Method of Multi-

plier (ADMM) methods that replace a difficult to solve constrained problem with

a sequence of simpler unconstrained subproblems [16]. It can handle multiple

regularizers with `1 or TV norms.

3.2 Background into `1 solvers

The CS problem seeks to reconstruct data with maximal sparsity (i.e. minimum

`1) in some transform domain. This sparsity requirement is what separates CS
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from other regularized reconstructions and allows for sub Nyquist sampling. It

is also what makes the problem more difficult to solve, having no closed form

solution except in the most basic of cases.

In contrast, Tikhonov regularization is based on minimizing the `2 (or Euclidean)-

norm (‖u‖2 =
√∑

i u
2
i ) and formulates the simplest unconstrained problem as

min
u

1

2
‖u‖2

2 +
λ

2
‖u− f‖2

2 (3.1)

where u is the reconstructed data and f is original data. Here, the square of the

`2 norm has been used for simplicity as it has the same solution as the unsquared

norm (with proper weighting of λ), and the original data is in the same domain as

the reconstructed for simplicity. Differentiation and equating to zero then yields

u =
f

1 + λ
(3.2)

Even with a more complicated sensing/blurring matrixA, the Tikhonov-regularized

problem

min
u

1

2
‖u‖2

2 +
λ

2
‖Au− f‖2

2 (3.3)

still has closed form solution

u =

(
A′A+

λ

2
I

)−1

A′f (3.4)

where A′ is the Hermitian conjugate of A, and I is the identity matrix.

The fundamental `1 minimization problem can be written in its unconstrained

form as

min
u
‖u‖1 +

λ

2
‖u− f‖2

2 (3.5)

In this simplest case, the ui variables are independent and can be solved individ-

ually. This leads to a closed form solution

u =
f

|f |
max(|f | − 1/λ, 0) (3.6)
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known as the shrink or soft thresholding function. However, in the more compli-

cated problems

min
u
‖Ψu‖1 +

λ

2
‖u− f‖2

2

min
u
‖u‖1 +

λ

2
‖Au− f‖2

2

min
u
‖Ψu‖1 +

λ

2
‖Au− f‖2

2

the coupling between the `1 and `2 terms precludes a closed form solution like

shrink and makes these require iterative solvers.

3.3 Constrained optimization with Bregman iteration

Consider a convex, nondifferentiable function E(u) and a linear operator A. A

generalized constrained optimization problem can be formulated as

min
u
E(u) s.t. Au = f (3.7)

A first step in order to solve (3.7) is to rewrite it as an unconstrained problem

min
u
E(u) +

λ

2
‖Au− f‖2

2 (3.8)

The unconstrained problem (3.8) is much easier to solve. However, its solution

does not solve the constrained problem (3.7) unless λ→∞. Simply choosing an

extremely large λ or using continuation methods that increase λk →∞ as k →∞

also lead to the condition number of the Hessian approaching infinity, making

the solver less efficient and stable. An alternative way of solving the constrained

problem as a series of unconstrained problems uses Bregman iteration [101].

Bregman iteration says that function E can be replaced in the unconstrained

problem with its Bregman distance provided that the Bregman parameter (defined

later) is also updated iteratively. The Bregman distance for the function E(u) at

the point uk is:

Dp
E(u, uk) = E(u)− E(uk)− 〈pku, u− uk〉 (3.9)
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where the Bregman parameter pku is the subgradient of E(u) at uk, and the problem

can then be reformulated as

uk+1 = min
u
Dp
E(u, uk) +

λ

2
‖Au− f‖2

2

pk+1 = pk − λA′(Auk+1 − f)

(3.10)

In [119], Osher et al. proved that ‖Auk − f‖2
2 → 0 as k → ∞ under fairly

weak assumptions, and therefore, the constrained problem is solved when infinite

iterations are used. In addition, they proved that the decrease in the `2-norm is

monotonic. (Actually, their proof was for a more general function than the `2-

norm data consistency constraint, but this dissertation is only concerned with that

particular form.) Compared to a projection onto convex sets (POCS) method that

enforces strict data consistency at every iteration, Bregman iteration only achieves

strict data consistency as k → ∞. While this may appear to be a disadvantage,

real data is typically noisy, and a constraint of the form ‖Au− f‖2
2 < σ2 is often

more appropriate. In that case, the monotonic decrease of the data consistency

term in Bregman iteration gives an additional stopping criteria of the algorithm.

In [180], it was shown that the steps in (3.10) are equivalent to the following

simpler steps provided that A is linear

uk+1 = min
u
E(u) +

λ

2
‖Au− fk‖2

2

fk+1 = fk + f − Auk+1

(3.11)

Equation (3.11) tells us that the constrained problem in (3.7) can be solved by

solving the simpler unconstrained problem (3.8) and updating the data term by

“adding the noise back in”.

Bregman iterations typically converge quickly if E(u) is an `1 based term

compared to continuation methods. In addition, the value of the regularization

parameter λ does not change

38



3.4 Split Bregman algorithm and variants

In this section, I will review the split Bregman algorithm proposed in [66] with

isotropic and anisotropic total variation regularization for single coil acquisitions.

I will show a variant of the algorithm that minimizes an `1-norm term only. I will

then describe how these algorithms can be extended to problems with multiple,

mixed regularizers.

3.4.1 Anisotropic TV -regularized

Total variation (TV ) was shown to be an effective regularizer for denoising in the

seminal paper by Rudin, Osher, and Fatemi [146]. However, the TV -regularized

problem is difficult for some solvers since the gradient operator is not invertible

like the wavelet or discrete cosine transforms.

First, consider anisotropic TV over the i points of u

TVani(u) =
∑
i

|∇xu|i + |∇yu|i + |∇zu|i (3.12)

Anisotropic TV is somewhat easier to solve than isotropic TV , which is generally

considered the superior regularizer. However, TVani could be appropriate for

volume-based localization methods in MRSI in which the excitation volume is

more or less a rectangular solid.

The anisotropic problem is then given by

min
u
|∇xu|+ |∇yu|+ |∇zu| s.t. ‖RFu− f‖2

2 < σ2 (3.13)

where R is the sampling operator and F is the Fourier transform. Here we use

the shorthand notation |∇u| =
∑

i |∇u|i. We know from the previous section that

this problem can be solved by iteratively solving the unconstrained version and
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adding the noise back in to f .

uk+1 = min
u
|∇xu|+ |∇yu|+ |∇zu|+

µ

2
‖RFu− fk‖2

2 (3.14a)

fk+1 = fk + f − Auk+1 (3.14b)

The second step is an explicit computation and easily performed, so we will turn

our attention to the unconstrained optimization of the first step. This problem

does not have a closed form solution as written due to the coupling between the

`1 and `2 terms.

In order to decouple the terms, auxiliary variables dx,y,z = ∇x,y,zu are intro-

duced. Then the original unconstrained problem can be written as an augmented

constrained problem

min
u

∑
i=x,y,z

|di|+
µ

2
‖RFu− f‖2

2 s.t. dx = ∇xu, dy = ∇yu, dz = ∇zu (3.15)

The Bregman iteration procedure can thus be applied to this augmented con-

strained problem.

(uk+1, dk+1
x , dk+1

y , dk+1
z ) = min

u,dx,dy ,dz

∑
i=x,y,z

|di|+
µ

2
‖RFu− f‖2

2 +
λ

2
‖di −∇iu− bki ‖2

2

(3.16a)

bk+1
x = bkx +∇xu

k+1 − dk+1
x (3.16b)

bk+1
y = bky +∇yu

k+1 − dk+1
y (3.16c)

bk+1
z = bkz +∇zu

k+1 − dk+1
z (3.16d)

Though the unconstrained problem in (3.16a) has additional terms compared

to the original unconstrained problem in (3.14a), it can be decoupled and solved

for u, dx, dy, and dz sequentially where in each step, the uninvolved variables are
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held constant.

uk+1 = min
u

µ

2
‖RFu− f‖2

2 +
∑
i=x,y,z

λ

2
‖dki −∇iu− bki ‖2

2 (3.17a)

dk+1
x = min

dx
|dx|+

λ

2
‖dx −∇xu

k − bkx‖2
2 (3.17b)

dk+1
y = min

dy
|dy|+

λ

2
‖dy −∇yu

k − bky‖2
2 (3.17c)

dk+1
z = min

dz
|dz|+

λ

2
‖dz −∇zu

k − bkz‖2
2 (3.17d)

The d optimizations in (3.17) are of the form of (3.5) and can therefore be solved

explicitly

di=x,y,z = shrink
(
∇iu

k+1 + bki , 1/λ
)

(3.18)

The u subproblem in (3.17a) is composed of multiple `2-norm terms and is

differentiable with derivative given by

µF ′R′ (RFu− f)−
∑
i=x,y,z

λ∇′i
(
dki −∇iu− bki

)
Setting the derivative equal to 0 and grouping the u terms yields(

µF ′R′RF +
∑
i=x,y,z

λ∇′i∇i

)
u = µF ′R′f +

∑
i=x,y,z

λ∇′i
(
dki − bki

)
(3.19)

A key aspect to the speed of the split Bregman algorithm is that the multiplier

of u is block circulant with circulant blocks (BCCB) and therefore diagonalizable

using Fourier transforms. The left side of (3.19) can then be rewritten as

F ′KFu

where K = (µR′R− λF∆F ′) with ∆ =
∑

i∇′i∇i being the Laplacian operator.

The u subproblem solution is then

u = F ′K−1F

(
µF ′R′f +

∑
i=x,y,z

λ∇′i
(
dki − bki

))
(3.20)

which is only a matter of some simple computation, Fourier transforms, and point-

wise division since K is diagonal.
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The entire algorithm is setup as an inner loop to satisfy the augmented con-

strained problem in (3.15) and an outer loop to satisfy the data consistency con-

straint of the original problem in (3.13). In [66], the authors recommend defining

the inner loop with a fixed number of iterations as opposed to a requirement of

full convergence in order to save computational time. This is especially true when

σ2 is relatively large. In our implementations, we used three stopping criteria for

the outer loop: (1) a maximum number of iterations, (2) desired data consistency,

(3) convergence of solution. Tolerances were generally set to ensure that (2) was

the most influential and that (3) was unimportant.

Precompute K−1 = (µR′R− λF∆F ′)−1

repeat

for k = 1 to N do

Compute uk+1 using (3.20).

dk+1
x = shrink

(
∇xu

k+1 + bx, 1/λ
)

dk+1
y = shrink

(
∇yu

k+1 + by, 1/λ
)

dk+1
z = shrink

(
∇zu

k+1 + bz, 1/λ
)

bx ← bx +∇xu
k+1 − dk+1

x

by ← by +∇yu
k+1 − dk+1

y

bz ← bz +∇zu
k+1 − dk+1

z

end for

i← i+ 1

f i+1 = f i + f −RFuk+1

until ‖RFuk+1 − f‖2
2 < σ2

Figure 3.1: Split Bregman algorithm for anisotropic TV regularization
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3.4.2 Isotropic TV -regularized

The isotropic total variation is given by

TViso(u) =
∑
i

√
|∇xu|2i + |∇yu|2i + |∇zu|2i (3.21)

and gives an overall measure of variation at a given point independent of direction.

It is the more appropriate regularizer for objects that are not aligned with the

coordinate axis in all three dimensions typical of MRI and large FOV MRSI scans.

The algorithm to solve the isotropic TV -regularized problem

min
u
TViso(u) s.t. ‖RFu− f‖2

2 < σ2 (3.22)

is similar to the anisotropic case except that the gradient terms are coupled.

Nevertheless, the same auxiliary variables dx,y,z = ∇x,y,zu are introduced and the

augmented constrained problem can be written as

min
u,dx,dy ,dz

‖(dx, dy, dz)‖2 +
µ

2
‖RFu− f‖2

2 s.t. dx = ∇xu, dy = ∇yu, dz = ∇zu

(3.23)

where

‖(dx, dy, dz)‖2 =
∑
i

√
d2
x,i + d2

y,i + d2
z,i

and the sum is taken over all i data points. This obviously changes how the

d subproblems must be solved, but less obvious is that it does not change the

solution to the u subproblem because the gradient terms remain uncoupled in

those terms related only to the variable substitution.

Fortunately, the d subproblems, though coupled, can still be solved explicitly

using a generalized shrinkage formula

(xs, ys, zs) = shrink3(x, y, z, 1/λ) (3.24)

that computes

{x, y, z}s =
{x, y, z}√
x2 + y2 + z2

max(
√
x2 + y2 + z2 − 1/λ, 0)
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Precompute K−1 = (µR′R− λF∆F ′)−1

repeat

for k = 1 to N do

Compute uk+1 using (3.20).(
dk+1
x , dk+1

y , dk+1
z

)
= shrink3

(
∇xu

k+1+bx,∇yu
k+1+by,∇zu

k+1+bz, 1/λ
)

bx ← bx +∇xu
k+1 − dk+1

x

by ← by +∇yu
k+1 − dk+1

y

bz ← bz +∇zu
k+1 − dk+1

z

end for

i← i+ 1

f i+1 = f i + f −RFuk+1

until ‖RFuk+1 − f‖2
2 < σ2

Figure 3.2: Split Bregman algorithm for isotropic TV regularization

3.4.3 `1-regularized

There are many solvers for `1-regularized compressed sensing problems that work

when the regularizer is a pure `1-norm or those with an invertible transform. Some

are even faster than the split Bregman alogorithm. However, split Bregman is still

a fairly efficient solver for these types of problems as described below.

The `1-regularized problem can be written as

min
u
|Wu|1 s.t. ‖RFu− f‖2

2 < σ2 (3.25)

where W is some invertible transform. Here, the only auxiliary variable we need

to introduce is w = Wu which leads to the unconstrained augmented problem

(uk+1, wk+1) = min
u,w
|w|1 +

µ

2
‖RFu− f‖2

2 +
λ

2
‖w −Wu− bk‖2

2
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that can be broken up into the sequential subproblems

uk+1 = min
u

µ

2
‖RFu− f‖2

2 +
λ

2
‖wk −Wu− bk‖2

2 (3.26a)

wk+1 = min
w
|w|1 +

λ

2
‖w −Wuk − bk‖2

2 (3.26b)

The u subproblem in (3.26a) is again differentiable with explicit solution

u = F ′K−1F
(
µF ′R′f + λW ′ (wk − bk)) (3.27)

where K is now µR′R+λ since it was previously assumed that W ′W is the identity.

Clearly, K is still diagonal and simple to invert. The w subproblem just requires

straightforward application of the shrink function.

If the reconstructed data is self sparse, W can simply be the identity transform.

Precompute K−1 = (µR′R + λ)−1

repeat

for k = 1 to N do

Compute uk+1 using (3.27).

wk+1 = shrink
(
Wuk+1 + b, 1/λ

)
b← b+Wuk+1 − wk+1

end for

i← i+ 1

f i+1 = f i + f −RFuk+1

until ‖RFuk+1 − f‖2
2 < σ2

Figure 3.3: Split Bregman algorithm for `1 regularization

3.4.4 Multiple regularizers

In some contexts, having multiple regularizer terms could be ideal. For instance,

a combination of wavelet and TV regularizers was presented in Lustig’s original
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paper [102]. The split Bregman algorithm is particularly well suited for such prob-

lems with little added computational cost per term. Each term simply requires

an additional auxiliary variable and Bregman parameter, and usually, the auxil-

iary variable subproblem can be solved with some soft thresholding function. In

fact, we can think of the anistropic TV algorithm in Figure 3.1 as having three

individual regularizers (variation in x, variation in y, and variation in z), but a

mixture of total variation terms and `1 terms can be constructed in the same way.

As mentioned above, the particular combination of wavelet and TV regular-

ization has been successfully applied to MRI data. The added wavelet term can

help reduce the sometimes “blocky” reconstruction performance of TV .

This dissertation focuses on the identity-transformed `1 and TV regularizers.

While these two can of course be used together, there is little justification to. The

reason is that the TV can be thought of as the `1-norm of the finite differences

which are typically applied over only some of the dimensions. Therefore, the self

sparsity of the remaining dimensions is already implied, and a second regularizer

would be redundant. A potential exception would be if the finite differences were

taken across all the dimensions, but the data is also self sparse.

3.4.5 Intermediate updating of Bregman variables

In the preceding algorithms, the Bregman variables b were updated once per inner

loop after the image variable and the auxiliary variables were updated. (The

order in which the variables and Bregman variables are updated may make small

differences in convergence rate but is generally not considered crucial.) Allison

et.al. showed with a similar ADMM algorithm that the convergence rate can

be improved by updating the Bregman variables after each variable is updated

[6]. This type of intermediate updating is computationally inexpensive and easy

to implement. Below is what the split Bregman algorithm for `1 regularization
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shown in Figure 3.3 would look like with intermediate updating of its Bregman

variable.

Precompute K−1 = (µR′R + λ)−1

repeat

for k = 1 to N do

Compute uk+1 using (3.27).

b← b+Wuk+1 − wk

wk+1 = shrink
(
Wuk+1 + b, 1/λ

)
b← b+Wuk+1 − wk+1

end for

i← i+ 1

f i+1 = f i + f −RFuk+1

until ‖RFuk+1 − f‖2
2 < σ2

Figure 3.4: Split Bregman algorithm for `1 regularization with intermediate up-

dating of the Bregman variable. Note the additional computation between the u

subproblem and the w subproblem. Though it is applied twice, Wuk+1 only needs

to be computed once.

3.5 Extensions to multicoil data

The algorithms described in the previous section are best suited for single coil

data or data that has been retrospectively undersampled after the coils have been

combined. They can be applied to multicoil data by reconstructing each coil

separately and combining the coils at the end as a sum-of-squares as was done in

[61, 178]. While this method is straightforward and simple, there are numerous

reasons to avoid doing it this way.

From a signal perspective, Roemer et. al. showed that images reconstructed
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(a)

(b)

Figure 3.5: Effects of coil combination on NAA metabolite map (a) and COSY

spectrum of a central voxel (b). In each case, the coil combination using complex

sensitivity maps is shown on the left while sum-of-squares combination is shown

on the right.

using coil sensitivities (or B1 field maps) have slightly higher SNR than the simple

sum-of-squares [141]. This is illustrated with 4D EP-COSI data in Figure 3.5. In

addition, complex phase information is utilized for fitting of spectra in both 1D

[129, 130] and 2D [153, 59], but phase is lost in a sum-of-squares combination.

From an algorithmic perspective, the separate coil method is computationally

inefficient unless the coils can be reconstructed with parallel processors. While

multicoil reconstructions do take longer per iteration (how much depends on the

specific algorithm), for optimized algorithms, the factor at which each iteration

scales is usually notably less than the number of coils. Also, reconstructing the

coils individually does not utilize any of the information between coils. Perhaps

even more important is that the choice of regularizers are usually based on the

final image and may not be ideal for the individual coil images. As an example,
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minimizing TV will only properly reconstruct piecewise constant images. Though

this is appropriate for many MRI/MRSI scans, the individual coil images have

an approximately polynomial profile superimposed, and piecewise constancy is

violated.

To handle multicoil data, the coil sensitivity variations are taken into account.

While this can be done using k-space-based methods, the image-based SENSE

method [132, 131] is a much more natural choice due to its similarities to the

present data consistency constraint. SENSE using Tikhonov regularization even

predates compressed sensing [97]. The data consistency contraint in regularized

SENSE is expressed through the following `2 norm

‖RFSu− f‖2

where S is coil sensitivity operator.

Now the discussion up until this point has described operators R, F , and ∇

that act on the sampled data f and reconstructed data u without specifying their

numerical structures. This has not really mattered because none of the operators

changes the size of the data they operate on, and f and u are the same size.

However, in the upcoming case, f contains samples from all the coils while u is a

single image. So in this next section, we will take a brief step back from the split

Bregman algorithm to go through the numeric structures of these operators.

3.5.1 Constructing matrix operators

For single coil imaging, u and f are the same 4D (nx × ny × n2 × n1) or 5D

(nx × ny × nz × n2 × n1) matrices with (nx, ny, nz) representing the number of

points in the spatial dimensions, and (n2, n1) representing the number of spectral

or temporal points. To apply the operator notation, u and f must be vectorized

into N × 1 column vectors using standard linear indexing, where N is the total

number of points nx · ny · nz · n2 · n1.
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In practice, the following operators are not always written as explicit matrix

multiplications, and the data is not always vectorized. This is due to the speed

with which functional forms can be computed (e.g. FFT in Matlab) and the very

large, memory hogging matrices required for multiplication. (Using “sparse” ma-

trices does alleviate much of the memory requirements.) Nevertheless, for proper

derivations, the effects of these operators acting sequentially must be determined,

and this effect cannot be determined if the operator is only understood as a func-

tion acting on the data.

3.5.1.1 Sampling matrix

The sampling matrix R is easily constructed as an N ×N diagonal matrix where

the ith diagonal element is a 1 or 0 depending whether the ith data point was

sampled or not. For example the following matrix indicates that the first, second,

and third points were sampled, while the fourth and last were not.

R =



1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0


A few properties of the sampling matrix are worth mentioning. First, since R

is diagonal and logical, it can be thought of as a type of projection from the entire

data space to the sampled data space only, and R2 = R. It is also Hermitian with

R′ = R, so the product R′R that appears in the u subproblem simply equals R

itself. This simplification has not been written in the algorithms here for clarity

but was implemented in the Matlab code for efficiency.
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3.5.1.2 nD Fourier matrix

Next, the Fourier transform operator F is detailed. The N×N 1D Fourier matrix

is the Vandermonde matrix of the N th complex roots of unity.

F1D,N =
1√
N



1 1 1 1 · · · 1

1 w w2 w3 · · · wN−1

1 w2 w4 w6 · · · w2(N−1)

1 w3 w6 w9 · · · w3(N−1)

...
...

...
...

. . .
...

1 wN−1 w2(N−1) w3(N−1) · · · w(N−1)(N−1)


where w = e−

2πi
N . After application to an N × 1 vector u, F1Du is the Fourier

transform of u assuming the points of u all lie in the same dimension.

However, u is not one dimensional but 4 or 5 dimensional. Therefore, we need

a 4 or 5D Fourier transform operator that respects the original dimensionality of

u. A general multidimensional Fourier operator can be constructed as a series of

Kronecker products of the 1D operators F1D,n

F5D,N = F1D,nx ⊗F1D,ny ⊗F1D,nz ⊗F1D,n2 ⊗F1D,n1

Note that the order of the products must follow the 5D order of the dimensions

which is why the n2 term is before the n1 and that the dimensions of F5D,N are

the product of the dimensions of each of the 1D operators as explained below.

The Kronecker product between matrices A and B results in a block diagonal

matrix constructed from the product of each element of A with the entire matrix
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B.

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
...

. . .
...

...
...

. . .
...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
...

. . .
...

...
...

. . .
...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq


So a 2D Fourier matrix would look like

F2D =



1 1 · · · 1 1 1 · · · · · · 1

1 w · · · wn−1 1 w · · · · · · wn−1

...
...

. . .
...

...
...

...

