
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Fine Grained Access Control Policies in Data Management Systems for Internet of Things
Applications

Permalink
https://escholarship.org/uc/item/7sm3866b

Author
Pappachan, Primal

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sm3866b
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Fine Grained Access Control Policies in Data Management Systems for Internet of Things
Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Primal Pappachan

Dissertation Committee:
Sharad Mehrotra, Chair

Johann-Christoph Freytag
Faisal Nawab

Nalini Venkatasubramanian

2021

Portion of Chapter 3 © 2017 IEEE
All other materials © 2021 Primal Pappachan

DEDICATION

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA xii

ABSTRACT OF THE DISSERTATION xv

1 Introduction 1

2 Related Work 7
2.1 The Privacy Challenge . 7
2.2 Data Privacy Regulations . 9
2.3 Privacy Preservation . 13
2.4 Access Control and User Privacy Policies . 16
2.5 Access Control in DBMS . 18

3 A Policy-based Privacy-by-Design Framework for IoT Smart Spaces 20
3.1 Overview of Smart Buildings . 21

3.1.1 Privacy Threats in Current Smart Building Scenarios 22
3.1.2 Privacy-Aware Smart Buildings . 23
3.1.3 User Interactions in Privacy-Aware Smart Buildings 24

3.2 Facets of a Privacy-Aware Smart Building Infrastructure 25
3.2.1 Building Policies . 26
3.2.2 User Preferences . 27

3.3 Communicating Policies and Preferences . 28
3.3.1 Building Specific Policy Elements . 29
3.3.2 Privacy Specific Policy Elements . 30
3.3.3 Overview of the Language Schema 31

3.4 Conclusions and Challenges . 33
3.5 Discussion . 34

iii

4 Scalable Enforcement of Fine-Grained Access Control Policies 36
4.1 Case Study . 40
4.2 Related Work . 44
4.3 Modelling Access Control Policies . 46

4.3.1 Data Model . 46
4.3.2 Query Model . 47
4.3.3 Access Control Policy Model . 48
4.3.4 Access Control Semantics . 50

4.4 Overview of the Sieve Approach . 51
4.5 Creating Guarded Expressions . 55

4.5.1 Generating Candidate Guards . 56
4.5.2 Selecting Guards To Minimize Cost 60
4.5.3 Discussion . 62

4.6 Implementing Sieve . 63
4.6.1 Persistence of Policies and Guards . 63
4.6.2 Implementing Operator ∆ . 64
4.6.3 Query Rewrite with Guarded Expressions 65
4.6.4 Policy Evaluation Operator . 67
4.6.5 Exploiting Selective Query Predicates 68
4.6.6 Sieve generated Query Rewrite . 69

4.7 Managing dynamic Scenarios . 71
4.7.1 Query Evaluation with Guarded Expression 71
4.7.2 Computing Optimal Regeneration Rate 72

4.8 Experimental Evaluation . 75
4.8.1 Experimental Setup . 75
4.8.2 Experimental Results . 80

4.9 Discussion . 89

5 Preventing leakages through data dependencies on access control protected
data 91
5.1 Preliminaries . 92

5.1.1 Background . 94
5.1.2 Access Control Policies . 96
5.1.3 Data Dependencies . 97
5.1.4 Problem definition . 100
5.1.5 Related Work . 102

5.2 Our Approach . 105
5.3 Analysis of Leakage . 110

5.3.1 Leakage of a Sensitive Cell . 110
5.3.2 Computing Leakage . 113
5.3.3 Composing Leakages . 114

5.4 Preventing data leakages . 117
5.4.1 Policy Enforcement . 117
5.4.2 Cueset Detection . 118
5.4.3 Selecting Non-Sensitive Cells to Hide 120

iv

5.4.4 k-value Deniability . 121
5.5 Experimental Evaluation . 123

5.5.1 Experimental setup . 123
5.5.2 Evaluation . 125

5.6 Extended model of Provenance based dependencies 127
5.6.1 Computing leakage for PBDs . 130

5.7 Discussion . 131

6 Incorporating Policies to IoT Systems Deployed in the Real World 133
6.1 Incorporating Policies in TIPPERS . 134

6.1.1 TIPPERS Policy Engine . 135
6.1.2 TIPPERS Policy Definition . 138

6.2 Incorporating Policies to PE-IoT . 143
6.2.1 Policy model in PE-IoT . 145
6.2.2 Data Controller Policy and Data Subject Choices 146

6.3 Policy Manager in PE-IoT . 148
6.4 Discussion . 149

7 Conclusions and Future Work 150
7.1 Conclusions . 150
7.2 Future Work . 153

Bibliography 156

v

LIST OF FIGURES

Page

2.1 Classification of users based on WiFi Connectivity data. 9
2.2 Chronology of privacy regulations. 10
2.3 National comprehensive data protection/privacy laws and bills in 2020. . . . 11
2.4 Access Control mechanism. 18

3.1 Main elements of a smart building and a sample smart building (Donald Bren
Hall) at UC Irvine. 22

3.2 Interaction between privacy-aware smart building management system (TIP-
PERS), IoT Resource Registries (IRR) and IoT Assistants (IoTA). 25

3.3 Policy related to data collection inside DBH. 32
3.4 Policy related to a service in the building. 32
3.5 Privacy settings available. 33

4.1 Policy Evaluation overhead vs. Number of Policies. 38
4.2 Overview of Sieve. 38
4.3 Entities and relationships in a Smart Campus Scenario. 41
4.4 Default policy with smaller number of object and querier conditions 43
4.5 Advanced policy . 43
4.6 Guard generation cost. 81
4.7 Inlining vs. ∆. 83
4.8 Index choice. 83
4.9 Sieve on MySQL and PostgreSQL. 87
4.10 Scalability comparison. 88

5.1 Leakage of a sensitive cell due to different instantiated dependencies. 116
5.2 System architecture. 118
5.3 Experiment 1.1: Sensitive cells with low number of relevant dependencies . . 126
5.4 Experiment 1.2: Sensitive cells with medium number of relevant dependencies 126
5.5 Experiment 1.3: Sensitive cells with high number of relevant dependencies . 127
5.6 Experiment 2.1: Sensitive cells with low number of relevant dependencies . . 127
5.7 Experiment 2.2: Sensitive cells with medium number of relevant dependencies 128
5.8 Experiment 2.3: Sensitive cells with high number of relevant dependencies . 128

6.1 High-level architecture of the TIPPERS system. 135
6.2 Swagger specification of the policy API. 137

vi

6.3 Example policy inserted into TIPPERS. 138
6.4 Resources defined in the IRR. 140
6.5 Definition of policies through the IoTA. 141
6.6 Definition of a policy to handle sharing of location data in TIPPERS. 142
6.7 Definition of a policy to handle sharing of vital signs data in TIPPERS. . . . 142
6.8 Definition of a policy to handle retention of location data in TIPPERS. . . . 143
6.9 List of policies defined in TIPPERS. 144
6.10 High-level architecture of the PE-IoT middleware. 145
6.11 Retroactive Policy Semantics. 147
6.12 The prototype PE-IoT system’s components 148

vii

LIST OF TABLES

Page

2.1 Privacy Design Requirements for IoT . 12

4.1 Frequently used notations. 46
4.2 TIPPERS data schema. 76
4.3 Mall data schema. 77
4.4 Policy Table . 79
4.5 Policy Object Conditions Table . 80
4.6 Analysis of policies and generated guards. 82
4.7 Analysis of number of guards and total cardinality. 82
4.8 Overall performance for Q1, Q2, and Q3 (in ms). 85
4.9 Comparison of performance for Q1 (in ms). 86
4.10 Comparison of performance (in ms) for Q2. 86
4.11 Comparison of performance (in ms) for Q3. 87
4.12 Support for Index hints in DBMS . 90

5.1 Employee details table. 93
5.2 Wages table. 93
5.3 Notation for the chapter. 94
5.4 Provenance example. 105
5.5 Schema of the Tax dataset. 124
5.6 Dependency List for Tax Dataset . 124
5.7 Invertibility types. 128

viii

ACKNOWLEDGMENTS

The biggest lesson I learned in my Ph.D. is that it takes a village. The PhD is mine to
complete but I have leaned on many around me to get me across the finish line. I have
always wanted to thank these folks and finally, I have the opportunity to do so. I am not
sure where to begin.

Sharad Mehrotra: I am really happy and grateful that I had Sharad as my advisor. He
has been wonderful in guiding me through my graduate school experience. His big smile and
dad jokes help in lightening the heavy research discussions. I learned from him how to be
patient with mentees and how to explain a complex concept in different ways. He balanced
pushing me when I really needed it and giving me the freedom to guide my research on my
own when I was making progress. He also helped me in becoming a better presenter of my
own research and that of others. I admire his ability to stay focused during long research
meetings (we had a lot of them) and ask good questions. I wish to emulate his enthusiasm
and drive for research in my future career.

Thank you Sharad for your kindness, guidance, and patience.

Johann-Christoph Freytag: Christoph is an excellent collaborator and mentor. I learned
a lot from the research discussions we had while formalizing the problem of scaling up policy
enforcement in the Sieve project. When I started thinking about my committee members,
Christoph’s name is the first one that came into my mind after that of Sharad. He has always
shown great enthusiasm about my research and was always willing to help in whatever way
possible.

I would also like to thank Nalini Venkatasubramanian and Faisal Nawab for being
part of my thesis committee. I have worked with Nalini on many projects and learned many
things from her. I have always been impressed by her ability to bring in different perspectives
to a research discussion. Her gracious hospitality during the yearly lab parties made all of
them memorable experiences. After joining my thesis committee in Spring, Faisal has been
a wonderful advocate of my research and has given me excellent suggestions on extensions
for some of the work presented in this thesis.

Roberto Yus: I consider myself extremely lucky to have a friend like Roberto throughout
my entire graduate school experience. He believed in me, pushed me, and helped me when-
ever I hit a roadblock in my PhD. He has been a great friend, collaborator, mentor, and
ultimately a witness to my entire PhD. He also helped with proof-reading and editing this
thesis. I learned so many things from him and I am a better student, researcher, and person
because of our friendship. Thank you Roberto.

I would also like to thank my collaborators Xi He and Shufan Zhang. Xi has been an
active collaborator and helped significantly in formalizing the security definitions of the work
presented in Chapter 5. Shufan has been an amazing collaborator and friend since joining
the project in early Spring. His hard work, dedication, and tenacity tremendously helped in

ix

swiftly getting from idea to implementation for the work presented in Chapter 5. I am very
grateful to them both.

The UCI ISG Group is a brilliant group of academics and researchers who are always
supportive of each other, be it attending each other’s talks or having a Java City coffee chat.
I am indebted for their friendship and making our lab space a fun place to be at. I would
like to acknowledge some of them below with apologies for anyone I might have missed.

Dhrubajyoti Ghosh, who is always smiling and always readily joins me in lunch breaks. Every
PhD journey is unique but Dhrub and I had the most similar experience. This helped in
normalizing my experience. We always made sure that both of us were on track with all the
Ph.D. requirements.
Sameera Ghayyur, who always asks pertinent questions and for weekend hikes.
Peeyush Gupta, who knew about all the DBMSs, and his quirky sense of humor.
Guoxi Wang, who is always willing to help and an inspiring collaborator to work with.
Xikui Wang, for being the best neighbor and having many fun 5-minute conversations.
Eunjeong Shin, purveyor of the best treats.
Georgios Bouloukakis, for his laughter and being a master of BBQs.
Abdul Alsaudi, for his questions and enthusiasm during group meetings.
Shantanu Sharma, capturer of the best moments.

I will miss you all and wish you all the best for the rest of your lives.

Outside the ISG group, I am grateful to have made some amazing friends who made my
graduate life a wonderful one. Anirudh Wodeyar for the record of sharing the most
number of hobbies with me. He is an amazing friend on whom I could always lean for
support. I admire his non-judgemental attitude towards most things in life. He thoughtfully
arranged for delivery of my favorite food items in the week of my defense. Nitin Agarwal
for holding the best house parties during my time at UCI and was always up for a round of
tennis in the evenings after a long day at work. Rohit Zambre for being a good friend and
my virtual yoga buddy for almost 300 days. This yoga practice helped me stay grounded
during the last stretch of my PhD. Sumaya Almanee for our cowalks, long voice memos
and cute post-it notes. Avinash Mohanakrishnan for our monthly check-ins and long
conversations on life and the pursuit of happiness. Henna Manglani for being my biggest
cheerleader in the time I have known her. Her words of encouragement were a tremendous
source of strength during the extremely stressful last phase of my Ph.D. She patiently listened
to me when I needed it the most and offered relentless support through words of affirmation.
She celebrates me and my achievements more than I do and made me overall more positive
and less self-critical.

ZotBins: My mentees brought a lot of joy to my graduate school experience. They are one
of the strongest reasons that I continue the academic hustle to be a research faculty. Thank
you Owen Yang, Joshua Cao, Jesse Chong, and every other member of ZotBins.

Family: My parents – Pappachan and Meena – have been supportive of my rather
audacious plans to move to the furthest time zone possible and pursue graduate studies. I

x

talk with them daily and their love and encouragement have been my daily supplements.
My elder sister Preema set the way for me to do my bachelor’s in Computer Science by
doing it first and similarly my brother in law Jopaul by doing his Doctorate. I could always
count on my younger sister Priya for support and our weekly venting sessions. I miss my
two nephews dearly as I only get to meet them once a year since my move to the U.S. Alan
and Ryan make me the happiest uncle in the world. Moving away from family was difficult
but it was made easier by the kindness of the following folks in the US who adopted me as
part of their family: Biju, Roxy, Trisha, Brian, and Wilson Kidangan.

I would also like to express my words of gratitude to the amazing staff at the Computer
Science department – special shout out to Mary Carillo and Leslie Escalante – and the
International Center. Thanks for the great work you do.

I would like to acknowledge some of my past mentors who believed in me and thus have
directly contributed to me doing a PhD. Pramode C.E. was my teacher and mentor during
undergrad. He inspired me to dive deep into programming and encouraged me to do projects
outside the given curriculum. His joy for teaching was infectious and it inspired me to learn
more. His support and encouragement directly resulted in me applying for Google Summer of
Code program. Jorge Silva was my mentor during Google Summer of Code and introduced
me to research in Computer Science. I learned a lot from my discussions with him during this
time and understood how to think about a challenging problem and come up with practical
solutions for it. He was always available to discuss ideas, brainstorm, and inspired to go well
and beyond the project scope. Anupam Joshi and Tim Finin were my mentors during
my Master’s. They gave me the opportunity to be part of Ebiquity and work on interesting
projects during my time at UMBC.

There are possibly many others I am missing here. I am lucky to have a strong supporting
village. If you ever read this section or any part of my thesis, I owe you a boba drink so please
do reach out (even if you don’t like boba). This long journey would have been impossibly
difficult to accomplish without your support.

The work reported in this thesis is supported by DARPA under agreement number FA8750-
16-2-0021 and partially supported by the NSF grants 2032525, 1545071, and 1527536.

xi

VITA

Primal Pappachan

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, CA

Master of Science in Computer Science 2014
University of Maryland, Baltimore County Halethorpe, MD

Bachelor of Technology in Computer Science and Engineering 2011
Government Engineering College, Thrissur Thrissur, Kerala

RESEARCH EXPERIENCE

Graduate Research Assistant 2014–2021
University of California, Irvine Irvine, California

Graduate Research Assistant 2013–2014
University of Maryland, Baltimore County Halethorpe, MD

TEACHING EXPERIENCE

Teaching Assistant 2015–2019
University of California, Irvine Irvine, California

xii

REFEREED JOURNAL PUBLICATIONS

Sieve: A Middleware Approach to Scalable Access Con-
trol for Database Management Systems

2020

Proceedings of the Very Large Database Endowment (PVLDB)

REFEREED CONFERENCE PUBLICATIONS

Don’t be a tattle tale: Preventing data leakages through
data dependencies on access control protected data

Planned: Sept. 2021

Pending Acceptance

Designing privacy preserving data sharing middleware
for Internet of Things

Nov 2020

3rd International SenSys+BuildSys Workshop on Data: Acquisition to Analysis (DATA
2020)

The ZotBins solution to waste management using Inter-
net of Things

Nov 2020

18th ACM International Conference on Embedded Networked Sensor Systems (SenSys
2020)

SemIoTic: Bridging the Semantic Gap in IoT Spaces Nov 2019
6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation (BuildSys 2019)

Towards Privacy-Aware Smart Buildings: Capturing,
Communicating, and Enforcing Privacy Policies and
Preferences

Jun 2017

37th IEEE International Conference on Distributed Computing Systems Workshops
(ICDCS 2017)

Are Apps Going Semantic? A Systematic Review of
Semantic Mobile Applications.

Oct 2015

1st International Workshop on Mobile Deployment of Semantic Technologies (MoDeST
2015) co-located with 14th International Semantic Web Conference (ISWC 2015)

Semantics for Privacy and Shared Context Oct 2014
Second International Workshop on Society, Privacy and the Semantic Web - Policy and
Technology (PrivOn 2014)

SOFTWARE

Sieve https://github.com/primalpop/sieve
SIEVE is a general purpose middleware to support access control in DBMS that enables
them to scale query processing with very large number of access control policies.

xiii

https://github.com/primalpop/sieve

TIPPERS https://tippers.ics.uci.edu/
TIPPERS is a system that manages IoT smart spaces by collecting sensor data, inferring
semantically meaningful information from it, and integrates different Privacy Enhancing
Technologies to deal with privacy issues in IoT data management.

PE-IoT
PE-IoT, a system for orchestrating privacy-enhanced data flows that (a) provides users
(data subjects) with capabilities to opt-in/opt-out in the data that is shared with the
service providers and (b) enable data controllers to invoke a range of Privacy Enhanc-
ing Technologies (PETs) such as anonymization, randomization, and perturbation to
transform data streams into their privacy preserving counterparts.

xiv

https://tippers.ics.uci.edu/

ABSTRACT OF THE DISSERTATION

Fine Grained Access Control Policies in Data Management Systems for Internet of Things
Applications

By

Primal Pappachan

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Sharad Mehrotra, Chair

New technology domains, such as the Internet of Things (IoT), are adding a large number of

new devices with Internet connectivity to the spaces where we work and live. These devices

are accelerating the collection of user data at an unprecedented rate. On the other hand,

new data privacy regulations are emerging all around the globe to protect people’s privacy

(such as the California Consumer Privacy Act CCPA, European General Data Protection

Regulation GDPR, and Brazilian LGPD, among many others). These regulations have put

forward stringent requirements on organizations on what should be done when user data is

handled. Organizations have been scrambling to adapt their infrastructure in response to

these regulations and many have been punished with hefty fines for improper handling of

data1.

Data Management Systems are at the core of organizations collecting such data and handle its

capture, retention, processing, and sharing. To protect people’s privacy, Data Management

Systems require, among others, to be able to enforce individuals’ privacy preferences. These

issues become even more challenging given the scale at which data is captured in new domains

such as the IoT. This thesis presents various solutions to support fine-grained privacy policies

for data protection when dealing with upcoming IoT applications.

1According to the GDPR enforcement tracker (https://www.enforcementtracker.com/?insights).

xv

https://www.enforcementtracker.com/?insights

In particular, this thesis presents a framework to enable people to communicate their pri-

vacy preferences/policies to smart spaces to address the challenge of Policy-based Privacy-by-

design Smart Spaces. This includes a language which allows users to define who, and under

which circumstances, can access their data collected by IoT systems. Supporting the defini-

tion of such user-defined fine-grained IoT policies in Data Management Systems can lead to

scenarios where a large number of them have to be enforced in real-time. The thesis presents

an approach to answer queries efficiently while enforcing a very large number (hundreds of

thousands) of user policies to address the challenge of Scalability of Policy Enforcement. In

modern DBMS and particularly in IoT settings, data exists at different semantic levels where

in dependencies capture the constraints that exist within the data. This thesis presents an

approach to prevent leakages through various different dependencies on access controlled data

.

The prototypes built as part of the solutions for the above challenges have been integrated

into two IoT Systems deployed at UC Irvine. The first is an IoT test bed entitled TIPPERS

and the second is privacy preserving middleware called PE-IoT. These integrations show the

feasibility of the approaches presented to specify and efficiently enforce privacy policies for

supporting IoT applications.

xvi

Chapter 1

Introduction

“The fantastic advances in the field of electronic communication constitute a

great danger to the privacy of the individual.”

Chief Justice Earl Warren, 1963 Supreme Court opinion

From smart cars to smart buildings and from activity bracelets to smart fridges, every object

in our environment is increasingly being endowed with sensing, computing, communication,

and actuation functionalities. The total number of Internet of Things (IoT) devices is ex-

pected to reach 43 billion units by 2023 which is an almost threefold increase from 20181.

This rapid growth is transforming many domains and one such domain is smart spaces where

the IoT applications improve productivity, comfort, social interactions, safety, energy savings

and more. As an example, modern HVAC (heating, ventilating, and air conditioning) sys-

tems come with functionalities that ties to beacons, presence sensors, cameras, and personal

devices (e.g., smartphones carried by the building’s inhabitants). One commonality to all

these applications and scenarios is their reliance on the collection of personal and identifying

data. Thus the promises of IoT comes at the cost of new and complex privacy challenges.

1https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-
opportunities-in-the-internet-of-things

1

https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-opportunities-in-the-internet-of-things
https://www.mckinsey.com/industries/private-equity-and-principal-investors/our-insights/growing-opportunities-in-the-internet-of-things

The privacy challenges in IoT settings are due to some unique characteristics of the data

management in this domain as well as the user experience of using an IoT application: 1)

Data captured by IoT devices are highly granular including information about individuals

which can reveal their location, habits, health status, and so on. These are things people

consider private and would want to control their exposure. 2) In IoT environments, such as

smart buildings, users are less likely to be aware of the technologies with which they might

be interacting. Hence, users might not be aware of which data related to them is potentially

captured and shared with others. 3) Users have no control over the management of data

(e.g., data capture, retention, processing, and sharing) by IoT systems. This is because

IoT devices are typically part of the infrastructure and cannot be directly controlled by

individuals. These differences add to the complexity of meeting the privacy needs of users.

The privacy problem associated with management of user data has been recognized at the

highest level, including in the form of guidelines developed by the OECD and reports from

the Federal Trade Commission. Moreover, the massive data collection taking place in today’s

world has motivated the advent of stringent data privacy regulations, such as the European

General Data Protection Regulation (GDPR) [3], the California Online Privacy Protection

Act (CalOPPA) [2], and the Consumer Privacy Act (CCPA) [1]. This imposes legislative

requirements that control how organizations manage user data including data collection and

sharing transparency, data minimization, and data retention. More importantly, such new

data protection regulations highlight the need to give a voice to individuals whose data is

being collected. This implies enabling users to opt-in/out from different practices such as

sharing of data with services or others.

Access control policies are a traditional mechanism used in data management to allow users

to specify their privacy preferences with respect to usage of their data. In the case of IoT

domain, wherein sensors continuously monitor individuals (e.g., continuous physiological

monitoring by wearable devices, location monitoring both inside and outside buildings),

2

data management systems need to provide users with mechanisms for finer control over who

can access their data and for what purpose. Supporting such fine grained policies in data

management systems raises several research challenges and this thesis focuses on addressing

some of the important challenges that arise when building policy-based privacy-by-design

data management systems for new scenarios such as the IoT.

The first challenge is that of developing a privacy-by-design framework for IoT applications.

The first requirement for such a framework is to have mechanisms that can notify users

about IoT data collection in a space and their relevant privacy options. New models and

privacy concepts need to be developed to enable the smart space to communicate with its

inhabitants about its data practices and for the inhabitants to be able to choose what data

related to them can be shared with such services.

After capturing the privacy policies of the user, the underlying data management system

should be capable of efficiently enforcing privacy policies and preferences from different users

without loss of utility for the services that exist in the space. Thus the second challenge is

that of scaling enforcement of access control policies in data management systems. In IoT

settings, the set of policies becomes a dominant factor/bottleneck in the query processing

due to their large numbers. This has been highlighted as one of the open challenges for Big

Data management systems in recent surveys such as [32].

In many scenarios including IoT applications, there might be background knowledge available

to an adversary who can utilize that as an inference channel to learn more about protected

data. The third challenge involves protecting access controlled data from leakages through

data dependencies. One such common form of background knowledge is dependencies that

capture the various type of constraints that exist within the data. In the IoT domain, an

example of such constraint is through an enrichment function which transforms the raw

data collected from sensors and generates the derived data which is shared with application

developers and service providers. Such leakages leads to violations of access control policies

3

even when sensitive data is hidden.

Thesis Contributions

This thesis makes the following main contributions in the context of fine-grained access

control in data management systems for supporting IoT applications:

• We introduce a framework where IoT Assistants capture and manage the privacy pref-

erences of their users and communicate them to privacy-aware IoT smart spaces. Such

a framework outlines necessary the important attributes required for this interaction

such as: (1) the data collection and sharing practices associated with deployed sensors

and services in smart buildings as well as (2) the privacy preferences to help users

manage their privacy in such environments.

• We present Sieve, a layered approach of implementing Fine-Grained Access Control in

existing DBMSs, that exploits a variety of their features (e.g., UDFs, index usage hints,

query explain) to scale to a large number of policies. Given a query, Sieve exploits

its context to filter the policies that need to be checked. It also generates guarded

expressions that save on evaluation cost by grouping policies and exploit database

indices to cut on read cost. Our experimental results demonstrate that existing DBMSs

can utilize Sieve to significantly reduce query-time policy evaluation cost. Using Sieve

DBMSs can support real-time access control in applications such as emerging smart

environments.

• We study the leakages of access control protected data in data management systems

through two important classes of data dependencies: 1) Denial Constraints and 2)

Provenance Based Dependencies. Denial constraints are a general model of integrity

constraints and can express commonly used constraints such as functional dependen-

4

cies, conditional functional dependencies, and key constraints. We introduce prove-

nance based dependencies which can capture the relationships between source data

and derived data. Considering these dependencies as background knowledge to an

adversary, we formally define how the information about a sensitive data could leak

through them and methods to compute the leakage. Furthermore, we describe the

rules to decide the non-sensitive data that should not be disclosed to prevent leakages

of the access control protected data. We describe an algorithm which utilizes these

rules and leakage computation to achieve the required deniability guarantees for all

sensitive cells.

• Deploying policy-based mechanisms in real-world IoT data management systems brings

about its own challenges such as: 1) Integration of such mechanisms on systems that

can be deployed at the data controller side (e.g., network provider, water agency,

building management) or at the user side; 2) Developing appropriate policy models

and enforcement for different phases of the data management flow (i.e., capture, shar-

ing, retention); and 3) Development of user-facing systems to enable them to specify

their privacy preferences/policies for their enforcement. In this thesis, we show the

integration of these policy-based privacy-by-design approaches in two different systems

deployed in the real world. The first is an IoT Testbed (called TIPPERS) deployed

at University of California, Irvine. The policy-based privacy-by-design mechanisms

were incorporated into testbed by building various interfaces for users to input their

policy preferences, Application Programming Interfaces (APIs) for service providers

to query the data and finally the data management system backend to enforce these

policies when answering these queries. The second is integration of a policy engine in

the context of Privacy Enhancing middleware (entitled PE-IoT). This middle-ware (a)

Provides users (data subjects) with capabilities to opt-in/opt-out in the data flows that

is shared with the service providers; and (b) Enables data controllers to invoke a range

of Privacy Enhancing Technologies (PETs) such as anonymization, randomization, and

5

perturbation to transform data streams into their privacy preserving counterparts.

The rest of this thesis is organized as follows. Chapter 2 discusses the privacy regulations

and reviews privacy enhancing technologies, and the history of access control policies in data

management systems. Chapter 3 presents a framework for IoT smart spaces where users and

IoT systems can communicate with each other using privacy policies. Chapter 4 presents a

middle-ware that makes real-time enforcement of fine-grained access control policies feasible

in IoT settings where there are large number of policies. Chapter 5 presents a model for

studying leakages in access controlled data in the presence of various types of dependencies

and describes algorithms to prevent these leakages. Chapter 6 shows the integration of

some of the policy-based mechanisms into a IoT testbed and a privacy enhancing middle-

ware. Finally, Chapter 7 concludes by summarizing the contributions and the possible future

extensions to this work presented in this thesis.

6

Chapter 2

Related Work

“The best time to plant a tree was 20 years ago. The second best time is now.”

Chinese Proverb

This chapter describes the privacy challenge that have been brought about by IoT. Then

we review recent legislative efforts in data privacy protection, highlighting the recent Euro-

pean General Data Protection Regulation. As a mechanism to make systems enforce privacy

requirements in those regulations, next the chapter reviews different privacy enhancing tech-

niques. Finally, it delves into the usage of privacy policies, with an emphasis on access control

policies, as a mechanism to realize the requirement of data regulations of enabling users de-

fine who, and for which purpose, can access their data. The related works corresponding to

the contributions in this thesis will be discussed in their corresponding chapters.

2.1 The Privacy Challenge

Organizations today capture and store large volumes of personal data that they use for a

variety of purposes such as providing personalized services and advertisement. Continuous

7

data capture, whether it be through sensors embedded in physical spaces to support location-

based services (e.g., targeted ads and coupons), or in the form of web data (e.g., click-stream

data) to learn users’ web browsing habits, has significant privacy implications [12, 17, 94].

The advent of the Internet of Things and instrumented physical spaces is increasing even

further the amount of data about individuals collected. While the IoT holds many promises,

it also gives rise to new and complex privacy challenges. Especially given that IoT sensor

data, whose collection might seem innocuous, can lead to significant privacy risks for data

subjects. Various studies have demonstrated that by observing electrical events and cell

phone usage in a space it is possible to detect the whereabouts and daily activities of its

residents [16, 71, 43]. Other studies, such as [66] have shown that collection of data from oc-

cupancy sensors (typically deployed in office buildings to automatically switch lights on/off)

can lead to sensitive data of the individual such as whether they come in late to work, leave

early, take long breaks, smoking habits, etc.

Data collected from Access Points in a smart space (e.g., WiFi or bluetooth), can also lead to

privacy leakage. This data might also seem innocuous since it does not necessarily contain

information about what the user connected to the AP was doing (e.g., what website the

user was visiting) and, in general, associates events to a device rather than a user (e.g., the

smartphone used to connect to the AP). However, by using simple classification rules on

top of WiFi connectivity data and common sense background knowledge, we can correctly

classify devices into profiles. For example, in a University building, knowing where the WiFi

APs are located (e.g., a classroom, lounge areas, labs, faculty/staff offices) along with rules

such as “undergraduate students typically are located in classrooms and stay in the building

from 9am-4pm” or “staff members typically are location in staff offices and arrive to the

building around 7am” can lead to highly accurate classifications. Figure 2.1 shows a result

obtained after applying these rules to connectivity data captured in a University building

by the TIPPERS system [75].

8

Figure 2.1: Classification of users based on WiFi Connectivity data.

Once this classification is performed, additional background knowledge could be used to

associate devices to their potential users (e.g., a device classified as faculty that spends sig-

nificant amount of time in the area that includes Prof. Smith’s office probably belongs to

him). Additionally, recent work has shown that background knowledge such as whether a

specific room is public or private, along with historical connectivity data, could be used to

improve the localization of a device/person [70]. This means that we can identify whether a

device belongs to a specific individual and then determine, with a very fine-grained granular-

ity, what rooms the person visited. Such information can lead to sensitive information such

as who the person spends time with in the same space and/or whether the person visited

sensitive spaces and with what frequency (e.g., counseling office, restrooms, religious spaces,

etc.).

2.2 Data Privacy Regulations

The history of privacy rights and regulations starts long before the era of Big Data and

IoT. As an example, the Supreme Court has found that the U.S. Constitution (which came

into effect in 1789) does provide for a right to privacy in its First, Third, Fourth, and Fifth

amendments1. In 1890, Warren and Brandeis articulated the Right to Privacy [19], a “right

to be let alone”, which examined US laws to determine if they protected the privacy of the

1http://law2.umkc.edu/faculty/projects/ftrials/conlaw/rightofprivacy.html

9

http://law2.umkc.edu/faculty/projects/ftrials/conlaw/rightofprivacy.html

individual. Warren and Brandeis were inspired to develop their work by the coverage of

intimate personal lives by the press of the time.

Technological advances, such as computers, have enabled governments and corporations to

capture and retain large amounts of individuals data since the 1950s. Society has been dis-

cussing the potential impact of this reality to people’s privacy since then. As a consequence,

different data protection/privacy regulations have been enacted. The federal state of Hesse

(Germany) passed the first data protection law in the world in 1970 which became into force

in 1978 [88]. With the advent of the Internet, e-commerce, and smartphones, the collection

of data has become more pervasive which has been a catalyst for newer regulations which

are more specific in their requirements and stricter in their enforcement (see Figure 2.2 for

a chronology of new adopted regulations in the last 3 years).

Figure 2.2: Chronology of privacy regulations.

