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Abstract: Air monitoring networks developed by communities have potential to reduce exposures
and affect environmental health policy, yet there have been few performance evaluations of networks
of these sensors in the field. We developed a network of over 40 air sensors in Imperial County, CA,
which is delivering real-time data to local communities on levels of particulate matter. We report here
on the performance of the Network to date by comparing the low-cost sensor readings to regulatory
monitors for 4 years of operation (2015–2018) on a network-wide basis. Annual mean levels of
PM10 did not differ statistically from regulatory annual means, but did for PM2.5 for two out of the
4 years. R2s from ordinary least square regression results ranged from 0.16 to 0.67 for PM10, and
increased each year of operation. Sensor variability was higher among the Network monitors than
the regulatory monitors. The Network identified a larger number of pollution episodes and identified
under-reporting by the regulatory monitors. The participatory approach of the project resulted in
increased engagement from local and state agencies and increased local knowledge about air quality,
data interpretation, and health impacts. Community air monitoring networks have the potential to
provide real-time reliable data to local populations.

Keywords: low-cost monitors; particulate matter; participatory research

1. Introduction

Small, low-cost air quality sensors of improving quality are becoming increasing available, and
many public health and research projects are now employing these next-generation air monitors
to conduct personal and local-level air monitoring for exposure control [1,2]. This new technology
holds great potential to address gaps in regulatory air monitoring data to better characterize air
quality at the community level. With the stall of international agreements to decrease emissions to
address climate change, local community networks could result in cost-effective improvements to air
monitoring and emission reduction at the local scale in the near-term and have policy relevance and
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positive developments globally for climate change and air pollution in the long-term. Starting in 2014,
the Imperial County Community Air Monitoring Network (“the Network”) has combined community
participatory and scientific methods to develop a network of over 40 air sensors throughout the county,
delivering real-time data to local communities on levels of particulate matter. The Network now has 4
years of data available for performance evaluation. Although the use of these sensors is increasing,
there have been few performance evaluations of low-cost networks operating in the field [3,4] and none
which have reported with such extensive data. Duvall et al. [3] evaluated the performance of low-cost
sensors measuring NO2 and ozone in two U.S. cities, and found good agreement of their sensors with
reference sites. Mailings et al. [4] developed a low-cost gas sensor and evaluated multiple statistical
methods for evaluating sensor performance. In Salerno, Italy, Sofia et al. [5] evaluated the performance
of a low-cost network measuring PM2.5 and found good agreement of their sensors with gravimetric
sampling. Although there have been calibration/validation studies of these sensors, to our knowledge
no studies have been conducted evaluating performance of a low-cost network post implementation
on a network-wide basis, compared to regulatory data. Further, none of the previous evaluations have
been done on community-based air monitoring systems where the community has taken the lead in
monitor siting and hardware/software maintenance of the network.

We have previously reported on the monitor calibration/validation [6], and the process for monitor
siting [7]. The objective of this paper is to evaluate the performance of the Network to date by
comparing the low-cost sensor readings to regulatory monitors for 4 years of operation (2015–2018) on
a network/domain-wide basis. We also discuss how the participatory research approach affected the
project overall, and the policy and public health actions which have resulted from the project.

2. Materials and Methods

Imperial County, CA, is home to a primarily Latino population (84%) and has some of the
highest rates of unemployment (47%) and poverty (24%) in the nation [8]. The county is primarily
a desert ecosystem, much of which has been converted to agricultural land. The county has a range
of air pollution sources that contribute to regular and sustained exceedances of the California PM
standards [9,10], including nearly 8 million vehicles annually crossing the U.S.-Mexico border in
Calexico [11], an average of about 28,000 acres of agricultural field burned annually [12], and the
drying Salton Sea [13].

