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Abstract

Disease surveillance data are important for monitoring disease burden and occurrence, and for 

informing a wide range of efforts to improve population health. Surveillance for infectious 

diseases may be conducted passively, relying on reports from healthcare facilities, or actively, 

involving surveys of the population at risk. Passive surveillance typically provides wide spatial 

coverage, but is subject to biases arising from differences in care-seeking behavior, diagnostic 

practices, and under-reporting. Active surveillance minimizes these biases, but is typically 

constrained to small areas and subpopulations due to resource limitations. Methods based on 

linkage of individual records between passive and active surveillance datasets provide a means to 

estimate and correct for the biases of each system, leveraging the size and coverage of passive 

surveillance and the quality of data in active surveillance. We develop a spatial Bayesian 

hierarchical model for bias-correcting data from both systems to yield an improved estimate of 

disease measures after adjusting for under-ascertainment. We apply the framework to data from a 

passive and an active surveillance system for pulmonary tuberculosis (PTB) in Sichuan, China, 

and estimate the average sensitivity of the active surveillance system at 70% (95% credible 

interval: 62%, 78%), and the passive system at 30% (95% CI: 24%, 35%). Passive surveillance 

sensitivity exhibited considerable spatial variability, and was positively associated with a site’s 

gross domestic product per capita. Bias-corrected estimates of county-level PTB prevalence in the 

province in 2010 identified regions in the southeast with the highest PTB burden, yielding 

different geographic priorities than previous reports.
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1. Introduction

Disease surveillance systems provide critical public health information that can be used for 

the timely detection of disease outbreaks, evaluation of the impact of interventions, 

monitoring of trends in disease burden, and estimation of important epidemiologic 

parameters (Sell, 2010). Surveillance data are also routinely leveraged to examine 

associations between disease occurrence and potential risk factors (Yip et al., 1995). At the 

same time, surveillance data are fundamentally limited with respect to completeness and 

accuracy, owing in part to resource constraints that result in under-ascertainment or biased 

sampling across geographical regions, time periods and sub-populations. As a result, 

epidemiologic parameters or disease measures estimated or extrapolated from surveillance 

data are widely known to be subject to some level of bias (Declich and Carter, 1994; 

Gibbons et al., 2014; Lee et al., 2010; Souty et al., 2014).

Over the last two decades, the transition from paper-based to electronic surveillance systems 

has increased the timeliness and volume of disease surveillance data available for analysis in 

many parts of the world (Bansal et al., 2016). One important opportunity arising from this 

transition has been to combine data from multiple surveillance systems and from multiple 

locations, motivating the use of increasingly sophisticated statistical techniques and models 

capable of integrating and jointly analyzing multi-source data. Two broad classes of disease 

surveillance – passive and active – are of interest with respect to opportunities for data 

integration and analysis. Passive surveillance systems are generally structured around data 

collection, storage and transmission from healthcare facilities. These systems rely on 

encounters between patients and healthcare providers. For example, hospitals participating 

in a passive surveillance network may report the diagnosis of a particular disease at a regular 

schedule, or within a certain number of hours or days after the diagnosis is confirmed. 

Passive disease surveillance is generally less costly, allowing for information to be collected 

in continuous time across the extent of the network of participating facilities, but is widely 

acknowledged to suffer from under-ascertainment (not all diseased individuals present at a 

reporting facility), under-diagnosis (not all cases at the facility are correctly identified, 

depending on the quality of diagnostic routines available), and under-reporting (not all 

identified cases are reported). Notably, factors related to the completeness of passive 

surveillance data, such as care-seeking behavior, access to health-care, and diagnostic rigor, 

may be expected to vary spatially across participating facilities and their population 

catchments.