These new data protection/privacy regulations are emerging all over the world. As of De-

cember 2020, over 130 countries and self-governing jurisdictions and territories have adopted

national laws and almost 40 countries and jurisdictions have pending bills or initiatives (see

Figure 2.3 extracted from [13]). Countries with no national law/initiatives, in some cases,

have regional or state regulations. For instance, in the US, the state of California enacted the

Consumer Privacy Act (CCPA) [1] in January 2020. The introduction of stringent privacy

laws, which impose legislative requirements that control how organizations manage user data,

has stimulated the need for a redesign of data processing systems. Regulatory compliance

is challenging since it involves additional processing overheads. Moreover, implementing the

10

required functionality is often in conflict with the design and operation of modern systems

where persistence of data is inherent (e.g., storing data forever, reusing data indiscriminately,

etc.) [92].

Figure 2.3: National comprehensive data protection/privacy laws and bills in 2020.

Rest of the section analyzes one of these pioneer recent stringent privacy laws: The European

General Data Protection Regulation (GDPR) [3]. GPDR was proposed on April 14, 2016

and came into effect on May 25, 2018. GPDR is a set of unified data protection rules

in all 27 member states of the European Union. It replaces the previous Data Protection

Directive. Unlike the Data Protection Directive, GDPR is a law (i.e., other national laws

are not required). GPDR is applicable to all services offered within the EU (regardless of

where the company is located).

GDPR establishes privacy and protection of personal data as a fundamental right. It includes

99 legal articles and 173 Recitals that regulate the collection, processing, protection, transfer,

and deletion of personal data. GDPR(Article 4) defines personal data as

11

Any information relating to an identified or identifiable natural person (‘data sub-

ject’) meaning someone who can be identified, directly or indirectly, in particular

by reference to an identifier.

It grants Rights to People for protection and privacy of their data. It assigns Responsibilities

to Companies for safe and responsible collection and processing of data. Companies violating

these regulations could face serious consequences for non-compliance with Max Penalty of

4% of global revenue or €20 million (≈$23 million), whichever is greater. Since July 2018,

and as of June 2021, there have been 589 violations of GDPR regulations by companies

all around the world punished for a total sum of fines amounting to €279 million (≈$331

million)2.

Specific to data management, GDPR outlines the rights to users (data subjects) and respon-

sibilities to organizations (data controllers) summarized in Table 2.1. With respect to users,

for instance, the GDPR states the following in Article 14:

“[...] the controller shall provide the data subject with the following information

necessary to ensure fair and transparent processing in respect of the data subject:

[...] the existence of the right to request from the controller access to and rec-

tification or erasure of personal data or restriction of processing concerning the

data subject and to object to processing as well as the right to data portability;”

Table 2.1: Privacy Design Requirements for IoT

Article Name (Article #) Design Requirement for IoT

Purpose limitation (5) User data must be only collected and processed for specific purposes
Secure infrastructure (32) Best effort should be made for implementing appropriate data security

Right to object (14) Users should explicitly allow sharing of their data with others
Right to be Forgotten (5) Data collected must be not stored indefinitely
Proof of Compliance (30) Audit logs of all operations must be stored to demonstrate compliance

Data protection by design and by default (25) Controller shall minimize the amount of data to be collected and processed

2According to the GDPR enforcement tracker (https://www.enforcementtracker.com/?insights).

12

This means that controllers have to not only provide transparency about how the data is used

but also about the mechanisms in place for users to opt-in/out of different aspects of this

processing. With respect to organizations, the GDPR states, among others that collection

of data shall be minimized, cannot be done for unknown purposes, and that systems should

have a more privacy-by-design implementation.

Hence, GDPR mandates data handlers to answer questions such as “what data is captured?”,

”where is data stored?”, “how is data analyzed?”, “who has access to data?” to manage data

in a compliant manner. Additionally, it requires handlers of data to be transparent about

the management of data and implement user preferences with respect to it. This translates

on a requirement for enhancements to current data management systems to, among others,

articulate collection purpose, enable people to opt-in/out from their data being shared with

others, maintain audit logs, and support erasure. These form the design requirements to

make today’s systems run by data controllers regulation compliant. Hence, a key requirement

for organizations/services to collect and to use an individual’s data, is to adopt the principle

of choice and consent [64]3. At the core of this principle is the support for mechanisms to

enforce people’s choices to preserve their privacy. Particularly, user-facing mechanism to

enable people to express their preferences.

2.3 Privacy Preservation

Due in part to the recently adopted privacy regulation laws, there has been a significant

recent interest in developing technologies that ensure individual’s privacy. In the literature,

a diverse range of Privacy Enhancing Technologies (PETs) have been proposed that allow

manipulating data in a privacy preserving manner. These PETs are based on different under-

lying mechanisms (such as removing personally identifiable information, introducing noise,

3Currently, such organizations typically follow the principle of notice wherein they inform the user about
data collection, but may not support mechanisms to seek and enforce consent.

13

encryption, controlling access to data, etc.) to prevent the leakage of sensitive information

about an individual. The main differences among such PETs are whether they are user ori-

ented, provided privacy guarantees, underlying assumptions about the adversary, and release

of aggregate vs. individual level data. An excellent survey of different techniques for privacy

preserving data publishing techniques can be found in [47].

• Release of statistics on the data instead of individual records such as mean, min,

maximum, etc. This is typically used to study demographics of a population and

hides, up to some extent, information about the participants (e.g., US Census).

• Release of Predictive models which can be outputs of, for instance, classifiers or other

mechanisms based on machine learning (e.g., Sentiment Analysis [74]).

• Release of data after deidentification where information is shared after removing any

personally identifying information (e.g., medical records) [95]. Another example is

randomization of personalized identifiers over time for release of individual level data.

Randomization although does not provide a formal guarantee, it is practical and sim-

plistic and has been used to offer sufficient privacy (e.g., COVID-19 Alert app for

contact tracing by Apple and Google [5]).

• Release of data based on cryptographic techniques (e.g., secure multi-party computa-

tion [55], homomorphic encryption [50], etc.) where the goal is to control and minimize

the information the adversary can obtain.

• Release of differential private [40] data. Differential privacy gives a mathematically

rigorous worst-case bound on the maximum amount of information that can be learned

about an individual’s data from the output of a computation. It assumes a very strong

attacker who knows about all but one record in the data. The privacy parameter ε is

used to control the privacy level where lower ε means higher privacy.

14

The techniques to implement privacy in data management can be classified based on whether

they allow sharing aggregated information versus sharing individual records. In this section,

we will look at examples of techniques in first category. Access control policies which are

used for controlling sharing of individual records will be looked in the following section. We

also include below another possible classification of the previously described PETs based

on properties that can influence a data management system design to enable their seamless

integration [53]:

• Stateful vs stateless : Stateful PETs maintain a ”state” that is shared between events

and therefore past events can influence the way current events are processed. An

example of a stateful PET is Randomization of personal identifiers in a sensor stream.

Personal identifiers of users are replaced with randomly generated identifiers after every

t time unit. During each window of size t, all the events capturing a single user use

the same randomly generated identifier (i.e., state). In a stateless PET, past events do

not influence the current events thus does not require maintenance of state.

• Blocking vs non-blocking : Blocking PETs typically require processing the entire input

before an output can be delivered. An example of a blocking PET is a Differentially

Private Laplace mechanism for releasing aggregate statistics over time. A non-blocking

PET does not need to wait of all the tuple in a window to arrive before applying the

PET. The tuples are processed as they come. An example of a non-blocking PET is

Randomization of personal identifiers in a sensor stream.

• Negotiable vs Non-negotiable: A data product using PET which is non-negotiable is

made available to service providers with a fixed privacy model. An example is a data

product consisting of a deferentially private sensor stream based on a fixed ε. Such data

products come with strong privacy guarantees but may not provide any bound on utility

of the data product to the end-application/service. A different model is to support

data products with negotiable PETs. In such a case, the data product may come with

15

strong privacy properties, but the service provider is capable of negotiating with the

data owner about the level of noise/anonymization added to the data product if the

data product is unable to meet the utility goals of the applications. Negotiable PETs,

specially, in the context of Differential Privacy, is new emerging concept - traditionally,

Differential Privacy has explored algorithms to optimize utility with strict privacy

constraints. Negotiable privacy offer more flexibility by making utility more central to

the way data products are produced for sharing. In particular, it shifts the privacy-

utility trade-off problem from optimizing utility given privacy constraint to that of

optimizing privacy (i.e., minimizing the privacy loss) given utility constraint [48, 52].

In negotiable PET, the service provider can request for data product with sliding scale

privacy based on the demonstration of need for accuracy.

The adaptation of a specific PET to a data management system also depends on the appli-

cation context. For instance, in the case of IoT streaming sensor data, several PETs have

been specifically designed based on the previous mechanisms [23, 85, 68, 25, 51].

2.4 Access Control and User Privacy Policies

The focus of this thesis is on Access Control Policies which control who has access to what

data and under what conditions (see Figure 2.4 for a high-level architecture of a system based

on access control). Access Control Policies, or simply policies from now on, have been around

since computers could be accessed by more than one person at a time with time-sharing. In

the following, we summarize the history of policies and their usage in DBMS4.

David Elliott Bell and Len La Padula laid the foundations for Access Control Models in

1972-1975 with the Bell-La Padula model [14]. They defined objects (i.e., the generalization

4This summary was inspired by the excellent blog post “In Search for Perfect Access Control” (https:
//goteleport.com/blog/access-controls/).

16

https://goteleport.com/blog/access-controls/
https://goteleport.com/blog/access-controls/

of all things that could hold information), subjects (i.e., users accessing or requesting access

to the objects), and access modes (i.e., read, write, append, and execute). Subject’s access

to objects was restricted by the access modes in the form of access triples {subject, object,

access}. Both subjects and objects were assigned security levels and a subject could only

access an object if their security level dominated that of the object. To prevent unwanted

disclosures of classified items, the Bell-La Padula model only allowed trusted subjects to set

security levels. This initial model is therefore called the Mandatory Access Control (MAC)

where individual users have no capabilities to set up access levels on any of the objects.

Later on, this model was changed so that users who are defined as owners of an object could

define the access control permissions for that object. This model of Discretionary Access

Control (DAC) was first used in Multics in the form of Access Control Lists (ACLs) and

later on borrowed over to Unix and still used to this day.

Few decades later, David F. Ferraiolo and D. Richard Kuhn identified the following short-

coming in the Bell-LaPadula model [46]:

“In many organizations, the end users do not “own” the information for which

they are allowed access. For these organizations, the corporation or agency is the

actual “owner” of system objects as well as the programs that process it. Control

is often based on employee functions rather than data ownership.”

They proposed the Role-Based Access Control (RBAC) [46] model where subjects could have

many roles and access control permissions are assigned based on these. To decide whether

to allow or deny access to an object, the system looks at the role of the subject.

Almost at the same time RBAC was proposed, work on developing a more general access

control model which could not only decide access based on the subject attribute (e.g., role)

but also based on the object attributes and even contextual conditions. This led to Attribute-

Based Access Control (ABAC) [61] which is also referred to as policy-based access control.

17

In ABAC, policies are decoupled from software or users. The policy model used in thesis is

modelled on ABAC because of its flexibility.

Based on ABAC, one can define more detailed policies, or Fine-Grained Access Control

(FGAC) policies [35]. Compared to more coarse-level policies, FGAC policies support the

definition of diverse and detailed conditions. For instance, in the IoT domain, FGAC policies

would enable the definition of different contextual parameters in addition the parameters

related to the specific and heterogeneous sensor data.

2.5 Access Control in DBMS

Figure 2.4: Access Control mechanism.

Today, database management systems (DBMSs) implement the above access control models,

and in particular FGAC which is used in this thesis, by one of two mechanisms [18]: 1) Policy

as schema and 2) Policy as data.

In Policy as schema, access control policies are expressed as authorization views [89]. The

policies specified at table, view, column level are used to construct the views that are used in

18

query answering. Authorized views reduced the need for large number of views by introduc-

ing parameters in view definition which are instantiated at query time [89]. In our scenarios

with large number of complex dynamic policies, even with authorized views, a large number

of views with complex view definition will have to created and maintained. Oracle Virtual

Private Database (VPD) [73] is a database implementation of this approach in which autho-

rized views are implemented by attaching policy functions to views or tables which suffers

from the same problem.

On the other hand in Policy as data, the DBMS rewrites the query and executes it against

the database [93]. Policies are stored in tables, just like data. The DBMS rewrites queries to

include the policy predicates prior to execution [8, 21, 28, 30]. This mechanism allows users

to express more fine-grained policies compared to views. Hippocratic [8] database pioneered

representing fine-grained policies as data in the form of policy tables and rewriting queries to

implement policy based data access but this mechanism can be easily supported by today’s

DBMSs. An excellent survey of access control mechanisms for databases can be found in [18].

19

Chapter 3

A Policy-based Privacy-by-Design

Framework for IoT Smart Spaces

“Not unnaturally, many elevators imbued with intelligence and precognition

became terribly frustrated with the mindless business of going up and down,

up and down, experimented briefly with the notion of going sideways, as a

sort of existential protest, demanded participation in the decision-making

process and finally took to squatting in basements sulking.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

From smart cars to smart buildings and from activity bracelets to smart fridges, every object

in our environment is increasingly being endowed with sensing, computing, communication,

and actuation functionalities. This rapid transformation of the world we live in is opening

the door to many potential benefits. One such domain where the IoT is opening the door to

potential benefits is that of smart buildings. Here, traditional HVAC (heating, ventilating,

and air conditioning) systems are being enhanced with functionalities that ties to beacons,

presence sensors, cameras, and personal devices such as smartphones carried by the build-

ing’s inhabitants. The reliance on the collection of data in smart buildings contradicts the

20

expectations of privacy. Especially since in IoT environments, such as smart buildings, users

are less likely to be aware of the technologies with which they might be interacting.

This chapter describes a framework for smart buildings which includes three main compo-

nents. First, IoT Resource Registries (IRRs) which broadcast data collection policies and

sharing practices of the IoT technologies with which users interact. Second, IoT Assistants

which selectively notify users about the policies advertised by IRRs and configure any avail-

able privacy settings. Third, privacy-aware smart buildings, which publish building policies

(e.g., through IRRs), receive the privacy settings of users (e.g., from IoTAs) and enforce

them when collecting user data or sharing it with services1.

To make this possible, it is important to have a language for expressing and communicating

the space/building’s policies as well as the privacy preferences of its inhabitants. While the

existing privacy policy languages are expressive [98], they do not completely support cap-

turing the policies of the building and preferences of its inhabitants regarding their data.

Therefore, this chapter also presents an overview of a language which can be used for in-

forming users about policies on what data is collected, how it will be safeguarded, what it

will be used for, and the choices a user has with respect to these policies.

3.1 Overview of Smart Buildings

Building Management Systems (BMS) are cyber-physical systems that are used to manage

buildings by monitoring different utility services. In general, a smart building includes a

BMS along with the sensors/actuators, networking and communication, and smart services

and devices (see Figure 3.1b2). As an example, Donald Bren Hall (DBH) is a 90 000+ square

1Note that, in order to differentiate the capture policies of the building against user-defined policies, this
chapter refers to the former as building policies and to the latter as user preferences. The rest of the thesis
focuses on user-defined preferences and hence the term policies will be used to refer to those.

2Figure 3.1b extracted from [84].

21

(a) (b)

Figure 3.1: Main elements of a smart building and a sample smart building (Donald Bren
Hall) at UC Irvine.

feet 6-story building at University of California, Irvine (UCI) equipped with a BMS (see

Figure 3.1a). DBH is equipped with more than 40 surveillance cameras covering all the

corridors and doors (for security purposes), 60 WiFi Access Points (AP) (for Internet con-

nectivity), 200 Bluetooth beacons (for broadcasting information of interest to inhabitants),

and 100 Power outlet meters (for monitoring energy usage).

3.1.1 Privacy Threats in Current Smart Building Scenarios

BMS capture a digital representation of a dynamically evolving building at any point in time

for purposes such as comfort and security. But this representation might contain distinct

patterns which can reveal the absence or presence of people and their activities, potentially

resulting in the disclosure of data that people might not feel comfortable disclosing (e.g.,

where they go, what they do, when and with whom they spend time, whether they are

healthy and more) [15].

For example, when a user connects to a WiFi AP in DBH, this event is logged for security

purposes (the information logged includes the MAC address of the device and AP, and a

timestamp) as part of the building policy. Using background knowledge (e.g., the location of

22

the AP) it is possible to infer the real-time location of a user. Also, using simple heuristics

(e.g., non-faculty staff arrive at 7 am and leave before 5 pm, graduate students generally

leave the building late, and undergrads spend most of the time in classrooms), it is possible to

infer whether a given user is a member of the staff or a student. Furthermore, by integrating

this with publicly available information (e.g., schedules of professors and the courses they

teach or event calendars), it would be possible to identify individuals. Some people may not

object to such data collection, while others might. One challenge associated with privacy

is that often not all users feel comfortable about the same data practices. Therefore, it is

important to understand user preferences and expectations with respect to the information

collected and used by a system like BMS [72, 86].

3.1.2 Privacy-Aware Smart Buildings

Adapting current building management systems to handle policies and user preferences is

a complex task. The main components required involve a privacy-aware smart building

management system and a mean for the user to define their privacy preferences. The former

would need to, among others, capture and enforce privacy preferences expressed by the

building’s inhabitants. The latter would need to, among others, to explain the policies of

the building wrt data capture, interact with the user to understand their privacy preferences,

and communicate those to the privacy-aware smart building management system.

Chapter 6 will explain in more detail an implementation of both elements: 1) A privacy-

aware smart building testbed (TIPPERS [75, 6]) which captures raw data from the different

sensors in the building, processes higher-level semantic information from such data, and

empowers development of different building services; 2) User IoT Assistants [4] which con-

figure available privacy settings - whether automatically or via interactions with the user.

In the rest of the chapter, the terms TIPPERS and IoTA will be used interchangeably with

23

privacy-aware building management system and personal assistants, respectively.

3.1.3 User Interactions in Privacy-Aware Smart Buildings

Figure 3.2 outlines how a user (who will be referred to as Mary from now onward for ease

of explanation) interacts with this infrastructure. In particular, consider a scenario where a

building, DBH, is managed by a privacy-aware smart building management system (in this

case TIPPERS) and users have personal assistants which handle their privacy preferences

(in this case IoTA).

First, the building admin of DBH uses the smart building management system (such as

TIPPERS) to define policies regarding the collection and management of data within the

building (step (1) in Figure 3.2). Based on these policies, the different sensors in the building

are actuated and data from them, some of which might be related to its inhabitants (step

(2)), is captured and stored (step (3)). These policies are made publicly available through

one or more IoT Resource Registries (step (4)). As Mary walks into the building carrying

her smartphone with IoTA installed on it, the IoTA discovers available registries that pertain

to resources in her vicinity and obtains machine-readable privacy policies detailing the prac-

tices of resources close to her location (step (5)). The IoTA displays summaries of relevant

elements of these policies to the user (step (6)) by focusing on the elements of a policy that

are important respect to the users privacy preferences. This is done using a model of Mary’s

privacy preferences learned over time. This might include information about those data col-

lection and use of practices she cares to be informed about (step (7)). If a policy identifies

the presence of settings, the IoTA can also use knowledge of Mary’s privacy preferences to

help configure these settings by communicating with TIPPERS (e.g., submitting requests

to change settings) (step (8)). If a service later requests TIPPERS about Mary’s location

(step (9)), the request will be processed according to the settings communicated by Mary’s

24

IoTA to TIPPERS (e.g., the request might be rejected, if Mary’s IoTA requested to opt-out

of location sharing; step (10)).

IRR TIPPERS

IoTA

Sensor Manager

sensors

Request Manager

Policy Manager

DB
User Preference
Manager

Building Policy
Manager

(1)

(4)

(5)

(6)

(7) (8)

(9)

user

building
admin

(2)

(3)

(10)

service

user device

smart building

Figure 3.2: Interaction between privacy-aware smart building management system (TIP-
PERS), IoT Resource Registries (IRR) and IoT Assistants (IoTA).

To implement this interaction, a machine-readable policy language, as a mechanism to cap-

ture and communicate building policies of smart buildings to its inhabitants, is required.

The policy language is used to convey users’ preferences and settings to the smart building

system by the personal assistant. In the interaction described above different elements could

use the language to advertise building policies (step (4)), match them with the user pref-

erences (step (5)), and communicate the matched user preferences to the building system

(step (8)).

3.2 Facets of a Privacy-Aware Smart Building Infras-

tructure

Building policies and user preferences are important to ensure that a smart building system

meets the privacy needs of its inhabitants. In the following, both building policies and user

preferences are explained with examples.

25

3.2.1 Building Policies

A building policy states requirements for data collection and management set by the tem-

porary or permanent owner. Building policies can be related to the infrastructure of the

building, specific sensors deployed in the building or even events taking place inside the

building. These policies (in most cases) have to be met completely by the other actors in

the pervasive space. Here are some examples of building policies that can be entered into

TIPPERS and advertised by the IRR.

• Policy 1 : A facility manager sets the thermostat temperature of occupied rooms to

70◦F to match the average comfort level of users.

• Policy 2 : The building management system stores your location to locate you in case

of emergency situations.

• Policy 3 : A building administrator defines that either an ID card or fingerprint verifi-

cation is needed to access meeting rooms.

• Policy 4 : An event coordinator requires that details regarding an event are disclosed

to registered participants only when they are nearby.

To implement these policies, they have to be translated into settings that change the state of

sensors. For example to execute Policy 1 it is necessary to i) make a request to motion sensors

in each room to determine whether the room is occupied or not, ii) pull information from

temperature sensors to determine whether the HVAC system has to be activated, and iii)

change the settings of the HVAC system to increase or decrease the fan speed to adjust the

temperature.

26

3.2.2 User Preferences

Building policies support building management but at the same time put user’s privacy

at risk. For example, using the data collected based on Policy 1 it is possible to discover

whether someone’s office is occupied or not which in turn can be used to learn the occupant’s

working pattern. Therefore, in smart buildings, users should be able to express their privacy

preferences regarding the data collected by the building.

A user preference is a representation of the user’s expectation of how data pertaining to

her should be managed by the pervasive space. These preferences might be partially or

completely met depending on other policies and user preferences existing in the same space.

Some examples of user preferences are:

• Preference 1 : Do not share the occupancy status of my office in after-hours.

• Preference 2 : Do not share my location with anyone.

Smart buildings such as DBH also provide services, built on top of the collected sensor

data, to the inhabitants of the building. Two examples of such services operating at DBH

are 1) Smart Concierge service, which helps users locate rooms, inhabitants and events

in the building, 2) Smart Meeting service, which can help organize meetings effectively.

These services take information from the user captured by the building (e.g., their current

location) and return interesting information (e.g., nearest coffee machine). In addition to

services provided by the building, there could be other third-party services running on top

of the smart building management system. For example, a food delivery company can

automatically locate and deliver food to building inhabitants during lunch time.

While using a service inside the building, a user can also specify their policies in the form of

permissions allowed for the service. This is similar to how the permissions are managed in

27

mobile apps. This allows a user to directly review what information the service requests and

for what purpose. For the previously described services, possible user permissions could be:

• Preference 3 : Allow Concierge access to my fine grained location for directions.

• Preference 4 : Allow Smart Meeting access to the details of the meeting and its partic-

ipants.

It is possible that user preferences conflict with the existing building policies (e.g., Policy 2

and Preference 2). These conflicts should be detected by the smart building management

system (e.g., with the help of a policy reasoner) which is in charge of enforcing the policies

by resolving these conflicts while informing users about it through the personal privacy

assistant.

3.3 Communicating Policies and Preferences

Building policies and user preferences have context specific requirements that need to be

captured and communicated in a flexible manner. In this section, we first describe the

various elements of our machine-readable policy. Second, we describe a high-level language

schema that can be used to capture such policy.

For expressing a building policy, a semi-structured language would be the best fit as the user

is cognizant of the IoT space itself. In the case of a user preference, the goal is to reduce

privacy fatigue as much as possible and therefore a natural language interface or a privacy

assistant like IoTA mentioned earlier would be more suitable.

28

3.3.1 Building Specific Policy Elements

There are different elements in a building that have to be represented in policies such as space,

users, sensors and services. For the elements described below, we use existing ontologies if

available.

1) Spatial Model/Environment includes information about infrastructure, such as buildings,

floors, rooms, corridors, and is inherently hierarchical. The spatial model also supports

operators such as “contained”, “neighboring”, and “overlap”. It is an approximation of the

different properties of spatial entities of interest.

2) User Profile models the concept of people in the environment. Profiles can be based on

groups (students, faculty, staff etc.) and share common properties (e.g., access permissions).

A user can have multiple profiles which includes information such as department, affiliation,

and office assignment in our sample scenario.

3) Sensor describes the entity which captures information about its environment. Each

sensor has a sensor type and can produce a reading based on its type. Sensors of the same

type can be organized into sensor subsystems. Examples of such subsystems are camera

subsystem, beacon subsystem, and HVAC subsystem (modelled using the haystack3 ontology

and Semantic Sensor Network ontology [33]).

4) Settings of a sensor is a set of valid parameters associated with the sensor which deter-

mines its behavior (e.g., for a camera it could be the capture frequency or the resolution of

the image). A sensor is actuated based on the parameters specified in its current settings.

A sensor can have multiple settings dictated by its type.

5) Observation models the type of data captured by a sensor based on the type and settings

associated with it. Each observation has a timestamp and a location (determined based on

3http://project-haystack.org

29

http://project-haystack.org

whether the sensor is mobile or fixed) associated with it.

6) Service Model describes the services that run on top of smart building systems and

provide interesting information to the users. The service model captures meta-data about

the service such as the developer (e.g., building owner or third party), permissions to sensors,

and observations. This model also describes details about the service itself such as the

information returned or functionality provided.

3.3.2 Privacy Specific Policy Elements

While building and sensor specific models can capture information about different entities,

there is a need for describing the data collection practices in a building from the perspective

of a user. Peppet [82] analyzed privacy policies of companies that manufacture IoT devices

and concluded that through these policies, users not only want to be informed about what

data is collected by which devices and for what purposes, but also about the granularity of

data collection (whether or not it is aggregated or anonymized) and with whom the data is

shared. Based on above requirements, we introduce the following policy elements to model

a user’s privacy settings.

1) Context describes meta information about the building and the BMS that point users

to general information (e.g., who is responsible for data collection in a building, where are

sensors located, and whom to contact when it comes to questions regarding the policy). This

meta information can also contain a general description of data security and ownership of

information which are relevant to the user.

2) Data collected and inferred. While the observation model captures information about the

data collected, a user might be more interested in knowing what can be inferred from the

collected data. Therefore, it is important to specify the abstract information that can be

30

inferred from an observation captured by a sensor. For example, to model the occupancy

of a room, it would be better to describe it as “if a room is occupied by anyone” compared

to an observation model which might only have information such as “images from camera”,

“logs from WiFi APs”, etc. Data collection description also contains information about the

granularity of the data collected as granularity can directly impact the capability of inference.

3) Purpose models the requirement of data collection which is closely related to a service

that uses this data. In a BMS, some data collections such as temperature monitoring serves a

straightforward purpose for setting the thermostat, but for other data collections such as the

information of connecting to WiFi APs can be used for different purposes (e.g., for logging

as well as to track the location of a particular MAC address). We are currently working on

a taxonomy to model purpose which includes information about whether or not the data is

shared (e.g., with law enforcement officers for security purposes) and for how long it will be

stored (i.e., retention).

3.3.3 Overview of the Language Schema

Based on the aforementioned elements, we are designing a language schema that is capable

of capturing both building policies and user preferences. In the following we give an overview

of the language by representing some of the examples from Section 3.2. We use a JSON-

Schema v44 for the representation. We choose JSON over other formats mainly because of

the rapid adoption of JSON-based REST APIs.

Figure 3.3 shows how Policy 2 (“Location tracking for emergency response”) can be expressed

using the language. The first part of the language expresses the general information about

the location and sensor type (in this case location is DBH at UCI with WiFi APs being the

sensors) whereas the second part expresses the data collection purpose (emergency response),

4http://json-schema.org

31

http://json-schema.org

data type, and retention period of the data itself.

{"resources": [{
"info": { "name": "Location tracking in DBH" },
"context": {

"location": {
"spatial": {

"name": "Donald Bren Hall",

"type": "Building"

},
"location_owner": {

"name": "UCI",

"human_description": {
"more_info": "http://ics.uci.edu"

}}},
"sensor": {

"type": "WiFi Access Point",

"description": "Installed inside the building and covers rooms and corridors"

}},
"purpose": {

"emergency response": {
"description": "Location is stored continuously"

}}
"observations": [{

"name": "MAC address of the device",

"description": "If your device is connected to a WiFi Access Point in DBH, its MAC

address is stored"

}],
"retention": {

"duration": "P6M"}}]}

Figure 3.3: Policy related to data collection inside DBH.

In case of the policies related to services such as the Smart Concierge can be expressed as

shown in Figure 3.4. The first part describes the information required by the service and

the second part shows the purpose of collecting this information.

{"observations": [{
"name": "wifi_access_point",

"description": "Whenever one of your devices connects to the DBH WiFi its MAC address is

stored"

}, {
"name": "bluetooth_beacon",

"description": "When you have Concierge installed and your bluetooth senses a beacon, the

room you are in is stored"}],
"purpose": {

"providing_service": {
"description": "Your location data is used to give you directions around the Bren Hall."

},
"service_id": "Concierge"}}

Figure 3.4: Policy related to a service in the building.

Concerning user’s preference settings, the language can express choices related to policies

and services. In the context of Smart Concierge service, Figure 3.5 shows options for the

32

different granularities at which location data can be collected. Thus, if a user is comfortable

with sharing fine-grained location data with the Concierge service for directions then our

language can capture such Preference.

{"settings": [

{"select": [

{"description": "fine grained location sensing",

"on": "http:// tippers/user/concierge?beacon=opt -in&wifi=opt -in"},
{"description": "coarse grained location sensing",

"on": "http:// tippers/user/concierge?beacon=opt -out&wifi=opt -in"},
{"description": "No location sensing",

"on": "http:// tippers/user/concierge?beacon=opt -out&wifi=opt -out"}]}

Figure 3.5: Privacy settings available.

3.4 Conclusions and Challenges

We presented a template for future smart buildings which includes privacy-aware building

management systems and IOT assistants and can give users better control over the infor-

mation that buildings collect about them. We described the requirements and elements of

a machine-readable language required for this collaboration, which can represent building

policies and user preferences. However, to make this vision of a building that takes user

privacy into account a reality, many challenges have to be tackled.

First, challenges associated with the design of IoT Assistants, which are out of the scope of

this thesis. While an IoT Assistant can help users in understanding the policies broadcast

by the smart building, identifying which privacy practices are most relevant to users is

important [54, 86]. This requires a unified way to discover IoT technologies through IRRs and

we envision that the setup of IRRs can be automated (e.g. by leveraging Manufacturer Usage

Descriptions [42]). An IoTA could make recommendations to users following an approach

similar to the work done by Liu et al. [72] for mobile applications. For such a mechanism

to work correctly, the assistant requires labeled data over a period of time to decipher the

patterns in a user’s behavior and represent them as preferences for the user. Therefore, the

33

challenges include when and how to notify a user and how to obtain user feedback without

inducing user fatigue.

Second, challenges associated with the development of privacy-aware smart buildings/spaces,

which is the focus of this thesis. The high-level policies and preferences have to mapped into

appropriate entities in the building space before their enforcement. This mapping determines

the where (at devices or BMS), when (during capture, storage, processing, or sharing) and

how (accept/deny data access or add noise) these policies and preferences should be enforced

on the user data. The possibilities for customization in this mapping, and thus expressibility

of policies and preferences, are decided by the capabilities of privacy-aware buildings. With

large number of users, services, sensors, policies, and preferences the cost of enforcement can

be large enough to be prohibitive in any real setting. Additionally, it is complex to deter-

mine the relation between policies expressed on higher-level, more semantically meaningful,

concepts that people understand and the raw sensor data captured by the building.

3.5 Discussion

In this chapter, we developed a framework for IoT spaces with the right mechanisms to

empower users with control over capture and sharing of their data. Given a sensor and

a sensor event, we identify a user and their policy and either ensure that sensor data is

collected or not collected or shared/not shared based on the policy.

We implicitly assume that each sensor event corresponds to a user or is an information about

a user. Under this assumption, the framework allows user to opt-in/opt-out of data collection.

However, associating a user with their data may not be straight forward for different sensors

and their data. We are developing a Data Subject Association Manager to do this as part

of our work in PE-IoT (explained in Chapter 6). This mechanism creates the association

34

between data records in the sensor stream and a data subject. The implementation of a

Data Subject Association Manager depends on the specific sensor stream it is handling and

therefore there will be as many of these managers as there are different sensor data types.

For example, in WiFi association data stream, the MAC address captured is mapped to a

corresponding data subject by looking up the device registry.

Furthermore, depending upon the use case of IoT applications, there may be need for a fine-

grained policies than described in this chapter. In such scenarios, users do not just control

the capture of data but also how the data is shared with services and other users after it is

captured. In Chapter 4, we explain such a scenario – Classroom attendance – in detail and

the fine grained policy model required for specification.

The remainder of this thesis focuses on dealing with the challenges associated with the

supporting fine-grained access control policies in data management systems.

35

Chapter 4

Scalable Enforcement of Fine-Grained

Access Control Policies

“Query optimization is not rocket science. When you flunk out of query

optimization, we make you go build rockets.”