The Imperial County Community Air Monitoring Network (the Network) was formed by
a collaborative group of community, academic, nongovernmental, and government partners designed
to fill the need for more detailed data on particulate matter in an area that often exceeds air quality
standards. The Network employed a community-based environmental monitoring process in which
community members and researchers had specific, well-defined roles as part of an equitable partnership
that also includes shared decision-making to determine study direction, plan research protocols, and
conduct project activities. Community members played key roles in determining study design,
siting and deploying monitors, and data collection. The Network is now producing real-time
particulate matter data from 42 low-cost sensors throughout the county. The Network is one of the
largest community-based air monitoring networks in the U.S. and, to our knowledge, is the first
community-designed network of its size in the world.

The project partners included Comite Civico del Valle (CCV), a community-based organization in
Imperial County; Tracking California, a program of the nongovernmental Public Health Institute in
collaboration with the CA Department of Public Health; and the Seto research group at the University
of Washington (UW). Faculty at the University of California at Los Angeles and George Washington
University served in an advisory capacity. The distinct roles of the partners and the initial community
engagement structure have been described in detail elsewhere [14].

The monitor selected for the Network was a modified laser-based optical counter (Dylos DC1700,
Dylos Corpration, Riverside, CA, USA). The firmware was changed to increase the number of particle
size bins from two to four (>0.5, >1.0, >2.5, and >10 µm). Particle counts were converted to mass
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concentrations to align with health recommendations that are usually based on the latter. Algorithms
to convert counts to mass were developed, taking into account relative humidity, based on co-location
of the instruments with federal equivalent method (FEM), beta-attenuation monitors (BAMs), and
federal reference method (FRM) gravimetric filters. The algorithm, process for the calibration, and field
validation, and further specifications of the Dylos monitor have been described in detail elsewhere [6].

The monitor system included the Dylos particle sensor, temperature and relative humidity sensors,
a heater and fan, and a microcontroller to allow wireless real-time data transfer to the Internet.
Data are sampled once every 10 s from the Dylos and a HIH6130 temperature and humidity sensor.
Power consumption is about 3 W without the fan or heater (temp above 120 F), and 203 W with the
heater and no fan (temp below 40 F). The monitor components were housed in a NEMA-6 rated
enclosure with a cooling fan to sustain optimal sensor performance under Imperial County’s harsh
summer conditions. The rationale and siting for the first 40 sensors were based on a two stage process
where the community selected the locations of the first 20 sensors primarily based on locations of
vulnerable populations and the second 20 based on specifications to meet the spatial requirements for
land use regression [7]. We developed a process to involve community residents to select monitoring
sites, which involved the use of mobile devices equipped with a custom-designed mobile web form,
modified from IVAN Imperial (https://ivan-imperial.org/air), CCV’s existing community environmental
reporting website [7]. Residents used government-based monitor siting criteria (such as building
height, security, likelihood of available Wi-Fi and AC power supply, and locations of nearby air
pollution sources) in their assessment.

The air quality data are transmitted in real-time to data servers managed by CCV once every
10 s (data are averaged every 5 min), converted from particle counts to mass concentrations, checked
for quality assurance/quality control, and then fed to the IVAN website. Quality control procedures
include flagging unusually low values, data completeness, and routine manual inspection of the
sensors. The IVAN website developed by CCV allows public access to real-time data from the Network.
The U.S. EPA Air Quality Index (AQI) is calculated for five major air pollutants regulated by the Clean
Air Act: ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide [15]. As
this project was only measuring particulate matter, another index was needed. To address this, the
particle mass results (in µg/m3) were averaged using the U.S. EPA NowCast method [16]. The NowCast
method produces a value for PM10 and PM2.5, which is an average of the previous 12 h. If the air
quality that day is stable, then the hours are weighted more evenly (approaching a 12-h average).
If the air quality that day is changing, then recent hours are weighted more heavily (approaching
an average of the most recent 3-h). The resulting NowCast value (in µg/m3) is then converted to
a Community Air-Quality Level (CAL)—an indicator developed specifically for this Network with
community input—using the U.S. EPA Air Quality Index calculation method. After consultation with
the Imperial Community Steering Committee on how to make the data most understandable and
useable, CALs were categorized into four categories: green/low risk (0–50), yellow/moderate risk
(51–100), orange/unhealthy for sensitive groups (101–150), and red/unhealthy (above 150). The CALs
are calculated for each monitor based on current concentrations, with the number and category updated
on this website every 5 min. The 30-day and 90-day summary statistics for CALs are calculated using
24-h AQIs.

