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ABSTRACT OF THE DISSERTATION 

 

Quantifying Sharing Potential in Transportation Networks and the Benefits of 

Mobility-on-Demand Services with Virtual Stops  

by 

Navjyoth Sarma Jayashankar Shobha 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2023 

Assistant Professor Michael F. Hyland, Chair 

 

Cities around the world vary in terms of their transportation network structure and 

travel demand patterns, with implications for the viability of shared mobility services. 

Recently, the urban mobility sector has witnessed a significant transformation with the 

introduction of several new types of Mobility-on-Demand (MOD) services that vary in terms 

of their capacity and flexibility of routes, schedules, and user Pickup and Dropoff (PUDO) 

locations. This dissertation proposes models and algorithms to analyze sharing in 

transportation networks and Mobility-on-Demand (MOD) services in two comprehensive 

studies.  The first study aims to quantify the sharing potential of travelers within a city or 

region’s transportation network. The second study aims to measure trade-offs in user and 

operator costs when MOD services operate with Virtual Stops which refer to flexible PUDO 

locations requiring travelers to walk the first/last mile of their trip. 



 

xxi 
 

The first study addresses the lack of metrics that jointly characterize a region’s travel 

demand patterns and its transportation network in terms of the potential for travelers to 

share trips. I define sharing potential in the form of person-trip shareability and introduce 

and conceptualize ‘flow overlap’ as the fundamental metric to capture shareability. The study 

formulates the Maximum Network Flow Overlap Problem (MNFLOP), a math program that 

assigns person-trips to network paths that maximize network-wide flow overlap. The results 

reveal that the shareability metrics can (i) meaningfully differentiate between different 

Origin-Destination trip matrices in terms of flow overlap, and (ii) quantify demand 

dispersion of trips from a single location considering the underlying road network. Finally, I 

validate MNFLOP’s ability to quantify shareability by showing that demand patterns with 

higher flow overlap are strongly associated with lower mileage routes for a last-mile 

microtransit service.  

The second study proposes a scalable algorithm for operating shared-ride MOD 

services with flexible and dynamic PUDO locations—called C2C (Corner-to-Corner) 

services—in a congestible network. I compare four MOD service types: Door-to-Door (D2D) 

Ride-hailing, D2D Ride-pooling, C2C Ride-hailing, and C2C Ride-pooling by evaluating 

operator and user costs. The results show that Ride-pooling reduces operator costs while 

slightly increasing user costs, whereas C2C reduces operator costs but significantly increases 

user costs. Combining Ride-pooling and C2C appears promising to reduce operator costs and 

to reduce vehicles miles traveled (VMT) in MOD systems. 
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Chapter 1. Introduction 

1.1 Background and Motivation 

The emergence and growth of the ‘sharing economy’ has been one of the biggest 

changes in the consumer market that has occurred since the turn of the millennium and 

especially over the past decade. The sharing economy promises to provide consumers with 

a cheaper and more convenient way to access services such as, transportation, rental cars, 

parking spaces, lodging, office space, recreational services as well as goods such as a hammer 

or a drill for short time usage.  

Ideally, the sharing economy yields a win-win transaction for all the entities involved 

as well as for society in general. Consumers can now access goods and services during times 

of need, without having to own an asset, thereby reducing the cost. Suppliers who own an 

asset such as an empty seat in a vehicle, a parking spot, a room, or a drill can lend it to others 

when they are not using it, giving them an additional source of income from the asset, which 

would have otherwise been a wasted resource. At a societal level, the sharing economy has 

the potential to reduce consumption, reduce the amount of waste generated, and therefore 

reduce energy usage and emissions (Curtis and Lehner, 2019; Heinrichs, 2013).  

The emergence of smart phones, near ubiquitous access to high-speed internet, 

online payment gateways, and social networks over the past decade have reduced 

transaction costs and made it much easier to share assets at a larger scale. In addition, 

advancements in big data and location-based services have made it possible to track and 

predict patterns of consumption and availability of service over time. The market size  of the 
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sharing economy, which was valued at around $150 billion in 2022 is projected to grow  

around $800 billion by the end of the decade (Yahoo Finance, 2023). 