1 wn−1 · · · w(n−1)(n−1) 1 wn−1 · · · · · · w(n−1)(n−1)

1 1 · · · 1 w w · · · · · · wn−1

1 w · · · wn−1 w w2 · · · · · · w2(n−1)

...
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

1 wn−1 · · · w(n−1)(n−1) wn−1 w2(n−1) · · · · · · w2(n−1)(n−1)


Sometimes it is desirable to Fourier transform only over specific dimensions. In

that case, the operator is constructed using the identity matrix in the Kronecker

product. For example, in the split Bregman algorithm, it is only necessary to

Fourier transform over the undersampled dimensions during each iteration

F5D,us = Inx ⊗F1D,ny ⊗F1D,nz ⊗ In2 ⊗F1D,n1

where In is the n× n identity matrix.
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In each case, the inverse Fourier transform is simply given by the Hermitian

transpose F ′.

3.5.1.3 Sensitivity operator matrix

Before the numeric structure of S is discussed, we must first understand intuitively

what the operator does. In brief, S is an operator that when applied to the single

image u results in multiple images of u weighted by the various coil sensitivity

profiles. Therefore, if u is nx×ny×nz×n2×n1, then Su is nx×ny×nz×n2×n1×nc,

where nc is the number of coils. Su is also the same size as f since we know that

R and F operators do not change the data size.

As before, consider u being vectorized into an N × 1 column matrix, then

f ’s vectorized size must be Nnc × 1. Sensitivity maps are logically acquired as

nx×ny×nz×nc matrices, so they must be expanded to nx×ny×nz×n2×n1×nc

to include the temporal domains. Each nx×ny×nz×n2×n1 sensitivity matrix is

then reshaped to an N ×N diagonal matrix with the complex sensitivities along

the diagonal.

Sc =



s(1,1,1,1,1,c) 0 0 · · · 0

0 s(2,1,1,1,1,c) 0 · · · 0

0 0 s(3,1,1,1,1,c) · · · 0
...

...
...

. . .
...

0 0 0 · · · s(nx,ny ,nz ,n2,n1,c)


The full matrix S is formed by stacking the individual Sc matrices

S =


S1

S2

...

Snc


and is therefore Nnc ×N .
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The adjoint operator S ′ is N ×Nnc and when applied has the effect of multi-

plying each coil image by the conjugate of the corresponding coil sensitivity and

adding up over all the coils. Thus, the product S ′S is a diagonal N × N matrix

with each element on the diagonal being equal to the sum over the coils of the

square magnitude of each point.

S ′S =



∑
c s
∗s(1,1,1,1,1,c) 0 0 · · · 0

0
∑

c s
∗s(2,1,1,1,1,c) 0 · · · 0

0 0
∑

c s
∗s(3,1,1,1,1,c) · · · 0

...
...

...
. . .

...

0 0 0 · · ·
∑

c s
∗s(nx,ny ,nz ,n2,n1,c)


3.5.1.4 Gradient operator as a finite differences matrix

For either the anisotropic or isotropic TV case, the variation in the data is found

by approximating the effect of the gradient operator ∇ on the data. Typically,

the effect of ∇ is approximated by taking first order finite differences between

two consecutive data points in different directions (though more than two points

can be used). In particular, ∇row takes differences between consecutive rows,

while ∇col takes differences between consecutive columns of a matrix. Both use

backwards differences here. In matrix form, we have the N ×N

∇row,N =



1 0 0 · · · −1

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


to take row differences on a vector or another matrix when left multiplied. The

−1 in the first row satisfies the boundary conditions and is required for reasons

that will soon become clear.

Since matrix multiplication is a row-by-column operation, there is no way to
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take column differences (i.e. y gradient) of a matrix through left multiplication

with another matrix. Instead column differences can be taken by right multipli-

cation only. However, we are not really interested in taking column differences of

a matrix, as the image data u is already vectorized.

Instead, the gradient operator must take a directional derivative of the vec-

torized data. This can accomplished using the Kronecker product as was done in

constructing the nD Fourier operator. In keeping with that notation,

∇x = Inx ⊗∇row,ny ⊗ Inz ⊗ In2 ⊗ In1

∇y = ∇row,nx ⊗ Iny ⊗ Inz ⊗ In2 ⊗ In1

∇z = Inx ⊗ Iny ⊗∇row,nz ⊗ In2 ⊗ In1

where each of the gradient operators are N ×N . For each of these matrices, the

product of the adjoint and itself is block circulant with circulant blocks (BCCB)

and therefore, diagonalizable by the Fourier transform (i.e. F ′5D∇′x,y,z∇x,y,zF5D is

diagonal) for the boundary conditions imposed on ∇row.

3.5.2 SBTV SENSE

With a better understanding of the relevant operators, we are now ready to return

to the problem of using split Bregman to solve the regularized, multicoil SENSE

problem. First we consider the SENSE extension to the isotropic TV -regularized

problem in (3.22). For brevity, only this isotropic version will be presented, though

an anisotropic one could be constructed similarly. The problem can be formulated

as

min
u
TViso(u) s.t. ‖RFSu− f‖2

2 < σ2 (3.28)

which highly resembles (3.22) with only the addition of the S operator that carries

the coil sensitivity information.

The auxiliary variables q = u, v = Su, and dx,y,z = ∇x,y,zq are introduced, and
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the constrained problem (3.28) is relaxed into the augmented constrained problem

min
u,dx,dy ,dz ,q,v

‖(dx, dy, dz)‖2 +
µ

2
‖RFv − f‖2

2 s.t. q = u, v = Su

dx = ∇xq, dy = ∇yq, dz = ∇zq

(3.29)

The problem in (3.29) is again relaxed with the addition of the Bregman variables

bx,by,bz,bv, and bq, with the resulting unconstrained problem decoupled into

vk+1 = min
v

µ

2
‖RFv − f‖2

2 +
λv
2
‖v − Su− bv‖2

2 (3.30a)

(dk+1
x , dk+1

y , dk+1
z ) = min

dx,dy ,dz
‖(dx, dy, dz)‖2

2 +
∑
i=x,y,z

λd
2
‖di −∇iq − bi‖2

2 (3.30b)

uk+1 = min
u

λq
2
‖v − Su− bv‖2

2 +
λq
2
‖q − u− bq‖2

2 (3.30c)

qk+1 = min
q

λq
2
‖q − u− bq‖2

2 +
∑
i=x,y,z

λd
2
‖di −∇iq − bi‖2

2 (3.30d)

The d subproblem (3.30b) is the same as in the single coil isotropic TV case

(3.23) and is therefore also solved with shrink3.

The v subproblem (3.30a) is differentiable, leading to the following solution

after setting the derivative to zero and grouping

v = F ′K−1F (µF ′R′f + λv(Su+ bv)) (3.31)

with K = µR′R + λv being diagonal.

The u subproblem (3.30c) is also a sum of `2-norms and is therefore differen-

tiable, with solution given by

u = L−1 (λvS
′(v − bv) + λq(q − bq)) (3.32)

where L is diagonal and given by λvS
′S + λq.

Lastly, the q subproblem (3.30d) is also differentiable, and its solution is

q = F ′M−1F

(
λq(u+ bq) +

∑
i=x,y,z

λd∇′i(di − bi)

)
(3.33)
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with M = λq − λdF ′∆F .

Note that like the previous algorithms, the differentiable subproblems are

quickly solvable because the required inversion can be performed on a diagonal

matrix. Again, this particular characteristic is why this family of algorithms are

so fast and inexpensive.

However, there is a small difference from previous problems in the u subprob-

lem (3.32). There, the matrix L that multiplies u was diagonal itself, since it

is composed of a combination of the identity matrix and the matrix S ′S. By

contrast, the matrices that multiply v and q in (3.31) and (3.33) are BCCB and

only diagonalized following right and left multiplication of the Fourier transform

and its inverse. In particular, the matrix multiplying v is BCCB because of the

F ′R′RF term, while the matrix multiplying q is BCCB because of the Laplacian

term ∆. All three subproblems have a matrix term proportional to the identity

(which is the only matrix that is both diagonal and circulant). That S ′S is already

diagonal is the reason for the seemingly excessive auxiliary variable q.

The entire algorithm is presented below without including intermediate up-

dating of the Bregman variables for clarity.
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Precompute K−1 = (µR′R + λv)
−1 , L−1 = (λvS

′S + λq)
−1 ,M−1 =

(λq − λdF ′∆F)−1

repeat

for k = 1 to N do

Compute uk+1 using (3.32).

Compute vk+1 using (3.31).

Compute qk+1 using (3.33).(
dk+1
x , dk+1

y , dk+1
z

)
= shrink3

(
∇xq

k+1+bx,∇yq
k+1+by,∇zq

k+1+bz, 1/λd
)

bq ← bq + uk+1 − qk+1

bx ← bx +∇xq
k+1 − dk+1

x

by ← by +∇yq
k+1 − dk+1

y

bz ← bz +∇zq
k+1 − dk+1

z

end for

i← i+ 1

f i+1 = f i + f −RFSuk+1

until ‖RFSuk+1 − f‖2
2 < σ2

Figure 3.6: Split Bregman algorithm for isotropic TV regularization from multicoil

acquisition

3.5.3 SB `1 SENSE

The `1-regularized version of the SENSE problem can be formulated as

min
u
|Wu|1 s.t. ‖RFSu− f‖2

2 < σ2 (3.34)

The substitutions v = Su and q = Wu are applied, resulting in the constrained

augmented problem

min
u,q,v
|q|1 +

µ

2
‖RFv − f‖2

2 s.t. q = Wu, v = Su (3.35)
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Bregman variables bq and bv are included, and (3.35) is relaxed and separated into

the following subproblems

vk+1 = min
v

µ

2
‖RFv − f‖2

2 +
λv
2
‖v − Su− bv‖2

2 (3.36a)

qk+1 = min
q
|q|1 +

λq
2
‖q −Wu− bq‖2

2 (3.36b)

uk+1 = min
u

λv
2
‖v − Su− bv‖2

2 +
λq
2
‖q −Wu− bq‖2

2 (3.36c)

The v subproblem in (3.36a) is the same as (3.30a) in the previous TV problem

and is also solved by (3.31). The q subproblem (3.36b) is solved by shrink, and

the u subproblem (3.36c) has solution given by (3.32) provided that W ′W is equal

to the identity.

Precompute K−1 = (µR′R + λv)
−1 , L−1 = (λvS

′S + λq)
−1 ,M−1 =

(λq − λdF ′∆F)−1

repeat

for k = 1 to N do

Compute uk+1 using (3.32).

bv ← bv + Suk+1 − vk

bq ← bq +Wuk+1 − qk

Compute vk+1 using (3.31).

q = shrink (Wu+ bq, 1/λq)

bv ← bv + Suk+1 − vk+1

bq ← bq +Wuk+1 − qk+1

end for

i← i+ 1

f i+1 = f i + f −RFSuk+1

until ‖RFSuk+1 − f‖2
2 < σ2

Figure 3.7: Split Bregman algorithm for `1-norm regularization from multicoil

acquisition
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3.5.4 Self sparse SB `1 SENSE

Alternatively, if the reconstructed data u is in fact self sparse (which it is assumed

to be in this dissertation), we recognize that the individual coil images Su must

be at least as sparse. In this case, the problem can be formulated in a way with

a particularly simple solution.

min
u
|Su|1 s.t. ‖RFSu− f‖2

2 < σ2 (3.37)

Applying the variable substitution v = Su results in the problem

min
u
|v|1 s.t. ‖RFv − f‖2

2 < σ2, v = Su (3.38)

Note that the substitution has completely decoupled u from the rest of the opti-

mization, and therefore, the problem can be solved first for v before final trans-

formation to u. Solving for v is identical to solving for u in the single coil problem

(3.25) if W is equal to the identity.

Once v has been determined, u is simply computed as

u = (S ′S)
−1
S ′v (3.39)

where the matrix inversion is again simple since S ′S is diagonal. For optimal SNR,

the noise correlation between individual coils Ψ can be included in the inversion

u =
(
S ′Ψ−1S

)−1
S ′Ψ−1v

However, in many SENSE applications with modern coil geometries, it is assumed

that Ψ is the identity.
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Precompute K−1 = (µR′R + λ)−1

repeat

for k = 1 to N do

Compute vk+1 using (3.27).

b← b+ vk+1 − wk

wk+1 = shrink
(
vk+1 + b, 1/λ

)
b← b+ vk+1 − wk+1

end for

i← i+ 1

f i+1 = f i + f −RFvk+1

until ‖RFvk+1 − f‖2
2 < σ2

u = (S ′S)−1 S ′vk+1 or u = (S ′Ψ−1S)
−1
S ′Ψ−1vk+1

Figure 3.8: Simple split Bregman algorithm for `1 regularized self sparse multicoil

acquisition with intermediate variable updating

3.6 Group Sparsity

The group sparsity (GS) regularizer replaces the `1-norm with an `2,1-norm [181].

The `2,1-norm is found by calculating the `1-norm of the `2-norms of grouped

coefficients.

‖u‖2,1 = ‖ug1‖2 + ‖ug2‖2 + · · ·+ ‖ugn‖2 (3.40)

where the gi’s are the n groups of u. By grouping certain coefficients before

promoting sparsity through the `1-norm, GS can exploit the tendency of large

coefficients to be clustered and increases the structural sparsity of the groups.

There is a lot of flexibility in how the groupings can be defined. They can

be across a single dimension as in the case of joint sparsity taken across the coils

in MRI reconstruction [51], or they can span multiple dimensions. Groups can
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partition the data space, or they can overlap with each other.

3.6.1 Single channel

The unweighted, single channel GS problem is formulated as

min
u
‖Gu‖2,1 s.t. ‖RFu− f‖2

2 < σ2 (3.41)

where G ∈ Rn×N is the matrix that groups coefficients of u. This problem was

solved in [46] using the alternate direction method of multipliers (ADMM) and

similarly, in [27] using the split Bregman algorithm [66].

The solution is found by first writing the problem as an unconstrained mini-

mization,

min
u
‖Gu‖2,1 +

µ

2
‖RFu− f‖2

2 (3.42)

defining an auxiliary variable z = Gu, splitting the unconstrained problem, and

using Bregman iterations to enforce the equality of the substitution. The uncon-

strained problem can then be solved iteratively as follows

uk+1 = minu
µ
2
‖RFu− f‖2

2 + λ
2
‖zk −Gu− bkz‖2

2

zk+1 = minz ‖z‖2,1 + λ
2
‖z −Guk+1 − bkz‖2

2

bk+1
z = bkz +

(
Guk+1 − zk+1

) (3.43)

which is Eq. [12] in [27]. Here, µ and λ are regularization parameters, and bz is

the Bregman parameter enforcing the equality in the variable substitution. The

original constrained problem (Eq. (5.3)) is solved by applying an outer loop of

Bregman updates on the sampled data f until the `2-norm of the data consistency

term falls below σ. The bz update is simply algebra, and the z update is solved

using the group-wise shrinkage function

gshrink (Gu, λ) = max

(
0, 1− λ

‖Gu‖2,1

)
·Gu (3.44)

The u subproblem is differentiable and can be solved very quickly since µF ′R′RF+

λG′G is circulant as long as all points are in the same number of groups. G′G = nI
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is simply the number of groups each point is in n multiplied by the identity matrix

I. (Here, and for the rest of the paper, primes denote the Hermitian conjugate.)

If prior knowledge of the coefficients in each group is known, it can be in-

corporated into the `2,1-norm by assigning each group a weight wi as illustrated

by

‖Gu‖w,2,1 =
n∑
i

wi‖ugi‖2 (3.45)

Equation 3.45 is referred to as the `w,2,1-norm and slighlty modifies the objective

of the z subproblem, which must then be solved using the weighted group-wise

shrinkage function

gshrinkw (Gu, λ, w) = max

(
0, 1− w · λ

‖Gu‖2,1

)
·Gu (3.46)

The remaining iterations are unchanged.

3.6.2 Multi channel with sensitivity maps

The method described above applies to single channel data or can be used to re-

construct multi channel data channel-by-channel. Alternatively, if coil sensitivity

information is available, the multi channel problem can be formalized as

min
u
‖Gu‖w,2,1 s.t. ‖RFSu− f‖2

2 < σ2 (3.47)

where S is the sensitivity profile operator [132]. While Eq. (3.47) resembles to

Eq. (5.3), the presence of S complicates the matter.

The split Bregman algorithm achieves such high efficiency in part because the

u subproblem (which is the most expensive step) involves inverting a circulant

matrix that can be made diagonal with application of a Fourier Transform. In

general, fast solvers based on ADMM or the split Bregman algorithm share this

characteristic. But once the sensitivity profiles are included, µS ′F ′R′RFS+λG′G

is no longer circulant. In that case, the u subproblem can be approximately solved
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using a few iterations of the conjugate gradient method [66, 39], but this can still

be expensive even with preconditioning.

Alternatively, variable splitting can be applied to the data fidelity term in the

same way it is applied to the objective term [136, 37]. This has the advantage of

separating the image space operator S from the k-space operators R and F and

allows for exact solution of each subproblem. With the addition of the auxiliary

variables, the problem in Eq. (3.47) can be written as

min
u,v,z
‖z‖w,2,1 s.t. ‖RFv − f‖2

2 < σ2, z = Gu, v = Su (3.48)

As before, the constraints are relaxed, and the Bregman formulation is applied,

resulting in an objective function of

min
u,v,z
‖z‖w,2,1 +

µ

2
‖RFv − f‖2

2 +
λz
2
‖z −Gu− bz‖2

2 +
λv
2
‖v − Su− bv‖2

2 (3.49)

where µ, λz, and λv are regularization parameters and bz and bv are Bregman

variables.

The objective function is then split into minimization subproblems for each

variable. The v subproblem is given by

min
v

µ

2
‖RFv − f‖2

2 +
λv
2
‖v − Su− bv‖2

2 (3.50)

and resembles the u subproblem in Eq. (3.43). Differentiating with respect to v

(holding u constant) and setting the result equal to zero yields

(µF ′R′RF + λv) v = µF ′R′f + λv (Su+ bv) (3.51)

The term in parenthesis on the left is circulant, so the solution is given by

v = F ′K−1F (µF ′R′f + λv (Su+ bv)) (3.52)

where K = (µR′R + λv) is diagonal.

Next, the z subproblem is given by

min
z
‖z‖w,2,1 +

λz
2
‖z −Gu− bz‖2

2 (3.53)
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which is solved by Eq. (3.46) with

z = ghrinkw (Gu+ bz, 1/λz, w) (3.54)

as before.

The u subproblem is written as

min
u

λv
2
‖v − Su− bv‖2

2 +
λz
2
‖z −Gu− bz‖2

2 (3.55)

which is also differentiable with solution given by

u = M−1 (λvS
′ (v − bv) + λzG

′ (z − bz)) (3.56)

where M = (λvS
′S + λzG

′G). Both S ′S and G′G are diagonal, so M is easily

inverted.

The remainder of the algorithm consists of Bregman updates to the parameters

bv, bz, and bu in each inner loop and Bregman updating of the sampled data f in

an outer loop to enforce the original constrained problem in Eq. (3.47). We use

intermediate updating of the Bregman parameters to help speed up convergence

at minimal added computational cost [6].
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Precompute K−1 = (µR′R + λv)
−1 and M−1 = (λvS

′S + λzG
′G)−1

repeat

for k = 1 to 15 do

Compute vk+1 using (3.52).

bv ← bv +
(
Suk − vk+1

)
Compute zk+1 using (3.54).

bz ← bz +
(
Guk − zk+1

)
Compute uk+1 using (3.56).

bv ← bv +
(
Suk+1 − vk+1

)
bz ← bz +

(
Guk+1 − zk+1

)
end for

i← i+ 1

f i+1 = f i +
(
f −RFSuk+1

)
until ‖RFSuk+1 − f‖2

2 < σ2

Figure 3.9: SBGS SENSE I algorithm

Alternatively, if the final image/spectral data u is in fact self sparse (which is

the premise for using the `w,2,1-norm of groups of the reconstructed data itself with

no additional transform), we recognize that the individual coil image/spectral data

Su must be at least as sparse. The multi channel problem can then be formulated

as

min
u
‖GSu‖w,2,1 s.t. ‖RFSu− f‖2

2 < σ2 (3.57)

This problem is actually easier to solve than Eq. (3.47) as it requires one less

auxiliary variable to be iteratively updated. This can be seen by applying the

substitution v = Su to get

min
u,v
‖Gv‖w,2,1 s.t. ‖RFv − f‖2

2 < σ2, v = Su (3.58)

Since u has been completely decoupled from the rest of the optimization, the
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problem can be solved iteratively for v first before transforming to u.

Ignoring the v = Su constraint, the remaining problem is simply the problem

for single channel datat (Eq. (5.3)) with v replacing u. It is solved as before by

relaxing the constraint, making the substitution z = Gv, using the Bregman for-

mulation, and iteratively solving each subproblem while holding the other variable

constant. In this case, the v subproblem is

min
v

µ

2
‖RFv − f‖2

2 +
λ

2
‖zk −Gv − bkz‖2

2 (3.59)

which is differentiable with solution

v = F ′L−1F (µF ′R′f + λG′ (z − bz)) (3.60)

where L = µR′R + nλ is diagonal as already discussed. The z subproblem is

therefore

min
z
‖z‖w,2,1 +

λ

2
‖z −Gvk+1 − bkz‖2

2 (3.61)

and is again solved by group-wise shrinkage of Eq. (3.46).

Bregman updates are applied, including over an outer loop on f until the

problem is accurately solved for v. At that point u is given from v by

u =
(
S ′Ψ−1S

)−1
S ′Ψ−1v (3.62)

where Ψ is the noise correlation matrix between the coils and is used to achieve

optimal SNR [132].

67



Determine Ψ or set Ψ = I.

Precompute L−1 = (µR′R + nλ)−1

repeat

for k = 1 to 15 do

Compute vk+1 using (3.60).

bz ← bz +
(
Gvk+1 − zk

)
Compute zk+1 using (3.54).

bz ← bz +
(
Gvk+1 − zk+1

)
end for

i← i+ 1

f i+1 = f i +
(
f −RFSuk+1

)
until ‖RFvk+1 − f‖2

2 < σ2

Compute u using (5.9).

Figure 3.10: SBGS SENSE II algorithm
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CHAPTER 4

Accelerated Five-dimensional Echo Planar

J-resolved Spectroscopic Imaging:

Implementation and Pilot Validation in Human

Brain

4.1 Abstract

Purpose: To implement an accelerated five dimensional (5D) echo-planar J-

resolved spectroscopic imaging (EP-JRESI) sequence combining 3 spatial and 2

spectral encoding dimensions and to apply the sequence in human brain.

Methods: An echo planar readout was used to acquire a single spatial and a

single spectral dimension during one readout. Nonuniform sampling (NUS) was

applied to the two phase encoded spatial directions and the indirect spectral di-

mension. Nonlinear reconstruction was used to minimize the `1-norm or the total

variation (TV ) and included a spectral mask to enhance sparsity. Retrospec-

tive reconstructions at multiple undersamplings were performed in phantom. Ten

healthy volunteers were scanned with 8x undersampling and compared to a fully

sampled single slice scan.

Results: Retrospective reconstruction of fully sampled phantom data showed ex-

cellent quality at 4x, 8x, 12x, and 16x undersampling using either reconstruction

method. Reconstruction of prospectively acquired in vivo scans with 8x under-

sampling showed excellent quality in the occipito-parietal lobes and good quality
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in the frontal lobe, consistent with the fully sampled single slice scan.

Conclusion: By utilizing NUS with nonlinear reconstruction, 2D J-resolved spec-

tra can be acquired over a 3D spatial volume with a total scan time of 20 minutes,

which is reasonable for in vivo studies.