David DeWitt, PASS Summit 2010

In IoT domains, with large number of sensors and data collection at unprecedented rates, the

number of of user-defined fine-grained policies is going to be in the order of tens of thousands.

When it comes to enforcement of these large number of policies, today’s data management

systems are not able to efficiently handle the large number of checks required at the time of

answering queries. Supporting such fine grained policies raises several significant challenges

that are beginning to attract research attention. This chapter addresses one such challenge:

scaling enforcement of access control policies in the context of database query processing

when the set of policies becomes a dominant factor/bottleneck in the computation due to

their large number. This has been highlighted as one of the open challenges for Big Data

management systems in recent surveys such as [32].

36

In modern data management systems, data is dynamically captured from sensors and shared

with people via queries based on user-specified access control policies. We describe a moti-

vating use case of a smart campus in Section 4.1 which shows that data involved in processing

a simple analytical query might require checking against hundreds to thousands of access

control policies. Enforcing that many access control policies in real-time during query exe-

cution is well beyond database systems today. While our example and motivation is derived

from the smart space and IoT setting, the need for such query processing with a large num-

ber of policies also applies to many other domains. This applicability will only increase as

emerging legislation such as GDPR empowers users to control their data.

As we described in Section 2.4, existing DBMS support Fine-Grained Access Control (FGAC)

mechanisms by performing a query rewrite [93]. This is done by appending policies as

predicates to the WHERE clause of the original query. However, they are limited in the

complexity of applications they can support due to the increased cost of query execution when

the rewriting includes a large number of policies. Thus, scalable access control-driven query

execution presents a novel challenge. We evaluated the existing approach of query rewrite

on top of a relational DBMS (MySQL) with two different queries from a IoT Benchmark

called SmartBench [57]. The results are shown in Figure 4.1. The first query (on the left)

is a real time query from Smart Bench which retrieves the data belonging to an individual

user. We perform this experiment for different users and DBMS has to evaluate between 100

to 350 policies depending on the user. In the second query (on the right), it is an analytical

query where we progressively decrease the selectivity of the query and thus increasing the

number of policies to be evaluated. In both queries, policy evaluation overhead increases

linearly with number of policies.

In this chapter we propose Sieve, a general purpose middleware to support access control

in DBMSs that enables them to scale query processing with large number of access control

policies. It exploits a variety of features (index support, UDFs, hints) supported by modern

37

Figure 4.1: Policy Evaluation overhead vs. Number of Policies.

DBMSs to scale to a large number of policies. A middleware implementation, layered on top

of an existing DBMS, allows us to test Sieve independent of the specific DBMS used. This

is particularly useful in our case (motivated by IoT) since different systems offer different

trade-offs in IoT settings as highlighted in [57]. The comparative simplicity of implementing

the technique in middleware enables us to explore the efficacy of different ideas instead of

being constrained by the design choice of a specific system, as shown in previous work such

as [29]. Sieve intercepts the query by a user and rewrites it with relevant policies which is

then executed by the DBMS which then returns the policy enforced query results to the user

(see Figure 4.2).

Figure 4.2: Overview of Sieve.

Sieve incorporates two distinct strategies to reduce overhead: reducing the number of tuples

that have to be checked against complex policy expressions and reducing the number of poli-

cies that need to be checked against each tuple. First, given a set of policies, it uses them

38

to generate a set of guarded expressions that are chosen carefully to exploit the best exist-

ing database indexes, thus reducing the number of tuples against which the complete and

complex policy expression must be checked. This strategy is inspired by the technique for

predicate simplification to exploit indices developed in [24]. Second, Sieve reduces the over-

head of dynamically checking policies during query processing by filtering policies that must

be checked for a given tuple by exploiting the context present in the tuple (e.g., user/owner

associated with the tuple) and the query metadata (e.g., the person posing the query –i.e.,

querier– or their purpose). We define a policy evaluation operator ∆ for this task and present

an implementation as a User Defined Function (UDF).

Sieve combines the above two strategies in a single framework to reduce the overhead of

policy checking during query execution. Thus, Sieve adaptively chooses the best strategy

possible given the specific query and policies defined for that querier based on a cost model

estimation. We evaluate the performance of Sieve using a real WiFi connectivity dataset

captured in our building at UC Irvine, including connectivity patterns of over 40K unique

devices/individuals. On this real dataset, we generate a synthetic set of policies that such

individuals could have defined to control access to their data by others. We also test the

performance of our system on a synthetic dataset based on a smart mall where connectivity

data of devices are logged inside shops in the mall. Our results highlight the benefit of Sieve-

generated query rewrite when compared to the traditional query rewrite approach for access

control when processing different queries. Additionally, we perform these experiments on two

different DBMSs, MySQL and PostgreSQL, showcasing Sieve’s abilities as a middleware.

The rest of the chapter is organized as follows. Section 4.1 presents a case study of a real IoT

deployment, with a large set of access control policies defined. Section 4.2 reviews related

work followed by Section 4.3 formalizes the query and policy model, and the access control

semantics used by Sieve. We also describe an overview of the approach used by Sieve with

an outline of two different strategies. Section 4.5 presents an algorithmic solution for the

39

first strategy i.e., to generate appropriate guarded expressions. Section 4.6 describes the

details of the Sieve generated query rewrite along with various optimization techniques used.

Section 4.7 describes how Sieve deals with dynamic scenarios in which policies are continu-

ously inserted into the database. Section 4.8 presents the experimental evaluation using two

different datasets and two different DBMSs. Finally, Section 4.9 presents a discussion.

4.1 Case Study

We present a case study based on a smart campus setting where there are a large number

of FGAC policies specified by users for their collected data. We consider a motivating

application wherein an academic campus supports variety of smart data services such as

real-time queue size monitoring in different food courts, occupancy analysis to understand

building usage (e.g., room occupancy as a function of time and events, determining how space

organization impacts interactions amongst occupants, etc.), or automating class attendance

and understanding correlations between attendance and grades [60]. While such solutions

present interesting benefits, such as improving student performance [60] and better space

utilization, there are privacy challenges [80] in the management of such data. This case study

is based on our own experience building a smart campus with variety of applications ranging

from real-time services to offline analysis over the past 4 years. The deployed system, entitled

TIPPERS [75], is in daily use in several buildings in our UC Irvine campus1. TIPPERS at

our campus captures connectivity events (i.e., logs of the connection of devices to WiFi APs)

that can be used, among other purposes, to analyze the location of individuals to provide

them with services.

We use the UC Irvine campus, with the various entities and relationships presented in Fig-

ure 4.3 (along with the expected number of members in brackets), as a use case. Consider

1More information about the system and the applications supported can be found at [6]

40

a professor in the campus posing the following analytical query to evaluate the correlation

between regular attendance in her class vs. student performance at the end of the semester:

StudentPerf(WifiDataset , Enrollment , Grades)=

(SELECT student , grade , sum(attended)

FROM (

SELECT W.owner AS student , W.ts -date AS date ,

count (*)/count (*) AS attended

FROM WiFiDataset AS W, Enrollment AS E

WHERE E.class="CS101" AND E.student=W.owner AND W.ts -time

between "9am" AND "10am" AND W.ts-date between "9/25/19"

AND "12/12/19" AND W.wifiAP="1200"

GROUP BY W.owner , W.ts-date) AS T, Grades AS G

WHERE T.student=G.student

GROUP BY T.student)

University
Member

Department

ClassStudent Staff

UGrad Grad Admin. Faculty

member of

associated with

enrolls

teaches

(36K)

(30K) (6K) (6K) (6K)

(50K)
(~3K/dept.)

(~200/class)

(1-6/semester)

(1-4/semester)

(12K)

Figure 4.3: Entities and relationships in a Smart Campus Scenario.

Let us consider that students define polices to allow/deny access to their connectivity data

to others (e.g., to faculty) in certain situations (e.g., given geospatial context, or at certain

times, for certain purposes). Given the different contextual attributes of the scenario, such

41

policies might be complex. For instance, a student might be fine with sharing her data with a

professor during the time of class (i.e., 9am to 10am on Mondays, 11am-12pm on Thursdays)

if she is connected to the AP in the classroom (i.e., WiFiAP 1200 on Mondays, WiFiAP 4011

on Thursdays) and if this information is going to be used only for attendance. Similarly, a

professor could allow students of her class to access her connectivity events during tutoring

hours if they have attended at least 75% of the classes so far.

Given the number of users in the scenario (ranging from 200 per class to 50K at the campus

level), the pieces of data captured by TIPPERS in the smart campus (e.g., connectivity data,

video, audio, etc.), and the different contextual control options available, one can expect a

considerable number of policies being defined. Continuing with the classroom example,

let us assume that within the students there exist different privacy profiles (as studied in

the mobile world by Lin et al. [69]). Using the distribution of users by profile from [69]2,

consider that 20% of the students might have a common default policy (”unconcerned”

group [69]), 18% may want to define their own precise policies (”advance users”), and the rest

will depend on the situation (for which we consider, conservatively, 2/3 to be ”unconcerned”

and 1/3 ”advance”). Let us focus on a single data type captured in this analysis (i.e.,

connectivity data), time and location as control options (as explained before), and policies

defined by a given user at the group-level (and not at the individual-level, which will even

further increase the number of policies). Such profiles in the example correspond to students,

faculty, administrative staff, etc. as shown in the figure.

Consider that there exists a default policy (see Figure 4.4) for each person pi belonging to a

specific group (e.g., student) that restricts/allows access to other individuals, pj belonging

to the same or different groups. Such default policies control access to the data of “uncon-

cerned users”. Advanced users, on the other hand, would create policies of their own based

2Note that the percentages of different profiles could be different in our setting compared to that studied
in [69] given different context. The numbers above are solely for the purpose of motivating the need for
databases to support large number of policies.

42

on context such as space and time (let us assume that each of them create one policy in

addition to the default policy per group (see Figure 4.5). In the classroom setting, with

200 students, 120 “unconcerned” students will have associated 2 default policies, one per

group (i.e., students, faculty), Likewise, 80 advanced users will have 4 refined policies, two

per group. Thus, even under these conservative assumptions and limited number of profiles,

connectivity data from WiFi APs will be subject to adherence of 560 policies. Being less

conservative we can assume that advance users define two additional policy per group which

will increase the number of policies to 880, or 1.2K (with three additional policies per group).

Figure 4.4: Default policy with smaller num-
ber of object and querier conditions Figure 4.5: Advanced policy

Given the above policies for a single class, if students take 1-6 classes and faculty teach 1-4

classes per semester, a query to analyze students attendance listed above with performance

over classes a professor taught over the year would be 3.3K (560 policies/class X 2 class-

es/quarter X 3 quarters/year) to 7.2K (considering our 1.2K policies/class estimation). It

would be even worse if we consider now that the Chair of the department wishes to run a

similar query for all the classes taught at the department since now the number of policies,

and hence number of predicates in the WHERE clause will increase further. This query, given

the list of over 100 courses offered by the department, would involve from 56K to 120K

policies only taking into account the policies defined by the students (faculty members could

had their own policies too).

The case study above motivates the requirements for emerging domains, such as smart spaces

43

and IoT, on scalable access control mechanisms for large policy sets that the DBMS must

support. While our example and motivation is derived from the smart space and IoT setting,

the need for such query processing with a large number of policies applies to many other

domains. Especially, as argued in the introduction, for emerging legislatures such as GDPR

that empower users to control their data. Additionally, a recent survey on future trends for

access control and Big Data systems made a similar observation about the open challenge

to scale policy enforcement to a large number of policies [32].

4.2 Related Work

Using the context from case study, we review access control strategies in the literature

and show that they fall short when enforcing large policy sets. As discussed in the com-

prehensive survey of access control in databases in [18], techniques to support FGAC can

be broadly classified as based on views (e.g.,authorization views [89] and Oracle Virtual

Private Database [73]) or based on storing policies in the form of data (e.g., Hippocratic

databases [8] and the follow up work [67, 7]). In either of these approaches, input queries are

rewritten to filter out tuples for which the querier does not have access permission. The view-

based approach would be infeasible given the potentially large number of queriers/purposes

which would result in creating and maintaining materialized views for each of them. In the

policy-as-data based approach, the enforcement results on computationally expensive query

processing. This is because the rewrite is done by adding conditions to the query’s WHERE

clause as 〈query predicate〉 AND (P1 OR ... OR Pn) (where each Pi above refers

to the set of predicates in each policy) or by using case-statement and outer join. In a situa-

tion like the one in our use case study, it results in appending hundreds of policy conditions

to the query in a disjunctive normal form which adds significant overheads. Both strategies

currently do not scale to scenarios with large number of policies.

44

Other approaches, such as [22], have proposed augmenting tuples with the purpose for which

they can be accessed. This reduces the overheads at query time and as policy checking

could be performed at data ingestion. Such pre-processing based approaches have significant

limitations in the context where there are large number of fine-grained polices such as in the

context that motivates our work. Determining permissions for individuals and encoding them

as columns or multiple rows can result in exorbitant overhead during ingestion, specially when

data rates are high (e.g., hundreds of sensor observations per second). Additionally, pre-

processing efforts might be wasted for those tuples that are not queried frequently or at all.

Other limitations include: 1) Impossibility of pre-processing policy predicates that depend on

query context or information that is not known at that time of insertion; and 2) Difficulty

to deal with dynamic policies which can be updated/revoked/inserted at any time (thus

requiring processing tuples already inserted when policies change). Recent work [27, 29],

that performs some pre-processing for access control enforcement, limits pre-processing to

policies explicitly defined to restrict user’s access to certain type of queries or to certain

tables. The checking/enforcement of FGAC at tuple level is deferred to query-time and

enforced through query rewriting as is the case in our paper.

Several research efforts have focused on implementing access control in the context of the

IoT and smart spaces. In [77], the authors propose an approach for policy evaluation on

streaming sensor data punctuated with access control policies. Their approach does not

handle analytical queries with policies on the arriving data. Additionally the implementa-

tion of their approach requires significant modification to existing DBMS to make different

operators security-aware for a large number of policies. In [31], the authors proposed a new

architecture based on MQTT for IoT ecosystems. However, like [77] the focus of this work

is not on managing large number of policies at run time and hence, they would experience

the same issues highlighted for traditional query rewrite strategies.

45

4.3 Modelling Access Control Policies

We describe our modeling of the fundamental entities in policy-driven data processing: data,

query, and policies. Using these, we describe the access control semantics used in this paper.

We finish the section with a sketch of the approach followed by Sieve to speed up policy

enforcement. We have summarized frequently used notations in Table 4.1 for perusal.

Table 4.1: Frequently used notations.

Notation Definition

D Database

ii ∈ I Index and set of indexes in D
ri ∈ R Relation and set of relations in D
uk ∈ U User and set of users in D

tj ∈ T; Tri
; TQi

; Tpl

Tuple and set of tuples: in D; required to compute Qi; controlled
by pl

group(uk) Groups uk is part of

Qi; QM
i Query; Metadata of Qi

pl ∈ P; PQMi
Access control policy and set of policies in D; set of policies related
to a query given its metadata

ocli ∈ OCl;qcli ∈ QCl;ACl Object conditions; querier conditions; action of pl

E(P) = OC1 ∨ · · · ∨ OC|P| Policy expression of P
G(P) = G1 ∨ · · · ∨Gn Guarded policy expression of P (DNF of guarded expressions)

Gi = ocig ∧ PGi

Guarded expression consisting of guard (ocig) and its policy parti-
tion (PGi

)

CG Candidate guards for E(P)

eval(exp, tt) Function which evaluates a tuple tt against a expression exp

∆(Gi, QM
i, tt) Ppolicy evaluation operator

ρ(pred) Cardinality of a predicate

ce Cost of evaluating a tuple against the set policies

cr Cost of reading a tuple using an index

4.3.1 Data Model

Let us consider a database D consisting of a set of relations R, a set of data tuples T, a set

of indexes I, and set of users U. Tri
represents the set of tuples in the relation ri ∈ R. Users

46

are organized in collections or groups, which are hierarchical (i.e., a group can be subsumed

by another). For example, the group of undergraduate students is subsumed by the group

of students. Each user might belong to multiple groups and we define the method group(uk)

which returns the set of groups uk is member of. Each data tuple tj ∈ T belongs to a uk ∈ U

or a group whose access control policies restrict/grant access over that tuple to other users.

We assume that for each data tuple tj ∈ T there exists an owner uk ∈ U who owns it, whose

access control policies restrict/grant access over that tuple to other users (the ownership can

be also shared by users within a group).

This ownership is explicitly stated in the tuple by using the attribute ri.owner that exists

for all ri ∈ R and that we assume is indexed (i.e., ∀ ri ∈ R ∃ ij ∈ I | ij is an index over the

attribute ri.owner). Tuk
represents the set of tuples owned by user uk

3.

4.3.2 Query Model

The SELECT-FROM-WHERE query posed by a user uk is denoted by Qi and tuples in

the relations in the FROM statement(s) of the query are denoted by TQi
=

n⋃
i=1

Tri
. In our

model, we consider that queries have associated metadata QMi which consists of information

about the querier and the context of the query. This way, we assume that for any given

query Qi, QM
i contains the identity of the querier (i.e., QMiquerier) as well as the purpose of

the query (i.e., QMipurpose). In the example query in Section 4.1, QMiquerier=“Prof.Smith” and

QMipurpose=“Analytics”.

3By owner of the tuple above, we refer to the entity who can define policies on the tuple. In our example
use case, where tuple corresponds to WiFi connectivity data, determining ownership is straightforward -
data owner is the owner of the device being detected by the sensor. Ownership, in general, can be difficult
to determine, specially when sensors capture data which is not directly linked to the identity of the user as
mentioned in Chapter 3

47

4.3.3 Access Control Policy Model

A user specifies an access control policy (in the rest of the chapter we will refer to it simply

as policy) to allow or to restrict access to certain data she owns, to certain users/groups

under certain conditions. Let P be the set of policies defined over D such that pl ∈ P is

defined by a user uk to control access to a set of data tuples in ri. Let that set of tuples

be Tpl
such that Tpl

⊆ Tuk
∩ Tri

. We model such policy as pl =〈OCl, QCl, ACl〉, where each

element represents:

• Object Conditions (OCl) are defined using a conjunctive boolean expression ocl1 ∧

ocl2∧...∧ocln which determines the access controlled data tuple(s). Each object condition

(oclc) is a boolean expression 〈attr, op, val〉 where attr is an attribute (or column) of

ri, op is a comparison operator (i.e., =, ! =, <, >, ≥, ≤, IN, NOT IN, ANY, ALL),

and val can be either: (1) A constant or a range of constants or (2) A derived value(s)

defined in terms of the expensive operator (e.g., a user defined function to perform

face recognition) or query on D that will obtain such values when evaluated. In this

paper, we focus on the object conditions with values as constants. To represent boolean

expressions involving a range defined by two comparison operators (e.g., 4 ≤ a < 20)

we use the notation 〈attr, op1, val1, op2, val2〉 (e.g., 〈a, ≥, 4, <, 20〉). As an example,

oclowner is an oclc ∈ OCl such that oclc = 〈ri.owner, =, uk〉 or oclc = 〈ri.owner, =,

group(uk)〉4..

• Querier Conditions (QCl) identify the metadata attributes of the query to which

the access control policy applies. QCl is a conjunctive boolean expression qcl1 ∧ qcl2 ∧

· · · ∧ qclm. Our model is inspired by the well studied Purpose Based Access Control

(Pur-BAC) model [21] to define the querier conditions. Thus, we assume that each

policy contains has at least two querier conditions such as qclquerier = 〈QMiquerier, =,

4To simplify the notation we will represent the pair of object conditions of a policy used to represent a
range (e.g., oc1s1=〈a, >, 10〉 and oc1s1=〈a, <, 65〉) as a single object condition oc1s=〈a, [>,<], [10,65]〉.

48

uk〉 or qclquerier = 〈QMiquerier, =, group(uk)〉 (that defines either a user or group), and

a qclpurpose = 〈QMipurpose, =, purpose〉 which models the intent/purpose of the querier

(e.g., safety, commercial, social, convenience, specific applications on the scenario, or

any [65]). Other pieces of querier context (such as the IP of the machine from where

the querier posed the query, or the time of the day) can easily be added as querier

conditions although in the rest of the paper we focus on the above mentioned querier

conditions.

• Policy Action (ACl) defines the enforcement operation, or action, which must be

applied on any tuple tj ∈ Tpl
. We consider the default action, in the absence of an

explicit policy allowing access to data, to be deny. Such a model is standard in systems

that collect/manage user data. Hence, explicit access control actions associated with

policies in our context are limited to allow.

Based on this policy model, we show two sample policies in the context of the motivating

scenario explained before. First, we describe a policy with object conditions containing a

constant value. This policy is defined by John to regulate access to his connectivity data to

Prof. Smith only if he is located in the classroom and for the purpose of class attendance as

follows:

〈[W.owner = John ∧ W.ts -time ≥ 09:00 ∧ W.ts -time ≤ 10:00 ∧ W.wifiAP

= 1200], [Prof. Smith ∧ Attendance Control], allow〉

Second, we describe the same policy with an object condition derived from a query to express

that John wants to allow access to his location data only when he is with Prof. Smith. The

object condition is updated as:

[W.owner = John ∧ W.wifiAP = (SELECT W2.wifiAP FROM WifiDataset

AS W2 WHERE W2.ts-time = W.ts-time AND W2.owner = "Prof.Smith")]

49

As policy-based access control implementations typically deny access in absence of a policy

explicitly allowing access to data 5. Moreover, if a user expresses a policy with a deny action

(e.g., to limit the scope/coverage of an allow policy), we can translate it into the explicitly

listed allow policies. For instance, given an allow policy, “allow John access to my location”

and an overlapping deny policy from the same user “deny everyone access to my location

when in my office”, we express both by replacing the original allow policy by “allow John

access to my location when I am in locations other than my office”. We therefore restrict

our discussions to allow policies.

4.3.4 Access Control Semantics

We define access control as the task of deriving T ′Qi
⊆ TQi

which is the projection of D on

which Qi can be executed with respect to access control policies defined for its querier. Thus,

∀ tt ∈ TQi
, tt ∈ T ′Qi

⇔ eval(E(P), tt) = True. The function eval(E(P), tt) evaluates a tuple

tt against the policy expression E(P) that applies to Qi as follows:

eval(E(P), tt) :=

True, if ∃ pl ∈ P | eval(OCl, tt)= True

False, otherwise

where eval(OCl, tt) evaluates the tuple against the object conditions of pl as follows:

eval(OCl, tt) :=

True , if ∀ oclc ∈ OCl | tt.attr = oclc.attr =⇒

eval(oclc.op, oc
l
c.val, tt.val) = True

False, otherwise

5A default of deny is also standard is systems that collect/user data. For instance, apps running on
mobile device need explicit permission to access and use user data.

50

where eval(oclc.op, oc
l
c.val, tt.val) compares the object condition value (oclc.val) to the tuple

value (tt.val) that matches the attribute of the object condition, using the object condition

operator. If the latter is a derived value, the expensive operator/query is evaluated to obtain

the value.

This access control semantics satisfies the sound and secure properties of the correctness

criterion defined by [97]. If no policies are defined on tt then the tuple is not included in T ′Qi

as our access control semantics is opt-out by default. Depending upon the query operations,

evaluating policies after them is not guaranteed to produce correct results. This is trivially

true in the case for aggregation or projection operations that remove certain attributes from

a tuple. In queries with non-monotonic operations such as set difference, performing query

operations before policy evaluation will result in inconsistent answers. Let P be the set of

policies defined on rk that control access to Qi (a query with a set difference). E(P) is the

Disjunctive Normal Form (DNF) expression of P such that E(P) = OC1∨· · ·∨OC|P| where OCl

is conjunctive expression of object conditions from pl ∈ P. After appending E(P) to Qi we

obtain: SELECT * FROM rj MINUS SELECT * FROM rk WHERE E(P). Consider a

tuple tk ∈ Trk
which has policy pl ∈ P that denies Qi access to tk. If there exists a tuple

tj ∈ Trj
such that tj = tk, then performing set difference operations before checking policies

on rk will result in a tuple set that does not include tj. On the other hand, if policies for rk

are checked first, then tk 6∈ TQi
and therefore tj will be in the query result.

4.4 Overview of the Sieve Approach

For a given query Qi, the two main factors that affect the time taken to evaluate the set

of policies for the set of tuples TQi
required to compute Qi (i.e., eval(E(P), tt) ∀ tt ∈ TQi

)

are the large number of complex policies and the number of tuples in TQi
. The overhead of

policy evaluation can thus be reduced by first eliminating tuples using low cost filters before

51

checking the relevant ones against complex policies and second by minimizing the length of

policy expression a tuple tt needs to be checked against before deciding whether it can be

included in the result of Qi or not. These two fundamental building blocks form the basis

for Sieve.

• Reducing Number of Policies. Not all policies in P are relevant to a specific

query Qi. We can first easily filter out those policies that are defined for different

queriers/purposes given the query metadata QMi. For instance, when Prof. Smith

poses a query for grading, only the policies defined for him and the faculty group for

grading purpose are relevant out of all policies defined on campus. Thus, given our

policy model (that controls access based on querier’s identity and purpose), the set

of policies relevant to the query can be filtered using QMi. We denote the subset of

policies which are relevant given the query metadata QMi by PQMi ⊆ P where pl ∈ PQMi

iff QMipurpose = qclpurpose∧(QMiquerier = qclquerier∨qclquerier ∈ group(QMiquerier)). In addition,

for a given tuple tt ∈ TQi
we can further filter policies in PQMi that we must check based

on the values of attributes in tt. For instance, the owner of the tuple (i.e., tt.owner)

can be used to filter out policies which do not apply to the tuple (i.e., are not part of

Ptt
⊆ PQMi where Ptt

is such that pl ∈ Ptt
iff tt.owner = oclowner (i.e., the owner of the

tuple is the same than the owner/creator of the policy).

• Reducing Number of Tuples. Even if the number of policies to check are minimized,

the resulting expression E(P) might still be computationally complex. To speed up

processing of E(P) further, we derive low cost filters (object conditions) from it which

can filter out tuples by exploiting existing indexes I over attributes in the database.

We therefore rewrite the policy expression E(P) = OC1 ∨ · · · ∨ OC|P| as a guarded policy

expression G(P) which is a disjunction of guarded expressions G(P) = G1 ∨ · · · ∨ Gn.

Each Gi consists of a guard ocig and a policy partition PGi
where PGi

⊆ P. Note

that PGi
partitions the set of policies, i.e., PGi

∩ PGj
= ∅ ∀ Gi,Gj ∈ G(P). Also, all

52

policies in P are covered by one of the guarded expressions, i.e., ∀ pi ∈ P (∃ Gi ∈

G such that pi ∈ PGi
). We will represent the guarded expression Gi = ocig∧PGi

where

PGi
is the set of policies but for simplicity of expression we will use it as an expression

where there is a disjunction between policies.

The guard term ocig is an object condition that can support efficient filtering by ex-

ploiting an index. In particular, it satisfies the following properties:

– ocig is a simple predicate over an attribute (e.g., ts − time > 9am) and the

attribute in ocig has an index defined on it (i.e., ocig.attr ∈ I).

– The guard ocig is a part of all the policies in the partition and can serve as a filter

for them PGi
(i.e., ∀ pl ∈ PGi

∃ oclj ∈ OCl | oclj =⇒ ocig).

As an example, consider the policy expression of all the policies defined by students to

grant the professor access to their data in different situations. Let us consider that many

of such policies grant access when the student is connected to the WiFi AP of the class-

room. For instance, in addition to John’s policy defined before, let us consider that Mary

defines the policy 〈[W.owner = Mary ∧ ∧ W.wifiAP = 1200], [Prof. Smith

∧ Attendance Control], allow〉. This way, such predicate (i.e., wifiAP=1200)

could be used as a guard that will group those policies, along with others that share that

predicate, to create the following expression: wifiAP =1200 AND ((owner=John AND

ts -time between 9 AND 10am OR (owner=Mary) OR ...) .

Sieve adaptively selects a query execution strategy when a query is posed leveraging the

above ideas. First, given Qi, Sieve filters out policies based on QMi. Then, using the resulting

set of policies, it replaces any relation rj ∈ Qi by a projection that satisfies policies in PQMi

that are defined over rj. It does so by using the guarded expression G(Prj
) constructed as a

query SELECT * FROM rj WHERE G(Prj
).

By using G(Prj
) and its guards ocig, we can efficiently filter out a high number of tuples

53

and only evaluate the relevant tuples against the more complex policy partitions PGi
. The

generation of G(Prj
) might take place offline if the policy dataset is deemed to undergo small

number of changes over time. Otherwise, the generation can be done either when a change

is made in the policy table or at query time for more dynamic scenarios (our algorithm is

efficient enough for dynamic scenarios as we show in Section 4.8).

A tuple that satisfies the guard ocig is then checked against E(PGi
) = OC1 ∨ · · · ∨ OC

|PG
i
|.

This evaluation could be expensive depending upon the number of policies in PGi
. As it is a

DNF expression, in the worst case (a tuple that does not satisfy any policy) will have to be

evaluated against each OCj ∈ PGi
. We introduce a policy evaluation operator (∆(Gi, QM

i, tt))

which takes a guarded expression Gi, query metadata QMi, and each tuple tt that satisfied

ocig and retrieves a subset of PGi
(filtered using QMi and tt). Then, policy evaluation on the

tuples that satisfy the guard is only performed on this subset of policies instead of PGi
. Sieve

situationally selects based on each Gi ∈ G whether to use the policy evaluation operator for

evaluating PGi
to minimize the execution cost. We explain the details of implementation of

this operator and the selection strategy in Section 4.6.

Hence, the main challenges are: 1) Selecting appropriate guards and creating the guarded

expression; 2) Dynamically rewriting query by evaluating different strategies and construct-

ing a query that can be executed in an existing DBMS. We explain our algorithm to generate

guarded expressions for a set of policies in Section 4.5. This generation might take place

offline if the policy dataset is deemed to undergo small number of changes over time. Other-

wise, the generation can be done either when a change is made in the policy table or at query

time for more dynamic scenarios (our algorithm is efficient enough for dynamic scenarios as

we show in Section 4.8). We later explain how Sieve can be implemented in existing DBMSs

and how it selects an appropriate strategy depending on the query and the set of policies

that apply to the query.

54

4.5 Creating Guarded Expressions

Our goal is to translate a policy expression E(P) = OC1 ∨ · · · ∨ OC|P| into a guarded policy

expression G(P) = G1 ∨ · · · ∨ Gn such that the cost of evaluating G(P) given database D

and set of indices I is minimized

min cost(G(P)) = min
∑

Gi∈G

cost(Gi) (4.1)

where G is the set of all the guarded expressions in G(P). A guarded expression Gi corre-

sponds to Gi = ocig ∧ PGi
where ocig is a guard and PGi

is a policy partition. The cost of

evaluating a tuple against a set of policies is defined by

cost(eval(E(PGi
))) = α.|PGi

|.ce (4.2)

where α represents the average number of policies in PGi
that the tuple tt is checked against

from the disjunctive expression in E(PGi
) (we assume that the DBMS stops the execution of

such a disjunctive expression with the first policy that the tuple satisfies and skips the rest),

and ce represents the average cost of evaluating tt against the set of object conditions for a

policy pl ∈ PGi
(i.e., OCl). We model cost(Gi) as

cost(Gi) = ρ(ocig).(cr + cost(eval(E(PGi
)))) (4.3)

where ρ(ocig) denotes the estimated cardinality6 of the guard ocig and cr represents the cost

of reading a tuple using an index. The values of cr, ce, and α are determined experimentally

using a set of sample policies and tuples.

6Estimated using histograms maintained by the DBMS.

55

The percentage of policies (α) that have to be checked before one returns true, and ce, the

cost of evaluating a policy against a single tuple, are obtained experimentally. We compute

α by executing a query which counts the number of policy checks done over PGi
before a

tuple either satisfies one of the policies or is discarded (does not satisfy any policy) and

averaging the number of policy checks across all tuples. We estimate ce by computing the

difference of the read cost per tuple without policies (estimated by dividing the time it takes

to perform a table scan by the total number of tuples) and the average cost per tuple with

policies. The former is estimated by executing a table scan with different number of policies

with different selectivities (number of tuples) and averaging the cost per tuple per policy.

The first step in determining G(P) is to generate all the candidate guards (CG), given the

object conditions from P, which satisfy the properties of guards as explained in Section 4.3.

Different choices of guarded expressions may exist for the same policy given I and therefore

the second step is to select a set of guards from CG with the goal of minimizing the evaluation

cost of G(P).

4.5.1 Generating Candidate Guards

Any object condition oclc in a policy pl is added to the candidate guard set CG if it satisfies

the properties of a guard i.e., oclc.val is a constant and oclc, attr ∈ I. Each policy pl ∈ PQj
is

guaranteed to have at least one object condition that satisfies these properties (e.g., oclowner

or oclprofile). Guards group together policies and act as a filter reducing the tuples to be

evaluated against policies. If only the identical object conditions were to be used as guards,

they might group only a small number of policies in their corresponding policy partitions

PGi
. This would result in a larger number of guarded expressions in G(P) of a querier and

thus increase the cost of evaluation according to Equation 4.1.