1.1.1 Sharing Economy and the Urban Mobility Sector 

The boom in the sharing economy along with advancements in computational and 

communication technology has transformed the transportation and mobility sector over the 

past decade. Earlier, urban mobility used to be a heavily regulated sector with modes such 

as rail, bus, taxicab, and paratransit services providing mobility services to travelers who did 

not have access to a personal vehicle. City and regional transit or planning agencies mostly 

controlled the planning and operation of these services in the form of the routes in which 

transit services operate, or the number of taxicab medallions to be issued in a city. Today, on 

the other hand, a plethora of new modes of different capacities and varying degrees of 

flexibility in route, schedule, and Pickup and Dropoff (PUDO) locations have entered the 

urban mobility sector. These include app-based Ride-hailing services such as Uber and Lyft; 

Ride-pooling services such as Uber Pool and Lyft Shared; Ride-pooling services with flexible 

Pickup and Dropoff (PUDO) locations such as Uber Express Pool; and other forms of flexible 

transit services such as those provided by Via. While these services accounted for less than 

100 million riders in 2012, the number of passengers carried by such Transportation 

Network Companies (TNCs) grew exponentially to about 1.9 billion in 2016 and 4.2 billion 

in 2018 (Schaller, 2018). 

Figure 1.1 shows a spectrum of shared mobility modes currently operating in the 

urban mobility arena. The left end of the spectrum is occupied by fixed modes such as heavy 

rail, light rail, BRT, and local bus. These services have a fixed route and schedule and have 
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high capacity. These services therefore typically require many passengers to be travelling in 

a similar direction or to the same destination, at the same time, for them to be viable. The 

rightmost end of the spectrum includes Ride-hailing services (like Uber, Lyft, Taxicabs) that 

provide point-to-point mobility-on-demand for a single passenger, and do not follow any 

route or schedule. In between these two extremes, there are other modes which are 

variations of fixed transit or on-demand ride sharing services that have varying degrees of 

route and schedule flexibility and varying capacities.  

 
Figure 1.1  Spectrum of Shared Mobility Modes 

 

Route-Deviation and Point-Deviation transit services, as their names suggest, 

represent transit services where the vehicle is allowed to take detours off a fixed route or a 

fixed set of locations, respectively. Examples of route-deviation transit services include the 

UTAFLEX services operated by Utah Transit Authority and ‘Deviated Route’ services 

operated by Tillamook County Transportation District (TLTD) in Oregon. Feeder services 

operating around transit stations or between multiple transit stations are examples of point-
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deviation transit services. The above two services have some form of rigidity in terms of 

route and/or schedule in their operation.  

Dynamic transit services such as the ones operated by Via and other van pool services 

operate on flexible routes and schedules trying to pool together many passengers heading in 

a similar direction. Ride-share services such as Uber Pool, Lyft Shared, and BlaBlaCar are a 

scaled down version of flexible transit services that try to pool together generally 2 or 3 

passengers into a single vehicle. Other types of Mobility-on-Demand (MOD) services such as 

Uber Express Pool combine some attributes of fixed transit services with some attributes of 

a rideshare service, such as PUDO locations nearby the origin/destination or travelers, 

thereby requiring the passenger to complete one leg of the journey by foot.  

The spectrum of shared mobility modes from mass transit on one end to Ride-hailing 

and taxicab services on the other end may provide a sustainable alternative to personal 

vehicle travel, as the shared mobility modes can pool together travelers heading in the same 

direction into a single vehicle and/or by reducing the requirement for parking in congested 

cities. Despite the potential of shared services to improve sustainability in the transportation 

sector, the actual results have been quite mixed over the past few years. Recent studies have 

shown that Ride-hailing services –- services where each vehicle serves a single passenger 

from/to their doorstep –- account for a significant proportion of trips operated by TNCs. 