To compare the overall daily averages of PM10 and PM2.5 from the Network versus regulatory
monitors, we used reference monitor data available from U.S. EPA’s Air Quality System (https:
//www.epa.gov/aqs), which shows ambient air quality data reported to U.S. EPA by the State of
California. We then matched Network and regulatory monitors by reporting day and computed
mean 24-h averages across all Network sites (n = 42) and regulatory sites in the Imperial Valley (n = 5
for PM10, and n = 3 for PM2.5—two of the PM10 sites do not measure PM2.5). We then computed
seasonal and annual averages from the mean 24-h averages. Daily averages for Network monitors
were calculated from hourly averages with 75% completeness (nine 5-min measures or more per hour).

https://ivan-imperial.org/air
https://www.epa.gov/aqs
https://www.epa.gov/aqs
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Only 24-h averages for Network monitors with 75% completeness (18 h or more per day) were included
in this analysis.

To test for significant differences in annual averages between Network and regulatory monitors,
we conducted two-sample t-tests for independence with unequal variance in OpenEpi, Version 3
(https://www.OpenEpi.com). Two-sided p-values indicated significance at the α = 0.05 level. We used
restricted maximum likelihood estimation to calculate unbiased inter- and intra-monitor variance
estimates from monitor-specific 24-h measurements. We ran ordinary least squares (OLS) simple linear
regressions to estimate associations between mean 24-h averages from all Network monitors and mean
24-h averages from all regulatory monitors, by pollutant and year. To reduce bias in our estimates
which were calculated from aggregated data, we used the bootstrapping approach with n = 1000
random samples from the observed data, with replacement. This method yields robust estimates of
variance and bias-corrected 95% confidence intervals.

We computed Lin’s concordance correlation coefficient for agreement. This method combines
measures of precision and accuracy to determine how far the observed data (measured by two different
methods) deviate from the 45◦ line of perfect concordance. Data were processed and analyzed in
R, Version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria) using nmle() (Pinheiro J,
Bates D, DebRoy S, Sarkar D and R Core Team, 2016), boot() (Canty A, Ripley BD, 2020), ggplot2()
(Wickham H, 2016), and agRee() (Feng D, 2020) packages for inter- and intra-monitor variance estimation,
bootstrapping and regression plots, and concordance correlation coefficient estimation.

3. Results

3.1. Air Quality Results

After removing incomplete hourly and daily averages, there were 28,782 and 21,675 daily average
values from 42 Network monitors between 29 May 2015 and 30 June 2018 for PM2.5 and PM10, respectively.
In the same time period, there were 1767 PM2.5 daily averages from three regulatory monitors and 4858
PM10 daily averages from five regulatory monitors. After aggregating across monitor sites, we analyzed
1053 and 1051 paired Network-regulatory mean 24-h averages for PM2.5 and PM10, respectively.

