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ABSTRACT OF THE DISSERTATION

Visual Commonsense Reasoning:

Functionality, Physics, Causality, and Utility

by

Yixin Zhu

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2018

Professor Song-Chun Zhu, Chair

Reasoning about commonsense from visual input remains an important and challenging

problem in the field of computer vision. It is important because the ability to reason about

commonsense, plan and act accordingly, represents the most distinct competence that tells

human apart from other animals—the ability of analogy. It is challenging partially due to

the absence of the observations of all the typical examples in a given category, in which the

objects often present enormous intra-class variations, leading to a long-tail distribution in the

dimensions of appearance and geometry. This dissertation focuses on four largely orthogonal

dimensions—functionality, physics, causality, and utility—in computer vision, robotics, and

cognitive science, and it makes six major contributions:

1. We rethink object recognition from the perspective of an agent: how objects are used

as “tools” or “containers” in actions to accomplish a “task”. Here a task is defined as

changing the physical states of a target object by actions, such as, cracking a nut or

painting a wall. A tool is a physical object used in the human action to achieve the task,

such as a hammer or a brush, and it can be any daily objects which are not restricted

to conventional hardware tools. This leads us to a new framework—task-oriented object

modeling, learning and recognition, which aims at understanding the underlying functions,

physics and causality in using objects as tools in various task categories.

2. We propose to go beyond visible geometric compatibility to infer, through physics-based
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simulation, the forces/pressures on various body parts as people interact with objects.

By observing people’s choices in videos, we can learn the comfort intervals of the pres-

sures on body parts as well as human preferences in distributing these pressures among

body parts. Thus, our system is able to “feel”, in numerical terms, discomfort when

the forces/pressures on body parts exceed comfort intervals. We argue that this is an

important step in representing human utilities—the pleasure and satisfaction defined in

economics and ethics (e.g., by the philosopher Jeremy Benthem) that drives human ac-

tivities at all levels.

3. We propose to go beyond modeling the direct and short-term human interaction with in-

dividual objects. Through accurately simulating thermodynamics and air fluid dynamics,

our method can infer indoor room temperature distribution and air flow dynamics at ar-

bitrary time and locations, thus establishing a form of indirect and long-term affordance.

Unlike chairs in a sitting scenario, the objects (heating/cooling sources) that provide af-

fordance do not directly interact with a person. Instead, the air in a room serves as an

invisible medium to pass the affordance from an object to a person. We coin this new

form of affordance as intangible affordance.

4. By fusing functionality and affordance into indoor scene generation, we propose a sys-

tematic learning-based approach to the generation of massive quantities of synthetic 3D

scenes and numerous photorealistic 2D images thereof, with associated ground truth in-

formation, for the purposes of training, benchmarking, and diagnosing learning-based

computer vision and robotics algorithms.

5. We present four case studies on integrating forces and functionality in object manipula-

tions in the field of robotics, showcasing the significance and benefits of explicit modeling

of the functionality in task executions.

6. We introduce an intuitive substance engine (ISE) model employing probabilistic simula-

tion, which supports the hypothesis that humans infer future states of perceived physical

situations by propagating noisy representations forward in time using approximated ra-

tional physics.
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CHAPTER 1

Introduction

The goal of computer vision, as coined by Marr [Mar82], is to compute what is where by

looking. This paradigm has guided the geometry-based approaches in the 1980s-1990s and

the appearance-based methods in the past two decades. Although in certain tasks, e.g.,

object recognition and detection, computer vision algorithms have achieved human-level

performance, yet the current dominant methods have difficulties in understanding human

needs, predicting human attentions and intentions, and further assisting human through

a humanoid robot. We argue that such difficulties are mainly due to the lack of visual

commonsense reasoning : an effective explicit representation of the knowledge as well as a

suitable computational approach to reason about the unobservable factors. We believe that

the current dominating end-to-end training with large dataset is not the ultimate solution for

building an intelligent machine with the aforementioned capabilities; these challenges cannot

be solved by the visible appearance or geometry alone, but require deeper understanding of

the scenes, human actions, and interactions between humans and scenes.

To empower a machine with such capabilities, we must look for the missing dimensions

that go beyond visual spectrum, which often requires to reason about the imperceptible

entities. In images and videos, many entities (functional objects, liquid, granular material)

and relations (causal-effects, physical supports, containment relations) are infeasible to detect

purely by their appearances, yet they are pervasive and govern the visible entities that are

visible for detection. The imperceptible entities not only include the invisible quantities, e.g.,

forces exerted during interactions, liquid, and sand, but also include the relations among

objects, e.g., containment relations, heat transfer, and tool-uses.

In this dissertation, we explicitly study four dimensions: functionality, physics, causal-
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ity and utility. By jointly and explicitly model these four dimenions, we hope to design

reasoning systems, capable of jointly modeling the direct/short-term and indirect/long-term

interactions. Such systems are demonstrated in the following three aspects:

• Computer Vision: reasoning about the hidden factors—functionality, physics, causal-

ity and utility—to go beyond the current geometry- and appearance-based paradigm.

The majority of the computer vision community is working on deep learning to replace

the feature engineering. Although it provides better performances, it fails to address

challenges beyond observed data. In contrast, functionality, physics, causality and

utility occurred during interactions are generally applicable to all categories of objects,

scenes, actions and events, i.e., transferable across datasets. These entities and rela-

tions are deeper and more invariant, than geometry and appearance—the dominating

features used in visual recognition. In this way, we could go beyond example-based

methods; instead, we can a) recognize an object by its essential purposes of use, b)

recognize a scene by their functions to serve human activities, and c) recognize the

containment relations by its relations and causal effects. We argue that it is the func-

tionalities, physics, causality and utility of objects and scenes that decide their designs

of geometry and appearance, and decide the planning of human actions and events.

The goal of this dissertation is to develop methods that “understand” objects, scenes

and actions, not merely classify them by memorizing typical examples. This is crucial

for generalizing to novel examples in tests. Details are presented in Part I, and the

published papers [ZZZ15, ZJZ16, LZZ16, JZQ17, LZZ18, QZH18].

• Robotics: integrating forces and functionality in object manipulations. Conventional

learning from demonstration methods often only observe a teacher’s demonstration by

watching, thus difficult to recover the important hidden and unobservable factors. By

building a tactile glove, we are able to recover the visually latent force during human

demonstrations, thereby enabling a Baxter robot to learn more complex manipulations.

Details are summarized in Part II, and the published papers [LGS16, LXM17, EGX17,

XLE18, LZS18].
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• Cognitive Studies: building computational models that account for a) human vision in

terms of intuitive physics, and b) causal reasoning mechanism. In this direction, we

try to reverse engineer the human vision and reasoning system through psychological

experiments. To study human cognition of complex phenomenon, by building intuitive

physics models [BHT13] that achieves human-level cognition, we hope to leverage the

state-of-the-art physics-based simulation to model the internal cognitive and reasoning

mechanisms of human perception systems for complex phenomenon such as sand, liq-

uid, heat, and gravity field in which the objects do not have a perceivable shapes. To

study human causal reasoning capability in various tasks, by integrating virtual reality

and robotics planning engine, we hopes to discover the differences between the current

state-of-the-art methods and the human performance. Details are summarized in Part

III, and the published papers [LZZ15, KJZ16, YQK17, LZK17, KZJ17, WKZ18].

This dissertation is intended to raise the awareness, in the computer vision community, of

the missing dimensions and the potential benefits of integrating these dimensions to reason

about the invisible entities and relations in scene understanding tasks, robotics tasks, and

cognitive studies. Studying such invisible entities and relations in computer vision are crucial

for filling the performance gaps in the recognition of objects, scenes, actions and events.
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Part I

Understanding Object and Scene by

Reasoning Functionality and Physics

4



CHAPTER 2

Understanding Tools: Task-Oriented Objects

In this chapter, we rethink object recognition from the perspective of an agent: how objects

are used as “tools” in actions to accomplish a “task”. Here a task is defined as changing the

physical states of a target object by actions, such as, cracking a nut or painting a wall. A

tool is a physical object used in the human action to achieve the task, such as a hammer or a

brush, and it can be any daily objects which are not restricted to conventional hardware tools.

This leads us to a new framework—task-oriented object modeling, learning and recognition,

which aims at understanding the underlying functions, physics and causality in using objects

as tools in various task categories.

Figure 2.1 illustrates the two phases of this new framework. In the learning phase, our

algorithm observes only one RGB-D video as an example, in which a rational human picks

up one object, the hammer, among a number of candidates to accomplish the task. From

this example, our algorithm reasons about the essential physical concepts in the task (e.g.,

forces produced at the far end of the hammer), and thus learns the task-oriented model.

In the inference phase, our algorithm is given a new set of daily objects (on the desk in

Figure 2.1(b)), and makes the best choice available (the wooden leg) to accomplish the task.

From this new perspective, any objects can be viewed as a hammer or a shovel, and this

generative representation allows computer vision algorithms to generalize object recognition

to novel functions and situations by reasoning the physical mechanisms in various tasks,

which goes beyond memorizing typical examples for each object category as the prevailing

appearance-based recognition methods do in the literature.

Figure 2.2 shows some typical results in our experiments to illustrate this new task-

oriented object recognition framework. Given three tasks: chop wood, shovel dirt, and paint
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Figure 2.1: Task-oriented object recognition. (a) In the learning phase, a rational human is

observed picking up a hammer among other tools to crack a nut. (b) In the inference phase,

the algorithm is asked to choose the best object (i.e., the wooden leg) on the table for the

same task. This generalization entails physical reasoning.

wall, and three groups of objects: conventional tools, household objects, and stones, our

algorithm ranks the objects in each group for a given task. Figure 2.2 shows the top two

choices together with imagined actions using such objects for the tasks.

Our task-oriented object representation is a generative model consisting of four compo-

nents in a hierarchical spatial-temporal parse graph:

• An affordance basis to be grasped by hand;

• A functional basis to act on the target object;

• An imagined action with pose sequence and velocity;

• The physical concepts produced, e.g., force, pressure.

In the learning phase, our algorithm parses the input RGB-D video by simultaneously

reconstructing the 3D meshes of tools and tracking human actions. We assume that the

observed human makes rational decisions in demonstration: picks the best object, grasps
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Figure 2.2: Given three tasks: chop wood, shovel dirt, and paint wall. Our algorithm picks

up and ranks objects for each task among objects in three groups: 1) conventional tools, 2)

household objects, and 3) stones, and outputs the imagined tool-use: an affordance basis

(the green spot to grasp with hand), a functional basis (the red area applied to the target

object), and the imagined action pose sequence.
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the right place, takes the right action (poses, trajectory and velocity), and lands on the

target object on the right spots. These decisions are nearly optimal against a large number

of compositional alternative choices. Using a ranking-SVM approach, our algorithm will

discover the best underlying physical concepts in the human demonstration, and thus the

essence of the task.

The proposed method makes four major contributions:

1. We propose a novel problem of task-oriented object recognition, which is more general

than defining object categories by typical examples, and is of great importance for

object manipulation in robotics applications.

2. We propose a task-oriented representation, which includes both the visible object and

the imagined use (action and physics). The latter is the “dark matter” [XTZ13] in

computer vision.

3. Given an input object, our method can imagine the plausible tool-use, thus allows

vision algorithms to reason about innovative uses of daily objects—a crucial aspect of

human and machine intelligence.

4. Our algorithm can learn the physical concepts from a single RGB-D video and reason

about the essence of physics for a given task.

2.1 Task-oriented Object Representation

Tools and tool-uses are traditionally studied in the field of cognitive science [OJL10, Bec80,

SWB11, Bab03] with verbal definitions and case studies, and an explicit formal representation

is missing in the literature.

In our task-oriented modeling and learning framework, an object used for a task is rep-

resented in a joint spatial, temporal, and causal parse graph G = (Gs,Gt,Gc) including three

aspects shown in Figure 2.3:
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Figure 2.3: The task-oriented representation of a hammer and its use in a task (crack a nut),

represented by a joint spatial, temporal, and causal space. The components in the gray area

are imagined during inference phase.

• A spatial parse graph Gs represents object decomposition and 3D relations with the

imagined pose;

• A temporal parse graph Gt represents the pose sequence in actions; and

• A causal parse graph Gc represents the physical quantities produced by the action on

the target object.

In this representation, only the object is visible as input; all other components are imagined.

2.1.1 Tool in 3D Space

An object (or tool) is observed in a RGB-D image in the inference stage, which is then

segmented from the background and filled-in to become a 3D solid object denoted by X.

The 3D object is then decomposed into two key parts in the spatial parse graph Gs:

1. Affordance basis BA, where the imagined human hand grasps the object with a certain
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pose. Through offline training, we have collected a small set of hand poses for grasp-

ing. The parse graph Gs encodes the 3D positions and 3D orientations between the

hand poses and the affordance basis during the tool-use, using 3D geometric relations

between the hand pose and the affordance basis, as it is done in [WZZ13]. The parse

graph Gs will have lower energy or high probability when the hand holds the object

comfortably (see the trajectory of affordance basis BA in Figure 2.3).

2. Functional basis BF , where the object (or tool) is applied to a target object (the nut)

to change its physical state (i.e., fluent). The spatial parse graph Gs also encodes the

3D relations between the functional basis BF and the 3D shape of the target object

during the action. We consider three types of the functional basis: (a) a single contact

spot (e.g., hammer), (b) a sharp contacting line segment or edge (e.g., axe and saw),

and (c) flat contacting area (e.g., shovel).

2.1.2 Tool-use in Time

A tool-use is a specific action sequence that engages the tool in a task, and is represented by a

temporal parse graph Gt. Gt represents the human action A as a sequence of 3D poses. In this

work, since we only consider hand-hold objects, we collect some typical action sequences for

the arm and hand movements using tools by RGB-D sensors, such as hammering, shoveling,

etc.. These actions are then clustered into average pose sequences. For each of the sequence,

we record the trajectories of the hand pose (or affordance basis) and the functional basis.

We define a space ΩT = {Gt} as the set of possible pose sequences and their associated

trajectories of the affordance basis BA and functional basis BF .

2.1.3 Physical Concept and Causality

We consider thirteen basic physical concepts involved in the tool-use, which can be extracted

or derived from the spatial and temporal parse graphs as Figure 2.4 illustrates.

• Blue dots and lines. We reconstruct the 3D mesh from the input 3D object, calculate
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Figure 2.4: Thirteen physical concepts involved in tool-use and their compositional relations.

By parsing human demonstration, the physical concepts of material, volume, concept area,

and displacement are estimated from 3D meshes of the tool (blue), trajectories of tool-use

(green) or jointly (red). The higher-level physical concepts can be further derived recursively.

its volume, and by estimating its material category, we obtain its density. From the

volume and density, we further calculate the mass of the objects and its parts (when

different materials are used).

• Green dots and lines. We can derive the displacement from the 3D trajectory of

affordance basis and functional basis, and then calculate the velocity and acceleration

of the two bases.

• Red dots and lines. We can estimate the contact spot, line and area from the functional

basis and target object, and further compute the momentum, and impulse. We can

also compute basic physical concepts, such as forces, pressure, work, etc..

Physical Concept Operators ∇: We define a set of operators, including addition∇+(·, ·),

subtraction ∇−(·, ·), multiplication ∇×(·, ·), division ∇/(·, ·), negation ∇neg(·), space inte-

gration ∇∫
S
(·), time integration ∇∫

T
(·), space derivation ∇∂S(·) and time derivation ∇∂T (·).
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Figure 2.5: Illustration of the learning and the inference. (a)-(d) We assume the human

choice (shown in blue bounding box) of tool and tool-use (action and affordance / func-

tional bases) is near-optimal, thus most of the other combinations of tool and tool-use (ac-

tion, affordance / functional bases) in the hypotheses spaces should not outperform human

demonstration. Based on this assumption, we treat the human demonstration as positive

example, and random sample other tools and tool-uses in the hypothesis spaces as negative

examples. (e) During the inference, given an image of the static scene in a novel situation,

(f) the algorithm infers the best tool and imagines the optimal tool-use.

For example, the concept of the force and acceleration are defined as:

force = ∇×(mass, acceleration), (2.1)

acceleration = ∇∂t(velocity). (2.2)

The causal parse graph Gc includes the specific physical concepts used in a tool-use which

is often an instantiated sub-graph of the concept graph in Figure 2.4.

Since the law of physics is universally applicable, the major advantage of using physical

concepts is the ability to generalize to novel situations.

2.2 Problem Definition

2.2.1 Learning Physical Concept

Given a task, the goal of the learning algorithm is to find the essential physical concept that

best explains why a selected tool and tool-use is optimal.
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Rational Choice Assumption states that human choices are rational and near-optimal.

As shown in Figure 2.5(a-d), we assume that human chooses the optimal tool and tool-use

G∗ (in blue box) based on the essential physical concept, so that most of other tools and

tool-uses in the hypothesis spaces should not outperform the demonstration.

For instance, let us assume the essential physical concept to explain the choice of a tool

is to maximize “mass”, then other tools should not offer more “mass” than the selected one.

If there is a heavier tool not picked by human, it implies that “mass” is not the essential

physical concept.

During the learning stage, we consider the selected tool and tool-use as the only positive

training example, and we randomly sample n different combinations of tools and tool-uses

Gi, i = 1 · · ·n in the hypothesis spaces as negative training samples.

Ranking Function: Based on the rational choice assumption, we pose the tool recognition

as a ranking problem [Joa02], so that the human demonstration should be better than other

tools and tool-uses with respect to the learned ranking function.

The goal of the learning is to find a ranking function indicating the essential purposes of

tool-use in a given task

R(G) = ω · φ(G), (2.3)

where ω are the weighting coefficients of the physical concepts. Intuitively, each coefficient

reflects the importance of its corresponding physical concept for the task.

Learning ranking function is equivalent to find the weight coefficients so that the maxi-

mum number of pairwise constraints is fulfilled.

∀i ∈ {1, · · · , n} : ω · φ(G∗) > ω · φ(Gi). (2.4)

In this way, these constraints enforce the human demonstration G∗ has the highest ranking

score compared with the other negative samples Gi under the essential physical concept.

We approximate the solution by introducing nonnegative slack variables, similar to SVM

13



classification [Joa02]. This leads to the following optimization problem

min
1

2
ω · ω + λ

n∑
i

ξ2
i (2.5)

s.t. ∀i ∈ {1, · · · , n} : ω · φ(G∗)− ω · φ(Gi) > 1− ξ2
i (2.6)

ξi ≥ 0, (2.7)

where ξi is a slack variable for each constraint, and λ is the trade-off parameter between

maximizing the margin and satisfying the rational choice constraints.

This is a general formulation for the task-oriented modeling and learning problem, where

the parse graph G includes objects X, human action A and affordance / functional basis BA

/ BF . In this way, this framework subsumes following special cases: i) object recognition

based on appearance and geometry φ(X), ii) action recognition φ(A), iii) detecting furniture

by their affordance φ(BA), and iv) physical concept φ(Gc). In this work, we only focus on

learning physical concepts.

In our experiment, we only consider the scenario that the learner only observes one

demonstration of the teacher choosing one tool from a few candidates. Instead of feeding a

large dataset for training, we are more interested in how much the algorithm can learn from

such a small sample learning problem. Therefore, we only infer a single physical concept for

functional and affordance basis simultaneously by iterating over the concept space, while this

formulation can be naturally generalized to more sophisticated scenarios for future study.

2.2.2 Recognizing Tools by Imagining Tool-uses

Traditional object recognition methods assume that visual patterns of the objects in both

training and testing sets share the same distribution. However, such assumption does not

hold in tool recognition problem. The visual appearances of tools at different situations have

fundamental differences. For instance, a hammer and a stone can be used to crack a nut,

despite the fact that their appearances are quite different.

In order to address this challenge, we propose this algorithm to recognize tools by essential

physical concepts and imagined tool-uses during the inference.
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Recognize Tools by Essential Physical Concepts: Fortunately, as domain general

mechanisms, the essential physical concepts in a given task are invariant across different

situations. For instance, a hammer and a stone can be categorized as the same tool to crack

a nut due to the similar ability to provide enough “force”. In the inference, we use the

learned ranking function to recognize the best tool:

G∗ = arg maxω · φ(G). (2.8)

Imagine Tool-use beyond Observations: Given an observed image of tool without

actually seeing the tool-use, our algorithm first imagines different tool-uses (human action

and affordance / functional bases), and then combines the imagined tool-uses with observed

tools to recognize the best tool by evaluating the ranking function.

The imagined tool-uses are generated by sampling human action and affordance/functional

bases from the hypothesis spaces as shown in Figure 2.5(c-d). We first assign the trajectories

of imaged human hand movement to the affordance basis, then compute the trajectory of

functional basis by applying the relative 3D transformation between the two bases. Lastly,

we calculate the physical concepts recursively as discussed in subsection 2.1.3, and evaluate

the ranking function accordingly.

The ability of imagining tool-use is particularly important for an agent to predict how

they can use a tool, and physically interact with their environment.

Moreover, such ability of imagining tool-use enables the agent to actively explore different

kinds of tool-uses instead of to simply mimic the observed tool-use in human demonstration.

Although the tool-use in human demonstration is assumed to be optimal, other tool-uses

may be better in different situations. For example, the way you use a stone to crack a nut

may be quite different from the way you use a hammer.

2.2.3 Parsing Human Demonstration

In this section we show how we use the off-the-shelf computer vision algorithms to parse the

input RGB-D video of human demonstration.
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Figure 2.6: Spatial-temporal parsing of a human demonstration. (a) Using KinectFusion, we

reconstruct 3D scene, including the tool and the target object. (b) Given a RGB-D video of

tool-use by human demonstration, (d) affordance / functional bases can be detected by (c)

3D tracking.

3D Reconstruction: We apply the KinectFusion algorithm [NDI11] to generate a 3D

reconstruction of the static scene, including a tool and an object. KinectFusion is GPU

optimized such that it can run at interactive rates. Each frame of the depth image captured

by RGB-D sensors has a lot of missing data. By moving the sensor around, the KinectFusion

algorithm fills in these holes by combining temporal frames into a smooth 3D point cloud /

mesh (Figure 2.6(a)). In this work, we only focus on medium sized tool that can be held in

one hand, and can be well reconstructed by a consumer-level RGB-D sensor. By fitting the

plane of the table, the tool and the target object then can be extracted from background.

3D Tracking of Tool and Target Object: Tracking the 3D mesh of tool and target

object allows the algorithm to perceive the interactions and detect status changes. In this

work, we use an off-the-shelf 3D tracking algorithm based on Point Cloud Library [RC11].

The algorithm first performs object segmentation using the first depth frame of the RGB-D

video, and then invokes particle filtering [NUH07] to track each object segment as well as

estimating the 3D orientation frame by frame (Figure 2.6(c)).

3D Hand Tracking: 3D tracking of hand positions and orientations are achieved by 3D

skeleton tracking [SSK13]. The skeleton tracking outputs a full body skeleton, including 3D

position and orientation of each joint. Without loss of generality, we assume the interacting
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hand to be the right hand.

Contact Detection: Given the tracked 3D hand pose / tool / target object, we perform

touch detection (Figure 2.6(d)) by measuring the euclidean distance among them. The touch

detection between the human hand and the tool localizes the 3D location of the affordance

basis, while the touch detection between the tool and the target object yields the 3D location

of the functional basis.

2.3 Experiments

In this section, we first introduce our dataset, and evaluate our algorithm in three aspects:

(i) learning physical concepts, (ii) recognizing tools, and (iii) imagining tool-uses.

2.3.1 Dataset

We designed a new Tool & Tool-Use (TTU) dataset for evaluating the recognition of tools

and task-oriented objects. The dataset contains a collection of static 3D object instances,

together with a set of human demonstrations of tool-use.

The 3D object instances include 452 static 3D meshes, ranging from typical tools, house-

hold objects and stones. Some of these object instances are shown in Figure 2.7. Some

typical actions are illustrated in Figure 2.5. Each action contains a sequence (3-4 seconds)

of full body skeletons. Since some action fragments only last for 0.5-1 second, which contain

only around 10 frames, the interpolated actions are needed to generate smoother trajectories.

Both 3D meshes and human actions are captured by consumer-level RGB-D sensors.

2.3.2 Learning Physical Concept

We first evaluate our learning algorithm by comparing with human judgments. Forty human

subjects annotated the essential physical concepts for four different tasks. The distribution

of annotated the essential physical concepts is shown as the blue bars in Figure 2.8. Interest-
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Figure 2.7: Examples of tool instances in the dataset: (a) typical tools, (b) household objects,

and (c) natural stones.

ingly, human subjects have relative consistent common knowledge that force and momentum

are useful for cracking nuts, and pressure is important for chopping wood. Our algorithm

learned very similar physical concepts as the red bars shown in Figure 2.8. For the other
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Figure 2.8: Learning essential physical concepts of tool-use. The red bars represent human

judgments about what the essential physical concepts are for each task. The blue bars

represent weight coefficients of different physical concepts learned by our algorithm.

two tasks, i.e., shovel dirt and paint wall, although the human judgments are relatively

ambiguous, our algorithm still produces relative similar results of learned physical concepts.

Figure 2.9 shows an example of learning physical concept for cracking a nut. Given a

set of RGB-D images of ten tool candidates in Figure 2.9(a) and a human demonstration

of tool-use in Figure 2.9(b), our algorithm imagines different kinds of tool-use as shown in

Figure 2.9(c), and ranks them with respect to different physical concepts. By assuming

human demonstration is rational and near-optimal, our learning algorithm selects physical

concepts by minimizing the number of violations as the red area on the left of Figure 2.9(c).
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Figure 2.9: Learning physical concept from a single human demonstration for cracking a

nut. (a) A set of tool candidates are given by RGB-D images. (b) The human demonstra-

tion of tool-use is assumed to be near-optimal. (c) The algorithm sorts all the samples of

tool-uses with respect to different physical concepts. The black vertical bar represents the

human demonstration of tool-use, while the red area and gray area represent samples that

outperform and underperform human demonstration, receptively. We showed six sampled

tools and tool-uses, three of which outperform human demonstration, and the others under-

perform human demonstration. In this cracking nut example, the “forces” is selected as the

essential physical concept because there are minimum number of samples that violate the

“rational choice assumption”.

For instance, the plot of “force” shows ranked pairs of tool and tool-use with respect to the

forces applied on the functional basis. The force produced by human demonstration (the

black vertical line) is larger than most of the generated tool-uses, thus it is near-optimal.
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Figure 2.10: Recognizing tools for chopping wood. The scatters show tool candidates ranked

by our algorithm (y-axis) with respect to the average ranking by human subjects (x-axis).

The three columns show different testing scenarios, while the three rows represent different

levels of tool-use imagined by inference algorithm.

The instances on the right of Figure 2.9(c) are sampled tools and tool-uses. The red ones are

the cases outperform human demonstration, while the gray ones are the cases underperform

human demonstration.

2.3.3 Inferring Tools and Tool-uses

In the Figure 2.2, we illustrate qualitative results of inferred tool and tool-use for three tasks,

i.e., chop wood, shovel dirt, and paint wall. By evaluating in three scenarios: (a) typical

tools, (b) household objects, and (c) natural stones, we are interested in the generalization

ability of the learned model.
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Table 2.1: Accuracy of tool recognition. This table shows the correlation between the

ranking generated by our algorithm and the average ranking annotated by human subjects.

The three rows represent different levels of tool-use imagined by our inference algorithm. The

qualitative and quantitative ranking results of tool candidates are illustrated in Figure 2.2

an Figure 2.10, respectively.

correlation of ranking

algorithm vs. human

chop wood shovel dirt paint wall

tool object stone tool object stone tool object stone

tool + random use 0.07 0.14 0.20 0.52 0.32 0.09 0.12 0.11 0.31

tool + inferred use 0.48 0.25 0.89 0.64 0.89 0.14 0.10 0.64 0.20

tool + best use 0.83 0.43 0.89 0.64 0.89 0.14 0.10 0.64 0.20

2.3.3.1 Recognizing Tools

We asked four human subjects to rank tool candidates shown in Figure 2.2. For the task of

chopping wood in Figure 2.10, we plot tool candidates in terms of their average ranking by

human subjects (x-axis) and their ranking generated by our algorithm (y-axis).

The three columns show different testing scenarios. We can see that our model learned

from canonical cases of tool-use can be easily generalized to recognize tools in novel situation,

i.e., household objects and natural stones. The correlation between algorithm ranking and

human ranking is consistent across these three scenarios. Sometimes, the algorithm works

even better on the stone scenarios.

The three rows represent different levels of tool-use: (a) the “tool-ranking with random

use” evaluates the ranking of tools by calculating the expected scores of random tool-use;

(b) the “tool-ranking with inferred use” evaluates the ranking of tools by calculating their

optimal tool-use inferred by our algorithm; (c) the “tool-ranking with best use” evaluates

the ranking of tools by their best uses given by human subjects. The Table 2.1 summarizes

the correlations between human rankings and algorithm rankings on three tasks.
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Figure 2.11: Comparison of (a) human predicted tool-use and (b) algorithm imagined

tool-use for shoveling dirt.

2.3.3.2 Imagining Tool-uses

We also evaluate the imagined tool-uses in three aspects: human action A, affordance basis

BA, functional basis BF .

The evaluation of human action is based on the classification of action directions, which

are “up”, “down”, “forward”, “backward”, “left” and “right”. The classification accuracy

for this problem over all the experiments is 89.3%. The algorithm can reliably classify the

action of cracking a nut as “down”. But there are some ambiguities in classifying the action

of shoveling dirt, because “left” and “right” are physically similar.

Figure 2.11 illustrates three example of imagined affordance basis BA and functional

basis BF . Comparing to human annotations, the algorithm finds very similar positions of

affordance basis BA and functional basis BF . In Table 2.2, we show the 3D distances between

the positions imagined by our algorithm and the positions annotated by human subjects in

centimeter.