4.2 Introduction

Spectroscopic imaging (SI) allows the acquisition of spatially mapped spectra over

two or three dimensions [24]. Compared to single voxel techniques, SI offers much

larger spatial coverage and better resolution as well as the ability to discriminate

spectra at different locations. SI can be an important tool for mapping the spatial

extent of diseased tissue as underlying metabolic changes can occur before any

visible anatomic variation.

The scan time for classical SI sequences is proportional to the number of phase

encoding increments and therefore increases with the resolution and number of

dimensions. Mansfield proposed using an echo planar readout to interleave the

collection of one of the spatial dimensions along with the directly-acquired spectral

dimension [107]. This type of spatial-spectral readout has been applied in vivo

with the originally-proposed Cartesian k-space trajectory [127] as well as with

spiral-based [2] and concentric circular-based trajectories [62].

A major issue with proton (1H) spectroscopy in the human brain is that nearly

all of the measurable resonances lie in a relatively small bandwidth covering ap-

proximately 4 ppm, resulting in spectra that suffer from severe overlap and crowd-

ing. Spectral dispersion can be increased using two dimensional (2D) MR Spec-

troscopy (MRS) [9]. Localized versions of some of the simpler 2D MRS sequences

have been applied in single voxel techniques in vivo [147, 171, 8]. In particular, lo-

calized J-resolved spectroscopy (JPRESS) [147] is achieved by adding incremental

delays symmetrically around the last refocusing pulse in a PRESS [20] localiza-
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tion. At each increment, the chemical shift is refocused at readout. However,

scalar coupling is not refocused by a 180°pulse and therefore, evolves differently

for each increment. Two dimensional Fourier transformation of the time domain

data results in a spectrum in which peak splitting of coupled metabolites is in a

separate dimension from the chemical shift.

Multidimensional spectroscopic imaging refers to SI scans that collect two

spectral dimensions, such as with J-resolved [3] or correlated spectroscopy [99, 7].

The additional information present in the second spectral dimension comes at the

expense of greatly increased scan time, limiting the application of multidimen-

sional SI to relatively low resolution single slice acquisitions even with an echo

planar readout.

Techniques used to accelerate MRI such as partial Fourier acquisition [104]

or parallel imaging [132, 70] have been applied to acquire fewer phase encoding

steps in spectroscopic imaging as well [113, 52, 98, 121]. However, the potential

acceleration is limited for low resolution SI, and these methods do not accelerate

the acquisition of the indirect spectral dimension.

Alternatively, nonuniform sampling (NUS) with compressed sensing (CS) re-

construction offers greater potential acceleration as the undersampling can be

spread over multiple dimensions [102]. Hu et al. used a blipped phase encode

during readout to nonuniformly sample the spatial and spectral dimensions in hy-

perpolarized C-13 spectroscopic imaging [81]. Our group has previously shown the

potential for 4-fold acceleration of single-slice echo planar J-resolved spectroscopic

imaging (EP-JRESI) by undersampling the (ky, t1) plane [61].

Here, we extend those principles to 5D (3 spatial + 2 spectral) spectroscopic

imaging and apply NUS to the (ky, kz, t1) volume. The third spatial dimension

can provide nearly full coverage of the brain in a single scan. This aspect is crit-

ical when locations of interest (e.g. tumors) are not apparent in an MRI scan or

require detailed mapping in three dimensions [145]. In addition, regional metabo-
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lite differences have been found from whole brain SI in varied pathologies such

as traumatic brain injury [67] and ALS [165, 177]. The third spatial dimension

also enhances the self sparsity of data, and spreading the undersampling over an

additional dimension increases the incoherence of the artifacts [102]. These fac-

tors improve the performance of CS reconstruction and allow us to acquire data

with an 8-fold acceleration, which is the same time required for a fully sampled

single-slice data set at the resolution shown here. It should be mentioned that pre-

vious applications of CS to SI were used to accelerate already existing protocols,

whereas in our case, 5D SI is untenable in vivo without significant acceleration.

Existing fast 3D SI methods all acquire data with a single spectral dimension

and have typically focused on high resolution mapping of the singlet signals of

NAA, creatine, and choline [121, 71, 111]. Dreher et al. used a steady-state free

precession EPSI to additionally map myo-Inositol, though their technique is not

well suited for detecting glutamate/glutamine (Glx) resonances [49]. Recently,

reliable short TE whole brain maps of Glx were also shown [47]. However, none of

these techniques offer much potential for separately resolving highly overlapped

metabolites such as glutamate and glutamine.

4.3 Methods

4.3.1 Phantom

All scans were acquired on a Siemens 3T Trio scanner, with TR/minimum TE

= 1200/30 ms. A phantom with physiological concentrations [68] of 16 grey

matter brain metabolites was scanned 12 times to measure spectral quality and

reproducibility. The fully-sampled 5D EP-JRESI sequence acquired a k-space

volume with 16 points in the readout direction (kx) and 16 and 8 points in the

two phase encoding directions (ky and kz, respectively). The field of view (FOV)

was 16× 16× 12 cm3. Each kx line was repeatedly acquired for 256 t2 points per
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TR, and 64 TE increments (t1 points) were acquired. A maximum echo sampling

scheme was applied in which t1 is incremented only before the last refocusing

pulse [106, 154]. The second increment that leads to refocused chemical shift is

applied as a frequency-dependent, linear phase correction in postprocessing for

each acquisition. The reconstructed bandwidths in the direct (F2) and indirect

(F1) spectral dimensions were 1190 and 500 Hz, respectively. Water suppression

was applied before each scan [117]. Scans were recorded with a single channel

transmit/receive extremity coil mostly, though three scans were recorded with the

same head receive coil used in the in vivo experiments. Total scan time was 2h

44m. Different NUS rates were applied retrospectively.

4.3.2 in vivo

Ten healthy volunteers (mean age 25.0 years old) were scanned using the same

parameters as the phantom scans except that the FOV was increased to 24 ×

24 × 16 cm3, and 8x NUS was prospectively applied for a scan time of around

20 minutes. Outer volume saturation bands were included outside the PRESS

volume of interest (VOI). An eight channel head receive coil was used. One scan

was excluded due to poor water suppression as a result of subject motion. For

a time-equivalent comparison, a fully-sampled 4D single slice scan with the same

slice thickness and in-plane resolution was also acquired in one healthy 23 year

old volunteer.

4.3.3 NUS masks

Incoherent aliasing was achieved by randomly undersampling the (ky, kz, t1) vol-

ume. As previously described in Ref [61], a nonuniform sampling density function

that favors the higher SNR data points was considered and was given by

ρ(ky, kz, t1) = exp

{
−|ky|

a
− |kz|

b
− t1
c

}
(4.1)
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Figure 4.1: 8x nonuniform sampling mask over the (ky, kz, t1) volume used for phantom

and in vivo scans. White squares indicate sampled points.

where ρ(ky, kz, t1) is the probability of sampling point (ky, kz, t1), ky ∈ {−8,−7, . . . , 7},

kz ∈ {−4,−3, . . . , 3}, t1 ∈ {0, 1, . . . , 63}, and a, b, and c give the relative decay

in each dimension. This method is similar in principle and motivation to that

described by Barna et al. [12]. In the 5D EP-JRESI sequence as described above,

there is less sampling in the spatial dimensions than the indirect spectral dimen-

sion, so in order to ensure adequate sampling of that indirect spectral dimension,

we have set a = b = 2 and c = 1. The 8x mask used in phantom retrospectively

and in vivo prospectively is shown in Fig 4.1. Independent masks were generated

for 4x, 8x, 12x, and 16x undersampling. In each case, 50 masks were generated

offline, and the one with the smallest maximum off center peak of the point spread

function was implemented on the scanner.
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4.3.4 Reconstruction

Two versions of the CS reconstruction problem were formulated. In the first,

the reconstructed data is considered self sparse, due largely to the sparsity of 2D

JPRESS spectra, and the optimization is written as

min
u
‖u‖1 s.t. ‖RFu− f‖2

2 < σ2 (4.2)

where u = u(x, y, z, F2, F1) is the reconstructed data, f = f(x, ky, kz, F2, t1) is the

undersampled data Fourier transformed across the fully sampled dimensions, σ2 is

an estimate of the noise variance of the sampled data divided by 100, R is the NUS

masking operator, and F is the Fourier transform operator across the undersam-

pled dimensions only. The objective function is the `1-norm of the reconstructed

data, and the constraint expresses data consistency through the `2-norm of the

difference betweeen the acquired data and the subsampled reconstructed data.

Each iteration of the solver requires transformation from the f domain to the u

domain and back. For such large datasets and with a high number of iterations, a

significant amount of reconstruction time is spent on Fourier transforms. Trans-

forming the (kx, t2) dimensions only once before reconstruction therefore saves

time and is permissible since F−1RF equals identity when the dimension is fully

sampled (R = ~1).

The second CS reconstruction is based on the assumption of piecewise constant

spatial profiles and seeks to minimize the total variation (TV) of the reconstructed

data with the same data consistency constraint. It is given by

min
u
TV (u) s.t. ‖RFu− f‖2

2 < σ2 (4.3)

and was similar to the method used in Ref [61]. The TV -norm was given isotrop-

ically as

TV (u) =
N∑
i=1

√
(∇xu)2 + (∇yu)2 + (∇zu)2 (4.4)
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where N is the number of acquired data points. In this experiment, this problem

took about three times longer per iteration than that of Eq. [4.2].

Both Eqs. [4.2] and [4.3] were solved using the split Bregman algorithm [66].

The split Bregman algorithm seeks to minimize the Bregman distance of the

objective function and uses operator splitting [16] to simplify the computations.

It is equivalent to the alternating direction method of multipliers (ADMM) with

one iteration [58]. Each reconstruction had the same stopping criteria, namely:

(1) a maximum number of 200 iterations and (2) accepted level of deviation from

the acquired data as expressed through the parameter σ.

4.3.5 Additional processing

After Fourier transformation across t2 but before reconstruction, a linear phase

correction was applied to effectively refocus chemical shift as described above. At

the same time, a spectral mask was applied in F2 to select only the region between

1.2 and 4.3 ppm, which is where nearly all of the brain metabolites resonate. This

constrains the dynamic range of the data and effective removes the large residual

water signal and most lipid contamination. A similar approach was applied by

Eslami et. al. to SI data with one spectral dimension [57].

The reconstruction was performed over each coil separately, and the individual

coil reconstructions were combined as a sum-of-squares. Metabolite maps were

found by integrating the reconstructed spectra over the peak ranges given in Table

4.1. An average noise power for each sized region was subtracted from the integral

to compensate for the bias introduced by nonzero mean noise in the absolute

magnitude spectra [72].

For the quantitative comparison, voxels were excluded based on any of three

criteria: (1) low SNR, (2) undue influence of the residual water tail, (3) large fat

signal bleed. The spectral regions used to perform these tests are also given in
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Figure 4.2: J-resolved spectrum from the same central voxel in the phantom for different

undersampling rates. (a) fully sampled, (b) 4x NUS with minimum energy reconstruc-

tion (missing data points were filled in with zeros), (c)-(f) `1 reconstructions for 4x, 8x,

12x, and 16x NUS, respectively.

Table 4.1. The first condition effectively excluded voxels outside the VOI, while

the second was important for voxels in the frontal lobe. The third condition is

important for voxels near the skull marrow. Acceptance criteria was manually

confirmed with visual inspection of the NAA, Cr, and tCho singlets.

4.4 Results

4.4.1 Phantom

Spectra from a central voxel in a typical phantom scan are shown with various

retrospective undersampings in Figure 4.2 along with the same fully sampled spec-
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Full 8x 8x
‡ 12x 12x

‡ 16x 16x
‡

Full8x8x‡12x12x‡16x16x‡

Figure 4.3: Glx metabolite map for a typical phantom scan with various retrospective

undersamplings. Slices are stacked vertically, and the readout direction is horizon-

tal. Reconstruction was performed according to Eq. [4.3], minimizing the TV -norm.

‡Reconstruction did not include spectral masking.
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trum. The minimum energy reconstruction in which the unacquired data points

are filled in with zeros is shown (Fig 4.2b) for the same 4x undersampling as that

reconstructed in Fig 4.2c with Eq (4.2). Note that the spectral aliasing artifacts

appear tilted along the F1 dimension due to the maximum echo sampling scheme

and postprocessing. The CS reconstructed 4x spectra show excellent spectral qual-

ity with respect to the fully sampled. As expected, a decrease in spectral quality

exemplified by residual aliasing and the removal of low lying peaks is observed with

progressively larger undersampling. A metabolite map of the integrated volume

of the NAA singlet is presented in Fig 4.4, showing the spatial aliasing artifacts in

the minimum energy reconstruction in both the y- and z-directions. Metabolite

maps for the remaining metabolites show similar quality.

Figure 4.3 shows the metabolite maps of Glx from the same phantom scan

reconstructed using TV minimization in Eq. (4.3) undersampled by 8, 12, and

16, along with the fully sampled reconstruction. For each undersampling, the

reconstructions are shown with and without prior spectral masking as noted. Full

spectra from the central voxel of each reconstruction are shown in Fig 4.5 with the

display extended to show the residual water peak. Without spectral masking, the

residual water peak is much higher, and the metabolite peaks are reconstructed

at lower intensities. Also, comparing Fig 4.5(a)-(c) to Fig 4.2(d)-(f) qualitatively

suggests that the TV -norm objective performs better than the `1-norm, especially

at greater undersampling factors.

Quantitative comparisons between the various undersampling factors and re-

constructions over all the phantom scans are shown in Table 4.2 and Figure 4.6.

In Table 4.2, peak root-mean-square-errors (RMSEs) are computed between the

fully sampled and reconstructed data and are reported in decibels (dB). The same

spectral region used for peak integration was used for each metabolite RMSE. For

proper comparison, the minimum energy reconstructions are also included. Within

each reconstruction, there is a clear trend of higher RMSEs with greater under-
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Full 4x
† 4x 8x 12x 16x

Figure 4.4: Localized three plane image of phantom (left) and NAA metabolite map

for a typical phantom scan with various retrospective undersamplings (right). The

phase encoding direction is shown vertically, the readout is horizontal, and the slices

are stacked. Reconstruction was performed according to Eq. (4.2), minimizing the

`1-norm except where noted. †Minimum energy reconstruction
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Figure 4.5: The effect of spectral masking before reconstruction. J-resolved spectrum

from the same central voxel in the phantom for different undersamplings with TV re-

construction. (a)-(c) are for 8x, 12x, and 16x NUS, respectively and include spectral

masking. (d)-(f) use the same NUS and reconstruction except without any spectral

masking; the contour level has been scaled down by a factor of two to partially compen-

sate for the decreased signal intensity. In all spectra, the F2 axis is extended to show

the residual water peak.
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sampling factors for each metabolite. Exceptions occur in the TV reconstruction

between 4x and 8x undersampling and in the `1 reconstruction of Cr39 between

12x and 16x. RMSEs are also presented for 8x undersampled data reconstructed

with `1 minimization without prior spectral masking. Though the NAA results

are surprisingly close to the fully sampled, most of the other metabolites are much

less similar and are even worse than the minimum energy reconstruction in some

instances, indicating that the spectral mask improves the reconstruction of small

to medium peaks. Trends between the `1 and TV reconstructions are less obvious

with `1 exhibiting lower RMSEs at lesser undersampling but TV exhibiting lower

ones at greater undersampling.
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F2(ppm) F1(Hz)

NAA (1.8, 2.2) (-15, 15)

Glx (2.2, 2.6) (-15, 15)

Cr30 (2.9, 3.1) (-15, 15)

Cho (3.1, 3.3) (-15, 15)

mI (3.4, 3.8) (-15, 15)

Cr39 (3.8, 4.0) (-15, 15)

Wat (4.0, 4.3) (-15, 15)

Tail (2.0, 4.3) (-250, 47)

Fat (0.7, 1.6) (-15, 15)

Sig (2.4, 3.1) (-15, 15)

Noise (1.3, 2.5) (120, 240)

Table 4.1: Spectral ranges used to measure peak integrals. Cho is total choline;

Cr30 is the creatine singlet at 3.0 ppm; Cr39 is the creatine singlet at 3.9

ppm; Glx is glutamate and glutamine combined; mI is myo-inositol; NAA is

N-acetylaspartate. Wat and Tail are used as a measure of baseline effects due

to residual water contamination. Fat is a marker of lipid signal bleed. Sig is a

marker of overall signal level. Noise is taken from a region that is devoid of any

signal, desired or nuisance.
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Min En `1 TV

4x 8x 12x 16x 4x 8x‡ 8x 12x 16x 4x 8x 12x 16x

NAA -10.23 -7.22 -5.32 -4.22 -14.71 -14.95 -14.65 -14.53 -14.47 -14.59 -14.67 -14.61 -14.51

Glx -9.22 -6.64 -4.52 -3.17 -13.98 -6.53 -13.72 -13.67 -13.58 -13.81 -13.67 -13.68 -13.47

Cr30 -9.64 -6.84 -5.10 -3.81 -14.20 -10.74 -14.22 -13.79 -13.76 -14.13 -14.21 -13.99 -13.85

tCho -9.30 -6.54 -5.08 -3.54 -13.82 -7.09 -13.77 -13.57 -13.41 -13.82 -13.84 -13.68 -13.59

mI -7.90 -5.78 -4.87 -4.84 -10.96 -4.67 -10.81 -10.72 -10.61 -10.77 -10.49 -10.20 -10.22

Cr39 -9.56 -7.12 -5.50 -4.55 -14.09 -8.03 -13.84 -13.57 -13.71 -14.07 -14.09 -13.81 -13.75

Table 4.2: Mean metabolite peak RMSEs in phantom in decibel scale. Min En is the minimum energy reconstruction.

‡Spectral masking was not applied prior to reconstruction.
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Figure 4.6 compares the reconstructions by looking at peak integrals of NAA,

Glx, Cr, tCho, and mI. In each case, the peak integrals tend to decrease with

greater undersampling with the differences being smaller for TV reconstruction.

The standard deviations of the fully sampled data are similar to those for each

reconstruction with those of mI being the highest due to its closer proximity to

the residual water tail. Table 4.3 gives the numbers used for this figure.
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Figure 4.6: Peak integrals reconstructed from different undersamplings for five metabo-

lites. Integrals were normalized by the mean of Cr in the fully sampled data. Recon-

struction was performed according to Eq. [4.2] (top) and Eq. [4.3] (bottom).
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`1 TV

Full 4x 8x 12x 16x 4x 8x 12x 16x

NAA 1.55 (0.51) 1.29 (0.52) 1.13 (0.46) 0.99 (0.36) 1.03 (0.34) 1.49 (0.50) 1.40 (0.47) 1.25 (0.40) 1.25 (0.42)

Glx 1.37 (0.50) 0.98 (0.52) 0.76 (0.46) 0.63 (0.36) 0.69 (0.28) 1.36 (0.49) 1.19 (0.46) 1.08 (0.42) 1.04 (0.39)

Cr30 1.00 (0.36) 0.84 (0.30) 0.70 (0.22) 0.59 (0.18) 0.62 (0.19) 0.93 (0.31) 0.82 (0.27) 0.72 (0.22) 0.80 (0.24)

tCho 0.78 (0.44) 0.62 (0.35) 0.50 (0.24) 0.40 (0.16) 0.41 (0.15) 0.70 (0.36) 0.59 (0.31) 0.48 (0.17) 0.52 (0.18)

mI 0.81 (0.80) 0.79 (0.82) 0.56 (0.70) 0.41 (0.49) 0.43 (0.45) 0.73 (0.70) 0.57 (0.64) 0.43 (0.41) 0.50 (0.42)

Table 4.3: Mean metabolite peak integrals in phantom with standard deviations in parentheses.87



4.4.2 in vivo

Due to obvious time constraints, 5D in vivo data was prospectively undersampled

only, so there is no fully-sampled data to compare with. Quality metrics such as

RMSE cannot therefore be calculated. Instead, peak integrals are used to show

reproducibility and that values are within the physiological range for healthy

adults. Figure 4.7a shows metabolite maps from a healthy 29 year old adult

using 8x undersampling and TV reconstruction. Each metabolite was scaled to

its maximum so that they all can appear with the same grey scale despite different

overall intensities. Figure 4.7b shows the full spectra from the voxels highlighted

in Fig 4.7a. The red and blue voxels are from different sides of the occipital lobe,

the yellow voxel is from the parietal lobe, and the green voxel is from the frontal

lobe. The occipital voxels tend to have the best water suppression and exhibit the

highest quality spectra. This is consistent with our previous experience both in

single voxel and single slice spectroscopic imaging. Fat leakage into the occipital

voxels is present but small enough not to disturb the NAA singlet. Voxels in the

frontal lobe show worse water suppression due to susceptibility related effects and

difficulties in shimming, and the residual water tail can affect the integrals of the

Cr39 singlet and the mI multiplet.

Figure 4.8 shows the mean metabolite peak integrals over nine healthy adults

using TV minimization. Voxels in the frontal lobe (top) were separated from

those in the occipital and parietal lobes (bottom). This is because of the markedly

increased standard deviations in the frontal lobe in scans with poorer water sup-

pression. A time-equivalent, 4D fully-sampled data set is included and shows

similar means and standard deviations as the reconstructed 5D data. Figure 4.9

shows the data reconstructed minimizing the `1-norm. Both figures are similar,

though the TV reconstruction results in a tighter spread of intersubject averages

and slightly smaller intrasubject standard deviations as well. The numeric data

for all 10 healthy volunteers along with the number of acceptable voxels for each
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Figure 4.7: Metabolites maps (left) for a 29 year old healthy adult scanned with 8x

undersampling and reconstructed using Eq. [4.3]. Each metabolite was normalized to

its maximum so that they appear on the same gray scale. Spectra from the highlighted

voxels are shown at right.
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Figure 4.8: Regional peak integrals of major metabolites in ten healthy adults with

minimum TV reconstruction. The green bars are from 8x NUS 5D data reconstructed

using Eq. [4.3] for voxels in the frontal lobe (top) and in the occipito-parietal lobes

(bottom). The orange bar is from a time-equivalent, fully-sampled 4D data set for

comparison.

scan are given in Table 4.4 and Table 4.5 for voxels in the occipito-parietal and

frontal lobes, respectively.
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Figure 4.9: Regional peak integrals of major metabolites in ten healthy adults with

minimum `1 reconstruction. The green bars are from 8x NUS 5D data reconstructed

using Eq. (4.2) for voxels in the frontal lobe (top) and in the occipito-parietal lobes

(bottom). The orange bar is from a time-equivalent, fully-sampled 4D data set for

comparison.

