UC Irvine
ICS Technical Reports

Title
L6 Manual

Permalink
https://escholarship.org/uc/item/7sm3w94f

Author
Bobrow, Robert J.

Publication Date
1973

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7sm3w94f
https://escholarship.org
http://www.cdlib.org/

L6 MANUAL

Robert J. Bobrow

Technical Report #29 - 1973



CHAPTER I1I
THI L6 LAHNGUAGE

1. L& Data Structures

1.1 ELEVENTARY DATA ITEMS

1.1.1 Internal Representatiorn of Elementary Data

internally, there is only one type of elementary data item ian LG,
the field, A field 1is a secuence of n contlguous bits (1 < 1m s 32)
lying within one machine word. Depend;ng on the size of the field and

the operation to be performed, a field may be used in various manners.
Thus a field may represent: ’

a) a positive integer ir binary form
(1 s n < 31)

b) a 51oned integer in two's complement binary form
(n = 32)

e) a sequence of 1, 2, 3 or % characters in EBCDIC code
(n = 8, 16, 24 or 32)

d) 2 bit trlng or set of flags or loglcai variables
(1 sn s 32)

e) a pOLnter te a word in user-allocated memory

(r = 18, and the value of the 16 bit imteger plus &z fixed
constant (called the "bias") form the address of the indicated
word. )

1.1.2 Constant Notations - External Representation of Elementary Data

There are several ways ir which data can be represented in

an Lb
Progranm. Since all data is internally stored in the form of fields,
the external representation (or constant notation) is important
primarily for programmer convenience and readability of pregrams, it

is good  programming practice to wuse wpotations that
operations to be perfcrmed on the datd.

indicate the

i1 - 1



Il - THE L6 LANGUAGE

Integers

When data is to be used for arithmetie, it is most commonly
represented in the form of an integer in decimal notation, with or

without an optional sign. Some examples of the notation for integers
are: ' :

185, 1234976, +169, =243

Character Strings

When data is to be used for cutput of alphanumeric characters, or
other purposes where it is to be considered as a character string
(e.g., when the character code for "0" is to be subtracted from the
character code for a numeral to get the associated integer) the data
is best represented as a character string. Character strings may be
any sequence of one to four characters enclosed In either single
quotes (') or double quotes ("). Note that if an apostrophe is to be
contained in a string the string should be represented with double
quotes. Some examples of character strings are: '

WA"’ lA!, nAB*C", an—A', "AB’C", "12A"'

Long Text Strings for Titles

To make it easier to print long titles or headings, one of <the
cutput operations (the text output operatiom, TOUT) accepts character

strings of any length, rerresented by the striang in quotes. For
example: .

®"THIS 1S AN EXAMPLE OF £ LONG STRING FOR A HEADING®

Arbitrary Bit Configurations - Hexadecimal Representation

-—

& convenient way for the user to represent arbitrary bit striags
is as hexadecimal numbers. A hexadecimal anumber is written as a °

period (.) followed by a sequence of from i to 8 characters from the
character set '

©, 1, 2, 3, %, 5, 6, 7, 8, 9, 4, B, C, D, E, F.

II « 2.



Il - THE L6 LANGUAGE

In a hexadecimal number {(as in an occtal number, but not a decimal

number) each character represents a fixed ~number of bits {(four for
hexadecimal, three for octal).

0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011,
4 = 0100, 5 = 0101, & = 0140, 7 = 0111,
8 = 1000, 9 = 1001, A = 1010, B = 1011,
€ = 1100, D = 1101, E = 12110, F = 1411

Some examples of hexadecimal constants are:
«11 (= 000100013, 413 (= 101000010011},
JFFF (= 111111111111)

Hexadecimal numbers are often used to represent EBCDIC characters

which cannot be conveniently typed directly im a character string,
such as the "carriage return" (which is .0D).

1.1.3 1Internal Representation of Constants

After comstants have been read into L6, the user can
them to be 32 bit fields (altLough there are actually several imternal
representations for constants in the LB interpreted code). Negative
integers are 32 bits in twc's complement representation, positive
integers are 32 bits, with the high order <{(leftmost) bits being 0,
including the sign Dbit. Cl.aracter strings are represented as rigat
justified Dbit strings, with the leftmost O, 8, 16 or 24 bits (for 4,

3, 2 or 1 character strings) being 0., Hexadecimal numbers are right
justified with the leftmost bits 0.

Remember, internally all data is stored in a field, and the
original notation for the corstant that was used +to create the data-
does not restrict the way in vhich the data in the field can
Even if a conmstant was input as a hexadecimal number it can still be

used as text for output, ir arithmetic operations, as a pointer, as
well as being used for a bit string.

consider

be used.

II - 3.



Il - THE L6 LANGUAGE

1.2 COMPOSITE DATA STRUCTURES I BLOCKS AND PLEX STRUCTURES

D -
—— erm— -

L6 allows the wuser to build arbitrarily complicated data
structures, The basic compornent of such Structures 1is the block,
which is a set of n sequential words in a special area of memory, the
user allocated storage area. As far as the L6 system is concerned, a
block has no internal Structure, and c<an be used t¢ hold any data that
the user desires to store irn n words (n may be any size that can fit
in the available storage). - -

The L6 system provides the wuser with an automatic storage
management facility which allows the user to request access to a block
Or any desired size, store data in the block that has been allocated,
manipulate the data, and eventually return the allocated bleck to the
storage manager when it is no longer needed. This allows the same.
area of storage to be used +o hold different data structures at
different times in the execution of the program. In general, the usepr
conceptually decomposes a bloeck into fields, each containing a
meaningful piece of data. (It is possible to have overlapping
fields.) .

L6 provides the wuser with convenient ways to extract data from
fields within a block, to combine data from various fields and store

the result in a given field. (See the section below on referencing
data in fields.) It is up to the user to set up the data in a block as
he needs 1it,. Thus, for example, a block can be used to hold the

elements of an array, stored in standard row or column major order, it
can be partiticned {conceptually) into various fields ¢f arbitrary
length, it can hold a sequence of EBCDIC characters, etc,

One of the most important types of fields a block can «contain is
a field with a pointer to the crigin (or middle) of another block. As

indicated above, Such a pointer field must be at least 16 bits long,
and holds the relative address of a Wword in the user allocated storage

area., The actual address of the word pointed to may be obtained by
adding a coanstant (the bias) to the pointer, giving a genuine machine
address, A field contalning & pointer is often called a link field.