These services have been found to be partially responsible for increasing congestion in cities, 

with 70% of all their trips being from the 9 largest densely populated metropolitan areas in 

USA (Schaller, 2018). Such services have also been found to have an adverse impact on 

transit ridership even in dense urban centers (Graehler et al., 2019; Schaller, 2018).  
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To address the inefficiencies and negative externalities associated with Ride-hailing 

services, operators run Ride-pooling services in which a single vehicle serves more than one 

trip request simultaneously, thereby reducing the number of vehicles required to serve the 

same number of travelers. Examples of such services include Uber Pool and Lyft Shared. 

There is also an emerging category of MOD services called Corner-to-Corner (or C2C) 

services wherein requests are picked up and/or dropped off at locations near the request 

origin or destination instead of conventional MOD modes that serve them at their doorstep 

(called as Door-to-Door or D2D services). The next subsection provides a brief background 

on such services. 

1.1.1.1 Corner-to-Corner MOD Services 

As the name implies, C2C MOD services require the users to walk the first/last mile 

of their trip to/from a location (or a ’street corner’) close to their origin or destination. Such 

flexible PUDO locations are sometimes referred to as Virtual Stops. Virtual Stops can be any 

identifiable location along a street, such as a business, street corner, parking lot, or even a 

bus stop (Moovit, n.d.). Virtual Stops generally do not include any physical element of a 

conventional bus stop and hence are only visible on the mobile application of the C2C 

mobility service (Harmann et al., 2022). C2C services could either operate as Ride-hailing 

(RH) services or Ride-pooling (RP) services. Examples of such C2C services include Uber 

Express Pool, SacRT SmaRT Ride operated by Sacramento Regional Transit, COTA Plus 

operated by Central Ohio Transit Authority (COTA), UTA on Demand operated by Utah 

Transit Authority (UTA), and MetroNow operated by Southwest Ohio Regional Transit 

Authority (SORTA). 
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One of the primary advantages of C2C services, especially C2C Ride-pooling, is the 

potential to significantly enhance MOD service fleet productivity. By concentrating pickups 

and drop-offs at designated points instead of performing time-consuming door-to-door 

detours, service providers can optimize travel routes and reduce idle time for vehicles. This 

optimization translates into higher passenger throughput per unit of time, as more travelers 

can be accommodated within the same timeframe. Moreover, C2C services can contribute to 

improved vehicle occupancies, reducing the number of underutilized trips and making better 

use of available seating capacity. 

Another compelling benefit of C2C Ride-pooling is the reduction in overall fleet 

distance traveled per passenger request. With predetermined PU and DO locations, vehicles 

can follow more direct and efficient routes, minimizing unnecessary detours and decreasing 

the total distance covered. This reduction in travel distance not only conserves energy and 

reduces emissions but also contributes to a more cost-effective operation for the service 

provider. However, transitioning from D2D to C2C services comes at the expense of 

inconveniences to users and also brings algorithmic challenges to the operator by increasing 

the problem complexity and computational costs. Therefore, a systematic analysis of 

different C2C and D2D MOD services is required to evaluate the trade-offs between 

operational, user and computational costs. 

1.1.2 Heterogeneity in Urban Transportation Systems 

The previous subsection described the plethora of shared mobility modes currently 

operational in cities around the world, the potential they have to address some of the 

mobility gaps, and the associated challenges and problems that arise. At the same time, cities 
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around the world also exhibit remarkable differences in terms of their transportation 

network structures, spatial and temporal travel patterns, travel behavior, population 

densities, and land use. This heterogeneity is shaped by a combination of historical 

development, policy choices, geographical constraints, and socio-economic factors. The 

variations in transportation demand and supply across cities or even within sub-regions of 

a city have huge implications on sharing potential and the viability of shared mobility 

services.  