Active surveillance systems, by contrast, employ survey methods to estimate the prevalence 

of disease in defined sub-populations. For example, passive surveillance of hepatitis C in the 

United States occurs through mandatory reporting of cases diagnosed during healthcare 

encounters to the National Notifiable Disease Surveillance System, while testing serum 

samples collected every 2 years by the US National Health and Nutrition Examination 

Survey is a form of active surveillance for the disease (Rosenberg et al., 2018). Active 

surveillance data collection is resource-intensive, and therefore usually limited in extent and 

duration, but can provide data that is more representative of sampled populations, and may 

be of higher quality due to standardization of diagnostic methods.
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In the present work, we develop and evaluate a statistical framework for integrating data 

from active and passive surveillance of infectious diseases in order to estimate and adjust for 

under-ascertainment of surveillance systems. Our approach builds on prior methods that 

model the probability of being reported by individual or multiple systems to estimate the 

hidden population not captured by any system. Classical log-linear models (Cormack, 1989) 

for analyzing such multi-source surveillance data have been widely used in the literature and 

have been extended to allow for Bayesian inference (Basu and Ebrahimi, 2001), to 

accommodate individual heterogeneity (Fode and Rivest, 2015), and to incorporate novel 

approaches to improve parameter estimation (Arnold et al., 2010; Manrique-Vallier and 

Fienberg, 2008). These methods focus on the estimation of ascertainment probability 

without accounting for the underlying count process. As a result, when multi-source 

surveillance data are collected at different spatial locations, these methods cannot directly 

incorporate spatial dependence and covariates in modeling the unobserved count process to 

improve inference. N-mixture models address this problem by treating site-specific counts as 

a Poisson process, and inference is carried out using the marginal likelihood of counts by 

integrating the binomial likelihood over a set of possible values of counts for each site (Dail 

and Madsen, 2011; Royle, 2004; Royle et al., 2007). While N-mixture models have been 

implemented to provide estimates of the total number of diseased individuals across sites 

with multi-source surveillance data, they have not previously been adapted to the scenario in 

which a limited set of multi-source surveillance data exist along side a more extensive set of 

data collected from sites where only one system operates, which is a common situation in 

practice. By extending the N-mixture model to jointly estimate disease occurrence and 

ascertainment processes across multi- and single-surveillance sites, we propose a framework 

that better leverages available spatial information on disease outcomes and relevant 

covariates, and provides a direct means of estimating the true occurrence of disease 

throughout a spatial extent.

The remainder of the paper is organized as follows. In Section 2, we introduce the 

motivating surveillance data of active and passive pulmonary tuberculosis (PTB) in western 

China. In Section 3, we describe a Bayesian spatial hierarchical model for jointly analyzing 

multi-source surveillance data from multiple spatial locations to estimate disease prevalence 

across a larger region. This is accomplished by combining estimated ascertainment 

probabilities of a passive surveillance system with a spatially kriged surface of true case 

counts. In Section 4, we describe a simulation study to evaluate the proposed model and 

compare with binomial mixture model (Fode and Rivest, 2015) that does not explicitly 

model the true case as a latent variable. In Section 5, we apply our model framework to the 

motivating dataset. To our knowledge, this is the first application of a spatial model capable 

of analyzing multi-source disease surveillance reports.

2. Motivating data

We collected pulmonary tuberculosis (PTB) surveillance data from Sichuan Province, China, 

from a passive and an active surveillance system. The passive National Infectious Disease 

Reporting System (NIDRS) was established in 2004 in China, encompassing virtually all 

healthcare facilities. It covers 39 mandatory notifiable infectious diseases, including PTB, 

and operates across a real-time network linking the Chinese Centers for Disease Control and 
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Prevention (China CDC), regional CDCs, and reporting facilities (Liang et al., 2014). We 

hereinafter denote this passive PTB surveillance system as PTBS1. In parallel with NIDRS, 

an active national cross-sectional PTB prevalence survey is carried out periodically by 

public health officials and local agencies with household surveys for PTB conducted within 

representative samples of communities. The survey, which we denote PTBS2 from here 

forward, was carried out nationally in 1979, 1985, 1990, 2000 and 2010, and follows the 

guidelines for population-based tuberculosis prevalence surveys put forward by the World 

Health Organization (Wang et al., 2014; World Health Organization. Regional Office for the 

Western Pacific, 2007).