To improve the grouping capability of a guard, we present an approach which generates

56

additional candidate guards from the already existing candidate guards which have oc.val

as a range of values ([val1, val2].). This is done by merging together these candidate guards

on the same attribute that belong to different policies. For example, consider two policies

with the following object conditions on attribute a: 3 ≤ a ≤ 10 (ocxc) and 4 ≤ a ≤ 15

(ocyc). Depending on whether it is beneficial to do so, they could be merged to create a new

candidate guard 3 ≤ a ≤ 15 (ocx⊕yc). After merging, this new object condition could be

used as a guard for the two policies. The following theorem states the requirement for this

merging of object conditions to be beneficial based on their overlap.

Idea of Guarded expression These guarded expressions serve a role similar to that of

blocking in entity resolution [11] in that if a tuple does not satisfy the guard, then it will

not satisfy the policy. As a result, it generates a projection of the database in which the

query can be executed. We present an algorithmic solution to generate the most appropri-

ate guarded expression for a complex policy expression involving a large number of access

control policies. Additionally, we present also an approach to renewing guarded expressions

in dynamic settings when new policies may arrive (and/or old policies might be updated) so

as to optimize both query time as well as system time. The second strategy is inspired by

pub-sub approaches such as [90, 56, 101, 63].

Theorem 4.1. Given two object conditions ocxc = (attrc, op
x
1, valx1 , opx2, valx2) ∈ px, ocyc =

(attrc, op
y
1, val

y
1 , op

y
2, val

y
2) ∈ py and attrc ∈ I, the object condition generated by merging them

i.e., ocx⊕yc = (attrc, op1, valx⊕y1 , op2, val
x⊕y
2) with valx⊕y1 = min(valx1 , val

y
1) and valx⊕y2 =

max(valx2 , val
y
2) is only beneficial if [valx1 , val

x
2] ∩ [valy1 , val

y
2] 6= φ.

Proof: Let px and py be two policies with candidate guards ocxc and ocyc , respectively. Based

on Equation 4.3, the cost of evaluating a single policy px with ocxc as the guard is

cost(px) = ρ(ocxc).(cr + ce) (4.4)

57

To simplify the notation in this proof, we use ocxc to denote the values in the range [valx1 , val
x
2]

(similarly for ocyc). W.l.o.g. let min(valx1 , val
y
1) = valx1 and max(valx2 , val

y
2) = valy2 . If

ocxc ∩ ocyc = ∅ the cost of evaluating the merged policy is given by

cost(px ⊕ py) = ρ(ocx⊕yc).(cr + 2.α.ce) =

(ρ(ocxc) + ρ(ocyc)).(cr + 2.ce) + ρ(ocec).(cr + 2.α.ce) (4.5)

where ocec = (attrc, op1, val
x
2 , op2, val

y
1) (denotes the extra values that are not covered by

either ocxc or ocyc). Since ρ(ocec) ≥ 0, cost(px ⊕ py) >= cost(px) + cost(py). Thus, when

candidate guards do not overlap, merging them is not beneficial.

We now check when it is beneficial to merge candidate guards if they overlap i.e., ocxc ∩ocyc 6=

∅. If these candidate guards were to be merged, the values covered by the merged object

condition would be the union of the two ranges, represented by ocxc ∪ ocyc . The cost of

evaluation is given by

cost(px ⊕ py) = ρ(ocxc ∪ ocyc).(cr + 2.α.ce) (4.6)

Applying the inclusion-exclusion principle7, we have

cost(px ⊕ py) = (ρ(ocxc) + ρ(ocyc)− ρ(ocxc ∩ ocyc)).(cr + 2.α.ce) (4.7)

Given that merging will be beneficial if cost(px ⊕ py) < cost(px) + cost(py), using Equa-

tions 4.4 and 4.7 we have the following inequality

(ρ(ocxc) + ρ(ocyc)− ρ(ocxc ∩ ocyc)).(cr + 2.α.ce) < ρ(ocxc).(cr + ce) + ρ(ocyc).(cr + ce) (4.8)

7A ∪ B = A + B - A ∩ B

58

Simplifying using again the inclusion exclusion principle

ρ(ocxc ∩ ocyc)
ρ(ocxc ∪ oc

y
c)
>

ce
cr + α.ce

(4.9)

as the right side are all constant values, we can replace it with C. We denote the ratio on

the left by θ(ocxc , oc
y
c). Thus, the merging is beneficial if θ(ocxc , oc

y
c) > C. If this condition

is satisfied, we add ocx⊕yc to Px, Py, and CG .

As merging is only beneficial, if |ocxc ∩ ocyc | 6= φ, we first order the candidate guards by

their left range values in the ascending order. Considering transitive merges, the number of

pair-wise checks to be done between candidate guards could be linear. For instance, consider

an additional policy added to the previous example with the following object condition on

attribute a, 12 ≤ a ≤ 18 (oczc). It is possible that θ(ocxc , oc
y
c) < C while θ(ocyc , oc

z
c) > C

and therefore θ(ocxc , oc
y⊕z
c) > C (i.e., the merged object condition 3 ≤ a ≤ 18 is beneficial).

The following theorem characterizes when the transitive merges will not be beneficial for

candidate guards with certain properties in a CG sorted in the ascending order of their left

range values.

Theorem 4.2. Given three candidate guards ocxc , ocyc , and oczc sorted in the ascending order

of their left range values with the following properties: ocxc ∩ ocyc 6= φ, θ(ocxc , oc
y
c) < C, and

θ(ocyc , oc
z
c) > C. The transitive merge between ocxc and ocy⊕zc will not be beneficial (i.e.,

θ(ocxc , oc
y⊕z
c) < C) if ocxc ∩ oczc = φ.

We prove this theorem by contradiction. As θ(ocxc , oc
y
c) < C, using Equation 4.9 we have

ρ(ocxc ∩ ocyc)
ρ(ocxc ∪ oc

y
c)
< C (4.10)

Note that since ocxc ∩ oczc = φ, ocxc ∩ ocy⊕zc = ocxc ∩ ocyc . Thus, for the transitive merge

59

between ocxc and ocy⊕zc to be beneficial, we should have θ(ocxc , oc
y⊕z
c) > C.

ρ(ocxc ∩ ocyc)
ρ(ocxc ∪ oc

y
c ∪ oczc)

> C (4.11)

This is not possible as the numerator is same in both Equation 4.10 and Equation 4.11, while

the denominator is larger in Equation 4.11.

Given Theorems 4.1 and 4.2, the steps for generating CG from a set of policies P defined

on a relation ri are: 1) For every attrj that is part of ri and has an index defined on it

(i.e., attrj ∈ I); 2) Sj is the set of all object conditions for all pl ∈ P such that, oclc.val

is a constant and oclc.attr = attrj; 3) For each Sj containing object conditions with range

of values, sort the object conditions by their left values to create a sorted list; 4) For the

first candidate guard (ocxc) in this sorted list, verify whether the next candidate guard (ocyc)

is such that θ(ocxc , oc
y
c) > C. If true, then merge both the candidate guards to generate

ocx⊕yc which is added to Sj along with px and py. Else if θ(ocxc , oc
y
c) < C, then we check

if it is beneficial to transitively merge ocxc with the following candidate guard (oczc) using

Theorem 4.2. 5) When transitive merge is no longer beneficial, we move on to the next

candidate guard (ocyc). The final CG is constructed by combining all the Sj corresponding

to each attrj that is part of ri.

4.5.2 Selecting Guards To Minimize Cost

We next select the set of guards G ∈ CG that minimizes the cost of policy evaluation

according to Equation 4.1. The goal of guard selection is to select G from CG such that every

policy in P is covered exactly once and the cost of evaluation is minimized. We show that this

problem is NP-hard, by reducing the well-known weighted Set-Cover problem to it. In the

weighted Set-Cover problem, we have a set of elements E = e1, · · · , en and a set of subsets

60

over E denoted by S = S1, · · · , Sm with each set Si ∈ S having a weight wi associated with

it. The goal of set cover problem is to select minŜ⊆S
∑
Si.wi | Si ∈ Ŝ and E =

⋃
Si∈Ŝ Si.

We map E to P, S to CG , and Ŝ to G. We assign the element ei to Si ∈ Ŝ when the

corresponding policy pi is assigned to Gi ∈ G. The weight function wi is set to the read cost

of Gi based on using the guard ocic to read the tuples i.e., wi = read cost(Gi) = ρ(ocic).cr.

If a polynomial time algorithm existed to solve this problem, then it would solve set-cover

problem too.

For the purpose of selecting guards that minimize cost of evaluation, we define a utility

heuristic which ranks the candidate guards by their benefit per unit read cost (similar to the

one used by [59] for optimizing queries with expensive predicates). Each guard ocic, based

on its selectivity, reduces the number of tuples that have to be checked against PGi
. The

benefit of a guarded expression captures this reduction in evaluation cost for a relation ri

as defined by benefit(Gi) = ce.|PGi
|.(|ri| − ρ(ocic)). Using this benefit method, and the read

cost defined earlier, we define the utility of Gi as utility(Gi) =
benefit(Gi)

read cost(Gi)
.

Algorithm 1 uses this heuristic to select the best possible guards to minimize the cost of

policy evaluation. First, it iterates over CG and stores each guarded expression Gi ∈ CG in

a priority queue in the descending order of their utility (PriorityInsert(Q,Gi,U [i]). Second,

the priority queue is polled for the Gi with the highest utility (Extract−Maximum(Q)). If

PGi
intersects with another PGj

∈ CG , PGj
is updated to remove the intersection of policies

(PGi
∩PGj

). After removal, utility(Gj) is recomputed and the updated Gj is reinserted into

priority queue in the order of its utility. The result is thus the subset of candidate guards

(G) that covers all the policies in P and minimizes cost(G(P)) as in Equation 4.1.

61

Algorithm 1: Selection of guards.

1 Function GuardSelection(CG):
2 for i in 1 · · · |CG| do
3 C[i] = cost(Gi); U[i] = utility(Gi)
4 end
5 Q← φ for i in 1 · · · |CG| do
6 PriorityInsert(Q,Gi,U [i])
7 end
8 while Q is not empty do
9 Gmax = Extract-Maximum(Q); G ← Gmax foreach Gi in Q do

10 if PGi
∩ PGmax

6= φ then
11 PGi

= PGi
\ PGmax

; Remove(Q,Gi) if PGi
6= φ then

12 B = benefit(Gi); U[i] =
B

C[i]
PriorityInsert(Q,Gi,U [i])

13 end

14 end

15 end

16 end
17 return G

4.5.3 Discussion

We briefly discuss when the approach of generating guards is not an effective strategy for

query processing with policy enforcement. Guards and guarded expressions are generated

by factorization of the complex policy expressions which are in disjunctive normal form. If

the policy expression were any arbitrary boolean expressions, generating effective guards

would be extremely challenging. This is because the search space for guards becomes much

larger and developing efficient algorithms that guarantee the quality of the guards becomes

harder[24].

If none of the policies contain common object conditions, the only possible guard that can

be generated will have a policy partition of length 1. In this situation the number of guards

will be high and this increases the cost of performing sorting and union of the final results

from each guard expression. On the other hand if all the policies contained the same number

and type of object conditions it would be much more efficient to perform a temporary table

join as discussed in Section 4.9.

62

4.6 Implementing Sieve

Sieve8 is a general-purpose middleware that intercepts queries posed to a DBMS, optimally

rewrites them, and submits the queries back to the underlying DBMS for efficient execution

that is compliant with the access control policies. In this section, we first present the rewrite

approach with guarded expressions in DBMSs. Then, we present two optimization techniques

to improve this rewrite by utilizing policy evaluation operator and query predicates. Finally,

we illustrate a sample rewritten query in Sieve.

4.6.1 Persistence of Policies and Guards

To store policies associated with all the relations in the database, Sieve uses two addi-

tional relations, the policy table (referred to as rP), which stores the set of policies, and

the object conditions table (referred to as rOC), which stores conditions associated with the

policies. The structure of rP corresponds to 〈id , owner , querier , associated

-table , purpose , action , ts-inserted -at〉, where associated -table is

the relation ri for which the policy is defined and ts -inserted -at is the timestamp

at policy insertion. The schema of rOC corresponds to 〈policy -id, attr , op , val〉

where policy -id is a foreign key to rP and the rest of attributes represent the condition

oclc=〈attr, op, val〉. We emphasize that the value val in rOC might correspond to a com-

plex SQL condition in case of nested policies. For instance, the two sample policies defined

in Section 4.3 regulate access to student connectivity data for Prof. Smith; they are per-

sisted as tuples 〈1, John , Prof.Smith , WiFiDataset , Attendance Control

, Allow , 2020 -01 -01 00:00:01〉 and 〈2, John , Prof.Smith , WiFiDataset

, Attendance Control , Allow , 2020 -01 -01 00:00:01〉 in rP and with the

tuples 〈1, 1, wifiAP , =, 1200〉, 〈2, 1, ts-time , ≥, 09:00〉, 〈3, 1, ts-

8The implementation of Sieve (with connectors for both MySQL and PostgreSQL) is available at https:
//github.com/primalpop/sieve.

63

https://github.com/primalpop/sieve
https://github.com/primalpop/sieve

time , ≤, 10:00〉, 〈4, 2, wifiAP , =, SELECT W2.wifiAP FROM WiFiDataset

AS W2 WHERE W2.owner = "Prof.Smith" and W2.ts -time = W.ts -time〉

in rOC .

A guarded policy expression G(P) generated, per user and purpose, is stored in rGE with the

schema 〈id , querier , associated -table , purpose , action , outdated ,

ts -inserted -at〉. Guarded policy expressions are not continuously updated based on

incoming policies as this would be unnecessary if their specific queriers do not pose any query.

We use the outdated attribute, which is a boolean flag, to describe whether the guarded

expression includes all the policies belonging to the querier. If at query time, the outdated

attribute associated to the guarded policy expression for the specific querier/purpose (as

specified in the query metadata QMiquerier, QM
i
purpose) is found to be true, then that guarded

policy expression is regenerated. After the guarded expression is regenerated for a querier,

it is stored in the table with outdated set to false. Guard regeneration comes with an

overhead. However, in our experience, the corresponding overhead is much less than the exe-

cution cost of queries. As a result, we generate guards during query execution using triggers

in case the current guards are outdated. Guarded expressions Gi associated with a guarded

policy expression G() are stored in two relations: rGG=〈id , guard -expression -id,

attr , op , val〉 to store the guard (i.e., ocig=〈attr, op, val〉) and rGP=〈guard -id,

policy -id〉 to store the policy partition (i.e., PGi
).

4.6.2 Implementing Operator ∆

We implement the policy evaluation operation ∆ (see Section 4.4) using User Defined Func-

tions (UDFs) supported by DBMSs. Consider a set of policies P and the query metadata

QMi and a tuple tt belonging to relation rj. ∆(P, QMi, tt) is implemented as the following UDF

CREATE FUNCTION delta([policy], querier, purpose, [attrs])

64

{BEGIN

Cursor c =

SELECT rOC .attr as attr , rOC .op as op, rOC .val as val

FROM rP , rOC

WHERE rP .querier = querier AND rP .purpose = purpose AND rP .id IN [policy]

AND rP .owner = [attrs].owner AND rP .id = rOC .policy − id

LET satisfied_flag = true

READ UNTIL c.isNext () = false:

FETCH c INTO p_attr , p_op , p_val

FOR each t_attr in [attrs]

IF t_attr = p_attr THEN

satisfied_flag = satisfied_flag AND /*Check whether

t_val satisfies p_op p_val*/

return satisfied_flag

END}

The UDF above performs two operations: 1) It takes a set of policies and retrieves a subset

P̂ which contains the relevant policies to be evaluated based on the query metadata QMi and

the tuple tt; 2) It evaluates each policy pi ∈ P̂ on tt.

4.6.3 Query Rewrite with Guarded Expressions

Our goal is to evaluate policies for query Qi by replacing any relation rj ∈ Qi by a projection

of rj that satisfies the guarded policy expression G(Prj
) where Prj

is the set of policies defined

for the specific querier, purpose, and relation. To this end, we first use the WITH clause for

each relation rj ∈ Qi that selects tuples in rj satisfying the guarded policy expression. Using

the WITH clause, the policy check is performed only once even if the same relation appears

65

multiple times in the query. This rewritten query replaces every occurrence of rj with the

corresponding r̂j.

WITH r̂j AS (SELECT * FROM rj WHERE G1 OR G2 OR · · · OR Gn)

Optimizers might choose sub-optimal plans when executing the complex Sieve rewritten

queries. Sieve utilizes DBMS extensibility features (e.g., index usage hints9, optimizer ex-

plain10, UDFs) offered by DBMSs that allows it to suggest index plans to the underlying

optimizer. Since such features vary across DBMSs, guiding optimizers requires a platform

dependent connector that can rewrite the query appropriately. In systems such as MySQL,

Oracle, DB2, and SQL Server that support index usage hints, Sieve can rewrite the query

to explicitly force indexes on guards. For example, in MySQL using FORCE INDEX hints,

which tell the optimizer that a table scan is expensive and should only be used if the DBMS

cannot use the suggested index to find rows in the table, the rewritten query will be as

follows:

WITH r̂j AS (

SELECT * FROM rj [FORCE INDEX (oc1
g)] WHERE G1 UNION

SELECT * FROM rj [FORCE INDEX (oc2
g)] WHERE G2 UNION · · ·

SELECT * FROM rj [FORCE INDEX (ocng)] WHERE Gn)

Some systems, like PostgreSQL, do not support index hints explicitly. In such cases, Sieve

still does the above rewrite (without index usage hints) but depends upon the underlying

optimizer to select appropriate indexes.

9https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
10https://www.postgresql.org/docs/13/sql-explain.html

66

https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://www.postgresql.org/docs/13/sql-explain.html

4.6.4 Policy Evaluation Operator

For a given guarded expression Gi, a tuple that satisfies its guard ocig is checked against its

policy partition PGi
. We define this strategy of evaluating policies inline with a guard as

Guard&Inlining. This evaluation strategy could be expensive depending upon the number

of policies in PGi
. We introduce an alternative strategy which uses the policy evaluation

operator ∆(Gi, QM
i, tt) as an alternative to evaluating policies inline with a guard. This

operator retrieves only the policies that are applicable to a tuple tt (that satisfied ocig of

Gi) based on Gi, the query metadata QMi, and tuple context of tt. We call this strategy

of using the policy evaluation operator in conjunction with guards as Guard&∆. Sieve

adaptively chooses between these two strategies depending on the number of policies in the

guard partition (i.e., |PGi
|).

The policy evaluation operator ∆(Gi, QM
i, tt) (which is part of Guard&∆) is implemented

using User Defined Functions (UDFs) supported by DBMSs. This implementation is done

per rj ∈ R as the tuple context of tt used to retrieve policies varies per relation. The policy

evaluation operator performs two operations. First, it retrieves a subset of PGi
which only

includes the relevant policies based on the query metadata QMi and the tuple context of tt.

The tuple context is determined by its values for different attributes (e.g., ri.owner) and QMi

is information associated with the query Qi such as QMiquerier and QMipurpose. Second, given

such a subset, P̄Gi
, the operator evaluates each policy in it, pi ∈ P̄Gi

, on tt using the access

control semantics defined in Section 4.3. An example invocation of the ∆(Gi, QM
i, tt) is as

follows: delta(32, “Prof.Smith”, “Analysis”, “owner”, “ts-date”, “ts -time”, “wifiAP”). The

first parameter, 32, denotes the id of the persisted guarded expression Gi in the database.

The second set of parameters {“Prof.Smith”, “Analysis”} belong to the metadata of the

query QMi. The final set of parameters (“owner”, “ts-date”, “ts -time”, “wifiAP”) denote

the attributes of the tuple and thus defines its context.

67

Sieve uses a cost model to compare between the two different strategies (Guard&∆ and

Guard&Inlining) and chooses the best one for performing the rewrite. This comparison is

performed for each guarded expression Gi in a guarded policy expression G(P) (along with

query metadata). We model the cost of each strategy by computing the cost of evaluating

policies per tuple since the number of tuples to check are the same in both cases. The

cost of the Guard&∆ strategy is estimated by the invocation and execution cost of the

UDF implementation of policy evaluation operator. Thus, cost(Guard&∆) = UDFinv +

UDFexec where the UDFinv and UDFexec represent the cost of invocation and execution of

the UDF, respectively. We compute this cost by executing the UDF with different guards

(with different number of policies in their partitions) and averaging across them. As both

the terms involved are constants, cost(Guard&∆) does not vary across guarded expressions.

The cost of Guard&Inlining is determined by the number of policies in the policy par-

tition of the guard i.e., |PGi
|. Thus, cost(Guard&Inlining)=α.|PGi

|.ce (based on Equa-

tion 4.2). Unlike cost(Guard&∆), this cost is not a constant and varies depending upon

the guarded expression. Therefore, after generating guarded expressions Sieve computes

cost(Guard&Inlining) and compares it against the pre-computed cost(Guard&∆) to de-

termine the appropriate rewriting for each guarded expression. Our experiments (see Sec-

tion 4.8) indicate that the usage of the Guard&∆ strategy is beneficial if |PGi
| > 120.

4.6.5 Exploiting Selective Query Predicates

In the query rewrite strategy with guarded expressions presented in Section 4.6.3, we used

the guards to read the relevant tuples using an index. This is followed by evaluating against

policies using inlining or policy evaluation operator. We now consider the situation where

the selection predicates that appear in Qi are highly selective and could be exploited to read

the tuples using an index on them instead of on the guards. Sieve considers the following

68

two strategies for reading tuples using the index. 1) Using guards followed by evaluation of

the policy partitions associated with them (referred to as IndexGuards); 2) Using the query

predicate Qi.pred in Qi followed by the evaluation of the guarded policy expression (referred

to as IndexQuery). Each of these strategies use guarded expressions to evaluate the policies

and generate r̂j from rj on which Qi is evaluated.

Sieve uses a cost model to compare between these two strategies (IndexGuards and IndexQuery)

and chooses the best one for performing the final rewrite. This comparison is done per query

Qi. The cost of IndexQuery is determined by using the query explain feature of DBMSs

for Qi, which returns the query predicate Qi.pred in Qi used for reading tuples using the

index (if any) and its estimated selectivity. We use this to compute cost(IndexQuery) =

ρ(Qi.pred).cr. If index is not used for access, we set cost(IndexQuery) =∞. For IndexGuard,

Sieve estimates cost(IndexGuards) =
∑

Gi∈G ρ(ocig).cr where ocig is the guard used in the

guarded expression Gi. Note that this is an upper bound of the cost for reading tuples

using index as it does not consider any optimizations such as index merge. Sieve chooses

the best strategy, at query execution time, by comparing their costs (cost(IndexGuards) vs.

cost(IndexQuery)). If the IndexGuards strategy is chosen, we use the rewrite illustrated in

Section 4.6.3. Otherwise, if IndexQuery is selected, we use index usage hints with Qi.pred

(instead of ocig).

4.6.6 Sieve generated Query Rewrite

Using the different strategies presented, we now revisit the query in Section 4.1 to study

the tradeoff between student performance and attendance to classes. A possible rewrite by

Sieve to evaluate the policies defined on WifiDataset and generate WiFiDatasetPol is as

follows:

WITH WiFiDatasetPol AS (

69

SELECT * FROM WiFiDataset as W FORCE INDEX(oc1
g) WHERE (oc1

g AND

(G1))

UNION

SELECT * FROM WiFiDataset as W FORCE INDEX(oc2
g) WHERE (oc1

g AND

(G2))

....

UNION

SELECT * FROM WiFiDataset as W FORCE INDEX(ocng) WHERE (ocng AND

delta(32,"Prof.Smith", "Analysis","owner","ts-date", "ts -

time", "wifiAP")=true)

) StudentPerf(WifiDatasetPol , Enrollment , Grades)

The WiFiDatasetPol replaces WiFiDataset in the original query. This rewrite in-

cludes the set of guards generated for the querier (Prof. Smith) and his purpose (Analysis)

given the policies defined for him. As Sieve selected the IndexGuards strategy, we use the

index usage hints on guards (through the FORCE INDEX command since this rewrite is

for MySQL) as explained in Section 4.6.5. Finally, for one specific guarded expression (Gn)

Sieve selected the Guard&∆ strategy (see Section 4.6.4). Hence, its policy partition was

replaced by the call to the UDF that implements the ∆ operator.

Discussion: When queries contain large number of disjunctions, often DBMSs execute them

by converting the disjunctive conditions into a temporary table and performing a join of this

temporary table with the data table. This approach can be used when the policies are

uniform (same number and type of predicates in each policy). However, with non-uniform

policies this approach doesn’t scale well with large number of policies. The reason for this

is that when policies are non-uniform, DBMS is unable to exploit index for performing join

with the temporary table and has to resort to using nested loop join which is much slower.

We tested out this approach with a querier to whom 193 policies applied and observed that

70

this approach took more than 4 minutes to execute for a SELECT * query.

4.7 Managing dynamic Scenarios

As mentioned before, the generation of guarded expressions for a set of users can be performed

offline. However, in general, the dataset of access control policies defined for a database can

change along time (i.e., users add new policies or update existing ones). Hence, Sieve would

need to regenerate guarded expressions to reflect the changes in the policy dataset. The cost

associated with guard generation is a function of the number of policies and thus, in situations

with very large policy datasets, this cost might not be trivial. Regenerating everytime that

a change is made in the policy dataset might not be thus optimal if no queries are executed

in between changes. Selecting the frequency of guard regeneration carefully can reduce the

total system time. In this section, we first extend the cost model presented earlier to include

the query evaluation time. Then, we derive the optimal number of policy insertions before

guard regeneration as a function of policy and query rates.

4.7.1 Query Evaluation with Guarded Expression

The cost of evaluating G associated with a uj is given by

cost(G) =
∑

Gi∈G

cost(Gi) (4.12)

Given Equation 4.3, and the simplifying assumption that ρ(ocig) is the same for all the guards

71

in G and can be represented by ρ(ocg), we can express the previous cost as

∑
Gi∈G

cost(Gi)

=
∑

Gi∈G

ρ(ocig).(cr + ce.α.|PGi
|)

= ρ(ocg).(cr + ce.α(|PG1
+ PG2

+ · · ·+ PGm
|)

= ρ(ocg).(cr + ce.α.|Pn|) (4.13)

where |PG1
| + |PG2

| + · · · + |PGm
| = |Pn| as every policy is exactly covered by one guard.

We now define the cost of query evaluation for Qj (posed by uj) along with G (using the

IndexGuards approach presented in Section 4.6.3) as

cost(G,Qj) =

|G|∑
i=1

cost(Gi) + ρ(G).eval(E(Qj), tt) (4.14)

where ρ(G) is the cardinality of the guarded expression for uj (i.e., the number of tuples

that satisfy G and are then checked against the Qj posed by uj). We expand this cost using

Equation 4.13 and substitute ρ(G) with ρ(ocg) which gives an upper bound of the cost as

ρ(ocg) > ρ(G).

cost(G,Qj) = ρ(ocg).(cr + ce.α.(|Pn|+ |Qj|) (4.15)

4.7.2 Computing Optimal Regeneration Rate

Sieve will be able to cut the total cost for a querier which includes query evaluation and

guard generation following the optimal regeneration rate. The cost of generating the guarded

expression is proportional to the number of policies for the querier (Pn). Assuming k policies

72

belonging to the querier are newly added since the guard (G) was last generated, we denote

cost of guard generation by CG(Pn + Pk). Given D and uj with N policy insertions and

Q queries posed by uj, the optimal number of policy insertions (k̃) before regenerating the

guarded expression for uj is given by

k̃ = argmin
k≤N

N

k∑
i=1

(cost(G,Qf(k),Pk) + CG(Pn + Pk)) (4.16)

We divide that the total number of policies (N) into equal intervals of size k. To simplify

the derivation, we assume that queries are uniform and the number of queries posed by the

querier during that interval is given by f(k). We define f(k) based on rp which is the rate at

which new policies are added (number of policies per unit time) and rq which is the rate at

which queries are posed by uj to D. We combine both to define rpq as the number of queries

posed per policy insertion (
rq
rp

) 11. The number of queries during each interval of
N

k
is given

by f(k) = (j | 1 ≤ j ≤ k ∗ rpq. Finally, we simplify the guard generation cost as a constant

(CG) as it is dominated by the much larger Pn. Putting all these together we have:

k̃ = argmin
k≤N

N

k∑
i=1

(k∗rqp∑
j=1

cost(G,Qj,Pk) + CG

)
(4.17)

Expanding the first cost term with the cost of query evaluation from Equation 4.15 for

insertion of k policies with the assumption that all queries are uniform and

11We assume that D remains static which is only true for OLAP queries. Monitoring data insertion rate
for each user will incur a significant overhead that will invalidate the usefulness of this approach.

73

ρ(ocP1
∪ ocP2

· · · ∪ ocPk
) ⊆ ρ(ocG)

cost(G,Qj,Pk)

= rpq.ρ(ocG).(cr + α.ce.(|Pn|+ |Q|)) + rpq.ρ(ocG).(cr + α.ce.(|Pn|+ 1 + |Q|))

+ · · ·+ rpq.ρ(ocG).(cr + α.ce.(|Pn|+ k + |Q|))

= k.rpq.ρ(ocG).cr + rpq.ρ(ocG).ce.α.(k.|Q|+ k.|Pn|+
k.(k − 1)

2
)

Using this equation in the previous minimization and replacing the summations with uni-

formity assumptions, the k̃ is given by

k̃ = argmin
k≤N

N

k
.

(
k.rpq.ρ(ocG).(cr + ce.α.(|Q|+ |Pn|+

(k − 1)

2
))

)

As our goal is to find the minimal k, we take the derivative of the above with respect to k

and set it equal to 0.

ρ(ocG).α.ce.rpq

2
− 2.CG

k2
= 0

Simplifying it for k, we have

k =

√
4.CG

ρ(ocG).α.ce.rpq
(4.18)

The second derivative with respect to k is a positive value and therefore the k value derived

by Equation 4.18 minimizes the cost of query evaluation and guard generation for uj. Based

on the simplifying assumptions used in this derivation, k̃ is an upper bound on the number

of policy insertions before the guarded expression is updated. We now prove when it is most

beneficial to regenerate the guarded expression after the insertion of kth policy.

74

Theorem 4.3. If the optimal rate of guard regeneration is set to k policies as in Equa-

tion 4.18, then it is best to regenerate immediately after the kth policy has arrived.

We prove this by contradiction. Assuming the guard regeneration rate is set to k policies for

a querier and we regenerate G at k + δ. If δ >
1

rp
, then regeneration rate is set at k + 1 and

not k which is a contradiction. If δ >
1

rq
, then the new query will be evaluated using G and

the set of k policies which is higher compared to using the regenerated guarded expression

as shown in the derivation above. Therefore δ <
1

rp
and δ <

1

rq
and thus regenerating

immediately after kth policy will minimize the cost.

4.8 Experimental Evaluation

This section presents details of the experimental setup (dataset, queries, policies, and the

DBMS setup) followed by the experimental results illustrating the performance of Sieve.

4.8.1 Experimental Setup

Datasets. We used the TIPPERS dataset [75] consisting of connectivity logs generated by

the 64 WiFi Access Points (APs) at the Computer Science building at UC Irvine for a period

of three months. These logs are generated when a WiFi enabled device (e.g., a smartphone or

tablet) connects to one of the WiFi APs and contain the hashed identification of the device’s

MAC, the AP’s MAC, and a timestamp. The dataset comprises 3.9M events corresponding

to 36K different devices (the signal of some of the WiFi APs bleeds to outside the building

and passerby devices/people are also observed). This information can be used to derive

the occupancy levels in different parts of the building and to provide diverse location-based

services (see Section 4.1) since device MACs can be used to identify individuals. Since

75

location information is privacy-sensitive, it is essential to limit access to this data based on

individuals’ preferences. Table 4.2 shows the schema of the different tables in the TIPPERS

dataset. WiFi Dataset stores the logs generated at each WiFi AP when the devices of a

User connects to them. User Group and User Group Membership keeps track of the groups

and their members respectively.

Table 4.2: TIPPERS data schema.

Table Columns Data type

Users
id int
device varchar
office int

User Groups
id int
name varchar
owner varchar

User Group Membership
user group id int
user id int

Location
id int
name varchar
type varchar

WiFi Dataset

id int
wifiAP int
owner int
ts-time time
ts-date date

We also used a synthetic dataset containing WiFi connectivity events in a shopping mall

for scalability experiments with even larger number of policies. We refer to this dataset as

Mall. We generated the Mall dataset using the IoT data generation tool in [57] to generate

synthetic trajectories of people in a space (we used the floorplan of a mall extracted from

the Web) and sensor data based on those. The dataset contains 1.7M events from 2,651

different devices representing customers. Table 4.3 shows the schema of the tables in the

Mall dataset.

Queries. We used a set of query templates based on the recent IoT SmartBench bench-

mark [57] which include a mix of analytical and real-time tasks and target queries about

(group of) individuals. Specifically, query templates Q1 - Retrieve the devices connected for

76

Table 4.3: Mall data schema.