Figure 1 shows median annual 24-h average PM2.5 and PM10 values from the Network during the
2015–2018 period. Median PM2.5 levels from the Network appear to be highest in winter, but there was
no overall trend in increasing levels by time (Figure 1). Average 24-h PM2.5 values ranged from <1
to 255 µg/m3 during the time period. PM10 values also were highest in winter (Figure 1), except for
Spring 2016 being the highest for that year. PM10 values ranged from 1.8 to 2431 µg/m3.
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Figure 1. Median values (average 24-h measurements) of PM2.5 and PM10, Imperial Community
Air Monitoring Network, 2015–2018, by season. Hours with less than 75% of completed 5-min
measurements and days with less than 75% of completed 1-h measurements are excluded. Spring 2015
excluded due to low numbers of observations.
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Table 1 shows average annual 24-h values of PM2.5 and PM10 from the Network and from CA
regulatory sites in the Imperial Valley from 2015 to 2018 on a network-average basis. Mean values
were not statistically significant for any year for PM10, but were statistically different for PM2.5 for
2015 and 2017. Data variability overall was much larger in the Network compared to the regulatory
monitors, indicated by higher standard deviations, particularly for PM10. The 24-h average maximum
levels of PM10 recorded by the community air Network reached 2430 µg/m3 in 2017 and the maximum
level of 24-h mean of PM2.5 was 255 µg/m3 in 2018 (not shown).

Table 1. Annual particulate matter 24-h averages, standard deviations, coefficients of variation,
two-sample t-test, and ordinary least squares (OLS) linear regression results. California Regulatory and
Community Network Values, 2015–2018. Source: IVAN Network, U.S. EPA AWS.

Regulatory † Community Network Two-Sample t-Test *

Mean SD CV Mean SD CV t Statistic p-Value

PM2.5 2015 10.7 6.4 59.4 8.9 6.8 77 4.78 <0.0001
2016 11.7 6.9 58.9 11 8.8 80.4 1.88 0.06
2017 10.7 6.5 61 9.2 10.1 109 3.56 0.0004
2018 11.7 8.5 72.6 10.6 10.1 95.7 1.85 0.0674

PM10 2015 46 30.1 66.7 44.6 42.3 95 0.71 0.4763
2016 53.6 47.3 88.2 55.2 83.8 151.6 −0.73 0.4631
2017 45.5 36.4 80 42.8 71.1 166.1 1.52 0.1295
2018 54.8 48 87.6 56 85 151.9 −0.40 0.6913

† Regulatory data based on samplers using federal reference or equivalent methods. Extreme events are included.
* Two-sample t-test for independence; two-sided p-values significant at the α = 0.05 level are bolded. Note:
Only 6 months of data available for 2015 (Community Network data only available since 5/29/2015) and 2018
(regulatory data only available until 6/30/2018).

Annual average PM2.5 measurements of the Network were consistently lower than those from
regulatory monitors. These differences were only statistically significant in 2015 (t = 4.78, p < 0.0001)
and 2017 (t = 3.56, p = 0.0004). This could possibly be explained by the fact that most of the regulatory
monitors are located in more urban areas which would have higher levels of PM2.5, compared to the
more diverse locations of the community monitors, or that the Dylos sensors are measuring PM10

more accurately than PM2.5. Community average annual levels of PM10 were not consistently higher
or lower than the regulatory monitor average annual readings.

Monitor-specific 24-h averages were used to estimate variance between and within monitors
for both Network and regulatory monitors, shown in Table 2. Inter-monitor variance was higher in
the Network compared to that of regulatory monitors, suggesting greater variability across monitor
locations in the Network. Intra-monitor variance was also higher in the Network, suggesting greater
variability within each monitor location across time. Overall, intra-monitor variance was higher than
inter-monitor variance for both Network and regulatory monitors, except for PM2.5 measurements
from Network monitors which had greater variance between monitors than within.

Table 2. Inter- and intra-monitor variance from restricted maximum likelihood estimation of 24-h
average measures of PM2.5 and PM10 for Community Network (IVAN) and regulatory monitors.