Such link fields allow tle user to create complicated structures,
called plex structures, containing many blocks linked together by
pointers. Such structures can be used to represent linear lists of
characters, numbers, etc.y, tC¢ represent graphs, circular lists,
stacks, queues, etc,




i1l - THE L6 LANGUAGE

2. Storing and Referring to Data Items in L6

‘There are essentially tilree different areas where the user may
Store data in an L6 progranm. As indicated above, the user may store
data in fields within blocks obtained from . the storage allocator.
There is also a pushdown stack, the field-contents stack, which may be
used to save data, especially during the execution of recursive
subroutines, o

However, the most ‘important data storage areas in L6 are a
special set of 26 registers, called bugs, each of which can contain an
arbitrary 32 bit data item. £Llthough these bugs can be (and are) used

to hold numbers for arithmetic, and character strings for input and
output, their most important use is to hold pointers which provide the

only way for the user to refer to the data stored in allocated bDlocks.

2.1 BASE DATA ITEMS - BUGS

The basic datavstorage areas in L6 are 26 registers, called bugs.
These bugs are referred to by the single letter names:

A, B, C, D, E, F, G, E, I, J, K, L, ¥, N, O, P, Q, R, S, T, U,
V, W, X, Y, Z. ‘ ~

As menticned above, each of these registers can ¢entain . any 32
bit quantity. They ©can be wused to hold numbers for arithmetic,
characters for input and output, and most importantly, they can be
used to hold pointers to blocks in the user allocated storage area.
SUCR ©P[CinTers IOr@ The  bIsis —for Telferring to all datda T a the TSer
allocated storage area. o

To refer to the 32 bit quantity contained in a bug, the user need
only write the name of the bug in the correct place in the program.
Thus, to refer to the contents of the bug Q, one writes Q. '

2.2 REFERRING TO DATA IN THE USER-ALLOCATED STORAGE AREA

To refer to a field in an allocated block, the user must specify
a pointer and a field template. A pointer is a 16 bit quantity which
gives the relatiVe address ©F a word in the wuser allocated storage
area. (The actual address is obtained by adding a quantity called the
bias to the pointer.) A field template indicates the position of a
field relative o 3 pointer. '

II - 5



II - THE L6 LANGUAGE

2.2.1 Defining Field Templétes

At any given time the wuser can nave up to 36 field templates
defined.

The possible names for field templates are:

the 26 letters of the alphabet: A, B, C,..., Xy Y, Z,
the ten digits: 0,.1, 2, 3, 4, 5, 6, 7, &8, 3.

The user can change the field template associated with a field
name at any time during the execution of Hhis program, and c¢an even
define a field template on the basis of information «computed by his
program.

To specify a field +temnplate the user must give two pieces of
information, an offsat and a bit position specification. The offset
indicates the word In which the field Is To 56 Tound The address of
the word containing the field is obtained by adding the offset to the
pointer. Thus, if the offset is 0, the field is in the word indicated
by the pointer, if the offset is 5 then the field is in the fifth word
after (i.e., with a higher adcress than) the pointer.

To specify the position of the field within a word the user can.
either give a 32 bit mask which has 1's in those bit positions which

are in the field and 0's elsewhere, or indicate the first and last bit
positions in the field.

The leftmost bit in a word is referred to as bit 0, and the rightmost

is bit 31. (The higg-gfder bit is bit 0, the low-order bit is bit 31.)

Thus, to indicate- a field of § bits, starting in the fifth bit
position of the word, (bit 4) the user can give either the mask
.0F800000 or the bit positions 4,8. If we let "-" stand for a bit
Position not in the field and "%" fop a bit position in the field, we
can "draw" the bit specification for the field as follows:

PR 5. 2.1 - I T,

- - v - - — . -

II - 6



Il - THE L8 LAKGUAGEL

An example of the way in which a user can define a field template
is:

. (3 D F 7 13)

whica defines the field name F' to be associated with +the fiela

template with offset 3 anc specifying bits 7 through 13, Another
example 1is: .

(0D Q .7F0)

which defines the field templete named Q to have offset 0 and be in

bits 21 through 27. Diagrems of the bit position specifications of
the two fields are:

Equivalent definitions are:

(3 D F .01FC0000) and (G D Q 21 27),

2.2.2 Referring to Fields '~

LUG/FILLD STRINGS

In a program a field is 1eferenced by means of a pbug/field String

which is a sequence of 2 to 3% characters. The first cnaracter is tue
name of a bug (which must coitain a pointer to a location witihin an
allocated block), and <the temaining characters are tne rnames of

(currrently defined) fields. All but the last fiela must be at least
16 bits long, since they must contain pointers.

Some examples are:
AX, QZ1, R13, M1RST:.

but not:
A (only one character, just specifies a bug),
1X (the first character is not alphabetic,
SO0 it is not tle name of a bug)

The meaning of a bug/field string is easy to see. For example,
if the bug P contains a pointer and the field X is currently defined,
then the bug/field string Py refers to the field whose position is
specified by the pointer in P and the field tenmplate associated witn
X. In particular, say P points to the word with address ,17A43 anud «

has been defined by (4 D X 1€ 31), then PX refers to the field in the



II -~ THE L6 LANGUAGE

has been defined by (4 D X 1¢ 31), then PX pefers to the field in the
rightmost 16 bits of the word with address .,17A47. (That is, bits 16
through 31 in that word.) a diagram of the situation is:

TR TR R Mn e e e - —— . e~ ———— . - -
USSR R T h A S e A T we e e e A e . - ap . - .

TS TS R S e s En e b m e Gn e e . e e - 4n - .. -

AR m S N S en e s e - am = o e we - -

Since the field specified by PX has 16 bits, it could contain a
pointer to a word within arother allocated block, In that case the
field PXX would refer to the X field relative to the pointer in PX.
Thus, if bits 16 to 31 of worc .17A47 contain a pointer to word .17B30
(remember, the actual contents of tae fieid PX would not contain
«17B30, but would contain .17L30 minus the pDlas) then PXX would be tnhe
field in bits 18 through 31 of word .17534. If field o wepe defined
by (1 D 5 0 7) then PX5 woulc refer to bits 0 througn 7 (the ieftmost
8 bits) of word .17B31, '

In general, if b is a lug and f, 2, +««,W are curreantly defined
fields, each of at least 16 DbDits lengtn, then bfg...wQ refers to the
field specified by the pointer in the field specifieq by Dfg...w and
the template associated with (.

With complicated plex Structures, as in the diagram below, it is
possible to refer to a given field in many ways, by finding
alternative chains of pointers to guide the way to the field. 1In the
diagram below, the same field (the left field in the second word of
the third block) can be referred to as:

XA or WKA or WFFA or WF3KA



II - THE L6 LANGUAGE

3. Elementary /ctions on Data - the TUPLE

3.1 GENERAL DESCRIPTION, FORMAT AND EXAMPLES

In writing a program there are two types of common activities,
testing data, and operating on data. In general, a test involves
comparing the contents of a field witn the contents of another fiela
or with a literal (constant) ia the program (seeing if they are equal,
which is greater, etc. ...). An operation geherally specifies some
change to be made to the contents of some field, bug, pusn-down stack
or i/o device. In L6, botl tests and operations are written in the
same general format, with the distinction between the two types of
action being made on the lasis of whepe they occur in the L6
statement. The basic syntactic unit whicn is usea for both tests and
operations is the tuple. { tuple must specify the action to be
performed and the data on which it will act.