1.1.2.1 Mapping Transportation System Characteristics to Sharing Potential 

The viability and operational efficiency of a shared mobility mode depends on the 

number of potential travelers that could be pooled into a single vehicle, and the extent of 

commonality between the routes of these potential travelers from their origins to their 

destinations. This in turn depends on multiple factors such as land use and density of the 

region, its underlying transportation network and the travel demand and mobility patterns 

in the region. The presence of large residential and employment zones in dense urban 

centers increases the likelihood of spatial and temporal commonalities between routes of 

trips made by a large number of travelers. This makes modes such as heavy rail, light rail, 

BRT, and high-frequency bus services viable for dense areas. However, in suburban areas 

where residential and employment centers are scattered throughout the region, the 

operation of high capacity and high frequency fixed transit services are not viable. Fixed 

transit services in such areas often have circuitous routes, see very low ridership, and do not 

provide automobile competitive level of services to their users. However, it may still be 

possible to operate shared mobility modes of lower capacities in such regions, based on the 

number of travelers that could be pooled together heading in a similar direction. 
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A remaining challenge for researchers involves determining generalizable 

associations between transport system attributes (TSAs) and the efficiency of specific 

Shared Mobility Modes (SMM) in Figure 1.1, where TSAs include the magnitude and 

directionality (i.e., the spatial distribution) of traveler demand and underlying road network 

structure. Only one stream of research aims to map the efficiency of SMMs onto TSAs, and 

these studies only consider one TSA—density of demand (or magnitude of demand) in a 

homogenous region—when comparing fixed and flexible transit (Li and Quadrifoglio, 2010a; 

Nourbakhsh and Ouyang, 2012; Quadrifoglio and Li, 2009). These studies do not consider 

the directionality of demand nor the underlying network structure.  

The inability to map the efficiency of SMMs onto specific TSAs beyond demand 

density is a significant shortcoming in the literature that I believe stems from the challenges 

associated with jointly quantifying various TSAs. Figure 1.2 displays a roadmap for 

connecting TSAs to the efficiency of SMMs for a subregion of a metropolitan area (henceforth, 

just ‘subregion’). While quantifying each attribute individually and then connecting these 

attributes to the efficiency of SMMs is theoretically possible, this approach has several 

challenges and shortcomings. First, it is difficult (or potentially meaningless, depending on 

the metric) to quantify the spatial distribution of demand independent of the underlying 

road network; hence, I propose the simultaneous consideration of road network structure 

and spatial demand in metric creation. Second, and similarly, measures of demand 

magnitude are more valuable in conjunction with the spatial demand distribution and road 

network structure. Hence, rather than connecting individual attributes to the efficiency of 

SMMs, I propose to create shareability metrics at the person-level (instead of vehicle- or 

mode-level) that combine all three TSAs.  
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Figure 1.2 Roadmap to link TSAs, to the performance of SMMs through person-trip shareability 

 

1.2 Research Objectives and Contributions 

The Background and Motivation section presented an overview of the heterogeneity 

in urban transportation systems, the plethora of MOD services currently in service and the 

various challenges and problems that ensue. In this context my dissertation aims to achieve 

two major goals through two comprehensive studies: 

1. To formulate and develop methods and metrics to quantify and analyze the 

sharing potential in transportation systems that can capture heterogeneity in 

demand patterns and network structure, and 

2. To evaluate the trade-offs between user costs, operator costs, and computational 

costs for Corner-to-Corner (C2C) MOD services and Door-to-Door (D2D) MOD 

services. 

The objectives of the first study that quantifies sharing potential of a city/region include: 

1. Define and formulate sharing in passenger transportation systems in the form of 

overlaps of person-trip flows (or person-trip shareability). 

2. Find the maximum extent of sharing possible in a city/region (or sharing 

potential) given its transportation network and mode-agnostic travel demand 

data. 

Transport System Attributes

Road Network Structure

Travel Demand Distribution

•Magnitude of Demand 
•Spatial Demand Distribution

Mode-agnostic 
Person-trip 
Shareability

Efficiency of 
Shared Mobility 
Modes
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3. Evaluate the trade-offs between maximizing overlaps and constraints on 

maximum permissible detours for person-trips, and 

4. Derive flow-overlap-based shareability metrics at different levels of aggregation 

in a transportation system and validate their impact on the efficiency of Shared 

Mobility Mode (SMM) operations. 