91



Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Scan7 Scan8 Scan9 Scan10 4D Full

` 1

NAA 1.72 (0.68) 2.78 (0.66) 1.50 (0.62) 2.22 (1.29) 2.53 (0.69) 2.41 (0.94) 2.56 (1.02) 1.51 (0.65) 2.50 (1.34) 1.43 (0.68) 1.54 (0.60)

Glx 1.09 (0.45) 1.38 (0.65) 0.83 (0.41) 1.23 (0.63) 1.34 (0.72) 1.21 (0.68) 1.38 (0.78) 0.78 (0.49) 1.36 (0.67) 0.79 (0.42) 0.84 (0.39)

Cr30 1.26 (0.39) 1.32 (0.49) 0.74 (0.34) 1.03 (0.69) 1.13 (0.50) 1.03 (0.55) 1.14 (0.56) 0.57 (0.23) 1.26 (0.71) 0.72 (0.28) 0.62 (0.32)

tCho 1.13 (0.55) 1.52 (0.64) 0.93 (0.45) 1.36 (0.70) 1.55 (0.68) 1.33 (0.67) 1.46 (0.72) 0.96 (0.68) 1.56 (0.71) 0.87 (0.47) 0.92 (0.41)

mI 1.41 (0.58) 1.49 (1.16) 0.90 (0.39) 1.55 (1.01) 1.10 (0.95) 1.14 (1.07) 1.50 (1.23) 0.80 (0.42) 1.28 (0.99) 0.92 (0.36) 1.17 (0.55)

T
V

NAA 1.98 (0.71) 2.43 (0.59) 1.77 (0.72) 2.00 (1.09) 2.29 (0.56) 2.24 (0.85) 2.29 (0.85) 1.64 (0.64) 2.21 (1.12) 1.57 (0.70) 1.54 (0.60)

Glx 1.06 (0.49) 1.19 (0.53) 0.95 (0.50) 1.14 (0.55) 1.20 (0.58) 1.08 (0.58) 1.20 (0.61) 0.88 (0.57) 1.19 (0.54) 0.73 (0.48) 0.84 (0.39)

Cr30 0.83 (0.28) 1.18 (0.37) 0.67 (0.32) 1.07 (0.64) 1.26 (0.44) 1.10 (0.51) 1.21 (0.53) 0.58 (0.30) 1.18 (0.61) 0.56 (0.26) 0.62 (0.32)

tCho 1.13 (0.56) 1.31 (0.51) 1.10 (0.53) 1.24 (0.59) 1.34 (0.55) 1.21 (0.57) 1.27 (0.56) 0.99 (0.57) 1.36 (0.59) 0.83 (0.48) 0.92 (0.41)

mI 0.93 (0.38) 1.27 (0.86) 0.77 (0.48) 1.43 (0.85) 1.01 (0.77) 1.04 (0.91) 1.35 (0.94) 0.81 (0.57) 1.10 (0.79) 0.63 (0.37) 1.17 (0.55)

Nvox 38 37 40 60 79 55 61 65 63 38 23

Table 4.4: Mean metabolite peak integrals from the occipito-parietal lobes in vivo of 10 healthy volunteers. Standard

deviations are in parentheses, and the number of included voxels are given for each scan. The top half shows the reconstruction

minimizing the `1-norm, while the bottom half is the result from minimizing the TV -norm. The last column shows the values

from a fully sampled single slice (4D) scan.
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Scan1 Scan2 Scan3 Scan4 Scan5 Scan6 Scan7 Scan8 Scan9 Scan10 4D Full

` 1

NAA 1.94 (0.88) 2.42 (0.77) 1.69 (1.09) 1.94 (1.10) 2.56 (1.01) 2.25 (1.10) 2.26 (1.26) 1.73 (0.83) 2.20 (1.30) 1.71 (0.94) 2.22 (1.06)

Glx 1.57 (0.82) 1.67 (0.61) 0.88 (0.38) 1.39 (0.87) 1.59 (0.93) 1.55 (0.79) 1.47 (1.02) 1.15 (0.96) 1.53 (0.88) 0.95 (0.42) 1.52 (0.55)

Cr30 1.26 (0.41) 1.28 (0.48) 0.87 (0.31) 0.74 (0.51) 1.06 (0.68) 0.84 (0.60) 0.91 (0.64) 0.60 (0.27) 1.15 (0.80) 0.88 (0.36) 1.52 (1.21)

Cho 1.37 (0.88) 1.89 (0.62) 1.03 (0.49) 1.56 (0.89) 1.74 (0.97) 1.79 (0.89) 1.65 (1.07) 1.19 (0.84) 1.71 (0.91) 0.97 (0.45) 1.76 (0.59)

mI 6.40 (7.75) 2.05 (0.96) 1.05 (0.48) 1.59 (1.08) 1.59 (1.17) 1.51 (0.96) 1.61 (1.52) 0.89 (0.55) 1.63 (1.24) 2.02 (1.74) 2.25 (0.79)

T
V

NAA 2.27 (0.71) 2.07 (0.64) 2.11 (0.97) 1.78 (0.95) 2.35 (0.86) 2.09 (0.93) 2.06 (1.08) 1.77 (0.63) 1.93 (1.09) 2.25 (0.89) 2.22 (1.06)

Glx 1.64 (0.67) 1.47 (0.48) 1.12 (0.54) 1.25 (0.69) 1.40 (0.80) 1.30 (0.63) 1.27 (0.81) 1.15 (0.78) 1.31 (0.71) 1.16 (0.62) 1.52 (0.55)

Cr30 0.89 (0.36) 1.14 (0.38) 0.70 (0.29) 0.96 (0.61) 1.23 (0.66) 1.11 (0.64) 1.11 (0.64) 0.51 (0.27) 1.15 (0.69) 0.70 (0.26) 1.52 (1.21)

Cho 1.75 (0.96) 1.62 (0.51) 1.33 (0.67) 1.38 (0.73) 1.51 (0.78) 1.51 (0.72) 1.38 (0.83) 1.31 (0.83) 1.48 (0.75) 1.24 (0.61) 1.76 (0.59)

mI 5.25 (4.40) 1.79 (0.82) 0.86 (0.57) 1.48 (0.95) 1.38 (1.02) 1.28 (0.80) 1.40 (1.17) 0.97 (0.77) 1.46 (0.99) 1.52 (1.81) 2.25 (0.79)

Nvox 16 27 19 52 43 22 36 21 58 20 17

Table 4.5: Same as Table 4.4 for voxels in the frontal lobe.
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4.5 Discussion

The main benefit of the technique described here is the potential for J-resolved

spectroscopic imaging in three spatial dimensions in vivo. However, the challenges

faced in conventional 3D SI are also present here. We have chosen to use a volume-

localized (PRESS) EP-JRESI as opposed to spin echo or slice-localized sequence,

despite the better coverage and shorter echo times afforded by the latter. Volume-

localized techniques permit better shimming, which leads to taller, narrower peaks

suited for CS reconstruction and better water suppression. Also, slice-localized

techniques suffer from skull marrow lipid contamination due to ringing of the high

amplitude, low resolution point spread function. Contamination can be partially

compensated with inversion recovery [162] or postprocessing techniques involving

a high resolution lipid image [78]. Outer volume suppression pulses effectively

remove all signal (metabolites included) but are difficult to position over the skull

marrow in a 3D scan without significantly suppressing cortical signal near the

surface of the brain. The chosen spectral mask further ensured minimization of

any residual lipid artifacts but would be inadequate to remove the ringing caused

by unsuppressed signal from the skull marrow by itself. Volumetric localization

using adiabatic RF pulses [63] or adiabatic refocusing pulses [150] can be used

to greatly reduce chemical shift displacement error and allow ROIs very near the

skull marrow. Comparing the metabolite maps in Figure 4.7a, there is about a

one pixel shift per ppm in the y-direction and a 1/2 slice shift per ppm using the

“Mao” refocusing pulses [109] in PRESS.

In this work, we have used two methods for quantitative comparison of recon-

structed data. The RMSE is applicable when a reference signal is available as was

the case with phantom data only. It is a point-by-point method, and as such, it

is sensitive to differences in amplitude, linewidth, and peak shape. However, it is

also influenced by noise and can be biased by the nonlinear reconstruction meth-
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ods used here. To minimize the influence of noise and better characterize where

discrepancies are occurring, RMSEs were constrained to the individual metabolite

peak areas. As an additional quantitative method, peak integration simply sums

the volume in a given region and therefore does not directly describe differences

in amplitude, linewidth, or peak shape. No reference data is required, but over-

or underestimation can be determined if it is present. From a philosophical stand-

point, peak integration provides a relative measure of metabolite concentration

which is the penultimate goal in spectroscopy studies anyway. Both methods can

be considered complementary.

The decrease in peak volumes from fully sampled to 12x undersampling shown

in Fig 4.6 is consistent with the corresponding increase in RMSE values shown in

Table 4.2 and is most likely the result of the nonlinear reconstruction itself. In

either `1 or TV minimization, soft thresholding tends to shrink the amplitudes

of the signal in the transform domain (identity or finite differences), reducing the

peak integral. The data consistency term is what mitigates this effect. However,

the larger the undersampling factor, the less influence the data consistency term

has (assuming that the value of σ does not depend on R). Simply put, there are

fewer data points to constrain.

Previous work on CS-reconstructed single slice J-resolved spectroscopic imag-

ing data has suggested that TV reconstruction should perform better than `1 [61].

In this case though, adding a third spatial dimension increases the self sparsity of

the data as the ROI is about half the FOV in the z-direction, and several slices

do not contribute any signal. This effectively narrows the gap between the recon-

structions to the point that it is not definitive if there is a significant difference.

The reconstruction in Eq. [4.2] takes about 10 minutes per coil, while that of Eq.

[4.3] takes about half an hour on a 64-bit octa core 3.1 GHz Intel Xeon E5-2687W

processor with 128 GB RAM, so there is strong incentive to choose the faster re-

construction method when the number of coils is large. Coil compression methods
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could be applied to the acquired data to reduce the number of virtual coils that

need to be reconstructed [25]. It should be noted that a scan with a tighter FOV

around the VOI would be less self sparse though and could negatively influence the

`1 reconstruction. However, the TV reconstruction should be relatively immune

to the ROI/FOV ratio as long as the object profile is not wildly varying.

A relatively large indirect spectral bandwidth of 500 Hz was used in this paper.

Often, J-resolved spectra can be acquired with a bandwidth less than 100 Hz

due to the small coupling constants found in most metabolites [68]. The primary

reason for this choice was to keep the residual water tail away from the metabolite

signals, as we have found it difficult to achieve consistent water suppression over

the whole brain. A further consequence of this choice is that the 2D spectra

are highly sparse, which benefits the reconstruction. However, a large indirect

spectral bandwidth is not a prerequisite for the technique described. The same

principles of sampling (Eq. (4.1)) and reconstruction can be applied with minimal

modification to low indirect bandwidth data with the similar caveat that the `1

reconstruction will be more negatively affected than the TV .

Figures 4.3 and 4.5 show how important a simple spectral masking is prior

to the reconstruction. In either reconstruction, the data fidelity term will make

sure the largest peaks are reconstructed most accurately, while low-lying peaks are

“cleaned up” as aliasing and largely removed. Even with good water suppression,

the residual water is typically the largest peak in brain spectra. Individual peaks

of multiplets are smaller and reconstructed with much less intensity as shown in

the above mentioned figures. On the other hand, the NAA singlet peak has the

second highest amplitude and is well separated from the residual water tail. It

is reconstructed accurately with or without masking in Table 4.2, but the errors

in reconstruction for Glx and mI are much more pronounced. As an alternative

to the simple spectral masking presented here, other postprocessing methods to

remove the residual water signal can be applied instead, for instance that based on
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wavelet transformation [73]. This method would be advantageous when requiring

accurate quantitation of metabolites very near the water peak, such as glutathione.

The same idea applies to the lipid peaks and their effect on lactate and alanine.

Table 4.2 and Figure 4.5 suggest that undersampling factors up to 16x can

be achieved with excellent reconstruction quality in phantom. However, we have

limited ourselves to 8x undersampling in vivo. The reason for this conservative

choice is in consideration of the motivation to do multidimensional spectroscopy

in the first place. The major singlet resonances in brain are well resolved in single

dimensional spectroscopy with long echo times. The advantage of using multi-

dimensional spectroscopy lies in its ability to resolve low amplitude, J-coupled

resonances acquired with short echo times. Without accurate measurements of

these additional resonances, there is no reason not to choose the much faster

1D technique. As the undersampling factor increases, more of the low ampli-

tude resonances are buried in the noise and residual aliasing and will not be

reconstructed accurately. Future work will look at prior knowledge fitting as an

improved method of quantification of up to 20 brain metabolites [153].

Further improvements may be made by considering additional NUS schemes

and reconstruction objectives. In particular, the Poisson gap sampling scheme

shows reduced artifacts compared to random undersampling [83]. Maximum en-

tropy has been used as an objective in 2D NMR and might offer some improve-

ment compared to `1-norm minimization [166, 26], while group sparsity uses the

`2,1-norm objective to consider the proximity of nonzero coefficients [27].

Although this paper has focused on 2D J-resolved spectroscopy, the techniques

can be applied with suitable modification to imaging analogs of other 2D acqui-

sitions such as correlated spectroscopy, TE-averaged PRESS [82], or CT-PRESS

[50]. Despite the common practice of displaying the latter two as single dimension

spectra, the acquisition requires two spectral dimensions and can be undersampled

and reconstructed as 2D spectra with the methods described here before taking
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the appropriate projections.

4.6 Conclusion

Nonuniform sampling with compressed sensing reconstruction can be used to ac-

quire 5D (3 spatial + 2 spectral) spectroscopic images in human brain in a clini-

cally feasible scan time. Conservatively, an 8-fold acceleration was applied in vivo

for a 20 minute scan time, while a 16-fold acceleration was applied to phantom

data. Reconstruction can be performed either by minimizing the `1-norm or the

TV -norm.
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CHAPTER 5

3D Correlated Spectroscopic Imaging of Calf

Muscle Using Group Sparse Reconstruction of

Undersampled Single and Multichannel Data

5.1 Introduction

Correlated spectroscopy (COSY) was the first proposed two dimensional (2D)

spectroscopy technique [9]. A COSY spectrum is characterized by the presence

of cross peak multiplets indicating scalar coupling between resonances and is

achieved following the application of a 90° coherence transfer pulse to single quan-

tum coherences and incrementing the echo time. Due to its relative simplicity,

COSY was also one of the first 2D spectroscopy sequences successfully applied

in vivo [22, 171]. While the spectral resolution in vivo is T2 limited and not

high enough to fully resolve the individual peaks that comprise each cross peak

multiplet, the overall cross peaks showcase the clear presence of coupled partners

and where those partners resonate. Compared to single dimensional (1D) spectra,

COSY spectra are less dense with improved spectral dispersion.

However, applications of COSY as a single voxel technique are greatly limited

by the lack of coverage and the large voxel size. Spectroscopic imaging (SI) [24]

solves these problems while acquiring spectra from multiple locations simultane-

ously. Standard CSI techniques use phase-encoding in each spatial direction and

offer no improvement in scan time efficiency compared to single voxel techniques.
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However, by interleaving the acquisition of an entire k-space line with the tempo-

ral or spectral information in a single excitation, an echo planar readout [108] can

reduce the scan time by at least an order of magnitude. The remaining spatial

dimension(s) are phase encoded [126].

Recently, COSY has been combined with an echo planar readout for correlated

spectroscopic imaging (EP-COSI) [99, 7]. These sequences have been limited in

coverage to a single slice because of the scan times required to incrementally

acquire a phase-encoded spatial direction (ky) and the indirect spectral dimension

(t1). A fully sampled 3D volume scan would take 2-3 hours even with the echo

planar readout.

Nonuniform sampling (NUS) with compressed sensing reconstruction has been

used to accelerate the acquisition of these single slice correlated SI sequences by

subsampling the plane spanned by the phase-encoded direction (ky) and t1 [26].

Here we extend those techniques to subsample and reconstruct the volume spanned

by two phase-encoded directions (ky and kz) and t1 by utilizing prior knowledge

that the COSY spectrum is self-sparse (i.e. the 2D spectra are composed of rel-

atively few non-zero peaks surrounded by low level noise). We also utilize the

broadness of the peaks to improve the reconstruction by grouping coefficients

that are in close proximity in the spectral plane. Qualitative comparison is per-

formed between a mixed-norm group sparse (GS) reconstruction and a typical

compressed sensing `1-norm (CS) reconstruction using different undersampling

factors with single channel and multi channel data. Reconstructions of prospec-

tively undersampled whole calf correlated spectroscopic imaging data with three

spatial and two spectral dimensions are compared.
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5.2 Theory

Previous implementations of compressed sensing to multidimensional SI have been

formulated based on the signal equation for a single channel. Multicoil scans were

reconstructed channel by channel and combined as a sum-of-squares [61, 178].

This single channel problem is formulated as a minimization of an `1-norm term

while maintaining data consistency through an `2-norm term and can be written

as

min
u
‖φ(u)‖1 s.t. ‖RFu− f‖2

2 < σ2 (5.1)

where u = u (x, y, z, F2, F1) is the reconstructed data, f = f (kx, ky, kz, t2, t1) is the

undersampled data, σ2 is an estimate of the noise variance of the sampled data,

R is the sampling mask, F is the Fourier transform, and φ(u) is a function that

transforms u to a sparse domain. The simplest choice is the identity transform

φ(u) = u, which is applicable only when the reconstructed data is self sparse.

Alternatively, φ can be a wavelet transform or a combination finite difference

operator as in total variation φ(u) = TV (u).

Unlike conventional `1-norm-based CS reconstructions that consider each trans-

form coefficient independently, GS [181] exploits the tendency of large transform

coefficients to be clustered. In order to do this, certain coefficients are grouped

and reconstructed as a unit. This grouping allows points in a group to influence

each other as a model of signal correlation and has been shown to offer improved

results compared to `1 minimization in the context of MR [174, 128, 27]. Large

peaks in an otherwise sparse COSY spectrum are an ideal situation to apply group

sparsity.
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5.2.1 Single channel GS reconstruction

The objective of a GS reconstruction problem is an `2,1 mixed-norm in which the

`1-norm of the `2-norms of each group is minimized.

‖Gu‖2,1 =
n∑
i

‖ugi‖2 (5.2)

where G ∈ Rn×N is the matrix operator that places N vectorized points of u into

n different groups. There is a lot of freedom in the choice of grouping. Groups

can be identically sized or varying, and they can partition the entire region or

overlap with each other.

In [27], the single channel GS problem

min
u
‖Gu‖2,1 s.t. ‖RFu− f‖2

2 < σ2 (5.3)

was solved using the split Bregman algorithm [66], and similarly in [46], it was

solved using the alternate direction method of multipliers (ADMM).

The solution was found by first writing the problem as an unconstrained min-

imization, defining an auxiliary variable to split the terms, and using Bregman

iterations to enforce the equality of the substitution as well as the original con-

straint. The `2,1-norm subproblem was solved using the group-wise shrinkage

function

gshrink (Gu, λ) = max

(
0, 1− λ

‖Gu‖2,1

)
·Gu (5.4)

5.2.2 Multi channel GS reconstruction

The multicoil CS problem can easily be formulated as a regularized SENSE [132]

reconstruction [18, 96]. If the coil sensitiviy profiles S are known, the multicoil

GS problem is formulated as

min
u
‖Gu‖2,1 s.t. ‖RFSu− f‖2

2 < σ2 (5.5)
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While Eq. (5.5) resembles Eq. (5.3), the presence of S complicates the matter.

This is because split Bregman and ADMM achieve such high efficiency because

the most expensive subproblem involves inverting a circulant matrix that can be

made diagonal with application of Fourier transforms. But once the sensitivity

profiles are included, the matrix that must be inverted (µS ′F ′R′RFS + λG′G) is

no longer circulant. In that case, the subproblem can be approximately solved

using a few iterations of the conjugate gradient method [66, 39], but this can

be expensive even with preconditioning. Alternatively, variable splitting can be

applied to the data fidelity term in the same way it is applied to the objective

term [136, 37] at the expense of an additional parameter and without the same

guarantees of convergence.

As the reconstructed image/spectral data, u, is self sparse (since the problem

seeks to minimize the `2,1-norm of groups with no additional transform), the

individual coil image/spectral data Su must also be. Instead of (5.5), the SENSE-

regularized multicoil GS problem can be formulated as

min
u
‖GSu‖2,1 s.t. ‖RFSu− f‖2

2 < σ2 (5.6)

This problem is actually easier to solve than Eq. (5.5) as it requires one less

auxiliary variable to be iteratively updated. Applying the substitution v = Su,

gives

min
u,v
‖Gv‖2,1 s.t. ‖RFv − f‖2

2 < σ2, v = Su (5.7)

where v = v(x, y, z, F2, F1, c) is a six dimensional matrix with the inclusion of the

channel dimension c. Since u has been completely decoupled from the rest of the

optimization, the problem can be solved iteratively for v first before transforming

back to u.

Ignoring the v = Su constraint, the remaining problem is simply the single-

channel GS formulation in Eq. (5.3) with v replacing u. It is solved exactly

as before by relaxing the constraint, making the substitution z = Gv, using the
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Bregman formulation, and iteratively solving each subproblem while holding the

other variable constant. Bregman updates are applied, including over an outer

loop on f until the problem is accurately solved for v. The intermediate solution v

is basically the reconstructed coil images similar to those that would be calculated

individually in a channel-by-channel reconstruction except stacked as one large

matrix.

At this point, u is calculated from v and S by

u = (S ′S)
−1
S ′v (5.8)

For maximal SNR, the reconstructed data can be whitened in order to remove

any noise correlations between coils

u =
(
S ′Ψ−1S

)−1
S ′Ψ−1v (5.9)

where Ψ is the noise correlation matrix between the coils described in detail in

[132].

5.3 Methods

5.3.1 Sequence

All scans were acquired on a Siemens 3T Trio scanner. The fully sampled 3D

EP-COSI sequence contained a k-space volume with 16 points in the readout di-

rection (kx) and 16 and 8 points in the two phase-encoding directions (ky and kz,

respectively). The field of view (FOV) was 16× 16× 12 cm3. Each kx line was re-

peatedly acquired for 256 t2 points per TR, and 64 t1 points (TE increments) were

acquired. The (ky, kz, t1) volume was prospectively nonuniformly undersampled

by a factor of 8, 12, or 16 as described in the following section. The bandwidths

in the direct (F2) and indirect (F1) spectral dimensions were 1190 and 1250 Hz,

respectively. The 8x and 12x undersampled scans were acquired with minimum
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TE/TR = 30/1200 ms for scan times of 20 min and 14 min, respectively. The

16x undersampled scans were acquired with minimum TE/TR = 30/1500 ms for a

scan time of 13 min. Water suppression was applied [117]. Scans were acquired on

a single channel transmit/receive extremity coil with 8x and 12x undersampling

and on a 15-channel knee coil with 12x undersampling. A separate scan with full

spatial sampling and a single TE was acquired without water suppression before

each EP-COSI scan for reference to determine the complex coil sensitivities. This

reference scan took 2 min 28 s with TR = 1200 ms and 3 min 18 s with TR =

1500 ms. When time permitted, a fully sampled, single-slice multi-echo EP-COSI

(MEEP-COSI) [60] scan was also acquired through the central slice of the 3D

volume with slice thickness of 2 cm. The rest of the applicable parameters were

the same, and the single slice scan took 13 minutes with TR = 1.5 s or 10 minutes

with TR = 1.2 s.

5.3.2 Apodization and NUS masks

Due to T2 line broadening and the mixed phase characteristics of COSY cross

peaks, their amplitudes are usually up to an order of magnitude lower than the

diagonal peaks. As the cross peaks are the most interesting and descriptive sig-

nals in a COSY spectrum, apodization is applied in t2 and t1 to enhance them.

The filters used were squared sine bells in each dimension, and they were applied

before reconstruction to enhance the coherence transfer signal envelope. The un-

apodized data has much higher diagonal peak to cross peak dynamic range, and

reconstruction would therefore favor the diagonal peaks at the expense of cross

peaks. Post reconstruction apodization would not able to restore the cross peaks

once the minimization of the `2,1-norm has effectively denoised them.