2.4 Discussions

In this chapter, we present a new framework for task-oriented object modeling, learning and

recognition. An object for a task is represented in a spatial, temporal, and causal parse

graph including:

23



Table 2.2: Errors of imagining tool-use for affordance / functional bases (BA and BF ) . The

table shows the 3D distances between their positions imagined by our algorithm and the

positions annotated by human subjects. The specific positions for sample tool candidates

are shown in Figure 2.11.

3D distance (cm)

algorithm vs. human

chop wood shovel dirt paint wall

tool object stone tool object stone tool object stone

BA - top 1 1.75 3.02 3.19 1.17 2.03 3.28 0.43 2.48 2.86

BA - top 3 1.04 2.17 2.81 0.97 0.52 2.21 0.31 2.32 2.67

BF - top 1 0.48 5.97 3.91 6.98 6.38 0.23 2.35 2.74 2.65

BF - top 3 0.27 5.92 3.95 2.85 3.29 0.31 1.43 2.64 2.71

• Spatial decomposition of the object and 3D relations with the imagined human pose;

• Temporal pose sequences of human actions; and

• Causal effects (physical quantities on the target object) produced by the object and

action. In this inferred representation, only the object is visible, while all other compo-

nents are imagined ‘dark’ matters. This framework subsumes other traditional prob-

lems, such as: (a) object recognition based on appearance and geometry; (b) action

recognition based on poses; (c) object manipulation and affordance in robotics.

We argue that objects, especially man-made objects, are designed for various tasks in a

broad sense [OJL10, Bec80, SWB11, Bab03], and therefore it is natural to study them in a

task-oriented framework.

In the following, we briefly review related work in the literature of cognitive science,

neuroscience, vision and robotics.

2.4.1 Related Work

Cognitive Science and Psychology: The perception of tools and tool-uses has been

extensively studied in cognitive science and psychology. Our work is motivated by the
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astonishing ability of animal tool-uses [Goo86, BW89, WGM99, Bec80, SWB11, SMT14].

For example, Santos et al. [SPS06] trained two species of monkeys on a task to choose one

of the two canes to reach food under various conditions that involve physical concepts. Weir

et al. [WCK02] reported that New Caledonian crows can bend a piece of straight wire into

a hook and successfully use it to lift a bucket containing food from a vertical pipe. These

discoveries suggest that animals can reason about the functional properties, physical forces

and causal relations of tools using domain general mechanisms. Meanwhile, the history of

human tool designing reflects the history of human intelligence development [McG92, Fre07,

GGI94, Vae12]. One argument in cognitive science is that an intuitive physics simulation

engine may have been wired in the brain through evolution [BHT13, TKG11, USG14], which

is crucial for our capabilities of understanding objects and scenes.

Neuroscience: Studies in neuroscience [Lew06, FH05, CL05] found in the fMRI experi-

ments that cortical areas in the dorsal pathway are selectively activated by tools in contrast

to faces, indicating a very different pathway and mechanism for object manipulation from

that of object recognition. Therefore, studying this mechanism will lead us to new directions

for computer vision research.

Robotics and AI: There is also a large body of work studying tool manipulation in

robotics and AI. Some related work focuses on learning affordance parts or functional object

detectors, e.g., [SLZ08, VV12, MLB08, Sto05, PEK13, JI11, VV11, MKF14, MTF15]. They,

however, are still learning high-level appearance features, either selected by affordance / func-

tional cues, or through human demonstrations [ACV09], not to reason about the underlying

physical concepts.

Computer Vision: The most related work in computer vision is a recent stream that

recognizes functional objects (e.g., chairs) [Ho87, SB91, GGV11, KRK11, WZZ13, ZFF14,

LFU13, KCG14] and functional scene (e.g., bedroom) [ZZ13, GSE11, CCP13, JKS13] by

fitting imagined human poses. The idea of integrating physical-based models has been used
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for object tracking [TA15, OKA11] and scene understanding [ZZY13, ZZY14] in computer

vision. But our work goes beyond affordance.

2.4.2 Limitation and Future Work

In this chapter, we only consider handhold physical objects as tools. We do not consider

other tools, such as, electrical, digital, virtual or mental tools. Our current object model

is also limited to rigid bodies, and cannot handle deformable or articulated objects, like

scissors, which requires fine-grained hand pose and motion. All these tasks request richer

and finer representations which we will study in the future work.
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CHAPTER 3

Inferring Forces and Learning Human Utilities

In recent years, there has been growing interest in studying object affordance in computer

vision and graphics. As many object classes, especially man-made objects and scene layouts,

are designed primarily to serve human purposes, the latest studies on object affordance

include reasoning about geometry and function, thereby achieving better generalizations

to unseen instances than conventional appearance-based machine learning approaches. In

particular, Grabner et al. [GGV11] designed an “affordance detector” for chairs by fitting

typical human sitting poses to 3D objects.

In this chapter, we propose to go beyond visible geometric compatibility to infer, through

physics-based simulation, the forces/pressures on various body parts (hip, back, head, neck,

arm, leg, etc..) as people interact with objects. By observing people’s choices in videos—

for example, in selecting a specific chair in which to sit among the many chairs available

in a scene (Figure 3.1)—we can learn the comfort intervals of the pressures on body parts

as well as human preferences in distributing these pressures among body parts. Thus, our

system is able to “feel”, in numerical terms, discomfort when the forces/pressures on body

parts exceed comfort intervals. We argue that this is an important step in representing

human utilities—the pleasure and satisfaction defined in economics and ethics (e.g., by the

philosopher Jeremy Benthem) that drives human activities at all levels. In our work, human

utilities explain why people choose one chair over others in a scene and how they adjust

their poses to sit more comfortably, providing a deeper and finer-grained account not only

of object affordance but also of people’s behaviors observed in videos.

In addition to comfort intervals for body pressures, our notion of human utilities also

takes into consideration: (i) the tasks observed in a scene—for example, students conversing
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Figure 3.1: Examples of sitting activities in (a) an office and (b) a meeting room. In

addition to geometry and appearance, people also consider other important factors including

comfortability, reaching cost, and social goals when choosing a chair. The histograms indicate

human preferences for different candidate chairs.

with a professor in an office (Figure 3.1(a)) or participating in a teleconference in a lab

(Figure 3.1(b))—where people must attend to other objects and humans, and (ii) the space

constraints in a planned motion—e.g., the cost to reach a chair at a distance. In a full-blown

application, we demonstrate that human utilities can be used to analyze human activities,

such as in the context of robot task planning.

3.1 Related Work

Modeling Affordance: The concept of affordance was first introduced by Gibson [Gib77].

Hermans et al. [HRB11] and Fritz et al. [FPB06] predicted action maps for autonomous

robots. Later, researchers incorporated affordance cues in shape recognition by observing

people interacting with 3D scenes [DFL12, FDG14, WZZ13]. Adding geometric constraints,

several researchers computed alignments of a small set of discrete poses [GGV11, GSE11,

JS13b]. By searching a continuous pose parameter space of shapes, Kim et al. [KCG14]

obtained accurate alignments between shapes and human skeletons. More recently, Savva

et al. [SCH14] predicted regions in 3D scenes where actions may take place. Applications

that use affordance in scene labeling and object placement are reported in [JS13a, JLS12,
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JKS13]. A closely related topic is to infer the stability and the supporting relations in a

scene [JGS13, ZZY14, LZZ15].

Inferring Forces from Videos: For pose tracking, Brubaker et al. [BF08, BSF09, BFH10]

estimate contact forces and internal joint torques using a mass-spring system. More recently,

Zhu et al.and Pham et al. [ZZZ15, PKQ15] use numerical differentiation methods to estimate

hand manipulation forces. These methods are either limited to rigid body problems or

employ oversimplified volumetric human models inadequate in simulating detailed human

interactions with arbitrary 3D objects in scenes. In computer graphics, soft body simulation

has been used to jointly track human hands and calculate contact forces from videos [ZZM13,

WMZ13].

Task Planning in Robotics: Robotics has a rich history in seeking to understand human

motion through synthesized trajectories. Hierarchical task planning through 2D human

motion synthesis is explored in [ZRG09], but these models are constrained to 2D motion plans

and relatively simplistic location-oriented goals. More complex models such as [KDD09] seek

to understand task-oriented human motion on a musculoskeletal level, but they do not take

into account the context of an entire 3D environment. To synthesize logical trajectories, we

rely on robust planning algorithms developed for robotics control applications (e.g. [GO04])

and we apply these forward planning engines to scene understanding by synthesizing rational

human trajectories, a well-studied robotics problem [LaV06].

Physics-based Human Simulation in Graphics: Physics-based techniques for simu-

lating deformable objects have been widely employed in computer graphics after the pioneer-

ing work on the topic [TPB87, TF88]. Popular methods for simulating elastoplastic mate-

rial include mass-spring-damper systems [Mil88, TT94], the Finite Element Method (FEM)

[TBH03, ITF04, MZS11, HJS13], and the Material Point Method (MPM) [SSC13, SSJ14].

We adopt the FEM as it is physically accurate, robust, and computationally efficient. Among

various deformable solids, the human body has received much attention due to its impor-
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tance in character animation for movies and games. Significant prior work models human

anatomical structure as a biomechanical musculoskeletal system including adipose tissues

[LST09, LPK14, SLS14, SZK15]. For efficiency, our human body model is simply a single

isotropic elastic body. This enables us to run a large number of simulations in a reasonable

time limit and still achieve useful results.

Contributions

This work makes five major contributions:

1. We incorporate physics-based, soft body simulations to infer the invisible physical

quantities—e.g., forces and pressures—during human-object interactions. To our knowl-

edge, this is the first work to adopt state-of-the-art, physically accurate simulations to

scene understanding. A major advantage of our method is its robustness in inferring

both the forces and pressures acting on the entire human body as our model, which is

comprised of more than 2,000 vertices, deforms in a realistic manner.

2. Given a static scene acquired by RGB-D sensors, our proposed framework reasons

about the relevant physics in order to synthesize creative, physically stable ways of

sitting on objects.

3. By incorporating a conventional robotics path planner, our proposed framework can

generalize a static sitting pose to extend over a dynamic moving sequence.

4. From human demonstrations, our system learns to generate the force histograms of each

human body part, which essentially defines human utilities, such as comfortability, in

terms of the force acting on each body part.

5. We propose a method to robustly generate volumetric human models from the widely-

used stick-man models acquired using Kinect sensors [OKA11], and introduce a pipeline

to reconstruct watertight 3D scenes with well-defined interior and exterior regions,

which are critical to the success of physics-based scene understanding using advanced

simulations.
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Overview

The remainder of this chapter is organized as follows: In section 3.2, we introduce our repre-

sentation, which incorporates physical quantities into the spatiotemporal spaces of interest.

Figure 3.2: (a) We collect a set of human poses and cluster them into 7 average poses. (b)

Various chairs extracted from scanned scenes. (c) Each human pose is decomposed into

14 body parts. When a human interacts with a chair, we infer the forces on each body

part using FEM simulations. (d) Examples illustrating human preferences; green indicates

a comfortable sitting activity, red an uncomfortable one.
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In section 3.3, we describe the pipeline for calculating the relevant physical quantities, which

makes use of the Finite Element Method (FEM). In section 3.4, we formulate the problem

as a ranking task, and introduce a learning and inference algorithm under the assumption

of rational choice. Section 3.5 demonstrates that our proposed framework can be easily

generalized to challenging new situations. Section 3.6 concludes the chapter by discussing

limitations and future work.

3.2 Representation

3.2.1 Spatial Entities and Relations in 3D Spaces

We represent sitting behaviors and associated relations in a parse graph G, which includes

(i) spatial entities—objects and human poses extracted from 3D scenes—and (ii) spatial

relations—object-object and human-object relations.

Spatial Entities: For each frame of the input video, the parse graph G is first decomposed

into a static scene and a human pose. The static scene is further decomposed into a set of 3D

objects, including chairs (Figure 3.2(b)). In this work, we consider only human poses related

to sitting. We collect typical sitting poses using a Kinect sensor, and align and cluster them

into 7 average poses (Figure 3.2(a)). For each average pose, we first convert the Kinect

stick-man models (Figure 3.3(a)) into tetrahedralized human models (Figure 3.3(b)). These

are then discretized into 14 pre-defined human body parts (Figure 3.3(c)) for simulations,

as shown in Figure 3.3(d).

Spatial Relations: Pairs of objects extracted from 3D scenes form object-object relations,

and each object and human pose pair forms a human-object relation. Figure 3.6(d)(e) show

an example of spatial relations. For the purposes of this work, we define these two spatial

relations as spatial features φs(G) that encode the relative spatial distances and orientations.

At a higher level, human-object relations also encode visual attention and social goals.
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Figure 3.3: The stick-man model (a) captured using a Kinect is converted into a tetrahedral-

ized human model (b) and then segmented into 14 body parts (c). Using FEM simulation

the physical quantities φp(G) are estimated at each vertex of the FEM mesh; the forces at

each vertex are visualized in (d).

3.2.2 Physical Quantities of Human Utilities

To date, researchers have mostly generated affordance maps by evaluating the geometric com-

patibility between people and objects [KCG14, JLS12, FDG14, JKS13, SCH14, WZZ13]. We

employ a more meaningful and quantifiable metric—forces (including pressures) as physical

quantities φp(G) produced during human-object interactions. The forces acting on each body

part essentially determines the comfortability of a person interacting with the scene. People

tend to choose more comfortable chairs that will apparently provide better distributions of

supporting forces at each body part (Figure 3.2(d)).

Deploying our physically simulated volumetric human models in the reconstructed scenes,

we can estimate fine-grained external forces at each vertex of the human model, as shown

in Figure 3.3(d). In this work, we use the FEM to compute forces. The force acting on

each body part can be estimated by summing up vertex-wise force contributions. A major

advantage of using physical concepts is their ability to generalize to new situations.

3.2.3 Human Utilities in Time

To model the human utility, a plan cost φt(G) is incorporated into our proposed framework.

This is defined as a body pose sequence from a given initial state to a goal state, which

encodes people’s intentions and task planning through time. Compared to prior work, adding
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plan cost extends the solution space from a static human pose to dynamic pose sequences.

To simplify the problem, we use the Probabilistic Roadmap (PRM) planner [KSL96] to

calculate the plan cost. Viewed from above, we project the 3D scene to create a planar map,

and use a 2D PRM to calculate the plan cost. However, our proposed framework does not

preclude the use of more sophisticated planning methods in 3D space.

3.3 Estimating the Forces in 3D Scenes

3.3.1 Dataset of 3D Scenes and Human Models

Our dataset includes reconstructed watertight 3D scenes, 3D objects (including chairs) ex-

tracted from the scenes, tracked human skeletons and volumetric human poses. The skeletons

and volumetric human poses are registered in the reconstructed scenes.

The most distinguishing feature of our dataset relative to previous ones (e.g., [CZK15,

HWM14, XOT13, SCH14]) is the watertight property of our reconstructed scenes. This is

crucial for physics-based simulation methods such as the FEM. Furthermore, our dataset

includes much larger variations of chair-shaped objects and human poses, as shown in Fig-

ure 3.2(a)(b), as well as more challenging and cluttered scenes.

3.3.2 Reconstructing Watertight Scenes

Reconstructing Closed-loop Scenes: Reconstruction methods that use purely geomet-

ric registration [NDI11, KPR15, NZI13, WKF12] suffer from aliasing of fine geometric details

and an inability to disambiguate different locations based on local geometry. Such problems

are compounded when attempting to register loop closure fragments with low overlap. In our

work, we reconstruct 3D scenes with global optimization based on line processes [CZK15],

resulting in detailed reconstructions with loop closures, as shown in Figure 3.4(a).

Converting to Watertight Scenes: Collision detection and resolution in the simulation

requires a watertight scene mesh. We first use Poisson disk sampling [Bri07] to generate
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Figure 3.4: (a) From a reconstructed 3D indoor scene [CZK15, SCH14], (b) we uniformly

sample vertices in the input mesh with Poisson disk sampling [Bri07], then convert them into

a watertight mesh [LC87, MLJ13] with well-defined interior and exterior regions. Differences

(c) between the input mesh and the converted watertight mesh. By adding a ground geom-

etry, we obtain a detailed, watertight reconstruction (d) of the 3D scene, which is inputted

to the simulation.

uniformly distributed vertices from the input triangle mesh, as illustrated in Figure 3.4(b).

Each vertex is then replaced with a fixed-radius sphere level set [MLJ13]. Subsequently, the

Constructive Solid Geometry (CSG) union operation is applied to this level set and a ground

level set to produce a complete scene with a filled-in floor. Finally, the Marching Cubes

algorithm [LC87] is applied to the level set in order to generate the watertight surface, as

shown in Figure 3.4(d). The resulting scene has the well-defined interior and exterior regions

required by the simulation.

3.3.3 Modeling Volumetric Human Pose

Skeleton Alignment and Clustering: The resting poses of human skeletons acquired

using the Kinect are aligned by solving the absolute orientation problem using Horn’s

quaternion-based method [Hor87]; i.e., finding the optimal rotation and translation that

maps one collection of vertices to another in a least squares sense:

min
∑
i

||RA(:, i) + t−B(:, i)||2, (3.1)

where A and B are a 3 × N matrices whose columns comprise the coordinates of the N

source vertices and N target vertices, respectively. Presently, we have N = 3 (left shoulder,
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right shoulder, and spine base) for skeleton alignment. The K-means clustering algorithm

[CGB07, Syl09, DLR77] is then applied to cluster the resting poses into 7 categories, as

shown in Figure 3.2(a).

Skeleton Skinning: Human skeleton data comprise joints, segments, and their orienta-

tions. For simplicity, an analytic geometric primitive is assigned to each body part. The

primitives include ellipsoids (including spheres), hexahedra, and cylinders. The parameters

of the primitives are chosen such that they best fit the body parts. A high-resolution level

set is then applied to wrap around the union of all the primitives [MLJ13]; its zero isocontour

approximates the skin [LC87].

Volumetric Discretization: Although the Marching Cubes algorithm suffices to extract

a triangulated skin mesh from the level set, our simulation requires a full discretization of

the volume bounded by the skin. To achieve this, we embed the skin level set into a body-

centered cubic tetrahedral lattice as in [MBT03]. This results in a tetrahedralized human

shape geometry as shown in Figure 3.3(b).

3.3.4 Simulating Human Interactions With Scenes

As stated earlier, we chose the FEM to simulate human tissue dynamics. Our simulation

requires only reconstructed watertight scenes and volumetric human poses as inputs. The

outputs of the simulation are the relevant physical quantities φp(G); e.g., forces and pressures.

Elasticity: The human body is modeled as an elastic material. The total elastic potential

energy is defined as

ΦE(x) =

∫
Ω

ΨE(x)dx ≈
∑
e

V 0
e ΨE(F(x)), (3.2)

where Ω is the simulation domain defined by the tetrahedral body mesh, x denotes the

deformed vertex positions, and V 0
e is the initial undeformed volume of tetrahedral element e.

The hyperelastic energy density function ΨE is defined in terms of the deformation gradient
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Figure 3.5: (a)Given an initial human pose in a 3D scene subject to gravity, (b) without

adequate damping, the human body is too energetic and produces unnaturally bouncy mo-

tion. (c) With proper damping, the simulation converges to a physically stable rest pose in

a small number of timesteps.

F = ∂x
∂X

, where X denotes the undeformed vertex positions. We use the fixed corotated

elasticity model [SHS12] for ΨE due to its robustness in handling large deformations.

Contact Forces: To model contact forces, we need to penalize penetrations of the human

body mesh into the scene mesh. This requires a differentiable volumetric description of the

scene geometry. With watertight scenes, the level set reconstruction is performed by directly

computing signed distances from level set vertices to the mesh surface. In each simulation

timestep, all human mesh vertices are checked against the scene level set. If a penetration

is detected for vertex i, a collision energy ΦC(xi) that penalizes the penetration distance in

the normal direction is assigned to the corresponding vertex

ΦC(xi) =
1

2
kc(xi − P(xi))

2, (3.3)

where kc is a penalty stiffness constant and P(xi) projects xi onto the closest point on the

level set zero isocontour along its normal direction. To prevent free sliding along the collision

geometry, we further introduce a friction force that slightly damps the tangential velocity

for vertices in collision.
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Table 3.1: Physical simulation parameters

Timestep: Density: Young’s modulus: Poisson’s ratio:

1× 10−3s 1000kg/m3 0.15kPa 0.3

Collision stiffness: Friction coeff: Damping coeff: Gravity:

1× 104kg/s2 1× 10−3 50kg/s 9.81m/s2

Dynamics Integration: Backward Euler time integration is used to solve the momentum

equation. From time n to n+ 1, the nonlinear system to solve is

M
vn+1 − vn

∆t
= f(xn+1,vn+1) + Mg, (3.4)

f(xn+1,vn+1) = fE(xn+1) + fC(xn+1) + fD(vn+1), (3.5)

xn+1 − xn = vn+1∆t. (3.6)

Here M is the mass matrix, x denotes position, v denotes velocity, fE = −∂ΦE

∂x
is the elastic

force, fC = −∂ΦC

∂x
is the contact force, g = 9.8m/s is gravity, and fD = −νv is an additional

force to dampen the velocities, where ν is the damping coefficient. Figure 3.5(b) shows that

without the damping force, the deformable human body model is too energetic and may

produce unnaturally bouncy motion. While there exist more accurate viscoelastic material

models of human tissue, our simple damping force is easy to implement and achieves similar

behaviors for the simulation results. We solve the above nonlinear system for positions xn+1

and velocities vn+1 using Newton’s method [GSS15].

Simulation Outputs: When the simulation comes to rest, v = 0 and the damping forces

vanish. The elastic, contact, and gravity forces sum to zero everywhere over the mesh. As

the output of the simulation, we export the computed contact forces acting on the skin

surface.
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Figure 3.6: Data pre-processing. (a) Given a reconstructed 3D scene, (b) we project

it down onto a planar map, and (c) segment 3D objects from the scene. (d) visualizes

3D object positions (green dots), human head position (blue dot), and orientation (blue

line). (e) Spatial features φs(G) are defined as human-object (red lines) and object-object

(green lines) relative distances and orientations. (f) Temporal features φt(G) are defined

as the plan cost from a given initial position to a goal position. (g)(h) Two solutions

generated by the PRM planner using graphs with different numbers of nodes (more nodes

yield finer-grained plans at higher cost).

3.4 Learning and Inferring Human Utilities

3.4.1 Extracting Features

We craft features φ(G) of three types: (i) spatial features φs(G) encoding spatial relations,

(ii) temporal features φt(G) associated with plan cost, and (iii) physical quantities φp(G)

produced during human interactions with scenes.

Data pre-processing is illustrated in Figure 3.6(a)-(c). Given a reconstructed watertight

scene, we remove the ground plane by setting a 0.05 m depth threshold and projecting it

down onto a planar map. 3D objects in the scene are first segmented into primitives [AFS06]
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and then grouped into object segments as in [ZZY15, ZZY13]. Some manual labeling and

processing is needed for certain cluttered scenes. Finally, a semantic label is manually

assigned to each object; e.g., a desk with a monitor, a door, etc..

Spatial features φs(G) are defined as human-object / object-object relative distances and

orientations as shown in Figure 3.6(d)(e). For each object, the geometric center is obtained

by averaging over all the vertices. The human head position and orientation is acquired with

the Kinect.

Temporal features φt(G) are defined as the plan cost from a given initial position to a

goal position. To simplify the problem, we project the 3D scene down onto a planar map.

We build a binary obstacle map where the free spaces devoid of objects have unit costs,

whereas the spaces occupied by objects have infinite costs. We use a 2D PRM planner

to calculate the costs using 2D human positions and head orientations. Thus the planner

constructs a probabilistic roadmap to approximate the possible motions. Finally, the optimal

path is obtained using Dijkstra’s shortest path algorithm [Dij59]. Figure 3.6(f)–(h) show two

solutions using different numbers of nodes in the planner graph.

Physical quantities φp(G) produced by people interacting with scenes are computed using

the FEM. Currently, we consider only the forces and pressures acting on 14 body parts of

the tetrahedralized human model, as shown in Figure 3.2(c). The net force on each body

part is obtained by summing up the forces at all its vertices. The net force divided by the

number of contributing vertices yields the local pressure. Figure 3.3(d) illustrates a force

heatmap for sitting.

3.4.2 Learning Human Utilities

The goal in the learning phase is to find the proper coefficient vector ω of the feature space

φ(G) that best separates the positive examples of people interacting with the scenes from

the negative examples.
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Figure 3.7: In the learning phase, based on rational choice theory, we assume that the

observed demonstration is optimal, and therefore regard it a positive example. (a) In this

example, a person is sitting on an armchair facing a desk with a monitor. The learning

algorithm then imagines different configurations {Gi} in the solution space by initializing

with different human poses Pa, (b) translations Tb, and (c) orientations Oc. The imagined

randomly generated configurations {Gi} are regarded negative examples. In the inference

phase, the inference algorithm performs the same sampling process (b)(c), and finds the

optimal configuration G? with the highest score.

Rational Choice Assumption: We assume that in interacting with a 3D scene, the

observed person makes near-optimal choices to minimize the cost of certain tasks. This is

known as rational choice theory [Bec74, BE08, HS08, Loh08]. More concretely, the person

tries to optimize one or more of the following factors: (i) the human-object and object-object

orientations and distances defined as φs(G), (ii) the plan cost from the current position to a

goal position φt(G), and (iii) the physical quantities φp(G) that quantify the comfortability

of interactions with the scenes.

In accordance with rational choice theory, for an observed person choosing an object

(e.g., an armchair) on which to sit, their choice G? is assumed to be optimal; hence, this is

regarded a positive example. If we imagine the same person making random choices {Gi} by

randomly sitting on other objects (e.g., the ground), the rational choice assumption implies

that the costs of the imagined configurations {Gi} should be higher; hence, these should be
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Figure 3.8: (a) The final force histograms of 6 (out of 14) body parts. The x axis indicates

the magnitudes of the forces, the y axis their frequencies and potential energy. Histogram

areas reflect the number of cases with non-zero forces. (b) The average forces of each body

part normalized and remapped to a T pose.

regarded negative examples.

Let us consider a simplified scenario as an example: Suppose the ground-truth factors

that best explain the observed demonstration are that the object is comfortable to sit on and

that it faces the blackboard. Then, other objects in the imagined configurations should fall

into one of the following three categories: they (i) may be more comfortable, but have less

desirable orientations relative to the blackboard, or (ii) may have better orientations with

the blackboard, but be less comfortable, or (iii) may be less comfortable and have worse

orientations.

To summarize, under the rational choice assumption, we consider the observed rational

person interacting with the scenes G? a positive example, and the imagined random con-

figurations {Gi} as negative examples. However, the random generated configurations {Gi}

may be similar or even identical to the observed optimal configuration G?. To avoid this

problem, we remove random configurations that are too similar to observed configurations

before applying the learning algorithm.
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Ranking function: Based on the rational choice assumption, it is natural to formulate

the learning phase as a ranking problem [Joa02]—the observed rational person interaction

G? should have lower cost than any imagined random configurations {Gi} with respect to the

correct coefficient vector ω of φ(G), which includes spatial relations φs(G), plan cost φt(G),

and physical quantities φp(G). Each coefficient ωi reflects the importance of its corresponding

feature. The ranking function is defined as

R(G) = 〈ω,φ(G)〉. (3.7)

Learning the ranking function is equivalent to finding the coefficient vector ω such that

the maximum number of the following inequalities are satisfied:

〈ω,φ(G?)〉 > 〈ω,φ(Gi)〉, ∀i ∈ {1, 2, · · · , n}, (3.8)

which corresponds to the rational choice assumption that the observed person’s choice is

near-optimal.

To approximate the solution to the above NP-hard problem [HSV95], we introduce non-

negative slack variables ξi [CV95]:

min
1

2
〈ω,ω〉+ λ

n∑
i

ξ2
i , ∀i ∈ {1, · · · , n} (3.9)

s.t. ξi ≥ 0, 〈ω,φ(G?)〉 − 〈ω,φ(Gi)〉 > 1− ξ2
i , (3.10)

where λ is the trade-off parameter between maximizing the margin and satisfying the pairwise

relative constraints.

3.4.3 Inferring the Optimal Affordance

Given a static scene, the goal in the inference phase is to find, among all the imagined

configurations {Gi} in the solution space, the best configuration G? that receives the highest

score:

G? = arg max
Gi
〈ω,φ(Gi)〉. (3.11)
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Figure 3.9: (a) The top 7 human poses using physical quantities φp(G). The algorithm

seeks physically comfortable sitting poses, resulting in casual sitting styles; e.g., lying on the

desk. (b) Improved results after adding spatial features φs(G) to restrict the human-object

relative orientations and distances. Further including temporal features φt(G) yields the

most natural poses (c). The yellow bounding box indicates the door, the initial position

for the path planner. Samples generated near the 3D chair labeled with a red bounding

box do not produce high scores as forces apply on the arms of the person in the observed

demonstration (Figure 3.7(a)). The lack of chair arms leads to low scores.

3.4.4 Sampling the Solution Space

Without observing a human interacting with the scenes, the inference algorithm must sample

the solution space by imagining different configurations {Gi}. The same sampling process is

also required in the learning phase to generate negative examples.

We first quantize the human poses into the 7 categories shown in Figure 3.2(a). The

imagined configurations of the human model are initialized with different poses Pa, transla-

tions Tb, and orientations Oc, as shown in Figure 3.7(b)(c). The tuple (Pa, Tb, Oc) specifies a

unique human configuration. Given such a tuple, the simulation will impose gravity and the

simulated human model will reach its rest state. The methods described in subsection 3.4.1

are then used to extract the features φ(Gi).

In the learning phase, the φ(Gi) are then used to learn the ranking function (Equa-

tion 3.7). In the inference phase, the extracted features are then evaluated by Equation 3.11.