The objectives of the second study that evaluates C2C MOD services include: 

1. Develop a scalable and effective decision policy and algorithmic approach for 

dynamically operating C2C MOD services, particularly C2C-Ride-pooling (or C2C-

RP). 

2. Compare the changes in user costs, operator costs, and computational costs 

between four different MOD service types, namely, Door-to-Door Ride-hailing 

(D2D-RH), Door-to-Door Ride-pooling (D2D-RP), Corner-to-Corner Ride-hailing 

(C2C-RH) and Corner-to-Corner Ride-pooling (C2C-RP), and 

3. Evaluate the sensitivity of user, operator, and computational costs of C2C services 

to changes in first/last mile parameters and sequence of decision policy. 

The contributions of the first study of this dissertation include the conceptualization 

of flow overlap to measure sharing potential and the definition and formulation of the 

Maximum Network Flow Overlap Problem (MNFLOP) as a new method to characterize and 

quantify the sharing potential of a transportation network-travel demand pattern pairing. 

This method adds a directional dimension to defining demand in a transportation network 

that may better characterize the extent of dispersion of trips in a network and therefore its 

sharing potential. To the best of my knowledge, I believe that this is the first study in 
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literature that characterizes the flow of travel demand in a transportation network. The 

MNFLOP formulation developed in the method can also be used to characterize flows in non-

transportation networks, since the only inputs required are the network structure and 

aggregate flows in the network.  

The contributions of the second study of this dissertation include the implementation 

of a scalable algorithm to operate C2C MOD services with dynamic and flexible PUDO 

locations (also known as Virtual Stops) in an agent-based transportation model for a 

congestible network. At the time of this study, I believe that this is the first such 

implementation involving dynamic PUDOs in an agent-based dynamic transportation 

network model with congestible links and travel time uncertainty. I also believe that this is 

the first study to comprehensively compare the cost trade-offs of operating MODs across two 

dimensions, namely sharing (Ride-pooling vs Ridesharing) and PUDO locations (D2D vs 

C2C). 

1.3 Dissertation Outline 

The rest of the dissertation is organized as follows. Chapter 2 and Chapter 3 present 

the first study in my dissertation involving sharing potential in transportation systems. 

Chapter 2 introduces the concept of flow overlap, formulates the MNFLOP, and derives 

metrics of shareability at different levels of aggregation in a region. This chapter also 

illustrates the usefulness of origin/node level shareability metrics using an example to show 

how different trip patterns and shareability levels can all have the same magnitude of 

demand density. Chapter 3 performs a comprehensive analysis of various OD demand 

patterns and how the metrics of shareability derived in Chapter 2 could meaningfully 
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differentiate between them. This chapter also performs sensitivity analysis of flow overlap 

with respect to maximum detour parameter, and also tests the statistical validity of flow-

overlap-based shareability metrics in influencing the efficiency of a station based last-mile 

microtransit service. 

Chapter 4 and Chapter 5 present the second study of my dissertation involving C2C 

MOD services. Chapter 4 states and formulates the C2C Ride-pooling (C2C-RP) problem and 

presents a scalable decomposition-based approach to solve the problem. Chapter 5 performs 

a comprehensive analysis of user, operator, and computational costs for both C2C and D2D 

variants of Ride-pooling (RP) and Ride-hailing (RH) services. 

Chapter 6 concludes the dissertation, summarizing the key contributions and 

discussing the avenues to take this research forward in the future. 
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Chapter 2. Sharing Potential in Transportation Networks – 

Conceptual Framework, Models, and Metrics 

2.1 Introduction  

The overarching goal of this chapter is to develop metrics that quantify the sharing 

potential of transportation systems in the form of person-trip shareability in a manner that 

is agnostic of (shared mobility) mode, vehicle attributes, and operational strategy. For any 

subregion and data to describe its TSAs (See Figure 1.2), I aim to quantify the sharing 

potential of person-trips in the subregion. Put another way, if travelers (with fixed trip 

origins, trip destinations, and maximum willingness-to-detour but some flexibility in 

departure time) in a subregion are willing to, I aim to develop metrics that measure the 

extent to which it is possible for them to share space (i.e., overlap) in the transportation 

network. 