In general, a tuple consists of a symbolic operation code and one
or mcre data specification:, enclosed in parentheses. The data
specifications can be constarts, bug names, bug/field strings and
sometimes labels. The operation ccde is always the second element of

the tuple, and the elements are always separated by at least one blank
space.

The general formats are:

(datal op) or (datal «cp data2) or (datat op data2 data3) or
(datal op data2 ... Data-n)

some examples of tuples are:

(XA1 = 15) moves the integer 15 into the field XA1 when it is
used as ‘an operation tuple (it compares the <contents of the
field XAl with the integer 15 when it is used as a test tuple)

(PQ + R) adds the contents of the bug R to the contents of the
field PQ and stores the result in the field PQ

(PX - 157) subtracts the integer 157 from the contents of the
field PX and stores the result in PX

(P GT 10) requests a block of size 10 words from the storage
allocator, and stores. a pointer to the first word of the
allocated block in the lug P

(RS FR) returns the blcck whose first word is pointed to by the
field RS to the Storage allocator (if RS does not. point to the

first word of an allocated block this causes an error)

IT - 9



II ~ THE L6 LANGUAGE

3.2 CLASSIFIED LIST OF OPERATIONS AND TESTS

3.2.1

Operations

There

are several basic classes of cperations in L6:
Storage Allocation - GT to allocate a block, FR to free a block

Assignment -~ -» T Oor L for assignment, IC to interchange
contents

Arithmetic - + for addition, - for subtraction, % for
multiplication, / for division

Bitwise Logical Operaticns - A for and, 0 for or, X for
exclusive or, C for complement

Input/output - INIT for initializing input and output files,
INS for inputting character (strings), OUTS for outputting
character strings, TOUT for outputting long text for

titles, TFOUT for outputting text and forcing the output
buffer to be printed

Subroutine Call - DO for transferring to a subroutine
Defining Field Templates - D for defining fields

Pushdown Stack Instructions - SFC for saving one or more data
items on the field-contents stack, RFC for restoring one or
more fields from the field-contents stack, SFD for saving
one or more field definitions on the field-definition

stack, RFD for restoring one or more field definitions from
the field-definition stack

Bit Shifting and Countirg - L for left shift, R for right shift,
COL for finding leftmosTt one position, CZL for finding
leftmost zero position, COR for finding
position, CZR for finding rigntmost
counting number of ones, CZ for counti

rightmost one
zero position, CO for

ng number of zeroes

Incremental Dump - DHMP for obtaining a dump of the contents )
of the wuser-allocated Storage area while the

program is
running

II - 10



Il - THE L6 LANGUAGE

3.2.2 Tests )

There are a number of tests available, including:
- Equality - = for equality, . # for inequality
Algebraic Comparison - < for less~-than, > for greater-tban;
<= for less-than or equal, >= for greater-than or -equal,

and R for inclusive range

Logical Tests -~ 0 to test for corresponding one bits,
Z to test for corresponding zero bits

II - 11



II - THE L6 LANGUAGE

3.3 SOME GENERAL COMHENTS ON OPERATIONS AND TUPLE FORMATS I )

As should be clear from the examples, the operation code is
always the second element of the tuple. Since the operation codes are
sequences of letters, It would be impossible to distinguish them from
bug/field strings if they did not always oc¢cur in the same place in
the tuple. ’ .

There must always be at least one space between consecutive
elements of a ‘tuple. Extra spaces may be inserted for readability
wherever a single space is acceptable. There can be no spaces between
the characters in a bug/field string, -

In L6, almost all operations tnat combine data store the result
in the space occupied by the first argument. (The most notable
exceptions are the extended CT operation and the RFC restore field
contents operation.) Thus, in general, the first argument of a tuple
can' be either a bug or a lug/field string, but not a constant.
Remember, the original contents of the first argument are modified
during arithmetic coperations. In general, the other arguments of a
tuple can either be constants, bugs or bug/field strings. ‘

3.4 OPERATIONS ON FIELDS OF UNEQUAL LENGTH

It is common to combine fields of wunequal 1length din L6
operations. Conceptually, the operations are performed on the two

fields as if they were right justified  in a 32 bit word, apd the
rightmost bits of the result are stored in the result field. Thus, if
field FA has 17 bits and field PQR has 13 bits, the operation

(PQR + FA) takes the 17 bits from FA and puts them in the righitmost 17
bits of an accumulator, with the remaining bits zeroed, and puts the
13 Dbits of PQR in another accumulator, with the remaining lefthand
bits zeroed out, and adds the two quantities. The rightmost 13 bits
of the resulting 17 (or 18) bit sum are stored in the field PQR, and
the other 4 (or 5) significant bits are lost. In an assignment
statement, (PQR = FA) results in PQR being filled with the rightmosct
13 bits of the 17 bit field FA&, the other bits being lost. (FA = PQR)
resuits in the rightmost 13 bits of the field FA getting the contents
of the field PQR, and the leftmost & bits of PQR being set *to zero.-
4s was noted above, constants can be regarded as being right-justified
in a 32 bit field. Thus, if a field can contain enougin bits to
represent the constant the result is what you would expect (remember
that negative numbers require a full 32 bit field).

II - 12



Il - THE L6 LANGUAGE

3.4 THE FIELD CONTENTS STACK

The field <contents stack provides the programmer with a
convenient way to store the local information needed for a recursive
subroutine, It is possible t< store blocks of words on the stack, and
to restore these bDlocks. The contents of several fields may be saved
at one time on the stack. There is only one field contents stack, and
the elements stored on it are blocks of 32 bit words. Note, that as
in all L6 data transfers, if the fields are shorter than 32 bits, the
quantity stored in the stack contains the field to be stored, right
justified with zerces on the left in a 32 bit word. The wuser should
be careful, since the stac}l holds "blocks of words. To save the
registers A, Q and the field FRX the user can type :

(3 SFC A Q PRX)
and to restore the same items he would type,

(3 RFC A Q PRX)

Note that the items in a block are restored in the same order EE the
were placed in the block, and that it is only bITCkS Whicn are STacrs
in'a "last-in first-cut" fashion. ‘

<

s

o]

1

IT - 13



II - THE Ls LANGUAGE"

Y. The L& Program

4.1 GENERAL FORMAT ©

An L6 Program consists of a Sequence of statements. Roughly‘
Speaking, a Statement is a]sequence of operations Written as tuplies,
which may be performed unconditionally, or which may only be performed
if some conditions specified by a set of test tuples are satisfied.
Normally, control flows from one Statement to the next statement in
the sequence, ang from 1left to right, tuple to tuple, witnin the
Statement,’ In order +o allow - the wuser to unconditionally op
conditionally change the flow of control in his program any statement
may have a label, and it is Fossible to specify thaxz control is to be

passed unconditionally op conditionally te The statement with
label, ,

4.2 AN EXAMPLE PROGRAYM

/THIS Le PROGRAM READS IN A SLQUENCE OF CHARACTERS AuD FORMS A LINKELED
/LIST OF THESE CHARACTERS., IT THEN TRAVERSES THE LIST AND PRINTS OUT THE
/CHARACTERS, FREEING THE 3LOCLS aAs IT GOES. READING IS TERMINATED WHEN
/THE CHARACTER ", " 1g SEEN. EI'D OF LIST IS INDICATED BY o IN LINK FIELD.
/