We obtained individual level PTB surveillance data from PTBS1 between 2009–2010 and 

PTBS2 in 2010 Wang (2011). To identify individuals reported by both PTBS1 and PTBS2, a 

record linkage procedure was implemented based on name, date of birth, sex, and residential 

address identifiers. PTBS1 surveillance was continuous in 2009–2010, and covered every 

county in the province. PTBS2 surveillance was conducted from May 10 to June 22, 2010 in 

24 sites where record identifiers enabled linkage to PTBS1data (Fig. 1). We assume a 

temporally closed-population by only considering PTBS1 data from August 1, 2009 to July 

31, 2010, allowing the joint analysis of continuous-time passive data with discrete-time 

active surveys under the assumption that the samples draw from the same underlying 

population. Within this time interval, this assumption is viewed as reasonable given that the 

average recovery time for PTB is 6 to 18 months if treated. Covariates for population, gross 

domestic product (GDP) per capita, and longitude/latitude were obtained from government 

sources (Sichuan Bureau of Statistics, 2011).

3. Spatial hierarchical ascertainment model

Assume there are T surveillance systems under consideration. Let Ns be the unknown 

number of cases at the sth surveillance site, and ns (≤Ns) be the unique number of cases 

ascertained by any of the systems at the sth site. For an individual i at site s, if they are 

ascertained by system t, then yit,s = 1, otherwise, yit,s = 0. Now, if the ascertainment 

probability for individual i under system t at site s is pit,s, Yit,s follows a Bernoulli 

distribution with probability density function f(yit, s, pit, s) = pit, s
yit, s(1 − pit, s)1 − yit, s. 

Assuming individuals and systems are independent of each other, the data likelihood is 

obtained by multiplying the individual probabilities together accounting for all combination 

of being ascertained by each system or not. We begin by specifying the data likelihood for a 

single site where s. The likelihood for N individuals and T systems is

L(Ns, {pit, s}; {yit, s})

= Ns!
(∏ℎyℎ!)(Ns − ns)! ∏

i = 1

Ns
∏
t = 1

T
[pit, s

yit, s(1 − pit, s)1 − yit, s], (1)

where {yit,s} and {pit,s} denote a set of binary values and corresponding ascertainment 

probabilities for each individual, system and location; yh represents the number of cases 

which share the same ascertainment history h. The likelihood in Eq. (1) is also called a 

single cell likelihood. For the multi-source case of two systems, the ascertainment histories 
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are: cases ascertained only by system t = 1, cases ascertained only by system t = 2, cases 

ascertained by both systems t = 1 and t = 2 and cases ascertained neither by systems t = 1 

nor t = 2. We note that the our ability to estimate Ns using the above likelihood relies on the 

assumption that systems are independent and that we observe some cases captured by both 

systems.

Assuming that variability in ascertainment probability depends only on different survey 

systems and different locations, Eq. (1) can be represented by a multinomial distribution,

L(Ns, {pt, s}; {yℎ}) = Ns!
(∏ℎyℎ!)(Ns − ns)!π0, s({pt, s})Ns − ns

∏
ℎ = 1

2T − 1
[πℎ, s({pt, s})yℎ],

(2)

where yh denotes case count for ascertainment history h, and πh,s(·) represents the 

probability of each ascertainment history h at each location. For two systems assuming 

system independence, we can define πh,s as given in Table 1. The number of cases for 

ascertainment history h = 1, 2, 3 is known and corresponds to the number of cases 

ascertained by both systems t = 1 and t = 2, system t = 1 only, and system t = 2 only. 

However, the h = 0 case is unobserved, and thus it will be estimated by the model.

The likelihood in Eq. (2) includes an unknown parameter Ns at each location. One technique 

to borrow information across locations is to assume a distribution for Ns and integrate out Ns 

as a nuisance parameter. We assume Ns at each location follows a Poisson distribution with a 

mean parameter λs. Thus, the joint likelihood is expressed in λs as,

L(λs, {pt, s}; {yℎ}) = ∫Ns
L(Ns, {pt, s}; {yℎ}) × p(Ns ∣ λs)dNs . (3)

Because Ns is discrete, we have

L(λs, {pt, s}; {yℎ}) = ∑
Ns = ns

∞ Ns!
(∏ℎyℎ!)(Ns − ns)!π0, s({pt, s})Ns − ns

∏
ℎ = 1

2T − 1
{πℎ, s({pt, s})yℎ} × λs

Nsexp(λs)
Ns! .