2.1.1 Chapter Outline 

The rest of the chapter is organized as follows: First, I define a new concept that I call 

person-trip shareability (Section 2.2.1) and discuss principles for operationalizing this 

definition (Section 2.2.2). Second, I mathematically formulate a fundamental metric called 

‘flow overlap’ (Section 2.2.3). Third, I review in Section 2.3, the nascent literature related to 

shareability and delineate the academic contributions of this study in my dissertation. 

Fourth, I formulate the Maximum Network Flow Overlap Problem (MNFLOP) that assigns all 

person-trips to network paths to maximize network-wide flow overlap subject to constraints 

on detour distance (Section 2.4). Fifth, based on flow overlap concepts and MNFLOP output, 

I formulate a wide range of flow-overlap-inspired metrics at different levels of aggregation 
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in a transportation network, such as origin-destination (OD) pair level, location (i.e., node) 

level, network level, and link level (Section 2.5).  Finally, Section 2.6 concludes the chapter. 

2.2 Conceptual Framework  

2.2.1 Defining Person-trip Shareability 

This dissertation presents novel concepts and metrics related to the shareability of 

person-trips in a subregion. Before delving into shareability metrics, I begin with a definition 

of person-trip shareability. 

Definition 1: Person-trip Shareability: The extent to which travelers within a 

subregion (with fixed trip origins and destinations) can overlap in time and space on physical 

links in the subregion’s road network.  

Notably, this definition includes person-trips instead of vehicle trips or trips with a 

specific mode. This distinction is in keeping with the proposed shift in transportation 

planning from an automobile-centric paradigm to a people/traveler-centric paradigm 

(Litman, 2013; Trombin et al., 2020). Moreover, the definition incorporates physical 

transportation links, as these links are where person-trips must overlap in time and space. 

The concept of overlap and the ability of trips to overlap in time and space on the road 

network underlies my definition of person-trip shareability.  

The person-trip shareability definition also purposely uses the phrase ‘can overlap,’ 

as there is no guarantee that these person trips will overlap in time or space on physical 

transportation links (in shared vehicles) in the real-world. I seek to provide an upper bound 

on person-trip sharing potential in a subregion. Ultimately, sharing in the real world will 
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depend on at least two additional high-level factors, namely, the willingness of travelers to 

share with strangers (i.e., the behavioral side) and the combination of SMMs available to 

travelers in the subregion (i.e., the supply side). 

Analysts can conceptualize person-trips (i.e., OD demand) in this study in two ways, 

depending on their needs and data availability: (i) person-trips from travelers willing to 

share rides with strangers or (ii) all person-trips independent of willingness to share rides. 

The former type of person-trips is relevant to shared mobility providers (e.g., transit 

agencies), as these trips represent their market. The latter set of person-trips, combined with 

our metrics, represent an upper bound on sharing in a subregion.  

As a final note, the person-trip shareability definition does not imply the explicit 

pairing or matching of person-trips, in vehicles or to each other. As Section 2.3 discusses, this 

property differentiates our shareability framing, definition, and metrics from others in the 

existing literature.  