/TRERE ARE TWO FIELDS IN EACH BLOCK, THE FIELD C IS AN 8 BIT FIELD
/FOR A CHARACTER, AND THE FIELD N IS THE LINK FIELD
/

/B POINTS TO THE START OF THE LIST, P IS & WORKING POINTZR, ¢ 1Is
/USED TO HOLD CHARACTERS TEMPORARILY ON INPUT

/
/ ' ,
START THEN ($ INIT $)(0 p C07)(0 DN 16 31), /SETUP FLD TEMPLATES 2 10
THEN (P GT 1)(B = p)(pc INS 1) /SETUP FIRST BLOCK
THEN (C INS 1) \ /SETUP CHARACTER FOR LOOP
/

/THE NEXT STATEMENT IS A ONE LINE LOOP WHICH READS IN CHARACTERS
/AND PLACES THEM INTO BLOCKS UNTIL IT READS 4 n, n

/
LOOF iF (C # ",v) THEN (PN CT 1)(pP = PNJ(PC = ¢)(c INs 1) Loop
/

| THEN (P = B) ' /SETUP P FOR OUTPUT LOOP
/

/THIS LOOP TRAVERSES THE LIST, PRINTING CHARACTERS anp FREEING BLOCKS
/

OUTLP IF (p = 0) THEN HALT ELSE (PC ouTs (T = P)(P = PN)(T FR) ouyTLp

II - 14



II - THE L6 LANGUAGE

4.3 THE L6 STATEMENT

4,3.1 Labels, Comments and General Format

In general an L6 statemert is free form. If the statement has a
label, the label must begin in the first character position. A label
can be any sequence of from ore to six characters, Wwith the exception
of the reserved words THENWN, 1LSZ, DONE, FAIL, hALT. If the statement
has no label the first character ©position must be ©blank. In the
program above all non-labellied statements started in column &. Tnis
was done only to improve 1readability, since L6 would have Deen
perfectly happy to have the statements start anywnere after column 1
if they had no label. It is strongly suggested that the user develop
his own standard format to improve readability, and stick to that
format in typing his programs. '

Comments can be placed ir an L6 program by preceding them with 2
slash (/). All characters or a line following a / are ignored by the
parser. Currently, / can be wused only in <column 1 or after a
statement, (Major exception: / is used as the division operator, and

a / that occurs as the second element of a tuple does not cause
subsequent characters to be ignored.)

4.3,2 Unconditinnal Overatior.s and Transfers
The <THEN-clause>

The simplest form of an L& statement is the unconditional
statement which consists of the key-word THEN followed either by a

sequence of operation tuples or a label or both. Some examples are:
THEN (P GT 1)(PC INS 1)

THEN LAB1

THEN (PR + 3)(P = PN) IAB1

When an unconditional stetement is encountered the tuples within
it are executed from left to right, and if there is a label control is
then passed to the statement vith that label. (If there are no tuples
and only a label, control is passed directly to the statement with
that label. If there is no transfer label, then after all the tuples
have been executed <control flows to the next
program. )

The 'transfer labels 1ALT, DONE, FAIL and *#

statement in the

"have special

IT - 15



II - THE L6 LANGUAGE

significance. Transferring to the label HALT will cause the program
to come to a halt. DONE and FAIL are special dummy labels used to
return from a subroutine. % Is a special label useful for creating

one-line loops. :

Once execution begins or the sequence of tuples all the tuples
will be executed wunless there is an error, or unless there is a
subroutine transfer tuple in the Sequence, and the subroutine returns
with a FAIL exit (see the section on Subroutines). :

The unconditional statement is not only the simplest form of an
L6 statement, it is the basis for all otner statements. The sequence
of the keyword THEN followed by either a sequence of one

or more
tuples, a label or both, is referred to as a <THEWK-clause>.

4.3.3 Conditional Operations and Transfers
The <IF-clause> and tne <ELL{L-clause>

In a program of any complexity, there will be operations that ape
only to be performed when certain conditions are met, or transfers of

control that are +to be mace only under certain conditions. L6
provides several forms for such conditional expressions. The simplest

form consists of the keyword IF followed by a test tuple, followed by
@ <THEN-clause>. Some examples are:

IF (P = "_.")THEN OUTPUT

IF (PC < 3) THLN (PC + 1)(P = PN)

IF (P # 0) THEN {PC QU1S 1)(P = PN)LOOP
The sequence consisting of the keyword IF and fhe test tuple is called

an <IF~-clause>, It is the simplest form of the <If-clause>, more
complicated ones are shown below with multiple tests.

The <ELSE-clause>

For these simple IF Statements, the <THEN-clause> is executed if
the test is true, and if tle test is not true the next statement in
the sequence is executed. A iseful generalization is the IT statement

Wwith an <ELSE-clause>. An <ELSE-clause> is like an <THEN-clause>
except that it starts with the keyword ELSE and can only occur after a
<THEN-clause> in a conditicnal statement. The <ELSE-clause> 1is

executed exactly like a <THEN-clause>, except that it is only executed
if the testing condition is not met. Some examples are:



II - THE L6 LANGUAGE

IF (A

3) THEN (P + 2)(A - P)(Q = QN) LAB3 ELSE (4 = 1)
IF (P

0) THEN HALT EILSE (PC CQUTS 1)(P = PN) LOOP

In the first case, the <THEN-clause> is executed only if the contents

of bug A is a 3, and the <ELLE-clause» is executed if the contents of
the bug A is not 3.

Multiple Tests in an <IF-clause> - IFALL, IFANY, IFNONE, IFNALL

Many times it is necessary to test several conditions to see if a
line of <code is to be executed. L6 provides several alternative
<IF-clauses> with different keywords to ‘control the execution of a

line, depending on <the conditions. which must hold for the
<THEN-clause> to be executed.

The keyword IFALL indicates that the <THEN-clause> is to

be executed
only if all the tests are true.

The keyword IFANY indicates tlLat <the <THEN-clause> is to

be executed
only if at least one of the tests is true.