(4)

The integrated likelihood in Eq. (4) sums up to Ns = ∞. In practice, one can choose a large 

upper bound for Ns after which any change in likelihood is negligible. This choice should be 

based on the maximum number of observations and an approximate estimate of the 

ascertainment probability. Sensitivity analyses should also be conducted to ensure that 

inference is robust. For example, we chose an upper bound of 150 in the application, where 

the maximum site-specific count ns is 34 and found there was no difference in likelihood 

compared to an upper bound of 200. Finally, the constant term, ∏hyh! can also be removed 

from the likelihood as it does not depend on unknown parameters.
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The likelihood in Eq. (4) is constructed for a single site. For S sites, the joint likelihood is 

shown in Eq. (5), and assumes observations among all sites are conditionally independent 

given λs at each location.

L({λs}, {pt, s}; {Y ℎ}) = ∏
s = 1

S
L(λs, {pt, s}; {yℎ}) . (5)

We can further introduce structure on the vector of latent variable λs to account for spatial 

dependence. Let

log(λs) = α + es, (6)

where α denotes an intercept and es follows a mean-zero Gaussian process with an 

exponential covariance structure for a finite set of S locations, i.e., (e1,…,es)′ ~ N(0, ∑), 

Σij = σ2exp(−
Dij
ϕ ), Dij represents the Euclidean distance between site i and j, and ϕ is the 

range parameter. Similar to disease mapping applications, it is also common to include in 

Eq. (6) an offset of the logarithmic of the at-risk population at site We use covariates to 

model site-specific detection probabilities pt,s:

logit(pt, s) = Zt, sβt, p, (7)

where Zt,s is a set of covariates for system t. Note that the transformations on p and λ are 

familiar canonical link functions from generalized linear mixed models and ensure the range 

for p and λ can be modeled with covariates and Gaussian processes. One may encounter 

identifiability issues when N and p in a binomial distribution are estimated simultaneously 

and both parameters include flexible random effects (DasGupta and Rubin, 2005).

A Bayesian hierarchical formulation is a natural approach to performing inference in the 

present context. Latent processes are put on Ns to form three layers of hierarchy in the 

proposed model. The data layer is given in Eq. (5) where the integrated data likelihood is 

constructed. The process layer is given in Eq. (6), where the latent process λs is described by 

the transformed mean structure and covariance structure for the Poisson count process Ns. 

We define vague priors for model parameters, chosen to provide as little information as 

possible and maintain conjugacy when possible to facilitate estimation. Specifically, the 

covariate effects βt,p and α follow N(0, 1002), and logit(p) follows N(0, 1002), respectively. 

The spatial range parameter ϕ follows Gamma (5, 0.025), and the marginal variance of 

spatial random effect σ2 follows inverse-Gamma (1.01,0.01). The posterior distributions of 

βt,p, ϕ and λ can be sampled using Metropolis-Hastings algorithms.

For estimating true case counts at out-of-sample locations with no surveillance data, the 

posterior predictive distribution of Ns is given by

[Ns ∣ Ω] = Pois(λs) × [λs ∣ Ω] × [Ω], (8)
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where [Ω] is the posterior distribution of all model parameters denoted by Ω, and λs is the 

spatially interpolated Poisson mean from in-sample locations. At locations with surveillance 

data, we use the conditional posterior distribution given the number of unique cases ns. For 

example, at in-sample locations with data from both surveillance systems, the posterior 

distribution is given by

[Ns ∣ Ω] = ns + Pois(λs(1 − p1, s)(1 − p2, s)) × [λs ∣ Ω] × [Ω], (9)

where p1 and p2 are the system ascertainment probabilities. Similarly, at out-of-sample 

locations with only data from the first surveillance system, the posterior predictive 

distribution is given by

[Ns ∣ Ω] = ns + Pois(λs(1 − p1, s)) × [λs ∣ Ω] × [Ω] . (10)

4. Simulation

To evaluate the performance of the spatial hierarchical ascertainment model, a simulation 

study was conducted. At each round of simulation, we simulated 40 random locations from a 

100 × 100 square area. A spatial Poisson process was generated on this field as the 

underlying true counts with log mean α = 3 and a spatially correlated residual with σ2 = 0.2 

and ϕ = 30 for the exponential covariance function. Two independent systems were assumed 

to ascertain subjects. The first passive system (S1) has an ascertainment probability p1 = 

0.269 and the second active system (S2) has p2 = 0.881, corresponding to logit(p1) = −1 and 

logit(p2) = 2. Among the 40 locations, 25 were randomly chosen as in-sample study sites 

with linked active and passive surveillance data. The remaining 15 locations were used to 

evaluate out-of-sample prediction performance when only the passive surveillance S1 data 

are available.