Table Columns Data type

Users
id int
device varchar
interest varchar

Shop
id int
name varchar
type varchar

WiFi Connectivity

id int
shop id int
owner int
obs time time
obs date date

a list of locations during a time period (e.g., for location surveillance); Q2 - Retrieve devices

connected for a list of given MAC addresses during a time period (e.g., for device surveil-

lance); Q3 - Number of devices from a group or profile of users in a given location (e.g.,

for analytic purposes). Based on these templates, we generated queries at three different

selectivities (low, medium, high) by modifying configuration parameters (locations, users,

time periods). Below, when referring to a particular query type (i.e., Q1, Q2, or Q3), we

mean the set of queries generated for such type.

The SQL version of the queries is thus:

Q1=(SELECT * FROM WiFi_Dataset AS W

WHERE W.wifiAP IN ([ap]) W.ts-time BETWEEN t1 AND t2 AND W.ts-

date BETWEEN d1 AND d2)

Q2=(SELECT * FROM WiFi_Dataset AS W

WHERE W.owner in ([devices]) AND W.ts-time BETWEEN t1 AND t2

AND W.ts-date BETWEEN d1 AND d2)

Q3=(SELECT * FROM WiFi_Dataset AS W, User_Group_Membership AS

UG

WHERE UG.user_group_id = group− id

AND UG.user_id = W.owner AND W.ts-time BETWEEN t1 AND t2 AND

77

W.ts -date BETWEEN d1 AND d2)

Policy Generation. The TIPPERS dataset, collected for a limited duration with special

permission from UC Irvine for the purpose of research, does not include user-defined poli-

cies. We therefore generated a set of synthetic policies. As part of the TIPPERS project,

we conducted several town hall meetings and online surveys to understand the privacy pref-

erences of users about sharing their WiFi-based location data. The surveys, as well as prior

research [65, 69], indicate that users express their privacy preferences based on different user

profiles (e.g., students for faculty) or groups (e.g., my coworkers, classmates, friends, etc.).

Thus, we used a profile-based approach to generate policies specifying which events belong-

ing to individual can be accessed by a given querier (based on their profile) for a specific

purpose in a given context (e.g., location, time).

We classified devices in the TIPPERS dataset as belonging to users with different profiles

(denoted by profile(uk) for user uk) based on the total time spent in the building and connec-

tivity patterns. Devices which rarely connect to APs in the building (i.e., less than 5% of the

days) are classified as visitors. The non-visitor devices are then classified based on the type

of rooms they spent most time in: staff (staff offices), undergraduate students (classrooms),

graduate students (labs), and faculty (faculty offices). As a result, we classified 31,796 visi-

tors, 1,029 staff, 388 faculty, 1,795 undergraduate, and 1,428 graduate from a total of 36,436

unique devices in the dataset. Our classification is consistent with the expected numbers for

the population of the monitored building. We also grouped users into groups based on the

affinity of their devices to rooms in the building which is defined in terms of time spent in

each region per day. Thus, each device is assigned to a group with maximum affinity. In

total, we generated 56 groups with an average of 108 devices per group.

We define two kinds of policies based on whether they are an unconcerned user or an advanced

user as described in Section 4.1. Unconcerned users subscribe to the default policies set by

78

administrator which allows access to their data based on user-groups and profiles. Given the

schema in Table 4.2 and the unconcerned user uk we generate the following default policies:

• Data associated with uk collected during working hours can be accessed by members

of group(uk).

• Data associated with uk collected at any time can be accessed by overlapping members

of group(uk) and profile(uk).

Advanced users define on average 40 policies, given the large number of control options (such

as device, time, groups, profiles, and locations) in our setting. In total, the policy dataset

generated contains 869,470 policies with each individual defining 472 policies on average and

appearing as querier in 188 policies defined by others on average. The above policies are

defined to allow access to data in different situations. Any other access that is not captured

by the previous policies will be denied (based on the default opt-out semantics defined in

Section 4.3).

Table 4.4 shows the schema and several sample policies generated for three different queriers.

The inserted at and action columns are skipped for brevity. Table 4.5 shows the correspond-

ing object conditions which are part of two policies.

Table 4.4: Policy Table

id table querier purpose

1 WiFi Dataset Prof.John Smith Attendance

2 WiFi Dataset Bob Belcher Lunch Group

3 WiFi Dataset Prof.John Smith Attendance

4 WiFi Dataset Liz Lemon Project Group

5 WiFi Dataset Prof.John Smith Attendance

For the Mall dataset, the shops were categorized into six types based on the services they

provide, such as arcade or movies. We also classified customers into regular and irregular,

based on their shop visits. For each customer, we then defined two types of policies depending

79

Table 4.5: Policy Object Conditions Table

id policy id attr type attr op val

1 1 int owner = 120

2 1 time ts-time ≥ 09:00:00

3 1 time ts-time ≤ 10:00:00

4 1 int wifiAP = 1200

5 2 int owner = 145

6 2 int wifiAP = 2300

on whether they were regular or irregular. Regular customers allowed shops they visit the

most to have access to their location during open hours. Irregular customers shared their data

only with specific shop types depending on whether there were sales or discounts. Finally,

if a customer expressed an interest in a particular shop category, we also generated policies

which allowed access of their data to the shops in the category for a short period of time

(e.g., lightning sales). In total, this policy dataset generated on top of Mall dataset contains

19,364 policies defined for 35 shops (queriers) in the mall with 551 policies on average per

shop.

Database System. We ran the experiments on an individual machine (CentOS 7.6, Intel(R)

Xeon(R) CPU E5-4640, 2799.902 Mhz, 20480 KB cache size) in a cluster with a shared total

memory of 132 GB. We performed experiments on MySQL 8.0.3 with InnoDB as it is an

open source DBMS which supports index usage hints. We configured the buffer pool size to

4 GB. We also performed experiments on PostgreSQL 13.0 with shared buffers configured to

4 GB.

4.8.2 Experimental Results

We first study the performance of the guarded expression generation algorithm (Experi-

ment 1). Then, we validate the design choices in Sieve (Experiment 2) and compare the

performance of Sieve against the baselines (Experiment 3). The previous experiments are

80

performed on the MySQL system. Next, we study the performance of Sieve on PostgreSQL

which, in contrast to MySQL, does not support index usage hints (Experiment 4). In the

final experiment, we stress test our approach with a very large number of policies (Experi-

ment 5). The first four experiments use the TIPPERS dataset and the final experiment the

Mall dataset.

Experiment 1: Cost for generating Guarded Expressions and Effectiveness. The

goal of this experiment is to study the cost of generating guarded expressions for a querier,

as factor of the number of policies, and the quality of generated guards. To analyze the cost

of guarded expression generation, we generate guarded expressions for all the users using the

algorithm described in Section 4.5 and collect the generation times in a set. We sort these

costs (in milliseconds) and average their value in groups of 50 users showing the result in

Figure 4.6.

Figure 4.6: Guard generation cost.

The cost of guard generation increases linearly with number of policies. As guarded expres-

sion generation is also dependent on the selectivity of policies, number of candidate guards

generated, which is also a factor of overlap between predicates, we sometimes observe a slight

decrease in the time taken with increasing policies. The overhead of the cost of generating

guarded expression is minimal, for instance, the cost of generating a guard for a querier with

160 policies associated (e.g., the student trying to locate classmates explained in Section 4.1)

is around 150ms.

81

Table 4.6: Analysis of policies and generated
guards.

min avg max SD

|Puk
| 31 187 359 38

|G| 2 31 60 10

|PGi
| 4 7 60 5

ρ(Gi) 0.01% 3% 24% 2%

Savings 0.99 0.99 1 7e−4

Table 4.7: Analysis of number of
guards and total cardinality.

ρ(G)
|G|

low high

low 227.2 537.0

high 469.0 1,406.7

We present the results of the analysis of the policies and generated guarded expressions in

Table 4.6. Each user is affected, on average, by 187 policies (|Puk
|). This number depends

on their profiles (e.g., student) and group memberships. Sieve creates an average of 31

guards per user with the mean partition cardinality (i.e., |PGi
|) as 7. The total cardinality

of guards in the guarded expression is low (i.e., ρ(Gi)) which helps in filtering out tuples

before performing policy evaluation. In cases with high cardinality guards (e.g., maximum

of 24%), Sieve will not use force an index scan in that particular guard as explained in

Section 4.6. Savings is computed as ratio of the difference between total number of policy

evaluations without and with using the guard and the number of policy evaluations. This

was computed on a smaller sample of the entire dataset and the results show that guards

help in eliminating around 99% of the policy checks compared to policy evaluation.

Experiment 2.1: Inline vs. Operator ∆. SIEVE uses a cost model to determine for

each guard whether to inline the policies or to evaluate the policies using the ∆ operator.

The ∆ operator has an associated overhead of UDF invocation but it can utilize the tuple

context to reduce the number of policies that need to be checked per tuple. For the purpose

of studying this tradeoff in both inlining and using the ∆ operator, we gradually increased

the number of policies that are part of the partition of a guard and observed the cost of

policy evaluation. As expected, we observed that when the number of policies are about

82

120, the cost of UDF invocations is amortized by the savings from filtering policies by the

∆ operator (see Figure 4.7).

Figure 4.7: Inlining vs. ∆.

Figure 4.8: Index choice.

Experiment 2.2: Query Index vs. Guard Index. In Sieve, we use a cost model to

choose between using the IndexQuery and IndexGuards as explained in Section 4.6. We

evaluated this cost model by analyzing the cost of evaluation against increasing query car-

dinality for three different guard cardinalities (low, medium, high). Figure 4.8 shows the

results averaged across these three guard cardinalities. As expected, at low query cardinal-

ity it is better to utilize IndexQuery, while at medium and high query cardinalities (> 0.07),

IndexGuards are the better choice. Note that in both these options, guarded expressions are

used as filter on top of the results from Index Scan.

83

Experiment 3: Query Evaluation Performance. We compare the performance of Sieve

(implemented as detailed in Section 4.6) against three different baselines. In the first baseline,

BaselineP , we append the policies that apply to the querier to the WHERE condition of the

query. Second, BaselineI , performs an index scan per policy (forced using index usage

hints) and combines the results using the UNION operator. Third, BaselineU is similar to

BaselineP but instead of using the policy expression, it uses a UDF defined on the relation

to evaluate the policies. The UDF takes as input all the attributes of the tuple. BaselineU

significantly reduces the number of policies to be evaluated per tuple and is therefore an

interesting optimization strategy for low cardinality queries. UDF invocations are expensive,

so it might be preferable to execute the UDF as late as possible from the optimization

perspective [59]. To preserve correctness of policy enforcement as defined in Section 4.3,

UDF operations have to be performed before any non-monotonic query operations.

For each of the query types (Q1, Q2, Q3), we generate a workload of queries with three

different selectivity classes posed by five different queriers of belonging to four different

profiles. The values chosen for these three selectivity classes (low, medium, high) differed

depending upon the query type. We execute each query along with the access control mech-

anism 5 times and average the execution times. The experimental results below give the

average warm performance per query. The time out was set at 30 seconds. If a strategy

timed out for all queries of that group we show the value TO. If a strategy timed out for

some of the queries in a group but not all, the table shows the average performance only for

those queries that were executed to completion; those time values are denoted as t+.

Table 4.8 shows the average performance for the three query types. The performance of

BaselineP and BaselineU degrades with increasing cardinality of the associated query as

they rely on the query predicate for reading the tuples. The relative reduction in overhead

for Q3 for BaselineP at high cardinalities is because the optimizer is able to use the low

cardinality join condition to perform a nested index loop join. The performance of Sieve

84

Table 4.8: Overall performance for Q1, Q2, and Q3 (in ms).

ρ(Q) BaselineP BaselineI BaselineU Sieve

Q1
low 1,668 906 9,122 418
mid 15,356 910 23,575+ 453
high TO 937 TO 523

Q2
low 860 916 7,787 407
mid 7,191 922 22,617+ 454
high 29,765+ 962 TO 475

Q3
low 883 881 14,379 477
mid 2,217 2,209 TO 476
high 3,502 3,543 TO 521

and BaselineI remains the same across query cardinalities as they utilize the policy and

guard predicates for reading the tuples and hence are not affected by the query cardinality.

The increase in the speedup between these two sets of approaches clearly demonstrate that

exploiting indices paid off. For BaselineP , the optimizer is not able to exploit indices at high

cardinalities and resorts to performing linear scan. In BaselineU , the cost of UDF invoca-

tion per tuple far outweighed any benefits from filtering of policies. BaselineI , generated by

careful rewriting with an index scan per policy, performs significantly better than the pre-

vious two baselines. The performance degrade of BaselineI for Q3 is due to the optimizer

preferring to perform the nested loop join first instead of the index scans. In comparison to

all these baselines, Sieve is significantly faster at all different query cardinalities.

The extended results for Q1, Q2, and Q3 by querier profile are shown in Table 4.9, Table 4.10,

and Table 4.11, respectively.

Experiment 4: Sieve on PostgreSQL. In the previous experiments we used MySQL,

which supports hints for index usage, thus enabling SIEVE to explicitly force the optimizer

to choose guard indexes. However, other DBMSs, such as PostgreSQL, do not support index

usage hints explicitly (as discussed in Section 4.6.3). To study Sieve’s performance in such

systems, we implemented a Sieve connector to PostgreSQL using the same rewrite strategy

but without index usage hints. To have a cumulative set of policies (i.e., the larger set of

85

Table 4.9: Comparison of performance for Q1 (in ms).

Profile ρ(Q) BaselineP BaselineI BaselineU Sieve

Faculty
l 1,560 972 9,398 357
m 14,533 949 23,362+ 352
h TO 962 TO 413

Graduate
l 1,794 998 9,573 426
m 16,737 994 23,735+ 495
h TO 990 TO 565

Undergrad
l 1,618 681 9,661 362
m 15,432 751 23,692+ 394
h TO 720 TO 422

Staff
l 1,701 975 7,854 526
m 14,722 946 23,511+ 571
h TO 1,077 TO 691

Table 4.10: Comparison of performance (in ms) for Q2.

Profile ρ(Q) BaselineP BaselineI BaselineU Sieve

Faculty
l 822 961 7,655 354
m 6,929 975 22,502+ 354
h 26,397 991 TO 362

Graduate
l 947 1,009 8,084 404
m 7,806 1,028 22,676+ 506
h TO 1,080 TO 537

Undergrad
l 848 739 8,336 380
m 7,156 725 22,863+ 368
h TO 769 TO 399

Staff
l 822 954 7,073 489
m 6,874 960 22,425+ 589
h 28,347 1,007 TO 603

policies contain the smaller set of policies) for evaluation, we chose 5 queriers to whom at

least 300 policies apply. For each querier, we divided their policies into 10 different sets

of increasing number of policies starting with smallest set of 75 policies. The order and

the specific policies in these sets were varied 3 times by random sampling. The results in

Figure 4.9 shows the average performance of different strategies for each set size averaged

across queriers and the samples for SELECT ALL queries.

The four strategies tested in this experiment are: the best performing baseline for MySQL

(BaselineI(M)), the baseline in PostgreSQL (BaselineP (P)), and Sieve in both MySQL and

86

Table 4.11: Comparison of performance (in ms) for Q3.

Profile ρ(Q) BaselineP BaselineI BaselineU Sieve

Faculty
l 892 871 14,279 372
m 2,302 2,248 TO 379
h 3,595 3,662 TO 405

Graduate
l 893 886 13,287 524
m 2,183 2,200 TO 518
h 3,486 3,487 TO 568

Undergrad
l 881 884 10,601 619
m 2,174 2,200 TO 613
h 3,512 3,446 TO 668

Staff
l 865 885 11,947 319
m 2,211 2,188 TO 392
h 3,512 3,576 TO 444

Figure 4.9: Sieve on MySQL and PostgreSQL.

PostgreSQL (Sieve (M) and Sieve (P)). The results show that not only Sieve outperforms the

baseline in PostgreSQL but also the speedup factor w.r.t. the baseline is even higher than in

MySQL. Additionally, the speedup factor in PostgreSQL is the highest at largest number of

policies. Based on our analysis of the query plan chosen by PostgreSQL, it correctly chooses

the guards for performing index scans (as intended by Sieve) even without the index usage

hints. In addition, PostgreSQL supports combining multiple index scans by preparing a

bitmap in memory. It used these bitmaps to OR the results from the guards whenever it

was possible, and the only resultant table rows are visited and obtained from the disk. With

87

a larger number of guards (for larger number of policies), PostgreSQL was also able to more

efficiently filter out tuples compared to using the policies. Thus, Sieve benefits from reduced

number of disk reads (due to bitmap) as well as a smaller number of evaluations against the

partition of the guarded expression.

Experiment 5: Scalability. The previous experiment shows that the speedup of Sieve

w.r.t. the baselines increases with an increasing number of policies, especially for Post-

greSQL. We explore this aspect further on PostgreSQL using the Mall dataset where the

generation of very large number of policies per querier (in this case the querier is a shop)

is more feasible as we can simulate more customers. We used the same process than in Ex-

periment 4 to generate cumulative set of policies by choosing 5 queriers/shops with at least

1,200 policies defined for them. Figure 4.10 reaffirms how the speedup of Sieve compared

against the baseline increases linearly starting from a factor of 1.6 for 100 policies to a factor

of 5.6 for 1,200 policies. We analyzed the query plan selected by the optimizer for the Sieve

rewritten queries. We observed that with larger number of guards, PostgreSQL is able to

utilize the bitmaps in memory to gain additional speedups from guarded expressions (as ex-

plained in Experiment 4). Also, this experiment shows that Sieve outperforms the baseline

for a different dataset which shows the generality of our approach.

Figure 4.10: Scalability comparison.

88

4.9 Discussion

This chapter presented Sieve, a layered approach to enforcing large number of fine-grained

policies during query execution. Sieve combines two optimizations: reducing the number

of policies that need to be checked against each tuple, and reducing the number of tuples

that need to be checked against complex policy expressions. Sieve is designed as a general

purpose middleware approach and we have layered it on two different DBMSs. The exper-

imental evaluation, using a real dataset and a synthetic one, highlights that Sieve enables

existing DBMSs to perform efficient access control. Sieve significantly outperforms existing

strategies for implementing policies based on query rewrite. The speedup factor increases

with increasing number of policies and Sieve’s query processing time remains low even for

thousands of policies per query.

We believe that Sieve has opened up a fertile research area of co-optimizing policy enforce-

ment in DBMSs. In the list below, we discuss some of the interesting extensions possible for

Sieve in the increasing order of complexity.

• The guards generated in Sieve are based on single-attribute but could be easily ex-

tended to multi-attributes if the underlying DBMSs supported multi-attribute indexes

(many do) and maintained histograms for joint attributes (rarely done).

• The cost model discussed in this chapter could be improved if better estimates are

available from the query optimizer. This will improve the selection of guards in Sieve

and thus improve the performance.

• Supporting complex policy expressions involving derived object conditions. An exam-

ple of a derived object condition is John wants to allow access to his location data only

when he is with Prof. Smith.

[W.owner = John AND W.wifiAP = (SELECT W2.wifiAP

89

FROM WifiDataset AS W2

WHERE W2.ts-time = W.ts-time AND W2.owner = ‘‘Prof.Smith’’)]

In this example W.wifiAP is a derived object condition and generating guards based

on such conditions is an open research problem.

• In the existing policy model, only Allow or Opt-In is used as a policy action. While

Deny policies can be expressed as Allow policies, for non-trivial deny policies this

can lead to an explosion in the number of policies. On the other hand, NOT queries

(required for deny policies) are not supported by indices in most modern DBMSs. A

straightforward solution is execute the Allow and Deny guards independently on the

DBMS and compute their set difference. But this approach has also many drawbacks as

can be easily observed. Supporting both types of actions in policies efficiently remains

an open problem.

DBMS Index hints supported Shortened Reference URL
MySQL Yes dev.mysql.com

PostgreSQL No direct support N.A.
ORACLE Yes docs.oracle.com

DB2 No direct support N.A.
MongoDB Yes docs.mongodb.com

Table 4.12: Support for Index hints in DBMS

We chose MySQL to test our approach as it supports index hints which enabled Sieve to

force the optimizer to utilize the index plan suited for evaluating policy expressions based

on guards. In Table 4.12, we describe the support for index hints in few of the popular

DBMS. This table is by no means exhaustive and it is quite possible that this information

becomes outdated in the near future as they add/remove support for index hints from these

DBMSs. Nevertheless this table serves as starting point for anyone who might be interested

in developing the layer for Sieve on other DBMSs.

90

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://docs.oracle.com/cd/B19306_01/server.102/b14211/hintsref.htm
https://docs.mongodb.com/manual/reference/operator/meta/hint/

Chapter 5

Preventing leakages through data

dependencies on access control

protected data

“How often have I said to you that when you have eliminated the impossible,

whatever remains, however improbable, must be the truth?”

Arthur Conan Doyle, The Sign of the Four

Access Control mechanisms enforce policies by either allowing or denying access to a sensitive

object. This way, they might not be sufficient for protecting sensitive objects since an

adversary with background knowledge might infer information about the sensitive data from

non-sensitive data. The problem of learning about sensitive data from non-sensitive data

combined with metadata is known as the inference problem [45].

This chapter studies the inference problem in databases with discretionary access control with

two classes of data dependencies. The first one consists of commonly used types of data con-

straints (such as functional dependencies, conditional functional dependencies, etc.) which

91

are expressed in the form of denial constraints [26]. In modern Database Management Sys-

tems, raw data is transformed into derived data through various user defined functions [91].

Depending upon the property of the enrichment function, it might be also possible to recon-

struct the raw data when only the derived data is shared. The second type of data constraint

called provenance-based dependencies (PBD) captures these different forms of relationship

between raw data and enriched data. These dependencies are publicly known and constitute

the inference channels available to the adversary. They can use dependencies along with the

disclosed non-sensitive data to limit the set of possible values that the sensitive data can (or

cannot) take or in some cases be able to completely reconstruct the sensitive data.

The rest of the chapter is structured as follows. Section 5.1 describes the various concepts,

defines the notations used in the paper, presents a high level problem definition, and explains

the related work. Section 5.2 presents in detail the dependencies considered in our work

along with the security model. Section 5.3 describes how the leakage of a sensitive data

occurs through dependencies and explains how to detect leakage. Section 5.4 shows the

different steps in our approach and presents the different algorithms. Section 5.5 evaluates

our approach by varying different parameters of interest and finally Section 5.7 concludes

the work by summarizing the work, limitations and possible future extensions.

5.1 Preliminaries

Let us consider the following example, with a simple conditional functional dependency

(CFD), to illustrate the the inference problem.

Example 5.1. Consider the Employees table, shown in Table 5.1, and the Wages table,

shown in Table 5.2. Every tuple from the employee table specifies an employee in a de-

partment with their employee id (Eid), employee full name (EName), Zip code (Zip), state

residence (State), role in the department (Role), number of hours they are allowed to work

92

every week (WorkHrs), and the salary they earn per hour (SalPerHr). The Wages table

stores the weekly salary of each employee in the Employee table, with attributes that could

specify an employee by their employee id (Eid), name of the department they are part of

(DeptName), and the total salary they earn per week (Salary) (derived from the WorkHrs

attribute and the SalPerHr attributes). Consider an access control policy specified by a user

to hide their WorkHrs. If there exists a conditional functional dependency on the Employee

table, “[Role=‘Staff’] → [WorkHrs=‘30’]” the adversary can learn about their weekly work

hours by querying roles in the department and checking if it is equal to ‘Staff’.

Table 5.1: Employee details table.

Emp Eid EName Zip State Role WorkHrs SalPerHr
e1 34 A. Land 45678 AZ Student 20 40
e2 56 B. Hill 54231 CA Faculty 40 200
e3 78 C. Wood 53567 CA Faculty 40 200
e4 12 D. Boi 54231 CA Staff 30 70

Table 5.2: Wages table.

Wages Eid DeptName Salary
w1 34 CS 800
w2 56 EE 8000
w3 78 CS 8000
w4 12 BIO 2100

It could be trivially observed that the inference attack in Example 5.1 can be defended

by simply hiding the corresponding Role when WorkHrs data is sensitive. In a more re-

alistic setting, there could exist a Functional Dependency such as SalPerHr → Role or a

more complex Denial Constraint such as ∀ti, tj ∈ Emp ¬(ti[State] = tj[State] ∧ti[Role] =

tj[Role] ∧ ti[SalPerHr] > tj[SalPerHr]). Both of these dependencies give more knowledge

about the sensitive cell to the adversary. In such situations, identifying and preventing

against potential inferences on sensitive data becomes challenging because the leakage can

propagate through different dependencies. Furthermore, these dependencies can span over

a number of tuples in the database and can include conditions on multiple attributes. This

93

makes it difficult to determine the non-sensitive data that should be hidden to prevent in-

ferences on sensitive data.

5.1.1 Background

Table 5.3: Notation for the chapter.

Notation Definition

D A database instance
r A database relation in D
A A attribute in R
c A cell in R
c.val The value of c
Dom((c) The domain of the c
C Set of cells
δ A schema level data dependency

δ̃ An instantiated data dependency
∆ Set of data dependencies

Preds(δ̃) The set of predicates associated with a DC
State(c) Set of possible values for a cell
sf State function

fn(δ̃) The function associated with a PBD
U and u Set of Users and an individual user
Q A Query and its metadata
p An access control policy

Table 5.3 summarizes the commonly used notations in this chapter. Consider a database D

as a database instance from a database model D, that consists of a set of relations R

and each relation r ∈ R = {A1, A2, . . . , An} where Aj is an attribute in the relation. The

notation Dom(Aj) is used to denote the domain of the attribute and |Dom(Aj)| denotes

the number of unique values in the domain (i.e. the domain size)1. A relation contains a

number of tuples, i.e., R = {. . . , ti, . . .}. The notation ti is to represent a particular tuple

and a set of tuples is denoted by T . The combination (or intersection) of a tuple and an

attribute of a table is called a cell, which can be denoted by ti[Aj], in this notation system.

1We say the domain size in the context of an attribute with discrete domain values and for continuous
attributes we discretized their domain values into a number of non-overlapping buckets.

94

For example in Figure 5.1, Employee is a relation in D and t1[EName] is a cell whose value

is “B. Hill”. In our access control setting, each data tuple ti belongs to a user u ∈ U whose

fine-grained access control policies can restrict the access over some specified cells in those

tuple to designated users.

To simplify notational overhead, we use a cell representation instead of relation-tuple-

attribute representation. We introduce the notation of cells for reason of flexibility and

simplicity in discussing the fine-grained access control policies and the complex composi-

tions among data dependencies. In this representation, a database can be regarded as a

set of cells, D = {. . . , ck, . . .}, where we use the notation ck to denote the cell with ID k

where the value of each ck is given by ti[Aj] from the previous representation. A cell can be

assigned with a value and we use ck.val to denote the cell value assigned to the cell ck.

The domain of ck is denoted by Dom(ck) which is the domain of the attribute Aj. The size

of the domain is correspondingly denoted by |Dom(ck)|, which is equivalent to the size of

domain of the attribute that the cell is associated with. The cell notation system is equiva-

lent to or interchangeable with the relation-tuple-attribute notation system, if considering a

function (i.e. one-to-one mapping) flatten and its inverse function flatten−1 that could map

ti[Aj] to a cell in the cell representation and vice versa. Therefore, from now on, we will

simply use the notation for a set of cells C = {. . . , ck, . . .} to represent a row or a set of

rows, a column or a set of columns, or a table in the database, if the context is clear.

Query model: The SELECT-FROM-WHERE query posed by a user u is denoted by Q. In

our model, we consider that queries have associated metadata which consists of information

about the querier and the context of the query. This way, we assume that for any given query

Q, it contains the metadata such as identity of the querier (i.e., Qquerier) as well as the purpose

of the query (i.e., Qpurpose). For example, Qquerier=“Mr.Smith” and Qpurpose
i =“Analytics”.

95

5.1.2 Access Control Policies

Access control policies, or simply policies, are specified by the owner of the data tuple

(a single user or a group of users) and marks one or more cells in the tuple as sensitive.

When another user queries the database, the returned data has to be policy compliant (i.e.,

policies relevant to the user are applied to the database to hide sensitive cells). A policy P

is expressed as <OC, SC, AC>. We explain each of the attributes of the policy in detail

below.

• OC denotes the object conditions that identify the cells to which the policy applies. It

consists of three parts: {R, σ, Φ}. R is the table to which P applies, σ is the set of selection

conditions that select the set of tuples T in R to which P applies, and finally Φ is the

projection conditions that identifies the set of columns of t to which the policy is applied.

We denote the set of cells identified by OC as COC .

• SC denotes the subject conditions that identify the user for whom the policy applies based

on attributes such as querier and purpose. This is modelled after the Purpose-based access

control model [22].

• Action defines the enforcement operation that is either allow or deny. We assume that

the default is allow in the absence of a policy controlling the access of a cell value in the

database and therefor the Action to deny in the policies used in this paper. When a cell is

denied by policy, we hide the value of the cell by setting it to NULL.

Example 5.2. An example policy from the running policy is <{Employee, Eid = ”C. Wood”,

SalPerHr}, {B. Hill, Analytics}, {Opt-out}>. In the first part (Object Conditions), the

policy specifies the sensitive cell, which is in the Employee table and corresponding to the

tuples belonging to ‘Eid = ”C. Wood”’ with the attribute SalPerHr. The second part (Querier

Conditions) of this policy indicates that it applies to queries from the user Querier = B. Hill

and when the purpose of query is Analytics. The final component (Action) “deny” mandates

96

that the cells identified through object conditions will be hidden from the querier’s query

results.

Definition 5.1. (Sensitive Cell.) A cell c is sensitive to a user u if there exists a policy

P such that c ∈ COC where OC ∈ P.OC, u ∈ P.SC, and P.Action = deny. The set of

cells sensitive to the user u is denoted by CS
U (or simply CS when the context is clear).

The sensitive set cannot appear in the result of queries by U , which is restricted by the

access control policies. Conversely, the set of non-sensitive cells are denoted by CNS where

CNS = D − CS.

From here on in the chapter, we assume that the set of sensitive cells identified by policies

applicable to a user are known. We explain in Section 5.4 how the policy enforcement could

be done at compile time through pre-processing.

5.1.3 Data Dependencies

Data dependencies restrict the possible set of values for a cell based on another set of

values in the database instance. Thus, through existing dependencies, knowledge about

sensitive cells restricted by access control policies can leak to queriers. We look at two

forms of data dependencies2 in this work: 1) Denial constraints (DCs) and 2) Provenance-

based dependencies (PBDs). Consider the two tables from Example 5.1. In addition to the

CFD mentioned earlier, we consider the following types of schema level data dependencies

(specified at the level of attributes) in these two relations. We will explain the specification

and semantics of these dependencies in the following subsection.

1. Key Constraint: Key{Eid}

2. Functional dependency (FD): Zip→State.

2Other data dependencies such as Join dependencies (JD) and Multivalued dependencies are not common
in a clean, normalized database and therefore not interesting to our problem setting.

97

3. Denial Constraint (DC): ∀ti, tj ∈ Emp ¬(ti[State] = tj[State] ∧ti[Role] = tj[Role] ∧

ti[SalPerHr] > tj[SalPerHr])

4. Provenance Based Dependency (PBD): Salary = fn(WorkHrs, SalPerHr)

Data Constraints are traditional types of integrity constraints such as keys, foreign keys,

functional dependencies (FDs), conditional functional dependencies (CFDs), and check con-

straints. We use the general model of denial constraints as our constraint defintition language

to represent all forms of constraints, including aforementioned data constraints Thus, from

now on, we use the term data constraint and denial constraint interchangeably in this paper.

Denial constraints have been applied many fields, such as data cleaning and data synthe-

sis [26, 62], to state and preserve the structure of the database. We chose DCs to express the

data dependencies as it is capable of modelling common kind of dependencies (such as FDs,

CFDs) and also flexible enough to model more complex dependencies among cells. There

are also algorithms which have been developed for discovering DCs in a database [26]. The

first-order formula form of DC makes it possible to evaluate the DCs using similar techniques

as Access Control Policies as the object conditions in them are expressed in first order form

too [81]. In this work, we extend the power of DCs and show the usage of DCs in access

control policies. We use the general notation of denial constraints (as in [26]) to represent

data dependencies at the schema level. Under this representation, a DC (δ) is a first-order

formula of the form ∀ ti, tj, . . . ∈ D, δ : ¬(Pred1 ∧ Pred2 ∧ . . . ∧ PredN) where Predi is the

ith predicate in the form of tx[Aj]θty[Ak] or tx[Aj]θconst with x, y ∈ {i, j, . . .}, Aj,Ak ∈ R,

const is a constant, and θ ∈ {=, >,<, 6=,≥,≤}. We skip the universal quantifiers for DC if

it is clear from the context. A DC is satisfied if at least one of the predicates evaluates to

False which results in DC evaluating to True. We express the three different types of data

constraints from Example 5.1 in DC as follows.

Example 5.3. The previously mentioned data dependencies can be represented in DC format

as follows.

