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Automated Outcome Classification of Computed Tomography 
Imaging Reports for Pediatric Traumatic Brain Injury

Kabir Yadav, MDCM, MS, MSHS, Efsun Sarioglu, PhD, Hyeong-Ah Choi, PhD, Walter B. 
Cartwright IV, MD, Pamela S. Hinds, PhD, RN, and James M. Chamberlain, MD
Department of Emergency Medicine, Harbor-UCLA Medical Center, (KY) Torrance, CA; Computer 
Science Department, Portland State University, (ES) Portland, OR; Computer Science 
Department, The George Washington University, (HC)Washington, DC; Howard University School 
of Medicine, (WBC) Washington, DC; Children’s Research Institute, Children's National Health 
System, (PSH) Washington, DC; Division of Emergency Medicine, Children's National Health 
System, (JMC) Washington, DC

Abstract

Background—The authors have previously demonstrated highly reliable automated 

classification of free text computed tomography (CT) imaging reports using a hybrid system that 

pairs linguistic (natural language processing) and statistical (machine learning) techniques. 

Previously performed for identifying the outcome of orbital fracture in unprocessed radiology 

reports from a clinical data repository, the performance has not been replicated for more complex 

outcomes.

Objectives—To validate automated outcome classification performance of a hybrid natural 

language processing (NLP) and machine learning system for brain CT imaging reports. The 

hypothesis was that our system has performance characteristics for identifying pediatric traumatic 

brain injury (TBI).

Methods—This was a secondary analysis of a subset of 2,121 CT reports from the Pediatric 

Emergency Care Applied Research Network (PECARN) TBI study. For that project, radiologists 

dictated CT reports as free text, which were then de-identified and scanned as PDF documents. 

Trained data abstractors manually coded each report for TBI outcome. Text was extracted from the 

PDF files using optical character recognition. The dataset was randomly split evenly for training 

and testing. Training patient reports were used as input to the Medical Language Extraction and 

Encoding (MedLEE) NLP tool to create structured output containing standardized medical terms 

and modifiers for negation, certainty, and temporal status. A random subset stratified by site was 

analyzed using descriptive quantitative content analysis to confirm identification of TBI findings 

based upon the National Institute of Neurological Disorders and Stroke Common Data Elements 

project. Findings were coded for presence or absence, weighted by frequency of mentions, and 

past/future/indication modifiers were filtered. After combining with the manual reference 

standard, a decision tree classifier was created using data mining tools WEKA 3.7.5 and Salford 
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Predictive Miner 7.0. Performance of the decision tree classifier was evaluated on the test patient 

reports.

Results—The prevalence of TBI in the sampled population was 159 out of 2,217 (7.2%). The 

automated classification for pediatric TBI is comparable to our prior results, with the notable 

exception of lower positive predictive value (PPV). Manual review of misclassified reports, 95.5% 

of which were false positives, revealed that a sizable number of false-positive errors were due to 

differing outcome definitions between NINDS TBI findings and PECARN clinical important TBI 

findings, and report ambiguity not meeting definition criteria.

Conclusions—A hybrid NLP and machine learning automated classification system continues 

to show promise in coding free-text electronic clinical data. For complex outcomes, it can reliably 

identify negative reports, but manual review of positive reports may be required. As such, it can 

still streamline data collection for clinical research and performance improvement.

INTRODUCTION

A well-recognized barrier to the use of electronic health records (EHR) for research is that 

much of the information is free-text, requiring substantial time and resources to interpret the 

data to allow meaningful analysis. To translate biomedical informatics tools for general use 

in clinical data warehouses, we propose to apply a novel computer-aided data interpretation 

system to generate patient-oriented outcomes data suitable for outcomes research. Our 

objective was to validate a previously developed computer-aided free text data collection and 

interpretation system1 by applying it to determine a complex clinical outcome from a large, 

multi-center database, which was used to derive and validate a priority pediatric clinical 

decision rule.

The Pediatric Emergency Care Applied Research Network (PECARN) traumatic brain 

injury (TBI) project was a multi-year undertaking by a national research network of 25 

pediatric emergency departments (EDs).2 Using conventional methods, the investigators 

prospectively collected clinical data and outcomes on over 42,000 patients, including nearly 

15,000 head computed tomography (CT) imaging reports. This database was manually 

collected and interpreted to derive and validate a clinical decision rule to guide the efficient 

use of CT imaging for pediatric TBI patients.