Inter-Monitor Variance Intra-Monitor Variance

PM2.5 Community Network * 89.20 74.32
Regulatory † 3.86 45.98

PM10 Community Network * 251.67 5765.69
Regulatory † 36.09 1727.83

* Community Network (IVAN) includes 41 Dylos sensors located throughout Imperial County. † Regulatory
monitors in Imperial County include three PM2.5 monitors in Brawley, El Centro and Calexico and five PM10
monitors in Niland, Westmorland, Brawley, El Centro, and Calexico.
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Scatter plots and OLS linear regression lines for PM2.5 and PM10 are shown in Figures 2 and 3,
respectively. Network and regulatory mean daily averages were significantly associated for both PM2.5

and PM10 across all years. Linear associations were weak to moderate, as indicated by r-squared
values, and robust estimates of standard error were low (Table 3). For PM2.5, regression lines show that
Network monitors are, on average, predicting similar mean 24-h averages as the regulatory monitors.
For PM10, regression lines show that predicted mean 24-h averages for Network monitors are similar to
those of the regulatory monitors when estimates are less than 100 µg/m3. However, Network monitors
are predicted to have higher mean 24-h averages for measures of PM10 in the range of 200–600 µg/m3

compared to predicted values for regulatory monitors.
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Table 3. Bootstrapped estimates of associations between Network and regulatory mean 24-h average
PM2.5 and PM10 measurements from ordinary least squares linear regressions.

r2 95% BCa CI † Bias SE *

PM2.5 2015 0.357 (0.204, 0.520) −0.0018 0.081
2016 0.468 (0.370, 0.592) 0.0010 0.057
2017 0.489 (0.376, 0.612) −0.0027 0.060
2018 0.401 (0.233, 0.507) 0.0130 0.067

PM10 2015 0.157 (0.040, 0.322) 0.0197 0.080
2016 0.538 (0.373, 0.739) 0.0019 0.093
2017 0.577 (0.369, 0.762) −0.0075 0.099
2018 0.673 (0.469, 0.832) −0.0105 0.094

† 95% bias-corrected and accelerated bootstrap confidence intervals. * SE: bootstrap standard error.

Concordance coefficients indicate moderate agreement between Network and regulatory 24-h
averages (Table 4). Agreement was similar for measurements of PM10 (Rho = 0.692, CI = 0.661, 0.720)
and PM2.5 (Rho = 0.604, CI = 0.567, 0.638).

Table 4. Calculation of Lin’s concordance correlation coefficient (Rho) to estimate agreement between
Network and regulatory 24-h average PM2.5 and PM10 measurements.

Rho 95% CI † b *

PM2.5 0.604 (0.567, 0.638) 0.926
PM10 0.692 (0.661, 0.720) 0.961

† 95% confidence interval lower and upper limits. * Bias correction factor measuring how far the best-fit line deviates
from a line at 45◦. No deviation from the 45◦ line occurs when b = 1.

3.2. Under-Reporting by Government Monitors

In the beginning of 2016, the CA Air Resources Board began continuous PM10 monitoring at
Calexico, CA in the Imperial Valley with a BAM FEM. The default setting of the BAM was capped
at 985 µg/m3. Episodes examined in May of 2016 and October of 2017 showed while the FEM BAM
showed values of “985,” the Dylos monitors were reporting readings exceeding 1800 and 1600 µg/m3,
respectively [17]. Upon consultation with the U.S. EPA, CARB examined data from a collocated Dylos
PM sensor from the Imperial Community Air Network for comparison. In December 2017, the FEM
PM10 BAM was re-ranged by CARB to measure up to 4985 µg/m3. This correction will have an impact
on historic and current average and maximum PM10 values.

3.3. Network Maintenance

Establishment of the Network has given the study partners the opportunity to learn and explore
various issues with emerging low-cost sensor technology. The Imperial Community Air Monitoring
Network has been running longer than other monitoring networks of its type, which are typically
deployed for research purposes for a couple of months to a year. Through the study period, efforts
were made to transfer knowledge, ownership and monitoring activities to CCV. All field maintenance
tasks are currently managed by CCV staff, some who received training at the UW lab, and all hardware
designs and software code were provided to CCV. CCV has begun deploying a complementary
network of 17 meteorological monitoring stations, through an equipment loan from US EPA, which
will offer real-time access to wind speed and direction data. Currently, each monitor is visited for
maintenance every 45 days. The maintenance visits include a check-up of all hardware for wear and
tear. Other activities outside of scheduled visits for reactive troubleshooting includes resetting the
microcontroller and connecting the microcontroller back to the wireless network. In many locations,
access to a reliable wireless connection is poor, so cellular hotspots had to be established. However,
high temperatures in the region has led to mobile hotspot batteries becoming warped and battery
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replacement is sometimes necessary. CCV has found that batteries have to be replaced in high exposure
areas once every 2 years.