2.2.2 Operationalizing Person-trip Shareability  

Next, I seek to operationalize person-trip shareability consistent with the research 

roadmap in Figure 1.2 and the study’s overarching goal. The key principles for 

operationalizing person-trip shareability in a subregion include: 

• jointly considering the magnitude of travel demand, the spatial distribution of 

demand, and road network properties  

• connecting demand and supply through maximizing the spatial and temporal overlap 

of person-trips (i.e., demand) on network links (i.e., supply) 
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• capturing the trade-off between maximizing overlap and constraints on maximum 

permissible detours for person-trips 

• condensing person-trips onto as few links as possible 

• considering partial sharing/overlaps, i.e., not requiring person-trips to be paired 

with other person-trips explicitly 

• being mode-, vehicle-, and operational-policy-agnostic 

2.2.3 Unit Flow Overlaps 

Based on the principles for operationalizing person-trip shareability outlined in 

Section 2.2.2, I introduce the notion of flow overlaps. As a starting point, let us define flow 

overlap for a unit flow (i.e., a single person-trip) traveling from origin 𝑜 to destination 𝑑 on 

path 𝑘. Flow overlap for this unit flow is the link-length-weighted average number of other 

trips/flows with whom the unit flow overlaps on its path 𝑘 during period 𝑡. Equation 1 

displays the mathematical formulation of flow overlap for a unit flow on path 𝑘 ∈ 𝐾𝑝 

between OD pair 𝑝 during time interval 𝑡, denoted 𝑍𝑝
𝑘𝑡. 

𝑍𝑝
𝑘𝑡 = ∑

𝑓𝑎
𝑝𝑘𝑡𝑐𝑎δ𝑎

𝑝𝑘

∑ (𝑐𝑎δ𝑎
𝑝𝑘)𝑎∈𝐴𝑎∈𝐴

+ (𝐹𝑝
𝑘𝑡 − 1) (1) 

where, 𝑡 represents the time interval for which overlap is measured; 𝐴 is the set of links in 

the network, indexed by 𝑎 ∈ 𝐴; 𝑃 is the set of OD pairs in the network, indexed by 𝑝 ∈ 𝑃 or 

(𝑜, 𝑑) ∈ 𝑃; 𝐾𝑝 represents a finite set of acyclic paths for OD pair 𝑝 that are within a 

predefined maximum detour parameter Δ𝑚𝑎𝑥, indexed by 𝑘 ∈ 𝐾𝑝; 𝑐𝑎 gives the length of link 

𝑎; δ𝑎
𝑝𝑘 is a binary parameter that denotes the link-path incidence of link 𝑎 on path 𝑘 from OD 
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pair 𝑝; 𝑓𝑎
𝑝𝑘𝑡 provides the number of other person-trips on link 𝑎 from all other paths and all 

other ODs, except for path 𝑘 from OD pair 𝑝, during time interval 𝑡; and 𝐹𝑝
𝑘𝑡 represents the 

number of person-trips from OD pair 𝑝 on path 𝑘 during time interval 𝑡. The minus one in 

the second term is the unit person-trip on path 𝑘 for OD pair 𝑝 for whom we are calculating 

flow overlap.  

I define flow overlap for a single person-trip (i.e., a unit OD flow) during a fixed time 

interval 𝑡, because sharing must occur in space and time. As the metrics in this study aim to 

support high-level analysis of person-level sharing potential, as opposed to the analysis of 

low-level service operations, we are interested in the potential interaction between trips on 

links in the network during a reasonably large interval of time (e.g., 15-30 minutes). For 

simplicity, I drop the notation 𝑡 from the expression for flow overlap and expressions derived 

from it in the rest of the dissertation.  

With Equation 1, we can calculate the upper and lower bounds of overlap for a unit 

flow between OD pair 𝑝 on path 𝑘. If the first term in Equation 1 is zero, it means that a unit 

flow between OD pair 𝑝 on path 𝑘 does not overlap with demand from any other OD pair or 

path associated with OD pair 𝑝. Hence, the only overlapping flows for this unit flow is 𝐹𝑝
𝑘 − 1. 

Hence, the lower bound of 𝑍𝑝
𝑘 is zero which occurs when 𝐹𝑝

𝑘 = 1, and the first term in 

Equation 1 is also zero.  

The upper bound of 𝑍𝑝
𝑘 is 𝐹 − 1, where 𝐹 denotes the total demand (in terms of 

person flows) in the network. The upper bound for 𝑍𝑝
𝑘 occurs when all demand in the 
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network is on a single path 𝑘 from a single OD pair 𝑝, or when all demand, from all OD pairs 

in the network, use every link along path 𝑘 for OD pair 𝑝.  