We previously demonstrated high diagnostic accuracy of a hybrid system using natural 

language processing (NLP) and machine learning tools for automated classification of ED 

CT imaging reports for the presence of orbital fractures.1 The hybrid system uses a well-

established medical NLP software platform, Medical Language Extraction and Encoding 

(MedLEE; Columbia University, New York, NY; and Health Fidelity, Menlo Park, CA).3 In 

the current study, we apply this technique to detect TBI-related findings in the PECARN 

head injury CT reports. To determine the outcome of clinically important injuries for TBI 

victims, we used a modern statistical machine learning technique, decision tree 

classification. We compared data acquisition performance of the hybrid system to that 

acquired from manual coding of a subset of the high-volume multicenter free-text PECARN 

CT imaging database. Our long-term goal is to develop a translatable, accurate, and efficient 

Yadav et al. Page 2

Acad Emerg Med. Author manuscript; available in PMC 2017 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



computer-aided system that collects data suitable to perform outcomes research and quality 

improvement for all aspects of clinical medicine.

METHODS

Study Design

This was a secondary analysis of data from a prior multi-site diagnostic imaging study on 

pediatric blunt head injury victims. Institutional review board approval was obtained for this 

secondary analysis, which was a retrospective cohort study design comparing automated 

classification of CT imaging reports against the reference standard of manual coding by 

trained data abstractors.

Study Setting and Population

The study setting and population of the original study are discussed in detail elsewhere.2 

Briefly, the PECARN TBI study was a prospective cohort study of pediatric TBI patients 

younger than 18 years presenting to the 25 EDs in the PECARN between 2004 and 2006. Of 

57,030 eligible patients, 42,412 (74.4%) were enrolled and eligible for analysis, and CT 

scans were obtained on 14,969 (35.3%) patients. The present study population consists of 

consecutive blunt head injury victims for whom head CT scanning was ordered within the 

Chesapeake Applied Research Network (CARN) research node subset. CT scans were 

obtained on 2,217 (37.1%) of the 5,987 patient cohort of the CARN node.

Head CT scans were obtained at the emergency physician’s (EP’s) discretion and interpreted 

by site faculty radiologists. A study pediatric radiologist, blinded to clinical presentation, 

made definitive interpretations of inconclusive CT scans. TBI CT findings were defined as 

presented in Table 1. Of the 2,217 CT scans in the CARN node, 159 (7.2%) had TBI CT 

findings.

Study Protocol

System Overview—Computed tomography imaging reports were preprocessed for text 

conversion and then processed by NLP (Figure 1). The NLP structured output included tags 

to modify findings with low certainty or negation, and findings linked with patients’ 

histories were filtered out. The NLP-filtered findings were combined with the reference 

standard outcomes and then randomly divided into 50% training and 50% test sets to 

evaluate performance of machine learning classification.

CT Reports (Pre-processing)—Computed tomography reports from the CARN node 

sites were provided as scanned documents in PDF format. The reports underwent optical 

character recognition using Adobe Acrobat Pro X to convert to text files.

Medical Language Extraction and Encoding Overview—MedLEE was chosen as 

the NLP module because it is one of the most widely used NLP software packages in the 

medical research community,4 and has previously successfully interpreted findings from 

free-text radiology procedure reports, including pediatric populations and head CT imaging 

for stroke and facial trauma.1,5,6 It is available under both commercial and academic 
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licenses. MedLEE parses text using a grammar to recognize syntactic and semantic patterns, 

generating structured text with contextual modifiers that are organized in tables and assigned 

to Unified Medical Language System (UMLS) codes, specifically Concept Unique 

Identifiers (CUIs).7

Lexicon Modification—To adapt MedLEE for new clinical applications, its lexicon, 

abbreviations, and section names can be extended dynamically to reflect the terms and 

organization seen in the documents to be interpreted. This is necessary because of the need 

for disambiguation, where terms have different meanings in different contexts (e.g. 

“ventricle” in an echocardiogram report is anatomically different from “ventricle” in a CT 

head report). Unlike most prior methods for lexicon verification, we used descriptive 

quantitative content analysis to review MedLEE interpretation of TBI CT findings. 

Descriptive quantitative content analysis exerts prospective rigor to the process of lexicon 

coverage, affording a measure of objectivity, reliability, and reproducibility.8 Using a subset 

of 200 PECARN CT reports randomly sampled using Stata 10.1 and stratified by study site, 

two investigators (KY, WBC) identified content associated with presence or absence of each 

TBI CT finding definition, based upon the National Institute of Neurological Disorders and 

Stroke Common Data Elements project.9 Content analysis was performed using NVivo 9 

(QSR International, Victoria, Australia).