The Dylos sensor has a factory established 2-year lifespan. Data are flagged when all bins read
0, when they jump up to an unreasonably high value and get stuck at that plateau, or the signal is
slowly attenuated over time. When hardware failure occurs, the old sensor is switched out with a new
unit. Although all the sensors from the original monitor deployment have been replaced, so far only
a handful (5–6) have had to be replaced again for hardware issues. CCV has developed maintenance
and troubleshooting records and an internal activity log which staff use to record any visits to the
monitor sites, allowing staff to share common issues at each site with each other and the external
QA/QC staff. Due to sensor drift and lifespan, factory recalibration is necessary.

4. Discussion

PM exposure is associated with a number of adverse health outcomes, including respiratory
and cardiovascular disease, adverse reproductive outcomes, neurologic disease, and premature
death [18–21]. Approximately 140,000 deaths per year were attributable to total PM in the U.S. from
2000 to 2010 [22]. Climate change is expected to increase wildfire risk, which, in turn, will increase
particulate matter levels, and associated health risks [23]. Exposure to PM is not uniform among
population groups; higher levels of PM have been found to be associated with higher deprivation
indices and low economic position in a recent review [24].

Initial results from the Network from approximately 4 years of data shows that the Network
is reporting more comparable data for PM10, than for PM2.5, in comparison to regulatory monitors.
We found no statistically significant differences in the network-average means between the Network
and regulatory systems for PM10. While OLS R2 values for PM10 ranged from 0.16 to 0.67, they showed
improvement each year of operation of the Network. Average PM2.5 measurements from the Network
were consistently lower than those from regulatory monitors. Network PM2.5 means differed from
regulatory means by 6–17%, compared to 3–6% for PM10.

Overall, precision of the Network measurements was lower than the regulatory monitors,
with coefficients of variation (CV) of the Network monitors ranging from 77% to 109% for PM2.5 and
95% to 166% for PM10; while the regulatory monitors had CVs ranging from 59% to 73% for PM2.5

and 67% to 88% for PM10. Further, we found that inter- and intra-monitor variance was higher in the
Network compared to that of the regulatory monitors. Beyond higher sensor-to-sensor variability in
the Network, lower precision of the Network compared to the regulatory monitors is not surprising, as
the larger variation likely reflects true spatial variation in PM levels in the Valley, as the community
Network monitors were distributed over a much larger region and at many more sites than the
regulatory network. Although the sensors were calibrated to the original algorithm on installation,
over time they have experienced sensor drift and some sensors have been replaced.

For the community monitors, annual averages of 24-h PM2.5 were in the 9–11 µg/m3 range, while
24-h PM10 annual averages ranged from approximately 45 to 56 µg/m3. The PM2.5 averages were
below the CA standard of 12 µg/m3, but the PM10 annual averages were over twice the average annual
average California standard of 20 µg/m3. The 24-h average maximum levels of coarse particulate matter
(PM10) recorded by the community air Network reached over 2000 µg/m3 during the time period (over
40 times the maximum 24-h mean recommended by the World Health Organization (50 µg/m3; [25]),
and the maximum level of 24-h mean fine particulate matter (PM2.5) was 255 µg/m3 (over 10 times
the WHO maximum 24-h mean of 25 µg/m3). The 24-h average maximum level of over 2000 µg/m3