The keyword IFNONE indicates that the <THEN-clause> is to be executed
only if none of the tests are true. ' : '

The keyword IFNALL indindicates that the <THEN-clause> is to be
executed only if at least one of the tests is false.,

Some examples are:

IFALL (P # 0)(PC # "."™) THEN (PC OUTS 1) ELSE (PD OUTS 1)

IFANY (P = 0)(PC "."™) THEN (PD QUTS 1) ELSE (PC OQUTS 1)

"

IFNONE (PN = 0)(R 3)(J > K) THEN (R + J)(P = PN)

IFNALL (Q = P)(PN

H

R) THEN (P = PN)(R = 2)

II - 17



II - THE L6 LANGUAGE

S. Some Useful Irogramming Constructs in L6

5.1 ONE LINE LOOPS

There is a special symbol * which can be used as a transfer lakel
in either a <THEN-clause> or an <ELSE-clause>. The symbol * stands

for the current 1line, Thus, it 1is possible to write convenient
one-line loops in L6.

For example:
IF (P # 0) THEN (PC OUTS 1)(P = PN) #

This one 1line will print all the characters in the C fields of a

linked list with 1ink field N, stopping only when a 0 link field is
found.

IF (P = 0) THEN HALT ELSE (P FR PN) #

This line of code will free all the blocks in a linked 1list, ‘and halt
when it reaches a link field cf 0, having returned the last block.

5.2 SUBROUTINES IN L6

L6 provides a minimal subroutine capability (which. will be
expanded in later versions). It is possible to transfer control to a
line of a program and to save the locatiocn from which the transfer

took place. The subroutine transfer tuple i's an operation tuple (and
must occur in a <THEN-clause> or an <ELSZ=~~clause>)and looks like:

(SUBR1 DO)
or

(SUBR2 DO FALEXT)

where SUBR1 and SUBR2 are the labels of statements which are the
beginning statements of subrcutines. When the first form of DO is
executed, the "address" of the next tuple in the <clause (the one
following the DO tuple) is pushed onto the subroutine return pusandown
Stack and control is passed tc the statement whose label is the fivrst




Il ~ THE L6 LANGUAGE

argument of the DO tuple (this is the only case where a sequence of
letters as an argument to a tuplie iIs interpreted as a label and not as
a bug/field string). In.tte second form of +the DO tuple, two
addresses are put on the subroutine return stack, the address of the
tuple following the DO tuple, and the address of the statement whose
label is the second argument ¢f the L[O tuple.

If +the 1label DONE is wused as = the transfer label of a
<THEN-clause> or an <wlLSL-cleuse>, tne ‘subroutine return stack is
popped, and control passes tc the address which was stored on the top
of the stack. . ' .

If the. label FAIL 1is used as +the transfer label of a
<THEN-clause> or an <ELSE-claise>, the subroutine stack is popped, and
if there are two elements, ccntrol is passed to the second address,
the one which came from the second argument of the DO tuple. This
FAIL exit feature allows tle programmer to write subroutines which
test certain conditions and return to one location specified by the
caller if some conditions hold, and return +to another if the
conditions do not hold. This is very often wuseful when external
conditions might make it imrossible for a subroutine teo perform its
assigned task, .and it is necessary for the calling routine to know
about it. This FAIL exit can also be used in many other ways. Note
that the FAIL exit feature is the only way to avoid executing all the
operation tuples in a <THEN-clause> or an <ELSE~-clause> once the first
tuple is executed.

Unfortunately, in the current version of L8 there is - no way of
having a separate set of buge for each subroutine, or
statement labels local to eacl subroutine. In general,
passed to a subroutine by Leing placed in one or
information is returned by being placed in bugs.

Since the location of the calling tuple is placed in a stack, it
is quite easy to write recursive subroutines in L6, as long as the
programmer takes care to save internal variables before calling any
subroutine which might call the ~calling routine recursively. The

field contents stack makes stch saving of internal registers quite
convenient.

for having
information is
more Dbugs, and

3.3 THE EXTENDED GT AND FR OFERATIONS FOR STACKS

The extended form of the GT and FR operation make it quite easy
to make a linked stack in LE. To insert a block on the head of a

IT - 19



II - THE L6 LANGUAGE

stack pointed to by the bug P, with links in field L, the programmer
simply writes:

(P GT 1 PL)

and to pop an item off the stack and return it to the free list one
can write: '

(P FR PN)

Note that since the contents of the first argument is saved before it
is modified, and the field specified by the third argument 1is not.
found until after the first argument is modified, the extended GT
operation results in the original value of P being stored in the link
field of the block which has been obtained from the allocator, and
which is now pointed to by the bug P. A similar juggling trick occurs
in the extended FR operation.

ITI - 20



L6 OPERATIONS AND TESTS

The following is a collection of descriptions including examples

for all operations and tests implemented in version 1.5 of L6 oun the
Sigma-7. : '

Hotations Used in Tuple Descriptions

m modified data area (bug name or bug/field string)

1l a literal constant -
(integer, character string, hexadecimal number)

c contents of a field or bug used but not modified
(buz name or buz/field string)

cl contents of a field or bug, or literal constant i
used but not mocified (literal, bug name or bug/field string)
int positive integer
£ field name
.The tuple descriptions are grouped &ccording to the

categories in section 3.2.1.

Arpendix A - 1



OPERATIOY TUPLES

1. STORAGE ALLOCATION AND RELEASE

ALLOCATING A BLOCK:

Tuple Format:
(m GT cl)
(m-1 GT cl mn-2)

Description:

The first format allocates a block wihiose size 1is
determined by the value of "cl" and places a pointer
to the first word of the block in "m". ’

The second format does severail: things. First, it
saves the original contents of "m-1" in a -special
temporary register. It then allocates a block whose
size 1is determined by the value of "cl" and puts a
pointer to the first word of the block in "m-1".
Finally, it ©places the original value of "m-1" in
the position specified by "m-2" after "m-1i" has been
changed. Thus, it is possible to put the criginal

value of "m-1" in the block which has just been
allocated. :

Examples:

(P GT 3) allocates a three word block and puts a
pointer to the first word of the block in the bug P,

(QX GT MN) allocates a block whose size is given by
the contents of the field MN, and puts a pointer to
the block ir the fielid QX.

(P GT 2 PN) allocates a two word block, puts a
pointer to the first word of the block in the bug P,
and puts tle original value of the bug P in the N
field of the new block (as specified by PN).

Arpendix A - 2



RELEASING A BLOCKX:

Tuple Format:
(m FR)
(m-1 FR m-2)

Description: _ . .
The first form of FR releases the block pointed to

by "m". . "M" must point :to:;the first word of an
allocated bJOCk or an error Will occur. Although the
contents .of "m" are not modified by this tuple, "m"

can no longer be used as a ‘p01nter since it no
longer points to a word within an allocated block.

The second form of FR does several things. It first
saves the ccntents of "m-2" in a temporary register.
It then releases the block pointed to by "m-1" (as
in the sirple FPR tuple). Finallv, it places the
original ccntents of "m-2" in "m-iM. Note that
since the ccntents of "m-2" are obtalned before the
block is freed, this makes it possible fTo save a
field from the r°leasea block and place it in "m-1",

This °x*ended ‘form of the FR tuple, along with the
extended form of the GT tuple make it convenient to

build a llnked push-down list out of arbitrary size
blocks. '

Examples: '
(P FR) frees the block pointed to by P.