Feature Selection Filtering—MedLEE output includes problems, findings, and 

procedures with associated modifiers that report specific body locations, certainty, and 

temporal status (Figure 2). We used the certainty and temporal status modifiers to include 

only likely acute findings, filtering out findings associated with historical or chronic 

temporal status modifiers. Findings associated with negated and low-probability certainty 

modifiers were included with a preceding “no_” modifier.

Postprocessing Using Waikato Environment for Knowledge Analysis—Waikato 

Environment for Knowledge Analysis (WEKA; Waikato University, Hamilton, New 

Zealand) is an open-source collection of machine learning algorithms for data mining tasks 

written in Java.10 We solely used WEKA 3.7.5 for postprocessing the filtered feature sets 

from NLP output compiled with the reference standard outcomes of acute orbital fracture. 

The output was in attribute relation file format (arff), where each line represents one report 

with its associated outcome, which underwent conversion into word vector 

representations.11 The word vector representations combined unigram words and UMLS 

CUI phrases, with count data to weight frequency of findings within a report.

Decision Tree Classification—We used decision trees for classification because of their 

explicit rule-based output, which can be easily evaluated for content validity. We used the 

Classification and Regression Trees (CART) module of Salford Predictive Miner 6.6 

(Salford Systems, San Diego, CA) to generate decision trees using the word vector attributes 

as predictors, without explicit constraints, minimum performance cutoffs, or maximum 

number of nodes. The goal was to generate a parsimonious tree that was robust to varying 

penalties applied to false positive or false negative cases (misclassification costs). We opted 

to use training and testing sets to evaluate performance instead of cross-validation, because 
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cross-validation allows the system to train on all the data, which would not be possible in the 

real world. We wanted to continue our prior pragmatic approach of seeing how decision tree 

classifiers would perform if they were only allowed to train using a subset of data with 

known outcomes, and then applied to the remaining testing subset heretofore unknown to the 

system.1

Measurements

Automated Classification Performance—We used a 2 by 2 table to report 

performance of the automated classification system, using the manually abstracted PECARN 

TBI findings on CT as the reference standard. We report sensitivity, specificity, positive 

predictive value, and negative predictive value, with 95% confidence intervals.

Misclassification Analysis—Any CT report that was misclassified either in the training 

or test set was reviewed by two study investigators independently. Misclassifications were 

categorized inductively for the nature of the error. Expected categories included text 

conversion errors, dictation errors, report ambiguity, MedLEE NLP errors, and decision tree 

classification errors.

Data Analysis

A precision-based sample size for the lexicon modification was calculated to achieve a 

desired precision of 0.1 for a character level inter-rater agreement of Cohen’s kappa. With an 

alpha of 0.05, power of 0.90, and standard deviation (SD) ± 0.32 (based upon a content 

analysis test run of 84 PECARN CT reports), we used Stata 10.1 to estimate that 107 patient 

reports were needed to achieve a desired precision of 0.1 for the kappa coefficient.

Sample size for testing MedLEE performance was determined by the precision of the 

confidence interval (CI) around the sensitivity, knowing that the CARN research node head 

CT data set has a positive TBI CT report prevalence of 7.2%. Assuming sensitivity and 

specificity of the system is similar to the prior study1 (93% and 97% respectively), to 

determine the sensitivity to within 5%, we needed to enroll 1,348 total patients. Sample size 

requirements were calculated using PASS 2004 (NCSS, Utah).

RESULTS

Of the 2,217 CTs performed through the CARN node, CT report PDF files were located for 

2,134 (96.3%) (Figure 3). Of those, eight were not head CT reports. We excluded an 

additional five cases in which the reference standard was miscoded (four positives miscoded 

as negative and one negatives miscoded as positive). The remaining 2,121 CARN node head 

CT report PDF files were successfully converted to text files, which underwent processing 

using the MedLEE NLP platform. Content analysis performance was analyzed using 

stringent character level agreement for thematic coding, as well as simple agreement as to 

whether the report was positive or negative for TBI findings. Within 107 reports across 53 

positive and negative TBI themes, the kappa for character level agreement was 0.79 (95% CI 

= 0.78 to 0.80), and the kappa for simple agreement was 0.88 (95% CI = 0.71 to 1.00).
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The performance of automated classification of PECARN head CT reports is provided in 

Table 2, with comparison to the prior performance of the system for detection of orbital 

fractures.1 The parsimonious CART tree was robust to varying misclassification costs 

(Figure 4). Misclassification analysis identified a total of 154 reports (7.3% of CT reports), 

with 147 (95.5%) being false positives. The categorization of misclassification is provided in 

Table 3.