for coarse dust even exceeds measurements found during sand storms in Beijing [26]. However, the
maximum levels measured by the Network should be interpreted with caution. The Dylos sensor
was not calibrated for extreme high PM10 values as the reference monitors only reported values up
to 985 µg/m3 for PM10 (and were capped at that level) and thus have not been validated at levels
exceeding that limit. More calibration and validation work needs to be done to establish the Dylos
upper-range in the Imperial Valley.
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Previous work has compared Dylos or other light-scattering PM sensors to high-end instruments,
or Federal Equivalent Method (FEM) or Federal Reference Method (FRM) monitors. These studies
have selected different light-scattering instruments to evaluate, and different reference sources, making
comparisons difficult due to potential instrument bias. Ioakimidis et al. [27] evaluated a Laser PM2.5

(Nova) using roadside measurements from a mobile laboratory. They used a high-end Optical Particle
Sizer (TSI OPS 3330) (not FRM or FEM) for comparison. They found a R2 of 0.98 after adjusting for
temperature and humidity. Castell et al. [28] evaluated 24 AQMesh units which measure total particle
counts which are converted into PM mass-based fractions. Upon colocation with European Committee
for Standardization reference analyzers for 5 weeks, they found an average r of 0.51. Budde et al. [29]
evaluated a low-cost network in Germany using a light-scattering Sharp GP2Y1010 PM sensor and
evaluated it against a EU PM reference monitor (Grimm Technologies Model EDM 180 PM Monitor) for
7 days. They found that the low-cost off the shelf sensor tracked the reference monitor well, but with
a constant offset. No OLS regression results were reported. Zheng et al. [30] evaluated the Plantower
sensor (Plantower model PMS3003, Plantower Technology, Beijing, China) in a low concentration
setting in Research Triangle Park and a high concentration setting in urban India. They found R2’s
of 0.66–0.95 depending on averaging time in the low concentration setting (compared to a Teledyne
model T640 FEM) and R2s of 0.61–0.93 in the high concentration (compared to a E-BAM) depending on
monsoon season and averaging time. Jiao et al. [31] evaluated the performance of the Community Air
SensorNetwork (CAIRSENSE) project, a network of low-cost sensors in suburban areas of the Southeast
U.S. For PM2.5, they compared two Dylos 1100 sensors, one with bin sizes ≥ 1 um (PC) and one with
bin sizes ≥ 0.5 um (PC-PRO), to a MetOne BAM 1020 FEM PM2.5 monitor as reference. R2’s from OLS
ranged from 0.33 to 0.45. For comparison, we found an R2 for converted hourly averaged Dylos mass
measurements versus a PM2.5 BAM of 0.79 in our previous calibration work [6], and ranges of 0.35–0.49
for PM2.5 and 0.15–0.67 for PM10 in our post-implementation network-wide comparison reported here.

There are limitations and advantages when comparing low-cost sensor air monitoring networks to
regulatory monitors. One main obvious advantage of low-cost sensor networks is the ability to greatly
increase the spatial coverage of the domain of interest. In many areas, especially in more rural ones, the
number of government monitors are sparse. Installation of additional government monitors happens
slowly, due to the length of the siting process and cost. Government monitoring systems are primarily
used to measure ambient background pollution levels for enforcement, while low-cost systems can be
sited and put into operation more quickly. Low-cost systems can also be used as a check on regulatory
monitors, as we have shown with the under-reporting of maximum values by the regulatory monitors
in this study.

A low-cost system can detect many more elevated air pollution episodes than a regulatory network.
In an analysis of the Network data from October 2016 to February 2017, 1426 exceedance episodes
of PM2.5 were identified by the Network community monitors compared to only 116 identified by
government monitors (over 12 times as many) [32]. Thus, more spatially refined air quality information
can be used to help pinpoint pollution episodes important for adverse, acute exposures to particulate
matter, individual exposure reduction, and reduce exposure misclassification. In addition, the Network
data has been used for spatial and temporal modeling [33] and to model PM2.5 concentrations [34,35].