The configuration with the highest score is taken as the optimal configuration G?.
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3.5 Experiments

3.5.1 Learning Human Utilities From Demos

A set of demonstrations of people sitting in the scene were collected using RGB-D sensors,

as shown in Figure 3.7(a). The observed demonstrations were then used as positive training

examples. For each 3D scene, we further generated over 4,000 different configurations Gi

by enumerating all poses and randomly sampling different initial human translations and

rotations in the solution space, as shown in Figure 3.7(b)(c). The synthesized configurations

that are similar to the human demonstrations were pruned. The remaining configurations

were used as negative examples. The learning algorithm (Equation 3.7) learned the coefficient

vector ω of the ranking function under three different settings: (i) physical quantities φp(G),

(ii) with additional spatial relations φs(G), and (iii) with all features φp(G), φs(G), and φt(G).

Figure 3.8(a) shows the final force histograms of 6 (out of 14) body parts. Unsurprisingly

when sitting, forces act on the hip in almost all cases, upper legs and lower arms also tend to

be subject to relatively large magnitude forces, upper arms and heads are much less likely to

interact with the scene, and the feet contact the scene in many cases, but with overall small

force magnitudes. The heat map of the average forces acting on each human body part over

all the collected human sitting activities is shown in Figure 3.8(b).

3.5.2 Inferring Optimal Affordance in Static Scenes

Next, we tested the learned models on our dataset as well as on prior 3D datasets [SCH14,

CZK15] in three different scenarios: (i) canonical scenarios with chair-shaped objects, (ii)

cluttered scenarios with severe object overlaps, and (iii) novel scenarios extremely different

from the training data.

The first testing was done in the same scene as the training. Figure 3.9 shows examples of

the top ranked human poses. Although using physical quantities φp(G) produced physically

plausible sitting poses (Figure 3.9(a)), some of the results do not look like sitting poses (e.g.,

lying poses and upside-down poses). Such diverse results are caused by the lack of spatial

45



Figure 3.10: Correlations of the ranking by human subjects (x-axis) and our system’s out-

put (y-axis). The closer the plotted points fall to the diagonal lines the better our proposed

method matches the performance of the human subjects. Plots (a)–(e) correspond to Fig-

ure 3.11(a)–(e). Plot (f) corresponds toFigure 3.9(c).

and temporal constraints.

Including the spatial features φs(G), the relative orientations and distances between the

human model and objects in the scene, improved the results, as shown in Figure 3.9(b).

Intuitively, the top poses become more natural because they share similar human attentions

and social goals to those in the observed demonstrations. For the case shown in Figure 3.9,

the relative orientation between the human model and the desk with monitor prunes the

configurations for which the human poses are not facing towards the monitor. The laying

poses and upside-down poses are also pruned.

Integrating the temporal features φt(G) also takes into consideration the plan cost, which

prunes the poses with large plan cost differences compared to the observed person demon-

strations. Note that the plan cost used in temporal features enables our system to output a

dynamic moving sequence, which extends the static sitting poses in previous work.

Additional results including canonical, cluttered, and novel scenarios from our dataset

and other datasets [SCH14, XOT13, CZK15, ZMK13] are shown in Figure 3.11.

Evaluations: We asked 4 subjects to rank the highest-scored sitting poses. Figure 3.10

plots the correlations between their rankings and our system’s output.
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3.6 Discussion and Future Work

The current stream of studies on object affordance [DFL12, FDG14, WZZ13, GGV11,

GSE11, JS13b, KCG14, SCH14, ZZZ15] have attracted increasing interest on geometry-

based methods, which offer more generalization power than the prevailing appearance-based

machine learning approach. We have taken a step further by inferring the invisible physical

quantities and learning human utilities based on rational human behaviors and choices ob-

served in videos. Physics-based simulation is more general than geometric compatibility, as

suggested by the various “lazy/casual seated poses” that are typically not observed in public

videos. We argue that human utilities provide a deeper and finer-grained account for object

affordance as well as for human behaviors. Incorporating spatial context features, temporal

plan costs, and physical quantities computed during simulated human-object interactions,

we demonstrated that our framework is general enough to handle novel cases using models

trained from canonical cases.

Our current work has several limitations that we will address in future research: First,

we have assumed a rigid scene. We shall consider various material properties of objects and

allow two-way causal interactions between the objects and human models. This promises

to enable deeper scene understanding with the help of more sophisticated hierarchical task

planners. Second, currently we model the anatomically complex human body simply as

a homogeneous elastodynamic material. We believe that a more realistic biomechanical

human model with articulated bones actuated by muscles surrounded by other soft tissues

(see, e.g., [LST09, LPK14]) could enable our framework to yield more refined solutions.

Optimal motor controllers could also be employed within the human simulation to support

fine-grained motor planning, thus going beyond task planning, although this will increase

computational complexity.

By solving these problems, we will be a step closer to consolidating several different

research streams and associated methods in vision, graphics, cognition, and robotics.
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Figure 3.11: Top 3 poses in (a)(b) canonical scenarios, (c) cluttered scenarios, and (d)(e)

novel scenarios. All the features φ(G) are used in (a) and (b). Both physical quantities

φp(G) and plan costs φt(G) are used in (c)–(e). The initial position for the path planner is

indicated by the yellow bounding box.
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CHAPTER 4

Learning Intangible Affordance

The notion of object affordance has become an important topic of modeling human context

and human-object interactions in scene understanding. As man-made objects in human liv-

ing spaces are primarily designed to serve functions to fulfill daily human activities, some

researchers [Gib77, Gib82, Min88, Gib14, Nel74, CCL99] argue that the recognition of af-

fordance and function of an object assists the categorization of objects, events and places.

Instead of using conventional appearance-based approaches, the latest studies on affordance

reason about geometry compatibility and forces exerted during the interactions. In particu-

lar, an “affordance detector” was introduced by Grabner et al. [GGV11] to recognize chairs

by fitting typical human poses to object candidates in a 3D scene. More recently, Zhu and

Jiang [ZJZ16] devised an algorithm, through physics-based simulation using the finite ele-

ment method, to infer the invisible forces/pressures on various human body parts, thereby

achieving better generalization to learning human utilities in unseen objects and scenes.

In this chapter, we propose to go beyond modeling the direct and short-term human

interaction with individual objects. Through accurately simulating thermodynamics and air

fluid dynamics, our method can infer indoor room temperature distribution and air flow

dynamics at arbitrary time and locations, thus establishing a form of indirect and long-term

affordance. Unlike chairs in a sitting scenario, the objects (heating/cooling sources) that

provide affordance do not directly interact with a person. Instead, the air in a room serves

as an invisible medium to pass the affordance from an object to a person. We coin this new

form of affordance as intangible affordance.

By observing people daily activities in indoor scenes with the labelled ground truth of

the heater/cooler, we can unveil the human preferences of temperature and velocity through
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(a) Scanned room (b) Temperature (t=0s) (c) Velocity (t=0s)

(d) Augmented scene (e) Temperature (t=10s) (f) Velocity (t=10s)

Figure 4.1: Given (a) a room scanned and reconstructed by a Kinect sensor, the proposed

framework is capable of (d) imagining human activities sampled from a learned grammar,

as well as sampling a plausible location and orientation of a heater/cooler. In such settings,

the heater/cooler adjusts the (b)(e) temperature and (c)(f) velocity field based on human

preferences without directly contacting a person, forming an intangible affordance.

simulating the thermodynamics and air fluid dynamics. Thus, our system can discover the

indirect and long-term interactions between human and the heater/cooler. In inference, given

only a static 3D scene, our system is capable of unfolding long-range human activities from

a learned grammar, which in turn helps to infer proper configurations of the room layout.

4.1 Related Work

Affordance: The concept of affordance was first introduced by Gibson [Gib77], and later

brought into computer vision by Ho [Ho87]. By observing people’s interactions with 3D

scenes [DFL12, FDG14], researchers started to model affordance using geometry cues by

fitting discretized poses [GGV11, GSE11, JX13] or poses in continuous spaces [KCG14].
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Later, more attention was given to predicting the action map [SCH14] and affordance

[HRB11, FPB06, RT16] given a 2D or 3D image. Object-level affordance in the context of

tool-uses has been studied in [ZFF14, ZZC15, MKF14]. However, these types of affordance

are all short-time with direct contact. Another closely related topic is inferring stability

[JGS13, ZZY14] and containment relations [LZZ15, YDY15].

Fluid and Heat Simulation: Fluid dynamics such as liquid splashing and smoke motion

is one of the major topics in computer graphics. We refer to Bridson [Bri15] for a recent

survey. Many existing methods use a regular Cartesian grid due to its natural Eulerian

advantages in solving the governing equations [Sta99, FF01, FSJ01, NFJ02]. Hybrid ap-

proaches are also popular, as they leverage the strengths of both particle and grid for reduc-

ing dissipation [ZB05, JSS15, ZBG15]. More recently, Chern et al.solved an incompressible

Schrödingers equation for simulating smoke [CKP16]. A lot of effort has been spent on

preserving vorticity, reducing numerical dissipation, and improving boundary treatment for

smoke simulation [SRF05, HKL15, BBB07, ABO16]. Beyond visual simulation of smoke,

predicting thermodynamic air flow with computational fluid dynamics is also used for urban

modeling [GAB17] and biosafety [Kol06]. In this work, we simulate indoor air flows with

heat and mass transport by adopting the grid-based Eulerian approach with semi-Lagrangian

advection [Sta99] for its unconditional stability and ease of implementation.

Contributions

This work makes three contributions:

1. We propose the notion of intangible affordance, which is a form of indirect and long-

term interactions between an agent and objects. Inferring intangible affordance is a

challenging problem as the algorithm needs to sample/imagine unobservable dynamic

human interactions within scenes.

2. By simulating thermodynamic air flow given a scene geometry, our system uncovers the

hidden motion of air dynamics and heat transport, thus unveiling the indirect human
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interactions with scenes. To our knowledge, this is the first work to adopt numerical

simulation of airflow and heat transport for the human utility of temperature in indoor

scenes, enabling a deeper understanding of human activities for future human-robot

interactions.

3. We address the challenge of long-term interactions by incorporating a stochastic gram-

mar of human activity as well as a conventional robotics planning engine, which is

capable of sampling a detailed action sequence in addition to motion trajectories.

4. We propose a volumetric scene completion pipeline, resulting in a voxelized 3D scene

free from hollow regions or holes. Voxelized structures generated with our method

enable robust geometric properties for the numerical discretization of the governing

fluid equations.

4.2 Representation

We represent human activities in a video by a spatiotemporal parse graph G. The spatiotem-

poral components are fully observable during the training, in which the intangible affordance

is manually labelled, requiring forward simulation to uncover the human preferences.

Spatial Entities and Relations: At each frame, a static scene includes i) objects seg-

mented from 3D scenes and human poses extracted from the current frame, and ii) the

relations among entities. Spatial entities consist of i) human skeletons, and ii) objects seg-

mented from 3D scenes, e.g., tables, monitors, chairs, etc.. The human skeleton is extracted

using the Kinect sensor [SSK13], and further aligned and clustered into 10 actions (Fig-

ure 4.4). 3D objects are first segmented by IAMs [BLC00] using a region growing scheme

[PVB08]. Over-segmented fragments are then manually merged as shown in Figure 4.6b.

Spatial relations include human-objects relations and object-object relations. The relative

orientations and distances between each pair form the spatial relations.
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(a) input 3D scene (b) voxelized scene (low/high resolution) (c) segmentation (d) scanline-fill diff

Figure 4.2: Given (a) an input 3D scene, we (b) voxelize the scene, and (c) reconstruct

volumetric scene by jointly reasoning about geometry and physics. A scanline fill method

is further applied to ensure there is no hollow regions. (d) The difference after applying

scanline fill.

Human Activity and Cost in Time: To properly model the human interactions with

objects developed in time, a plan cost is introduced into the proposed framework. We use

the additional cost by comparing it before and after adding a potential heater/cooler. In

addition, a human activity grammar is adopted to encode the activities frequency.

Intangible Affordance: To model intangible affordance, the temperature and velocity

fields in the scene are simulated and extracted to account for the invisible, long-term, indirect,

non-contact human interactions with the scene.

4.3 Estimating Temperature and Velocity Field

4.3.1 Reconstruction of Volumetric Scene

To estimate the temperature and velocity fields in a 3D scene, a volumetric representation

of the scene and and a proper volumetric completion pipeline are needed.

Reconstruction of 3D Point Cloud: 3D scenes are reconstructed using a real-time

SLAM system [LM14] with appearance-based methods for loop closure [LM13, LM11]. A

short-range RGB-D Primesense Sensor is used for its detailed and less cleaner stream com-

pared to the Kinect sensor.
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Mesh Constructions and Refinements: A 3D point cloud is scattered and refined

with a fast Poisson-disk sampler using dart-throwing [DH06]. Meshes are constructed with

Delaunay triangulation [Del34], resulting in a set of nearly equilateral triangles. Walls and

floor are fitted to a set of planes with PCA [Jol02]. The ceiling is added at the proper height

to complete a sealed mesh.

Volumetric Representation: To enable the simulation, we further convert the 2.5D sur-

face into a 3D volumetric representation. A grid-based method is adopted (Figure 4.2b). We

divide the 3D scene into a grid of voxels. A voxel is automatically labeled occupied if any

point from the scanned point cloud falls into the boundary of the voxel; otherwise empty.

Volumetric Completion: Hollow regions in the volumetric representation leads to singu-

lar systems in the simulation and causes numerical difficulty. In the literature, the methods

for volumetric scene completion can be categorized into two streams. i) object-level shape

completion and fitting, and ii) scene-level geometric and physics reasoning.

• Object-level volumetric completion methods usually exploit geometry symmetry [KMY12,

MPM14, THT16], directly fit similar 3D instances by their shapes [LF10, NXS12, SX14,

GAG15, RGT15], indirectly approximate 3D shapes by primitives [LFU13, JX13], or

train forest-based models [FMJ16] and deep neural network models [WSK15, VDR16,

SYZ17a] based on geometric information. However, these methods require additional

segmentation before they are applicable to the entire 3D scene.

• Scene-level volumetric completion methods utilize low level geometric cues by plane fit-

ting [MMB15], jointly reason geometry and segmentation for outdoor [HZC13, BVR16]

and indoor [ZZY13], or simultaneously recover semantic labels and volumetric struc-

tures from labelled datasets [SYZ17a].

In this work, we adopt the method described by Zhang et al. [ZZY13] and Jia et al. [JGS13]

because it provides a segmented physically stable volumetric scene. A Manhattan structure

[FCS09] is assumed, and a cluster sampling method Swendsen-Wang cut [BZ05] is applied
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Figure 4.3: Thermodynamic air flow simulation in a 2D room. Top: air velocity field.

Bottom: temperature evolution.

to segment objects in 3D. To ensure there are no hollow regions left, a 3D non-recursive

scanline fill method [Hec90] is further applied. Figure 4.2 depicts the full pipeline for the

reconstruction of hole-free volumetric scenes.

4.3.2 Simulating Thermodynamic Air Flow

Simulating the dynamics of gaseous phenomena has attracted a lot of attention in Compu-

tational Fluid Dynamics (CFD). While computer graphics applications often focus on the

simulation of smoke due to its ubiquitousness in visual effects, we target at simulating the

heat-driven air motion instead of the density-driven smoke concentration evolution.

Velocity: We model air as an inviscid and incompressible fluid. Such an assumption

reduces Navier-Stokes equation to the incompressible Euler equations [Bri15]:

ρ
Dv

Dt
= −∇p+ f , (4.1)

∇ · v = 0, (4.2)

where ρ is density, v fluid velocity, p pressure, and f external force. Dv
Dt

is the material

derivative of the velocity; written as Dv
Dt

= ∂v
∂t

+ (v · ∇)v. Equation 4.2 accounts for the

divergence free constraint on velocity field and implies incompressibility.
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We discretize the velocity governing equations on a staggered Eulerian grid. Velocity

degrees of freedom are sampled on voxel faces and pressure is discretized on cell centers.

As in Zhu et al. [ZB05], an intermediate velocity field v̂ is assumed to split the solution

procedure to an advection step and a projection step. Assuming the previous time step

velocity field is vn, the advection step solves

v̂ − vn

∆t
= −(vn · ∇)vn + f , (4.3)

where we adopt the semi-Lagrangian advection scheme of Stam [Sta99] for its unconditional

stability. The projection step comes from enforcing the incompressibility constraint on vn+1,

the new velocity field. This results in solving a Poisson equation for pressure unknowns:

∇2p =
ρ

∆t
∇ · v̂. (4.4)

Discretely, this can be written as GTG{p} = ρ
∆t

GT{v̂} [BBB07], where {v̂} is the vector

containing all v̂ degrees of freedom, {p} contains all pressures, G is the discrete gradient op-

erator. On the Marker And Cell (MAC) grid, this is equivalent to discretizing the Laplacian

operator with the standard seven-point stencil. This system is typically symmetric positive

definite and can be solved efficiently with Conjugate Gradient with incomplete Cholesky or

Multigrid preconditioner [MST10]. We notice that, however, since the linear system and

boundary conditions never change, it is much faster to prefactor the matrix with sparse

Cholesky and perform back substitution. Furniture, heaters/coolers, walls, ground, and ceil-

ing are all treated as Neumann boundaries. Additionally, we perform volumetric completion

for filling in hollow regions to prevent empty rows in the system. After solving the pressures,

velocities are updated with

vn+1 = v̂ − ∆t

ρ
∇p. (4.5)

Temperature: Heat transfers in a room in multiple ways. For an air blowing heater/cooler,

the effect mostly comes from heat convection, where temperature change is caused by the

fluid motion of air particles. This corresponds to the advection of temperature:

T̂ − T n

∆t
= −(vn · ∇)T n, (4.6)
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where T̂ is the updated temperature. We discretize T on cell centers and update them with

semi-Lagrangian advection. Besides convection, we take into account slight heat diffusion in

the air through an explicit temperature update:

T n+1 − T̂
∆t

= κ∇2T n+1, (4.7)

where κ is the diffusion coefficient. The heat equation also leads to a symmetric positive

definite linear system, which we solve with sparse Cholesky factorization.

Finally, to model the temperature influence on the velocity, we take the Boussinesq

approximation [FSJ01] and apply an external force to the velocity field as f = −β(T −Ta)z,

where β is the buoyancy coefficient, Ta is the ambient temperature, z = (0,−1, 0)T points

to the gravity direction. This force is added to the advected velocity field v̂ to model the

effect of rising hot air.

4.4 Learning Intangible Affordance

In this section, we first introduce a pipeline to learn the grammar of human activity from the

training data, which serves as the input for extracting spatiotemporal features and affordance

features. Next, we introduce a set of features crafted for learning intangible affordance in 3D

indoor scenes. Using these features, we present our learning and inference algorithm based

on rational agent theory and ranking functions.

4.4.1 Learning Grammar of Human Activity

Using the skeletons collected from Kinect sensor, we present a pipeline to build a stochastic

grammar upon these raw noisy data, during which very limited manual labeling is involved.

The pipeline includes four steps: i) skeleton alignment, ii) skeleton clustering as action sen-

tences, iii) unsupervised structure learning of stochastic grammar, and iv) adding attributes.

Skeleton Alignment: The alignment of the skeleton is solved using Horns method [Hor87]

to align absolute orientation based on quaternion: finding the optimal scale vector s, rotation
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Figure 4.4: Human skeletons in the training data are clustered into 10 atomic actions.

matrix R and translation vector t that best map a target 3D pose A to a source 3D pose B

in a least square fashion:

min
∑
i

w(i) ‖sRA(:, i) + t−B(:, i)‖2 , (4.8)

where w(i) is a user-specified vector, indicating significance of different joints of the 3D pose.

In this work, the weights of 5 joints in human pose (left/right shoulder, left/right wrist, spine

base) are set to 1, the others are set to 0.

Skeleton Clustering and Atomic Actions: Atomic actions [PSY13] or movement prim-

itives [SPN05, PDP13] refer to elemental actions that cannot be further decomposed, such

as sitting and standing. Instead of labeling all the actions in the training data, we per-

form unsupervised clustering on the skeleton data, resulting in a set of atomic actions. By

only labeling very limited number of atomic actions, the action sequence in each video is

automatically labeled at each frame.

A hierarchical agglomerative clustering scheme is applied: each skeleton starts in its

own cluster, and pairs of clusters are merged as one moves up the hierarchy [War63]. Ward’s

minimum variance method [War63] is chosen to join the two clusters A and B that minimizes

the increase in the sum of squared errors:

IAB =
nAnB
nA + nB

(ā− b̄)′(ā− b̄), (4.9)

where ā and b̄ represent the centroids of the cluster A and B, respectively. Results are

shown in Figure 4.4.
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By comparing the distances between the centroids of each voxelized objects (see sub-

section 4.4.2) and the centroids of human wrists, a pair of action-object label ψ(A,O) is

automatically generated at each frame by choosing the object with the minimal distance.

Since the data is noisy, the number of different action-object pairs generated was originally

over 60. We manually pruned some unreasonable pairs, e.g., standing on a keyboard, making

the final number of action-object pairs 26. The sequence of labeled action-object pairs in

each video is treated as a sentence for grammar learning. To simplify the grammar structure,

any two consecutive actions will be merged if they share the same action label.

Stochastic And-Or Grammar: An Attributed And-Or Graph [ZM07] is chosen as our

representation for stochastic grammar. As a compact representation, it can easily represent

repeated patterns of action and event data. Formally, an And-Or Graph is defined as a

5-element tuple: G = 〈S, T,N,R, P 〉, where S is the root node of the grammar, T the set of

the terminal nodes, N the set of non-terminal nodes, R the set of the production rules, P

the set of probabilities assigned to the grammar rules. In such representation, an And rule

decomposes a pattern into a configuration of non-overlapped sub-patterns, whereas an Or

rule indicates alternative configurations of a composite pattern.

Unsupervised Structure Learning: We adopt an unsupervised structure learning method

for stochastic And-Or Grammar introduced by Tu et al. [TPZ13]. Starting from a flat gram-

mar where each Or fragment denotes an individual training sample, the method iteratively

induces compositions and reconfiguration, making the initial grammar more compact by

mining and reducing the repeated patterns. The problem can be formulated as optimizing

a posterior

P (G|Ω) ∝ p(G)P (Ω|G) =
1

Z
e−α‖G‖

∏
ai∈Ω

P (ai|G), (4.10)

where i is the i−th vertex of human pose, G the grammar, Ω = {ai} = {ψi(Ai, Oi)} the set

of training action-object labels, Z the normalization factor of the prior, α a constant, and

‖G‖ the size of the grammar.
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(a) Grammar using 10 sentences (b) Using all the sentences

Figure 4.5: The grammar of human activity. Using labeled action-objects pairs from 94 short

videos, the And-Or structures of the grammar with 228 nodes is learned in an unsupervised

fashion, which represents all the actions from the training video in a compact way. The

graph visualized here does not show the structure in a temporal order, but only shows the

decomposition relations. Multiple edges may exist between any two nodes, indicating the

decomposition happens more than once. Grey rectangle represents the 26 action-object pairs

as terminal nodes, light and dark green circle refers to the And and Or nodes, respectively.

A matching pursuit [MZ93] scheme is applied, where we jointly learn And-Or fragments

instead of And fragment and Or fragment individually. In each iteration, we find the And-Or

fragments that lead to the highest gain in the posterior probability of the grammar.

Finding the highest posterior is equivalent to maximizing the production of the likelihood

gain and the prior gain. The likelihood gain can be factorized as the product of two coherence

measures [MO04]: i) n-gram matrix of the And-Or fragment, and ii) coherence of the context

matrix:
P (D|Gt+1)

P (D|Gt)
=

∏n
i=1 ‖ri(aij)‖

‖ri(aij)‖

‖r‖n‖r‖
×
∏

c

(∑
eM(e, c)

∑
eM(e,c)

)∏
e,cM(e, c)M(e,c)

, (4.11)

where Gt and Gt+1 are the grammars before and after learning from an And-Or fragment,
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ri(aij) the subset of reductions where aij of i−th node was reduced, e the sum or product over

all possible configurations generated by And-Or fragments, and c the product over all the

contexts represented by the context matrix M . Since the prior probability of the grammar

is determined by the grammar size, the prior gain is defined as:

P (D|Gt+1)

P (D|Gt)
= e−α(‖Gt+1‖−‖Gt‖). (4.12)

The learned grammar structure is visualized in Figure 4.5. In total 228 nodes are used to

encode all 94 videos of training data.

Attributed And-Or Grammar: On top of the And-Or structures, attributes [PZ15] are

further integrated into terminal nodes in order to account for the motion speed and duration

of human activities. To simplify the complexity of the model, we learn the distribution of the

motion speed and duration independently from the structure learning. Gaussian Mixture

Models are applied to model the distributions.

4.4.2 Extracting Features

We crafted three types of features to account for different perspectives of the intangible affor-

dance: i) spatial features φS(G) characterizing the spatial relations among entities, ii) tem-

poral features φT (G) indicating the additional planning cost introduced by the heater/cooler

in the scene, and iii) affordance features φA(G) describing the human preferences in terms of

air velocity and room temperature.

Spatial feature φS(G) characterize the spatial relations among humans, heaters/coolers

and other objects.

• Spatial Entities. The over-segmented voxels are fit into 3D primitives [AFS06] (Fig-

ure 4.6a), and merged together or branched into sub-parts. Objects semantic label is

manually assigned. Locations of the objects are computed by averaging over all the

vertices. The location and orientation of a person is obtained using the head location

and orientation acquired by Kinect. Result is shown in Figure 4.6b.
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(a) Over-segmented voxels (b) Spatial entities and relations

Figure 4.6: (a) After fitting a set of over-segmented voxels into 3D primitives, (b) the

segmented voxels are merged together or branched into sub-parts using the scene graph

structure described in Open Inventor [Wer94]. The head position is connected frame by

frame, illustrated in yellow curve.

• Spatial Relations. Pair-wise spatial features φS(G) are extracted by computing the

relative distances and orientation between human and any objects, as well as between

the heater/cooler and any other objects.

Temporal feature φT (G) indicates the additional planning cost by comparing before and

after placing the heater/cooler into a 3D scene. In this work, we project 3D voxels onto a

2D plane. All the objects above the floor is treated as obstacle, forming a binary obstacle

map (Figure 4.7). A probabilistic roadmap [KSL96] is built by sampling a set of random

placement of nodes and connecting k-nearest neighbors [Alt92] within a given distance range.

Finally, the optimal path is obtained using Dijkstra’s shortest path algorithm [Dij59]. We

assign unit costs to the free spaces devoid of objects in the obstacle map, and infinite costs

to the occupied spaces. The final cost of a plan is calculated by accumulating the costs along

the path.
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(a) Before adding a heater/cooler (b) After adding a heater/cooler

Figure 4.7: Additional planning cost introduced by adding a potential location of the

heater/cooler. (a) Before adding the heater/cooler, the path between the start location

and the end location is shorter than (b) after adding the heater/cooler as shown in the red

rectangle.

Affordance feature φA(G) describes the human preferences in terms of air velocity and

room temperature. In our staggered discretization of the fluid simulation, different velocity

components are stored on cell faces. We average them to cell centers to get a net velocity.

Temperature values are already stored at cell centers. We intersect the human geometry

with the simulation grid, and extract all velocity and temperature values in the resulting

cells. Velocity directions, velocity magnitudes and temperature values are added to feature

vector.

4.4.3 Learning and Inference

We formulate the learning of intangible affordance as a ranking problem [Joa02], and assume

the demonstrations in the videos are positive examples. This is known as rational choice

theory [Loh08, HS08, Bec74, BE08] in economics and social science. This assumption is

consistent with psychology studies [GBK02], indicating humans are intend to teach their

children through successful demonstrations, unlike other animals.
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In accordance to rational choice theory, the goal of the learning is to determine the best

weights ω of the feature vector φ(G) = (φS(G), φT (G), φA(G)) that separates the observed

positive examples from the the unobserved negative examples. Formally, the observed exam-

ples G? should have lower cost than any imagined random configurations {G} with respect

to the proper coefficient vector ω of φ(G). The negative examples are randomly gener-

ated/imagined examples that are different from the observed human demonstration. Details

are provided in subsection 4.4.4.

The ranking function is defined as:

R(G) = 〈ω,φ(G)〉. (4.13)

Learning the above ranking function is equivalent to finding the coefficient vector ω such

that the maximum number of the following inequalities hold:

〈ω,φ(G?)〉 > 〈ω,φ(Gi)〉, ∀i ∈ {1, 2, · · · , n}. (4.14)

To approximate the solution to the above NP-hard problem [HSV95], non-negative slack

variables ξi were introduced [CV95]:

min
1

2
〈ω,ω〉+ λ

n∑
i

ξ2
i , ∀i ∈ {1, · · · , n} (4.15)

s.t. ξi ≥ 0, 〈ω,φ(G?)〉 − 〈ω,φ(Gi)〉 > 1− ξ2
i , (4.16)

where λ is the trade-off parameter between maximizing the margin and satisfying the pair-

wise relative constraints. Given a static scene, the goal in the inference is to find the best

configuration G? that receives the highest score among all the imagined configurations {Gi}:

G? = arg max
Gi
〈ω,φ(Gi)〉. (4.17)

4.4.4 Sampling Solution Spaces

Since we only observe the positive examples during the learning, negative examples are

needed to sample from the solution spaces. During the inference, since the only input is

a static scene, the same sampling process is used to generate both human activities and

candidates of the heaters/coolers.
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(a) (b) (c)

Figure 4.8: Sampling (a) human activities from temporal solution spaces, as well as the (b)

location and (c) orientations of the heater/cooler from the spatial solution spaces.

Human Activities: An Earley parser [Ear70] is adopted to sample a sequence of action-

object pairs. If there is no object in the current scene matched the sampled object, we will

randomly choose an object in the current scene to replace the mismatched one. The same

planning engine based on probabilistic roadmap is applied to generate a continuous motion

trajectory. The motion speed and the duration of human activities are further sampled from

the Attributed And-Or Graph to provide more realistic sampling of human activities.

Heater/Cooler: The imagined configurations of the heater/cooler include different loca-

tions and orientations. We quantize the entire 3D spaces of the scene into a set of discretized

grids. Grids without any objects in its neighbors in any one of the six directions are pruned,

as it cannot provide physical supports for heater/cooler to attach to.