DISCUSSION

Our study adhered to the methodological standards highlighted in a prior systematic review 

on the use of NLP for automated classification of radiology.12 Specifically, in keeping with 

the prior study that established this hybrid approach of NLP and machine learning,1 this 

external validation study used a trained reference standard for the outcome of interest, and 

reports rigorous statistics for system evaluation. Improvements on the prior methodological 

approach included use of a robust qualitative approach to training the system for new tasks 

using content analysis, and provided a table of double-coded misclassification analysis 

results.

Our results are consistent with the conclusion of the prior systematic review, which noted 

that studies looking at more complex outcomes tend to underperform.12 Since that 2010 

publication, more studies have been performed using hybrid techniques to evaluate complex 

outcomes. To our knowledge, there are no prior published studies on classification of TBI 

findings on head CT reports, although an abstract was presented at a conference in 2013.14 

A popular example of a complex outcome has been pulmonary embolism, where location 

and acuity are important aspects for defining the disease and guiding clinical 

management.13,15

In a study by Yu et al., an enriched preprocessed sample of the Findings and Impression 

sections of 10,330 CT pulmonary artery (CTPA) reports from a single center were analyzed 

using the Narrative Information Linear Extraction-based NLP platform and logistic classifier 

machine learning approach.15 Although the performance metrics of the Yu et al. study were 

impressive (precisions between 0.79 to 0.96, recalls between 0.91 to 0.96), it should be 

noted that this was a derivation study without an independent testing sample, and the authors 

used bootstrapped performance estimates. To address the complex characterization of 

pulmonary embolus, the Yu et al. study made multiple binary evaluations across each aspect 

of the pulmonary embolus (central location, non-subsegmental, non-acute). The study 

authors noted that the description of acuity was often not explicit in a given sentence in the 

CT report (“hidden”), and so the automated classification system suffered. In our study, 

misclassification analysis revealed a general problem with report ambiguity (Table 3). In 

addition, certain aspects of the injury findings of the PECARN TBI criteria (such as degree 

of displacement of a skull fracture) were often not explicitly reported, and therefore hard to 

detect by our automated classification approach, leading to an “Abnormal but not PECARN 

TBI” misclassification. It should be noted that this CT report issue does not detract from the 

original PECARN TBI study wherein each patient had a chart review performed and the 

clinical decision instrument was created to predict clinically-important outcomes, not solely 

abnormal CT findings.2
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A study be Pham et al. used a Naïve Bayes Classifier as a baseline, and either support vector 

machines or maximum entropy algorithms for the machine learning step to detect pulmonary 

embolism.13 They studied 573 preprocessed, manually annotated and sectioned CTPA 

reports in French from a single institution. The outcome determination and annotation tasks 

were performed by a single person without any validity checks, and oversampling was used 

despite an 83% training set. With that in mind, the performance on an independent 17% 

testing sample was impressive (precision of 1.00 and recall of 0.95). In contrast to both the 

Pham et al. and Yu et al. studies, our study did not manually preprocess CT reports beyond 

review of text conversion from the original PDF files. Our study used multicenter, 

consecutive CT reports without enrichment, without manual annotation, and without 

manually removing sections. While this was meant to reflect a more pragmatic use of 

automated classification, it did contribute to misclassifications by MedLEE as the History or 

Indication sections were sometimes misread as findings (Table 3).

Unlike prior studies that use “black box” machine learning classifiers like the Pham et al. 

study, use of decision trees allows evaluation of specific node classifiers. Furthermore, 

logistic model classifiers like those employed in the Yu et al. study can only be evaluated for 

relative contribution to classification, whereas in our study, each node can be examined for 

face validity and the classification can be replicated by hand. Nodes in our decision tree 

(Figure 3) included mentions of intracranial hemorrhage without infarction, contusions 

without mention of subdural or bones, hemorrhage in the context of describing brain 

structures, and fractures not involving decision tree creation to compare to high sensitivity or 

high specificity decision trees, and the final decision tree used in our study was robust to 

misclassification cost.