98

• δ1: ∀ti, tj ∈ R,¬(ti[Eid] = tj[Eid])

• δ2: ∀ti, tj ∈ R,¬(ti[Zip] = tj[Zip] ∧ ti[State] 6= tj[State])

• δ3: ∀ti ∈ R,¬(ti[Role] = “Faculty” ∧ti[WorkHrs] 6= “40”)

The first DC corresponds to the key constraint (i.e. Key{Eid}) in Example 5.1. It formally

states there does not exist two tuples with the same Eid’s in the database. The second

example is a functional dependency (i.e. Zip→ State) written in the form of DC. The third

DC example is the conditional functional dependency (i.e. [Role=Faculty] → [WorkHrs =

40]) in our running example, which is a unary DC applied to every tuple in the database with

the “Role” assigned as a faculty.

Provenance Based dependencies: We present a model for dependencies used to capture

the relationships between derived data and its inputs. From the running example, the Salary

in the Wages table (see Table 5.2) is a attribute derived by executing the following query on

the Employee table (see Table 5.1).

Wages(Salary) = (SELECT Salary

FROM (SELECT E.Eid, E.WorkHrs*E.SalPerHr AS Salary

FROM Employee as E, Wages as W

WHERE E.Eid = W.Eid))

Thus, for each employee tuple Salary is a function over WorkHrs and SalPerHr such that

Salary := fn(WorkHrs, SalPerHr) = WorkHrs × SalPerHr. A Provenance Based Depen-

dency (PBD) captures this relationship between the derived value and input values based on

the function. The above function definition (Salary := fn(WorkHrs, SalPerHr) is the schema

level representation of a Provenance Based Dependency. In general, given a function fn with

r1, r2, . . . , rn as the input cell and si as the derived or output cell, the PBD is represented

99

by fn(r1, r2, . . . , rn) = si. If δ is a PBD, then fn(δ̃) returns the corresponding function

associated with it. Function definitions (or schema level PBD) are published as part of the

schema (just like FDs, DCs) and is considered as background knowledge. We now define the

property of invertibility of a function expressed in a PBD.

Definition 5.2. (Invertibility.) Invertibility is a property of the function fn such that a

given function fn(r1, r2, . . . , rn) = si if it is invertible, given the output (si), it is possible

to infer knowledge about the inputs (r1, r2, . . . , rn). Conversely if the fn is non-invertible,

given si it does not lead to any inferences about the inputs.

From the above example, the function fn to compute Salary is invertible as it is possible to

learn about the inputs SalPerHr and WorkHrs given Salary and the background knowledge

(such as domains). Cross product (Cartesian product) is another example of an invertible

function3. On the other hand, complex user-defined functions (UDFs) (e.g., sentiment anal-

ysis code which outputs the sentiment of a person in a picture), oblivious functions, secret

sharing, and many aggregation functions are non-invertible.

5.1.4 Problem definition

Given a database instance D which is represented in the cell notation presented earlier i.e.,

D = {. . . , ck, . . .}. The set of dependencies on the database instance are given by ∆. These

are defined by an expert or automatically discovered by running data profiling tools such as

Metanome [79]. The set of schema level dependencies is considered as background knowledge.

Each of the data tuple is owned by a u ∈ U who defines the fine-grained access control policies

that control sharing of the cells in the tuple. When answering queries involving accessing the

c, its corresponding tuple policy should be enforced. Each query Q has policies applicable to

3The described model of invertibility does not make distinctions about different types of invertibility.
Please see Chapter 5.6 for a more advanced model of invertibility called (m,n)-invertibility which captures
this notion.

100

it depending on the query metadata such as querier, purpose and also the cells identified by

the query conditions. For any given querier, based on the policies applicable to them a set

of cells are sensitive (CS ∈ D) and therefore should be hidden while answering any queries

by the user. The goal is to ensure that given the result of the query Q, the adversary is

not able to learn more about knowledge about any of the cells in CS which are set of cells

sensitive to them.

Fine-grained policies defined earlier are used to control whether certain cells are available or

not when answering queries by User u. For example, in the Employees table, consider that

there are two policies p1, p2 applicable to the user u. p1 protects WorkHrs value of tuple t2

against queries by User Ui and similarly, p2 protects SalPerHr value of tuple t3. These two

cells are marked in a red box. Suppose now ui asks the following two queries on the database

instance.

Query 1: SELECT Eid, Role, WorkHrs, SalPerHr FROM Emp

Query 2: SELECT Eid, Salary FROM Wages

The query answer for Query 1 would not include t2[WorkHrs] and t3[SalPerHr] as these

are protected by policy. However, as mentioned in Example 5.1, ui can accurately guess it

using the conditional functional dependency [Role=Professor] → [WorkHrs=40] and thus,

inferring that the hidden cell is t2[WorkHrs] = 40. Similarly, adversary can learn more about

t3[SalPerHr] through the provenance based dependency Salary = fn(WorkHrs, SalPerHr).

Therefore, it is not sufficient to hide the sensitive cells when adversary has knowledge of the

dependencies. We describe the adversary model in detail below stating our assumptions

w.r.t the data, dependencies, and policies.

Adversary model: We extend the meaning of policy compliance to include preventing

inferences through existing data dependencies in the database. The user identified in the

101

subject conditions of a policy (querier) is the adversary in our model. Therefore, we use

adversary and querier interchangeably in this work. We assume that all the tuples as well

as cells in a tuple are Independently and Identically Distributed (I.I.D), except for explicitly

specified dependencies. All the dependencies are given (generated automatically or by an ex-

pert) and there exist no dependency violations in the database. An adversary has knowledge

of all the data dependencies and can instantiate the dependencies using the cells that are

available to them based on the policies. They are also aware that there are no dependency

violations in the database. They can run different queries on the database and get results

based on the non-sensitive cells.

We assume that the adversary has no knowledge about the access control policies and there-

fore do not know which cells are marked as sensitive4. Thus, based on the query results

and data dependencies, the goal of the adversary is to determine what values a ci ∈ CS can

(or cannot) take from its domain Dom(ci), given query result based on CNS (D − CS) and

∆ which they could not infer only given ∆ (i.e., all their queries are denied). Finally, we

assume that there are no collusions among the queriers with different access control policies.

5.1.5 Related Work

The inference problem in databases occurs when knowledge about sensitive data can be

learned from non-sensitive data as well as the background knowledge that is available to the

adversary [45]. This problem has been studied extensively in the areas of Mandatory Access

Control (MAC) and Multi-level relational databases. Qian et al.[83] developed a tool for

analyzing multilevel relational databases to identify explicit inferences through foreign key

relationships as inference channels. They recommend upgrading the foreign key relationships

to prevent leakages when a user with low level clearance is able to learn data with higher level

4We leave the extension where policies are public and the adversary has knowledge about which cells are
sensitive as future work.

102

sensitivity. Delugachi et al.[38], authors characterized different kind of data associations (e.g.,

part-of, is-a) and used a conceptual graph based analysis approach to identify the inference

of classified information from unclassified information. While both these works look at the

inference problem, their approach was limited to foreign keys and associations respectively.

The inference problem has been addressed through a query control approach where only

consistent answers are allowed. Denning et al. [39] used authorization views as filters in

front of the database which suppresses entire tuples instead of cells. This approach restricts

more data than necessary to protect the sensitive cells. Thuraisingham [96] presented an

approach where access to data is allowed by security constraints (similar to access control

policies). In this work, the DBMS is augmented with an inference engine which looks at

the security constraints and integrity constraints specified on the data. At query time, it

determines if for a given query any of the security constraints might be violated directly

or indirectly through the integrity constraints. Both of these works are based on the non-

Truman model [89] which is not widely adopted compared to the Truman model of answering

queries (where all possible answers to a query are returned which improves the utility of query

answering).

The work done by Brodsky [20] is most similar to our work. They developed DiMon which can

identify direct security violations (access control) and indirect security violations (through

data constraints). Their model is based on MAC as well where each query-answer is asso-

ciated with a security clearance. The model for constraints are based on as Horn clauses

which can used to specify some of the integrity constraints but cannot express more complex

constraints such as possible by Denial Constraints and Provenance Based Dependencies in

our work.

Approaches for preventing unwanted disclosures from sensitive data have been also studied

in secure data outsourcing. Vimercati et al.[37] identified the problem of improper leakage

due to data dependencies in data fragmentation. They mark attributes as sensitive (using

103

confidentiality constraints) and block the information flow from non-sensitive attribute to

sensitive attributes through dependencies. Haddad et al. [58] studied the problem of identi-

fying (at design time) modifications to access control policies specified on a database when

inferences are possible on sensitive data items using dependencies. Albertini et al. [9] studied

the orthogonal problem of increasing utility by exploiting data dependencies by extending

access control authorizations using non-harmful data dependencies.

A different category of work is where inference channels are not explicitly specified. These

works can be either classified into data-dependent privacy preserving or data-independent

privacy preserving. In the first category, inference channels are learned directly from database

instances and their distributions [102, 103, 76]. In the second category, the privacy preserving

method is independent of data and only relies on the algorithm to achieve the required privacy

while answering queries (e.g., Differential Privacy [41]).

Denial constraints have been heavily used in data cleaning for the purpose of expressing data

dependencies and detecting their violations [34, 49, 62, 87]. For example, in Holoclean ([99]

a hypergraph is constructed based on violations of data dependencies is used to drive the

holistic cleaning of the database.

Finally, the well known chase procedure[44] is related to our work as well. Chase is used

in data exchange scenarios [78] and checks if the source database can be transformed into

a target database while satisfying all of the dependencies. The state function used in our

work is inspired by the certain answer semantics used in chase algorithm. Even though chase

procedure has been used in numerous scenarios [78], to the best of our knowledge it hasn’t

been used for checking data leakages through dependencies.

104

5.2 Our Approach

When enforcing policies to database tables, we consider specific database instances. There-

fore, we first need to instantiate the data dependencies to discuss the information leakage

through data dependencies to sensitive cells restricted by the policies. As mentioned in

Section 5.1, we use δ to express a schema level constraint.

Definition 5.3. (Instantiated Dependency.) The different instantiations of dependency

δ with the different set of cells from the database instance are {. . . , δ̃i, . . .}. A particular

instantiation δ̃i with a set of cells C is denoted by δ̃i(c1, . . . , cn). We simplify this notation

to δ̃i(C) or simply δ̃i when C associated with it is clear from the context.

An example of an instantiated DC is given by δ̃2(c10, c11, c17, c18) where c10, c11, c17, c18 cor-

responds to e2[Zip], e2[State], e3[Zip] and e3[State], respectively. In the case of PBDs, we

assume that the DBMS maintains provenance of the derived attribute in a database (see

Table 5.4). We also maintain various metadata associated with the functions such as its

definition, whether it is invertible or non-invertible, etc. Using this provenance database,

function metadata, we generate instantiated PBDs: δ̃5(c7, c8, c31) where c7, c8, c31 corre-

sponds to e1[WorkHrs], e1[SalPerHr] and w1[Salary], respectively. In a Provenance Based

Dependency, we use Cin to denote the cells which are the input to the function f of PBD

and similarly Cout to denote the output cell from the function. In this example, we have

Cin = δ̃5(c7, c8) and Cout = c31.

Table 5.4: Provenance example.

Function Derived Value Input Values
fnS w1[Salary] e1[WorkHrs], e1[SalPerHr]
fnS w2[Salary] e2[WorkHrs], e2[SalPerHr]
fnS w3[Salary] e3[WorkHrs], e3[SalPerHr]
fns w4[Salary] e4[WorkHrs], e4[SalPerHr]

Note that this instantiation of dependency does not have any assignment to the cells and

105

therefore the dependency cannot be checked to see if it is satisfied or not until ck ∈ C are

assigned values. We first define the state of a cell which characterizes the knowledge available

about the cell to the adversary and use that to define the assignment.

Definition 5.4. (State of a cell.) A state of ci denoted by State(c) is the set of possible

values that can be assigned to it from its domain (Dom(c)).

The state of a cell c changes based on the knowledge of the adversary. When the cell is

disclosed, the State(c) = x where x ∈ Dom(c). On the other hand, when a cell is sensitive

and therefore hidden, State(c) ⊆ Dom(c) based on various instantiated dependencies the

cell is part of and adversary’s background knowledge.

Definition 5.5. (Assignment and World) An assignment to a cell c is a value, x,

assigned to it from its state such that x ∈ State(c). The assigned world, or simply world,

is a set of assigned values, {x1, x2, . . . , xn}, to cells in an instantiated dependency given

by δ̃(c1 = x1, c2 = x2 . . . , cn = xn) where each xn ∈ State(cn). The world is denoted by

W (C) ∈ State(C) where State(C) is the set of all possible worlds based on states of all cells

in C.

In a Denial Constraint, Preds(δ̃) returns the predicates from an instantiated dependency.

For a given cell ci ∈ C and a dependency δ̃, Preds(ci, δ̃(C)) returns the predicate(s) Pred

∈ Preds(δ̃) such that Pred = ci θ cj or Pred = ci θ const where ci, ck ∈ C, and const is a

constant. The function Preds(ci, δ̃) returns φ if δ̃ doesn’t contain such a predicate.

Let CPred denote the cells associated with the Pred such that ∀ci ∈ CPred , Pred ∈ Preds(ci).

We define the evaluation function for a predicate as: eval(Pred,W (CPred)) = True if the

predicate evaluates to True based on the assignment of values to CPred from W (CPred).

Similarly, eval(Pred,W (CPred)) = False if the predicate evaluates to False based on the

assignment of values to CPred from W (CPred). We also define the evaluation function based

106

on State(CPred) as

eval(Pred, State(CPred)) =

True if ∀ W ∈ State(CPred), eval(Pred,W (CPred)) = True

False if ∀ W ∈ State(CPred), eval(Pred,W (CPred)) = False

Unknown if ∃ W1,W2 ∈ State(CPred) such that

eval(Pred,W1(CPred)) = True and eval(Pred,W2(CPred)) = False

Similarly, the eval function for the instantiated dependency δ̃ and an assignment W ∈

State(C) returns true (i.e., eval(δ̃ ,W) = True). We call this W a valid world for a de-

pendency if it does not lead to dependency violations (i.e., assignments that do not violate

the dependency). As our dependencies are expressed in Denial Constraints, W is a valid

assignment to the δ̃ if ∃ Pred ∈ Preds(δ̃) such that eval(Pred,W (CPred)) = False. An invalid

assignment occurs when W ∈ State(C) and eval(δ̃ ,W) = False.

We now define a State Function (sf) which computes the State(c∗) based on an instantiated

dependency and the state of its cell set (State(C) and c∗ ∈ C).

sf(c∗ | δ̃ , State(C)) := {x ∈ State(c∗) ∃ W ∈ State(C), eval(δ̃ ,W) = True} (5.1)

Considering all the dependencies (δ̃j ∈ ∆) and their assignments from Ck ∈ D, the possible

values for c∗ is given by

sf(c∗ | ∆, State(D)) :=
⋂

sf(c∗ | δ̃j, State(Ck)) ∀ δ̃j ∈ ∆,Ck ∈ D (5.2)

107

The state function can be generalized to compute the state of a set of cells C∗ as follows

sf(C∗ | δ̃ , State(C)) :={{. . . , xi, . . .} | xi ∈ State(cj){. . . , cj = xi, . . .} |

cj ∈ C∗ ∃W ∈ State(C) eval(δ̃ ,W) = True}

Security model

We first define Statemax(C) as the set of possible values for all cells in C when the adversary

has no knowledge about any of the cells (other than the previously mentioned background

knowledge). We can compute the set of possible values for c∗ ∈ C based on an instantiated

dependency δ̃ and Statemax(C) using the previously defined State Function.

sf(c∗ | δ̃ , Statemax(C)) := {x ∈ State(c∗) ∃ W ∈ Statemax(C) eval(δ̃ ,W) = True}

This returns the set of possible values for a c∗ from the valid worlds for δ̃ and its maximum

achievable deniability value.

Upon sharing some of the cells in C ∈ CNS, partially or completely, the adversary learns

more about the state of C. We denote this updated state of C as State′(C). The new set of

possible values for c∗ based on adversary’s knowledge is given by:

sf(c∗ | δ̃ , State′(C)) := {x ∈ State(c∗) ∃ W ∈ State′(C) eval(δ̃ ,W) = True}

Equation 5.2 can be used to compute the full state based on Statemax(D), State′(D), and

the set of all dependencies ∆. We now define two different security models for our problem

setting: 1) Full Deniability and 2) k-value Deniability. Full deniability occurs when the

adversary cannot distinguish the actual value of the cell from any of the possible values

108

in sf(c∗ | δ̃ , Statemax(C)) (i.e., they learn no new knowledge from the dependencies and

disclosure of non-sensitive cells).

Definition 5.6. (Full Deniability.) For every sensitive cell c∗ ∈ CS, based on all the

dependencies δ̃ ∈ ∆, we achieve full deniability if

sf(c∗ | ∆, Statemax(D)) = sf(c∗ | ∆, State′(D))

Full deniability is sometimes hard to achieve and in the worst case might require denying

almost all the cells in the database when a relatively large number of cells are marked as

sensitive by the access control policies. Therefore, inspired by the well-known k-anonymity

privacy, we relax our security definition to a novel definition called k-value deniability.

Definition 5.7. (k-value Deniability.) For every sensitive cell c∗ ∈ CS, based on all the

dependencies δ̃ ∈ ∆ and D, we achieve k-value deniability when

sf(c∗ | ∆, Statemax(D))− sf(c∗ | ∆, State′(D)) ≤ k · Dom(c∗)

Note: The authors in [97] identify three criteria for correctly enforcing fine-grained access

control policies in relational databases. They are sound, secure, and maximal. Our approach

achieves the soundness property as D − CS does not contain more information than D. We

extend the security property to prevent leakages through data dependencies with the above

security definitions. Finally, we achieve the maximal property through k-value Deniability

which maximizes utility.

109

5.3 Analysis of Leakage

This section discusses when the leakage of a sensitive cell happens due to the two types of

dependencies considered. We present an efficient algorithm to compute the leakage based on

the state function and discuss briefly about the composition of state functions based on this

algorithm.

5.3.1 Leakage of a Sensitive Cell

When c∗ is marked as sensitive to u by an access control policy, it is hidden by setting it to

NULL. This removes the sensitive cell from the query results for that user u. However, if

there exist an instantiated dependency δ̃ which contains the sensitive cell, it is possible for

the adversary to learn about the hidden sensitive cell. We explain the conditions under which

it is possible for the adversary to learn about the sensitive cell through denial constraints

and provenance based dependencies.

Denial Constraints: Suppose δ̃ is a denial constraint and the predicate corresponding

to the sensitive cell is given by Pred(c∗). We first like to note the semantics of a denial

constraint that at least one predicate in a DC has to be False in a valid and clean database

(only valid worlds from W ∈ State(C) such that eval(δ̃ ,W) = True are considered). When

the denial constraint is not trivial and contains at least two predicates (| Preds(δ̃) |≥ 2),

after hiding the sensitive cell c∗, we have State(c∗) ⊆ Dom(c∗) and thus eval(Pred(c∗), C)

= Unknown. However, when all the other predicates in the dependency evaluate to True

(i.e., ∀Predi ∈ Preds(δ̃) \Pred(c∗) eval(Predi, State(C)) = True) the adversary can infer that

eval(Pred(c∗),C) = False even if they do not know the exact value of c∗. We now formally

state the theorem that states when leakage of a sensitive cell, c∗, through an instantiated

dependency, δ̃, happens based on sharing of non-sensitive values along with background

110

knowledge (e.g., schema, data dependencies) of the adversary.

Theorem 5.1. For a sensitive cell c∗, a data dependency δ̃, sf(c∗ | δ̃(Statemax(C))) 6=

sf(c∗ | δ̃ , State′(C))↔ ∀ Pred ∈ {Preds(δ̃) \ Pred(c∗) }, eval(Pred, State(C)) = True.

Proof. When no information (other than background knowledge) is available to adversary,

State(c∗) = sf(c∗ | δ̃ , Statemax(C)) which is the maximum number of possible values for c∗

considering the valid worlds for the dependency δ̃. However, when all the non-sensitive cells

in C are shared and if all the other Pred in the δ̃ evaluate to true (except for Pred(c∗)), as this

is a denial constraint, the remaining predicate (Preds(c∗, δ̃k)) should evaluate to False. Thus,

the modified state of the sensitive cell given by State′(c∗) = sf(c∗ | δ̃ , State′(C)) is limited by

the possible values when eval(Pred(c∗,C) = False. If the predicate Pred(c∗) is non-trivial, the

Dom(State′(c∗)) < Dom(State(c∗)) and therefore we have sf(c∗ | δ̃ , Statemax(C)) 6= sf(c∗ |

δ̃ , State′(C)). Thus knowledge about the sensitive value is leaked.

On the other hand, when ∃ Pred ∈ Preds(δ̃) | eval(Pred,C) = False, it is not possible

to infer the true value of Pred(c∗) when the sensitive cell is hidden. Thus, the modified

state, State′(c∗), when all non-sensitive cells in C are shared, is the same as State(c∗) based

on sf(c∗ | δ̃ , Statemax(C)) = sf(c∗ | δ̃ , State′(C)). Thus, no further knowledge about the

sensitive cell is leaked.

Provenance based Dependencies: Suppose δ is a provenance based dependency given

by fn(r1, r2,, rn) = si. In the instantiation of the PBD denoted by δ̃, if the sensitive

cell c∗ is the output of the function then disclosing any of the input values leaks knowledge

about c∗. Furthermore, if any of the input values is sensitive (i.e., c∗) disclosing the output

value leaks knowledge about it only if the fn is invertible. If fn is non-invertible, disclosing

output value does not leak any knowledge about c∗.

In both of these situations, we have to hide other cells in the cell set of instantiated depen-

111

dency (c in C) so as to prevent the leakage of the sensitive cell through this dependency. In

DCs, our goal is to have one other predicate in the dependency that evaluates to unknown

and thus making it impossible for the adversary to infer the truth value of Pred(c∗). We

achieve this by hiding a cell cj ∈ C such that Pred(cj) ∈ Preds(δ̃)\Pred(c∗). This results

in eval(Pred(cj), State(C)) = Unknown. As now two predicates in δ̃: Pred(cj), Pred(c∗)

evaluate to unknown (and either could evaluate to False to satisfy the DC semantics), it

impossible for adversary to learn anything about the sensitive cell c∗ through this δ̃.

Note that we did not choose the non-sensitive cell in Pred(c∗) as a candidate for hiding.

If we chose to hide ck when Pred(c∗) = c∗θck in δ̃ because of leakage on c∗ (based on

Theorem 5.1), the adversary can still infer that Pred(c∗) = False. This leaks knowledge about

the combined state of the two hidden cells (c∗ and ck) and thus sf({c∗, ck} | δ̃ , Statemax(C)) 6=

sf({c∗, ck} | δ̃ , State′(C)). Thus, to prevent any possible leakages on the sensitive cell c∗ and

its corresponding predicate Pred(c∗), we choose the cell to hide from other predicates. We

now define the cueset of c∗ from δ̃ as follows.

Definition 5.8. Cueset: When the condition (Theorem 5.1) for leakage is met, the set of

non-sensitive cells, from the cell set of an instantiated dependency δ̃ that can leak knowledge

about the sensitive cell, is called a cueset5. Conversely, denying at least one of the cells in

the cueset will make c∗ secure w.r.t that dependency.

For each such data dependency δ̃k of type denial constraint, the cueset for a sensitive value

c∗ based on δ̃ and C is given by

cueset(c∗, δ̃ ,C) = {ci ∈ C ∃ Pred(ci) ∈ Preds(δ̃)\Pred(c∗)} (5.3)

As previously mentioned, the cue-set for a sensitive cell does not contain itself and the other

non-sensitive cell from Pred(c∗). The complete set of cueset for the sensitive cell based on

5As this set of values gives a cue about the sensitive value to the adversary.

112

the set of all dependencies ∆ and D is given by

cueset(c∗,∆,D) = { cueset(c∗, δ̃ ,C) ∀ C ∈ D, ∀ δ̃ ∈ ∆} (5.4)

If the dependency δ̃ only contains a single predicate then the cueset will be empty based

on the above definition. We handle such dependencies by hiding the non-sensitive cell in

Pred(ck). In such instantiated dependencies, it is not possible to prevent the leakage of the

combined state space of c∗ and ck.

In the case of PBDs, the cueset is determined by whether c∗ ∈ Cout or c∗ ∈ Cin as well as

invertibility of the function fn(δ̃). Suppose we have c∗ ∈ cout, δ̃ is the instantiated PBD,

and C is the set of all cells in δ̃, then cueset(c∗, δ̃ ,C) = {ci ∈ Cin }. Now if c∗ ∈ Cin, if the

fn(δ̃) is non-invertible cueset(c∗, δ̃, C) = φ, otherwise cueset(c∗, δ̃ ,C) = {ci ∈ Cout} when

fn(δ̃) is invertible.

5.3.2 Computing Leakage

We compute the leakage on a sensitive cell due to an instantiated dependency using the state

function. Leakage is defined as the difference in the state of sensitive cell due to sharing of the

cueset of an instantiated dependency and represents adversary’s inferred knowledge about

the cell. The state of a cell is represented by: State(c) = [low, high, minus set]. The first

element, low, and the second element, high, denote the starting value and ending value of

the range of values in the state of c, respectively. The last element, minus set, represents

the set of values in the domain which are not valid assignments for c. For example, when

State(c) = [1, 5, {3, 4}] then it contains the set of values {1, 2, 5}. For larger states of c, this

representation helps in compressing significantly the number of values to be maintained.

Denial Constraints: As defined in Equation 5.1, to compute the state of c∗ based on the

113

instantiated dependency δ̃ we must check for each value in State(c∗) whether it is possible

to find a valid world W from State(C) = State(c1) × State(c2) × . . . × State(cn) such that

for the dependency δ̃, eval(δ̃ ,W) = True. When the adversary has no knowledge about any

of the cells State(ci) = Statemax(ci) which is the maximum set of possible values for that cell

(based on the valid worlds). In the case of denial constraints for each of the predicates Predi ∈

Preds(δ̃) (including Pred(c∗)), eval(Predi,C) = unknown. Thus, sf(c∗ | δ̃ , Statemax(C)) =

Dom(c∗). The updated state of a cell ci is computed based on set of all its cuesets. In

Algorithm 2, we initialize the minus set as empty and low and high values as minimum

and maximum values of Dom(ci) respectively. For each cueset, we retrieve the dependency

corresponding to it (cueset.dep) and the predicate corresponding to the ci for which we wish

to compute the state. We represent the non-sensitive cell in Pred(ci) as ck. We set the three

elements of State(ci) based on the θ as shown in the algorithm.

Provenance Based Dependencies: We use a simple model of leakage for PBDs only

distinguishing between whether sensitive cell c∗ is in Cout or Cin and whether the function

is invertible is invertible or not. Thus, with a PBD when c∗ ∈ Cout of a δ̃, we have sf(c∗ |

δ̃ , Statemax(C)) = Dom(c∗) (when no cells in Cin are shared). The updated state when all

the input cells are shared is given by sf(c∗ | δ̃ , Statemax(C)) = {c∗.val} (complete leakage).

When c∗ ∈ Cout of a δ̃ and fn(δ̃) is invertible, we have similarly sf(c∗ | δ̃ , Statemax(C)) =

Dom(c∗) (when no cells in Cout are shared). The updated state when all the output cells are

shared is given by sf(c∗ | δ̃ , Statemax(C)) = {c∗.val} (complete leakage).

5.3.3 Composing Leakages

In Figure 5.1, we have a set of sensitive cells denoted by c∗1, . . . , c
∗
n which is involved in var-

ious instantiated dependencies. For example, consider c∗1 which is part of two instantiated

dependencies δ̃1 which is a Functional Dependency and δ̃2 which is a Provenance Based De-

114

Algorithm 2: Compute state based on instantiated dependencies (denial con-
straints)

1 Function ComputeState(ci, cuesets):
2 minus set = { }
3 low, high = min(Dom(ci), max (Dom(ci)
4 for cueset ∈ cuesets do

5 δ̃ = cueset.dep

6 ci, θ , ck = Pred(ci) ∈ Preds(δ̃)
7 switch θ do
8 case “≤” do
9 if high > ck.val then

10 high = ck.val

11 case “≥” do
12 if low < ck.val then
13 low = ck.val

14 case “6=” do
15 minus set=minus set ∪ ck.val
16 case “=” do
17 low = ck.val, high = ck.val
18 minus set= { }
19 break

20 end

21 end
22 state = [low, high, minus set]
23 return state

pendency. The corresponding cuesets are: cueset(c∗, δ̃1,C) = {c1, c2, c3} and cueset(c∗, δ̃2,C)

= {c1, c5, c6} which we will denote as C1 and C2, respectively.

The composed state of c∗ based on these two instantiated dependencies is calculated using

horizontal composition which is the intersection of the states derived based on the individual

instantiated dependencies. It is given by sf (c∗ | {δ̃1, δ̃2}, {C1,C2}) = sf (c∗ | δ̃1,C1) ∩

sf (c∗ | δ̃2,C2).

After selecting to hide one of the cells in the cueset, we have to recursively generate the

newly hidden cell’s cueset. For example, consider that c2 is chosen to be hidden to protect

c∗1 and it is marked as sensitive. As c2 is part of the instantiated dependency δ̃3 (which is a

115

Figure 5.1: Leakage of a sensitive cell due to different instantiated dependencies.

Denial Constraint), we generate the corresponding cueset as: cueset(c2, δ̃3,C) = {c4, c5, c6}

(denoted as C3). We now need to verify whether this new cueset leaks substantial knowledge

on c2 which further results in leakage of c∗1 through vertical composition. For performing

vertical composition, we first update State(c2) = sf (c2 | δ̃3,C3) and update State′(C) with

the modified state of c2 which we then use to compute state of c∗ as follows.

sf(c∗ | δ̃1,C1) = {x ∈ State(c∗) | ∃W ∈ State′(C) eval(δ̃1),W) = True}

116

5.4 Preventing data leakages

Given a database D which is a collection of cells and a set of data dependencies ∆, and a set

of fine-grained access control policies Pu that identify the cells (CS) that should be denied

while answering the queries by u. Our goal is to generate D′, on which the queries by u are

answered, and which protects the sensitive cells ci ∈ CS while maximizing utility. Utility is

defined as the number of cells that are shared from D − CS while meeting the deniability

requirement.

We perform the following steps to prevent data leakages of sensitive cells. As shown in

Figure 5.2, the first step is policy enforcement, which takes as input the policies applicable

to a user and produces a set of cells which are marked as sensitive. In the next step, for each

of the sensitive cell, we instantiate their relevant dependencies and detect cuesets for them.

Finally, we select cells to hide from the cueset until the specified deniability requirement is

met. These steps are done by pre-processing at compile time as all the necessary information

to do so is available prior to query time.

5.4.1 Policy Enforcement

The goal of policy enforcement is to identify the access permissions of each cells for a given

user. For each tuple and its attribute values, metadata is added after checking the policies

[22]. As an example, consider the following policy, “Bobby denies access of his Work Hours

(from Employee Table) to Danny”. For each tuple in Employee table, we will retrieve all

such policies that are applicable to them and then for each tuple, we identify the cell to

be denied for specific queriers. We encode the appropriate permissions for cell and querier

combination. This metadata can be stored as additional columns or as repeated rows. If

the total number of unique queriers are small because the policies are specified for groups of

117

Figure 5.2: System architecture.

queriers (e.g., role, profile), we can also store the policy decisions in a bitmap (1 for allow

and 0 for deny) per attribute value. The starting point of our algorithm is a policy enforced

database where a set of cells (CS) are marked as sensitive based on the access control policies.

5.4.2 Cueset Detection

In this section, we present an algorithm to detect cuesets for a given sensitive cell, the set

of data dependencies, and a database instance.

The first step in Algorithm 3 is to take each schema level dependency δ and instantiate

it with the sensitive cell c∗ and the appropriate selection of the set of other cells C ∈ D.

118

The instantiation of the dependency is hinged on the type of dependency. For a unary

dependency, instantiation is only based on the tuple the sensitive cell is part of. For a

binary dependency (most DCs), instantiation is based on the pairwise comparison of tuple

containing the sensitive cell as well as other tuples in the database. Similarly for a N -ary

dependency, the tuple consisting of the sensitive cell will be compared against the set of other

N tuples. The number of comparisons required for instantiation depends upon the number

of predicates in the dependency. In most common case of binary dependencies, for a given

database instance D of size | D |, in the worst case for each sensitive cell there would be

| D | −1 instantiations. In order to reduce the number of instantiations, when the predicate

of c∗ is of the following form Pred(c∗) = c∗θck, we derive the condition when it evaluates to

False. For example, suppose we have c∗ = 5 and θ = “>”. We only instantiate the tuples

with corresponding attribute (attribute of c∗) value satisfying the condition (> 5 from our

example). This optimization is not possible when the sensitive predicate is of the form

Pred(c∗) = c∗θconst. Thus for each schema level dependency, we have a set of dependency

instantiations given by Sδ̃ and set of instantiations for all dependencies is given by S∆ .