4.5 Experiment

4.5.1 Learning Intangible Affordance

We collect Human demonstrations with ground truth labels (Figure 4.6b). These observed

locations and orientations of the heaters/coolers are treated as positive examples. Addi-

tional planning cost is computed by randomly sampling other locations and orientations of

the heaters/coolers. For each scene, 1000 samples with different configurations are generated

and treated as negative examples. Samples that are closed to the positive examples are auto-

matically pruned. Figure 4.9 illustrates the histogram of human preferences on temperature

and net velocity. We can see that human prefers the temperature between 20 and 25 ◦C,
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(a) Temperature (◦C) (b) Net Velocity (m/s)

Figure 4.9: Human preferences learned from demonstrations. Human prefers (a) temperature

between 20 and 25 ◦C, and (b) net velocity around 0.1 m/s in indoor environment.

and net velocity around 0.1 m/s.

4.5.2 Inferring Optimal Affordance in Static Scenes

Next, we test our learned model using three different setups: i) without a person, ii) with a

static person, and iii) with a moving agent performing a set of human activities.

If we remove the factor of humans, the overall distribution of air flow velocity and tem-

perature tends to be relatively uniform throughout the room in highly ranked results. For

those with low scores, the fields exhibit strong anisotropy–temperature distribution has a

bias in certain regions, and tends to concentrate in some corners or small parts inside the

room.

When a static human pose is given, highly ranked configurations share similar velocity

and temperature distributions. The learned preferences focus on spatial locations near the

human. Other regions, even if reachable by different human activities, do not strongly

influence the ranking results. The low score ones contain extremely high or low heat or

velocity magnitudes on the human skin, therefore are less capable of providing affordance.

Finally, we consider a sequence of human activities sampled from the learned grammar

in the room. In this case, top ranked configurations tend to match both velocity and tem-

perature with human preferences in most regions, especially those reachable by human.
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Figure 4.10: Inference results: top three (in green bounding box) and the worst two (in

red bounding box) configurations. Left: If we do not consider human in a scene, the con-

figurations receive higher ranks tend to have uniform distributed (left) velocity and (right)

temperature across the entire scene. Middle: If we consider a static human, a person sitting

on a chair in this case, both (left and middle) velocity and (right) temperature is tend to

match the human preferences only near the location where the person sits. Right: When we

consider human activities sampled from the learned grammar, the top ranked configurations

tend to match both (left) velocity and (right) temperature with human preferences on most

of the regions, excluding the regions where are not reachable by humans, e.g., the regions

near walls.

4.5.3 Evaluations

We asked 10 subjects to rank the high rank room configurations. Figure 4.11 plots the

correlation between subject choices and our system’s output.
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Figure 4.11: Correlation between our ranking (x-axis) vs human judgments (y-axis). Red

lines denotes the perfect match.

4.6 Discussion and Future Work

By utilizing accurate physics-based simulation methods from computational fluid dynamics

and computer graphics, we have taken a step further on object affordance by proposing and

inferring a new form of affordance–intangible affordance. Exemplified with heater and cooler

configurations, our system accurately predicts the air flow velocity field and temperature

evolution in a room, thus providing a more in-depth and finer-grained account for object

affordance and human behaviors that is missing in conventional scene understanding with

pairwise human-object relationships.

Our system has several limitations that we will address in future research. First of all, we

shall incorporate finer level task planning with more complex human activities and motion

planning. Secondly, as an uncomplicated demonstration of the intangible affordance, we have

excluded the change of airspeed, the heat loss due to radiation (such as those between human

bodies and walls) and the influence on the air flow due to the motion of humans and objects.

These are promising future directions that would potentially allow more realistic and useful

learning results. We believe that using deeper features with the help of neural networks will

improve the performance. A more detailed human body with different comfortability on

various body parts could also be employed. By augmenting our system with these additional

features, we will be a step closer to successfully applying our learning framework of intangible

affordance to support many useful applications such as wind/temperature sensitive room

layout design, robot/human task planning and human behavior reasoning.
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CHAPTER 5

Inferring Containers and Containment Relations

In this chapter, we will present a framework to study and reason about the containment

relations, following by a tracking algorithm integrating the reasoning of the containment

relations to solve the challenging oculusion issues in the field of object tracking.

5.1 What is Where: Inferring Containment Relations from Videos

For many AI tasks, such as scene understanding in visual perception, task planning in robot

autonomy, and symbol grounding in natural language understanding, a key problem is to

infer “what is where over time”. A person may say “the pizza is in a pizza box, and the

pizza box is in a fridge”. In such a description, the object locations are described in a

qualitative and hierarchical way, in which containers play an important role in quantizing

human perceptual space via containment relations. By containers, we refer to any general

objects in a scene that can contain other objects, for example, fridge, mug, box, lunch bag,

envelop and so on. The containment relations between containers and contained objects,

i.e., containees, may change over time by agents.

In this work, we propose a probabilistic approach to infer containment relations from

RGB-D videos. Consider the example shown in Figure 5.1. The containers and containees

are tracked in a 3D scene and highlighted in colored bounding boxes in the top panel. The

inferred containment relations are constructed in the bottom panel, pointing from containees

to the corresponding containers, and the numbers on edges denote the frames when the

containment relations occur. It is worth noting that the containment relations are time

varying, and can be changed by human actions. The presented containment relation inference
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Figure 5.1: (Left) Structured, qualitative and abstract interpretation of containment re-

lations over time in a scene. The goal is to answer “what is where over time”. (Right)

The inferred containment relations. The numbers on edges denote the frames when the

containment relations occur.

method is aim to address the following two tasks.

Recovering Hidden Objects with Severe Occlusions: Severe occlusions frequently

happen in daily scene. Reasoning about containment relations helps to recover objects from

tracking failures when objects are partially occluded or even completely unobservable. For

instance, as shown in Figure 5.1, although we only observe a person taking a pizza from a

pizza box at frame 246, we are able to infer that the pizza was contained by the pizza box from

frame 1 to 245, during which period the pizza was unobservable. By simple commonsense

that a containee shares the same position as its container when the containment relation

between them holds, we are able to recover the hidden containee with severe occlusions or

even without actually seeing it. This capability provides a potential solution to build a

system (e.g., an assistive robot) to answer “what is where over time”. For example, a robot

can help to localize an object in a room if a person forgets where he or she left it.

Inferring Subtle Human Actions: Because there are self-occlusions or occlusions by

other objects in a scene, subtle human actions that involve small and local movements, such

as placing a phone in a bag, are difficult to detect. If a change of objects’ status (i.e., a
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Figure 5.2: An overview of the proposed approach. (a) Given a RGB-D video, we first track

objects and human skeletons in 3D space. (b) At each frame, the tracked 3D bounding boxes

are used to construct containment relations, whereas tracked human skeletons are used to

detect containment relation changes. (c) Across the video, a joint spatial-temporal inference

method is used to find the optimal sequence of containment graphs. The containment graph

sequence defines both spatial containment relations at each frame (blue edges in the graph)

and temporal containment relation changes over time (changes of the blue edges, highlighted

by red dashed arrows) caused by human actions.

containment relation change) is observable, it is natural to reason about that some human

actions occurred. The ability of inferring human subtle actions by goals instead of observing

and matching detailed action trajectories provides possibilities for a robot to understand the

intentions of agents.

Figure 5.2 illustrates the framework of the proposed method. Given a RGB-D video

captured by a consumer depth camera (Figure 5.2(a)), our method first tracks the objects

of interest and the human skeletons (Figure 5.2(b)). Then at each frame t, the containment

relations are represented by a containment graph; in time, containment relation changes

are proposed based on human actions. To find the optimal interpretation across the full

sequence, a dynamic programming algorithm is adopted to globally optimize both spatial

and temporal space, resulting in the optimal sequence of containment graphs (Figure 5.2(c)).

This work makes three major contributions:

1. We propose a probabilistic approach to infer containment relations from videos over
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time. A dynamic programming algorithm is applied to solve the ambiguities on both

containment relations in space and containment relation changes in time, providing a

globally optimized solution.

2. We propose a dynamic graph representation for containment relations over time (Fig-

ure 5.1). The dynamic graph quantizes 3D scene space and provides a qualitative way

for tracking objects with heavy occlusions.

3. We model the containment relation changes in time by assuming that human actions

are the only cause to change the containment relations. This constraint in return helps

to recover hidden objects and infer time varying containment relations at each frame.

5.1.1 Related Work

Cognitive studies [HS07] has shown that infants can understand containers and containment

relations as early as 3.5 months old. Strickland and Scholl [SS15] suggest that infants can

detect containment before understanding occlusion. Liang et al. [LZZ15] evaluates human

cognition of containing relations for adults through a series of experiments using physical-

based simulations. In computer science, the problem of containers has been studied from

various perspectives in the fields of AI, robotics and computer vision.

AI: Qualitative Spatial Representation / Reasoning (QSR) has been extensively studied

in the AI community. Cohn and Hazarika [CH01] provided a survey of key ideas and results

in QSR literature. Some typical methods include using ontology [HAB08, GS04], topology

[GR02, Li07], metric spatial representation [Fra92, PS94], and other approaches [HHF10,

SGR13, Ren12]. Since 1980s, the AI community began to study containers as a typical

example for qualitative reasoningusing symbolic input [BF03, Fra96]. In particular, Collins

and Forbus [CF87] used containers to reason about liquid by introducing a new technique,

namely molecular collection ontology. A knowledge base for qualitative reasoning about

containers was developed by Davis et al. [DMC13], which was expressed in a first-order

language of time, geometry, objects, histories, and events. However, existing methods for
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spatial and temporal reasoning in the AI literature are mostly based on logic formulas, which

are difficult to apply on processing real sensory inputs. The ability to handle noisy visual

signal as inputs by introducing probability to model qualitative spatial relations makes our

method different from previous work.

Robotics: Localizing objects using spatial relations has received considerable interests

in the robotics community, e.g., [ASF11, WKL13, FDP97, AAW10, NDD14]. Alper et

al. [ASF11] utilized spatial relations to describe topological relationships between objects.

Wong et al. [WKL13] studied occluded objects inside containers, and presented a novel gen-

erative model for representing container contents by using object co-occurrence information

and spatial constraints. Feddema et al. [FDP97] applied two methods to control the surface

of liquid in an open container which was moved by a robot. Most of the existing methods

can only reason about containment relations in a known structured environment. In con-

trast, the proposed method aims to address the problem in arbitrary environments, where

the number of objects are not fixed and relation changes occur more frequently.

Computer Vision: Two streams of studies are closely related to the present work: ob-

ject affordance and tracking objects using context information. In recent literature, there is

growing interest in understanding scenes and objects by their their affordances and function-

alities [GGV11, GSE11, ZZ13, ZZZ15, ZJZ16] and their possible interactions with human

poses [SLH12, KGS13, ZFF14, WNX14, WZZ13]. Using context information has also been

extensively explored in human-object interaction and multi-object tracking. For instance,

Yang et al. [YWH09] proposed to track multiple interacting objects by mining auxiliary

objects, and [WNX14] formulated the interacting objects tracking as a network-flow Mixed

Integer Program problem. More recently, a multiple objects tracking algorithm [YYL15] was

proposed by maintaining spatial relations between objects using a Relative Motion Network.

In comparison, our method utilizes the interactions between human and objects as temporal

constraints to infer the explicitly modeled containment relations and their changes, resulting

a probabilistic approach to recover objects with heavy occlusions.
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5.1.2 Problem Definition

We use Ω = {Oi|i = 1 · · ·N} to denote all the objects of interest in a scene, where Oi denotes

the ith object. At each frame, we define the following variables:

• A containment indicator function is denoted by Ct(·) ∈ Ω. If Oj contains Oi directly,

then Oj = Ct(O
i), where Oi is the containee and Oj is the container.

• A containment relation Ri
t = 〈Oi, Ct(O

i)〉 is an ordered pair representing the contain-

ment relation between Oi and Ct(O
i). The set of all containment relations at time t is

denoted as Λt = {Ri
t|i = 1, · · · , N}.

• A containment graph is denoted as Gt = (Ω,Λt), where Ω is the set of vertices and Λt

is the set of directed edges.

To make the inference process tractable, we make the following assumptions about the

properties of Gt.

Spatial Assumptions: i) Each object must be contained by one and only one container,

except the root node of Gt, i.e., the “room”, which does not have its container. ii) There is

no loop in Gt, that is, object cannot contain itself. The nested containment relations do not

form loops. iii) A person becomes a container when he or she holds an object.

Temporal Assumption: We assume that all containment relation changes ought to be

caused by a person, which means a scene does not have external disturbance other than

human. In other words, if we know there is no human actions, the containment relations

should not change. This temporal assumption couples containment relations in space with

containment relation changes over time. Figure 5.3 gives an example: a person takes an

apple out of a bowl, during which the person breaks the containment relation between the

apple and the bowl, and establishes a new containment relation between the apple and the

person.
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Figure 5.3: Temporal assumption. An apple is taken out of a bowl by a person, resulting a

containment relation change. (a) Tracked skeletons during the time interval [t, t + m]. (b)

At time t, the red bowl was the container of the apple. (c) At time t+m, the person became

the container of the apple.

5.1.3 Problem Formulation

The objective of our work is to interpret the observed video as the optimal sequence of

containment graphs {Gt}∗ from a given RGB-D video V[1,T ] = {Vt|t = 1, · · · , T}.

5.1.3.1 Containment Relations in 3D Space

At each frame t, a containee Oi is contained by a container Ct(O
i) if and only if it satisfies

all following relations defined in terms of an energy function Φ with the three components:

• IN relation defined by the energy term φIN;

• ON relation defined by the energy term φON;

• AFFORD relation defined by the energy term φAFF.
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Figure 5.4: Containment relations in 3D space. (Left) A RGB image of a desktop scene.

(Bottom right) Depth images from the top view. (Top right) Depth images from the front

view. (a) and (c) violate ON relation and IN relation, respectively. Only (b) is considered

to satisfy both IN and ON relations.

IN Relation describes containment relations from the top view:

φIN(Ri
t, Vt) = Γ(Oi)/[Γ(Oi) ∩ Γ(Ct(O

i))], (5.1)

where Γ(Oi) is the projected area of containeeOi along the gravity axis, and Γ(Oi)∩Γ(Ct(O
i))

is the overlapped area between containee Oi and its container Ct(O
i) projected in 2D from

the top view.

The bottom right of Figure 5.4 shows three examples of IN relation. If a containee is

contained by its container, the boundary of the containee should be inside the contour of

the container from the top view.

ON Relation describes containment relations from the front view:

φON(Ri
t, Vt) = D(Zb(O

i), Zg(Ct(O
i))), (5.2)

where Zb(O
i) is the bottom coordinates of the containee projected to 2D, Zg(Ct(O

i)) =

[Zt(Ct(O
i)), Zb(Ct(O

i))] is the interval of the container’s top and bottom coordinates pro-

jected to 2D, and D is a distance function which measures how well the bottom of the
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containee Zb(O
i) falls into the intervals between the top and the bottom of the container

Zg(Ct(O
i)). If a containee is contained by its container, the bottom of the containee has to

contact the container, and the containee should be above the container. Three examples of

ON relation are illustrated in the top right of Figure 5.4.

AFF Relation φAFF(Ri
t, Vt) measures the ability of a container to afford a containment

relation with containee at frame Vt, which is a pair-wise term. The containment relation is

subject to a set of physical and geometric constraints. For example, a porous basket can

neither contain a containee bigger than itself, nor smaller containees like beads. In this work,

we only consider the relative volume between the container and the containee.

Energy of Containment Relations is defined as:

φ(Gt, Vt) = λ1 · φIN + λ2 · φON + φAFF, (5.3)

where λ1 and λ2 are the weights of the energy terms, obtained through cross-validation

during the training phrase.

5.1.3.2 Containment Relation Changes in Time

The containment relation change between frame t and t+ 1 is denoted as ∆Ri
t. We classify

the changes based on human actions into the following four categories, shown in Figure 5.5.

Move-in is defined as ∆Ri
t : 〈Oi, Ht〉 → 〈Oi, Ct+1(Oi)〉, which describing a containee Oi

moves from a person Ht at frame t to another container Ct+1(Oi) at frame t+ 1.

Move-out is the opposite change to move-in, defined as ∆Ri
t : 〈Oi, Ct(O

i)〉 → 〈Oi, Ht+1〉.

No-change implies there is no containment relation change between frame t and t + 1,

defined as Ct(O
i) = Ct+1(Oi).
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Figure 5.5: Transition matrix of containment relation changes for object A from frame t

to t + 1. Move-in: the container of A changes from a person to an object. Move-out: the

container of A changes from an object to a person. No-change: the container of A does not

change. Paranormal-change: the containment relation changes without human intervention

violate the temporal assumption, thus are ruled out.

Paranormal-change refers to the change that is in conflict with the temporal assump-

tionthat a person is the only cause that leads to containment relation changes, and thus

is ruled out through reasoning. Formally, if the containment relation Ri
t changes, i.e.,

Ct(O
i) 6= Ct+1(Oi), but no person H is involved, i.e., Ct(O

i) 6= Ht &Ct+1(Oi) 6= Ht+1,

such changes are defined as paranormal-change.

Energy of containment relation changes is defined as

ψ(Gt,Gt+1, V[t−ε,t+ε]) = 〈ωLj , θ〉, (5.4)

where ωLj is the template parameter for four types of containment relation changes Lj, j ∈

{1, 2, 3, 4}, [t − ε, t + ε] is the time interval of the sliding windows for temporal feature
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extractions, and θ is the extracted feature vector.

5.1.3.3 Joint Spatial-Temporal Energy

By combining both the energy of containment relations in space at each frame (Equation 5.3),

and the energy of containment relation changes between adjacent frames (Equation 5.4), the

optimal containment graph {Gt}∗ is defined as:

{Gt}∗ = argmin
{Gt}

E({Gt}, {Vt}) (5.5)

= argmin
{Gt}

[
µ

T∑
t=1

φ(Gt, Vt) +
T−1∑
t=1

ψ(Gt,Gt+1, V[t−ε,t+ε])

]
, (5.6)

where φ is the data term which models the energy of containment relations in space, ψ is the

smooth term that models the containment relation changes in time, and µ is the trade-off

parameter between the spatial-temporal cues.

5.1.4 Inference by Dynamic Programming

The goal of the inference process is to find the optimal sequence of containment graphs {Gt}∗

for the input RGB-D video by optimizing the energy function defined in Equation 5.5.

The time complexity of searching the entire solution space is O(N (N−1)·T ), where N is

the number of objects and T is the video length. It is impractical to brute-force search the

entire space.

Fortunately, at each frame, the container of the containee Oi is independent of the con-

tainer of the containee Oj. By assuming such property that the container of each containee

is independent, we can optimize the solution for each object separately. Hence, Equation 5.5

can be rewritten in terms of containment relations with respect to each object:

{Ri
t}∗ = argmin

{Ri
t|t=1,··· ,T}

[
µ

T∑
t=1

φ(Ri
t, Vt) +

T−1∑
t=1

ψ(Ri
t,Ri

t+1, V[t−ε,t+ε])

]
. (5.7)

By aggregating {Ri
t}∗ from each object, we can recover the full sequence of containment

graphs {Gt}∗ of the scene. A dynamic programming is adopted to find the optimal solution

of Equation 5.7 with the time complexity O(N2 · T ).
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Figure 5.6: Probability of three different containment relation changes over time between

two objects (in red and cyan bounding boxes). The ground truth is shown in the bottom.

5.1.5 Experiments

5.1.5.1 Dataset

We collected a RGB-D video dataset with diverse actions to evaluate the proposed method.

Our dataset consists of 1326 video clips in 9 scenes captured by a Kinect sensor, in which

800 clips are used to train our model and the remaining clips are for testing. For each video

clip, RGB and depth images, 3D human skeletons as well as point cloud information are

used as the input of the proposed method.

Our dataset is unique, compared with traditional ones in the following aspects: i) it

focuses on containers and containment relations; ii) it includes partially and completely

occluded objects, such as an apple in a bowl (partial occlusion) and a laptop in a back-

pack (complete occlusion); iii) it includes diverse containment relation changes in different

scenarios, such as throwing, picking up, opening lid, zipping zipper, etc..

5.1.5.2 Detection of Containment Relation Changes

Consider the case shown in Figure 5.6, where a person moves a containee from one container

to another, during this process the containee changes directions, scales, and views. Severe
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Figure 5.7: Confusion matrix of relation change recognition. (a) Human actions only. (b)

Human actions with object context. (c) Joint inference using the proposed method.

occlusions by hands and other objects also occurred. We show the probabilities of three

relation changes by detection: move-in, move-out and no-change between two objects high-

lighted with bounding boxes. At each frame, we compare the category which has the highest

probability among three candidate categories with the ground truth (bars at the bottom).

The detection of relation changes works well in most cases, but it fails in certain situations:

i) when skeletons, the containee and the container are occluded at the same time (frame

54-70), the algorithm cannot distinguish the relation change of move-in or move-out from

no-change; ii) some skeletons or the containee are occluded partly (frame 380-390), which

causes difficulties in distinguishing move-in from move-out.

We quantitatively compare the results of containment relation changes between our

method with two baseline methods, as shown in Figure 5.7: (a) recognition by human

actions only, and (b) recognition by both human actions and object context. Both of them

are trained by multi-class SVM on the same training data. There are obvious confusions

between move-in and move-out in (a). By introducing object context, the proposed method

improve the accuracy as shown in (b). The proposed method achieves the best performance

in (c). The reason is that our method is able to correct some temporal detection errors.
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Figure 5.8: Inference of containment relations for the object in green bounding box. Each

color denotes a different object. (a) The tracked objects and the human skeletons in 3D

scene. (b) Refined tracking results. We recover the positions of hidden containee using the

positions of its container. (c) The probability of the containee contained by each possible

container in space. (d) The inference result matrix given different length of the same video.

The results are corrected as more information provided 1○- 4○. (e) Ground truth.

5.1.5.3 Inferring Containment Relations

Figure 5.8 demonstrates the inference process. Firstly, we track all objects of interest by

state-of-the-art RGB-D trackers [SX13]. The objects are bounded by boxes with different

colors in Figure 5.8(a). Take the object in the green box as an example, we infer the
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containment relations it involves in.

Figure 5.8(c) shows the probability of containment relations between the object in the

green box and its potential container, using the spatial cues only. Each row represents one

possible container. The height of the line represents how likely this container contains the

object in the green box. Due to severe occlusions, the spatial cues of objects are missing

constantly. When the object is occluded, the probability for each possible container is evenly

distributed.

Figure 5.8(d) shows the inference result matrix, in which the nth row represents the DP

result of each frame given the first n frames of the video. The grey area denotes the states

that are not observed up to the nth frame. As more information is given, the DP algorithm

gradually corrects results and gets closer to the ground truth. Take 1○ for example, the

inferred container from frame 53 to 90 does not change to the human hand until the 91st

frame. The initial inferred container remains to be the table due to heavy occlusion. But

as time goes, the temporal information accumulates and wins against the spatial cues. our

method achieves good performance in comparison with the ground truth in Figure 5.8(e).

We also perform quantitative evaluations. For comparison, we transform the tracking re-

sults into containment relations as a baseline. Specially, we apply non-maximum suppression

at each frame for all candidates, and the bounding box with the highest score is considered

as the present position of the object. For each object Oi, its container is the object which is

nearest to Oi, and satisfies both ON relation and IN relation.

We divide our dataset into three parts according to the visibility of objects: no occlu-

sion, partial occlusion and complete occlusion. Partial occlusion is the situation that the

containee or its container is observed partially, whereas complete occlusion means that the

container or its container is occluded completely, such as a laptop is put into a backpack.

We quantitatively evaluate the accuracy of containment relations on these situations. The

results are shown in Table 5.1. In the completely occluded situation, both methods perform

worse than in the other situations. The proposed method performs better by recovering

some relations from complete occlusions. In the situation of no occlusion, there are some
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Figure 5.9: Some qualitative results. Each row shows the result of a specific scene. The

arrows represent the containment relations between objects. Each arrow points from one

containee to its container. The green arrows denote containment relations between the

hidden containees and their containers.

false positives because of the observation noise in the detection process. Our method is

efficient to eliminate some false positives.
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Table 5.1: Accuracy of containment relation estimation in %.

Method
no

occlusion

partial

occlusion

complete

occlusion
overall

Baseline 0.75 0.21 0.08 0.37

Ours 0.86 0.64 0.43 0.59

5.1.6 Conclusion

Containers and containment relations are ubiquitous in daily scenes and activities. They

are useful not only to answer “what is where over time” for various AI tasks, but also for

quantizing the perception of functional space, detecting and tracking hidden objects and

heavily occluded objects, and reasoning about human subtle actions. The presented method

achieves good performance in some challenging scenarios. However, it is still limited in the

following aspects: i) IN and ON relation do not describe all containment relations, such as

liquid or gas; ii) the objects with large deformation, such as plastic bags, are still difficult to

solve.

5.2 Tracking Occluded Objects and Recovering Incomplete Tra-

jectories by Reasoning about Containment Relations and Hu-

man Actions

We study the problem of tracking occluded objects during human daily activities in cluttered

scenes, such as packing, playing, working, etc.. Figure 5.10 shows an example of a daily

indoor scenario captured by a RGB-D sensor: an agent 1○ enters a room; 2○ puts down her

backpack; 3○ takes a laptop out of the backpack and puts it on the table; 4○ grabs a cup,

fetches some water from a water dispenser; 5○ sits back and puts down the cup next to her.

During the course of this event, objects disappear and then re-appear frequently.

Tracking objects in such scenarios is a challenging problem due to severe occlusions caused

by two conditions:
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Figure 5.10: A scenario for tracking occluded objects in an indoor scene. The dashed lines

represent the inferred trajectories and different colors indicate different objects in the scene.

By explicitly reasoning about containment relations, the proposed algorithm is capable of

recovering full trajectories of objects even they are contained or occluded by other objects

in the video.

• Contained. The occlusion is caused by a new containment relation formed between

two objects, e.g., a person puts a laptop into a bag, which is view-independent;

• Blocked. The occlusion is caused by other objects observed from certain camera views,
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Figure 5.11: The framework of the proposed method. (a) Sensor input: a sequence of RGB-D

images and human skeleton captured by a Kinect sensor. (b) Off-the-shelf state-of-the-art

object detection and human action detection algorithms were applied to extract the object

location and human actions per frame. (c) Inference on a network flow representation.

The solid red lines denote the observations in space. The dashed red lines denote that the

present state of the object is hidden and there is no observation. The blue lines denote the

observations in time. S and E are the start and the end of the trajectories, respectively.

A dynamic programming scheme is applied to search, optimize and recover the complete

trajectory of each object.

in which the containment relations unchanged, e.g., a laptop is sitting in front of a cup,

which blocks the view of the cup from the current camera view and is view-dependent.

We argue such problem is not merely a vision task compared to traditional visual tracking

tasks, which primarily focuses on reliable object detectors and data association methods.

Instead, significant reasoning processes are involved. To address this problem, we believe an

explicit model of relations among objects as well as relations between objects and agents are

needed.

The proposed framework is shown in Figure 5.11. Given a RGB-D video with extracted

human skeleton sequence in a scene, state-of-the-art detection algorithms are applied to de-

tect regions of interest of each object and human actions over time; the detection results serve

as the initial proposals and the input to our algorithm. We pose the problem of recovering

object trajectories as Maximizing a Posteriori (MAP) problem using a network flow repre-
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sentation, in which a trajectory of an object is jointly interpreted and constrained by both

object detection and containment relations in space as well as human actions over time.

A dynamic programming scheme is applied to search, optimize and recover the complete

trajectory of each object.

This work makes three contributions:

1. We propose a method to recover incomplete trajectories of objects by taking account

of containment relations and two causes of occlusions: contained and blocked.

2. We assume that human action is the only cause that leads to occlusions and object

status changes, and use it as a constraint to interpret trajectories of objects over time.

3. We introduce a new dataset including a set of RGB-D videos of human interacting

with occluded objects.

5.2.1 Related Work

Spatial Reasoning: Spatial reasoning plays an essential role in human daily life. Although

quantitative approaches can provide the most precise information, numerical information is

often unnecessary or unavailable at human level. In computer vision, quantitative approaches

usually study objects tracking problem, of which the literature is too expansive to survey

here; we refer readers to recent survey and benchmark [WLY15, SCC14]. Here, we focus on

spatial reasoning methods related to the presented work.

As a typical example, container has been used to study spatial reasoning problem [BF03,

Fra96]. Using physical-based simulations, [LZZ15] evaluated human cognition of contain-

ing relations through human studies. [DMC13] developed a knowledge base for qualitative

reasoning about containers, expressed in a first-order language of time, geometry, objects,

histories, and events. Some exemplary tasks include i) computational approaches for rea-

soning about liquid transfer [KJZ16, YDY15, MSF17], ii) reason about containability and

containment relations [LZZ16, YDY15, WLY17], and iii) occlusion modeling and reasoning

[EF10, EES10, WWR11]. Compared to prior work, we integrate qualitative and quantita-
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tive approach and explicitly model the occlusions by containment relations when an object

is contained or blocked by others.

Detection using Context: Context has been widely explored in human-object interac-

tions (HOI) and multi-object tracking. Some typical approaches and setups include: i)

Learning deformable action templates [YZ09], actionlet [WLW14] and animated pose tem-

plates [YNL14]. ii) Combining spatial and functional constraints between human and objects

[GKD09, YWH09, WZZ13]. iii) Task-oriented action recognition [ZZC15] and utility learning

[ZJZ16, SHC17], including complex cooking tasks [RAA12, AAD11].

Different from the literature in context modeling, we explicitly model human action as a

context cue. Specifically, we assume that human action is the only cause that leads to the

changes of containment relations, and use the human action as a constraint to improve the

tracking.