For the stated purpose of automated classification applied in a pragmatic way, the results 

demonstrate utility in efficiently classifying negative CTs as those with no TBI findings. 

Given that most naturally-occurring CT report databases have far more normal reports than 

abnormal ones (low prevalence populations like in our study), we would prefer to have 

ambiguity of positives requiring manual review than the other way around. When 

considering the use of such automated classification beyond research purposes, flagging 

potentially abnormal CT reports for review by the ordering physician would be such an 

application. This would be a useful application, since no patient in the PECARN TBI study 

with a negative head CT had clinically important TBI.16

LIMITATIONS

It is worth highlighting that the misclassification table reveals that a sizable number of false 

positive CT reports did have NINDS criteria for TBI but not PECARN TBI criteria. This is 

an important limitation for our study design, as we used the NINDS criteria rather than the 

PECARN TBI criteria to perform the lexicon modifications of MedLEE for the automated 

classification system. We chose this route because the content analysis step required a robust 

set of category definitions that had terminology depth, and converting the CT report to re-

usable structured text is one of the purported advantages of NLP.12 The mismatch in criteria 

was an expected risk, and performance clearly would have been better if the outcome was 

also defined using the NINDS criteria for TBI.
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A persistently vexing problem for automated classification is ambiguity of source 

documents. Most NLP approaches have qualifiers that measure certainty, but often the 

machine learning classifiers need to make a binary determination. A number of CT head 

reports lacked detail to meet PECARN criteria, such as the common example mentioned in 

Discussion of a “mildly depressed skull fracture” which could not be classified as meeting 

PECARN criteria for depth being more than the width of the skull table. But given the 

degree of false positives for this task, perhaps a second-step machine learning classifier with 

a “manual review” category could be employed.

As general purpose automated classification systems need some degree of modification for 

the specific task at hand (TBI, appendicitis, tuberculosis), and custom-built automated 

classification systems are developed within a specific context, generalizability is always a 

concern. The original study that used the hybrid approach we validated here was identifying 

orbital fractures in CT reports sourced from a single hospital. For this study, we sourced 

reports from multiple hospitals across the Eastern seaboard, which would increase reporting 

variation and hopefully create a more generalizable product. That said, we would 

recommend sampling CT reports at every site to evaluate performance using the 

methodological approach outlined in this study.

CONCLUSIONS

A hybrid natural language processing and machine learning automated classification system 

continues to show promise in coding free-text electronic clinical data. For complex 

outcomes, this approach of training an automated classification system can reliably identify 

negative reports, but manual review of positive reports may be required. As such, it can still 

streamline data collection for clinical research and performance improvement.
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Figure 1. 
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Figure 2. 
Sample MedLEE and filtered feature outputs
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Figure 3. 
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Figure 4. 
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Table 1

PECARN Definition of TBI on Head CT Imaging

Intracranial hemorrhage or contusion

Cerebral edema

Traumatic infarction

Diffuse axonal injury

Shearing injury

Sigmoid sinus thrombosis

Midline shift of intracranial contents or signs of brain herniation

Diastasis of the skull

Pneumocephalus

Skull fracture depressed by at least the width of the table of the skull
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Table 2

Automated classification performance

Test Characteristic Pediatric TBI (95% CI) Orbital Fracture1 (95% CI)

Sensitivity (recall) 0.897 (0.801–0.953) 0.933 (0.897–0.959)

Specificity 0.919 (0.912–0.923) 0.969 (0.964–0.973)

PPV (precision) 0.436 (0.389–0.463) 0.816 (0.785–0.839)

NPV 0.992 (0.985–0.996) 0.990 (0.985–0.994)

NPV = negative predictive value; PPV = positive predictive value
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Table 3

Misclassification categorization (from both test and training sets)

Misclassification Reason Number (%)

False negatives (from 1,829 coded negative) 7 (0.4)

  Decision tree misclassification 7 (100)

False positives (from 292 coded positive) 147 (50.3)

  Abnormal but not PECARN TBI 53 (36.1)

  Report ambiguity 12 (8.2)

  Report dictation error 6 (4.1)

  Text conversion error 3 (2.0)

  MedLEE misread 27 (18.4)

  Decision tree misclassification 46 (31.3)

MedLEE = Medical Language Extraction and Encoding; PECARN = Pediatric Emergency Care Applied Research Network; TBI = traumatic brain 
injury
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