(P FR PN) frees the block pointed to by P, but
places the N field of the freed block in P.

Appendix A - 3



2. [SSIGNMLNT OPERATIONS

ASSIGNMENT :

Tuple Format:
(m « cl)
{m = c1)
(m E cl)

Description:

All three of these tuples transfer the value of '"cl"
to the 1location "m". If +the field "cl1» is larger
than "m"™ tlen only the rightmost bits (as many as
will fit in "m") are trausfered. If the field "cl"
is smaller than "m" then "cl" is extenuded on the
left with zeroes and then transfered.

INTERCHANGE OF CONTENTS:

Tuple Format:
(m-1 IC m-2)

Description:

This tuple causes the contents of

and "m-2" tc be interchanged. If the two are fields
of unequal size then the larger is truncated on the
left as it 1s moved into _the smaller, and the
smaller is extended on the left with zeroes.

locations "m-1"

Arpendix A ~ 4



3. ARITHMETIC OPERATIONS

4

General note: In all arithmetic operations, the arguments to be
combined are first transfered into 32 bit registers in
right-justified positions (i.e., filled out on the left with
zeroes 1f they are shorter than 32 bits). The two registers are
combined as specified by the operation code, and the result is
transfered into the modified argument (the first argument). If
the first argument is shorter than 32 bits, only the rightmost
bits of the result are transfered. :

ADDITION:
Tuple Format:
(m + cl)
{m A cl)

Description: ‘ A
The contents of "m" and the value of "cl" are added
together and the result is stored in location "m",

SUBTRACTION:

Tuple Format:
(m - cl)
(m S c1)

Description:

The value of "cl"™ is subtracted from the contents of
"m" and the result is stored in location "R,

Appendix A - 5



MULTIPLICATION:

Tuple Format:
(m = ¢l)
(m ¥ cl)

Description: ]
The contents of "m" are multiplied by the value of

"el" and the  result (low order 32 bits of the
product) is stored in the location "m".

DIVISION:

Tuple Formaf:
(m / cl)
(m V cl)

Description:

The contents of "m" are divided by the value of "cl”
and the integer quotient is stored in the location
"m", Note that this 1is integer division. TFor
example, if X contains 9, then after executing

(X / 2) the bug X contains the integer 4, not the
floating pcint number 4.5 or the fraction & 1/2 or
any other rendom value.

Ajpendix A - 6



4, BITWISE LOGICAL OPLPRATIONS

General comment: The combination of arguments of different
length with logical operations is done in essentially the same
manner (with the secme extensions and truncations) ‘as

arithmetical operations.

OR:
Tuple Format:
{(m 0 c1)
{(m SMP cl)
Description: -
The content: of "m"™ are "OR-ed" with the value of
"cl" and the results are stored in the location “m".
AND:

Tuple Formét:
(m N cl) ,
(m EXT cl) ---- (for EXTract the bits of "ci™)

Description: _
The contents of "m" are M"AND-ed" with the value of
"el"™ and the results are stored in the location "m'",

EXCLUSIVE OR:

Tuple Format:
(m X c1)
(m HAD cl) ---- (for Half-ADding "m" and "cl")

Arpendix A - 7



Description:
The content: of "m"™ are "EXCLUSIVE OR-ed" with the

value of "¢1l"™ and the resulis are stored in the
location "m',

COMPLEMENT:

Tuple Format:
(m C c1)

Description:

The value cf "cl" is logically complemented (i.e.
One bits are made zero, zero bits are made one - be
careful to remember truncation and left extension by
zero) and the result is stored in the location "m".

Arpendix A ~ 8



5. I!}PUT/QUTPUT OPERATIONS

OPENING AND INITIALIZINC FILES:

Tuple Format:
: (outfile INIT infile)

Description:

This operation causes the Sigma-7 file named
"outfile" to be opened for output, and the Sigma-7
file named "infile" to be opened for input. From

the time tlis tuple is executed until another INIT
tuple is executed, all data input to the progranm
will come from file "infile", and all output will go
to file "ouvtfile". This tuple can be used anywhere
in a prograr to change the input and output files.
The execution of this tuple closes the previously
opened input and output files.

"Infile" must either be the name of a previously
existing Sigma-7 file enclosed in quotes, or the
symbol $. The symbol $ is interpreted to be the
user's terminal console if the wuser is 1in
interactive mode and the lineprinter if the user is
in batch mode. (Obviously the symbol $ should not
be used for the input file in batch mode.

Lineprinter input?!?!)

"outfile" must either be the name of a Sigma-7 file
(which may not have previously existed) enclosed in
quotes, or the symbol &, If "outfile" is a
previously existing file +then that file will be
overwritten with the new output and the previous
contents of the file will be lost. If "outfile" is
@ new file rame, the file will be created and output.

will go to the new file. The symbol $ stands for
the user's terminal console in interactive mode, and
for the lineprinter in batch mode. (Thus $ is a

perfectly 1reasonable output file in batch mode.
Output previously sent to the lineprinter will not
be destroyed by using $ as the output file.)

Arpendix A - 9



SPECIAL NOTE ON LINE TREMINATIONS IN FILES

The user deserves z word of caution on the use of carriage
returns as line terminat fon characters on the Sigma-7. There is

some confusion in tle UTS System about 1line termination
characters. To wit:

1) there is (in gfgeneral) no carriage return at the end of
lines in files produced by rezading a deck of cards from
the card reader. .

2) There are two cemmonly used characters for representing

- carriage returrs which the user may '"see" 9on input,
(hexadecimal ccdes .0D and .15) but only one code
(hexadecimal .0D) which will be recognized as a carriage
return by the L6 system on output. :

Thus, it is highly -recommended that the user wutilize some
character other than a carriage return to denote the end of a
line of input (e.g., a period, "." or a comnma "y"). It is also
useful to write a standard input routine that skips over and
discards all carriage return characters on input (it is
necessary to check for toth hexadecimal .0D and hexadecimal .15,
even on input from the user's terminal).

SPECIAL HNOTE ON THL BUTFIERING OF OUTPUT

L6 buffers its output. Thus, the OUTS tuple and the TOUT
tuple do not actually transmit data directly to the output file.
Instead they place their argument character string at the end of
an output buffer. The contents of this buffer dre transmitted
to the output file either whenevep: '

1) the output buffer becomes filled during the execution of
an output tuple, or

2) a carriage return (hexadecimal .0D) is encountered in
the output strirg, or

3) the FOUT (force output) tuple is used, which acts as if

’ the argument string is terminated by a carriage return

Arpendix A - 10



CHARACTER STRING OUTPUT{

Tuple Format:
(cl-1 OUTS c¢1-2)

Description: :
This tuple buffers several characters for output
(see above), The number of characters is specified
by the value of "cl-2", (This number must be either
1, 2, 3 or 4.) The characters are specified by the

vaiue of "cl-1", and it is the rightmost "ecl-2"
characters that are transmitted, in"a left to right
sequence,

Examples:

("ABC" 0OUTS 3) will buffer for output the three
characters /, B and C, in that order.