Although some recent work adopted deep neural networks to extract contexts for object

detection and tracking, these data-driven feedforward methods have well-known problems:

i) They are black-box models that cannot be explained and only applicable with super-

vised training by fitting the typical context of the object, thus difficult to generalize to new

tasks. ii) Lacking explicit representation to handle occlusions, low resolution, and lighting

variations—there are millions of ways to occlude an object in a given image [WZX17], mak-

ing it impossible to have enough data for training and testing such black box models. In

this work, we go beyond passive recognition by reasoning about time-varying containment

relations.

5.2.2 Probabilistic Formulation

A key concept in the present work is “containment relation”. An object which contains or

holds another object can serve as a container, forming containment relation with the object it

contains. For instance, when a laptop is inside a backpack, a containment relation is formed

between the laptop and the backpack, where the backpack plays the role of container.
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Figure 5.12: Two causes of occlusions. i) Blocked: An apple (a) can be detected at the

beginning, but later (b) becomes occluded by a bowl. ii) Contained: an apple is contained

by a person (c) and a bowl (d), respectively.

We make the following assumptions for containers and containment relations:

• When an object is contained by a container, the object will inherit the same trajectory

from its container. For example, consider a case that a laptop is inside a backpack. If a

person carries the backpack around, the laptop will move together with the backpack,

sharing the same trajectory.

• The containment relation is a partially ordered relation constrained by the volume of

the object and its container, i.e., if a container’s volume is smaller than an object’s,

the object cannot be contained by this container.

• An object can only be contained directly by one container.

Suppose there are K objects in a scene. Our goal is to recover trajectories of all K

objects T = {T 1, T 2, · · · , TK} from a RGB-D image sequence I = {I1, I2, · · · , Iτ}, where

τ is the length of the image sequence. T k is defined as an ordered set of object states

T k = {xk1, xk2, · · · , xkτ}, where xkt is the state of the kth object in space at time t: xkt = (lkt , c
k
t ),

where lkt is the location of the kth object at time t and ckt ∈ {1, 2, · · · , K} is an object index,

representing the inferred container of kth object at time t.
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5.2.2.1 Spatial Hypotheses by Containment Relations

At each frame t, instead of purely relying on detection results, our algorithm further proposes

two types of hypotheses generated based on the possible causes of occlusion. These two

hypotheses provides additional cues, essentially competing with the detection results. As a

result, such extra info recovered by the containment relations could later help overcome the

miss or wrong detection described in the next section. The two types of hypotheses are:

Contained: In these situations, occlusion happens due to forming new containment rela-

tions as shown in Figure 5.12 (c)(d), where hypotheses are shown in dashed box. Formally,

suppose such occlusion happens to the kth object at time t, the algorithm proposes that the

location of the kth object the same as its container while keeping it’s container the same as

in the previous frame: xkt = (l
ckt
t , c

k
t ), c

k
t 6= k.

Blocked: In such cases, an object is occluded due to another object sitting in between the

object and the camera from certain camera views, as shown in Figure 5.12(a)(b), where an

apple is occluded by a bowl and a person. The dashed box is the proposal for the apple’s

present location, which is the same as the location in the last frame before occlusion hap-

pened. Formally, suppose such occlusion happens to the kth object at time t, the algorithm

proposes the object state as the same in previous state: xkt = xkt−1 = (lkt−1, c
k
t−1), where the

location and containment relation remain the same.

5.2.2.2 Temporal Hypotheses by Human Actions

Across different frames, we consider human as the cause and the only cause of object state

changes, assuming no other external disturbance in a scene. In other words, if there is no

human action occurring, the objects should remain the same location and the containment

relations will not change. As a result, human actions impose a hard constraint to rule out

the implausible sudden jumps from the object detection, resulting in a smooth and plausible

trajectory.
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Figure 5.13: Human action features at time t in a sliding window with the length of 2ε.

The red line represents the distance between the hand and the spine of the person. The

yellow line represents the distance change between the hand and the object. The green line

represents the location change of the object in the current sliding window.

In this work, we represent the human action as a skeleton sequenceH = {H1, H2, · · · , Hτ},

where τ is the length of the sequence. At time t, 25 joints of human skeleton captured by a

Kinect sensor were used: Ht = (h1
t , h

2
t , · · · , h25

t ).

5.2.2.3 Recovering Incomplete Trajectories

We recover incomplete trajectories using MAP by reasoning about containment relations

and human actions:

T ∗ = arg max
T

P (T |I) = arg max
T

P (T |X , H) (5.8)

∝ arg max
T

P (X|T )P (T |H) (5.9)

= arg max
T

∏
k

P (X|T k)P (T k|H), (5.10)

where X and H are the object detection in space and human action in time, respec-

tively. P (X|T k) =
∏τ

t=1 P (Xt|xkt ) models the likelihood for object detector response X =

{X1,X2, · · · ,Xτ}. P (T k|H) is a dynamic model which is a smoothness term for trajectory,
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and can be decomposed as

P (T k|H) = P ({xk1, xk2, · · · , xkτ}|H) (5.11)

= PS(xk0)
τ∏
t=1

P (xkt |xkt−1, Ht−1)PE(xkτ ), (5.12)

where PS(xk0) and PE(xkτ ) are the probability for initialization and termination, respectively,

and P (xkt |xkt−1, H
k
t−1) is the transition probability of two consecutive frames, which models

the probability that the object status changes from time t− 1 to t based on the observation

of human action Ht−1. Intuitively, this probability evaluates the consistency between the

location of an object and human actions. As we discuss in previous section, the location

changes of an object can be interpreted by the occurrence of human actions. Figure 5.13

illustrates three examples of the object location changes and the corresponding human ac-

tions, including (a) a person taking an apple from a bowl, (b) a person throwing a frisbee,

and (c) the object keeps the same location without human action.

The transition probability of two consecutive states is

− logP (xkt |xkt−1, H
k
t−1) = 〈ω , θ[ε]〉, (5.13)

where ω is the template parameter. θ[ε] is the extracted human action feature in a time

interval [t− 1− ε, t− 1 + ε].

For θ, we consider three types of features in a sliding window on the time axis: human

pose, relative movements between the human and the object, and the object movements.

Suppose that the sliding window size is 2ε, the feature vector sequence at time t is Fm =

(Fhm,F rm,Fom), m ∈ [t− 1− ε t− 1 + ε]. Specifically,

1. Fhm is the relative distance of all the skeletons to three base points (two shoulders and

one spine point), which encodes human action. In Figure 5.13, we show one component

of Fhm in red lines: the distance between the hand and the spine point.

2. F rm is the distance between human hand and the location of the object, which is denoted

in yellow lines in Figure 5.13.
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3. Fom is the distance between the locations of the object at time m and t, depicted by

green lines in Figure 5.13.

A sequence clip is first interpolated to a certain length. The wavelet transform is then

applied to Fm. The coefficients at the low frequency are kept as the action feature. The

window sizes and sliding steps are both in multiple scales.

Substituting Equation 5.11 into Equation 5.8, we then have

T ∗ = arg max
T

K∏
k=1

τ∏
t=1

[P (Xt|xkt )· (5.14)

PS(xk0) · P (xkt |xkt−1, Ht−1) · PE(xkτ )].

We can reformulate Equation 5.14 as an Integer Linear Programming problem:

f ∗ = arg min
f

C(f), (5.15)

where

C(f) =
∑
i

csif
s
i +

∑
i,j

cijfij +
∑
i

cifi +
∑
i

ceif
e
i (5.16)

cij = − logP (xj|xi, Hi) (5.17)

ci = − logP (xi|T k) (5.18)

cei = − logPE(xi) (5.19)

csi = − logPS(xi) (5.20)

s.t. fij, fi, f
s
i , f

e
i ∈ {0, 1}. (5.21)

This is equivalent to finding a min-cost path in network flow with source S and sink E as

shown in Figure 5.11: the red arrows denotes the detection on input RGB-D images with

cost on the edge ci, the dashed red arrows indicates that the object is hidden at the present

state and there is no observation from current frame, and each transition between successive

frames is denoted by blue lines with cost cij given by human actions, serving as a smoothness

term.

Dynamic programming is applied to optimize Equation 5.16. By assuming objects will not

affect each other’s trajectory, we optimize the trajectory for each object individually. Firstly,
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(a) (b)

Figure 5.14: Our occluded object tracking dataset. (a) Statistic of the dataset. (b) Some

examples of the activities.

we run K-Shortest Paths Algorithm [BFT11], which generates a set of tracklets. Then we

use the Viterbi algorithm to connect these tracklets, which yields continuous trajectories for

each object.

5.2.3 Experiments

5.2.3.1 Dataset

We collected a 3D dataset with diverse scenes, multiple actions and various objects to evalu-

ate the proposed method (Figure 5.14). 1346 video clips in 10 scene categories were captured

by Kinect sensors. RGB and depth images, 3D human skeletons as well as point cloud data

were recorded in each video clip. Compared with existing dataset, the proposed dataset

focuses on occluded objects for visual tracking, which consists of a large variety of human

actions causing object location changes in different scenarios, such as throwing, catching,

picking up, putting down, fetching, lifting, etc..

Each frame in the dataset was manually annotated with ground truth by drawing bound-

ing boxes for each object. When an object is occluded, we annotate the ground truth based

on two types of causes for the occlusions. i) Contained. The object shares the location with
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Figure 5.15: Transition probability of the object location in the green bounding box. The

solid boxes depict that the object is tracked by object detectors. The dashed boxes depict

that the object is recovered by inference. (a), (c) and (e) show detected bounding boxes and

human skeletons on point cloud. (b) and (d) are the transition probabilities between two

possible locations. In (b), the bottom four bars with low probability keep the same since we

constrain the impossible object moving that are not caused by human actions.

its container, forming a new containment relation. ii) Blocked. The object is stationary,

and the containment relation remains the same. For the situation that a person serves as a

container, we draw a bounding box on the person’s hand.

5.2.3.2 Transitions in DP: an In-depth Example

Figure 5.15 shows an example of the trajectory inference process of an object bounded by

a green box. The tracking results are visualized in the bottom panel, where the solid boxes

denote the detected location, and the dashed boxes denote the inferred results. Specifically,

we employed the state-of-the-art RGB-D based detectors [SX13] on a RGB-D image sequence.

The detected objects are bounded by boxes with different colors shown in Figure 5.15(a),

(c) and (e). The human skeletons from Kinect are in red color.

Figure 5.15(b) and (d) illustrate the partial transition probabilities changes between two

consecutive states in an interval (frame 11 to frame 51, frame 53 to frame 108), equivalent

to the probability of human actions and calculated by Equation 5.13. The left panel of (b)

and (d) are some possible transitions. Take the first bar in (b) as an example. The green
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and red dot represent the location of the object bounded by green bounding box and the

person, respectively. The bar depicts the probabilities of the transition from the green box

location to the human hand location over time. We can see that the probability increases

from frame 11 to frame 51. At frame 51, the person picked up the object. From frame 59

to frame 108, the object was held by the person. The first bar of Figure 5.15 (d) shows the

probability of the object being carried by this person.

It is worth noting that the bottom four bars in Figure 5.15(b) have low transition proba-

bilities which are close to zero. Take the last bar in Figure 5.15(b) as an example. It shows

the probability of the object bounded by the green box moving to the location of the object

bounded by the orange box. This movement was not caused by human action and violated

our assumption, which was ruled out during the inference.

From frame 51 to 109, the object was contained and thus cannot be visually detected.

Human action provided a strong cue for the object location: a person picked up this object

and moved it to a container bounded by a yellow bounding box.

5.2.3.3 Ablative Analysis: Roles of Interactions in HOI

In this section, we evaluate the roles and importance of HOI quantitatively by turning on

and off certain components in the proposed method.

We consider the HOI as a binary classification problem: if the object movement is con-

sistent with human action, it should be classified as positive; otherwise it is negative. We

define whether the object movement is consistent with human action using two criteria: i)

if no human action, the object should remain stationary, and vice versa; ii) if there is an

object location change, the object should follow the trajectory of human action.

We first consider the simplest method using human pose only, i.e., Equation 5.13 with

feature vector Fm = (Fhm). As showed in Figure 5.16a, using human pose only is not sufficient

to achieve reasonable performance. This was mainly caused by the lack of object context,

disallowing a good classification between certain actions, e.g., putting down and picking up.

Next, we consider the method using both human pose and object context, i.e., Equa-
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(a) (b) (c)

Figure 5.16: Confusion matrix of HOI. 1○ denotes that the object movement is consistent

with HOI, whereas 2○ denotes that the object movement is not consistent with HOI. (a)

Human pose sequence only. (b) Human pose sequence with objects context. (c) Joint

inference in our method.

tion 5.13 with feature vector Fm = (Fhm,F rm,Fom). Although achieving reasonable results as

shown in Figure 5.16b, this method only looks at local window m ∈ [t− 1− ε, t− 1 + ε], thus

lacking of global optimization.

With back propagation using DP as described in Equation 5.14 and Equation 5.16, the

proposed method globally adjust the inference, resulting in the best performance among

three methods as shown in Figure 5.16c.

All the results report here were trained by SVM on the same training data. To address

the problem of different scales of interaction, different step sizes and different sliding window

sizes along time axis were used.

5.2.3.4 Ablative Analysis: Spatial/Temporal Suppression

In this section, we design two experiments (baseline1 and baseline2) to evaluate how spatial

and temporal information influence the tracking. We compare the results of these two

experiments with the approach of tracking with occlusion model (baseline3) and the proposed

method (full model).

As an example, we show comparisons of results from different methods using a video of

530 frames (Figure 5.17). In this video, three actors threw and caught a ball highlighted

by a yellow bounding box. The ball traveled fairly fast, appearing and then disappearing

frequently. Directions, scales, and views of the ball also varied. Severe occlusions by hands
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Figure 5.17: An example of the experiment results. The goal is to track the yellow ball.

In each bar, the yellow represents the correct results, and the black represents the wrong

results. The overlap ratio of bounding boxes were set to 0.5. Different colors denote different

objects: actor 1 (green), actor 2 (blue), actor 3 (red) and ball (yellow). (a) Examples of

tracking results. The dashed boxes depict the object is occluded. (b) Temporal-suppression

results. (c) The scores of consistency between object movement and human action. (d)

Spatial-suppression results. (e) Full model results.

or other body parts occurred.

Temporal Suppression (baseline1): In this setting, we do not consider the human

actions, i.e., set Equation 5.17 to a constant. As a result, it is equivalent to an online tracking

problem: the trajectory of an object is determined only by the response of detectors. Non-

maximum suppression was applied on all detection candidates per frame. Figure 5.17 (b)

shows the results.

Spatial Suppression (baseline2): In this setting, we set Equation 5.18 to a constant,

i.e., not considering the detection score, but inferring object location only by human actions

in time. In other words, the trajectory of an object is determined only by the transition

probabilities modeled by human actions.

Results were shown in Figure 5.17 (d). Failure cases mostly fall into two categories: i)

when human skeleton, the object and the container are occluded at the same time, and ii)

when human skeleton or the object are partially occluded, it is difficult to distinguish the

throwing action from the catching action as the lack of action cues or spatial context.
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Table 5.2: Tracking accuracy of full model compared with three baselines on different subsets

of the proposed dataset.

baseline1 baseline2 baseline3 full

all 0.57 0.32 0.59 0.69

blocked 0.21 0.08 0.25 0.47

contained 0.15 0.02 0.16 0.42

Tracking with Occlusion Model (baseline3): A related topic in computer vision is

multi-object tracking. Some recent efforts were trying to infer and recover both short-term

and long-term occluded objects by occlusion assumption [ZLN08, AS11]. In this work, we

use [ZLN08] as the baseline representing the state-of-the-art multi-object tracking algorithm

with occlusion assumptions, which adopted an Explicit Occlusion Model (EOM) to track with

long-term inter-object occlusions, adding occluded object hypothesis to model occlusions.

Full Model: The results of full model are shown in Figure 5.17 (e). Benefit from both

spatial and temporal terms with back propagation, most of the occlusions were successfully

recovered. The failure cases happened when the object was transferred continuously between

containers without any valid object detection in space. For example, from frame 265-320,

the ball was passed from actor 1 to actor 2 and then passed to actor 3. Later, at frame 320,

the ball was passed back to actor 1. In this case, the ball was not detected during the entire

process. As the result, our method believed the ball was in the hand of actor 1 all the time.

Results: To evaluate our method quantitatively, we extract two subsets of the video clips

from the proposed dataset based on two causes of occlusions: contained by another object

and the blocked camera views. We evaluate the accuracy on these two subsets as well as on

the entire dataset.

Success rate was adopted for quantitative analysis, defined as the ratio between the

number of frames with correct object localization and the number of all frames. Given an

estimated bounding box of an object be and the ground truth bounding box bg, the overlap
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Figure 5.18: Different overlap ratios evaluated on different subsets. The red, yellow, green,

and blue line represent the results of full model, baseline1, baseline2, and baseline3, respec-

tively. The horizontal axis is the threshold axis, ranging from 0 to 1. The vertical axis is the

success rate.

score is defined as r = be∩bg
be∪bg , where ∩ and ∪ are the intersection and union of two regions. An

object bounding box is considered correct if r ≥ r0. The accuracy of the tracking results are

shown in Table 5.2 with r0 = 0.5. We further evaluate success rate when varying different

overlap ratios r0. Results are shown in in Figure 5.18.

5.2.3.5 Evaluations on Existing Datasets

In addition to our proposed dataset designed for tracking severe objects which are “con-

tained” or “blocked”, we further test our method on some existing datasets for modeling

HOI: CAD-120 [SPS12], CMU interaction dataset [GKD09], MSR action recognition dataset

[YLW09], and NW-UCLA Multiview Action 3D dataset [WNX14]. The major differences

between these four datasets and other public available datasets (e.g., the multiple objects

tracking datasets) is: these four datasets focus on rich HOI, severe occlusions between hu-

man and objects, and large appearance variations of object, which is the main focus of this

work.

To evaluate our method on these datasets, we apply the RGB-D detectors [SX13] for

RGB-D datasets [SPS12, WNX14, YLW09], and RGB detectors [KMM12] for RGB-only
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Figure 5.19: More qualitative results. Solid boxes are detected by tracking algorithm and

the dashed boxes are inferred. Top two rows: (a) CAD-120, (b) CMU Dataset, (c) MSR

Dataset, and (d) NW-UCLA Dataset. The bottom three rows (e) are the results on our

proposed occluded objects dataset.

dataset [GKD09]. For action detection, we train a classifier on 2D data for CAD 120 and

CMU interaction datasets which have no skeleton data. Examples of qualitative results are

shown in Figure 5.19.
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Table 5.3: Tracking accuracy on other datasets.

baseline1 baeline2 baseline3 full

CAD-120 0.30 0.13 0.33 0.47

CMU 0.28 0.12 0.25 0.43

MSR 0.43 0.21 0.44 0.60

NW-UCLA 0.56 0.25 0.56 0.72

The quantitative tracking accuracy is shown in Table 5.3. The performance of our method

on MSR action recognition and Northwestern-UCLA dataset is better than the results on

CAD-120 and CMU dataset. We believe two reasons contributed to the performance differ-

ences: i) Some errors were caused by the unreliable action detections in 2D space compared

to 3D space. ii) Small object detections are more challenging in 2D cases, such as pouring

from a cup, lighting a flash light in the CMU dataset.

5.2.4 Conclusions and Discussions

We propose an algorithm to infer occluded objects and recover the incomplete trajectories

for objects in a cluttered indoor scene by reasoning about containment relations and human

actions. We assume that the movements of objects are only caused by human actions, and

explicitly model occlusions from two causes: contained by others, or blocked camera views.

A network flow representation is adopted to globally optimize trajectories based on two

occlusion causes. In the experiment, we test our method on the collected occluded objects

dataset and other four existing datasets, demonstrating the proposed method can provide

better performance in challenging scenarios.

The current work is limited in the following aspects:

i) When the object detection is noisy, the performance of our method is likely to degen-

erate, especially when continuous transitions between occluded objects happen. High level

knowledge may help to improve the results, e.g., integrating an inference algorithm for the

intention of the agent.
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ii) We currently limit the scenarios where human is the only cause that leads to the

object status changes, thus are unable to handle situations where objects move only by

invisible force field, e.g., gravity. Such challenging situations would require a much deeper

understanding of the 3D scenes, particular the “dark matter” that is invisible [SXR15], e.g.,

functionality [ZZY13, ZZC15] and causality [FZ13a].

iii) The majority of computer vision community is focusing on rigid body. However,

properly modeling fluid (e.g., water [BBY15, KJZ16]) and granular material (e.g., sand

[KZJ17]) is important for inferring containment relations.
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CHAPTER 6

Scene Synthesis by Integrating

Functionality and Affordance

Recent advances in visual recognition and classification through machine-learning-based vi-

sion algorithms have yielded similar or even better than human performance (e.g., [HZR15,

EEV15]) by leveraging large-scale, ground-truth-labeled RGB datasets [DDS09, LMB14].

However, indoor scene understanding remains a largely unsolved challenge due in part to

the limitations of appropriate RGB-D datasets available for training purposes. To date,

the most commonly used RGB-D dataset for scene understanding is the NYU-Depth V2

dataset [SHK12], which comprises only 464 scenes with only 1449 labeled RGB-D pairs

provided while the remaining 407,024 pairs are unlabeled. This is clearly insufficient for

the supervised training of modern computer vision methods, especially those based on deep

learning. Furthermore, the manual labeling of per-pixel ground truth information, including

the (crowd-sourced) labeling of RGB-D images captured by Kinect-like sensors, is tedious

and error-prone, limiting both its quantity and accuracy.

To address this deficiency, recent years have seen the increased use of synthetic image

datasets as training data, but little effort has been devoted to the learning-based systematic

generation of massive quantities of sufficiently complex synthetic indoor scenes for the pur-

poses of training scene understanding algorithms. This is partially due to the difficulties of

(i) devising sampling processes capable of generating diverse scene configurations, and (ii)

the intensive computational costs of photorealistically rendering large-scale scenes. Aside

from a few efforts, reviewed in section 6.1, in generating small-scale synthetic scenes, the

most notable work was recently reported by Song et al. [SYZ17b], in which a large scene

layout dataset was downloaded from the Planner5D website.
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Figure 6.1: (Top Left) An example automatically-generated 3D bedroom scene, rendered as

a photorealistic RGB image, along with per-pixel ground truth of surface normal, depth,

and object identity. (Top Right) Another synthesized bedroom scene. Synthesized scenes

include fine details—objects (e.g., the duvet and pillows on beds) and their textures are

changeable, by sampling physical parameters of materials (reflectance, roughness, glossiness,

etc..), and illumination parameters are sampled from continuous spaces of possible positions,

intensities, and colors. (Bottom) Rendered images of 4 example synthetic indoor scenes.

By comparison, our work is unique in that we devise a complete learning-based pipeline

for synthesizing large scale learning-based configurable scene layouts via intelligent sampling,

as well as the photorealistic physics-based rendering of these scenes with associated per-pixel

ground truth to serve as training data. Our pipeline has the following characteristics:

• By utilizing a stochastic grammar model, one represented by an attributed Spatial

And-Or Graph (S-AOG), our sampling algorithm combines hierarchical compositions

and contextual constraints to enable the systematic generation of 3D scenes with high

variability, not only at the scene level (e.g., control of size of the room and the number

of objects within), but also at the object level (e.g., control of the material properties

of individual object parts).
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• As Figure 6.1 shows, we employ state-of-the-art physics-based rendering, yielding pho-

torealistic synthetic images. Our advanced rendering enables the systematic sampling

of an infinite variety of environmental conditions and attributes, including illumination

conditions (positions, intensities, colors, etc., of the light sources), camera parameters

(Kinect, fisheye, panorama, camera models and depth of field, etc.), and object prop-

erties (color, texture, reflectance, roughness, glossiness, etc.).

Since our synthetic data is generated in a forward manner—by rendering 2D images

from 3D scenes of detailed geometric object models—ground truth information is naturally

available without the need for any manual labeling. Hence, not only are our rendered images

highly realistic, but they are also accompanied by accurate, per-pixel ground truth color,

depth, surface normals, and object labels.

In our experimental study, we demonstrate the usefulness of our dataset by improving

the performance in certain scene understanding tasks, showcasing the prediction of surface

normals from RGB images, as well as the depth prediction from RGB images. Furthermore,

by modifying object attributes and scene properties in a controllable manner, we provide

benchmarks and diagnostics of trained models for common scene understanding tasks; e.g.,

depth and surface normal prediction, semantic segmentation, reconstruction, etc.

6.1 Related Work

Synthetic image datasets have recently been a source of training data for object de-

tection and correspondence matching [SGS10, SS14, SX14, FKI14, DFI15, PSA15, ZKA16,

GWC16, MKS16, QSN16], single-view reconstruction [HWK15], view-point estimation [MSB14,

SQL15], 2D human pose estimation [PJA12, RLB15, Qiu16], 3D human pose estimation

[SSK13, SVD03, YIK16, DWL16, GKS16, RS16, ZZL16, CWL16, VRM17], depth predic-

tion [SHM14], pedestrian detection [MVG10, PJW11, VLM14, HNK15], action recogni-

tion [RM15, RM16, SGC17], semantic segmentation[RVR16], scene understanding [HPS16,

KIX16, QY16, HPB16], and in benchmark data sets [HWM14]. Previously, synthetic im-

agery, generated on the fly, online, had been used in visual surveillance [QT08] and active
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vision / sensorimotor control [TR95]. Although prior work demonstrates the potential of

synthetic imagery to advance computer vision research, to our knowledge no large synthetic

RGB-D dataset of learning-based configurable indoor scenes has yet been released.

3D layout synthesis algorithms [YYT11, HPS16] have been developed to optimize fur-

niture arrangements based on pre-defined constraints, where the number and categories of

objects are pre-specified and remain the same. By contrast, we sample individual objects

and create entire indoor scenes from scratch. Some work has studied fine-grained object

arrangement to address specific problems; e.g., utilizing user-provided examples to arrange

small objects [FRS12, YYT16], and optimizing the number of objects in scenes using LARJ-

MCMC [YYW12]. To enhance realism, Merrell et al. [MSL11] developed an interactive

system that provides suggestions according to interior design guidelines.

Image synthesis has been attempted using various deep neural network architectures,

including recurrent neural networks (RNN) [GDG15], generative adversarial networks (GAN)

[WG16, RMC15], inverse graphics networks [KWK15], and generative convolutional networks

[LZW16, XLZ16b, XLZ16a]. However, images of indoor scenes synthesized by these models

often suffer from glaring artifacts, such as blurred patches. More recently, some applications

of general purpose inverse graphics solutions using probabilistic programming languages have

been reported [MKP13, LB14, KKT15]. However, the problem space is enormous, and the

quality of inverse graphics “renderings” is disappointingly low and slow.

Stochastic scene grammar models have been used in computer vision to recover 3D

structures from single-view images for both indoor [ZZ13, LZZ14] and outdoor [LZZ14] scene

parsing. In the present work, instead of solving visual inverse problems, we sample from the

grammar model to synthesize, in a forward manner, large varieties of 3D indoor scenes.

Domain adaptation Although the presented work does not directly involve domain adap-

tation, this plays an important role in learning from synthetic data, as the goal of using

synthetic data is to transfer the learned knowledge and apply it to real-world scenarios. A
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review of existing work in this area is beyond the scope of this work; we refer the reader

to a recent comprehensive survey [Csu17]. Traditionally, the widely used techniques for

domain adaptation can be divided into four categories: i) covariate shift with shared sup-

port [Hec77, GSH09, CMR08, BBS09], ii) learning shared representations [BMP06, BBC07,

MMR09], iii) feature-based learning [EP04, Dau07, WDL09], and iv) parameter-based learn-

ing [CH05b, YTS05, XLC07, Dau09]. With the recent boost of deep learning, researchers

have started to apply deep features to domain adaptation (e.g., [GL15, THD15]).

Contributions

The present work makes five major contributions:

1. To our knowledge, ours is the first work that, for the purposes of indoor scene un-

derstanding, introduces a learning-based configurable pipeline for generating massive

quantities of photorealistic images of indoor scenes with perfect per-pixel ground truth,

including color, surface depth, surface normal, and object identity. The parameters

and constraints are automatically learned from the SUNCG [SYZ17b] and ShapeNet

[CFG15b] datasets.

2. For scene generation, we propose the use of a stochastic grammar model in the form

of an attributed Spatial And-Or graph (S-AOG). Our model supports the arbitrary

addition and deletion of objects and modification of their categories, yielding significant

variation in the resulting collection of synthetic scenes.

3. By precisely customizing and controlling important attributes of the generated scenes,

we provide a set of diagnostic benchmarks of previous work on several common com-

puter vision tasks. To our knowledge, this is the first work to provide comprehen-

sive diagnostics with respect to algorithm stability and sensitivity to certain scene

attributes.

4. We have released a large dataset, AOGIndoor, which consists of rendered 2D images

with depth, surface normals, and segmentation, as well as 3D layouts and models.
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Figure 6.2: Scene grammar as an attributed S-AOG. The terminal nodes of the S-AOG

are attributed with internal attributes (sizes) and external attributes (positions and orien-

tations). A supported object node is combined by an address terminal node and a regular

terminal node, indicating that the object is supported by the furniture pointed to by the

address node. If the value of the address node is null, the object is situated on the floor. Con-

textual relations are defined between walls and furniture, among different furniture, between

supported objects and supporting furniture, and for functional groups.

5. We demonstrate the effectiveness of the proposed synthesized scene dataset by advanc-

ing the state-of-the-art in the prediction of surface normals and depth.

6.2 Representation and Formulation

6.2.1 Representation: Attributed Spatial And-Or Graph

A scene model should be capable of: (i) representing the compositional/hierarchical struc-

ture of indoor scenes, and (ii) capturing the rich contextual relationships between different

components of the scene. Specifically,

• Compositional hierarchy of the indoor scene structure is embedded in a graph-based

model to model the decomposition into sub-components and the switch among multiple

alternative sub-configurations. In general, an indoor scene can first be categorized into
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different indoor settings (i.e., bedrooms, bathrooms, etc.), each of which has a set of

walls, furniture, and supported objects. Furniture can be decomposed into functional

groups that are composed of multiple pieces of furniture; e.g., a “work” functional

group consists of a desk and a chair.