A binomial mixture (BM) model is one recent approach to analyze multi-source linked 

dataset. The BM approach only uses likelihood of the ascertained subjects and does not 

explicitly model the unobserved latent count process. The BM model assumes a truncated 

binomial distribution and the log-likelihood is proportional to

L(p1, p2) = ∑
i = 1

n
log

p1
yi1(1 − p1)(1 − yi1)p2

yi2(1 − p2)(1 − yi2)

1 − (1 − p1)(1 − p2) , (11)

where yi1 and yi2 are observed binary indicators for whether the ith individual was 

ascertained by S1 or S2. Because

ns Binom(Ns, 1 − (1 − p1)(1 − p2)),

the true count at the location s can be estimated as,

Ns = ns
1 − (1 − p1)(1 − p2) (12)
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where ns is total unique counts at location s. At locations where there is only S1 data, Eq. 

(12) reduces to ns/p1. The variance of Ns is E[V ar(Ns ∣ p1, p2)] + V ar[E(Ns ∣ p1, p2)], where 

both components can be estimated using posterior samples of p1 and p2.

The BM model serves as the baseline for comparison to (1) the proposed spatial 

ascertainment (SA) model we introduced in Section 2, and (2) an independent ascertainment 

(IA) model where the random effects in log(λs) are assumed to be independent. At the 15 

sites without linked S1-S2 data, we considered two types of prediction: assuming no 

surveillance data is available using Eq. (8), and assuming only S1 data is available using Eq. 

(9). We refer these two scenarios as Pois-NA and Pois-S1, respectively.

The simulation was repeated 100 times. We used R (version 3.5.1 Feather Spray) to 

implement the Markov chain Monte Carlo (MCMC) algorithm. We performed both in-

sample prediction at 25 S1-S2 linked sites and out-of-sample prediction at the remaining 15 

sites. We also estimated the total count summed across 40 sites. Root mean square error 

(RMSE), 95% empirical coverage probability (CVG) and posterior standard deviation (SD) 

were computed by averaging over sites and simulations for each scenario.

Simulation results are given in Table 2. For estimating true case counts at the 25 in-sample 

locations, all models perform similarly. However, for predictions at locations with only S1 

data, the spatial ascertainment model (SA, Pois-S1) is superior than the BM model in RMSE 

and posterior SD. We also observe a considerable reduction in uncertainty as measured by 

SD comparing the SA and BM models. This is likely because the BM model is based solely 

on observed counts and does not borrow information on Ns from neighboring locations. 

Having partial data from S1 (scenario Pois-S1) reduced the RMSE by 20% compared to the 

scenario where no surveillance is available (Pois-NA). Finally, the independent 

ascertainment (IA) model is a mis-specified model in this simulation since the true case 

counts were simulated with spatial correlation. The importance of capturing spatial 

dependence is demonstrated by the decrease in RMSE and increase in coverage comparing 

SA to IA models.

5. Application

Using the spatial hierarchical ascertainment model framework developed in Section 2, we 

estimated the prevalence of PTB at the county-level across the province using linked data 

from PTBS1 and PTBS2. We assumed the ascertainment probability of PTBS2 did not vary 

by location, i.e., p2,s = p2, since all surveys were conducted simultaneously by the same 

organization. However, we allow ascertainment probabilities of PTBS1 to vary spatially in 

order to adjust for variable ascertainment bias across sites; these passive systems are 

expected to be subject to care and reporting differences across facilities, and differences in 

access and care-seeking behaviors among the populations served. Moreover, by allowing 

variability between locations, we have the means with which to extrapolate the 

ascertainment probability across the whole province. This is accomplished via three 

covariates chosen to reflect geographic and economic information as shown in Eq. (13): 

standardized longitude (Z1,s), standardized latitude (Z2,s), and standardized GDP per capita 

(Z3,s). The model for ascertainment probability of PTBS1 is
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logit(p1, s) = βp0 + Z1, sβp1 + Z2, sβp2 + Z3, sβp3, (13)

where βp’s are coefficients of covariates above. Since the true count is assumed to be a 

Poisson process, we included an at-risk population offset in modeling Ns as shown in Eq. 