Incoherent aliasing was achieved by randomly undersampling the (ky, kz, t1)

volume. In [178], the nonuniform sampling density followed a decaying exponential

so that the highest SNR data points were adequately sampled. Here, we follow
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the same philosophy except that we wish to ensure the highest SNR data points

after apodization were subsampled. For that reason the sampling density function

was given by

ρ(ky, kz, t1) = exp

{
−|ky|
ny
− |kz|

nz

}
· sin2

{(
t1
n1

)sk
π

}
(5.10)

where ρ(ky, kz, t1) is the probability of sampling point (ky, kz, t1), sk = 0.5 is

the skew parameter, and ny, nz, and n1 give the number of points in the y, z,

and t1 dimensions, respectively. The skewed squared sine bell density function

approximates the combined effect of squared sine bell apodization on a decaying

exponential curve. The NUS masks used are shown in Fig 5.1.

5.3.3 Reconstruction

The coil sensitivities S were determined from the non-water-suppressed reference

scan by taking the first time point and dividing each channel by the sum-of-

squares from all channels in order to determine the proportional contribution of

each channel. This ensures that the product S ′S in Eq. (5.8) is invertible. The

first time point was chosen because each resonance is in phase at the echo time.

A region of interest (ROI) was also estimated from the reference sum-of-squares

image where the intensities were greater than twice the mean.

As the v optimization in Eq. (5.7) is equivalent to the u optimization in Eq.

(5.3), it can similarly be solved for the entire v matrix at once; the `2,1-norm is

a point-by-point method regardless of the dimensionality of the matrix. Prior to

solving this problem, the signal from each channel should be scaled to the same

noise level so that a single value of σ is appropriate for the entire dataset. If

data are not properly scaled, the reconstruction will be closest to the highest

intensity coil regardless of its SNR, whereas a proper reconstruction should favor

the highest SNR coils at each point.

This method is also more computationally intensive than solving Eq. (5.3)
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Figure 5.1: 8x (a), 12x (b), and 16x (c) nonuniform sampling masks over the

(ky, kz, t1) volume used to acquire accelerated EP-COSI data. White squares

indicate sampled points. Each mask follows the sampling density given in Eq.

(5.10).
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because the number of points in the matrix v is larger than the number of points

in u by a factor of the number of channels nc. In particular, each temporary

matrix and the large sparse matrix G ∈ Rnnc×Nnc require much more storage,

and computations with them are slower. But since the norm is point by point

only, each coil image can be computed separately and concatenated for the final v

matrix, similar to the previous sum-of-square techniques. In this case though, the

coils were combined after deconvolving the complex coil sensitivities. Since the

coil sensitivities were derived from a reference water scan here, the deconvolution

is similar to the method of Klose’s eddy current correction [89] applied to CSI data

[140], and it is possible to deconvolve with the temporal phases of the reference

over all the time points instead of just using the first time point. However, there

is strong lipid signal in the calf muscle even without water suppression, so the

temporal phase over each time point is not reflective of the water signal only, and

the lipid signal must first be removed to apply that correction method. Therefore,

we used only the first time point phase for correction. Generally, coil sensitivities

can be estimated in other ways with faster imaging-based sequences as well.

Coefficients were grouped in the spectral plane (F2, F1) with 50% overlap be-

tween adjacent groups in each direction and with each group consisting of 8 × 4

points [27]. This grouping strategy is motivated by the sparsity of the 2D COSY

spectra except for the presence of large, dominant peaks and is illustrated in Fig

5.2.

For comparison, undersampled data were also reconstructed with a similar

self-sparse SENSE-based `1-norm minimization

min
u
‖Su‖1 s.t. ‖RFSu− f‖2

2 < σ2 (5.11)

This problem was also solved with the split Bregman algorithm using similar

auxiliary variable substitutions as in Eq. (5.6). The regularization parameters

were set to µ = 1 for both algorithms, λ = 1/2 for the CS problem, and λ = 1/(2 ·
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Figure 5.2: Illustration of the difference between two dimensional groups that are

non-overlapping and those with 50% overlap. The overlapping groups were used

to combine coefficients in the spectral plane (F2,F1).

32) for the GS problem, where µ is the parameter that relaxes the data consistency

constraint and λ is the paramater that relaxes the variable substitution constraint.

The solution from the split Bregman algorithm is relatively insensitive to these

parameter choices [66], but the time to convergence can vary. The CS problem had

a maximum of 100 outer Bregman iterations, the GS problem had a maximum of

50 outer iterations, and each problem had 15 inner Bregman iterations per outer

iteration. The reconstructions were performed on a 64-bit octa core 3.1 GHz Intel

Xeon E5-2687W processor with 128 GB RAM.

5.3.4 Coil compression

Whether the multichannel data are reconstructed coil-by-coil or as one large ma-

trix, the reconstruction time is longer than for a single coil. For the coil-by-coil

reconstruction, this is basically linear with the number of coils. For the single

matrix reconstruction, the speed depends more on how well the software and pro-

cessors handle large data matrices, but we found that it becomes impractically

slow for the full 15-channel data here. In order to reduce the dimensionality of

the problem and speed up the reconstruction, the 15-channel coil array was com-

pressed into five virtual coils using a custom hybrid method based on [25] and
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[182].

In [25], the coil transformation is expressed as

f ′k = Afk (5.12)

where fk is a nc × 1 vector of the real channel elements for each k-space point k,

A is a ncvir × nc matrix that takes a linear combination of the original coils, f ′k

is a ncvir × 1 vector of the truncated virtual coil elements, and ncvir ≤ nc is the

truncated number of virtual coils. Matrix A is calculated to maximize the SNR

in a region of interest using the SENSE formalism. It is given by

A = CU ′T (5.13)

where C = (Incvir |0) is the ncvir row selector matrix, U is the unitary matrix from

the singular value decomposition of a matrix P that is given by
∑

p∈ROI SpS
−1
p ,

and T transforms the noise covariance between coils into the identity (and must

also be applied to S). Once A is determined, it is applied to the raw data and the

original sensitivity maps, as the linear transformation works the same in k-space

or spatial coordinates and is applied over all the spectral points. This method

allows SNR optimization over an explicit region of interest when the sensitivity

maps are available and is therefore well-suited for the relatively sparse volumes of

interest (VOI) here.

Zhang et. al. used a data-based coil compression method that does not rely

on explicit coil sensitivities for 3D imaging [182]. There, they took advantage

of the fact that at least one spatial dimension is fully sampled and refer to the

method as geometric coil compression. For the fully sampled dimension (x in this

paper), the raw k-space data can be transformed before reconstruction, and a coil

compression matrix can be created with different linear combinations at each x

location. This permits the use of far fewer virtual coils than if a single linear

combination was required for the entire 3D volume. (As described in [178], the
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x and F2 dimensions are Fourier transformed once before reconstruction to save

time transforming back and forth during each iteration in the reconstruction.)

Since we already require explicit coil sensitivity maps and have a fully sampled

spatial dimension, our method basically uses the transformation described by

Buehrer et. al. [25]in Eq. (5.12) with an A that is x-dependent

f(x)′k = A(x)f(x)k (5.14)

Figure 5.3 shows the beneficial effect of using Eq. (5.14) as opposed to Eq. (5.12)

to create the virtual coils. Figure 5.3b has only five coils with intense signal while

Fig 5.3c has 11-12 significant coils compared to the original 15 in Fig 5.3a.

5.4 Results

Figure 5.4 shows the 3D localization and metabolite maps from an 8x undersam-

pled scan of a diabetic calf taken with a single channel extremity coil. Metabo-

lite maps were computed by integrating over the regions around the creatine/fat

peak at 3.0 ppm, the creatine peak(s) at 3.9 ppm, the lower extra- and intra-

myocellular lipid (E/IMCL) cross peaks, and the upper E/IMCL cross peaks,

respectively. Within each metabolite grouping, the minimum energy reconstruc-

tion (missing data points filled in with zeros), the CS reconstruction (using Eq.

(5.11)), and the GS reconstruction (using Eq. (5.6)) are shown. The minimum

energy reconstruction is scaled by the square root of the undersampling factor

to produce similar intensities to the other reconstructions. Note the aliasing in

both phase-encoding directions in the minimum energy reconstruction. The CS

and GS maps look very similar, with the GS maps being slightly noisier. Figure

5.5 shows select COSY spectra from the tibial bone marrow and the soleus and

tibialis anterior muscles. From the full COSY spectra, the t1 aliasing is apparent.

The CS reconstructions provide good denoising and remove the aliasing of many

of the peaks, but the aliasing due to the two dominant lipid peaks and residual
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(a)

(b)

(c)

Figure 5.3: Magnitude of sensitivity maps from 15-channel data taken directly

from a water reference scan (a), after using an x-dependent geometric transfor-

mation matrix A(x) (Eq. (5.14)) (b), and after coil compression using a single

transformation matrix A (Eq. (5.12)).
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Cr3.0 Cr3.9 Low Upp

MinEn CS GS MinEn CS GS MinEn CS GS MinEn CS GS

Figure 5.4: Metabolite maps from an 8x undersampled scan of a diabetic calf.

Shown are the maps from the creatine and fat peak at 3.0 ppm (Cr3.0), the crea-

tine resonance at 3.9 ppm (Cr3.9), and the lower (Low) and upper (Upp) IMCL

and EMCL lipid cross peaks. Within each metabolite group, the minimum energy

reconstruction is shown with the CS and GS reconstructions, respectively. Mini-

mum energy reconstructions are scaled by the square root of the undersampling

factor. Localization is shown on the left.
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Figure 5.5: COSY spectra from the highlighted voxels in a central slice (a) of the

same scan as Fig 5.4. Yellow spectra (b,c) are from the tibial marrow, red spectra

(d,e,f) are from the soleus muscle, and blue spectra (g,h,i) are from the tibialis

anterior muscle. The first column shows raw spectra with the minimum energy

reconstruction (d,g), the second column shows CS-reconstructed spectra (b,e,h),

and the third column shows GS-reconstructed spectra (c,f,i). Contour levels are

the same for each reconstruction for a given voxel with the minimum energy

reconstructions being scaled by the square root of the undersampling factor.
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water remains. This aliasing nearly completely obscures the lower E/IMCL cross

peaks, as only the GS reconstruction faithfully shows the splitting of the EMCL

and IMCL components in the lower cross peaks in the soleus and tibialis anterior.

Each reconstruction faithfully reconstructs the spatial locations as can be seen

by looking at the spectrum around the 3.9 ppm diagonal, as creatine is absent

in the marrow, a strong singlet in the soleus, and a split doublet in the tibialias

anterior [90]. For the reconstruction shown in Fig 5.4 and 5.5, the GS converged

after only five outer iterations in about 15 minutes, while the CS reconstruction

did not fully converge in 100 outer iterations and took almost an hour.

Figures 5.6 and 5.7 show metabolite maps and full spectra from a 16x prospec-

tively undersampled scan of a healthy adult. Aliasing is even more prevalent with

the higher degree undersampling. Again, GS reconstruction appears slightly nois-

ier but has a much greater reduction in aliasing compared to CS. In all cases, the

spectra are not quite as clean as the 8x undersampled, with some smaller peaks

and the separation between EMCL and IMCL being difficult to resolve. Here, GS

converged after 16 outer iterations in about 45 minutes, while CS again took 100

outer iterations and just under an hour.

Contour plots of the creatine signal at 3.9 ppm are shown for single slice

MEEP-COSI in Fig 5.8b and the three central slices of a 12x undersampled 3D

EP-COSI in Fig 5.8c, 5.8d, and 5.8e. The MEEP-COSI reconstruction used all 15

acquired channels, while the 3D EP-COSI reconstruction used only the first five

virtual channels. On this dataset, the CS reconstruction took an average of 73 it-

erations and 47 minutes per coil (almost 4 hours total), and the GS reconstruction

took an average of 15 iterations and 54 minutes per coil (about 4.5 hours total).

Each shows similar localization with the single, strong peak in the soleus and

gastrocnemius muscles, a split doublet in the tibialis anterior, and little creatine

signal in the marrow. The MEEP-COSI scan has somewhat higher SNR and a

cleaner profile, but the thinner slices of the 3D EP-COSI better show the location
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Cr3.0 Cr3.9 Low Upp

MinEn CS GS MinEn CS GS MinEn CS GS MinEn CS GS

Figure 5.6: Metabolite maps from a 16x undersampled scan. Shown are the maps

from the creatine and fat peak at 3.0 ppm (Cr3.0), the creatine resonance at

3.9 ppm (Cr3.9), and the lower (Low) and upper (Upp) IMCL and EMCL lipid

cross peaks. Within each metabolite group, the minimum energy reconstruction

is shown with the `1 and GS reconstructions. Minimum energy reconstructions

are scaled by the square root of the undersampling factor. Localization is shown

on the left.
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Figure 5.7: COSY spectra from the highlighted voxels shown in Fig 5.6. Yel-

low spectra (a,b,c) are from the tibial marrow, red spectra (d,e,f) are from the

soleus muscle, and blue spectra (g,h,i) are from the tibialis anterior muscle. The

first column shows raw spectra with the minimum energy reconstruction (a,d,g),

the second column shows CS-reconstructed spectra (b,e,h), and the third column

shows GS-reconstructed spectra (c,f,i).
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(a) (b)

(c) (d) (e)

Figure 5.8: Axial localization with 15-channel knee coil (a). Contour plot of the

distribution of the peaks at 3.9 ppm for a single slice MEEP-COSI scan (b) and

the central three slices from 12x undersampled 3D EP-COSI (c-e) in the same

healthy volunteer. The undersampled 3D EP-COSI scan took 14 minutes, and

the MEEP-COSI scan took 13 minutes.

of the fibular marrow at the bottom right of the VOI.

5.5 Discussion

Comparing the contour plots in Fig 5.8 suggests that reconstructed data have

some residual in plane signal bleed compared to the fully sampled single slice.

This is likely due to the small amount of blurring caused by compressed sensing

reconstruction, as it is also seen slightly in the indirect spectral dimension. It may

also be due to some residual aliasing, but the COSY spectra in Fig 5.5 and 5.7

suggest that spectral aliasing is well cleaned up by the GS reconstruction.
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Although the additional computation of grouping and taking the `2-norm over

each group prolongs each iteration of GS, the algorithm converged in each ex-

ample and did so with far fewer iterations than the CS method. The number

of outer iterations in the CS problem was chosen such that most reconstructions

would converge or be close to convergence and that each coil reconstruction would

take under an hour. Nevertheless, when the number of outer iterations was not

restricted, some of the CS reconstructions took much longer before finally con-

verging, yet visual inspection of the data did not show much, if any, improvement

beyond the first 100 iterations. Therefore, we feel the limit of 100 outer iterations

is justified and is already more than in previous implementations [178, 27]. With

those limits, each method seems to take about 45-55 minutes per coil, though

some are significantly shorter. We have favored using constant values of the regu-

larization parameters for ease of implementation and reproducibility, but a more

adaptive choice could affect the convergence rates of the algorithms and the to-

tal reconstruction time. Choice of regularization parameters is an active area of

research in compressed sensing [74, 135, 137].

Previous work with 3D-localized J-resolved spectroscopic imaging suggests

that minimizing the total variation (TV) performs somewhat better than the CS

reconstruction presented here [178]. The difference was not overwhelming, though,

and work with single-slice localized EP-COSI shows GS performing much better

than either CS or TV [27]. Incorporating a third spatial dimension increases the

self-sparsity of the data relative to single slice, so this suggests that applying a

sparsifying transform, such as TV, reconstruction to the correlated spectroscopic

imaging problem here would not yield better results than GS.

Transforming the coil basis before reconstruction does not result in a loss of

information since the aggregate signal over all the coils is still the same, and

truncating the number of coils results in minimal loss of information as shown in

Fig 5.3. For the coil-by-coil processing done here, there is a direct proportionality
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between the number of coils and the total reconstruction time, so compressing

the basis from 15 to five channels reduced the reconstruction time by a factor

of three. However, the individual sparsity of the coil images is different in the

virtual coil basis. In particular, the first virtual channel is less sparse than any

of the subsequent ones or any in the original basis, but it is more sparse than

the final image, so there should be no question as to the appropriateness of the

self-sparsity assumption. This is most likely why the reconstruction of the first

coil in a multichannel scan took much longer than the others with GS. Curiously,

though, there did not seem to be much of an effect for the CS reconstructions.

In the reconstruction method applied here, grouping was done across the two

dimensions of the spectral plane as in [27] to take advantage of the bunching of

large coefficients in a highly sparse COSY spectrum. However, grouping does

not need to be restricted to the spectral plane and could take advantage of the

proximity of large coefficients in the spatial dimensions as well. The algorithm

simply requires the number of points in each group to be the same. Joint spar-

sity [51, 176] across the channels is a form of group sparsity and could also be

applied here, except that in the joint sparse case, the channels can no longer be

reconstructed one at a time, so the computational demands are much greater as

previously discussed.

The EP-COSI and MEEP-COSI sequences used here both used a PRESS vol-

umetric slice selection module in which each of three pulses selects an orthogonal

slice [20], and the intersection of the slices is the VOI. This method results in a

clean, box-like profile in each dimension and lends itself to ROI definition in the

coil compression matrix of Eq. (5.13). A shorter version of the sequence similar

to the original COSY can be constructed using two 90° pulses that select a single

slice only. The two-pulse sequence would have a shorter minimum echo time and

reduced SAR, but excitation cannot be limited to a VOI. At 3T, the SAR was

not much of a concern. Even using the three-pulse sequence, a small amount of

120



the marrow was included. Although the calf muscles have a large of amount of

lipid signal, the marrow has more, which results in signal bleed as seen in Fig 5.4

and 5.6. Also, many muscle spectroscopy studies look at overweight and obese

patients whose calves often have a large amount of subcutaneous EMCL. Unlike

techniques in slice-based spectroscopic imaging in brain that use inversion recov-

ery (IR) to selectively suppress the lipid signal [162], the lipid signal is often of

primary interest in the muscle, and it has been shown that the IMCL peak has

longer T2 and is better resolved at long TE [139]. Outer volume suppression is an

alternative that can be used to ensure proper VOI excitation [156] but is limited

by the number of saturation bands that can be applied.

5.6 Conclusion

A 3D correlated spectroscopic imaging sequence is presented here that is achiev-

able only by highly undersampling the volume of the two phase-encoding dimen-

sions and one indirect spectral dimension. Reconstruction of the data using group

sparsity minimizes the mixed `2,1-norm of the data and takes advantage of the

proximity of high amplitude coefficients found in spectroscopy peaks. Group

sparsity performs much better than a standard `1-norm minimization algorithm

without significant time penalty.
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CHAPTER 6

Correlated Spectroscopic Imaging using

Concentrically Circular k-space Trajectories

6.1 Introduction

Chemical shift imaging (CSI) [24] (or magnetic resonance spectroscopic imaging

[112]) typically achieves spatial encoding by a combination of slice selective RF

pulses and phase encoding gradients. As phase encoded dimensions have to be

incrementally acquired in CSI, scan times scale quickly with desired resolution.

Fast spectroscopic imaging (SI) sequences utilize gradients during readout to re-

peatedly acquire an arc in k-space [107]. This allows the interleaved collection of

one of the spatial dimensions with the direct spectral dimension and cuts the scan

time by an order of magnitude. The original fast SI implementations covered k-

space with Cartesian sampling by repeatedly acquiring a single line during readout

[127, 126] and are referred to here as echo planar spectroscopic imaging (EPSI).

Methods tracing out other non-Cartesian k-space arcs, such as spiral [2], circular

[62], and radial [138], have also been implemented. The benefits and drawbacks

of each will be briefly reviewed.

EPSI uses a bipolar, trapezoidal gradient readout train, which is the easiest to

implement both on the scanner and in processing where Fourier transformation

can be applied directly over the k-space dimensions. However, this simple pro-

cessing requires sampling only during the gradient plateaus, which means that the

ramp-up and ramp-down times of each gradient are dead time. Ramp sampling
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can be applied [120], but processing then requires the additional complexity of the

non-Cartesian methods. Minimizing the spectral dwell time to achieve adequate

spectral bandwidth (SBW) requires shorter ramp times and higher amplitude gra-

dients that can lead to eddy current distortions and peripheral nerve stimulation,

or simply gradient hardware limitations.

Like spiral acquisitions in imaging, the non-Cartesian trajectories in Spiral-

SI are able to traverse k-space more quickly and efficiently than Cartesian ones

and can cover all of k-space in a single acquisition [2]. Short echo times are also

achievable when no prephasing gradient is required. While there is an inherent

oversampling of high SNR central k-space, in order to achieve adequate sampling

density in outer k-space [151], longer spirals must be used, thereby decreasing

the SBW. Multiple identical applications with time-shifted echo times then can

be used to increase the effective SBW at the expense of overall scan time in the

process of temporal interleaving [110]. Once k-space data has been collected,

it must be interpolated onto a Cartesian grid before Fourier transformation by

gridding [84].

Radial-SI is similar to Spiral-SI in that it can achieve very short echo times with

inherent oversampling of central k-space. It also requires gridding to Cartesian

coordinates. Radial trajectories use similar gradient waveforms to EPSI and can

achieve similar SBW. However, repeated gradients must be played over multiple

gradient directions, which can easily reach hardware limitations when scanning

oblique slices. Nevertheless, this is less important in 3D imaging, and most 2D

SI applications use slices corresponding to the physical gradient axes. Radial

sampling schemes also generally require more time than Cartesian ones to fully

satisfy the Nyquist criteria, but artifacts from undersampled data are more benign

and do not necessarily need to be corrected [124].

Spectroscopic imaging using concentrically circular echo planar trajectories

(SI-CONCEPT) is similar to the other non-Cartesian sequences in its inherent
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oversampling of central k-space, additional processing requirement of gridding,

and potential to run into hardware limitations for oblique slices. Compared to

EPSI, SI-CONCEPT samples twice as efficiently by sampling from all four k-

space quadrants. Circular k-space sampling is also more robust to gradient timing

errors and eddy currents than either spiral or Cartesian sampling. These types of

errors lead to spatial blurring in spiral and spatial/spectral ghosting in Cartesian

trajectories due to the temporal asymmetry between the forward arc and the

negative rewound arc. (Flyback EPSI only acquires during one gradient lobe

and therefore avoids ghosting artifacts at the expense of a lower SBW [42].) By

contrast, these errors in circular k-space encoding manifest as image rotations

[179].

There are also other subtle benefits of SI-CONCEPT that allows it to achieve

high SBW more efficiently. Because each circle starts and ends at the same loca-

tion in k-space, there is no need to rewind the gradient. This rewinding can be in

the form of a bipolar gradient that continues to sample but increases the spectral

dwell time and must be time reversed in processing [127, 138], or it can be a fast,

high amplitude blip that is dead time [2, 42]. Either way, the lack of a rewinding

gradient allows SI-CONCEPT to sample temporally more efficiently than any of

the other sequences.

These benefits of circular sampling all carry over to multidimensional spec-

troscopic imaging. In this paper, concentric circular readout is applied to the

localized correlated spectroscopy (L-COSY) [171] excitation scheme in which the

final slice selective 180° refocusing pulse is replaced by a slice selective 90° refocus-

ing/coherence transfer pulse, and the spacing between the second and third pulse

is incremented. This correlated spectroscopic imaging using concentrically circular

echo planar trajectories (COSI-CONCEPT) sequence is illustrated schematically

in Figure 6.1. The rate of sampling in the direct spectral dimension t2 is drawn

as dots in the RF axis, showing that the spectral dwell time is the same as the
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Figure 6.1: COSI-CONCEPT schematic showing the L-COSY localization with

indirect spectral increment t1 and sinusoidal readout gradients. The incremented

gradient in the y direction plays the role of a typical phase encoding gradient so

that readout does not begin at the origin of k-space. Spoilers (not shown) are

placed symmetrically around the second and third pulses to remove signal due to

unwanted coherences.

period of oscillation of the gradient waveforms.