• Contextual relations between pieces of furniture are helpful in distinguishing the func-

tionality of each furniture item and furniture pairs, providing a strong constraint for

representing natural indoor scenes. In this work, we consider four types of contextual

relations: (i) relations between furniture and walls; (ii) relations among furniture; (iii)

relations between supported objects and their supporting objects (e.g., monitor and

desk); and (iv) relations between objects of a functional pair (e.g., sofa and TV).

Representation: We represent the hierarchical structure of indoor scenes by an attributed

Spatial And-Or Graph (S-AOG), which is a Stochastic Context-Sensitive Grammar (SCSG)

with attributes on the terminal nodes. An example is shown in Figure 6.2. This represen-

tation combines (i) a stochastic context-free grammar (SCFG) and (ii) contextual relations

defined on a Markov random field (MRF); i.e., the horizontal links among the terminal

nodes. The S-AOG represents the hierarchical decompositions from scenes (top level) to ob-

jects (bottom level), whereas contextual relations encode the spatial and functional relations

through horizontal links between nodes.

Definitions: Formally, an S-AOG is denoted by a 5-tuple: G = 〈S, V,R, P,E〉, where S is

the root node of the grammar, V = VNT ∪ VT is the vertex set including non-terminal nodes

VNT and terminal nodes VT, R stands for the production rules, P represents the probability

model defined on the attributed S-AOG, and E denotes the contextual relations represented

as horizontal links between nodes in the same layer.

Non-terminal Nodes: The set of non-terminal nodes VNT = V And∪V Or∪V Set is composed

of three set of nodes: And-nodes V And denoting a decomposition of a large entity, Or-

nodes V Or representing alternative decompositions, and Set-nodes V Set of which each child
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branch represents an Or-node on the number of the child object. The Set-nodes are compact

representations of nested And-Or relations

Production Rules: Corresponding to three different types of non-terminal nodes, three

types of production rules are defined:

• And rules for an And-node v ∈ V And, are defined as a deterministic decomposition

v → u1 · u2 · · ·un(v). (6.1)

• Or rules for an Or-node v ∈ V Or, are defined as a switch

v → u1|u2 · · · |un(v), (6.2)

with ρ1|ρ2 · · · |ρn(v).

• Set rules for a Set-node v ∈ V Set are defined as

v → (nil|u1
1|u2

1| · · · ) · · · (nil|u1
n(v)|u2

n(v)| · · · ), (6.3)

with (ρ1,0|ρ1,1|ρ1,2| · · · ) · · · (ρn(v),0|ρn(v),1|ρn(v),2| · · · ), where uki denotes the case that ob-

ject ui appears k times, and the probability is ρi,k.

Terminal Nodes: The set of terminal nodes can be divided into two types: (i) regular

terminal nodes v ∈ V r
T representing spatial entities in a scene, with attributes A divided into

internal Ain (size) and external Aex (position and orientation) attributes, and (ii) address

terminal nodes v ∈ V a
T that point to regular terminal nodes and take values in the set

V r
T ∪ {nil}. These latter nodes avoid excessively dense graphs by encoding interactions that

occur only in a certain context [Fri03].

Contextual Relations: The contextual relations E = Ew ∪ Ef ∪ Eo ∪ Eg among nodes

are represented by horizontal links in the AOG. The relations are divided into four subsets:

• relations between furniture and walls Ew;
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• relations among furniture Ef ;

• relations between supported objects and their supporting objects Eo (e.g., monitor and

desk); and

• relations between objects of a functional pair Eg (e.g., sofa and TV).

Accordingly, the cliques formed in the terminal layer may also be divided into four subsets:

C = Cw ∪ Cf ∪ Co ∪ Cg.

Note that the contextual relations of nodes will be inherited from their parents; hence,

the relations at a higher level will eventually collapse into cliques C among the terminal

nodes. These contextual relations also form an MRF on the terminal nodes. To encode the

contextual relations, we define different types of potential functions for different kinds of

cliques.

Parse Tree: A hierarchical parse tree pt instantiates the S-AOG by selecting a child node

for the Or-nodes as well as determining the state of each child node for the Set-nodes. A

parse graph pg consists of a parse tree pt and a number of contextual relations E on the

parse tree: pg = (pt, Ept). Figure 6.3 illustrates a simple example of a parse graph and four

types of cliques formed in the terminal layer.

6.2.2 Probabilistic Formulation

The purpose of representing indoor scenes using an S-AOG is to bring the advantages of

compositional hierarchy and contextual relations to the generation of realistic and diverse

novel/unseen scene configurations from a learned S-AOG. In this section, we introduce the

related probabilistic formulation.

Prior: We define the prior probability of a scene configuration generated by an S-AOG with

the parameter set Θ. A scene configuration is represented by pg , including objects in the

scene and their attributes. The prior probability of pg generated by an S-AOG parameterized
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Figure 6.3: (a) A simplified example of a parse graph of a bedroom. The terminal nodes of

the parse graph form an MRF in the bottom layer. Cliques are formed by the contextual

relations projected to the bottom layer. (b)–(e) give an example of the four types of cliques,

which represent different contextual relations.
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by Θ is formulated as a Gibbs distribution

p(pg |Θ) =
1

Z
exp{−E(pg |Θ)} (6.4)

=
1

Z
exp{−E(pt |Θ)− E(Ept |Θ)}, (6.5)

where E(pg |Θ) is the energy function of the parse graph, E(pt |Θ) is the energy function of

a parse tree, and E(Ept |Θ) is the energy function of the contextual relations. Here, E(pt |Θ)

is defined as combinations of probability distributions with closed-form expressions, and

E(Ept |Θ) is defined as potential functions relating to the external attributes of the terminal

nodes.

Energy of Parse Tree: Energy E(pt |Θ) is further decomposed into energy functions of

different types of non-terminal nodes, and energy functions of internal attributes of both

regular and address terminal nodes:

E(pt |Θ) =
∑
v∈V Or

EOr
Θ (v) +

∑
v∈V Set

ESet
Θ (v)︸ ︷︷ ︸

non-terminal nodes

+
∑
v∈V r

T

EAin
Θ (v)

︸ ︷︷ ︸
terminal nodes

, (6.6)

where the choice of child node of an Or-node v ∈ V Or follows a multinomial distribution,

and each child branch of a Set-Note v ∈ V Set follows a Bernoulli distribution. Note that the

And-nodes are deterministically expanded; hence, Equation 6.6 lacks an energy term for the

And-nodes. The internal attributes Ain (size) of terminal nodes follows a non-parametric

probability distribution learned via kernel density estimation.

Energy of Contextual Relations: The energy E(Ept |Θ) is described by the probability

distribution

p(Ept |Θ) =
1

Z
exp{−E(Ept |Θ)} (6.7)

=
∏
c∈Cw

φw(c)
∏
c∈Cf

φf (c)
∏
c∈Co

φo(c)
∏
c∈Cg

φg(c), (6.8)

which combines the potentials of the four types of cliques formed in the terminal layer. The

potentials of these cliques are computed based on the external attributes of regular terminal

nodes:
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• Potential function φw(c) is defined on relations between walls and furniture (Fig-

ure 6.3(b)). A clique c ∈ Cw includes a terminal node representing a piece of furniture

f and the terminal nodes representing walls {wi}: c = {f, {wi}}. Assuming pairwise

object relations, we have

φw(c) =
1

Z
exp{−λw· <

∑
wi 6=wj

lcon(wi, wj)︸ ︷︷ ︸
constraint between walls

, (6.9)

∑
wi

[ldis(f, wi) + lori(f, wi)]︸ ︷︷ ︸
constraint between walls and furniture

>},

where λw is a weight vector, and lcon, ldis, lori are three different cost functions:

– The cost function lcon(wi, wj) defines the consistency between the walls; i.e., ad-

jacent walls should be connected, whereas opposite walls should have the same

size. Although this term is repeatedly computed in different cliques, it is usually

zero as the walls are enforced to be consistent in practice.

– The cost function ldis(xi, xj) defines the geometric distance compatibility between

two objects

ldis(xi, xj) = |d(xi, xj)− d̄(xi, xj)|, (6.10)

where d(xi, xj) is the distance between object xi and xj, and d̄(xi, xj) is the mean

distance learned from all the examples.

– Similarly, the cost function lori(xi, xj) is defined as

lori(xi, xj) = |θ(xi, xj)− θ̄(xi, xj)|, (6.11)

where θ(xi, xj) is the distance between object xi and xj, and θ̄(xi, xj) is the mean

distance learned from all the examples. This terms represents the compatibility

between two objects in terms of the relative orientations.

• Potential function φf (c) is defined on relations between pieces of furniture (Figure 6.3(c)).

A clique c ∈ Cf includes all the terminal nodes representing a piece of furniture:
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c = {fi}. Hence,

φf (c) =
1

Z
exp{−λc

∑
fi 6=fj

locc(fi, fj)}, (6.12)

where the cost function locc(fi, fj) defines the compatibility of two pieces of furniture

in terms of occluding accessible space

locc(fi, fj) = max(0, 1− d(fi, fj)/dacc). (6.13)

• Potential function φo(c) is defined on relations between a supported object and the

furniture that supports it (Figure 6.3(d)). A clique c ∈ Co consists of a supported

object terminal node o, the address node a connected to the object, and the furniture

terminal node f pointed to by the address node: c = {f, a, o}

φo(c) =
1

Z
exp{−λo· (6.14)

< lpos(f, o), lori(f, o), ladd(a) >},

which incorporates three different cost functions. The cost function lori(f, o) has been

defined with potential function φw(c), and two new cost functions are:

– The cost function lpos(f, o) defines the relative position of the supported object o

to the four boundaries of the bounding box of the supporting furniture f

lpos(f, o) =
∑
i

ldis(ffacei , o). (6.15)

– The cost term ladd(a) is the negative log probability of an address node v ∈ V a
T ,

which is regarded as a certain regular terminal node and follows a multinomial

distribution.

• Potential function φg(c) is defined for furniture in the same functional group (Fig-

ure 6.3(d)). A clique c ∈ Cg consists of terminal nodes representing furniture in a

functional group g: c = {f gi }

φg(c) =
1

Z
exp{−

∑
fgi 6=f

g
j

(λg· (6.16)

< ldis(f
g
i , f

g
j ), lori(f

g
i , f

g
j )) >}.
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Figure 6.4: The learning-based pipeline for synthesizing images of indoor scenes.

6.3 Learning, Sampling and Synthesis

Before introducing the algorithm for learning all the parameters associated with an S-AOG,

in subsection 6.3.1, note that our configurable scene synthesis pipeline includes the following

components:

• A sampling algorithm based on the learned S-AOG for synthesizing realistic scene

geometric configurations. This sampling algorithm controls the size of the individual

objects as well as their pair-wise relations. More complex relations are recursively

formed using pair-wised relations. The details are found in subsection 6.3.2.

• An attribute assignment process, which sets different material attributes to each object

part, as well as various camera parameters and illuminations of the environment. The

details are found in subsection 6.3.4.

The above two components are the essence of configurable scene synthesis; the first generates

the structure of the scene while the second controls its detailed attributes. In between

these two components, a scene instantiation process is applied to generate a 3D mesh of

the scene based on the sampled scene layout. This step is described in subsection 6.3.3.

Figure 6.4 illustrates the pipeline. At the end of this section, we showcase several examples

of synthesized scenes with different configurable attributes.
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6.3.1 Learning the S-AOG

The parameters Θ of a probability model can be learned in a supervised way from a set of

N observed parse trees {ptn, n = 1, 2, · · · , N} by maximum likelihood estimation (MLE)

Θ∗ = arg max
Θ

N∏
n=1

p(ptn|Θ). (6.17)

We now describe how to learn all the parameters Θ, with the focus on learning the weights

of the loss functions.

Weights of the Loss Functions: Recall that the probability distribution of cliques

formed in the terminal layer is given by Equation 6.8

p(Ept |Θ) =
1

Z
exp{−E(Ept |Θ)} (6.18)

=
1

Z
exp{− < λ, l(Ept) >}, (6.19)

where λ is the weight vector and l(Ept) is the loss vector given by four different types of

potential functions. To learn the weight vector, the traditional MLE maximizes the average

log-likelihood:

L(Ept |Θ) =
1

N

N∑
n=1

log p(Eptn |Θ) (6.20)

= − 1

N

N∑
n=1

< λ, l(Eptn ) > − logZ. (6.21)

The average log-likelihood is usually maximized by following the gradient:

∂L(Ept |Θ)

∂λ

= − 1

N

N∑
n=1

l(Eptn )− ∂ logZ

∂λ
(6.22)

= − 1

N

N∑
n=1

l(Eptn )−
∂ log

∑
pt exp{− < λ, l(Ept) >}

∂λ
(6.23)

= − 1

N

N∑
n=1

l(Eptn ) +
∑
pt

1

Z
exp{− < λ, l(Ept) >}l(Ept) (6.24)

= − 1

N

N∑
n=1

l(Eptn ) +
1

Ñ

Ñ∑
ñ=1

l(Eptñ ), (6.25)
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where {Eptñ}ñ=1,··· ,Ñ is the set of synthesized examples from the current model.

Unfortunately, it is computationally infeasible to sample a Markov chain that burns into

an equilibrium distribution at every iteration of gradient ascent. Hence, instead of waiting

for the Markov chain to converge, we adopt the contrastive divergence (CD) learning that

follows the gradient of the difference of two divergences [Hin02]:

CDÑ = KL(p0||p∞)−KL(pñ||p∞), (6.26)

where KL(p0||p∞) is the Kullback-Leibler divergence between the data distribution p0 and

the model distribution p∞, and pñ is the distribution obtained by a Markov chain started at

the data distribution and run for a small number ñ of steps (e.g., ñ = 1).

Contrastive divergence learning has been applied effectively in addressing various prob-

lems, most notably in the context of Restricted Boltzmann Machines [HS06]. Both theoretical

and empirical evidence shows its efficiency while maintaining a very small bias [CH05a]. The

gradient of the contrastive divergence is given by:

∂CDÑ

∂λ
=

1

N

N∑
n=1

l(Eptn )− 1

Ñ

Ñ∑
ñ=1

l(Eptñ ) (6.27)

− ∂pñ
∂λ

∂KL(pñ||p∞)

∂pñ
.

Extensive simulations [Hin02] showed that the third term can be safely ignored since it is

small and seldom opposes the resultant of the other two terms.

Finally, the weight vector is learned by gradient descent computed by generating a small

number ñ of examples from the Markov chain

λt+1 = λt − ηt
∂CDÑ

∂λ
(6.28)

= λt + ηt

 1

Ñ

Ñ∑
ñ=1

l(Eptñ )− 1

N

N∑
n=1

l(Eptn )

 . (6.29)
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Or-nodes and Address-nodes: The MLE of the branching probabilities of Or-nodes and

address terminal nodes is simply the frequency of each alternative choice [ZM07]

ρi =
#(v → ui)

n(v)∑
j=1

#(v → uj)

. (6.30)

However, the samples we draw from the distributions will rarely cover all possible termi-

nal nodes to which an address node is pointing, since there are many unseen but plausible

configurations. For instance, an apple can be put on a chair, which is physically and se-

mantically plausible, but the training examples are highly unlikely to include such a case.

Inspired by the Dirichlet process, we address this issue by altering the MLE to include a

small probability α for all branches

ρi =
#(v → ui) + α

n(v)∑
j=1

(#(v → uj) + α)

. (6.31)

Set-nodes: Similarly, for each child branch of the Set-nodes, we use the frequency of

samples as the probability if it is non-zero, otherwise we set the probability to be turned on

as α. Based on the common practice—e.g., choosing the probability of joining a new table

in the Chinese restaurant process [Ald85]—we set α to have probability 1.

Parameters: To learn the S-AOG for sampling purposes, we use the SUNCG dataset

[SYZ17b] to collect statistics, which contains over 45K different scenes with manually created

realistic room and furniture layouts. We collect the statistics of room types, room sizes,

furniture occurrences, furniture sizes, relative distances and orientations between furniture

and walls, furniture affordance, grouping occurrences, and supporting relations.

The parameters of the loss functions are learned from the constructed scenes by comput-

ing the statistics of relative distances and relative orientations between different objects.

The grouping relations are manually defined (e.g., nightstands are associated with beds,

chairs are associated with desks and tables). We examine each pair of furniture pieces in

the scene, and a pair is regarded as a group if the distance of the pieces is smaller than a
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threshold (e.g., 1m). The probability of occurrence is learned as a multinomial distribution.

The supporting relations are automatically discovered from the dataset by computing the

vertical distance between pairs of objects and checking if one bounding polygon contains

another.

The distribution of object size among all the furniture and supported objects is learned

from the 3D models provided by the ShapeNet dataset [CFG15a] and the SUNCG dataset

[SYZ17b]. We first extracted the size information from the 3D models, and then fitted a

non-parametric distribution using kernel density estimation (KDE). Not only is this more

accurate than simply fitting a trivariate normal distribution, but it is also easier to sample

from.

6.3.2 Sampling Scene Geometry Configurations

Based on the learned S-AOG, we sample scene configurations (parse graphs) based on the

prior probability p(pg |Θ) using a Markov Chain Monte Carlo (MCMC) sampler. The sam-

pling process comprises two major steps:

1. Top-down sampling of the parse tree structure pt and internal attributes of objects.

This step selects a branch for each Or-node as well as chooses a child branch for every

Set-node. In addition, internal attributes (sizes) of each regular terminal node are also

sampled. Note that this can be easily done by sampling from closed-form distributions.

2. MCMC sampling of the external attributes (positions and orientations) of objects

as well as the values of the address nodes. Samples are proposed by Markov chain

dynamics, and are taken after the Markov chain converges to the prior probability.

These attributes are constrained by multiple potential functions, hence it is difficult to

directly sample from the true underlying probability distribution.

algorithm 1 overviews the sampling process. Some qualitative results are shown in Fig-

ure 6.5.
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Algorithm 1: Sampling Scene Configurations

Input : Attributed S-AOG G

Landscape parameter β

sample number n

Output: Synthesized room layouts {pg i}i=1,··· ,n

1 for i = 1 to n do

2 Sample the child nodes of the Set nodes and Or nodes from G directly to get the

structure of pg i.

3 Sample the sizes of room, furniture f and objects o in pg i directly.

4 Sample the address nodes V a.

5 Randomly initialize positions and orientations of furniture f and objects o in pg i.

6 iter = 0

7 while iter < itermax do

8 Propose a new move and get proposal pg ′i.

9 Sample u ∼ unif(0, 1).

10 if u < min(1, exp(β(E(pg i|Θ)− E(pg ′i|Θ)))) then

11 pg i = pg ′i

12 end

13 iter += 1

14 end

15 end

Markov Chain Dynamics: Four types of Markov chain dynamics qi, i = 1, 2, 3, 4 are de-

signed to be chosen randomly with probabilities to propose moves. Specifically, the dynamics

q1 and q2 are diffusion, while q3 and q4 are reversible jumps:

1. Translation of Objects. Dynamic q1 chooses a regular terminal node and samples a

new position based on the current position of the object

pos→ pos + δpos, (6.32)
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(a) Different categories of the scenes using default attributes of object material, the lighting conditions, and

camera parameters. Top row: top view. Bottom row: a random view.

(b) Additional examples of two bedrooms, with corresponding depth map, surface normal, and semantic

segmentation.

Figure 6.5: Qualitative results in different types of scenes.

where δpos follows a bivariate normal distribution.

2. Rotation of Objects. Dynamic q2 chooses a regular terminal node and samples a new

orientation based on the current orientation of the object

θ → θ + δθ, (6.33)

where δθ follows a normal distribution.

3. Swapping of Objects. Dynamic q3 chooses two regular terminal nodes and swaps the

positions and orientations of the objects.

4. Swapping of Supporting Objects. Dynamic q4 chooses an address terminal node and

samples a new regular furniture terminal node pointed to. We sample a new 3D location

(x, y, z) for the supported object:

• Randomly sample x = ux ∗ wp, where ux ∼ unif(0, 1), and wp is the width of the

supporting object.

• Randomly sample y = uy ∗ lp, where uy ∼ unif(0, 1), and lp is the length of the

supporting object.

• The height z is simply the height of the supporting object.
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(a) β = 10. (b) β = 100. (c) β = 1000. (d) β = 10000.

Figure 6.6: Synthesis for different values of β. Each image shows a typical configuration

sampled from a Markov chain.

Adopting the Metropolis-Hastings algorithm, a newly proposed parse graph pg ′ is accepted

according to the following acceptance probability:

α(pg ′|pg ,Θ) = min(1,
p(pg ′|Θ)p(pg |pg ′)

p(pg |Θ)p(pg ′|pg)
) (6.34)

= min(1,
p(pg ′|Θ)

p(pg |Θ)
) (6.35)

= min(1, exp(E(pg |Θ)− E(pg ′|Θ))). (6.36)

The proposal probabilities are canceled since the proposed moves are symmetric in proba-

bility.

Convergence: To test if the Markov chain has converged to the prior probability, we keep

a histogram of the energy of the last w samples. When the difference between two histograms

at a distance of s sampling steps is smaller than a threshold ε, the Markov chain is considered

to have converged.

Tidiness of Scenes: During the sampling process, a typical state is drawn from the dis-

tribution. We can easily control the level of tidiness of the sampled scenes by adding an

extra parameter β to control the landscape of the prior distribution:

p(pg |Θ) =
1

Z
exp{−βE(pg |Θ)}. (6.37)

Some examples are shown in Figure 6.6.
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Note that the parameter β is analogous albeit differs from the temperature in simu-

lated annealing optimization—the temperature in simulated annealing is time-variant; i.e.,

it changes during the simulated annealing process. In our model, we simulate a Markov chain

under one specific β to get typical samples at a certain level of tidiness. When β is small,

the distribution is “smooth”; i.e., the differences between local minima and local maxima

are small.

6.3.3 Scene Instantiation using 3D Object Datasets

Given a generated 3D scene layout, the 3D scene is instantiated by assembling objects into

it using 3D object datasets. In this work, we incorporate both ShapeNet dataset [CFG15b]

and SUNCG dataset [SYZ17b] as our 3D model dataset. Scene instantiation includes five

steps:

1. For each object in the scene layout, find the model has the closest the length/width

ratio to the dimension specified in the scene layout.

2. Align the orientations of selected models according to the orientation specified in the

scene layout.

3. Transform the models to the specified positions, and scales the models according to

the generated scene layout.

4. Since we only fit the length and width in Step 1, an extra step to adjust object position

along the gravity direction is needed, eliminating all the floating models and the models

that penetrated into each other.

5. Add the floor, walls, and ceiling to complete the instantiated scene.

6.3.4 Scene Attribute Configurations

As we generate scenes in a forward fashion, our pipeline enables the precise customization

and control of important attributes of the generated scenes. Some configurations are shown
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(a) Lighting intensity: half and double (b) Lighting color: purple and blue

(c) Different object materials: metal, gold, chocolate, and clay

(d) Different materials in each object part (e) Using multiple light sources

(f) Fish eye lens (g) Depth of field (h) Panorama image

(i) Different background materials affect the rendering results

Figure 6.7: We can configure the scene with different (a) illumination intensities, (b) illu-

mination colors, (c) materials, and (d) even on each object part. We can also control (e)

the number of light source and their positions, (f) camera lenses (e.g., fish eye), (g) depths

of field, or (h) render the scene as a panorama for virtual reality and other virtual environ-

ments. (i) 7 different background wall textures. Note how the background affects the overall

illumination.
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in Figure 6.7. The rendered images are determined by combinations of the following four

factors:

• Illuminations, including light source positions, intensities, colors, and the number of

light sources.

• Material and texture of the environment; i.e., the walls, floor and ceiling.

• Cameras, such as fisheye, panorama, and Kinect cameras, have different focal lengths

and apertures, yielding dramatically different rendered images. By virtue of physics-

based rendering, our pipeline can even control the F-stop and focal distance, resulting

in different depths of field.

• Different object materials and textures will have various properties, represented by

roughness, metallicness, and reflectivity.

6.4 Photorealistic Scene Rendering

We adopt Physics-Based Rendering (PBR) [PH04] to generate the photorealistic 2D images.

PBR has become the industry standard in computer graphics applications in recent years,

and has been widely adopted for both offline and real-time rendering. Unlike traditional

rendering techniques where heuristic shaders are used to control how light is scattered by

a surface, PBR simulates the physics of real-world light by computing the bidirectional

scattering distribution function (BSDF) [BDW81] of the surface.

Formulation: Following the law of conservation of energy, PBR solves the rendering equa-

tion for the total spectral radiance of outgoing light in direction w from point x on a surface

Lo(x,w) = Le(x,w) (6.38)

+

∫
Ω

fr(x,w
′,w)Li(x,w

′)(−w′ · n)dw′,

where Lo is the outgoing light, Le is the emitted light (from a light source), Ω is the unit

hemisphere uniquely determined by x and its normal, fr is the bidirectional reflectance
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distribution function (BRDF), Li is the incoming light from direction w′, and w′ ·n accounts

for the attenuation of the incoming light.

Advantages: In path tracing, the rendering equation is often solved with Monte Carlo

methods. Contrasting what happens in the real world, the paths of photons in a scene are

traced backwards from the camera (screen pixels) to the source lights. Objects in the scene

receive lighting contributions as they interact with the photon paths. By computing both

the reflected and transmitted components of rays in a physically accurate way while conserv-

ing energies and obeying the refraction equations, PBR photorealistically renders shadows,

reflections, and refractions, thereby capturing unprecedented levels of detail compared to

other existing shading techniques. Note PBR describes a shading process and does not dic-

tate how images are rasterized in screen space. In this work we use the Mantra® PBR engine

to render synthetic image data with raytracing for its accurate calculation of lighting and

shading as well as its physically intuitive parameter configuration.

Indoor scenes are typically closed rooms. Various reflective and diffusive surfaces may

exist throughout the space. Therefore the effect of secondary rays is particularly important

in achieving realistic lighting. PBR robustly samples both direct lighting contributions on

surfaces from light sources and indirect lighting from rays reflected and diffused by other

surfaces. The BSDF shader on a surface manages and modifies its color contribution when

hit by a secondary ray. Doing so results in more secondary rays being sent out from the

surface in evaluation. The reflection limit (the number of times a ray can be reflected) and the

diffuse limit (the number of times diffuse rays bounce on surfaces) need to be chosen wisely to

balance the final image quality and the rendering time. Decreasing indirect lighting samples

will likely yield a nice rendering time reduction, but at the cost of significantly diminished

visual realism.

Rendering Time vs Rendering Quality: In summary, we use the following control

parameters to adjust the render quality and speed:

• Baseline pixel samples. This is the minimum number of rays sent per pixel. Each pixel
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Table 6.1: Comparisons of rendering time vs quality. The first column tabulates the reference

number and rendering results used in this work, the second column lists all the criteria,

and the remaining columns present comparative results. The color differences between the

reference image and images rendered with various parameters are measured by LAB Delta

E standard [SB02] tracing back to Helmholtz and Hering [BKW98, Val07].

Ref. Criteria Comparisons

3 × 3 Baseline pixel samples 2 × 2 1 × 1 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3

0.001 Noise level 0.001 0.001 0.01 0.1 0.001 0.001 0.001 0.001

22 Maximum additional rays 22 22 22 22 10 3 22 22

6 Bounce limit 6 6 6 6 6 6 3 1

203 Time (second) 131 45 196 30 97 36 198 178

LAB Delta E difference

is typically divided evenly along both directions. Common values for this parameter

are 3 × 3 and 5 × 5. The higher pixel sample counts are usually required to produce

motion blur and depth of field effects.

• Noise level. Different rays sent from each pixel will not yield identical paths. This

parameter determines the maximum allowed variance among the different results. If

necessary, additional rays (in addition to baseline pixel sample count) will be generated

to decrease the noise.

• Maximum additional rays. This parameter is the upper limit of the additional rays

sent for satisfying the noise level.

• Bounce limit. The maximum number of secondary ray bounces. We use this parameter

to restrict both diffuse and reflected rays. Note that in PBR the diffuse ray is one of the

most significant contributors to realistic global illumination, while the other parameters

are more important in controlling the Monte Carlo sampling noise.

Table 6.1 summarizes our analysis of how these parameters affect the render time and image
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Table 6.2: Performance of normal estimation for the NYU-Depth V2 dataset with different

training protocols.

pre-train fine-tune mean↓ median↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑

NYUv2 27.30 21.12 27.21 52.61 64.72

Eigen 22.2 15.3 38.6 64.0 73.9

[ZSY17] NYUv2 21.74 14.75 39.37 66.25 76.06

ours+[ZSY17] NYUv2 21.47 14.45 39.84 67.05 76.72

quality.

6.5 Experiments

In this section, we demonstrate the usefulness of the generated synthetic indoor scenes from

two perspectives:

1. Improving state-of-the-art computer vision models by training with our synthetic data.

We showcase our results on the task of normal prediction and depth prediction from a

single RGB image, demonstrating the potential of using the proposed dataset.

2. Benchmarking common scene understanding tasks with configurable object attributes

and various environments, which evaluates the stabilities and sensitivities of the al-

gorithms, providing directions and guidelines for their further improvement in various

vision tasks.

The reported results use the reference parameters indicated in Table 6.1. We found that

choosing parameters for lower-quality rendering via the Mantra renderer does not provide

training images that suffice to outperform state-of-the-art methods using the experimental

setup described below.
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(a) RGB (b) ground truth (c) estimation (d) error

Figure 6.8: Examples of normal estimation results predicted by the model trained with our

synthetic data.