(14).

log(λs) = log( population s) + α + es . (14)

To examine the performance of the spatial process, we compared two residual processes, a 

white noise process (i.e., e ~N(0, σ2)) and a Gaussian process with exponential covariance 

structure as described in Section 2. The MCMC procedure was run for 25,000 iterations with 

5,000 as burn-in. Convergence was assessed using trace-plots of key model parameters. To 

evaluate the performance of the spatial effect model, deviance information criterion (DIC) 

was computed (Spiegelhalter et al., 2002). The spatial model exhibited better fit than the 

non-spatial model (DIC = 353 and 364, respectively), and the parameter estimates of the 

spatial model are shown in Table 3. The estimated mean ascertainment probability of PTBS1 

across sites was 0.30 (95% Credible Interval (CI): 0.24, 0.35), and mean ascertainment 

probability of PTBS2 was 0.70 (95% CI: 0.62, 0.78). We found a significant effect of 

latitude on the ascertainment probability of PTBS1 (point estimate 0.32, 95% CI: 0.10, 

0.54), with substantial increases observed from south-to-north. The effect of GDP per capita 

was 0.15 (95% CI: −0.07, 0.37), suggesting an increase in ascertainment probability of 

PTBS1 in areas with higher GDP.

To assess model fit, we used the spatial ascertainment model to conduct an in-sample 

prediction for the 24 sites. The observed count of a particular ascertainment history at each 

location followed a Poisson distribution, with mean parameters λs multiplied by 

corresponding ascertainment probability using Eq. (9). Fig. 2 shows the 95% posterior 

predictive interval for all sites and all ascertainment histories compared with observed data. 

67 observed data points out of 72 cells fell inside of the posterior interval (about 93% 

coverage probability).

We also conducted leave-one-out cross-validation to assess the out-of-sample prediction 

ability of the model. For each round of cross-validation we left one site out and used the 

other 23 sites to predict the left-out site. We used the conditional posterior predictive 

distribution given in Eq. (10). Once we obtain Ns, the posterior distribution of counts in each 

cell category can be sampled using a multinomial distribution with Ns size and πh({p1,s}) 

probabilities for each ascertainment history. Fig. 3 demonstrates the performance of the 

cross-validation, showing 65 out of the 72 cells falling inside of 95% prediction interval. 

Most of the missed cell counts are in the PTBS2 only category, possibly a consequence of 

using p1’s information to construct N at each location. Of course, out-of-sample prediction 

of PTBS2 is not of practical interest, being as most locations have no PTBS2 information.

During the study period, 72,318 cases were reported by PTBS1 and PTBS2. We estimated 

the total PTB case count for the province in 2010 to be 374,000 cases (95% Confidence 

Interval: (320,000, 436,000)). Fig. 4 shows the quantile of reported cases (Fig. 4a) and 
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estimated cases (Fig. 4b) for each county in 2010; and the reported prevalence rate per 

10,000 people (Fig. 4c) and the estimated prevalence rate (Fig. 4d) for 2010 across the 

province. Compared with reported cases, the estimated number of cases exhibits notable 

differences in spatial heterogeneity. While bias-corrected PTB case counts are higher than 

unadjusted data throughout the province, PTB cases in southeastern counties, in particular, 

appear to have been sharply underestimated by unadjusted PTBS1 reports. As a 

consequence, these areas are among those with the highest PTB prevalence rates in the 

province when using the bias-corrected estimator, while several northern counties fall into 

the lower quantiles of TB prevalence after adjustment.