6.2 Methods

6.2.1 Sequence design

The circular k-space trajectory is shown in Figure 6.2a and broken up into its

sinusoidal kx and ky components in Fig 6.2b. Point b represents the start of

acquisition, which occurs at TE. Therefore, the k-space trajectories during readout

are given by

kx(t) = −kn · sin
[

2π

T
(t− TE)

]
ky(t) = +kn · cos

[
2π

T
(t− TE)

] (6.1)
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Figure 6.2: (a) Example of a concentric k-space trajectory, starting in the origin

and traversing from a → b, and then counter-clockwise around the circle from

b → b′. (b) The individual kx(t) and ky(t) trajectories as shown in (a), showing

the individual steps from a→ b as well as b→ b′.

where t is the time from excitation, T is the spectral dwell time to go from b→ b′,

and kn is the k-space radius of the nth circle.

The gradient waveforms can be calculated using the partial derivative rela-

tionship

~G(t) =
2π

γ

∂~k(t)

∂t
(6.2)

where γ is the gyromagnetic ratio [100]. Putting Eq (6.1) into Eq (6.2) yields

Gx(t) = −4π2kn
γT

· cos

[
2π

T
(t− TE)

]
Gy(t) = −4π2kn

γT
· sin

[
2π

T
(t− TE)

]
.

(6.3)

There is some flexibility in how to choose the k-space radii, as kn can be written

as

kn = (n+ f) ∆k (6.4)

where ∆k = FOV −1 and f ∈ [0, 1]. Choosing f = 0 ensures acquisition of the

most central k-space with the highest signal. However, as discussed in the next

section, density compensation when gridding is proportional to the distance from
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the origin, so a 0 radius circle would be given a weighting of 0. As a result, the

ring for n = 0 needs to have a special correctional factor to avoid nulling the data

collected at the origin [92]. Using f > 0 eliminates the need for the correction

factor in the gridding and also allows for greater k-space coverage with the larger

maximum radius. However, the center of k-space is not directly sampled and is

only interpolated. Here, we have chosen to use f = 1/2.

Note from Equation (6.3) that Gx(TE) 6= 0 which means that the gradient

must be ramped up before TE. This ramp creates an additional gradient moment

that must be precompensated, which is done through a slight modification of the

last spoiler gradient after the second 90° pulse. This is distinct from the “phase

encoding” gradient of Fig 6.1 that takes k-space from a → b in Fig 6.2 and does

impart a desirable gradient moment. Both gradients depend on the radius of the

circle in k-space and scale appropriately.

Water suppression was applied using a three pulse WET sequence before signal

excitation [117] but is not shown in Fig 6.1 for simplicity.

6.2.2 Gridding

As mentioned in the previous section, non-Cartesian k-space data must be gridded

to a Cartesian plane before application of the Fourier transform, and this is no

different for COSI-CONCEPT.

Gridding consists of convolution of the non-Cartesian data with an interpolat-

ing kernel and resampling along the standard Cartesian trajectory. Convolution

in the Fourier domain is equivalent to multiplication in the image domain, so the

ideal gridding kernel is a sinc function whose transform is a box function. How-

ever, sinc has infinite extent and is therefore replaced by a compactly supported

function; here we use a Kaiser-Bessel kernel given by

KB(k) =
Ng

W
I0

(
β
√

1− (2Ngk/W )2

)
u (2Ngk/W ) (6.5)
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where Ng is the number of grid points, W is the kernel width (in grid units), β

is a factor that shapes the kernel, I0 is the zero-order modified Bessel function of

the first kind, and u represents the box function [84].

A kernel width W = 3 was used. The number of grid points was defined to

be twice the number of points of the image in each dimension to reduce aliasing

artifacts in a process referred to as overgridding. The final image then has twice

the desired field of view (FOV) and was cropped to the appropriate size. To

compensate for the convolution, the image must also be divided by the Fourier

transform of Eq. (6.5). Beatty et. al. [14] gives the optimal value of β in terms

of the kernel width and the overgridding factor α as

β = π

√
W 2

α2
(α− 1/2)2 − 0.8 (6.6)

For a Cartesian grid, each sampled point covers the same area in k-space, but

for non-Cartesian trajectories, the sampling density is not the same at each point.

When the gradients are larger, k-space is traversed quicker and each sampled

point represents a larger area. Without compensating for different densities, the

convolution would give relatively higher values where the points are more densely

sampled. Therefore, the data must be preweighted by the area it covers in k-space.

For circular sampling, the preweighting is given by the radius of the ring. Once

the data has been resampled onto a Cartesian plane and density compensated,

standard FT processing can be performed.

The resampling part of the gridding process can be performed as a matrix

multiplication

kcar = Gknonc (6.7)

However, in imaging, the resampling matrix G is often too large to store. For

example, in gridding to a 256×256 image from a radial acquisition of 402 spokes×

256 samples per spoke, G would be 262144×102912 including overgridding. There-

fore, gridding is typically computed by performing the convolution point-by-point

128



and summing up the results. For faster computation, a look-up-table is precalcu-

lated, and the value of the convolution kernel is approximated from the table. On

the other hand, in spectroscopic imaging, the matrix sizes are much smaller. For

a typical COSI-CONCEPT acquisition, 8 rings × 64 points per ring are gridded

onto a 32 × 32 image matrix, resulting in a G that is a much more manageable

1024 × 512. Therefore, no approximate kernel values need to be taken, and the

entire gridding matrix can be precomputed. This is especially useful as G must

be applied to each time point of the spectroscopic imaging sequence.

6.2.3 Experimental

COSI-CONCEPT was compared with its Cartesian correlated spectroscopic imag-

ing analog (EP-COSI) [99] in human calf muscle at 3T. Each sequence had the

following parameters: TR/minimum TE = 1500/30 ms, FOV = 16× 16 cm2 with

slice thickness 2 cm, 512 direct and 50 indirect spectral points, ∆t1 = 0.8 ms

yielding SBW1 = 1250 Hz. EP-COSI had 16 phase encodings. With 16 points

per readout and a 50 kHz readout BW, SBW2 = 1190 Hz. One average was

taken. COSI-CONCEPT acquired 8 circles with 64 points per circle to ensure az-

imuthal oversampling. (The polar Nyquist criteria for circular sampling requires

Nθ ≥ 2πNrings [151].) The readout BW was 80kHz, yielding a 1250 Hz SBW2.

Two averages were taken to produce time equivalent scans of 20 minutes. Pixel

resolution was 1× 1 cm2 in plane for each sequence.

For each sequence, a reference scan was collected to use for zero and first

order phase correction due to eddy currents and complex coil sensitivity profiles

[89, 140]. The reference scan had identical parameters to each SI scan, except

that water suppression was turned off and the number of indirect spectral points

was only 1. Each reference scan took only 30 s including prep scans, so the added

time was minimal. Since the gradients and coils are identical with the reference

scan, it is implicitly assumed that the phase errors are as well. This assumption
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is not strictly true when applied over the t1 increments though, as the sequence

timing is slightly different. However, it is reasonable to believe that most of the

eddy current distortions are due to the echo planar readout gradients and not due

to the spoilers, in which case the reference phases are applicable.

In postprocessing, temporal data was zero filled from 512 × 50 to 1024 × 100

before apodization with a skewed squared sine bell in t2 (skew parameter 0.5) and

a squared sine bell in t1 (skew parameter 1). No spatial zero filling or apodization

was applied.

6.3 Results

As the EP-COSI and COSI-CONCEPT scans were taken sequentially on the same

volunteer, they share the same anatomical reference images. Corresponding voxels

from the soleus, tibialis anterior (TA), and bone marrow from an EP-COSI scan

and a COSI-CONCEPT scan taken sequentially on a single healthy volunteer are

shown in Figure 6.3. Note the similarities in the voxels between the two scans and

the clear presence of the lipid cross peaks above and below the diagonal between

the resonances at 5.5 ppm with those at 2 ppm and 3 ppm.

In particular, the marrow voxels in Fig 6.3a and 6.3d show no discernible

creatine signal in the vicinity of 3.9 ppm, and the large signal at 3.0 ppm is, in

this case, due to lipids as evidenced by its coupling connectivity with the lipid

peak around 5.5 ppm. The soleus muscle voxels in Fig 6.3c and 6.3f show the

splitting of the intra/extramyocellular lipids (I/EMCL) that can be seen with

the cross peaks from 5.3-5.5 ppm [134]. This splitting is not resolvable in the

corresponding diagonal peak.

Due to coherent muscle fiber orientation in the tibialis anterior in human calf,

there exists residual dipolar coupling between creatine peaks that manifests as

a doublet splitting of the peak at 3.9 ppm [19]. Splitting is not observed at 3.0
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: The first row shows highlighted voxels from the tibial bone marrow

(labeled in red in the anatomical T2-weighted MRI insert) (a), tibialis anterior

(labeled in yellow) (b), and soleus (labeled in blue) (c), from a COSI-CONCEPT

scan of a diabetic calf. The second row shows the corresponding voxels from the

EP-COSI scan, (d),(e), and (f). Note that spectra are not all scaled the same.

Figure 6.4: Spatial distribution of the creatine 3.9 ppm peak from a COSI-

CONCEPT scan overlayed on top off the anatomic T2-weighted MRI.
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ppm in general because of the overlapping lipid peak. This phenomenon is clearly

observed in Fig 6.3b and 6.3e.

Figure 6.4 shows the spatial distribution of the creatine 3.9 ppm peak overlayed

on the anatomic MRI. The dipolar peak splitting is readily observed on the top

right side, while the tibial bone marrow is nearly devoid of any creatine save for a

small amount due to partial voluming and the voxel PSF. The soleus muscle has

a single creatine 3.9 ppm peak that is also more intense as its signal was not split.

6.4 Discussion

The spectral quality and spatial localization of COSI-CONCEPT compare well

to that of EP-COSI, though there are some minor differences. First, it appears

from Figure 6.3 that the SNR of the EP-COSI voxels is slightly higher. This is

consistent with the 12% difference in SNR efficiency reported in [62] and the 13%

difference reported in [85]. The biggest reason for this is that signal acquired

during a time-varying readout gradient has higher variance compared to signal

read out with a constant or no gradient [105, 125]. Theoretically, based on the

formulas in [125], the COSI-CONCEPT sequence used here has about twice the

signal variance as the EP-COSI version. Since COSI-CONCEPT traverses k-space

twice as quickly, two averages can be taken for a time-equivalent scan, and the

SNR efficiency should be about the same. The small added difference could be

due to parameter choices in the gridding or the fractional shift of the k-space rings

f in Eq (6.4).

The high SNR in EP-COSI is the result of effectively taking two averages per

scan by combining the echoes formed during the positive bipolar gradient lobes

with those formed during the negative. The negative gradient lobes also serve

to rewind k-space, and as previously mentioned, this rewinding also indirectly

reduces the SBW. The interlaced Fourier transform [114] can be applied to process
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the bipolar echoes as separate time points, doubling the SBW. However, it is highly

susceptible to phase errors and results in a large drop in SNR with some residual

aliasing [53], so it is more common to combine the echoes as was done here.

For the choice of f = 1/2 used here, the circular k-space trajectories are equiv-

alent to radial spokes, as each sampled point is equidistant in the radial direction.

That means that reconstruction can be performed using the inverse Radon trans-

form instead of gridding. This method is used in computed tomography (CT),

where it is referred to as backprojection. Although it is largely equivalent to

gridding in terms of reconstruction quality in MRI in practice, there are some

differences in terms of aliasing and the point spread function (PSF) when us-

ing backprojection with a filter or undersampling, as discussed in detail in [93].

However, no spatial apodization was used in this paper, and the sampling rate

satisfies the polar Nyquist criteria, so the two reconstructions would be expected

to be effectively the same.

Additional differences exist between the PSFs of COSI-CONCEPT and EP-

COSI due specifically to the sampling. For the parameters used here, the main lobe

of COSI-CONCEPT’s PSF was about 5% broader, resulting in slightly lower effec-

tive spatial resolution. As the EP-COSI-equivalent resolution COSI-CONCEPT

scan is definitely not hardware limited, one additional circle could be acquired,

thereby reducing the width of the main lobe below that of EP-COSI. On the other

hand, EP-COSI is often run at the hardware limits, so acquiring a different reso-

lution requires a nontrivial modifying of a number of parameters. Differences in

the PSFs can also be reduced through apodization.

Currently, gradient slew rates are FDA-limited to be 200 mT/m/s and scanner-

limited to be 180 mT/m/ms on the particular clinical scanner used here. These

slew rate limits are the main bottleneck limiting the achievable SBW in echo

planar type SI sequences. For the parameters used here, the EP-COSI sequence

had a maximum slew rate over 90% of the allowable limit, whereas the COSI-
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CONCEPT sequence had a maximum readout slew rate less than half that while

still achieving a slightly higher SBW. (The actual maximum slew rate occurred

during the ramps of the spoilers and was closer to that of EP-COSI, but this value

is not parameter dependent.) This means that COSI-CONCEPT can achieve

much higher resolution or SBW than EP-COSI when pushed to the allowable

limit, which is of great importance for high field scanning where the increased

peak dispersion requires higher SBW to avoid spectral aliasing.

Generally, another benefit of lower slew rates is reduced eddy current distor-

tions. However, the actual reduction in eddy currents is somewhat mitigated by

gradient preemphasis that most vendors automatically perform for trapezoidal

waveforms. Yet preemphasis is not applied for arbitrary gradient waveforms un-

less supplied by the user. Nevertheless, the eddy current distortions in COSI-

CONCEPT do seem to be less because the central k-space circles use very low

amplitude gradients with almost no eddy current effect. By contrast, each line of

EP-COSI, whether through the center of k-space or the periphery, has the same

high slew rate.

The use of concentric circular readout was applied with L-COSY localization,

though it could easily be included with other 2D spectroscopy sequences such

as JPRESS [147], L-EXSY [170], or localized TOCSY [8]. Each of these 2D

sequences would benefit from reduced eddy current distortions and high SBW. In

particular, artifacts due to residual eddy currents can be particularly problematic

for the phase-sensitive multiplet resonances even after using Klose’s correction

method [89] in postprocessing.

Phase encoded CSI scans do not acquire data with a readout gradient playing

and are therefore not gradient-limited in terms of SBW. For this reason, nearly

all high field SI sequences are CSI-based. Overall scan time limits the achievable

resolution, but quality spectra can be obtained in a reasonable amount of time.

Correlated CSI with two spectral dimensions, though, is not feasible in vivo with-
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out large acceleration, and methods such as parallel imaging [52] or compressed

sensing [65, 29] do not offer enough acceleration to rectify that.

6.5 Conclusion

A fast correlated spectroscopic imaging sequence that traverses k-space in con-

centric circles was presented here and compared with the more common fast se-

quence that traverse k-space rectilinearly. It was shown that for similar acqui-

sition parameters, the two sequences have about the same SNR efficiency, with

COSI-CONCEPT sampling k-space twice as fast. The lower gradient slew rates

in circular sampling result in a reduction in eddy current distortion and allows

for scanning at much higher spectral bandwidths, thereby increasing the potential

applicability of correlated spectroscopic imaging at high field strengths.

6.6 Appendix

6.6.0.1 COSI-CONCEPT slew rates

In COSI-CONCEPT, the slew rates are given by the time derivatives of Eq. (6.3)

G′x(t) = +
8π3kn
γT 2

· sin
[

2π

T
(t− TE)

]
G′y(t) = −8π3kn

γT 2
· cos

[
2π

T
(t− TE)

] (6.8)

Consider k-space points that exactly lie on the axes. These points are the

same whether k-space is collected rectilinearly or circularly. In particular, if ∆k

is the spacing between rings, FOV = ∆k−1. Making use of the relationships

kn = (nrings + f) · FOV−1 and T−1 = SBWc and Eq. (6.8), the maximum slew

rate for COSI-CONCEPT is given by

G′max,concept =
8π3(nrings + f) · SBW2

c

γ · FOV
(6.9)
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where it can be seen to scale with the square of the spectral bandwidth.

In EP-COSI, a repeating bipolar trapezoidal gradient waveform is applied

across the readout direction and has 0 slew rate during the flat tops and maximal

slew rate during ramping. The gradient amplitude during the flat top is given by

G =
2π

γ

∆kro
∆t

(6.10)

where ∆t is the readout dwell time, and the subscript ro refers to the readout

direction. Calling the time to ramp the gradient between its maximum positive

and negative amplitudes tramp, the maximum slew rate for the EP-COSI sequence

is

G′max,epsi =
2G

tramp
=

4π∆kro
trampγ∆t

(6.11)

Here, the spectral bandwidth is given by SBWe = [2 (nro∆t+ tramp)]
−1 which can

be used to rewrite Eq. (6.11) as

G′max,epsi =
8π∆kro
trampγ

(
nro · SBWe

1− 2tramp · SBWe

)
(6.12)

Taking the ratio of Eq. (6.9) to Eq. (6.12) and assuming the FOV in the

EP-COSI readout direction is the same as the FOV in each direction of COSI-

CONCEPT, the ratio of the maximum slew rates of COSI-CONCEPT to EP-COSI

is found to be

G′max,concept
G′max,epsi

=
π2(nrings + f)

nro
[tramp · BW (1− 2tramp · BW)] (6.13)

The term in brackets is parabolic as a function of the ramp time-bandwidth prod-

uct with maximum value of 1/8 when tramp · BW = 1/4. Typically, the largest

ring in COSI-CONCEPT is chosen such that the full extent of k-space coverage

is a circle inscribed in that of the square formed from EP-COSI. In that case,

the number of rings is half the number of points in the EP-COSI readout direc-

tion, nrings = nro/2, which highlights the increased efficiency of circular sampling

relative to rectilinear. Therefore, the ratio of maximum slew rates satisfies

G′max,concept
G′max,epsi

≤ π2

2
· 1

8
· (nrings + f)

nrings
(6.14)
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which is < 1 when (nrings + f)/nrings < 16/π2. As the number of rings increases,

(nrings + f)/nrings decreases asymptotically to 1. Since f ≤ 1, that ratio will be

less than 1.5 for nrings > 1, and the slew rate ratio in Eq. (6.14) will be less

than 1. Therefore, COSI-CONCEPT has lower slew rates than EP-COSI for any

realistic sampling scenario.
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CHAPTER 7

Improved J-resolved Spectroscopic Imaging with

Adiabatic Refocusing Pulses and Concentrically

Circular Echo Planar k-space Trajectories

7.1 Introduction

In the early days of continuous wave (CW) NMR [17, 133], spectra were collected

from nuclei in a constantly oscillating RF field (B1) by varying the amplitude of

the polarizing B0 field. Because the B0 field varied slowly, the bulk magnetization

would remain collinear with the net effective magnetic field. This method was able

to achieve excitation over a wide band of resonant frequencies while being robust

to inhomogeneity in the RF field. However, Fourier transform (FT) NMR largely

replaced CW NMR due to its orders of magnitude improvement in sensitivity that

allowed for much quicker experiments [55]. FT NMR uses a static B0 field and

applies short, high intensity RF pulses to produce a free induction decay, and

Fourier transform of the free induction decay gives the spectrum. However, the

effect of the RF pulse on the magnetization is highly dependent on the B1 field

strength.

Adiabatic RF pulses [155, 13, 76, 15, 172, 173, 64, 45] use a frequency or

phase sweep of the RF field to accomplish adiabatic fast passage of the bulk

magnetization. (Fast, in this case, is with respect to the relaxation constants

T1 and T2.) Just as in the CW NMR experiment, the magnetization follows the
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effective magnetic field. The pulses act as part of an FT NMR experiment with the

added CW benefits of broad band excitation and insensitivity to inhomogeneous

RF fields. They can be thought of as the limit of a continuously varying composite

pulse [95] with far greater tolerance for B1 variation. Fundamentally, these pulses

accomplish one of two tasks: either excitation (Mz → Mx) or inversion (Mz →

−Mz). Those that excite are known as adiabatic half passage (AHP) pulses, and

those that invert are known as adiabatic full passage (AFP). The reason for these

two primary usages are that adiabatic pulses do not cause plane rotations like

typical RF pulses, and the end result is dependent on the initial magnetization.

Still, combinations of AHP and time-reversed AHP pulses can be used to achieve

plane rotation [172, 164].

AHP and adiabatic plane rotation pulse are not typically used for spatial se-

lectivity due to off-resonance effects brought about by the gradient [86]. AFP

pulses, on the other hand, can be used efficiently for slice selective inversion [155],

but when attempting to use the AFP pulse for slice selective refocusing, a nonlin-

ear phase dispersion results through the slice, leading to destructive cancellation

of the signal. Conolly et. al. showed that this phase dispersion can be exactly

refocused by application of a second, identical slice-selective AFP pulse [40]. Sym-

metric, non-adiabatic pulses self-refocus this phase dispersion and, therefore, do

not require a paired pulse.

This realization that adiabatic pulses could be used for general refocusing

with relative ease opened the door to their use in localized spectroscopy experi-

ments. Fully adiabatic volumetric localization can be achieved following applica-

tion of a nonselective AHP pulse and three pairs of slice selective AFP pulses as

in SADLOVE [158] or LASER [63]. It was shown that LASER VOIs had sharper

edges than their PRESS [20] counterparts, leading to a reduction in signal bleed,

which is especially relevant for voxels near the skull marrow.

Chemical shift displacement error (CSDE) is another problem that confounds
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spectroscopy and spectroscopic imaging as it results in shifts in apparent localiza-

tion of different resonances. CSDE occurs in spectroscopy because a slice-selective

gradient spreads frequencies over a spatial direction, and different metabolites

have different frequencies. The fractional amount of the error is defined as the

ratio of the physical displacement δz to the slice thickness ∆z

CSDE =
δz

∆z
(7.1)

Since the slice thickness is determined by the bandwidth of the pulse (BW) and

the strength of the gradient (G)

∆z =
BW

−γG
, (7.2)

and the physical displacement is dependent on the chemical shift δf between the

resonances and also on the gradient strength

δz =
δf

−γG
, (7.3)

the CSDE can be written very simply in terms of the frequencies

CSDE =
δf

BW
(7.4)

Equation (7.4) very clearly shows the inverse proportionality between the RF

pulse bandwidth and the CSDE that makes using high bandwidth adiabatic pulses

appealing.

Nevertheless, because of the seven total pulses required of LASER, the se-

quence is not applicable for short T2 experiments. Also, the individual adiabatic

pulses typically have higher SAR than traditional or SLR-optimized [123] pulses,

so LASER is a relatively high SAR sequence compared to its alternatives. Schee-

nen et al. sought to address those issues with LASER by replacing the initial

nonselective AHP pulse and the first pair of slice-selective AFP pulses with a sin-

gle, non-adiabatic slice-selective pulse and calling the sequence semi-LASER (or
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sLASER) [150]. sLASER has less SAR and a shorter minimum echo time than

LASER. However, the sequence is no longer fully adiabatic.