("ABC" OQUTS 2) will buffer for output the two
characters A and By, in that oraer.

(.0D OUTS 1) will force out the current contents of

the output buffer, followed by a carriage return
(hexadecimal ,0D).

(BC OUTS 2) will buffer for output the rightmost two
characters (16 bits) in the field specified by BC.

(LONG) TEXT STRING OUTPULT:

Tuple Format:
("text string" TOUT)

Description:

This tuple will buffer for cutput the entire long.
text string "text string",

Alpendix A - 11



FORCING OQUTPUT OF TEXT FROM THE BUFFER:

Tuple Format: ,
("text strirg" FOUT)

Description:

This tuple places the long text string “text string"
in the outjut buffer, followed by a carriage return
(hexadecimal .0D), This effectively forces out the
entire contents of the buffer, then the long text

string, and finally a carriage return.

TEXT INPUT:

Tuple Format:
(m INS cl)

Description:

This command reads in several characters, the number
specified by the value of "cl", and places them in

the location "m", right-justified.

The characters

are read in from the currently open data input file,

as determined by the most recently
tuple. (Note: 1 < cl < 4)

Appendix A - 12

exXecuted INIT



6. SUBROUTINE CALLS

The L& subroutine transfer strategy is described in detail
in section II.5.2 (page II - 18). Basically, L6 provides a way
for a tuple to transfer control to a labelled line, and to save
the "address" of the following tuple (or next line if there are
no tuples after the sulroutine call, or the label at the end of
the clause if the subroutine call tuple was the last tuple in a
<THEN-clause> or an <ELSE-clause with a label). This "normal
return address" is stored on the "subroutine return
pushdown-stack". Whenever the label DONE appears as a transfer
label +to be executed, .the subroutine return pushdown-stack is
popped and control is passed to the "normal return address"
which was just popped off the stack. (If the subroutine stack
-is empty, an error message will result.) lote that L6 does not
‘check that ‘the wuser uses the DONE label to return from a

statement which has been reached by a subroutine call. This 1is
not "legal", but it cannot be detected by L6. The user can tell
" that this has happened by noticing the "level number™ printed

out in the dump or termination message when the program stops.
That number tells how many return addresses are left on the

subroutine stack (i.e., how many subroutines have been entered.
‘and not "returned from" when execution terminated).

The user can alsc supply an alternate return point for a
Subroutine, by means of the DO tuple with a FAIL-exit. This
tuple allows the user tc specify a separate FAIL-exit to be
placed on the subroutine return stack along with the "normal
return address'". Whenever the label FAIL dppears as a transfer
label the subroutine stack is popped. If the top of the stack
had a FAIL-exit then control is passed to the statement
specified by the FAIL-exit, otherwise an error occurs.

SUBROUTINE TRANSFER:

Tuple Format:
(sublabel DO)
(sublabel DO failexit) -

Description: : _
The first form of DO causes control to be transfered

Arpendix A - 13



to the line with label sublabel (an error occurs if
no such line exists), with normal return address put
on the subroutine stack as described above.

The second form of the DO tuple transfers control to
the 1line with the label "sublabel™, 'and establishes
the line with label "failexit™ as the FAliL-exit on
the subroutine stack. '

Aprpendix A - 14



7. DEFIKING FIELD TEMPLATES

T

FIELD TCMPLATE DLCFINITIONS:

Tuple -Format:

(cl-1 D f cl-2 c1-3)
(cl-1 D f cl-2)

Description: o ,
The first form of +the D tuple defines the field
template with name "f", with offset equal to the
value of "cl-1" (which may be computed) and with bit
specificaticns given by the values of Ycl-2" and
"cl-3" (which may also be computed).

The second form of the D tuple defines the field
template with name "f", with offset equal to the

value of "cl-1" (which may be computed) and with the
bit specification given by the (right-justified)
value of "cl-2" (which may be computed) as a mask.

See the descriptions in section II.2.2.1 (pages
II - 6 and 1I - 7) for more detail.

Appendix A - 15



8. PUSLDOWN STACK INSTRUCTIONS

There are two stacks in L6 (aside from the subroutine
return stack) on which the user may store information. The user
may save the definitions of field templates on the field
definition stack and tle may save field values on the field
contents stack. Both c¢f these stacks actually place groups of
field definitions (fielc values) on the stack with a single push
instruction. Thus it is simple to save several field

definitions (field wvalues) at one time and restore them later.
The only confusing part is that the user must pop off the same
number of items as he pushed on in one group, and in the same

order, (The order of items in a group is not reversed when the
group of items goes on the .stack. The order of groups on the
-8tack is the reverse ¢f the order in which the groups were

‘pPlaced on the stack.)

SAVING FIELD VALUES (AND CONSTANTS):

Tuple Format:
(cl SFC)

(int SFC cl1-1 cl1-2 ... el-int)

Description:

The first form of +the SFC tuple is merely an
abbreviated form of (1 SFC cl), so we describe the

second form only, This command pushes onto the
field contents stack a group (of size "int") of
values, from the items "cl-1i", ... s "Cl-int™"
(which may be constants, bug names or bug/field
strings). L6 will check that +the number of
arguments to the right of the SFC is the same as the
value of "int" and if not it will give an error

message,

- Examples:

(3 SFC PX .(AB -5) saves a group of three items, the
contents of the field PX, the hexadecimal constant
«OAB and the (32 bit two's complement) integer -5.

Arpendix A - 16



RESTORING VALUES SAVED QN THE FIELD CONTENTS STACK:

Tuple Formét:
(m RFC)
(int RFC m-1 m-2 ... m-int)

Description:

The first focrm is an abbreviation for (1 RFC m), so
we discuss only. the second form. This tuple pops

the top of the field contents stack.

If the group

at the top of the stack does not have the number of

items in it specified ‘'by "int" an

error occurs.,

Otherwise, the items in the group are stored in the
locations "r-1", ... "M-int". Be sure to note that

if the save operation was:
(int SFC cl-1 cl-2 ... el-int)
and the restore operation is:

(int RFC m=1 m-2 ,.. m~int)

then the result is the same as the assignments:

(m=1 = cl-1) (-2 = cl-2} ... (m-int =

d-int)

This statement is true both in terms of the ordering
of the argunents and in terms of the truncation and
extension of unequal size arguments in an

assignment.

Examples:

(3 RFC P Q R) can be used to restore the registers

P, Q and R saved by (3 SFC P Q R).