Previous work has shown that taking a community-based approach to air monitoring in this project
increases local environmental health literacy, and provides direct benefits to community partners,
such as engaging youth, and increased capacity and knowledge about air quality, data interpretation,
and health impacts [36,37]. CCV led an extensive campaign to publicize the Network, presenting
information during community events, meetings with school and other local officials, and interviews
with news media. Members of the community steering committee also participated in this effort
by sharing information about the Network, including presenting at schools, churches, and public
meetings and by writing news articles. Data from the Network are also being used by schools and
agencies. For example, with support from CCV, 10 schools with monitors have school flag programs
which use real-time data to inform actions to reduce exposure, such as keeping students indoors when
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air quality is poor. The school uses an outdoor flag to communicate current air quality, changing
its color several times a day to correspond to the community air levels (CALs) on the IVAN website
(https://ivan-imperial.org/air). A senior center also established its own flag program to share data from
its nearby community air monitor. Policy and public health actions, such as school flag programs and
legislation providing resources for other communities to conduct similar projects, are also counted
among the project results.

Approximately 3 years after the start of this project, CA Assembly Bill (AB) 617 was signed into
law by Governor Brown on 27 July 2017. The law required the CA Air Resources Board, in consultation
with local air districts, “to deploy community air monitoring systems, which shall be communities
with high exposure burdens for toxic air contaminants and criteria air pollutants.” Subsequent to AB
617’s passage, AB 134 was passed, which institutionalized community air monitoring and provided
up to $5,000,000 for technical assistance grants for community organizations to fund community
air monitoring. Assembly member Eduardo Garcia, co-author of the bill, has stated that “AB 617
was modeled on the highly successful Imperial County Community Air Monitoring Network, which
has demonstrated that empowering communities with the ability to monitor local air pollution can
lead to key policy victories and improve public health.” (Eduardo Garcia, CA District 56, personal
communication, 7.26.19)

There are also limitations of low-cost sensor networks. Low-cost networks need to be sustained
financially, and staff need to be trained to troubleshoot hardware and software, and maintain data
repositories. Sensors suffer from drift and short lifespan, and re-calibration or replacement is necessary.
Low-cost systems, over time, produce millions of records. This also presents challenges for data
visualization and interpretation for the public. As described above, we constructed a public website
which displays and interprets the data, which was designed with public input to make sure the data
were understandable by the community. Data from the Network is also available via an email alert
system that notifies registered users when air quality is unhealthy.

5. Conclusions

In this paper, we presented the results of a community-based air monitoring Network which is
providing real time, actionable data to neighborhoods affected by air pollution. We took a community
science approach which is responsive to community concerns and scientific accuracy. A main hindrance
to widespread adoption of low-cost air sensors is data quality. We calibrated our sensors to federal
reference and federal equivalent monitors and provide ongoing maintenance to the Network. Analysis
of the Network data shows that the Network monitors have less precision than the regulatory monitors.
This is to be expected with low-cost sensors when compared to federal reference grade instruments
which cost thousands of dollars more, prohibiting their widespread use.

In conclusion, we found in this study that the Network is reporting more comparable data for
PM10, than for PM2.5, in comparison to regulatory monitors, and that the precision of the regulatory
monitors, as expected, was higher than the Network monitors. On the other hand, we found that the
Network reported more elevated air pollution episodes than the regulatory network, and that the
regulatory network had been under-reporting particulate matter readings.

Future community-based networks should emphasize effective partnership communications,
and ongoing capacity building by training local staff to maintain the network after initial funding is
depleted. This study suggests that future air monitoring efforts in other areas worldwide can benefit
by combining scientific criteria and procedures to ensure high data quality, such as rigorous monitor
calibration and validation, with community priorities, such as the type of pollutants to be measured
and monitor siting, to increase the ability of communities to affect public health policy.
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