6. Discussion

We have developed a framework for analysis of surveillance systems that is capable of 

integrating active and passive surveillance data and estimating ascertainment probability and 

true case numbers and prevalence by location. Compared to other frameworks, we 

demonstrate how jointly modeling spatial multi-source surveillance data can improve 

estimates of disease measures, and provide the means to extrapolate and bias-correct 

measures over wide coverages typical of passive surveillance systems. A key objective of 

collecting infectious disease surveillance data is understanding spatial patterns of disease, 

which are critical in the detection of disease emergence, identification of transmission 

hotspots, and estimation of disease burden across populations. Improved estimates of the 

spatial distribution of disease can guide public health interventions, and can be used to better 

structure surveillance systems so as to fill key data gaps that impede progress on disease 

control, particularly in settings with limited resources to conduct public health surveillance.

With local estimates of ascertainment probability in hand, data providers can be evaluated as 

to their reporting performance, and targeted, active surveillance can be planned so as to 

achieve improved estimates where under-ascertainment is expected to be most severe. 

Furthermore, bias-corrected estimates of disease prevalence can suggest re-allocation of 

disease control efforts to areas where case-ascertainment substantially underestimates the 

true burden of disease. Analysis of bias-corrected estimates may yield more accurate 

estimation of known risk factors, as well as the identification of previously unrecognized 

risk factors.

Through the integration and analysis of multi-source data on PTB in Sichuan, China, we 

were able to bias-correct passive surveillance reports, which exhibit wide spatial and 

temporal coverage. Surveillance systems are of course incapable of perfectly ascertaining all 

cases within a region, and systems in resource-limited settings are particularly constrained in 

the data they collect and the inference that can be drawn from them. The passive surveillance 

system investigated here exhibited an average 30% ascertainment probability, lower than 

WHO’s estimate for the whole China (87%, 95% confidence interval: 75–100%) (World 

Health Organization, 2018). Our estimated ascertainment probability varied both by local 

economic conditions and by geographic location. Substantial underreporting within passive 

systems is commonly observed, and underreporting probability is known to be spatially 

heterogeneous (Alter et al., 1987; Gibbons et al., 2014; Held et al., 2006; Shepard et al., 

2012; Thacker et al., 1983).
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The active surveillance system exhibited an average 70% ascertainment probability, and 

through the integration of passive and active surveillance data we derived a bias-corrected 

estimate of disease prevalence across the province, adjusting passive counts according to 

spatially varying ascertainment probability. Bias-corrected estimates suggest that the 

prevalence of PTB in Sichuan Province in 2010 may have been up to five times higher than 

previously reported, and our analyses identified new areas of high burden in the southeast 

(Fig. 4b). The estimated lower performance of passive surveillance in the southeast that is 

associated with the region’s latitude and GDP may be related to cultural practices 

influencing care-seeking behavior and treatment compliance. Notably, the affected region 

includes the Liangshan Yi autonomous region, which is experiencing ongoing TB and HIV/

AIDS epidemics, and where reporting capacity is known to be limited (Liu et al., 2009).

Limitations of the methods presented here include relying on successful record linkage 

between systems, and adherence to the closed population assumption within the study region 

and period. Because the passive surveillance system operates continuously while the active 

system is intermittent, to better approximate a closed population we adopted a criterion that 

allowed for inclusion of passive cases that occurred up to 12 months before the end of the 

active survey, based on the typical duration of treatment for PTB. Additionally, we treated 

active surveys as representative of the areas covered by passive systems. To bias-correct the 

passive reporting, we used ascertainment probabilities estimated in areas where active 

reporting was available, and extended these probabilities to regions without active data. We 

attempted to address this limitation by incorporating spatially-varying covariates in 

modeling passive ascertainment probabilities.

Several analytic and methodological directions warrant further investigation. First, like 

previous frameworks for the analysis of multi-system data, the model introduced in this 

paper cannot directly accommodate individual-level covariates in the system-specific 

ascertainment probabilities. This is because individuals that are not ascertained by either 

system do not have covariate information recorded. Future work may stratify ascertained 

cases by covariates (e.g., gender or age groups) to examine how ascertained probability 

varies across sub-populations. Second, the modeling approach warrants further extension to 

consider more than two systems by specifying the corresponding ascertainment histories and 

their probabilities, as in Table 1. One key assumption of our modeling framework is the 

independence between the active and the passive surveillance system. It is possible that in 

areas with active surveillance, the ascertainment probability is also higher in passive 

reporting due to better awareness and testing. With more than two systems, bivariate 

dependence between systems may be estimated, allowing the framework to provide more 

robust estimates of system ascertainment probabilities for most real-world scenarios. 