Arpendix A - 17



SAVING FIELD DEFINITIONS:

Tuple Format:
(f SFD) A
(int SFD f-1 £-2 ... F-int)

Description:

The tuple form (f SFD) is short for (1 SFD f), so we
discuss only the second form. That tuple saves the
field defiritions associated with the field names
b b B , "f-int" in a group on the field
- definition stack (or gives an error if the wrong

number of arguments is given). The operation works
very similarly to SFC.

" RESTORING FIELD DEFINITIONS:

Tuple Format:
(f RFD)

Description:

These tuples are the companion tuples for restoring
field definitions, They work with SFD in the same
way as RFC works with SFC (with respect to order of
arguments).

Arpendix A - 18



LEFT SHIFT:

9. BIT1 SHIFTING AND COUNTING

Tuple Format:

(m L cl)

Descr%g§é0¥éple-shifts the bits of the contents of "n"

left by the number of positions specified by the
value of Mcl". = Zeroes fill .the vacated rightmost

positions. The result is 'stored in the location
"o 1t
m -

. RIGHT SHITT:

Tuple Format:

(m R cl)

Description:

This tuple shifts the bits of the contents  of "m"
right by the number of positions specified by the

value of "c¢1n, Zeroes fill the vacated leftmost
positions.' The result is stored in the location
V‘lm" .

POSITION OF LEFTMOST ONI BIT:

Tuple Format:

(m COL cl)

Description:

This tuple fills the location "m" with the position
of the leftmost one bit in the value of "cl". The

position is given relative to the left boundary of
the field, with a value with a one in the leftmost

Appendix A - 19 -



position resulting in "m" being set to 1.°

Examples:
(A COL BC) If the field BC contains the bit string
icoded by .01A4B (= 00000001101001001011) then after
the tuple the contents of bug A will be the integer
8. '

T If the value in #£ield BC ~is coded by .B1 (=
+10110001) thén the bug A is set to 1.

If the value of ﬁhe field "cl" is all zeroes (no omne
bits) then the bug A is set to O,

N
POSITION OF LEFTMOST ZEIO BIT:

Tuple Format:
(m CZL c1)

Description:
This tuple fills the location "m" with the position
of the leftmost zero bit in the value of "cl". This
operation is essentially the same as COL, except
that it looks for zeroes instead of ones.

POSITION OF RICHTMOST OXE BIT:

Tuple Format:
(m COR cl1)

Description: i
This tuple fills the location "m" with the position
of the rightmost one bit of the value of "c1",
relative to the right end.

Examples: . e
(A COR BC) if the field BC contains the value .04 (=
00000100) then the bug A is set to 3. If the field
BC is all zeroces, then the bug A is set to 0. End
(with the rightmost bit being called position 1).

Arpendix A - 20



POSITION OF RIGHTMOST ZIRO BIT:

Tuple Format:
(m CZR c1)

Description:

This tuple fills the location "m" with the position
of the rightmost zero bit of the value of "c1",

relative to the right end (with the rightmost bit
being called position 1).

COUNT NUMBER OF ONE BITS:

Tuple Format:
(m CO cl)

Description:

This tuple fills the location "n" with the count of
the number of one bits in the value of "cl",

COUNT NUMBER OF ZERO BITS:

Tuple Format:
(m CZ c1)

Description:

This tuple fills the location "m" with the count of
the number of zero bits in the value of "c1,

Appendix A -« 21



INCREMENTAL DUHP (T THE USER ALLOCATED STORAGL AREA

INCREMENTAL DUMP TUPLE:

Tuple Format:
(cl DUMP)

Description: .

This tuple causes a dump to be. printed on the
listing device whenever the value of M"cl" is greater
than 0, This can be used to cause a conditional
dump, Suck incremental dumps are of great value in
debugging Frograms and ‘in demonstrating the data
Structures that have been created at 1ntermed1ate
times during the exXecution of the progran.

To 1nterpret the output of a dump,

see the section
on "Reading a Dump". '

Arpendix A - 22



TEST TUPLES

11. EQUALITY TESTS

EQUALITY TEST:

Tuple Format:
(el-1 = c1-2)
(cl-1 E c1-2)

Description: , :
This tuple is true if +the 32 bit register with the
value of "cl-1" right-justified and. filled with
zeroes on the left is equal to the value of a second
32 bit register with "gl-2" right-justified filled
with zeroes on the left.

This test is often used for fields of the same

length, and in that case it is true exactly when the
contents of the fields are identical.

INEQUALITY TEST:

Tuple Format:
(cl-1 # c1-2)
(el-1 NE c1-2)
(cl-1 <> ¢1-2)
(cl-1 >< ¢1-2)

Description:

This tuple is true exactly when the tuple
(cl-1 = cl1-2) is false. :

Arpendix A - 23



12. ALGEBRAIC COMPARISONS

GREATER THAN:

Tuple Format:

(cl-1 > c1-2)
(cl-1 G cl-2)

Description:

This test is true if the 32 bit register with the
value of "cl-1" right-justified and filled on the
left with zerces is greater than the 32 bit register
with the value of "cl-2‘ right-justified and filled
on the left with zeroces. The comparison is done as

32 bit two's complement numbers (with correct sign
comparison). :

LESS THAN OR EQUAL TO:

Tuple Format:

(cl-1 =< ¢c1-2)
(cl-1 <= ¢c1-2)
(el-1 LE c1-2)

Description:

This test is true exactly when the test
(cl-1 > cl-2) is false.

Arpendix A - 24



LESS THAHN:

Tuple Format:
(cl-1 < c1-2)
(cl-1 L c1-2)

Description-

This test is true exactly when the test
(cl-2 > cl-1) is true.

GREATER THAN OR EQUAL TC:

Tuple Format:
(cl-1 => ¢1-2)
(cl-1 >= c1-2)
(cl-1 GE cl1-2)

Description:

This test ic true exactly when the test
(cl-2 > cl-1) is false.

INCLUSIVE RANGE TEST:

Tuple Format:
(cl-1 R cl-2 c1-3)

Description: :
This test is true exact

' ly when both the tests
(el-2 <= c1-1) and (cl-

1 <= ¢l1-3) are true.

Arpendix A - 25



13. LOGICAL TESTS

'SUBSET QF ONE BITS:

. Tuple Format:
(cl-1 0 c1-2)

Description-
This test is true exactly when all one bits in the
value of "cl-1" have corresponding one bits in the

value of "cl-2", (It is possible for this test to
be true when the value of "cl-2" has more one Dbits
than the value of "eleli",)

Examples:

(5 07) is true
(7 0 5) is false

SUBSET OF ZERO BITS:

Tuple Format:
(cl-1 Z c1-2)

Description: .
This test is tprue exactly when all zero bits in the
value of M"cl-1" have corresponding zero bits in the
value of '"cl-2¢, (It is possible for this test to

be true wher the value of "cl-2" has more zero bits
than the value of "el-1,)

Examples:

(5 2 4) is true
(4 2 5) is false

Ajpendix A - 25