In the next step, we check for each of the instantiated dependency whether we need to gener-

ate a cueset based on Theorem 5.1. We verify the condition by assigning values to each Predj

(except for Pred(c∗)) for its corresponding CPredj
and verifying if eval(Predj, State(CPredj

)) =

True. If one of the predicates evaluates to False, we generate an empty cueset and move

onto the next instantiation. On the other hand, if the condition is met, we generate the

cueset by iterating through all the predicates Predj (except for Pred(c∗)) and adding the

cells to the cueset corresponding to that dependency instantiation. The exception to this

rule is when the instantiated dependency contains only a single predicate. We generate a

cueset consisting of the non-sensitive cell (ck) in Pred(c∗). After iterating through all the

dependency instantiations, we return the cuesets which is a set of cuesets.

119

Algorithm 3: Cueset detection

1 Function CuesetDetect(c∗, ∆, D):
2 S∆ = { }
3 for δ ∈ ∆ do

4 Sδ̃ ← instantiate(δ, c∗, D) . Set of δ̃ for δi S∆ .add(Sδ̃i)

5 end
6 cuesets = { }
7 for δ̃i ∈ S∆ do

8 cueset.dep = δ̃i
9 if | Preds(δ̃i) |== 1 then

10 cueset.add({ck}) . Pred(c∗) = c∗θck
11 else if ∃Predj ∈ Preds(δ̃i)\Pred(c∗), eval(Predj ,State(CPred) = False then
12 cueset = φ
13 else
14 cueset = { ci ∈ δ̃ .C ∃ Pred(ci) ∈ Preds(δ̃)\Pred(c∗) }
15 end
16 cuesets.add(cueset)

17 end
18 return cuesets

5.4.3 Selecting Non-Sensitive Cells to Hide

After generating the cuesets, we have to select the cells to hide from the cueset to protect

the corresponding sensitive cell. We first present a greedy algorithm for Full Deniability in

Algorithm 4. For a given sensitive cell c∗, the algorithm identifies the cuesets based on the

instantiated dependencies by calling Function 3 (Step 2). Then it iterates through the set of

cuesets and for each cueset, the algorithm selects a cell to hide (Step 3-6). Then it identifies

the cuesets of the hidden cell and these new cuesets are added to list of cuesets (Step 7).

The previous cueset is removed after this step or if it already contains a hidden cell (Step

8). We repeat this process until list of cuesets is empty which means every cueset has at

least one hidden cell and thus we achieve Full deniability for the sensitive cell.

Holistic Full Deniability: In Algorithm 4, we hide a cell in the cueset when it does not

already contain a hidden cell. Therefore, it is possible to minimize the number of extra

120

Algorithm 4: Full deniability

Input: Sensitive cell c∗, Data dependencies ∆
Output: CS

Data: D
1 CS = { c∗ }
2 cuesets ← Cuesetdetect(c∗,∆,D)
3 while cuesets 6= φ do
4 cs ← cuesets.get() . any cueset
5 if cs ∩ CS = φ then
6 ci ← cs.get() . any cell in the cueset
7 CS = CS ∪ ci cuesets.add(Cuesetdetect(ci,∆,D))

8 cuesets.remove(cs)

9 end
10 return CS

hidden cells if we consider a holistic approach with all the sensitive cells. In the holistic

version of Algorithm 4 we pass the set of sensitive cells CS (instead of a single cell c∗ ∈ CS).

After identifying the cuesets for all the sensitive cells, we execute a Minimum-Subset-Cover

of the cuesets to obtain good candidates (for hiding) that covers the maximum number of

cuesets. We hide the cells in the Minimum-Subset-Cover and identifies the cuesets for them.

The rest of the algorithm works similarly to the previous.

5.4.4 k-value Deniability

We now present a greedy algorithm for achieving k-value deniability where k is the minimum

required deniability factor for a sensitive cell c∗, which means that there always exist a

minimum of k possible worlds for the sensitive cell and the adversary cannot infer anything

beyond that. In this algorithm, we start similar to Full deniability algorithm and identify the

cuesets for a given sensitive cell c∗. We compute state of c∗ w.r.t each cueset (cs.parent state)

when all the cells in it are disclosed by calling the function in Algorithm 2 and also the

combined state (c∗.state) w.r.t all the cuesets. If c∗.state ≥ k, then we terminate. Otherwise,

we sort the cuesets in the ascending order of cs.parent state. We select the first cueset (the

121

one that has highest leakage on the sensitive cell) and pass it to the function in Algorithm 6

along with set of already hidden cells (toHide).

Algorithm 5: k-value deniability

Input: Sensitive cell c∗, Data dependencies ∆, Deniability parameter k
Output: CS

Data: D
1 toHide = { c∗ }
2 cuesets ← Cuesetdetect(c∗,∆,D)
3 for cs ∈ cuesets do
4 cs.parent state = ComputeState(c∗, cs)
5 end
6 c∗.state ← ComputeState(c∗, cuesets)
7 if c∗.state >= k then
8 return
9 Sort cuesets in the ascending order

10 while c∗.state < k do
11 lcs ← cuesets.getFirst()
12 toHide ← hideR(toHide, lcs)
13 cuesets.remove(lcs)
14 c∗.state = ComputeState(c∗, cs)

15 end
16 return toHide

In Algorithm 6, we first check if the cueset contains an already hidden cell and return to the

algorithm if that is the case. If the intersection of cueset with the set of already hidden cells

is empty, we retrieve a cell (hideCell) from cueset, add it to toHide, and identify hideCell ’s

cuesets. We compute the combined state of hideCell based on all the cuesets and, if there is

no leakage (i.e., hideCell.state = Dom(hideCell)), we return the updated toHide. Otherwise,

for each cueset of hideCell, we compute hideCell.parent state and recursively call Algorithm 6

if there is leakage.

Holistic Version: We have also implemented a holistic version of the k-value deniability

algorithm which, just like the holistic version of Full deniability, use Minimum-Subset-Cover

to decide good candidates for hiding first in the cuesets. The rest of the implementation is

the same as presented in the non-holisitic version.

122

Algorithm 6: Hiding of cuesets based on leakage

1 Function hideR(toHide, cueset):
2 if cueset ∩ toHide 6= φ then
3 return toHide
4 hideCell ← cueset.get() . any cell in the cueset
5 toHide = toHide ∪ { hideCell }
6 cuesets ← CuesetDetect(hideCell, ∆, D)
7 hideCell.state = ComputeState(hideCell, cuesets)
8 if cuesets = φ OR hideCell.state == Dom(hideCell) then
9 return toHide

10 for hcs ∈ cuesets do
11 hcs.parent state = ComputeState(hideCell, hcs) if size(hcs.parent state) ==

1 then
12 toHide = hideR(toHide, hcs) . full leakage

13 end
14 return toHide

5.5 Experimental Evaluation

5.5.1 Experimental setup

Dataset. We use the synthetic Tax dataset from [26]. Each record represents an indi-

vidual’s address and tax information (see Table 5.5). Every tuple (T ID) from the tax

table specifies tax information of an individual with their first name (FName), last name

(LName), gender (gender), area code for phone number (AC), phone number (phone), state

of residence (state), zip (zip), marital status (marital), Has Children (HC), salary earned

(salary), tax rate (rate), Single Exemption rate (SE), Married Exemption rate (ME), and

Child Exemption rate (CE).

The address information is populated using real semantic relationship. Furthermore, salary

is synthetic, while tax rates and tax exemptions (based on salary, state, marital status and

number of children) correspond to real life scenarios. The dataset comprises of 1000 entries.

Data Dependencies. We identified a large number of hard and soft denial constraints on

123

Table 5.5: Schema of the Tax dataset.

T ID FName LName gender AC phone city state zip marital HC salary rate SE ME CE tax
1 Xiaolin Bannelier M 916 1000 A CA 93383 S N 52000 9.3 87 0 0 4827.91
2 Inderpal Siler F 330 1000 B OH 45506 M Y 29000 1.508 0 2600 1300 378.67
3 Bijan Rehak M 605 1000 C SD 57741 M Y 97500 0 0 0 0 0
4 Dhananjai Jaakkola F 603 1000 D NH 3466 M Y 47500 0 0 0 0 0
5 Serafim Strivastav F 267 1000 E PA 15943 M Y 57500 3.07 0 0 0 1765.25
6 Rengathan Bollman M 231 1000 F MI 49879 S Y 41000 3.9 3100 0 3100 1357.2

Table 5.6: Dependency List for Tax Dataset

ID Type Dependency

δt1 FD ¬(t1[zip]=t2[zip] ∧ t1[city]<>t2[city])

δt2 FD ¬(t1[areaCode]=t2[areaCode] ∧ t1[state]<>t2[state])

δt3 FD ¬(t1[zip]=t2[zip] ∧ t1[state]<>t2[state])

δt4 DC ¬(t1[state]<>t2[state] ∧ t1[hasChild]=t2[hasChild] ∧ t1[childExemp]<>t2[childExemp]))

δt5 DC ¬(t1[state]<>t2[state] ∧ t1[marital]=t2[marital] ∧ t1[singleExemp]<>t2[singleExemp])

δt6 DC ¬(t1[state]<>t2[state] ∧ t1[salary]>t2[salary] ∧ t1[rate]<t2[rate])

δt7 DC
¬(t1[areaCode]<>t2[areaCode] ∧ t1[zip]=t2[zip] ∧ t1[hasChild]=t2[hasChild] ∧
t1[salary]¿t2[salary] ∧ t1[rate]¡t2[rate] ∧ t1[singleExemp]<>t2[singleExemp])

δt8 DC
¬(t1[marital]<>t2[marital] ∧ t1[salary]<>t2[salary] ∧ t1[rate]=t2[rate] ∧
t1[singleExemp]=t2[singleExemp] ∧ t1[childExemp]<>t2[childExemp])

δt9 DC
¬(t1[state]<>t2[state] ∧ t1[marital]<>t2[marital] ∧ t1[rate]=t2[rate] ∧
t1[singleExemp]=t2[singleExemp] ∧ t1[childExemp]<>t2[childExemp])

δt10 DC ¬(t1[state]=t2[state] ∧ t1[salary]=t2[salary] ∧ t1[rate]<>t2[rate])

δt11 DC ¬(t1[state]=t2[state] ∧ t1[salary]>t2[salary] ∧ t1[rate]<t2[rate])

δt12 PBD ”tax” = fn(”salary”, ”rate”, ”singleExemp”, ”marriedExemp”, ”childExemp”)

the tax dataset by using a DC discover algorithm implemented by the data profiling tool

Metanome [79]. We manually analyzed these DCs and selected 11 interesting DCs from them.

If any of them were soft DCs, we updated/deleted the violating tuples to turn them into

hard DCs. Finally, we also added a provenance based dependency based on the function to

compute tax based on attributes salary, rate, singleExemp, marriedExemp, and childExemp.

The final set of dependencies used in the experiments can be seen in Table 5.6.

Database System. We ran the experiments on an individual machine (CentOS 7.6, Intel(R)

Xeon(R) CPU E5-4640, 2799.902 Mhz, 20480 KB cache size) in a cluster with a shared total

memory of 132 GB. We performed experiments on MySQL 8.0.3 with InnoDB as it is an

open source DBMS. We configured the buffer pool size to 4 GB.

Sensitive cells. Sensitive cells were only chosen from the attributes that participated in at

124

least one dependency. This ensured that there were non-zero number of inference channels

possible for each of them. Based on the number of relevant schema level dependencies, a cell

participates in, we categorized them into low (< 2 dependencies), medium, and high (> 6

dependencies).

5.5.2 Evaluation

We perform the following experiments to test various aspects of our approach. Sensitive

cells were chosen from low, medium, and high categories for each such selection we ran the

following experiments. During algorithm execution, the cell to be hidden from a cueset

was selected randomly and we ran the experiment 10 times and dropped the 2 highest and

lowest runs and took the median value from the remaining. These are a preliminary set

of experiments to analyze the amount of leakage through dependencies for various sensitive

cells. In all the following experiments, we analyzed the number of cells hidden with respect

to changing other control parameters

Experiment 1: Sensitive cells versus number of cells hidden

We increased the number of sensitive cells from 10 to 64 and measured the number of

additional cells (percentage of the database) that needs to be hidden to prevent inferences.

In the beginning, with increasing number of sensitive cells, as expected the number of hidden

cells increases exponentially (Figures 5.3, 5.4, 5.5). This increase depends on upon the

number of dependency instantiations and cuesets corresponding to the sensitive cells. In

later stages, the number of hidden cells plateaus as a greater number of cells are hidden

which already covers the newly added cuesets.

Experiment 2: k versus number of cells hidden

We increased the k value from 0 (Full deniability) to 0.9 of the domain size of the sensitive cell

125

Figure 5.3: Experiment 1.1: Sensitive cells with low number of relevant dependencies

Figure 5.4: Experiment 1.2: Sensitive cells with medium number of relevant dependencies

and measured the number of additional cells that needs to be hidden to prevent inferences.

We selected a smaller number of cells from an attribute in each category (low, medium, high)

and performed the experiment (Figures 5.6, 5.7, 5.8). We increased the k-percentile from

0.1 to 0.9 and the number of hidden Cells increases with increasing value of k. The impact

of k on utility is minimal and more experiments are needed on a bigger dataset to study the

full impact.

126

Figure 5.5: Experiment 1.3: Sensitive cells with high number of relevant dependencies

Figure 5.6: Experiment 2.1: Sensitive cells with low number of relevant dependencies

5.6 Extended model of Provenance based dependen-

cies

In this section we describe a general model of provenance based dependencies based on dif-

ferent types of invertibility relationships. Table 5.7 defines different types of invertibility

relationships possible between the input value and derived value depending upon the func-

tion. We also have Fully non-invertible → non-invertible and Fully Invertible → Partially

127

Figure 5.7: Experiment 2.2: Sensitive cells with medium number of relevant dependencies

Figure 5.8: Experiment 2.3: Sensitive cells with high number of relevant dependencies

invertible.

Table 5.7: Invertibility types.

Invertibility type Given Discloses

Fully invertible si r1, r2, . . . , rn
Partially invertible si; r1, r2, . . . , rn−1 rn

Non-invertible si not any of r1, r2, . . . , rn
Fully non-invertible si; r1, r2, . . . , ri not rj . . . rn

We will now define the property of (m,n)-Invertibility for a a function fn(r1, r2, . . . , rn) =

128

si where r1, r2, . . . , rn are the general representation for input values (e.g., WorkHrs) to a

function fn and si is the general representation of the derived value or the output of the

function (e.g., Salary).

Definition 5.9. ((m,n)-Invertibility.) For a function fn(r1, r2, . . . , rp) = si, given its

output si and any m−1 out of p inputs, if we could find another function fn′(rt, rt+1, . . . , rt+m−2; si) =

{rk, rk+1, . . ., rk+n−1} that disclose n of the rest input values, we say this function fn is

(m,n)−invertible; otherwise, we say this function is (m,n)−non-invertible.

The previously mentioned Salary function is (2, 1)-invertible as given any two of the three

variables, the rest one could be disclosed.

Definition 5.10. (Fully invertible.) If a function f is (1, n)-invertible, we say this func-

tion is fully invertible.

Cross product (Cartesian product) is an example of full invertibility, since all the input

values can be inferred if given the result of cross product. That is to say, cross product

is (1, n)-invertible. Other examples of commonly used functions are user-defined functions

(UDFs) (e.g. oblivious functions, secret sharing), and aggregation functions.

Theorem 5.2. Any (m,n)-invertible function is (m− 1, n)-non-invertible.

Instantiation of PBDs: Function definitions are published as part of the schema (just like

FDs, DCs) and known to the adversary. We assume that the DBMS maintains provenance

of the derived attribute in a database (Table 5.4). In our system, we also maintain various

metadata associated with the functions such as its definition, its invertibility type, etc. Using

this provenance database, function metadata, our system derives the following instantiated

provenance based dependencies for Example 1. As the function used to derive Salary is

(2, 1)-invertible, we have the following expressions for some of the derived values and their

corresponding input values.

129

1. w1[Salary] ∧ e1[WorkHrs]→ e1[SalPerHr]

2. w1[Salary] ∧ e1[SalPerHer]→ e1[WorkHrs]

3. w2[Salary] ∧ e2[WorkHrs]→ e2[SalPerHr]

4. w2[Salary] ∧ e2[SalPerHer]→ e2[WorkHrs]

5. . . .

5.6.1 Computing leakage for PBDs

As for a (m,n)-invertible function, denoted by fn′(r1, r2, . . . rn) = {s1, s2, . . . , sm}, it can

be apparently observed that, given the m inputs {g1, g2, . . . gm}, the function will lead to

the leakage towards n values. Take, for example, the Salary, WorkHrs and the SalPerHr.

Since as analyzed, the function to calculate the salary is (2, 1)-invertible, it means that if

taking any two values of the three attributes, the adversary can fully convert and leak the

exact value of the remaining attribute. We call this case full leakage from provenance based

dependencies.

Note. The information leakage caused by provenance-based dependencies (PBD) can be

composed with other leakages (from other data dependencies). For example, given Salary

and WorkHrs, the adversary could convert the value of SalPerHr based on the invertibility.

Then, due to the data dependency that the Role determines SalPerHr, the adversary can

possibly get the information about what role the queried employee takes in consequence.

However, a subset of the m input values of an (m,n)-invertible function could also leak some

information of some disclosable values based on some domain knowledge. As an example,

suppose the adversary knows that the salary of a employee is 8,000 but they do not know

the exact WorkHrs and SalPerHr. Even though, with some background knowledge, for e.g.,

the information that no one could work more than 40 hours per week by law, the adversary

could reduce the domain of possibilities the SalPerHr value could take. We call this partial

130

leakage from provenance based dependencies.

Leakage Oracle Model.

To characterize the partial leakage from PBD, we consider the leakage oracle model that can

be conceived as an interactive party to determine if some values cannot be taken from the

attribute domain according to the background knowledge on the inputs to the oracle machine.

Stated more formally, the leakage oracle is a function ensemble, denoted by OLeak = {OSi :

S → l(oi) | S ⊂ {g1, g2, . . . gm}, i ∈ [n]}. On taking in the invertible function and some

inputs, the oracle outputs the quantified partial leakage on each disclosable values. We

use the notation l(oi) to denote the reduction to the domain of the attribute oi due to the

partial leakage from S. In particular, l(oi) is presented in fractions l(oi) = 1
Dom(oi)−Red(oi)

where Red(oi) is the number of values that the attribute oi cannot take from its domain

due to the leakage; in the case of fully leakage, the leakage oracle will output l(oi) = 1.

Take the previous running example. Supposing the domain of SalPerHr is [0, 600], discrete,

the oracle query O |= OLeak : O(Salary = 8000) will output l(SalPerHr) = 1
600−400

= 1
200

,

since the value of the WorkHrs attribute is known to be less than 40 with some background

knowledge.

5.7 Discussion

This chapter presented a new form of inference attacks on access control protected data

through denial constraints and provenance based dependencies. The chapter introduced a

new security model based on ensuring deniability for the sensitive cell. A set of algorithms

were developed to ensure that sensitive cells met the necessary deniability requirement.

These algorithms use as input a database instance, a set of access control policies, and a set

of data dependencies.

131

This work used a state function to perform analysis as this was enough to achieve deniability

guarantees. A possible extension is to perform probabilistic analysis of the sensitive cells

w.r.t non-sensitive cells and instantiated dependencies to quantify the security loss due to

disclosing non-sensitive cells. The provenance based dependency model presented in this

work could be extended to model partial invertibility as well and computing leakages based

on a oracle model. Instead of performing leakage analysis at compile time, an alternative

approach will be to do this at query time. While this might add the overhead to real time

query processing, it could result in avoiding large number of unnecessary computations and

potentially improving utility for query workloads. Determining the appropriate k to set for

different sensitive cells is an open challenge.

An interesting direction to explore would be whether data cleaning algorithms (such as

Holoclean [87] which rely on data dependencies to detect and clean databases) are able to

recover the hidden cells in the output of the algorithm. Finally, adapting our approach

to handle a dynamic setting where policies and/or dependencies are updated would be an

interesting extension. In such settings, a hybrid model that smartly partitions the work

between compile time and query time would make most sense. If logs are maintained by

the Policy Enforcement system for the purpose for auditing, these can be utilized to detect

when changing policies and dependencies resulted in leakages with respect to prior queries.

132

Chapter 6

Incorporating Policies to IoT Systems

Deployed in the Real World

“This, then, is the true reward for excellence: privacy. And choice.”

N K Jemisin, Fifth Season

This chapter presents the details of implementing policy-based privacy-by-design approaches

in two real world IoT settings. First, the chapter discusses a realization of the approach

towards privacy-aware smart buildings presented in Chapter 3. A policy engine and interfaces

to capture user-defined policies and enforce them (using a similar query rewriting approach

to the one described in Chapter 4) have been developed and deployed. This policy engine has

been integrated into the TIPPERS IoT testbed deployed in several US campuses (with the

main deployment at the UC Irvine campus). Second, the chapter discusses the design and

integration of a policy engine into PE-IoT, privacy-preserving middle-ware in which sensor

data streams (e.g., WiFi connectivity data) are evaluated against policies before applying

PETs on them.

133

6.1 Incorporating Policies in TIPPERS

TIPPERS [75, 6] is a novel IoT testbed for smart spaces that incorporates a variety of smart

space applications. A key design feature of the TIPPERS architecture is that it is space,

sensor, and task agnostic, allowing it to be used as plug-and-play technology to create smart

spaces. In addition, TIPPERS embodies a privacy-by-design architecture, which enables the

integration of different Privacy Enhancing Technologies (PETs). A variety of PETs have

been already integrated into TIPPERS including secure computing and differential privacy.

As depicted in Figure 6.1, the TIPPERS architecture includes several decisions to support

the goal of privacy by design. Firstly, TIPPERS provides an abstraction of the underlying

sensor infrastructure by translating between the IoT devices’ world (i.e., sensors, actuators,

raw observations, etc.) and the people’s world (i.e., interactions of people, spaces, phe-

nomena, etc.). The system is based on a domain model that represents both worlds and

enables users/developers to interact with high-level semantically meaningful concepts. It

also includes ontology-based translation algorithms to convert user requests at the high level

(e.g., “decrease the temperature of rooms where the occupancy is greater than 75% of their

capacity”) into actions on the specific underlying device infrastructure [100, 10]. The main

advantage is that it simplifies the development of smart applications and facilitates their

portability in between spaces as they are built on high-level concepts instead of on IoT de-

vices. Secondly, it simplifies the definition of privacy policies as users can focus on what they

want to protect (e.g., “do not capture my location when I am with John in a private space

during working hours”). TIPPERS uses such privacy policies to guide its data collection,

storage, and sharing practices.

As a mechanism to implement the translation of raw data into higher-level semantically

meaningful interpretations, TIPPERS supports virtual sensors wherein streams of sensor

data can be used to create streams of such inferences. For instance, a virtual sensor can

134

Figure 6.1: High-level architecture of the TIPPERS system.

translate connectivity data (e.g., logs from WiFi APs containing information about which

devices are connected to them) into occupancy of different spaces along time. This en-

ables TIPPERS to incorporate further PETs. For example, a stream of sensor data can be

scrubbed of personally identifiable information (PII) when passed to operators.

6.1.1 TIPPERS Policy Engine

An important component of TIPPERS is its Policy Engine (see Figure 6.1 where the policy

engine plays a role in the different layers of the system). In TIPPERS, policies are used to

guide the collection, storage, processing, and sharing of data. These policies are either defined

by the administrator of the space, and therefore apply to any device in it (e.g., due to security

reasons), or defined by users to express how their data should be managed (e.g., to restrict

access to pieces of information about them). In the current TIPPERS implementation, the

135

primary focus is on user policies. This is driven by the stringent privacy requirements of

the spaces in which it is deployed (university campuses). A sample policy in TIPPERS is

as follows: allow a specific user (e.g., John) to access location data of an individual while

using a specific application and as long as the data has been captured in a public space and

during working hours (similar to policies presented in Chapter 4).

The system denies access to an individual’s data by default when an application tries to

access it. Hence, user-defined policies are meant to allow access to parts of user data under

certain circumstances. Internally, these policies are managed by the TIPPERS policy engine

that enforces them at query time using the approach in Chapter 4. In particular, TIPPERS

offers the possibility to define such policies in high-level terms (e.g., restricting access to

location data instead of to specific sensor data) and translates it into access control to low-

level sensor data. This way, if a user tries to access, for instance, connectivity records of

a specific device, this will be denied if the user defined a policy to restrict access to their

location as this low-level data can be used to infer such information.

Access control APIs in TIPPERS

The TIPPERS API includes a set of endpoints (see Figure 6.2 for a screenshot of the Swagger1

specification of the endpoints)2. These enable the insertion/deletion/update of three types

of policies:

• Data Sharing, which controls with whom individual’s data can be shared an under

which circumstances.

• Data Retention, which controls for how long data of an individual can be stored.

• Data Deletion, which trigger a deletion of specific individual’s data items.

1https://swagger.io
2We would like to acknowledge Vikram Miryala’s help in implementing these endpoints.

136

https://swagger.io

The enforcement of the policies defined through the API by the policy engine is done based

on the approach presented in Chapter 4 for sharing policies. For a deletion policy a query

is run to delete all data that fulfills the conditions in the policy. For retention policies, at

insertion time the policy gets associated with a specific deletion date. Then, the engine

schedules a daily check of policies and for those which came in effect that day, it triggers a

deletion action like in the previous type of policy.

(a) (b)

Figure 6.2: Swagger specification of the policy API.

As an example of the usage of the APIs, Figure 6.3 shows a policy expressed in JSON

that can be passed as a parameter of the insert sharing policy endpoint. This policy allows

TIPPERS to share the location data of an individual with another one (i.e., John Doe) when

the latter uses a specific application (i.e., Occupancy app) and when the location data fulfills

certain restrictions (i.e., it shows the user located in room 2065 and was captured between

9am-10am on a given date).

137

{
"policyId": 1,

"author": 1,

"observationType": 1,

"observationName": "location",

"purpose": "Occupancy Tool",

"action": true,

"objectConditions": [

{
"attribute": "Duration",

"attributeType": "timestamp",

"booleanPredicate": [

{
"value": "2021-01-13 09:00:00",

"operation": "<="

},
{

"value": "2021-01-13 10:00:00",

"operation": ">="

}
]

},
{

"attribute": "Location",

"attributeType": "int",

"booleanPredicate": [

{
"value": "2065",

"operation": "="

}
]

}
],

"queryConditions": [

{
"attributeType": "int",

"attribute": "querier",

"booleanPredicate": [

{
"value": "1",

"operation": "="

}
]

}
]

}

Figure 6.3: Example policy inserted into TIPPERS.

6.1.2 TIPPERS Policy Definition

Since defining policies as Json objects is prone to errors, TIPPERS includes two mechanisms

to simplify the process. The first one is the IoTA personal assistant developed by researchers

at CMU[36]. The second is the TIPPERS Portal policy definition GUI.

Defining Policies Through the IoTA

138

The IoT Privacy Infrastructure developed by CMU [4] interacts with TIPPERS to realize

the vision of a privacy-aware smart building described in Chapter 3. In particular, the CMU

infrastructure consists of:

• A collection of IoT Resource Registries (“IRRs”) that enables organizations or people

to publicize the presence of IoT systems and the data they collect, including any privacy

options made available by these IoT systems.

• An IoT Assistant (“IoTA”) app that people can download on their smartphones (both

iOS and Android3 smartphones) to discover the presence of IoT systems around them

along with the data they collect and any privacy options they have available.

As part of the integration of such infrastructure with TIPPERS, the first step was to define

different resources in the IRR for UCI (see Figure 6.4). The IRR deployed at the DBH build-

ing contains information about services offered by the TIPPERS system (e.g., applications

such as Concierge, Self-Awareness, Building Analytics, Noodle) and the sensor subsystems

managed by TIPPERS (e.g., Localization through WiFi connectivity, video cameras).

The information defined in the IRR for sensor subsystems include an option to opt-out from

sharing of data captured by the subsystem by TIPPERS. This option internally connects to

one of the APIs described before through which the user can specify whether their data can

be shared with others or not.

A user of IoTA can discover these resources on their device when they are in proximity

to DBH. Figure 6.5 shows the information the user will receive. On the left, the figure

shows the different resources defined in the IRR. On the right, the figure shows the details

when the user selects the location sensing subsystem of TIPPERS which uses data captured

from WiFi APs and bluetooth beacons. In addition to the description of the resource, the

3https://play.google.com/store/apps/details?id=io.iotprivacy.iotassistant&hl=en US&gl=US

139

https://play.google.com/store/apps/details?id=io.iotprivacy.iotassistant&hl=en_US&gl=US

Figure 6.4: Resources defined in the IRR.

user has two options on the bottom to specify their privacy preferences with respect to the

sharing of their location data. If the user opts-in fine-grained location tracking, the IoTA

generates an API call to submit a policy that allows TIPPERS to share the user location

data (generated using a virtual sensor that combines WiFi AP and bluetooth beacon data)

with others through the different applications available. If the user opts-in coarse-grained

location tracking, a similar policy is generated to allow TIPPERS to share the user location

data generated using a virtual sensor that only uses WiFi AP data.

Defining Policies Through the TIPPERS Portal

An alternative mechanism to define user policies to guide data management by TIPPERS

is the TIPPERS Portal. This is the GUI interface to the TIPPERS system for users which

enables them to configure their information (e.g., their name, office, owned devices, etc.),

access services (e.g., Concierge and Self-Awareness), and define policies.

140

Figure 6.5: Definition of policies through the IoTA.

The policy definition GUI4 enables users to define the three types of policies supported by the

TIPPERS API (i.e., data sharing, retention, and deletion). After being defined, the policies

are communicated to TIPPERS through the APIs for their enforcement by the policy engine.

As an example, Figure 6.6 and Figure 6.7 show the Portal interface to define two data sharing

policies. Figure 6.6 shows the definition of a policy to enable TIPPERS to share location

data of the user defining the policy with John Doe using the Occupancy Tool when the

location data shows that the user was in location 2065 between two specific time periods.

Figure 6.6 shows the definition of a policy to enable TIPPERS to share vital signal data (e.g.,

heart rate and temperature) with John Doe using the Self-Awareness App when the user

had normal signs (in this example a heart rate between 60 and 100bmp and a temperature

4We would like to acknowledge Aliyah Byon’s help in implementing this GUI.

141

between 97 and 99F) during a time interval.

Figure 6.6: Definition of a policy to handle sharing of location data in TIPPERS.

Figure 6.7: Definition of a policy to handle sharing of vital signs data in TIPPERS.

Figure 6.8 shows the definition of a data retention policy that specifies that location data of

142

this particular user when they are located in a specific space (room 2065) must be deleted

after 30 days.

Figure 6.8: Definition of a policy to handle retention of location data in TIPPERS.

Finally, Figure 6.9 shows the previously defined policies for the user and the different options

to obtain more details about them (and edit those) or remove the policies.

6.2 Incorporating Policies to PE-IoT

PE-IoT (Privacy Enhanced-Internet of Things) is a privacy-compliant sensor data sharing

system [53]. PE-IoT is designed as a middleware that intercepts information flow in ex-

isting IoT data processing systems to add privacy-compliance (see Figure 6.10 during data

ingest and sharing). Specifically, PE-IoT gets raw sensor data streams from an ingestion

and sharing system and produces corresponding privacy-enhanced data streams by enforc-

ing data subject policies and applying suitable Privacy Enhancing Technologies (PETs).

143

Figure 6.9: List of policies defined in TIPPERS.

PE-IoT introduces the concept of a Data product, an abstraction shared by various actors

involved in the PE-IoT dataflow. Operationally, PE-IoT is deployed by the data controller

(see Figure 6.10 that takes in incoming raw sensor data-streams and transforms them into

(privacy-enhanced) data products by enforcing organizational and individual policies that

implement privacy regulations. The data products, thus generated, are shared with service

providers based on their needs through Access Control. PE-IoT is also capable of storing

the sensor stream data from the data controller using a Storage Manager. This stored data

can be accessed by service providers through PE-IoT which then generates Data Products

based on the past data. PE-IoT also provides timely deletion, logging based auditing, and

encryption at rest to meet other GDPR design requirements outlined earlier.

144

Opt-in/Opt-out

Data Controller

Raw Sensor
Data Stream

Data Controller
Policies

Sensors

Data SubjectPE-IoT

Ingestion and
Sharing System

Service
Provider

Private-preserving
Data Stream

Service
Provider
Service
Provider

Storage Manager

Store Query

Access
Control

Figure 6.10: High-level architecture of the PE-IoT middleware.

6.2.1 Policy model in PE-IoT

PE-IoT receives sensor data streams from multiple sensors where each tuple of a sensor

stream is associated with a data subject if it captures personal information. For example,

for Wi-Fi AP association data, the owner of the device that connects to the infrastructure is

the data subject. The PE-IoT data model is based on the design principles derived through

privacy laws such as GDPR (presented in Chapter 2). This model is also developed to

minimize the overhead for data subjects and controllers in order to fulfill their rights and

responsibilities.