Another approach to account for dependence with only two systems may be to construct 

more informative priors for system-specific ascertainment probabilities based on expert 

knowledge (Stoner et al., 2019). Finally, further work could fruitfully extend the likelihood 

to model multi-source data that are spatiotemporal or multi-disease in nature, by introducing 

random effects in λs that are dependent between time points or between diseases. Extending 

the model to include temporal effects would allow the framework to be used to help 

disentangle trends in disease epidemiology from trends in reporting and ascertainment, 

which is a common problem when interpreting longitudinal disease surveillance data. 
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Meanwhile, specifying a multi-disease hierarchical model would allow integration of more 

extensive surveillance data, leveraging commonalities in the occurrence, common risk 

factors for, and coincident surveillance of multiple outcomes.
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Fig. 1. 
A map of the study region where the framework was tested, showing population density 

(Dobson et al., 2000)(grey shading), county borders (thin black boundaries), and location of 

24 surveillance sites in Sichuan Province where linkage of PTBS1 and PTBS2 data was 

conducted.
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Fig. 2. 
The in-sample prediction of: (A) PTBS1 only, (B) PTBS2 only, and (C) joint PTBS1/PTBS2 

across the 24 sites. Figures show the true counts (red hollow points) and 2.5%, 50% and 

97.5% percentile of posterior distributions (black dots and error bars).
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Fig. 3. 
The out-of-sample prediction of: (A) PTBS1 only, (B) PTBS2 only, and (C) joint PTBS1/

PTBS2 across the 24 sites. Figures show the true counts (red hollow points) and 2.5%, 50% 

and 97.5% percentile of posterior distributions (black dots and error bars).
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Fig. 4. 
Maps of study region showing county-level estimates in 2010 of: A) unadjusted counts of 

ascertained PTB cases; B) adjusted counts (i.e., estimated true number); C) unadjusted 

population prevalence; and D) adjusted population prevalence (i.e., estimated true 

prevalence). PTB counts and prevalence are shown in 10 quantiles to aid visualization, from 

low (green) to high (red).
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Table 1

The probability πh for each ascertainment history.

h πh,s

0 (1 - p1,s) * (1 – p2,s)

1 p1,s * p2,s

2 p1,s * (1 – p2,s)

3 (1 - p1,s) * p2,s
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Table 2

Results of simulation study comparing 3 different models: Binomial mixture (BM), independent ascertainment 

(IA), and spatial ascertainment (SA). For predictions at locations without both S1 and S2 data, Pois-NA 

assumes no surveillance data and Pois-S1 assumes only S1 data. Root mean square errors (RMSE), 95% 

empirical coverage probabilities (CVG) and averaged posterior standard deviation (SD) are reported.

Location Measure BM IA model SA model

Pois-NA Pois-S1 Pois-NA Pois-S1

S1-S2 RMSE 1.55 1.53 1.52

linked CVG 0.95 0.99 0.99

sites SD 1.51 1.49 1.49

S1-only RMSE 7.95 10.84 7.91 8.34 6.46

sites CVG 1.00 0.70 0.75 0.84 0.87

SD 14.45 4.64 3.98 5.26 4.29

Total RMSE 39.90 56.06 43.35 41.78 34.95

sites CVG 1.0 0.92 0.81 0.99 0.92

SD 65.99 56.06 28.73 53.66 31.05
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Table 3

Parameter estimates and their 95% credible intervals in the spatial model.

Parameter Posterior Mean Posterior 95% CI

βp0 −0.87 (−1.13 −0.62)

βp1 −0.08 (−0.32, 0.15)

βp2 0.32 (0.10,0.54)

βp3 0.15 (−0.07,0.37)

p2 0.70 (0.62, 0.78)

α −5.09 (−5.56 −4.52)

ϕ 116 (31, 254)

σ2 0.34 (0.12, 0.83)
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