For coupled metabolites, in addition to the CSDE and unwanted coherences

generated by improper flip angles that plague singlet signals, pulse imperfections

can also cause a spatially dependent J-evolution [54]. This latter issue is particu-

larly troublesome for localized J-resolved spectroscopy (JPRESS) [147] in which

refocusing pulses are expected to affect each coupled partner equally. When both

resonances are refocused, J-coupling evolves for the entire TE, leading to the ex-

pected spectral splitting in the indirect dimension. However, when the refocusing

pulse only affects one of the coupling partners, J-evolution can actually be refo-

cused. The resulting spectrum is then a weighted combination of all the different

refocusing possibilities, which makes it lower in sensitivity and exceedingly hard

to quantify.

Here, we apply semi-LASER localization to a fast J-resolved spectroscopic

imaging sequence that traverses k-space in concentric circles (JRESI-CONCEPT)

[62]. Individual spectra and metabolite maps are compared with a PRESS-based

JRESI-CONCEPT.

7.2 Methods

The semi-LASER JRESI-CONCEPT sequence schematic is illustrated in Figure

7.1. A 90° hamming-filtered sinc pulse is applied with a slice-selective gradient

along the z axis. A phase encoding gradient is applied in y to shift k-space

to the appropriate radius. Two consecutive AFP pulses were played with a y

gradient with two more that are slice selective in x following. Sinusoidal gradients

are applied in x and y to traverse circles in k-space. Though not shown, spoiler

gradients are placed symmetrically around each AFP. A precompensatory gradient

is included in one of the x spoilers to negate the moment as the x gradient ramps
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Figure 7.1: JRESI-CONCEPT pulse sequence schematic with semi-LASER local-

ization. The 90° pulse is non-adiabatic and slice selective. The 180° pulses are

all adiabatic and slice selective. The first two select the y-slice, and the last two

select the x-slice. Sinusoidal gradients are applied in x and y to traverse k-space

circularly. The indirect spectral increment t1 was placed before the final pulse

only for maximum echo sampling. Crusher gradients surrounding each refocusing

pulse and a WET water suppression module preceding the localization are not

shown, and the sequence timing of the readout gradients is not drawn to scale.

142



up. The echo delay time t1 was applied before the last AFP. As opposed to the

traditional J-resolved experiment in which the increment is applied symmetrically

around the refocusing pulse, here t1 was only applied before the refocusing pulse

as part of a maximum echo sampling scheme [106, 154].

The AFP refocusing pulses used in sLASER JRESI-CONCEPT were iden-

tical hyperbolic secant HS1 pulses [155] with bandwidth-time product (BWTP)

25.60. SAR was not really an issue at 3T, so the pulses were applied for the

hardware minimum duration (due to B1 amplitude) of 5.6 ms, resulting in a 4.6

kHz RF bandwidth. The conventional PRESS sequence (and our PRESS-JRESI-

CONCEPT) uses optimized “Mao” pulses [109] that have a 6.00 BWTP. These

pulses were also applied at their minimum duration of 5.2 ms, resulting in a 1.1

kHz BW.

Each sequence collected eight rings with 64 points per ring at a direct spectral

bandwidth of 1250 Hz. For each, the ∆t1 increment was 1 ms, resulting in a

reconstructed indirect spectral bandwidth of 500 Hz after frequency-dependent,

linear phase correction in postprocessing. Forty t1 increments were collected with

TR = 1.5 s, for a total scan time of eight minutes. The circular k-space points

were gridded to a 16× 16 Cartesian plane using a Kaiser-Bessel kernel [84]. The

field of view was 16× 16 cm2 in plane with a 1.5 cm slice thickness.

The minimum echo time for the sLASER-based sequence was 37 ms including

all the crusher gradients (not shown in Fig 7.1) and additional time delays to

balance each echo. The minimum echo time for the PRESS-based sequence was 29

ms. Though the PRESS-based version has two pulses of 5.6 ms each less (and the

remaining two pulses are almost half a second shorter), the crusher gradients were

slightly larger to ensure adequate dephasing of signal from unwanted coherences.

Scans comparing the two sequences at the same TE are shown, as well as scans

acquired at the minimum TE for each.

Each sequence localization was preceded by WET water suppression [117] (also
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Figure 7.2: Metabolites maps for NAA 2.0 ppm singlet (left), creatine 3.0 ppm

(center), and creatine 3.9 ppm (right) acquired with sLASER-JRESI-CONCEPT

(top) and PRESS-JRESI-CONCEPT (bottom) acquired at the same echo time

(TE = 37 ms) in a healthy volunteer. Maps are scaled to be of similar intensities.

not shown in Fig 7.1). All scans were taken on a 3T Trio-TIM with an 8 chan-

nel head coil. Coils were combined as a sum-of-squares as no reference water

scan for phase correction [89, 140] was acquired. Metabolite maps were found by

integrating the appropriate peak volumes.

7.3 Results

Figure 7.2 shows metabolite maps acquired with each localization at the same

echo time (TE = 37 ms) in a healthy adult volunteer. NAA 2.0 ppm singlet

is on the left, creatine 3.0 ppm is in the center, and creatine 3.9 ppm is on the

right. The top row was acquired using sLASER localization, while the bottom row

used PRESS. Each metabolite’s map is scaled differently to give the same overall

intensity, but the scaling is the same between localizations. Figure 7.3 shows the

J-resolved spectra from each scan for the same voxel in the parietal lobe. Figure

7.4 shows the same thing for a voxel on the edge of the VOI from the occipital

144



Figure 7.3: J-resolved spectra from the highlighted voxel in the parietal lobe with

sLASER localization (left) and PRESS localization (right) in the same healthy

volunteer as Fig 7.2.

lobe.

Figure 7.5 shows the creatine 3.0 ppm and Glx metabolite maps from a coronal

slice of a second healthy volunteer. The left maps were acquired with sLASER

localization at TE = 37 ms, the middle maps were acquired with PRESS local-

ization at the same echo time, and the right maps were acquired with PRESS

localization at its minimum echo time of 29 ms. Figure 7.6 shows a parietal lobe

voxel from each of the three scans. The minimum echo time PRESS has more

signal for all resonances compared to the longer echo time version, but this is es-

pecially true of the coupled metabolites due to the combination of T2 decay and

antiphase evolution. Nevertheless, the coupled metabolites still have less signal

than the sLASER localization with longer echo time.

7.4 Discussion

Two things are immediately evident from Figure 7.2. The first is that the sLASER-

localized JRESI-CONCEPT has higher SNR than the PRESS-localized version.

The is most likely due to imperfections in the flip angle of the “Mao” pulse such

that spins are not receiving a true 180° refocusing. Furthermore, this would ex-
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Figure 7.4: J-resolved spectra from the highlighted voxel in the occipital lobe with

sLASER localization (left) and PRESS localization (right) from the same scan as

Fig 7.3.

Figure 7.5: Metabolite maps from a coronal slice of a second healthy adult showing

creatine 3.0 ppm (top) and Glx (bottom) for minimum TE sLASER localization

(left), same TE PRESS localization (center), and minimum TE PRESS localiza-

tion (right). Maps are scaled the same between scans but differently between

metabolites.
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Figure 7.6: J-resolved spectra from the highlighted voxel in a coronal slice in the

healthy volunteer as Fig 7.5 acquired with sLASER localization at minimum TE

(left), PRESS localization at the same TE (center), and PRESS localization at

its minimum TE (right).

plain why the PRESS-localized version required larger gradient crushers to remove

the unwanted coherences. CSDE in the slice direction could also contribute to this

and would be exacerbated with the presence of outer volume suppresion (OVS)

pulses that are often used in volumetric localizations to prevent signal bleed from

outside the VOI. The adiabatic HS1 pulses have better slice profiles and therefore

do not require OVS, though.

Also clear from Figure 7.2 is the CSDE with the PRESS localization. At 3T,

the frequency per ppm is 123.23 Hz, so using Eq. (7.4), we find that the HS1 pulses

result in a CSDE of 2.7% per ppm while the “Mao” pulses have a CSDE of 10.7%

per ppm. Since the VOI was about 12 cm in the anterior-posterior direction, the

CSDE with “Mao” pulse is a little over 1 cm/ppm, which is roughly the size of a

voxel. For the HS1 pulses, the CSDE is less than 1/3 of the voxel size. It should

be noted that CSDE does also occur in the readout dimension. However, because

the readout BW is much larger (on the order of 100 kHz), the error is negligible.

For comparison, the BWTP of the hamming-filtered sinc excitation pulse was

8.75, and it was played for 2.2 ms, resulting in a BW of 3.98 kHz and CSDE

of 3.1% per ppm. The left-right VOI was about 8 cm, so the excitation pulse

resulted in a CSDE of about 1/4 voxel. The non-adiabatic excitation pulse has

much higher BW and lower CSDE than the non-adiabatic “Mao” pulse. In fact,

147



it is comparable in both to the adiabatic HS1 pulses. This is mainly due to

its shorter pulse duration, which is achievable because a 90° flip angle takes less

energy than a 180° one. That is why semi-LASER is just as effective as LASER

at reducing CSDE in this case. However, there are other advantages to only using

adiabatic pulses that semi-LASER localization lacks.

Figure 7.4 also highlights the problem with attempting to look for regional

changes in spectroscopic images that have large CSDE. In the sLASER-localized

image, all the major resonances are clearly present, but in the PRESS-localized

image, NAA is greatly diminished, and Glx is unidentifiable. If this experiment

were being done to test for some disease or pathology with the PRESS-based

localization, one would associate this voxel with decreased neuronal activity based

on the relative NAA. However, the real reason for the low NAA signal is the one

voxel shift compared to creatine seen in the maps in Fig 7.2. Fitting programs for

metabolite quantitation [129, 153] typically use creatine as an internal standard

of reference and would therefore be highly susceptible to this problem.

From a parietal lobe voxel, we see in Fig 7.3 that the intensities of the singlet

peaks (NAA, creatine, and choline) are about the same with either localization.

On the other hand, coupled metabolites like Glx and myo-inositol (mI) show

much higher signal in the sLASER version. This is also clear from Figures 7.5

and 7.6, where the Glx signal from sLASER is much larger than from PRESS

even when the latter is acquired at a shorter echo time. The reason behind this

is that the additional 180° refocusing pulses act as a Carr-Purcell train [30] and

effectively freeze out the antiphase coherence in J-evolution of strongly coupled

spin systems [5]. This same idea was used by Hennig et. al. where additional

(non-adiabatic) refocusing pulses were added to a standard PRESS localization

[79]. Therefore, although T2 decay is still greater for the longer echo times with

sLASER localization, the signal “decay” associated with antiphase coherences in

coupled spin systems is actually much less.
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The sLASER localization scheme could be added to any fast spectroscopic

imaging sequence that is currently based on PRESS, such as EP-COSI [99]. Yet,

there are a number of reasons to prefer the choice of concentrically circular k-

space sampling. First, circular sampling is more efficient at covering k-space

and requires half the number of phase encodes as rectilinear sampling. Eddy

current distortions are also less. Another reason to choose circular sampling is the

higher achievable spectral bandwidth [62] that is required for high field imaging.

At high fields, though, the CSDE becomes worse according to Eq. (7.4) as the

spectral dispersion δf increases. And while it was not as big of an issue here, RF

homogeneity is more difficult to achieve at high field strength. For those reasons,

the use of sLASER localization with SI-CONCEPT readout shows great promise

for high field applications.

7.5 Conclusion

A volumetric localized fast J-resolved spectroscopic imaging using concentrically

circular k-space trajectories can be improved upon by replacing the standard 180°

refocusing pulses with adiabatic full passage ones. This improves errors due to

chemical shift displacement and RF inhomogeneity and is well suited for coupled

metabolites despite the longer minimum echo time.

7.6 Appendix

7.6.1 Siemens Pulsetool parameters: Refgrad and the BWTP

An RF pulse can be characterized by its bandwidth-time product (BWTP =

BW · Tp) which is dependent only on the overall pulse definition and not the

specific units of measure. Shortening/lengthing the pulse duration will cause the

amplitude to scale in order to deliver the same amount of RF energy and the BW
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to increase/decrease by the same factor.

Knowing the BWTP of a pulse allows one to specify its BW by applying it for

the appropriate time. From Eq. (7.2), the BW of a pulse is also related to the

slice thickness achieved when played with a given gradient. As most pulses are

used for slice selection, this gives a more physically intuitive way to understand

the pulse BW in imaging.

The Siemens sequence programming environment (IDEA) utilizes most of its

RF pulses from external .pta files that specify the scaled magnitude and phase

of each point defining the pulse shape along with a couple other parameters.

The BWTP is not one of the given parameters, with its role being played by

parameter Refgrad. Refgrad is an experimentally determined parameter specifying

the gradient strength required to select a 1 cm slice when the given pulse is played

for 5.12 ms and is given in units of mT/m.

The BW of the pulse can be calculated off the gradient and slice thickness

from Eq. (7.2), so the BWTP is simply

BWTP = BW · Tp = −γG∆z · Tp (7.5)

Rearranging and plugging in the appropriate reference values of−γ = 42576 Hz/mT

(for protons), Tp = 5.12e−3 s, and ∆z = 0.01 m, yields an equation for Refgrad

in terms of the BWTP

Refgrad =
BWTP

(42576 Hz⁄mT) (0.01 m) (5.12e−3 s)
=

BWTP

2.180 m⁄mT
(7.6)
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CHAPTER 8

Quantitative Localized Correlated Spectroscopy

using Prior Knowledge Fitting Including

Macromolecules: Comparison with J-resolved

Spectroscopy and Results in HIV-infected

Children

8.1 Introduction

Involvement of the central nervous system (CNS) is very common in HIV and

clinical CNS-related disease has been documented to be present in approximately

17% of HIV survivors [169]. In contrast to adult patients who acquire HIV with

a mature immune system and in whom HIV encephalopathy is usually a later

manifestation of HIV, pediatric patients have infection of the CNS early in the

infection and continuing effects from the developmental insult ot the brain and

continuing subclinical or clinical involvement. Many researchers have investigated

HIV effects of cerebral metabolites using one-dimensional MRS at 1.5 T field

strength and reported changes in NAA, choline, myo-inositol, and creatine [21,

11, 91, 149, 115, 34, 33].

Magnetic resonance spectroscopy (MRS) provides a means to measure metabolic

function non-invasively. Proton MRS of the human brain can detect about 20

metabolites in vivo. However, these resonances exist in a relatively small spec-
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tral window from about 1 ppm to the broad water peak centered at 4.7 ppm,

and many exhibit complicated multiplet structures due to J-coupling. This re-

sults in 1D spectra that are overcrowded and dominated by the four singlets of

N-acetylaspartate (NAA), creatine (Cr), and total choline (tCho) and possibly

nuisance signals do to residual water or lipid contamination. Quantification by

peak height or area is unreliable for the singlets due to baseline effects and impos-

sible for overlapping multiplets. Spectral editing techniques [142, 80] been used

to highlight a single J coupled metabolite at a time but are highly susceptible

to field inhomogeneity artifacts caused by motion. In order to obtain objective

quantification of many metabolites, spectral fitting methods that make use of

prior knowledge have been developed [175, 129, 159].

These methods, whether in the time domain as in VARPRO [175] or in the

frequency domain as in LCModel [129], fit acquired data as a linear combination

of metabolite data that compose the basis set. In the frequency domain, this

relationship can be expressed as

S =
∑
m

cmBm + ε (8.1)

where S is the acquired spectrum, Bm is a matrix of the mth metabolite ba-

sis spectra, cm is the concentration of metabolite m, and ε is the residual noise.

Other parameters such as frequency shift, linewidths, and phase correction are

included to improve the overall accuracy of the fit and the expense of computa-

tional complexity and time. The quality of the fit can be judged objectively by the

Cramér-Rao lower bounds (CRLBs), which take into account both the noisiness

of the spectra and the amount of overlap in the basis set [32]. Despite the great

improvement in fitting brought about by these prior knowledge-based algorithms,

certain metabolites, such as lactate (Lac) and threonine (Thr) or glutamate and

glutamine, overlap so much that they still can not be untangled reliably. One

way to greatly reduce spectral crowding and unambiguously distinguish highly

overlapping peaks is by acquiring frequency information in a second, orthogonal
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dimension.

The basic MRS pulse sequence consists of a preparation period in which equi-

librium magnetization is excited, followed by an evolution period without RF

pulses, a mixing period, and an acquisition period in which a free induction decay

(FID) or echo is read out. In a 2D pulse sequence [9], the duration of the evolu-

tion period t1 is incremented each repetition such that the echo time TE becomes

increment-dependent, and the magnetization during readout is a function of t1.

Due to the longer scan times required to acquire the t1 dimension indirectly in

this way, only the simplest 2D sequences have be applied in vivo [148, 171]. The

2D analog of PRESS, called JPRESS [148], encodes chemical shift and J-coupling

information along the direct dimension and J-coupling only along the indirect di-

mension. Complicated multiplet structures that appear in a single dimension in

a PRESS spectrum are smeared into the second spectral dimension in JPRESS.

JPRESS greatly reduces the spectral crowding in the presence of coupled spins.

However, while it is easy to identify spins that experience coupling, there is no in-

formation that connects coupled partners. An alternative sequence that provides

this correlation map and enhanced spectral dispersion is the localized analog of

Jeener’s original proposed 2D sequence dubbed L-COSY for localized correla-

tion spectroscopy [171]. In L-COSY, the final 180◦ localization/refocusing pulse

of JPRESS is changed to a 90◦ localization/refocusing/coherence transfer pulse,

linking the frequency in the evolution period with the frequency during acquisi-

tion.

Early attempts to quantify 2D spectra had limited success. As with 1D, peak

integration has been used but limits are subjective, and the method is unreliable

for crowded and overlapping peaks. De Beer et al. used the 2D Hankel singular

value decomposition (SVD) to decompose the time domain data into its resonances

and linewidths [43]. However, SVD fits do not make full use of prior knowledge

and cannot be constrained to physically plausible values. Another strategy im-
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plemented by Slotboom et al. took the 1D TDFD fitting routine and extended

it as a series of constrained 1D fits, but they found no improvement in fitting of

coupled metabolites relative to 1D [159]. Schulte and Boesiger proposed a true

2D fitting algorithm called ProFit (PRiOr knowledge FITting) and showed an

increase in the number of quantifiable metabolites using 2D JPRESS compared

with 1D PRESS [152].

ProFit is an iterative function relying on both linear and non-linear least

squares optimization to minimize a cost function made up of the sum of squares

residual plus penalty factors for regularization. It begins by determining the global

phase correction and frequency shifts using the dominant singlets. From there, it

enters its first iteration, fitting the relative frequency shift and phase non-linearly

for the dominant metabolites, then fitting concentrations linearly. The second

iteration includes a lineshape distortion to the non-linear fit, and the third iter-

ation includes all the basis metabolites. By dividing the algorithm into a linear

and non-linear part, the number of parameters is reduced, leading to faster overall

convergence. In this paper, we demonstrate the accuracy and reliability of fitting

L-COSY data using the ProFit algorithm. We then use L-COSY with ProFit to

identify differences in metabolite concentrations in young HIV patients relative to

healthy controls. Two-dimensional L-COSY was evaluated recently using a 1.5 T

scanner with a pilot group of HIV children [10]. In that study, quantitation was

done using operator-defined peak volumes in the frequency domain without prior

knowledge.

8.2 Methods

8.2.1 Phantom Scans

Phantom scans were performed on a gray matter phantom containing the fol-

lowing 16 metabolites at physiological concentrations [69]: aspartate (Asp), N-
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acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), γ-aminobutyric acid

(GABA), free choline (Cho), creatine (Cr), glucose (Glc), glutamate (Glu), glu-

tamine (Gln), glutatione (GSH), lactate (Lac), myo-inositol (mI), phosphoryl-

choline (PCh), phosphorylethanolamine (PE), taurine (Tau), and threonine (Thr).

Spectroscopic sequences were run following a three pulse water suppression

module as described by Ogg et al. [117]. The 1D PRESS spectra were acquired

with TE/TR=30/5000 ms, 1024 averages, voxel size of 27 cm3, and bandwidth

of 2000 Hz, resulting in a scan duration of 1hr 25min. The 2D L-COSY spectra

were acquired with initial TE/TR=30/5000 ms, 100 t1 increments with step size

∆t1=0.8 ms, 8 averages, and a voxel size of 27 cm3. The bandwidth in the direct

dimension f2 was again 2000 Hz, with a bandwidth in the indirect dimension f1 of

1250 Hz. The 2D JPRESS spectra were acquired with the same parameters except

with a bandwidth of 1000 Hz in the indirect dimension. Both scan durations were

1hr 07min. Each spectroscopic sequence was preceded by a short (1 average, 1

t1 increment) non water-suppressed scan which was used in initial preprocessing

for coil combination and zero-order phase correction before the data was fed into

ProFit.

8.2.2 in vivo Scans

Sixteen children with HIV and 14 healthy volunteers (9 male, 5 female, average

age 16) were scanned using the L-COSY sequence with the following parameters:

initial TE/TR=30/2000 ms, 100 t1 increments with step size 0.8 ms, 8 averages,

voxel size of 27 cm3, and bandwidths of 2000 Hz in the direct dimension and 1250

Hz in the indirect dimension. A single average, single t1 increment non water-

suppressed scan was also acquired for eddy current correction and coil combination

[89]. Localization was performed with a 3 minute axial T1-weighted scan. Total

scan time was about 30 min. Spectra were acquired from a voxel in the frontal lobe

that was composed of predominantly white matter. All scans were performed on
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a Siemens 3T Trio-TIM scanner (Siemens Medical Solutions, Erlangen, Germany)

using a 12 channel phased array receive coil acquired in triple mode with 4 primary

channels. The body coil was used for transmit.

8.2.3 Processing and Fitting

The ProFit algorithm is described in detail in the paper by Schulte and Boesiger

in [152]. Here, only a brief overview will be given, highlighting the adaptations

made to process L-COSY spectra.

ProFit consists of both non-linear and linear contrained least squares opti-

mizations in order to implement maximal prior knowledge while keeping small

the number of degrees of freedom. The following global parameters were opti-

mized non-linearly: zero-order phase φ0, Gaussian line-broadening in the direct

dimension σg, frequency shift in the indirect dimension ∆1, and biexponential

phase decay amplitudes θ1 and θ2. Fitting a biexponential phase decay model

corrects for lineshape distortions caused primarily by eddy currents. Frequency

shifts were determined from the maximum of the dominant singlets of NAA, Cr30,

and PCh in the magnitude spectrum. Phase correction in ProFit is done by op-

timizing peak shapes and areas of the dominant singlets in both the real and

imaginary spectra and therefore, does not require a separate reference scan. In

the real spectrum, peak area and peak height are both maximized. In the imag-

inary spectrum, peak area is minimized to zero, and the highest positive peak is

matched to the lowest negative peak. Zero- and first-order terms are linearly fit

to the overall phase corrections applied to the singlets.