The core of PE-IoT data model is Data Product which is an abstraction for privacy enhanced

data that data controllers can share with service providers. Data products, created using

incoming sensor streams, are the unit used by data controllers to share data with service

providers. More formally, a data product is defined as: θ=(Filter, Policy, PET) where

Filter is a set of selection conditions on sensor data that produce a subset of the sensor

data that constitutes a data product. For example, for a WiFi association data set, a

possible filter might be based on a particular building. Policy in a data product consists

of two components: 1) A data controller’s sharing policies, which specify conditions under

which a service provider can access the data product, and 2) The data subject’s choices,

145

which determine the inclusion of a data subject’s data in a data product. PET defines

the information about the Privacy Enhancing Technology (PET) that a data controller uses

when sharing the data product with service providers. We now explain the policy model in

PE-IoT and refer the reader to [53] for a full description of the other two components of a

data product.

6.2.2 Data Controller Policy and Data Subject Choices

In PE-IoT, policy captures the purposes for which the data product is shared by the data

controller and provides a mechanism for data subjects to opt-in/opt-out of the data product.

This satisfies regulation requirements in which user data is only collected and processed for

specific purposes and sharing of data is explicitly allowed by the users. The data controller

policy for sharing a data product (θj) is specified as DCPi = < θj, {pa1...pan} >. Each

policy attribute pai consists of a set of tags and represents the metadata associated with

a data product. Examples of policy attributes are purpose and the category of service

providers who can gain access to the data product. A possible set of policy attributes for

a data controller policy on a data product (θ1) may be pa1, pa2, where pa1 = [”COVID-

19-tracking”, ”UCI-health”] (indicating that the health officials at UCI can access the data

for tracking COVID-19), and pa2 = [”Occupancy”, ”UCI-facilities”] (indicating that θ1 is

accessible to facility entities from UCI campus for determining building occupancy)5. Each

service provider is associated with the set of attributes that characterize the service provider6.

A service provider advertises itself using its set of attributes when requesting access to a data

product. This set of attributes is matched against the policy attributes associated with data

product (through data controller policy) to determine if that data product can be shared

with the service provider.

5The implementation of this policy model is based on a simplified subset of the model presented in
Chapter 4.

6Validation of service provider attributes is done by a trusted third party.

146

A data subject can choose to opt-in or opt-out of the participation in a specific data product.

A data subject choice is modelled as < DS, DCP , choice, TS, choice tense > where DCP is

the data controller policy data subject DS is opting in or opting out (choice) at timestamp

TS. The choice tense is used to denote whether the action (of opting-in/out) applies to

data subject’s future data or past data). The choice tense is used by a data subject to

retroactively to opt-in/opt-out from inclusion of their data in a data product. Figure 6.11

illustrates how this retroactive policy semantics works. Bill has opted in for the data product

sharing policy P1 at timestamp t1 with choice tense as future after which his data is allowed

to be included in the data product corresponding to P1. Later on, at t2 Bill opt-outs with

choice tense as past and therefore his data is denied from historical queries to that data

product. At t3, when Bill opts-out with choice tense as future, his data is denied from the

data product but his past data between t3 and t4 is allowed to be included in that data

product. Finally, at t4 when he opt-outs with choice tense as future, his data is denied from

being included in the data product again.

Allowed

Denied Allowed

Denied Allowed Denied

Denied Allowed Denied Allowed

DS DCP TS choice choice_tense

Bill P1 t1 Opt-in Future

Bill P1 t2 Opt-out Past

Bill P1 t3 Opt-out Future

Bill P1 t4 Opt-in Future

Data Subject (DS) choices on
Data Controller Policy (DCP) P1

Inclusion of Data Subject?s data in data product
mentioned in P1 based on their choices

t1 t2 t3 t4

Figure 6.11: Retroactive Policy Semantics.

If the data subject choice for a data product is opt-in, then the user is opting in to sharing

their data with any service provider that satisfies one of the policy attributes in the data

controller’s policy. Likewise, if it is opt-out, then they are opting out of sharing with any

service providers who have access to that data product. Each data product is associated

with the default choice (opt-in or opt-out) and choice tense (future or past) for data subjects

147

PE-IoT

Resource Managers

Policy
Manager

PET
Manager

Log
Manager

Data Product
Manager Data Subject

Association Manager
Data Product

Worker
Object

Data Product
Worker
Object

Data Product
Worker
Object Storage

Manager

Figure 6.12: The prototype PE-IoT system’s components

which are set by the data controller. The data controller policies and data subject choices

are stored in the database.

6.3 Policy Manager in PE-IoT

We discuss a prototype system design of PE-IoT (See Figure 6.12) that realizes the data

model and policy model previously presented. This prototype consists of a Data Product

manager which conducts the flow of intercepted sensor stream through PE-IoT and coor-

dinates with different resource managers to produce the units of privacy-preserving data

stream defined by Data Products. The different aspects of PE-IoT data model are imple-

mented as independent resource managers which can be executed separately. The rationale

for such a system design are two-fold: 1) decoupling functions allows each resource manager

to perform its tasks independently, 2) some of the resources (e.g., data controller policy,

PET) might be stored remotely and independent resource managers allow us to move them

closer to the resource. Each resource manager also include interfaces to interact with the

Data Product Manager, and other resource managers. In this section, we briefly describe

the Policy Manager and refer the reader to [53] for description of the other managers.

Policy Manager meets the requirement of ensuring that data sharing with service providers

148

is explicitly allowed by users. It handles creating, modifying, and updating of data controller

policies. It also stores the data subject choices associated with data controller policies. After

associating data subject with the tuples, the Data Product Manager sends the the sensor

stream to the Policy Manager. The Policy Manager evaluates the data subject choices for

this stream and decides whether if a data subject’s data can be included in a data product.

Policy Manager also stores all the policies and provide the interface for both data controller

and data subjects to create, read, update, and delete their policies.

6.4 Discussion

This chapter describes the integration of the mechanisms described in the thesis into TIP-

PERS and PE-IoT. This attests to the feasibility of the mechanisms presented. The frame-

work to make smart spaces privacy-aware described in Chapter 3 was implemented using

TIPPERS as the privacy-aware smart space and two different methods for user interaction.

Creating such interfaces was not a goal of the thesis, and in part it was addressed by collab-

orators at CMU. However, developing such interfaces highlighted the challenge of assisting

users in policy specification. Enforcement of user policies during query processing was done

using the mechanisms presented in Chapter 4. Finally, integration with PE-IoT highlighted

the potential benefits of policies and other PETs interacting and thus improving the security

and privacy for user data.

149

Chapter 7

Conclusions and Future Work

“It is good to have an end to journey toward; but it is the journey that

matters, in the end.”

Ursula K. Le Guin, The Left Hand of Darkness

This chapter summarizes the conclusions of the work presented in this thesis on addressing

challenges that arise when supporting fine grained access control policies in data management

systems for IoT applications. Then, it discusses some future research directions in the context

of the work presented in the thesis.

7.1 Conclusions

With advances in technology and arrival of new domains, the data collected and managed

by data management systems increasingly contain newer forms of personally identifying

information (PII). It is important that such PII is protected from unwanted access and

inferences. This requirement of privacy has been made much more urgent by the recent

introduction of stringent privacy laws such as General Data Protection Regulation (GDPR)

150

and California Consumer Privacy Act (CCPA).

As a result of this changing landscape of technologies and privacy laws, today’s data manage-

ment systems face a variety of challenges in 1) meeting the privacy requirements mandated

by regulations 2) enforcing privacy mechanisms efficiently in real time. Therefore, it is im-

portant to redesign these systems taking privacy into consideration. This is challenging as

it introduces additional overheads to the different phases of data management. This thesis

has focused on making fine grained policies in data management practical and scalable. In

particular, the main contributions of this thesis have been:

Policy-based Privacy-by-Design Framework for IoT Smart Spaces: With the advent

of Internet of Things (IoT), almost every device around us is smart, always on, and collecting

data about us. The need for privacy has therefore become more crucial in IoT settings. An

example of IoT is today’s smart buildings where facility managers require a mechanism to

notify residents and visitors of data collection practices. Similarly, building residents might

want to specify their privacy preferences regarding these data collection practices. This

thesis (Chapter 3) presented an approach to enable smart buildings and their inhabitants to

communicate the data capture policies of the former and the privacy policies/preferences of

the latter.

Scalable Fine Grained Access Control Policy Management for DBMS: Domains

such as Big Data and the IoT can involve a potential large number of user-defined fine-

grained policies. When it comes to enforcement of these large number of policies, today’s

data management systems are not able to efficiently handle the large number of checks

required at the time of answering queries. The traditional approaches used in DBMSs are

specification of authorization views and query writing. These methods have high overheads

which makes them unsuitable for real-time query processing under large policy loads. There is

a need for scalable Fine Grained access Control (FGAC) for Database Management Systems

151

(DBMS). This thesis (Chapter 4) presented Sieve, a general purpose middleware for DBMSs

that scales access control for real-time query processing. Sieve does this by reducing the

number of checks to be performed by filtering irrelevant records and impertinent policies.

Given a large corpus of policies, Sieve uses them to generate a set of guarded expressions

that are chosen carefully to exploit the best existing indexes, thus filtering the tuples against

which policies are checked. Sieve also includes a policy evaluation operator which utilizes the

context of a record (e.g., user/owner associated of record) and the query metadata (e.g., the

person posing the query) to filter away policies which are not of interest to the tuple under

consideration. By adaptively combining these two strategies based on a cost model, Sieve is

able to significantly reduce overhead of policy checking. The experimental evaluation of the

system in different IoT settings shows that Sieve significantly reduces the overhead (2X-10X)

of access control at query time when compared with the baselines. This work is the first to

identify and propose a solution for scalable access control and has opened up an interesting

research area.

Protecting access controlled data from leakages: Although restricted by access control

policies, an adversary with background knowledge can infer information about the sensitive

data from non-sensitive data. This thesis (Chapter 5) presented a new form of inference

attacks on access control protected data through data dependencies. In particular, this work

focused on denial constraints and provenance based dependencies which represent integrity

constraints and function based constraints respectively. A new security model was developed

for ensuring privacy for the sensitive cells under the presence of aforementioned inference

channels. The prototype system built includes holistic algorithms which take as input a

database instance, set of access control policies, and a set of data dependencies and made

sure all the sensitive cells met the necessary security requirement.

Integration into IoT systems Finally, this thesis (Chapter 6) also describes the experi-

ences of integrating the various techniques presented into two IoT systems. The approach of

152

privacy-aware smart spaces along with the policy model included, has been incorporated into

the TIPPERS IoT data management system which is deployed at UC Irvine . The access

control interfaces developed for TIPPERS, assisted users in specifying privacy preferences

on the data sharing practices advertised by the building. The policy engine developed as

part of this thesis was also integrated with PE-IoT which is privacy-preserving middle-ware

for managing IoT sensor data flows.

7.2 Future Work

This thesis explored supporting fine-grained access control policies in Data Management

Systems. Thus the focus has mainly been on the aspect of data sharing. However, supporting

policies in other phases of data management such as – 1) Capture, 2) Store 3) Process –

is an exciting challenge. Building an end to end policy framework which performs policy

enforcement on the complete life cycle of data in a Data Management system remains an

open problem. In addition, this thesis has opened up doors to future research in the following

directions.

Policy based data management systems: This thesis explored some aspects of co-

optimizing query processing and policy enforcement but it also opened up a fertile research

area. There is still room for significant improvement if data management systems consider

policies as first class citizens. DBMSs can then use this knowledge to build policy-based

indices to intertwine query optimization and policy enforcement more closely. Further on,

the DBMS can also determine unreachable parts of the database based on policies and move

these away from caches. Similar to the saying of one size does not fit all in the database

community, one policy or access control model does not fit for every scenario. Thus, there is

a need to develop policy models supporting different data models (e.g., non-relational, array

based), different database technologies (e.g., polystores) and new domains (e.g., intelligent

153

transportation systems, smart water management). In many of these scenarios, multiple

entities might be participating in data exchanges across different forms of networks such

as cloud or fog based. Therefore, it would be important to support multiparty distributed

access control across such systems where data is manipulated and policies need to be enforced

at different places.

Translation of the regulatory requirements into system-level design choices: As

stricter regulations are coming up in different parts of the world, this translation remains an

open challenge. For example, the Right to be Forgotten requirement mandates that users

should be able to ask data controllers to delete their data and provide proof of such dele-

tion. However, due to data distribution and redundancy in Big Data systems, ensuring that

data is completely destroyed is extremely challenging. As data moves from one place to

the other, compliance of retention policies and their verification has to be repeated again

and again. Secure deletion schemes which utilize different cryptographic techniques have

been proposed but none of them have been integrated into data management systems. This

becomes even more challenging with complex data processing pipelines which utilize Ma-

chine Learning algorithms. In this setup, the contribution of each individual pieces of data

becomes fuzzy in the deep layers of processing. Similarly, for verifiable compliance and Data

Protection Impact Assessments (GDPR Article 35), current models of policy enforcement,

require a trusted centralized entity. This becomes challenging in the aforementioned newer

domains and therefore a verification method which relies on tamper proof logs is required

in distributed settings with no trusted entities. In cases of potentially high-risk processing

activities, data controllers can use this to study the impact of privacy policies on individual’s

data.

Combining privacy policy and privacy mechanism: The work presented in Chapter 5,

focuses on a specific challenge which arises when dealing with the combination of these

traditionally disparate fields. Further exploration of this issue is required. For example, in

154

Differential Privacy, which provides bounds on privacy leakage with an unknown adversary,

an open problem is how to appropriately set the noise factor. The policies specified by

users could be potentially used to compute with the appropriate value. There are many

challenges to be addressed to do such a combination meaningfully and efficiently. Translation

of user specified policies into the parameters of an enforcement mechanism is an exciting

avenue to explore. Similarly, building bridges between policy requirements and guarantees

of the mechanism is a compelling problem to solve. Combining these two separate areas of

research can also spur improvements in implementation of both. Understanding the impact

on the privacy guarantees of mechanisms when policies are dynamically updated. Privacy

and security systems are only as strong as its weakest component and in today’s systems

more often than not these are the users who are the least informed on privacy. Through

combination of policy and mechanism it becomes possible to build Explainable Security

and Privacy where users can understand, appropriately trust, and effectively manage the

privacy by design systems.

155

Bibliography

[1] California consumer privacy act CCPA. https://oag.ca.gov/privacy/ccpa. [Online;
accessed 1-June-2020].

[2] California online privacy protection act CalOPPA. https://leginfo.legislature.ca.gov/
faces/codes displaySection.xhtml?lawCode=BPC§ionNum=22575. [Online; ac-
cessed 1-June-2020].

[3] General data protection regulation GPDR. https://gdpr.eu/. [Online; accessed 1-June-
2020].

[4] Privacy assistant. https://privacyassistant.org. [Online; accessed 1-June-2020].

[5] Privacy-preserving contact tracing. https://www.apple.com/covid19/contacttracing.
[Online; accessed 1-June-2020].

[6] Tippers. https://tippers.ics.uci.edu. [Online; accessed 1-June-2020].

[7] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and W. Rjaibi. Extending
relational database systems to automatically enforce privacy policies. In 21st Interna-
tional Conference on Data Engineering (ICDE), 2005.

[8] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In Proceedings
of the VLDB Endowment, 2002.

[9] D. A. Albertini, B. Carminati, and E. Ferrari. An extended access control mechanism
exploiting data dependencies. International Journal of Information Security, 16(1),
2017.

[10] S. Almanee, G. Bouloukakis, D. Jiang, S. Ghayyur, D. Ghosh, P. Gupta, Y. Lin,
S. Mehrotra, P. Pappachan, E. Shin, N. Venkatasubramanian, G. Wang, and R. Yus.
Semiotic: Bridging the semantic gap in iot spaces. In 6th ACM International Confer-
ence on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys),
2019.

[11] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra. Query-driven approach to entity
resolution. Proceedings of the VLDB Endowment, 6(14), 2013.

[12] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster. Keeping the
smart home private with smart(er) iot traffic shaping. PoPETs, 2019(3), 2019.

156

https://oag.ca.gov/privacy/ccpa
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=BPC§ionNum=22575
https://gdpr.eu/
https://privacyassistant.org
https://www.apple.com/covid19/contacttracing
https://tippers.ics.uci.edu

[13] D. Banisar. National comprehensive data protection/privacy laws and bills 2020. Pri-
vacy Laws and Bills, 2020.

[14] D. Bell. Looking back at the Bell-La Padula model. In 21st Annual Computer Security
Applications Conference (ACSAC), 2005.

[15] M. Benisch, P. G. Kelley, N. Sadeh, and L. F. Cranor. Capturing location-privacy
preferences: quantifying accuracy and user-burden tradeoffs. Personal and Ubiquitous
Computing, 2011.

[16] M. Berenguer, M. Giordani, F. Giraud-By, and N. Noury. Automatic detection of ac-
tivities of daily living from detecting and classifying electrical events on the residential
power line. In 10th International Conference on e-health Networking, Applications and
Services (HealthCom), 2008.

[17] E. Bertino. Data security and privacy in the IoT. In 19th International Conference on
Extending Database Technology (EDBT), 2016.

[18] E. Bertino, G. Ghinita, A. Kamra, et al. Access control for databases: concepts and
systems. Foundations and Trends in Databases, 3(1–2), 2011.

[19] L. Brandeis and S. Warren. The right to privacy. Harvard law review, 4(5), 1890.

[20] A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference chan-
nels, and monitoring disclosures. IEEE Transactions on Knowledge and Data Engi-
neering, 12(6), 2000.

[21] J.-W. Byun, E. Bertino, and N. Li. Purpose based access control of complex data for
privacy protection. In 10th ACM Symposium on Access Control Models and Technolo-
gies (SACMAT), 2005.

[22] J.-W. Byun and N. Li. Purpose based access control for privacy protection in relational
database systems. The VLDB Journal, 17(4), 2008.

[23] T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM
Transactions on Privacy and Security, 14(3), 2011.

[24] S. Chaudhuri, P. Ganesan, and S. Sarawagi. Factorizing complex predicates in queries
to exploit indexes. In ACM SIGMOD International Conference on Management of
Data (SIGMOD), 2003.

[25] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau. PeGaSus: Data-adaptive
differentially private stream processing. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2017.

[26] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. Proc. VLDB
Endow., 6(13), 2013.

157

[27] P. Colombo and E. Ferrari. Enforcement of purpose based access control within re-
lational database management systems. IEEE Transactions on Knowledge and Data
Engineering, 26(11), 2014.

[28] P. Colombo and E. Ferrari. Efficient enforcement of action-aware purpose-based ac-
cess control within relational database management systems. IEEE Transactions on
Knowledge and Data Engineering, 27(8), 2015.

[29] P. Colombo and E. Ferrari. Fine-grained access control within NoSQL document-
oriented datastores. Data Science and Engineering, 1(3), 2016.

[30] P. Colombo and E. Ferrari. Towards a unifying attribute based access control approach
for NoSQL datastores. In 33rd International Conference on Data Engineering (ICDE),
2017.

[31] P. Colombo and E. Ferrari. Access control enforcement within MQTT-based Inter-
net of Things ecosystems. In 23nd ACM Symposium on Access Control Models and
Technologies (SACMAT), 2018.

[32] P. Colombo and E. Ferrari. Access control technologies for big data management
systems: literature review and future trends. Cybersecurity, 2(1), 2019.

[33] M. Compton, P. Barnaghi, L. Bermudez, R. GarćıA-Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, et al. The SSN ontology of the
W3C semantic sensor network incubator group. Web semantics: science, services and
agents on the World Wide Web, 17, 2012.

[34] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and
N. Tang. Nadeef: A commodity data cleaning system. In ACM SIGMOD International
Conference on Management of Data, 2013.

[35] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-
grained access control system for xml documents. ACM Transactions on Information
and System Security (TISSEC), 5(2), 2002.

[36] A. Das, M. Degeling, D. Smullen, and N. Sadeh. Personalized privacy assistants for the
internet of things: Providing users with notice and choice. IEEE Pervasive Computing,
17(3):35–46, 2018.

[37] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and
P. Samarati. Fragmentation in presence of data dependencies. IEEE Transactions on
Dependable and Secure Computing, 11(6):510–523, 2014.

[38] H. Delugach and T. Hinke. Wizard: a database inference analysis and detection system.
IEEE Transactions on Knowledge and Data Engineering, 8(1), 1996.

[39] D. E. Denning. Commutative filters for reducing inference threats in multilevel
database systems. In IEEE Symposium on Security and Privacy, pages 134–134, 1985.

158

[40] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3–4), 2014.

[41] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4), 2014.

[42] E. Lear, R. Droms, and D. Romascanu. Manufacturer Usage Description Specification.
Internet-Draft, IETF Network Working Group, 2017.

[43] N. Eagle and A. S. Pentland. Reality mining: sensing complex social systems. Personal
and ubiquitous computing, 10(4), 2006.

[44] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theoretical Computer Science, 336(1):89–124, 2005.

[45] C. Farkas and S. Jajodia. The inference problem: A survey. ACM SIGKDD Explo-
rations Newsletter, 4(2), 2002.

[46] D. F. Ferraiolo and D. R. Kuhn. Role—based access controls. In 15th NIST——NSA
National Computer Security Conference, 1992.

[47] B. C. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A
survey of recent developments. ACM Computing Surveys, 42(4), 2010.

[48] C. Ge, X. He, I. F. Ilyas, and A. Machanavajjhala. APEx: Accuracy-aware differen-
tially private data exploration. In International Conference on Management of Data
(SIGMOD), 2019.

[49] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The llunatic data-cleaning framework.
Proceedings of the VLDB Endowment, 6(9), 2013.

[50] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, (STOC), 2009.

[51] S. Ghayyur, Y. Chen, R. Yus, A. Machanavajjhala, M. Hay, G. Miklau, and S. Mehro-
tra. IoT-Detective: Analyzing IoT data under differential privacy. In International
Conference on Management of Data (SIGMOD), 2018.

[52] S. Ghayyur, D. Ghosh, X. He, and S. Mehrotra. Towards accuracy aware minimally
invasive monitoring (MiM). In International Workshop on Theory and Practice of
Differential Privacy (TPDP@CCS), 2019.

[53] S. Ghayyur, P. Pappachan, G. Wang, S. Mehrotra, and N. Venkatasubramanian. De-
signing privacy preserving data sharing middleware for Internet of Things. In 3rd
Workshop on Data: Acquisition To Analysis (DATA@SenSys), 2020.

[54] J. Gluck, F. Schaub, A. Friedman, H. Habib, N. Sadeh, L. F. Cranor, and Y. Agarwal.
How Short Is Too Short? Implications of Length and Framing on the Effectiveness of
Privacy Notices. In 12th Symposium on Usable Privacy and Security (SOUPS), 2016.

159

[55] O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 78,
1998.

[56] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: Content-based
publish/subscribe over P2P networks. In H. Jacobsen, editor, ACM/IFIP/USENIX
International Middleware Conference (Middleware), 2004.

[57] P. Gupta, M. J. Carey, S. Mehrotra, and R. Yus. SmartBench: A benchmark for data
management in smart spaces. Proceedings of the VLDB Endowment, 13(11), 2020.

[58] M. Haddad, J. Stevovic, A. Chiasera, Y. Velegrakis, and M.-S. Hacid. Access control
for data integration in presence of data dependencies. In International Conference on
Database Systems for Advanced Applications, 2014.

[59] J. M. Hellerstein. Optimization techniques for queries with expensive methods. ACM
Transactions on Database Systems (TODS), 23(2), 1998.

[60] J. Heo, H. Lim, S. B. Yun, S. Ju, S. Park, and R. Lee. Descriptive and predictive
modeling of student achievement, satisfaction, and mental health for data-driven smart
connected campus life service. In 9th International Conference on Learning Analytics
& Knowledge (LAK), 2019.

[61] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas. Attribute-based access control.
Computer, 48(2), 2015.

[62] I. F. Ilyas and X. Chu. Data cleaning. ACM, 2019.

[63] H. Jafarpour, S. Mehrotra, N. Venkatasubramanian, and M. Montanari. MICS: an
efficient content space representation model for publish/subscribe systems. In A. S.
Gokhale and D. C. Schmidt, editors, 3rd ACM International Conference on Distributed
Event-Based Systems (DEBS), 2009.

[64] M. Langheinrich. Privacy by design—principles of privacy-aware ubiquitous systems.
In 3rd International Conference on Ubiquitous Computing (UbiComp), 2001.

[65] H. Lee and A. Kobsa. Privacy preference modeling and prediction in a simulated cam-
puswide IoT environment. In IEEE International Conference on Pervasive Computing
and Communications (PerCom), 2017.

[66] P. Lee, E. Shin, V. Guralnik, S. Mehrotra, N. Venkatasubramanian, and K. T. Smith.
Exploring privacy breaches and mitigation strategies of occupancy sensors in smart
buildings. In 1st ACM International Workshop on Technology Enablers and Innovative
Applications for Smart Cities and Communities (TESCA), 2019.

[67] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt.
Limiting disclosure in hippocratic databases. In Proceedings of the VLDB Endowment,
2004.

160

[68] F. Li, J. Sun, S. Papadimitriou, G. A. Mihaila, and I. Stanoi. Hiding in the crowd:
Privacy preservation on evolving streams through correlation tracking. In IEEE 23rd
International Conference on Data Engineering (ICDE), 2007.

[69] J. Lin, B. Liu, N. Sadeh, and J. I. Hong. Modeling users’ mobile app privacy prefer-
ences: Restoring usability in a sea of permission settings. In 10th USENIX Conference
on Usable Privacy and Security (SOUPS), 2014.

[70] Y. Lin, D. Jiang, R. Yus, G. Bouloukakis, A. Chio, S. Mehrotra, and N. Venkatasub-
ramanian. LOCATER: cleaning wifi connectivity datasets for semantic localization.
Proc. VLDB Endow., 14(3), 2020.

[71] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker. Inferring personal information from
demand-response systems. IEEE Security & Privacy, 8(1), 2010.

[72] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang, N. Sadeh, Y. Agarwal,
and A. Acquisti. Follow My Recommendations: A Personalized Privacy Assistant for
Mobile App Permissions. In 12th Symposium on Usable Privacy and Security (SOUPS),
2016.

[73] K. Loney. Oracle Database 11g The Complete Reference. McGraw-Hill, Inc., 2008.

[74] W. Medhat, A. Hassan, and H. Korashy. Sentiment analysis algorithms and applica-
tions: A survey. Ain Shams engineering journal, 5(4):1093–1113, 2014.

[75] S. Mehrotra, A. Kobsa, N. Venkatasubramanian, and S. R. Rajagopalan. TIPPERS:
A privacy cognizant IoT environment. In IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), 2016.

[76] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange.
In ACM SIGMOD international conference on Management of data, 2004.

[77] R. V. Nehme, H.-S. Lim, and E. Bertino. Fence: Continuous access control enforce-
ment in dynamic data stream environments. In 3rd ACM Conference on Data and
Application Security and Privacy (CODASPY), 2013.

[78] A. Onet. The chase procedure and its applications in data exchange. In Dagstuhl
Follow-Ups, volume 5. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[79] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann. Data profiling
with metanome. Proc. VLDB Endow., 8(12), 2015.

[80] P. Pappachan, M. Degeling, R. Yus, A. Das, S. Bhagavatula, W. Melicher, P. E. Naeini,
S. Zhang, L. Bauer, A. Kobsa, et al. Towards privacy-aware smart buildings: Cap-
turing, communicating, and enforcing privacy policies and preferences. In IEEE 37th
International Conference on Distributed Computing Systems Workshops (ICDCSW),
2017.

161

[81] P. Pappachan, R. Yus, S. Mehrotra, and J. Freytag. Sieve: A middleware approach
to scalable access control for database management systems. Proc. VLDB Endow.,
13(11), 2020.

[82] S. R. Peppet. Regulating the Internet of Things: First Steps toward Managing Dis-
crimination, Privacy, Security and Consent. Texas Law Review, 93, 2014.

[83] X. Qian, M. Stickel, P. Karp, T. Lunt, and T. Garvey. Detection and elimination
of inference channels in multilevel relational database systems. In IEEE Computer
Society Symposium on Research in Security and Privacy, 1993.

[84] B. Qolomany, A. I. Al-Fuqaha, A. Gupta, D. Benhaddou, S. Alwajidi, J. Qadir, and
A. C. M. Fong. Leveraging machine learning and big data for smart buildings: A
comprehensive survey. IEEE Access, 7, 2019.

[85] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe. PrivAp-
prox: Privacy-preserving stream analytics. In USENIX Annual Technical Conference
(USENIX ATC), 2017.

[86] A. Rao, F. Schaub, N. Sadeh, A. Acquisti, and R. Kang. Expecting the Unexpected:
Understanding Mismatched Privacy Expectations Online. In 12th Symposium on Us-
able Privacy and Security (SOUPS), 2016.

[87] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with
probabilistic inference. arXiv preprint arXiv:1702.00820, 2017.

[88] J. L. Riccardi. The german federal data protection act of 1977: Protecting the right
to privacy. BC Int’l & Comp. L. Rev., 6:243, 1983.

[89] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting tech-
niques for fine-grained access control. In ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2004.

[90] M. Sadoghi and H.-A. Jacobsen. Be-tree: an index structure to efficiently match
boolean expressions over high-dimensional discrete space. In ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 2011.

[91] P. Senellart, L. Jachiet, S. Maniu, and Y. Ramusat. Provsql: Provenance and proba-
bility management in postgresql. Proceedings of the VLDB Endowment, 11(12), 2018.

[92] S. Shastri, M. Wasserman, and V. Chidambaram. The seven sins of personal-data
processing systems under GDPR. In 11th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud), 2019.

[93] M. Stonebraker and E. Wong. Access control in a relational data base management
system by query modification. In 1974 Annual Conference, 1974.

[94] G. Sun, V. Chang, M. Ramachandran, Z. Sun, G. Li, H. Yu, and D. Liao. Efficient loca-
tion privacy algorithm for Internet of Things (IoT) services and applications. Journal
of Network and Computer Applications, 89, 2017.

162

[95] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[96] M. Thuraisingham. Security checking in relational database management systems
augmented with inference engines. Computers & Security, 6(6), 1987.

[97] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun. On the
correctness criteria of fine-grained access control in relational databases. In Proceedings
of the VLDB Endowment, 2007.

[98] Y. Wang and A. Kobsa. Privacy-enhancing technologies. Social and Organizational
Liabilities in Information Security, 2008.

[99] Xu Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into
context. In 29th International Conference on Data Engineering (ICDE), 2013.

[100] R. Yus, G. Bouloukakis, S. Mehrotra, and N. Venkatasubramanian. Abstracting in-
teractions with iot devices towards a semantic vision of smart spaces. In 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Trans-
portation (BuildSys), 2019.

[101] D. Zhang, C.-Y. Chan, and K.-L. Tan. An efficient publish/subscribe index for e-
commerce databases. Proceedings of the VLDB Endowment, 7(8):613–624, 2014.

[102] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes:
Private data release via bayesian networks. ACM Transactions on Database Systems
(TODS), 42(4), 2017.

[103] J. Zhang, X. Xiao, and X. Xie. Privtree: A differentially private algorithm for hierar-
chical decompositions. In International Conference on Management of Data, 2016.

163

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Related Work
	The Privacy Challenge
	Data Privacy Regulations
	Privacy Preservation
	Access Control and User Privacy Policies
	Access Control in DBMS

	A Policy-based Privacy-by-Design Framework for IoT Smart Spaces
	Overview of Smart Buildings
	Privacy Threats in Current Smart Building Scenarios
	Privacy-Aware Smart Buildings
	User Interactions in Privacy-Aware Smart Buildings

	Facets of a Privacy-Aware Smart Building Infrastructure
	Building Policies
	User Preferences

	Communicating Policies and Preferences
	Building Specific Policy Elements
	Privacy Specific Policy Elements
	Overview of the Language Schema

	Conclusions and Challenges
	Discussion

	Scalable Enforcement of Fine-Grained Access Control Policies
	Case Study
	Related Work
	Modelling Access Control Policies
	Data Model
	Query Model
	Access Control Policy Model
	Access Control Semantics

	Overview of the Sieve Approach
	Creating Guarded Expressions
	Generating Candidate Guards
	Selecting Guards To Minimize Cost
	Discussion

	Implementing Sieve
	Persistence of Policies and Guards
	Implementing Operator
	Query Rewrite with Guarded Expressions
	Policy Evaluation Operator
	Exploiting Selective Query Predicates
	Sieve generated Query Rewrite

	Managing dynamic Scenarios
	Query Evaluation with Guarded Expression
	Computing Optimal Regeneration Rate

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Discussion

	Preventing leakages through data dependencies on access control protected data
	Preliminaries
	Background
	Access Control Policies
	Data Dependencies
	Problem definition
	Related Work

	Our Approach
	Analysis of Leakage
	Leakage of a Sensitive Cell
	Computing Leakage
	Composing Leakages

	Preventing data leakages
	Policy Enforcement
	Cueset Detection
	Selecting Non-Sensitive Cells to Hide
	k-value Deniability

	Experimental Evaluation
	Experimental setup
	Evaluation

	Extended model of Provenance based dependencies
	Computing leakage for PBDs

	Discussion

	Incorporating Policies to IoT Systems Deployed in the Real World
	Incorporating Policies in TIPPERS
	TIPPERS Policy Engine
	TIPPERS Policy Definition

	Incorporating Policies to PE-IoT
	Policy model in PE-IoT
	Data Controller Policy and Data Subject Choices

	Policy Manager in PE-IoT
	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