6.5.1 Normal Prediction

Predicting surface normals from a single RGB image is an essential task in scene understand-

ing since it provides important information in recovering the 3D structure of the scenes. We

train a neural network with our synthetic data to demonstrate that the perfect per-pixel

ground truth generated using our pipeline could be utilized to improve upon the state-of-

the-art performance on a specific scene understanding task. Using the fully convolutional

network model described by Zhang et al. [ZSY17], we compare the normal estimation results

given by models trained under two different protocols: (i) the network is directly trained

and tested on the NYU-Depth V2 dataset, and (ii) the network is first pre-trained using our

synthetic data, then fine-tuned and tested on NYU-Depth V2.
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Table 6.3: Depth estimation performance on the NYU-Depth V2 dataset with different

training protocols.

Pre-Train Fine-Tune

Error Accuracy

Abs Rel Sqr Rel Log10 RMSE(linear) RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

NYUv2 - 0.233 0.158 0.098 0.831 0.117 0.605 0.879 0.965

Ours - 0.241 0.173 0.108 0.842 0.125 0.612 0.882 0.966

Ours NYUv2 0.226 0.152 0.090 0.820 0.108 0.616 0.887 0.972

Following the standard evaluation protocol [FGH13, BRG16], we evaluate a per-pixel

error over the entire dataset. To evaluate the prediction error, we computed the mean, me-

dian, and RMSE of angular error between the predicted normals and ground truth normals.

Prediction accuracy is given by calculating the fraction of pixels that are correct within a

threshold t, where t = 11.25◦, 22.5◦, 30◦. Our experimental results are summarized in Ta-

ble 6.2. By utilizing our synthetic data, the model achieves better performance. From the

visualized results in Figure 6.8, we can see that the error mainly accrues in the area where

the ground truth normal map is noisy. We argue that part of the reason is due to the sensor’s

noise or sensing distance limit. Such results in turn imply the importance to have perfect

per-pixel ground truth for training and evaluation.

6.5.2 Depth Estimation

Single-image depth estimation is a fundamental problem in computer vision, which has

found broad applications in scene understanding, 3D modeling, and robotics. The problem

is challenging since no reliable depth cues are available. In this task, the algorithms output

a depth image based on a single RGB input image.

To demonstrate the efficacy of our synthetic data, we compare the depth estimation

results provided by models trained following protocols similar to those we used in normal

prediction with the network in [LSL15]. To perform a quantitative evaluation, we used the

metrics applied in previous work [EPF14]:

• Abs relative error: 1
N

∑
p

|dp−dgtp |
dgtp

,
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(a) RGB (b) ground truth (c) NYUv2 (d) Ours+NYUv2

Figure 6.9: Examples of depth estimation results predicted by the model trained with our

synthetic data.

• Square relative difference: 1
N

∑
p

|dp−dgtp |2
dgtp

,

• Average log10 error: 1
N

∑
x

∣∣log10(dp)− log10(dgtp )
∣∣,

• RMSE :

√
1
N

∑
x

∣∣dp − dgtp ∣∣2,

• Log RMSE:

√
1
N

∑
x

∣∣log(dp)− log(dgtp )
∣∣2,

• Threshold: % of dp s.t. max ( dp
dgtp
,
dgtp
dp

) < threshold,

where dp and dgtp are the predicted depths and the ground truth depths at the pixel indexed

by p, respectively, and N is the number of pixels in all the evaluated images. The first

five metrics capture the error calculated over all the pixels; lower values are better. The

threshold criteria capture the estimation accuracy; higher values are better.

134



Table 6.4: Depth estimation. Intensity, color, and material represent the scene with different

illumination intensities, colors, and object material properties, respectively.

Setting Method

Error Accuracy

Abs Rel Sqr Rel Log10 RMSE(linear) RMSE(log) δ < 1.25 δ < 1.252 δ < 1.253

Original

[LSL15] 0.225 0.146 0.089 0.585 0.117 0.642 0.914 0.987

[EPF14] 0.373 0.358 0.147 0.802 0.191 0.367 0.745 0.924

[EF15] 0.366 0.347 0.171 0.910 0.206 0.287 0.617 0.863

Intensity

[LSL15] 0.216 0.165 0.085 0.561 0.118 0.683 0.915 0.971

[EPF14] 0.483 0.511 0.183 0.930 0.24 0.205 0.551 0.802

[EF15] 0.457 0.469 0.201 1.01 0.217 0.284 0.607 0.851

Color

[LSL15] 0.332 0.304 0.113 0.643 0.166 0.582 0.852 0.928

[EPF14] 0.509 0.540 0.190 0.923 0.239 0.263 0.592 0.851

[EF15] 0.491 0.508 0.203 0.961 0.247 0.241 0.531 0.806

Material

[LSL15] 0.192 0.130 0.08 0.534 0.106 0.693 0.930 0.985

[EPF14] 0.395 0.389 0.155 0.823 0.199 0.345 0.709 0.908

[EF15] 0.393 0.395 0.169 0.882 0.209 0.291 0.631 0.889

Table 6.3 summarizes the results. We can see that the model pretrained on our dataset

and fine-tuned on the NYU-Depth V2 dataset achieves the best performance, both in error

and accuracy. Figure 6.9 shows qualitative results. This demonstrates the usefulness of our

dataset in improving algorithm performance in scene understanding tasks.

6.5.3 Benchmark and Diagnosis

In this section, we show benchmark results and provide a diagnosis of various common

computer vision tasks using our synthetic dataset.

Depth Estimation: In the presented benchmark, we evaluated three state-of-the-art

single-image depth estimation algorithms due to Eigens et al. [EPF14, EF15] and Liu et

al. [LSL15]. We evaluated those three algorithms with data generated from different settings

including illumination intensities, colors, and object material properties. Table 6.4 shows
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Table 6.5: Surface Normal Estimation. Intensity, color, and material represent the setting

with different illumination intensities, illumination colors, and object material properties.

Setting Method

Error Accuracy

Mean Median RMSE 11.25◦ 22.5◦ 30◦

Original

[EF15] 22.74 13.82 32.48 43.34 67.64 75.51

[BRG16] 24.45 16.49 33.07 35.18 61.69 70.85

Intensity

[EF15] 24.15 14.92 33.53 39.23 66.04 73.86

[BRG16] 24.20 16.70 32.29 32.00 62.56 72.22

Color

[EF15] 26.53 17.18 36.36 34.20 60.33 70.46

[BRG16] 27.11 18.65 35.67 28.19 58.23 68.31

Material

[EF15] 22.86 15.33 32.62 36.99 65.21 73.31

[BRG16] 24.15 16.76 32.24 33.52 62.50 72.17

a quantitative comparison. We see that both [EPF14] and [EF15] are very sensitive to il-

lumination conditions, whereas [LSL15] is robust to illumination intensity, but sensitive to

illumination color. All three algorithms are robust to different object materials. The reason

may be that material changes do not alter the continuity of the surfaces. Note that [LSL15]

exhibits nearly the same performance on both our dataset and the NYU-Depth V2 dataset,

supporting the assertion that our synthetic scenes are suitable for algorithm evaluation and

diagnosis.

Normal Estimation: Next, we evaluated two surface normal estimation algorithms due

to Eigens et al. [EF15] and Bansal et al. [BRG16]. Table 6.5 summarizes our quantitative

results. Compared with depth estimation, the surface normal estimation algorithms are

stable to different illumination conditions as well as to different material properties. As in

depth estimation, these two algorithms achieve comparable results on both our dataset and

the NYU dataset.
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(a) Video frames (b) SLAM result

Figure 6.10: We can render the scenes as (a) a sequence of video frames after setting a

camera trajectory, (b) which can be used to evaluate SLAM reconstruction [WLS15] results.

The top row shows a successful reconstruction case, while the middle and bottom rows show

two failure cases due to a fast moving camera and a plain, untextured surface, respectively.

Semantic Segmentation: Semantic segmentation has become one of the most popular

tasks in scene understanding since the development and success of fully convolutional net-

works (FCNs). Given a single RGB image, the algorithm outputs a semantic label for every

image pixel. We applied the semantic segmentation model described by Eigen et al. [EF15].

Since we have 129 classes of indoor objects whereas the model only has a maximum of 40

classes, we rearranged and reduced the number of classes to fit the prediction of the model.

The algorithm achieves 60.5 pixel accuracy and 50.4 mIoU on our dataset.

3D Reconstructions and SLAM: We can evaluate 3D reconstruction and SLAM al-

gorithms using images rendered from a sequence of different camera views. We generated

different sets of images on diverse synthesized scenes with various camera motion paths and

backgrounds to evaluate the effectiveness of the open-source SLAM algorithm ElasticFu-

sion [WLS15]. A qualitative result is shown in Figure 6.10b. Some scenes can be robustly

reconstructed when we rotate the camera evenly and smoothly, as well as when both the

background and foreground objects have rich textures. However, other reconstructed 3D

meshes are badly fragmented due to the failure to register the current frame with previous
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.11: Benchmark results. (a) Given a set of generated RGB images rendered with

different illuminations and object material properties (top to bottom: original settings, with

high illumination, with blue illumination, and with metallic material properties), we evaluate

(b)–(d) three depth prediction algorithms, (e)–(f) two surface normal estimation algorithms,

(g)a semantic segmentation algorithm, and (h) an object detection algorithm.

frames due to fast moving cameras or the lack of rich textures. Experiments indicate that our

synthetic scenes with configurable attributes and background can be utilized to diagnose the

SLAM algorithm since we have full control of both the scenes and the camera trajectories.

Object Detection. The performance of object detection algorithms have greatly improved

in recent years with the appearance and development of region-based convolutional neural

networks. We apply the Faster R-CNN Model [RHG15] to detect objects. We again need

to rearrange and reduce the number of classes for evaluation. Figure 6.11 summarizes our

qualitative results with a bedroom scene. Note that a change of material can adversely

affect the output of the model—when the material of objects is changed to metal, the bed

is detected as a “car”.
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6.6 Discussion

We now discuss in greater depth four specific topics related to the presented work.

Configurable scene synthesis: The most significant distinction between the our work

and prior work reported in the literature is our ability to generate large-scale configurable 3D

scenes. But why is configurable generation desirable, given the fact that SUNCG [SYZ17b]

already provided a large dataset of manually created 3D scenes?

A direct and obvious benefit is the potential to generate unlimited training data. As

shown in a recent report by Sun et al. [SSS17], after introducing a dataset with 300 times of

the size of ImageNet [DDS09], the performance of supervised learning appears to continue to

increase linearly in proportion to the increased volume of labeled data. Such results indicate

the usefulness of labeled datasets on a scale even larger than SUNCG. Although the SUNCG

dataset is large by today’s standards, it is still a dataset limited by the manual specification

of scene layouts.

A benefit of using configurable scene synthesis is to diagnose AI systems. Some prelim-

inary results were reported in this work. In the future, we hope such methods can assist

in building explainable AI. For instance, in the field of causal reasoning [Pea09], causal

induction usually requires turning on and off specific conditions in order to draw a conclu-

sion regarding whether or not a causal relation exists. Generating a scene in a controllable

manner could provide a useful tool for studying these problems.

Furthermore, a configurable pipeline could be used to generate various virtual environ-

ment in a controllable manner in order to train virtual agents situated in virtual environments

in order to learn task planning [LGS16, ZMK17] and control policy [HSL17, WMR17].

The importance of the different energy terms: In our experiments, the learned

weights of the different energy terms indicate the importance of the terms. Based on the

ranking from the largest weight to the smallest, the energy terms are 1) distances between

furniture and the nearest wall, 2) relative orientations of furniture and the nearest wall, 3)
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supporting relations, 4) functional group relations, and 5) occlusions of the accessible space

of furniture by other furniture. We can regard such rankings learned from training data as

human preferences of various factors in indoor layout designs, which is important for sam-

pling and generating realistic scenes. For example, one can imagine that it is more important

to have a desk aligned with a wall (relative distance and orientation), than it is to have a

chair close to a desk (functional group relations).

Balancing rendering time and quality: The advantage of physically accurate repre-

sentation of shadows, colors, and reflections comes at the cost of computation. High quality

rendering (e.g., rendering for movies) requires tremendous amounts of CPU time and com-

puter memory that is practical only with distributed render farms. Low quality settings

are prone to granular render noise due to stochastic sampling. Our comparisons between

rendering time and rendering quality serve as a basic guideline for choosing the values of the

rendering parameters. In practice, depending on the complexity of the scene (such as the

number of light sources and reflective objects), manual adjustment is often needed in large-

scale rendering (e.g., an overview of a city) in order to achieve the best trade-off between

rendering time and quality. Switching to GPU-based ray tracing engines is a promising al-

ternative. This direction is especially useful for scenes with a small number of polygons and

textures, which can fit into a modern GPU memory.

The speed of the sampling process: It takes roughly 3–5 minutes to render a 640×480-

pixel image, depending on settings related to illumination, environments, and the size of the

scene. By comparison, the sampling process consumes approximately 3 minutes with the

current setup. Although the convergence speed of the Monte Carlo Markov chain is fast

enough relative to photorealistic rendering, it is still desirable to accelerate the sampling

process. In practice, to speed up the sampling and improve the synthesis quality, we split

the sampling process into five stages: (i) Sample the objects on the wall, e.g., windows,

switches, paints and lights, (ii) sample the core functional objects in functional groups (e.g.,

desks and beds), (iii) sample the objects that are associated with the core functional objects
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(e.g., chairs and nightstands), (iv) sample the objects that are not paired with other objects

(e.g., wardrobes and bookshelves), and (v) Sample small objects that are supported by

furniture (e.g., laptops and books). By splitting the sampling process using functional groups,

we effectively reduce the computational complexity, and different types of objects quickly

converge to their final positions.

6.7 Appendix: Additional Results

141



Figure 6.12: Additional results of generated scenes.
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Figure 6.13: Additional results of generated scenes.
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Figure 6.14: Additional results of generated scenes.
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Figure 6.15: Additional results of generated scenes.
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Part II

Integrating Forces and Functionality

in Object Manipulations
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We present 4 case studies on integrating forces and functionality in object manipulations

in the field of robotics.

In section 7.1, we first present a design of an easy-to-replicate glove-based system that

can reliably perform simultaneous hand pose and force sensing in real time, for the purpose

of collecting human hand data during fine manipulative actions. The design consists of a

sensory glove that is capable of jointly collecting data of finger poses, hand poses, as well

as forces on palm and each phalanx. Specifically, the sensory glove employs a network

of 15 IMUs to measure the rotations between individual phalanxes. Hand pose is then

reconstructed using forward kinematics. Contact forces on the palm and each phalanx are

measured by 6 customized force sensors made from Velostat, a piezoresistive material whose

force-voltage relation is investigated. We further develop an open-source software pipeline

consisting of drivers and processing code and a system for visualizing hand actions that is

compatible with the popular Raspberry Pi architecture. In our experiment, we conduct a

series of evaluations that quantitatively characterize both individual sensors and the overall

system, proving the effectiveness of the proposed design.

In section 7.2, we propose an unsupervised learning approach for manipulation event seg-

mentation and manipulation event parsing based on the data acquired by the tactile glove

mentioned in section 7.1. The proposed framework incorporates hand pose kinematics and

contact forces using a low-cost easy-to-replicate tactile glove. We use a temporal grammar

model to capture the hierarchical structure of events, integrating extracted force vectors from

the raw sensory input of poses and forces. The temporal grammar is represented as a tem-

poral And-Or graph (T-AOG), which can be induced in an unsupervised manner. We obtain

the event labeling sequences by measuring the similarity between segments using the Dy-

namic Time Alignment Kernel (DTAK). Experimental results show that our method achieves

high accuracy in manipulation event segmentation, recognition and parsing by utilizing both

pose and force data.

In section 8.1, we learn a manipulation model to execute tasks with multiple stages

and variable structure, which typically are not suitable for most robot manipulation ap-

proaches. The model is learned from human demonstration using a tactile glove that mea-
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sures both hand pose and contact forces. The tactile glove enables observation of visually

latent changes in the scene, specifically the forces imposed to unlock the child-safety mech-

anisms of medicine bottles. From these observations, we learn an action planner through

both a top-down stochastic grammar model (And-Or graph) to represent the compositional

nature of the task sequence and a bottom-up discriminative model from the observed poses

and forces. These two terms are combined during planning to select the next optimal action.

We present a method for transferring this human-specific knowledge onto a robot platform

and demonstrate that the robot can perform successful manipulations of unseen objects with

similar task structure.

In section 8.2, we present a novel Augmented Reality (AR) approach, through Microsoft

HoloLens, to address the challenging problems of diagnosing, teaching, and patching inter-

pretable knowledge of a robot. A Temporal And-Or graph (T-AOG) of opening bottles is

learned from human demonstration and programmed to the robot. This representation yields

a hierarchical structure that captures the compositional nature of the given task, which is

highly interpretable for the users. By visualizing the knowledge structure represented by

a T-AOG and the decision making process by parsing the T-AOG, the user can intuitively

understand what the robot knows, supervise the robot’s action planner, and monitor visually

latent robot states (e.g., the force exerted during interactions). Given a new task, through

such comprehensive visualizations of robot’s inner functioning, users can quickly identify

the reasons of failures, interactively teach the robot with a new action, and patch it to the

current knowledge structure. In this way, the robot is capable of solving similar but new

tasks only through minor modifications provided by the users interactively. This process

demonstrates the interpretability of our knowledge representation and the effectiveness of

the AR interface.
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CHAPTER 7

Building Tactile Glove

7.1 A Glove-based System for Studying Hand-Object Manipula-

tion via Joint Pose and Force Sensing

Robots that imitate the behaviors of humans may enable more natural and friendly interac-

tions with humans in man-made environments, as with robotic handshaking [THG16]. Just

as whole body sensing [KB13] is critical for the study of human movement, hand pose and

force information is crucial to the investigation of manipulative tasks. While researchers

can track hand pose based on perception [RA15], force estimation from vision using nu-

merical differentiation methods [ZZC15, PKQ15], or sophisticated physics-based soft-body

(a) (b)

Figure 7.1: Prototype consisting of (a) 15 IMUs on the dorsum of the hand and (b) 6

integrated Velostat force sensor with 26 taxels on the palmar aspects of the hand.
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simulation [WMZ13, ZZM13], glove-based devices still have their own advantages, presenting

convenient, integrated solutions that can be natural and essential for collecting ground truth

hand data during manipulations and interactions.

Designs of tactile gloves have long been proposed for a wide range of applications, and

they remain an active research area. Dipietro et al.provided a comprehensive survey of

glove-based system designs and their application from 1970s to 2008 [DSD08]. Since then, a

number of novel designs have emerged to address existing limitations, including portability,

reliability, and cost. As the main motivations of developing data/tactile gloves or other glove-

based systems are obtaining the pose and force information during manipulative actions, we

divide some notable recent designs since 2008 into two categories based on the types of data

they can collect: gloves with i) only pose-sensing, and ii) joint pose- and force-sensing.

7.2 Unsupervised Learning of Hierarchical Models for Hand-Object

Interactions

Consider a complex manipulation event of a person opening a medicine bottle with safety

lock (Figure 7.2). During this process, a number of movement primitives were performed:

grasp, push-and-twist, push-and-twist, twist, and finally pull the lid off the bottle. Even

with the most state-of-the-art action understanding and recognition algorithms (see survey

[Pop10, WRB11]), it is still challenging to segment such action sequence and parse the

manipulation event. This is due to three major difficulties: i) severe occlusions happen

during fine manipulation, especially self-occlusions, ii) in subtle manipulation tasks, visual

data may not be able to reveal adequate knowledge to capture the quintessence. Certain

actions are hard to detect using skeleton data alone but need additional force readings e.g.,

whether an action of pushing was performed during twisting the lid, and iii) ground truth

data is difficult to obtain using vision sensor alone, oftentimes impossible to obtain the

needed information (e.g., the force readings, and accurate finger poses during occlusions).

In this work, we present an unsupervised learning method for manipulation event segmen-

tation, recognition and parsing. The method not only accounts for the aforementioned chal-

150



Figure 7.2: (a) A sequence of movement primitive demonstrated by an agent for a manipu-

lation task–opening a medicine bottle captured by a tactile glove. (b) Reconstructed force

and pose data using the tactile glove. Our purposed method segments and parses the noisy

inputs of force and pose in an unsupervised fashion.

Figure 7.3: Unsupervised learning pipeline of hand-object motion recognition. After collect-

ing the raw data using a tactile glove, a spatial (HC (S)) and temporal (HC (T)) hierarchical

clustering is performed on both force and pose data. An aligned cluster analysis (ACA) is

adopted to further reduce the noise. Event segmentation (ES (S) and ES (T)) is achieved by

merging motion primitives based on the distance measured by DTAK. Finally, a grammar

is induced (GI) based on the segmented events, forming a T-AOG.
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lenges, but also captures the temporal hierarchical structure of the manipulation sequence

using a grammar model—a temporal And-Or graph (T-AOG). Specifically, we investigate the

manipulation actions of opening different types of medicine bottles. Bottle 1 has no safety

lock and can be opened by simply twisting the lid. Bottle 2 requires pressing the lid while

twisting. Pinching the safety lock is needed to open Bottle 3. Importantly, some actions

(e.g., pressing, pinching) are difficult to observe visually, thus require additional sensing for

action recognition.

To obtain the force readings during manipulations, we propose to study hand-object

interactions with additional force information through a low-cost, easy-to-replicate tactile

glove [LXM17]. By observing the data collected using the tactile glove, such as the force

exerted on the palm, we can learn that a push-down action is performed as well as a set of

motion primitives that can best describe the action sequences. Thus, our system is able to

“see”, in numerical terms, the forces during hand-object interactions. We argue that this is

an important step in recognizing manipulation actions with visually latent force information.

Still, it is nearly impossible to understand and transfer the raw data (poses and forces)

retrieved from the tactile glove directly to a robot due to different embodiments. There-

fore, we need to reconstruct the semantic meanings of manipulation events from the human

demonstration, allowing the transfer of abstract knowledge to a robot.

To recover the semantic meaning and model the temporal structure of actions in a hand-

object interaction, we represent the manipulation sequence using a T-AOG, a temporal

grammar model that captures the hierarchical structure of the action sequences. Its terminal

nodes are motion primitives, e.g., twisting and pressing, which is learned by unsupervised

clustering over extracted features of the pose and force sensory inputs. To evaluate the

effectiveness of our model, we compare the segmentation and labeling results of different

sensory data with several baseline methods.

This work makes three contributions:

1. We incorporate invisible force in addition to the conventional pose-based methods for

event segmentation and parsing during fine-grained manipulation tasks. We show in
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the experiment that a better performance of motion recognition is achieved by jointly

considering hand pose and force data.

2. We propose an unsupervised learning framework to learn a temporal grammar model

(T-AOG) for hand-object interactions. The framework incorporates automatic cluster-

ing, segmentation, labeling, and high-level grammar induction. The grammar structure

is shown to significantly improve the action recognition results compared to using clus-

tering method alone.

3. We introduce a general method for modeling noisy and heterogeneous sensory data of

hand-object manipulation.
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CHAPTER 8

Learning Object Manipulations by Integrating Forces

and Functionality

8.1 Feeling the Force: Integrating Force and Pose for Fluent Dis-

covery through Imitation Learning

Consider the task of opening medicine bottles that have child-safety locking mechanisms

(Figure 8.1a). These bottles require the user to push or squeeze in various places to unlock

the cap. By design, attempts to open these bottles using a standard procedure will result

in failure. Even if the agent visually observes a successful demonstration, imitation of this

procedure will likely omit critical steps in the procedure. The visual procedure for opening

both medicine and traditional bottles are typically identical. The agent lacks understanding

of the tactile interaction required to unlock the safety mechanism of the bottle. Only direct

observation of forces or instruction can elucidate the correct procedure (Figure 8.1e). Even

with knowledge of the correct procedure, opening medicine bottles poses several manipulation

challenges that involve feeling and reacting to the internal mechanisms of the bottle cap.

Although the presented study takes opening medicine bottles as an example, many other

tasks share similar properties and require non-trivial reasoning such as opening locked doors

[SGG08].

In this work, we learn a manipulation model from human demonstration that captures

observed motion and kinematics, as well as visually latent changes such as forces and internal

state (Figure 8.1e). We learn this manipulation model for objects that have similar functional

properties, but exhibit different geometries and internal configurations that affect how the
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(a) (b) (c)

(d) (e) (f)

Figure 8.1: Given a RGB-D-based image sequence (a), although we can infer the skeleton of

hand using vision-based methods (b), such knowledge cannot be easily transferred to a robot

to open a medicine bottle (c), due to the lack of force sensing during human demonstrations.

In this work, we utilize a tactile glove (d) and reconstruct both forces and poses from human

demonstrations (e), enabling robot to directly observe forces used in demonstrations so that

the robot can successfully open a medicine bottle (f).

object must be manipulated.

Two key problems are discussed in this work:

1. how to naturally recover the visually latent force data from the human demonstrations;

2. how to represent such knowledge and successfully transfer it to a robot?

For the first problem, although some initial results have been reported to reconstruct

155



poses and/or forces exerted by the demonstrator using vision-based methods [ZZM13, WMZ13,

ZZC15, PKQ15, ZJZ16], these methods still have difficulty providing pose and force data

precise enough for robot learning. Instead, we utilize an open-source tactile glove [LXM17]

designed to measure both hand pose and contact forces across the surface of the hand.

These demonstrations are performed naturally, and within a motion capture setup to obtain

ground-truth tracking of the objects and human wrist.

For the second problem, our system takes into consideration: i) an And-Or-Graph (AOG)

[ZM07] learned from human demonstrations as top-down knowledge for manipulations of an

unseen medicine bottle, in which the AOG model uses fluents [NC36] to model the changes

between pre- and post-conditions of demonstrations in a low-dimensional subspace; and ii)

A bottom-up process learned from raw signal data when robot executes to encode transition

between pre- and post-conditions. Together, these two processes learn a manipulation model

to open medicine bottles.

This work makes four contributions:

1. Using a tactile glove during demonstrations that enable the robot to utilize both the

poses and forces exerted by the demonstrator. In contrast with previous work, our

method focuses on integrating visual measurements with physical measurements not

observable from vision (e.g., forces), capturing latent relationships that are impercep-

tible from vision alone.

2. Learning a stochastic grammar model that represents the compositional task hierarchy

comprising of atomic actions for manipulation tasks, compactly capturing the admis-

sible sequence of actions for all the bottles demonstrated.

3. Learning a bottom-up process that encodes raw haptic signals to account for the transi-

tion from a previous state to a new state. Together with the stochastic grammar model

as a top-down process, these two processes jointly form the manipulation model.

4. Transferring the learned model from human demonstrations onto a Baxter robot by

solving a correspondence problem [DH02]. This embodiment mapping function directly

156



relates hand pose and contact force from the human to the force-torque sensing and

gripper state of the robot; enabling the robot to reason about its haptic measurements

using the relations learned from human demonstration.

8.2 Interactive Robot Knowledge Patching using Augmented Re-

ality

The ever-growing vast amount of data and rapid-increasing computing power have enabled

a data-driven machine learning paradigm in the past decade. Using Deep Neural Networks

(DNNs) [HOT06], the performance of machine learning methods has reached a remarkable

level in some specific tasks, even arguably better than human, e.g., control [DCH16, MKS15],

grasping [MLN17, LLS15], object recognition [HZR15, IS15], learning from demonstration

[ACV09], and playing the game of go [SHM16] and poker [MSB17, BS17]. However, despite

these recent encouraging progress, DNN-based methods have well-known limitations; one of

these limitations is the lack of interpretability of the knowledge representation, especially

about how and why a decision is made, which plays a vital role in the scenarios where robots

work alongside humans.

Meanwhile, contextual adaptation models using And-Or-Graph (AOG) and Probabilistic

Programming start to demonstrate the interpretability using small amount of training data in

robot learning [XSX16, ZZC15], recognition [ZM07, GLK17], reconstruction [LZZ17], social

interactions [SGR17], causal reasoning [Pea09, FZ13b], playing video games [KSM17], and

human-level concept learning [LST15]. Although these types of models have been identified

by DARPA as the representative models in the third wave of artificial intelligence [Lau17],

a natural and convenient way to teach and interact with a robot to acquire and accumulate

such interpretable knowledge is still missing.

In this work, we propose an augmented reality (AR) interface, through Microsoft HoloLens,

to interact with a Rethink Baxter robot for teaching and patching its interpretable knowledge

represented by the AOGs. In the experiments, we demonstrate the proposed AR interface

develops interpretations at three different levels:
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Figure 8.2: System architecture. Given a knowledge represented by a T-AOG of opening

conventional bottles, the robot tries to open unseen medicine bottles with safety lock. The

proposed AR interface can visualize the inner functioning of the robot during action exe-

cutions. Thus, the user can understand the knowledge structure inside the robot’s mind,

directly oversee the entire decision making process through HoloLens in real-time, and finally

interactively correct the missing action (push) to open a medicine bottle successfully.

1. Knowledge structure by compositional models. We take an example of a robot

opening various medicine bottles, and represent the robot’s knowledge structure using

a Temporal And-Or Graph (T-AOG) [ZM07]. The T-AOG encodes a repertoire of a

successful action sequence for a robot to open medicine bottles. Visualizing through

the holographical interface, the state of robot represented by a T-AOG can be naturally

inquired through gesture control.

2. Interpretable decision making. Unlike a teacher can usually query students to

verify whether they obtain the knowledge structure correctly, it is nontrivial for users to

check and understand robots’ inner functioning, making it difficult for users to diagnose

the robot decision-making process. By visualizing the decision-making process on top

of T-AOG through the holographical interface, information of interests can be better
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associate to the actual robot and the actual scene, thus help to gain insight about how

a robot behaves and why it behaves in a certain way.

3. Interactive knowledge structure patching. Once the users find out the reason

why a certain action sequence leads to a failure, the users can interactively patch the

knowledge structure represented by the T-AOG: adding a missing node, deleting a

redundant node, and updating a node representing a wrong action.

This work makes the following three contributions:

1. We introduce a new AR interface based on the state-of-the-art head-mounted display,

Microsoft HoloLens, providing users a much more natural way to interact with a robot.