In addition to relying on adjustment of global parameters for the experimen-

tal data, a successful fit is achieved by making small adjustments to individual

basis spectra. For each metabolite, exponential line-broadening σe is added in

both spectral dimensions to replicate T2* losses in the acquired data, and a small
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frequency shift in the direct dimension ∆2 is included to compensate for pH or

temperature dependent effects. The individual metabolite concentrations cm are

determined linearly by the product of the Moore-Penrose pseudoinverse of the

matrix of basis spectra and the experimental spectrum. A nonlinear optimization

is applied to minimize a cost function that is made up of the residual as well as

regularization terms for the line broadening and chemical shifts and is given by

f =
∑
k,l

[
<{Sk,l (∆1, φ0, θ1, θ2)}

−
∑
m

cm<{Bk,l,m (∆2,m, σe,m, σg)}

]2

+ ρσ
∑
m

cm (σe,m − σe,typ)2 + ρ∆var (∆2,m)

(8.2)

where the regularization factors ρσ = (
∑

m cm)−1 and ρ∆ = 1, σe,typ was 1, and

var indicates the variance. The summation indices k and l were taken over the all

the rows and columns of a truncated fit region. All processing was done offline

using MATLAB (The Mathworks, Natick MA, USA).

Metabolite basis spectra were simulated numerically with GAMMA [160], us-

ing chemical shifts and J-couplings from the literature [69]. The basis sets used

for the phantom scans contained the same 16 metabolites as the phantom itself,

while the basis set used for the in vivo scans also contained alanine (Ala), ascor-

bic acid (Asc), glycerophosphorlycholine (GPC), glycine (Gly), iso-leucine (Ile),

leucine (Leu), scyllo-inositol (sI), and valine (Val). The two singlets of Cr were

fit as separate spectra (Cr30 and Cr39) to offer a quick check of fit accuracy, as

their ratios should always be 1:1. Cr39 ratios less than 0.6 or greater than 1.3

were used as exclusion criteria for the entire spectrum.

Individual metabolite fit quality was determined qualitatively by visual in-

spection of the residual and quantitatively using the CRLBs. The CRLB of each

metabolite is calculated from the diagonal element of the Fisher information ma-
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trix F as

CRLBm =
√
F−1
m,m (8.3)

with F given by

F =
1

σ2
<
(
BTB

)
(8.4)

where σ2 is the noise variance of the experimental spectrum, B is the basis matrix

consisting of the simulated spectra, and < indicates the real part of the matrix.

In order to be detected, signal following coherence transfer must evolve from

an antiphase operator term such as 2IxSz to an in phase operator term such as

Iy, which modulates the signal by a factor of sin(πJt2) in the direct dimension.

A similar modulation occurs in the indirect dimension, as an in phase operator

must evolve to an antiphase operator. This causes relatively less signal for these

“cross peaks” compared to signal that did not evolve from coherence transfer and

is cosine modulated (i.e. “diagonal peaks”) due to T2* relaxation. In addition, T2*

causes severe line broadening in vivo that is larger than the J-coupling constant.

Adjacent peaks in the multiplet with opposite signs will overlap and lead to signal

cancellation. Therefore, before being fed into ProFit, L-COSY data was filtered

using a skewed square sine bell (skew parameter=0.5) in the direct dimension and

a square sine bell in the indirect dimensions to enhance the presence of cross peaks

in the 2D spectrum. The same filtering was applied to the L-COSY basis set as

well so that the relative contributions of cross peaks and diagonal peaks would be

consisten with the experimental data.

The “cross peaks” in a JPRESS spectrum do not have their own multiplet

structure and have the same orientation, so partial signal cancellation is not an

issue. Also, they have maximum signal at the echo just as singlet peaks, and

therefore, filtering is not required.

A frequency-dependent phase accumulation factor was applied in post-processing

to simulate the effect of beginning acquisition at the echo maximum, whereas ac-
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Figure 8.1: L-COSY basis set used for phantom scans (a) as simulated by

GAMMA and (b) after a frequency-dependent phase factor was applied. The

two Cr singlets were simulated and fit independently as described in the text.

tual spectra were acquired with acquisition beginning immediately after the last

crusher gradient for all TE values [106, 154]. This gives the L-COSY spectrum

the appearance of a spin-echo correlation spectroscopy (SECSY) [116] spectrum

and the JPRESS spectrum the appearance of a traditional J-resolved spectrum

in which the diagonal peaks are refocused and appear horizontally along f2, and

the frequency differences are scaled by a factor of 1/2 in the f1 direction. By

processing the spectra this way, a smaller spectral region can be fit which should

speed up computation time. This effect is illustrated on the L-COSY basis set

before and after the phase factor was applied in Fig.8.1a and 8.1b, respectively.

8.3 Results

8.3.1 Phantom Scans
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L-COSY JPRESS Actual

Mean Ratio CV Mean CRLB % Fit Mean Ratio CV Mean CRLB % Fit Phantom Ratio

Cr30 1 0 0.242 100 1 0 0.464 100 1

Cr39 0.728 9.202 0.435 100 0.884 3.197 0.793 100 1.000

NAA 1.263 5.800 0.181 100 1.281 5.273 0.358 100 1.271

PCh 0.299 9.533 0.539 100 0.126 8.997 1.474 100 0.086

Asp 0.284 29.173 3.390 100 0.192 21.800 9.572 97.4 0.300

Cho 0.171 13.235 0.686 100 0.127 8.016 1.414 100 0.129

GABA 0.072 169.560 10.304 13.5 0.182 37.279 5.872 100 0.100

Glc 0.129 28.503 7.464 94.6 0.106 58.744 14.999 15.8 0.143

Gln 0.106 29.374 8.905 70.3 0.125 15.344 10.087 73.7 0.357

Glu 0.941 24.393 1.439 100 1.398 6.173 1.104 100 1.786

GSH 0.057 58.912 7.131 100 0.141 11.501 3.879 100 0.290

Lac 0.128 29.670 5.277 100 0.086 12.389 13.896 89.5 0.143

mI 0.895 11.131 0.770 100 0.870 16.072 1.570 100 0.629

NAAG 0.144 40.939 1.892 97.3 0.211 26.628 2.178 84.2 0.073

PE 0.051 244.220 14.127 16.2 0.118 109.493 12.961 60.5 0.143

Tau 0.348 17.693 1.748 100 0.223 19.141 6.015 100 0.257

Thr 0.035 19.868 14.971 21.6 - - - 0 0.043

tNAA 1.404 4.837 0.234 100 1.459 3.498 0.354 100 1.344

Glx 1.020 19.091 1.664 100 1.504 6.300 1.266 100 2.143

tCho 0.470 6.135 0.372 100 0.252 4.579 0.657 100 0.214

Table 8.1: Comparison of the ProFit results in L-COSY and JPRESS in phantom. 37 L-COSY spectra and 38 JPRESS

spectra were acquired. Ratios are shown with respect to the Cr singlet at 3.03ppm. % Fit is the percent of spectra that were

fit with CRLB<20%. Only those voxels were included in the computation of mean ratios, mean CRLBs, and coefficients of

variation (CV). CVs are expressed as percentages. tNAA = NAA+NAAG, Glx = Glu+Gln, tCho = PCh+Cho.
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Table 8.1 shows the fit accuracy and reproducibility in the L-COSY phantom

scans and compares to those in JPRESS scans. Each sequence was able to reli-

ably fit 12 of the 16 metabolites with coefficients of variation (CV) under 30%,

with 5 and 7 metabolites showing CVs under 15% for L-COSY and JPRESS, re-

spectively. Also apparent is that the different information provided by the two

sequences results in differences in fit quality for different metabolites with L-COSY

performing better for Asp, Glc, Lac, and Thr and JPRESS performing better for

PCh, Cho, GABA, and Tau to name a few. Certain metabolites are consistently

and predictably underestimated by both sequences such as Cr39, Gln, and Glu,

while others such as mI and NAAG are consistently overestimated.

It must be noted though that because the L-COSY data was filtered, the

noise variance was reduced, and the reported CRLBs are not tight bounds on

the standard deviations of the ratios. For that reason, the reader is urged to

consider the CV as the primary measure of reproducibility and discouraged from

comparing mean CRLBs between L-COSY and JPRESS. Nevertheless, the CRLBs

in the L-COSY sequence still give a relative measure of confidence in the fitted

concentrations, and it is for that reason the authors have included them in Table

8.1 and determined fit success based on a CRLB threshold of 20%. The unfiltered

CRLBs in JPRESS also highly underestimate the true variation.

8.3.2 HIV patients in vivo

A typical fit with residual is shown graphically in Fig. 8.2b for the voxel location

shown in Fig. 8.2a. The fit was restricted to the spectral region enclosed by the

white box. From the spectrum, it is clear that lipid contamination was minimal

despite the voxel’s proximity to the skull, and from the white box, residual water

was mostly excluded from the fit.

The different fitted concentrations of healthy controls and HIV patients are
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Healthy Controls HIV Patients

Mean Ratio±SD N Mean Ratio ± SD N p-value

Cr30 1.000±0.000 14 1.000±0.000 15 -

Cr39 0.904±0.172 13 0.906±0.107 15 0.966

NAA 1.300±0.181 14 1.388±0.181 15 0.201

GPC 0.196±0.115 14 0.197±0.061 15 0.973

Ala 0.055±0.044 14 0.121±0.023 2 0.065

Asc 0.404±0.329 11 0.342±0.206 13 0.596

Asp 0.433±0.102 14 0.510±0.087 15 0.038

Cho 0.173±0.066 14 0.152±0.046 15 0.327

Gln 0.062±0.053 10 0.266 1 -

Glu 1.672±0.221 14 1.886±0.224 15 0.015

GABA 0.270±0.182 14 0.381±0.115 4 0.259

Glc 0.205±0.142 13 0.364±0.117 13 0.005

GSH 0.344±0.137 12 0.287±0.151 15 0.311

Ile 0.172±0.119 12 0.272±0.053 11 0.019

Lac 0.171±0.090 13 0.185±0.064 14 0.638

Leu 0.018±0.008 9 0.108±0.021 2 0.095

mI 1.187±0.385 14 1.444±0.262 15 0.048

NAAG 0.005±0.003 4 0.079±0.031 2 0.181

PCh 0.166±0.025 14 0.162±0.024 15 0.685

PE 0.535±0.224 14 0.524±0.140 15 0.874

Scy 0.064±0.017 14 0.084±0.023 15 0.011

Tau 0.282±0.071 14 0.272±0.088 15 0.737

Thr 0.123±0.059 13 0.172±0.061 7 0.108

Val 0.093±0.058 14 0.037±0.036 3 0.087

tNAA 1.333±0.139 14 1.388±0.173 15 0.351

Glx 1.741±0.236 14 1.947±0.263 15 0.035

tCho 0.491±0.049 14 0.511±0.093 15 0.488

Ile+Leu 0.193±0.103 14 0.247±0.107 15 0.172

Lac+Thr 0.294±0.137 13 0.317±0.111 15 0.628

Table 8.2: ProFit L-COSY results of frontal white/gray brain spectra in healthy

controls and patients. 14 healthy controls and 15 HIV patients were scanned. Ra-

tios are shown with respect to the Cr singlet at 3.03ppm. SD is the standard devi-

ation of the ratios. N is the number of voxels that were fit with CRLB<20%. Only

those voxels were included in the computation of mean ratios and SDs. p-values

indicating statististically significant differences at the 5% level are highlighted in

bold. tNAA = NAA+NAAG, Glx = Glu+Gln, tCho = GPC+PCh+Cho.
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Figure 8.2: An example in vivo spectrum (top) from an HIV patient, its fit (mid-

dle), and its residual (bottom), plotted on a logarithmic scale.

shown in Table 8.2. Fourteen healthy controls and 16 HIV patients were scanned.

One of the HIV patient scans was of poor quality and excluded from the analysis

based on a Cr39 ratio that was below 0.6 or above 1.3. A two-tailed, heteroscedas-

tic (unequal variances) two-sample t-test was performed to look for statistically

significant differences between the two groups. At the 5% level, significant differ-

ences existed in Asp, Glu, Glc, Ile, mI, and Scy concentration ratios which are

highlighted in bold in the table.

8.4 Discussion

From Table 8.1, it is seen that while both sequences accurately fit many brain

metabolites, the JPRESS sequence tended to achieve fits with lower CVs for most.

This is not surprising and is due to the higher overall sensitivity of JPRESS, as

the final 90◦ pulse in L-COSY only refocuses half the signal. The CRLBs in L-

COSY were for the most part lower, but this was primarily because the L-COSY
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Figure 8.3: Normalized variance matrices for (a) the L-COSY basis set and (b)

the JPRESS basis set. The variance matrix is the inverse of the Fisher matrix,

and the CRLBs are the diagonal elements.

data was apodized. Though the reason for the apodization was to enhance the

cross peaks and not the sensitivity, the filters still reduced the noise variance and

therefore the calculated CRLBs.

What is more interesting is that L-COSY results in better fit accuracy for

metabolites with weakly coupled spins such as Lac and Thr. The spectral dis-

persion of cross peaks from the diagonal in JPRESS is the size of the J-coupling

constant (5-10 Hz), whereas the spectral dispersion of cross peaks in L-COSY is

the difference in the chemical shifts between the coupled spins (375 Hz for Lac/Thr

at 3T). In the case of weak coupling, the chemical shift difference greatly exceeds

the J-value, and L-COSY has much larger spectral dispersion in the indirect di-

mension relative to JPRESS. Asparate is an ABX spin system with both strongly

and weakly coupled spins. For typical in vivo conditions, though, the resonances

at 2.80 ppm and 2.65 ppm highly overlap and appear as a broad resonance weakly

coupled to the spin at 3.89 ppm. The in vivo spectrum of the strongly coupled

seven spin system Glc is similarly simplified to two broad resonances around 3.4
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and 3.8 ppm.

The improved spectral dispersion of L-COSY results in greater orthogonality

in the basis set, which can be seen in Figure 8.3 showing the variance matrices

for an L-COSY scan in 8.3a and a JPRESS scan in 8.3b. The variance matrix is

the inverse of the Fisher information matrix given in Eq. (8.4). To compare the

basis orthogonality only and provide similar scaling, the variance matrices were

normalized by the noise. It is clear from normalized variance matrices that there is

less correlation between metabolites in the L-COSY basis set than in the JPRESS

basis set. In particular, note the reduced correlation between Lac and Thr, Cr39

and Asp, and Cr30 and GABA. On the other hand, the correlation between Glc

and Tau is higher in the L-COSY basis set which is somewhat surprising since

Glc was fit better in L-COSY than JPRESS.

Both sequences slightly underestimated the Cr39 singlet due mainly to the

effects of imperfect water suppression pulses which had a suppression bandwidth

of 40 Hz (about 0.3 ppm) but nevertheless, slightly suppress signals farther away

from water. This is despite a large amplitude signal that sits on top of the residual

water tail. In addition, the excitation frequency was set to be at the middle of

the spectrum at 2.7 ppm, so the Cr30 singlet was more on resonance than the

Cr39 singlet. For Glx, the situation is more complicated, as there is no singlet

resonance. The reason for this is most likely do to the relatively short T2 values

compared to Cr [38]. Using a short echo sequence mitigates signal losses due to

T2 relaxation, but the increased line broadening pushes the peak tails into the

noise floor and results in underestimated concentrations. This reason is further

suggested by the in vivo data, where fitted concentrations of Glx are closer to those

reported in the literature [122, 163]. In that case, T2* dominates T2 relaxation

and is the same for each metabolite, so the only effect of differing T2 values is in

the signal amplitude at the beginning of readout, and these are close for short

echo sequences.
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This study was conducted entirely at 3T, but ProFit can be easily adapted for

any field strength as long as the basis set is obtained appropriately. At lower field

strength, the sensitivity of 2D experiments becomes more of a limiting factor in

spectral quality, so JPRESS would be expected to perform better. At higher field

strength though, the sensitivity is greater, more spin systems become more weakly

coupled, and the difference in spectral dispersion between L-COSY and JPRESS

becomes greater. Therefore, L-COSY would be expected to perform better.

There are conflicting reports about changes in Glu in HIV, whether it increases

possibly due to damage to neuroglial elements at earlier stages of infection that

antedate decreases in NAA [77] or decreases due to reduced astrocytic reuptake

of GLU, secondary excitotoxicity, and mitochondrial toxicity from antiretroviral

treatments [56]. In [77], mI was shown to be increased in HIV patients relative to

controls but that the mI concentration decreased with age in HIV patients. That

study only looked at adults patients though, so recognizing similar trends in pe-

diatric patients can help establish a more thorough understanding of progression.

Aspartate and isoleucine are very difficult to reliably detect with 1D spectroscopy

techniques, so there is very little information about their roles in HIV in vivo, but

aspartate does play a role in HIV-1 protease inhibitor drugs [23]. In HIV-related

dementia studies, glucose has been shown to decrease for severe cases [144] but

increase for mild cases [143]. None of the pediatric patients in this study had

any symptoms of dementia. Increased scyllo-inositol has been correlated with

increased myo-inositol as measures of negative brain health [87].

From Table 8.2, it appears that more of the metabolites are showing increase in

ratios of patients relative to healthy controls. This could actually be attributable

to a slight decrease in the creatine signal. Typically, creatine is used as an internal

reference standard because its concentration is relatively stable across multiple

pathologies. However, there are reports of creatine decrease in the frontal lobe

and basal ganglia in HIV [36, 35]. Further research needs to be done with non-

166



metabolite-based reference standards, such as those using electronic referencing

[4].

8.5 Conclusion

Two dimensional prior knowledge fitting was applied to a localized correlated

spectroscopy sequence and compared favorably to fits obtained with a J-resolved

spectroscopy sequence. Significant increases in aspartate, glucose, glutamine,

isoleucine, and myo- and scyllo-inositol were observed.
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CHAPTER 9

Conclusion

9.1 Summary of significance

In this dissertation, we have expanded on the use of NUS in multidimensional

MRSI to achieve full 3D volume localization along with two spectral dimensions.

We showed in Chapter 4 that 5D EP-JRESI could be acquired in brain in about

20 minutes with reliable results comparable to a time-equivalent single-slice scan

using either an `1-norm minimization or total variation minimization. By masking

the spectra in the direct spectral dimension, the influence of large nuisance signals,

such as residual water and lipids, can be minimized during the reconstruction.

In Chapter 5, 5D EP-COSI was shown in human calf muscle. Improved re-

sults were obtained by exploiting the group sparsity of the COSY spectral plane,

compared to traditional point-by-point `1-norm minimization used previously. To

handle acquired data from many receiver coils, a version of the algorithm with

computational complexity similar to the single coil case was developed. In ad-

dition, a coil array compression technique that maximizes the SNR based on

the sensitivity maps while simultaneously allowing different linear weightings for

compression was used to improve the speed of the algorithm and reduce its com-

putational burden.

The next chapters concerned circular k-space sampling in multidimensional

MRSI. Circular sampling is well suited for these scans as k-space can be sampled

more efficiently with reduced gradient slew rates. COSI-CONCEPT calf mus-
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cle scans were compared to time-equivalent EP-COSI scans, showing the same

localization and spectral quality in Chapter 6.

In Chapter 7, the conventional refocusing pulses used in JRESI-CONCEPT

were replaced with adiabatic ones. Adiabatic pulses are higher in bandwidth

and therefore exhibit reduced chemical shift displacement error, and they are

insensitive to RF field inhomogeneities. In order to use the adiabatic pulses for

refocusing, a pair had to replace each original pulse, increasing the minimum echo

time. The new sLASER-based JRESI-CONCEPT was compared to the original in

the case of equal echo times and in the case of minimum echo times. Both showed

improved localization and spectral quality compared to the original, especially for

strongly coupled metabolites such as Glx.

Chapter 8 shows the application of prior knowledge fitting that includes sim-

ulated macromolecule resonances to COSY data in pediatric HIV patients and

compares phantom results to JPRESS data, highlighting the benefits of each se-

quence.

9.2 Future Directions and Recommendations

9.2.1 NUS and reconstruction

The results in Chapter 4 show a proof of concept that five-dimensional scans can

be acquired in vivo. Chapter 5 extends that by showing improved reconstruction

with group sparsity and considering multiple coils. Nevertheless, there is room

for improvement, and more validation needs to be done.

1. Despite the crowding in 1D spectroscopy, prior knowledge-fitting programs

like LCModel can still separate many overlapping metabolites. Current

versions of quantitation use peak integration, which may not actually be

any better than single dimensional spectroscopy with LCModel. Profit has
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been shown to offer improved fitting compared to LCModel and should be

applied to this NUS data. Preliminary work seems to show consistent fitting

of reconstructed data. However, one confounding factor is the effect of the

non-linear reconstruction on the noise level and therefore the acceptability

criteria (based on CRLBs) of the fits.

2. Weighted shrinkage operators can be used to include additional prior knowl-

edge on the reconstructions for either `1 or GS reconstructions. These

weights could be spatial and obtained from the sensitivity maps, or they

could be spectral and obtained from known chemical shifts and J-couplings.

Preliminary work suggests that weighting can enhance the cross peak re-

construction in undersampled EP-COSI, but there can be problems with

convergence as the sampled data remains unchanged.

3. Group sparsity was applied with groups taken in the spectral plane. Group-

ing could be extended over to the spatial dimensions and the coil dimension,

which should offer some improvement in the spatial SNR of the GS recon-

structions.

4. Chapter 4 suggested that applying finite differences to the spatial dimen-

sions (as in total variation minimization) preformed better than the simple

`1-norm of the data itself. While grouping greatly improved this self-sparse

reconstruction in Chapter 4, a reconstruction that combines grouping with

TV could perform even better. Grouping could be done on the finite differ-

ences, or finite differences could be taken on the groups.

9.2.2 Concentric circular sampling

Perhaps the greatest advantage to concentric circular sampling is its ability to

acquire higher spectral bandwidths. Despite that, due to available hardware,

all scans in this dissertation were taken at 3T, where the required SBW is lower.
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Ultimately, gradient amplitudes and slew rates limit the achievable SBW per shot.

At 7T, the increased spectral dispersion means that the SBW must be higher as

well. This has been a big problem for EPSI or Spiral-SI at high fields.

1. However, there are other issues besides spectral bandwidth that make 7T

spectroscopic imaging difficult. Namely, the increased field inhomogeneity,

the shorter T2 decay times, and the increased energy deposition (SAR) are

of particular concern. Using adiabatic refocusing pulses as demonstrated

in Chapter 7 addresses the RF inhomogeneity issue while at the same time

increasing the SAR and minimum TE and therefore, exacerbating the latter

two issues. In order to stay within SAR limits at 7T, the adiabatic pulses

must be elongated, further increasing the minimum TE and increasing the

CSDE. In order to combat the SAR problem, methods such as variable-

rate selective excitation (VERSE) [41], frequency offset corrected inver-

sion (FOCI) [118], and gradient-modulated offset-independent adiabaticity

(GOIA) [167, 168] can be used to distribute the RF amplitude more uni-

formly over the pulse by modulating the slice-selective gradient, thereby

lowering the SAR without any reduction in bandwidth.

2. While the SI-CONCEPT sequence can achieve higher SBW than either EPSI

or Spiral-SI in a single shot, it is not without limits. The amplitude and

slew rates scale with the k-space radius, and as a result, higher resolution

scans are more demanding on the gradient hardware. Temporal interleaving

will eventually be required even for SI-CONCEPT. At that point, another,

subtle advantage of circular sampling can be exploited. Unlike spiral or

rectilinear trajectories, the gradient hardware demands are different for each

shot. This mean that the limits are reached (and temporal interleaving is

required) only for certain shots in outer k-space, and only those shots need

to be interleaved. This idea is illustrated in Fig. 9.1.
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Figure 9.1: k-space trajectories (left) and x gradient waveforms. Blue rings collect

inner k-space at high SBW, while red and green rings collect outer k-space at half

the SBW and are temporally interleaved.
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