In addition to visualizing robot’s states, intentions, or controlling robots, we further

visualize robot’s knowledge representation so that users can understand why and how

a robot will behave.

2. In contrast to using additional force sensing [LXM17] to perceive the visually hidden

force [EGX17], the present study provides an intuitive way for users to augment the

visually imperceptible knowledge on top of the learned action sequence represented by

a T-AOG. In this way, the AR interface affords a much more effectively diagnose and

knowledge patching process. Furthermore, it often has a much lower cost, as users do

not need to build any additional sensors or apparatus to demonstrate the tasks.

3. We build a communication interface between the HoloLens platform and ROS, and

are publicly available online. It allows a variety of interchangeable messages, which we

hope would ease the development difficulties across commonly used platforms.
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Part III

Cognitive Studies
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CHAPTER 9

Intuitive Physics

In this chapter, we present five case studies on intuitive physics.

In section 9.1, we first study the human cognition of containing relation. Containers

are ubiquitous in daily life. By container, we consider any physical object that can contain

other objects, such as bowls, bottles, baskets, trash cans, refrigerators, etc.. In this work, we

are interested in following questions: What is a container? Will an object contain another

object? How many objects will a container hold? We study those problems by evaluating

human cognition of containers and containing relations with physical simulation. In the

experiments, we analyze human judgments with respect to results of physical simulation

under different scenarios. We conclude that the physical simulation is a good approximation

to the human cognition of container and containing relations.

In section 9.2, we study the perception of fluid viscosity. The physical behavior of mov-

ing fluids is highly complex, yet people are able to interact with them in their everyday

lives with relative ease. To investigate how humans achieve this remarkable ability, the

present study extended the classical water-pouring problem [SB99] to examine how humans

take into consideration physical properties of fluids (e.g., viscosity) and perceptual variables

(e.g., volume) in a reasoning task. We found that humans do not rely on simple qualitative

heuristics to reason about fluid dynamics. Instead, they rely on the perceived viscosity and

fluid volume to make quantitative judgments. Computational results from a probabilistic

simulation model can account for human sensitivity to hidden attributes, such as viscos-

ity, and their performance on the water-pouring task. In contrast, non-simulation models

based on statistical learning fail to fit human performance. The results in the present work

provide converging evidence supporting mental simulation in physical reasoning, in addition
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to developing a set of experimental conditions that rectify the dissociation between explicit

prediction and tacit judgment through the use of mental simulation strategies.

In section 9.3, we compare the human perception of three types of substances: liquid,

sand and rigid balls. A growing body of evidence supports the hypothesis that humans infer

future states of perceived physical situations by propagating noisy representations forward

in time using rational (approximate) physics. In the present study, we examine whether

humans are able to predict (1) the resting geometry of sand pouring from a funnel and

(2) the dynamics of three substances—liquid, sand, and rigid balls—flowing past obstacles

into two basins. Participants’ judgments in each experiment are consistent with simulation

results from the intuitive substance engine (ISE) model, which employs a Material Point

Method (MPM) simulator with noisy inputs. The ISE outperforms ground-truth physical

models in each situation, as well as two data-driven models. The results reported herein

expand on previous work proposing human use of mental simulation in physical reasoning

and demonstrate human proficiency in predicting the dynamics of sand, a substance that is

less common in daily life than liquid or rigid objects.

In section 9.4, we examine how humans adapt to novel physical situations with unknown

gravitational acceleration in immersive virtual environments. We designed four virtual reality

experiments with different tasks for participants to complete: strike a ball to hit a target,

trigger a ball to hit a target, predict the landing location of a projectile, and estimate the

flight duration of a projectile. The first two experiments compared human behavior in the

virtual environment with real-world performance reported in the literature. The last two

experiments aimed to test the human ability to adapt to novel gravity fields by measuring

their performance in trajectory prediction and time estimation tasks. The experiment results

show that: 1) based on brief observation of a projectile’s initial trajectory, humans are

accurate at predicting the landing location even under novel gravity fields, and 2) humans’

time estimation in a familiar earth environment fluctuates around the ground truth flight

duration, although the time estimation in unknown gravity fields indicates a bias toward

earth’s gravity.

In section 9.5, we study visuomotor adaptation. Visuomotor adaptation plays an impor-
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tant role in motor planning and execution. However, it remains unclear how sensorimotor

transformations are recalibrated when visual and proprioceptive feedback are decoupled. To

address this question, the present study asked participants to reach toward targets in a vir-

tual reality (VR) environment. They were given visual feedback of their arm movements in

VR that was either consistent (normal motion) with the virtual world or reflected (reversed

motion) with respect to the left-right and vertical axes. Participants completed two normal

motion experimental sessions, with a reversed motion session in between. While reaction

time in the reversed motion session was longer than in the normal motion session, partici-

pants showed the learning improvement by completing trials in the second normal motion

session faster than in the first. The reduction in reaction time was found to correlate with

greater use of linear reaching trajectory strategies (measured using dynamic time warping) in

the reversed and second normal motion sessions. This result appears consistent with linear

motor movement planning guided by increased attention to visual feedback. Such strategical

bias persisted into the second normal motion session. Participants in the reversed session

were grouped into two clusters depending on their preference for proximal/distal and awk-

ward/smooth motor movements. We found that participants who preferred distal-smooth

movements produced more linear trajectories than those who preferred proximal-awkward

movements.

9.1 Evaluating Human Cognition of Containing Relations with

Physical Simulation

Containers are ubiquitous objects in daily life, such as bowls, bottles, baskets, trash cans,

refrigerators, etc.. Containing relation is a general and fundamental relation in the scene.

Containers offer containing relations for carrying, hiding, or ensuring the objects remain in a

safe place. The contained objects are called contents. The containing relation characterizes

the “affordance” that how likely a container can hold its content.

Different from visual object recognition problems, recognition of containers involves the

cognitive process of commonsense reasoning, such as analysis of physical properties, geomet-
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Figure 9.1: Two typical cases when a container fails to contain its contents: (a) the container

with holes can not contain tiny objects; (b) the container with a low wall fails to contain a

big ball. The left figures of these two panels illustrate a stimuli of our experiments, and the

right figures illustrate simulation results with physical engine or in human mind.

ric shapes, and material properties, etc.. Figure 9.1 shows two examples when a container

fails to contain its content: (a) the container with holes cannot contain tiny objects or staffs,

like beads, sand or water; (b) the container with a low wall fails to contain a big ball.

Containers quantize and organize our perceptual scene space. For example, when people

are asked “where the chilled beer is”, the answer will usually be that “it is in the refrigerator”

without mentioning the exact 3D coordinates. By containers, the perceptual space of 3D

scene is discretized and quantized, and objects are often organized in a hierarchy with respect

to their containing relations [ZZ13]. This quantization largely simplifies many tasks, such as

planning, detection and tracking.

Inspired by [BHT13] and [ZZY13], human perceive physical scenes by making approx-

imate and probabilistic inference, and the physical engine helps us to reason about com-

monsense in complex scenes. When we ask about whether a container will hold another

object, human may do similar mental simulations. The definition of containers are related

to physical properties of containers and contents. In Figure 9.1, the container and its con-

tents are not compatible in these two cases. In this work, we model and infer the containing

relations between two objects by imagining what would happen when one puts an object
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Figure 9.2: A 3D Structure Sensor attached to a tablet (left) and a physical simulation

interface (right) are used in this work. The interface simulates a few balls falling onto a bag.

into a container.

In order to study containers and the factors which affect containing relations, we collected

a 3D container dataset and carry out our experiments based on it. In the experiment, we

presented some random sampled 3D objects from our dataset to the subjects. The subjects

answered questions about container and containing relations according to these pictures. We

also built an online physical simulation system with Unity 3D engine on a tablet platform as

shown in Figure 9.2. The system is used for evaluating containing relations between objects

and comparing with human judgments.

9.2 Consistent Probabilistic Simulation Underlying Human Judg-

ment in Substance Dynamics

Imagine that you are preparing to pour pancake batter onto a griddle. To pour the correct

amount, you must decide where to hold the container, at what angle, and for how long. We

encounter similar situations frequently in our daily lives when interacting with viscous fluids

ranging from water to honey, and with different volumes, contained in receptacles of various

shapes and sizes.

In the majority of these situations, we are able to reason about fluid-related physical

processes so as to implicitly predict how far a filled container can be tilted before the fluid
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inside begins to spill over its rim. However, people perform significantly worse when asked

to make explicit reasoning judgments in similar situations [MP91, SB99]. In the well-known

Piagetian water level task (WLT; [How78], participants receive instructions to draw the

water level at indicated locations on the inside of tilted containers. Surprisingly, about 40%

of adults predict water levels that deviate from the horizontal by 5 degrees or more (e.g.,

[MP91]). [SB99] modified the WLT to include two containers, one wider than the other.

The investigators asked participants to judge which container would need to be tilted farther

before the water inside begins to pour out. Only 34% of the participants correctly reported

that the thinner container would need to be tilted farther than the wider one. However, when

instructed to complete the task by closing their eyes and imagining the same situation, nearly

all (95% of) the participants rotated a thinner, imaginary container (or a real, empty one)

farther. These findings suggest that people are able to reason successfully about relative pour

angles by mentally simulating the tilting event. An apparent contrast in human performance

between an explicit reasoning task and a simulated-doing task has also been found in people’s

inferences about the trajectories of falling objects [KFW93, SBV13]. Thus, empirical findings

in the literature of physical reasoning suggest that people employ both explicit knowledge

about physical rules and and mental simulation when making inferences [Heg04].

The noisy Newton framework for physical reasoning hypothesizes that inferences about

dynamical systems can be generated by combining noisy perceptual inputs with the princi-

ples of classical (i.e., Newtonian) mechanics, given prior beliefs about represented variables

[BBY15, BHT13, GGL15, San14, SMG13, SV13]. In this framework, the locations, motions

and physical attributes of objects are sampled from noisy distributions and propagated for-

ward in time using an intuitive physics engine. The resulting predictions are queried and

averaged across simulations to determine the probability of the associated human judgment.

[BBY15] extended the framework from physical scene understanding (e.g., [BHT13]) to fluid

dynamics using an intuitive fluid engine (IFE), where future fluid states are approximated

by probabilistic simulation via a Smoothed Particle Hydrodynamics (SPH) method [Mon92].

The particle-based IFE model matched human judgments about final fluid states and pro-

vided a better quantitative fit than alternative models that did not employ simulation or
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account for physical uncertainty.

The present study aims to determine whether a particle-based IFE model coupled with

noisy input variables can account for human judgments about the relative pour angle of two

containers filled with fluids differing in their volume and viscosity. The experiment reported

here was inspired by previous empirical findings in water-pouring tasks; e.g., participants tilt

containers filled with imagined molasses farther than those with an equal volume of water,

suggesting that people are able to take physical attributes such as viscosity into account

when making fluid-related judgments [SB99]. [BBY15] also found that their participants’

judgments were sensitive to latent attributes of the fluid (e.g., stickiness and viscosity).

To quantify the extent that humans employ their perceived viscosity of fluids in sub-

sequent reasoning tasks, we utilized a recent development in graphical fluid simulation

[Bri08, JSS15] to simulate the dynamic behavior of fluids in vivid animations. Previous

work has shown that realistic animations can facilitate representation of dynamic physical

situations [TMB02]. Furthermore, recent research on human visual recognition indicates

that latent attributes of fluids (e.g., viscosity) are primarily perceived from visual motion

cues [KMF15], so displaying realistic fluid movement is needed to provide the input of key

physical properties that enable mental fluid simulations. The present study, which uses a

modification of [SB99]’s water-pouring problem coupled with advanced techniques in com-

puter graphics, aims to test the hypothesis that animated demonstrations of flow behavior

facilitate inference of latent fluid attributes, which inform mental simulations and enhance

performance in subsequent reasoning tasks.

9.3 Probabilistic Simulation Predicts Human Performance on Vis-

cous Fluid-Pouring Problem

Consider KerPlunk, a children’s game in which marbles are suspended in the air by a lattice

of straws within a cylindrical tube. The goal of the game is for each player to take turns

removing straws while minimizing the number of marbles that fall through the lattice. The

task requires players to reason about the interaction between rigid bodies and obstacles in
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3D space. But what if the marbles were replaced by balls of liquid or sand? Could humans

predict how those substances would move? Would those predictions agree with a generative

model based on ground-truth, Newtonian physics?

Recent computational evidence has demonstrated that human predictions do agree with

Newtonian physics, given noisy perception and prior beliefs about spatially represented vari-

ables: i.e., the noisy Newton hypothesis [BBY15, BHT13, GGL15, HBG16, KJZ16, San14,

SMG13, SBV13]. The hypothesis suggests that humans rationally infer the values of physical

variables and utilize normative conservation principles (approximately) to make predictions

about future scene states. Computationally, this is achieved by sampling the initial loca-

tions, motions from noisy sensory input, and sampling physical attributes in a physical scene,

propagating these variables forward in time according to approximated physical principles,

and aggregating queries on the final scene states to form predicted response distributions.

[BBY15] extended the noisy Newton framework from block tower judgments [BHT13]

to liquid dynamics using an intuitive fluid engine (IFE). In their IFE, ground-truth physics

was approximated using smoothed particle hydrodynamics (SPH [Mon92], a particle-based

computational method for simulating non-solid dynamics. Their model predictions matched

human judgments about future fluid states and outperformed alternative models that did

not employ probabilistic simulation or account for physical uncertainty. Furthermore, the

authors found that their participants’ predictions were sensitive to latent fluid attributes

(stickiness and viscosity), suggesting that humans have rich knowledge about the intrinsic

properties of liquid.

The present study argues for the same general class of model as [BBY15] IFE and ex-

tends their work by examining (1) whether human predictions about future states of multiple

substances (i.e., rigid balls, liquid, and sand) differ, and (2) whether those differences can be

consistently modeled using approximate, probabilistic simulation based on a hybrid parti-

cle/grid simulator adapted from previous work [KJZ16]. Although granular materials (e.g.,

sand) are encountered in everyday life, they are far less common than liquid; can humans ac-

curately predict how sand will interact with obstacles and support surfaces? We present two

experiments exploring the human capacity to predict the dynamics of substances varying in
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familiarity and physical properties, examining how human judgments and model predictions

vary for different substances. Experiment 1 examines human predictions about the resting

composition of sand after pouring from a funnel. In Experiment 2, participants make pre-

dictions about the flow of liquid, sand, and rigid balls past obstacles using a design similar

to [BBY15]’s study.

9.4 The Martian: Examining Human Physical Judgments Across

Virtual Gravity Fields

Sending a manned spacecraft to Mars would be a fantastic adventure, yet living on another

planet could lead to significant challenges to human perceptual and cognitive systems. The

change in gravity itself could alter daily activities (e.g., throwing an object toward a desired

location or pouring water into a container) that require adjustment of prediction and action

in light of changing physical properties on the new planet. Imagine that you are living in

an environment with a different gravity field than earth. Would you be able to adapt to it

quickly? And how accurate would your predictions about the physical world be compared

to when you were on earth?

Consumer-level virtual reality (VR) devices, with rapidly increasing popularity, provide

a useful means for researchers to conduct experiments that were traditionally too costly or

impossible to carry out in the real world. VR allows users to experience an artificial world in

a manner similar to how they experience the real world: i.e., head-mounted displays give the

impression of three-dimensional observation, and remote controllers afford interactions with

the virtual world from an embodied egocentric perspective. In particular, VR technology

allows for both the control of many underlying factors of the virtual world (e.g., time [SBS16]

and gravity) and direct measurement of behavioral changes in novel environments.

In this work, we conducted four experiments to measure human performance in different

tasks under novel and familiar gravity fields. In the first two experiments, participants were

asked to strike a ball off of a track onto a target location and to trigger a ball to hit a target

given a speed rating input. In Experiments 3 and 4, participants were asked to make predic-
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(a) (b)

Figure 9.3: Illustration of experiment designs. (b) Two examples of the experiments: (upper)

speed production and (lower) trajectory prediction.

tions about the location and flight duration of a projectile given the initial 0.2 seconds of its

trajectory. The purpose of the experiments was to examine how humans learn and reason

about object motion in novel gravity fields: are humans able to spontaneously habituate to

new gravity fields? Do humans implicitly use prior knowledge about earth’s gravity to reason

about new environments? Are humans implicitly simulating physical motion or predicting

the movements using low-level visual features exclusively?

The first pair of experiments in the present work compare human performance in the

VR setting with findings in similar real-world situations [KFW93]. The second pair of ex-

periments compare two types of intuitive physical judgments (location predictions and time

estimates) under different gravity fields. In summary, this work made the following con-

tributions: 1) replicated a previous study on speed production and rating in novel virtual

environments to demonstrate that VR is a feasible and reliable tool for studying human

perception and cognition, 2) carried out a novel experimental design and method which pre-

cludes real-world replication, and 3) measured the effect of gravity field on human behavior

in tasks varying in their cognitive demands.
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9.5 Visuomotor Adaptation and Sensory Recalibration in Reversed

Hand Movement Task

In the present study, we examined whether humans can adapt to environments where visual

estimates of objects’ positions are inconsistent with proporioceptive input. Participants

interacted with virtual targets using two motion controllers in a VR application, where the

movement of the virtual controller either matched the motion of the physical controller or

was flipped on certain axes (both vertical and left-right). Participants were instructed to

touch a series of virtual targets with the virtual controllers and then return to a neutral

pose in between targets. Response time and arm movement trajectories were recorded and

analyzed.
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CHAPTER 10

Causal Reasoning

In this chapter, we present two studies on causal reasoning.

In section 10.1, we study the relation between the spatially perturbed collision sound

and the perceived causality. When a moving object collides with an object at rest, people

immediately perceive a causal event: i.e., the first object has launched the second object

forwards. However, when the second object’s motion is delayed, or is accompanied by a col-

lision sound, causal impressions attenuate and strengthen. Despite a rich literature on causal

perception, researchers have exclusively utilized 2D visual displays to examine the launch-

ing effect. It remains unclear whether people are equally sensitive to the spatiotemporal

properties of observed collisions in the real world. The present study first examined whether

previous findings in causal perception with audiovisual inputs can be extended to immersive

3D virtual environments. We then investigated whether perceived causality is influenced by

variations in the spatial position of an auditory collision indicator. We found that people are

able to localize sound positions based on auditory inputs in VR environments, and spatial

discrepancy between the estimated position of the collision sound and the visually observed

impact location attenuates perceived causality.

In section 10.2, we study the capability of causal discovery in transfer cases. Discovery

and application of causal knowledge in novel problem contexts is a prime example of human

intelligence. As new information is obtained from the environment, people develop and refine

causal schemas to establish a parsimonious explanation of underlying problem constraints.

The aim of the current study is to systematically examine the human ability to discover causal

schemas by exploring the environment and transferring knowledge to new situations with

greater structural complexity. We developed a novel OpenLock task, in which participants
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explored a virtual “escape room” environment by moving levers that served as “locks” to

open a door. In each situation, the sequential movements of the levers that opened the

door formed a branching causal sequence that began with either a common-cause (CC) or

a common-effect (CE) structure. Participants in a baseline condition completed five trials

with high structural complexity (i.e., four active levers). Those in the transfer conditions

completed six training trials with low structural complexity (i.e., three active levers) before

completing a high-complexity transfer trial. The causal schema acquired in the transfer

condition was either congruent or incongruent with that in the transfer condition. Baseline

performance under the CC schema was superior to performance under the CE schema, and

schema congruency facilitated transfer performance when the congruent schema was the less

difficult CC schema. We compared human performance to a deep reinforcement learning

model and found that our deep reinforcement learning model is unable to capture the causal

abstraction presented between trials with the same causal schema and trials with a transfer

of causal schema.

10.1 Spatially Perturbed Collision Sounds Attenuate Perceived

Causality in 3D Launching Events

Consider the following visual display: a red circle moves in a straight line towards a blue circle

until the edges of the two circles touch. After the two circles make contact, the blue circle

moves away from the red circle along the same straight line. Although there is no directly

observable information in the display signaling a causal connection between the motions of

the two circles, you will most likely perceive the red circle as having launched the blue circle

forward [Hum78]. This is an example of causal perception: i.e., the immediate, automatic,

and irresistable impression of causality and animacy from low-level perceptual inputs [ST00].

Such impressions lie in contrast with high-level causal inference, which describes how real-

world interpretations are made using logical rules and conceptual knowledge [RFD05].

A key characteristic of causal perception is that impressions are constructed at the percep-

tual level and do not rely on explicit background knowledge or experience [Mic63, RFD05,
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SS92, ST00]. However, causal impressions are incredibly sensitive to the spatiotemporal

properties of dynamic events [Boy60, Mic63, Nat61]. For example, in the aforementioned

visual display, (1) if there is a temporal delay between when the red circle stops and the blue

circle begins moving, (2) if the edges of the circles are separated or overlapped at the time of

impact, or (3) if the blue ball moves perpendicular to the red ball’s motion prior to impact,

the impression that the red ball launched the blue ball will diminish [MW14, SMG13, SN02].

Impressions of launching are also influenced by briefly observed motions of nearby shapes

[SN02], indicating that the human perceptual system rapidly processes spatiotemporal infor-

mation and visual context information to form immediate causal impressions from perceptual

inputs [FRC05, RFD05].

To date, researchers have exclusively utilized 2D visual displays to examine causal per-

ception [MW14, SMG13, ST00, SN02]. This is largely due to the difficulty in varying the

spatiotemporal characteristics of moving objects in the real world. Specifically, it is pro-

hibitively difficult to “pause” a real-world collision at the moment of impact without some

costly external apparatus: e.g., using magnets and a digital controller to move metallic ob-

jects at a given speed across an opaque track. However, virtual reality (VR) provides the

means to manipulate such characteristics in immersive 3D environments. A secondary ma-

nipulation that VR technology affords is the perturbation of a sound’s location in 3D space.

Previous work has shown that when a collision event is accompanied by an auditory cue in-

dicating contact between two objects (e.g., a clack sound), observers report a greater causal

impression than when the sound is absent [GT03]. It remains unclear, however, whether the

human perceptual system encodes the location of the sound when forming such impressions,

as it does when it infers that a ventriloquist’s voice emanates from a nearby dummy [AB04].

Thus, the present study sought to answer the following questions: (1) do classical findings

in causal perception extend to 3D virtual environments, and (2) does the spatial position of

an auditory collision indicator influence perceived causality?

Three experiments were conducted to address these questions. In each experiment, an

initially moving red object collides with an initially stationary blue object, and after a 0 to 400

msec delay, the blue object begins moving forwards (see Figure 10.1 (b)(d)). In Experiment 1,
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Figure 10.1: Illustration of (a) VR materials utilized in the present study as well as the

virtual environment for (b) 2D and (d) 3D collision events. (c) In each environment, the

red ball moves to the impact location, stops, and after a delay the blue ball moves forwards.

(e) The collision was accompanied by an auditory collision indicator which was spatially

perturbed across trials in the 3D environment.

participants reported causal impressions in 2D launching events in the presence and absence

of an auditory collision indicator. The first experiment was a direct replication of Guski and

Troje’s [GT03] previous study and was designed to determine whether their findings extend

to tasks presented via a VR apparatus. In Experiment 2, participants completed an identical

task but in a 3D virtual environment. The collision sound in the second experiment was

always located at the ground-truth position: i.e., at the location of impact. The purpose of

Experiment 2 was to ensure that previous findings in audiovisual causal perception extend

to 3D collision situations. Experiment 3 was identical to Experiment 2, except that the

spatial position of the auditory collision indicator was perturbed ±90° around the observer

in increments of 30° (see Figure 10.1 (e)).

In summary, the present study made the following contributions: (1) replicated pre-

vious work of causal perception in a virtual environment to demonstrate the viability of

VR technology in examinations of human perception and cognition, (2) examined the effect

of spatially perturbed auditory collision indicators on impressions of causality in delayed

launching events, and (3) measured how well humans can estimate sound location in a VR

setup.
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10.2 Deep Reinforcement Learning Fails to Account for Human

Causal Transfer

Causality has been dubbed the “cement of the university” [Mac74]. The key research ques-

tion in the field of causal learning is how various intelligent systems, ranging from rats to

humans and machines, can acquire knowledge about cause-effect relations in novel situations.

Decades ago, a number of researchers (e.g., [SD88, Sha91]) suggested that causal knowledge

can be acquired by a basic learning mechanism, associative learning, that non-human ani-

mals commonly employ in classical conditioning paradigms to learn the relationship between

stimuli and responses. A major theoretical account of associative learning is the Rescorla-

Wagner model, guided by prediction error in updated associative weights on cue-effect links

[RW72].

However, subsequent research has produced extensive evidence that human causal learn-

ing depends on more sophisticated processes than associative learning of cue-effect links

[HC11]. Human learning and reasoning involves the acquisition of abstract causal struc-

ture [WH92] and strength values for cause-effect relations [Che97]. Causal graphical models

[Pea00] have been integrated with Bayesian statistical inference [GT05, GT09, LYL08] to

provide a general representational framework for human causal learning [HC11].

However, most models of human causal learning assume that the hypothesis space of

causal variables and causal structures is given, and that inference focuses on selecting the

best causal structure to explain the observed contingency information relating causal cues

to effects. It is unclear how an agent could actively explore a completely novel situation and

narrow down the set of potential causal structures to enable efficient inference.

In situations in which outcomes depend on the learner’s actions rather than simply obser-

vations, reinforcement learning (RL) is a widely-used modeling tool. It is useful for designing

autonomous, dynamic agents capable of exploration in complex environments. RL focuses

on learning what to do by mapping situations to actions, so as to maximize a reward signal

[SB98]. RL has historically been closely linked with associative learning theory and con-

ceives of learning as essentially a process of trial and error. The connection between classical
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Figure 10.2: Common cause (CC) and common effect (CE) structures used in the present

study. D indicates the effect of opening the door. (a) CC3 condition, three lock cues; (b)

CE3 condition, three lock cues. (c) CC4 condition, four lock cues; (d) CE4 condition, four

lock cues.

conditioning and temporal-difference learning, a central element of RL, is widely acknowl-

edged [SB90]. Hence, RL could be considered as a modern version of associative learning,

where learning is not only guided by prediction error but also by other learning mechanisms,

notably the estimation of the reward function. Recent advances in RL, especially deep RL,

have demonstrated impressive success in applications involving the design of autonomous,

dynamic agents for exploration, including playing Atari and Go [MKS15, VGS16, SHM16]

and learning complex robot control policies [LFD16].

With these significant developments in RL, is it possible for modern learning models to

acquire human-like causal knowledge? To address this question, we designed a novel task

to examine learning of action sequences governed by different causal structures, allowing us

to determine in what situations humans can transfer their learned causal knowledge. Our

design involves two types of basic causal structures (common cause and common effect; see

Figure 10.2). When multiple causal chains are consolidated into a single structure, they can

form either common cause or common effect schemas. Previous studies using an observational

paradigm have found an asymmetry in human learning for common-cause and common-effect

structures [WH92].

To design a novel environment for humans, we developed a virtual “escape room”. Imag-

ine that you find yourself trapped in an empty room where the only means of escape is
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through a door that will not open. Although there is no visible keyhole on the door–nor do

you see any keys lying around–there are some conspicuous levers sticking out of the walls.

Your first instinct might be to pull the levers at random to see what happens, and given

the outcome, you might revise your theory about how lever interactions relate to the open-

ing of the door. We refer to this underlying theory as a causal schema: i.e., a conceptual

organization of events identified as cause and effect [Hei58]. These schemas are discovered

with experience and can potentially be transferred to novel target problems to infer their

characteristics [KLH17].

In the escape room example, one method of unlocking the door is to induce the causal

schema connecting lever interactions to the door’s locking mechanism. However, it remains

unclear whether people are equally proficient in uncovering common cause and common effect

schemas in novel situations. In the current study, we first assessed whether human causal

learning can be impacted by the underlying structure, comparing learning of a common cause

structure with learning of a common effect structure. We then examined whether learning

one type of causal structure can facilitate subsequent learning of a more complex version

of the same schema involving a greater number of causal variables. We compared human

performance in a range of learning situations with that of a deep RL model to determine

whether behavioral trends can be captured by an algorithm which learns solely by reward

optimization, with no prior knowledge about causal structure.
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CHAPTER 11

Conclusion

In this dissertation, we show that by integrating four hidden dimensions—functionality,

physics, causality and utility—into the current computer vision and robotics systems, we are

able to advance the state-of-the-art methods, in particular in the context of learning from

limited training examples and transfer learning.

In Part I, we design methods that go beyond example-based methods: a) recognize an

object by its essential purposes of use, b) recognize a scene by their functions to serve

human activities, c) recognize the containment relations by its causal effects, d) reason

about long-term indirect intangible affordance in daily scenes, and e) synthesis realistic scene

configuration by integrating functionality and affordance. We argue that it is the missing

dimensions of objects and scenes—functionality, physics, causality and utility—that decide

their designs of geometry and appearance, as well as the planning of human actions and

events. Our objective is to develop methods that “understand” objects, scenes and actions,

not merely classify them by memorizing typical examples. This is crucial for generalizing to

novel examples in tests.

In Part II, we reason about the hidden and time-varying facts of objects and scenes,

and the actions that cause their changes, going beyond passive recognition. As each task

is executed by actions to change object status until a desired composite state is reached,

by understanding the unfolding tasks, we can reason about the scene history, through past

experiences or physics-based simulation—what has resulted in the observed scene, what are

the current invisible factors, and predict what will happen next.

In Part III, a set of cognitive studies have shown that human perception of liquid, sand,

and motion indeed can be explained by the intuitive physics theories, and have shown that

179



human demonstrated a superior ability of causal reasoning, especially on the abstract knowl-

edge, which is extremely challenging for the current state-of-the-art machine learning meth-

ods.

Going forward, two other critical missing dimensions that are not included in this disser-

tations are human intention [QZ18, QHW17] and social interactions [SPF18, SXR15, SRZ16,

STZ17, SGR17], which worth further explorations in the future.
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