2.2.4 Illustrative Example 

While Equation 1 displays the flow overlap formula for a single trip, this subsection 

presents a simple network example to illustrate how to use this formula to calculate 

network-wide flow overlap for two different sets of path flows. I later formulate a 

mathematical program that maximizes cumulative network-wide flow overlap for a given 

network, OD demand pattern, and Δ𝑚𝑎𝑥 (in Section 2.4).  

Figure 2.1a and Figure 2.1b illustrate the notion of overlaps in a simple network and 

show how path assignment impacts flow overlaps. Figure 2.1 displays an undirected 

network with three origin nodes (A, B and C) and one destination node (D), with link 

distances as shown next to each link. Moreover, consider the case where three persons (P1, 

P2, and P3) start their trips from origin nodes A, B, and C, respectively, and all have D as their 

destination node.  

The shortest paths between each OD pair in Figure 2.1a are distinct and do not share 

any common links. Hence, assigning each person-trip to their shortest path produces zero 

flow overlap for each trip. In this study, link index 𝑘 = 0 always represents the shortest path. 

By definition, this scenario involves zero units of detour distance.  

In the second scenario, depicted in Figure 2.1b, person-trips P1 and P3 detour from 

their shortest paths and instead travel to destination node D via node B and link B-D (Path 𝑘 

= 1 for OD pairs AD and CD). Person-trip P2 continues to take their shortest path to D (Path 
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𝑘 = 0). This network assignment of person-trips produces overlapping flows on link B-D. 

Person P2 shares their trip with two others on the entirety of their trip. Persons P1 and P3 do 

not have any overlap on link AB and CB, respectively. However, from B to D (4/7th of their 

respective trip lengths), P1 and P3 share this link with two other person trips. Therefore, 

using Equation 1, I calculate flow overlap values for each unit trip in Figure 2.1b as follows: 

𝑍𝐴𝐷
𝑘=1 = 𝑍𝐶𝐷

𝑘=1 = 0 ×
3

7
+ 2 ×

4

7
= 1.14 

𝑍𝐵𝐷
𝑘=0 = 2 ×

4

4
= 2 

Hence, for the paths in Figure 2.1b, a unit trip between A and D (as well as C and D) 

shares its path with an average of 1.14 other person trips. Similarly, a unit trip between B 

and D shares its path with an average of two other person trips. Therefore, the weighted (by 

trips from each OD pair) average value for flow overlaps in the network is as follows: 

𝑍 =
1 × 1.14 + 1 × 2 + 1 × 1.14

1 + 1 + 1
=

4.28

3
= 1.43 

This value implies that an average unit trip in the network shares its path with 1.43 

other person-trips in Figure 2.1b. The average detour in this case is 1.33 distance units 

(detour of two distance units for P1 and P3, and detour of zero distance units for P2).  
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                                   (a) 

 
                                   (b)  

Figure 2.1 Flow assignment based on (a) shortest paths, and (b) maximum network-wide flow overlap 

2.2.5 Unproductive Detours and the Least Cost Shared Path Subgraph 

The increased overlap in Figure 2.1b is enabled only by allowing (or requiring) 

travelers to detour from their shortest paths. Hence, there is a fundamental trade-off 

between overlaps and detours when assigning person-trips to paths so as to maximize 

network-wide overlap. However, this is quite natural given that existing shared mobility 

services—including fixed-route public transit and on-demand Ride-pooling —often require 

travelers to detour in order to overlap with other travelers in time and space in the physical 

transportation network to permit sharing.  

Fortunately, in Figure 2.1b, the detours that occur are productive detours, i.e., without 

detouring, P1 and P3 could not have overlapped with each other and with P2. Unfortunately, 

it is also possible for person-trips to detour to increase network-wide flow overlap, but 

where the detours are unproductive, or even counter-productive. As an example, consider 

Figure 2.2, where there are ten person-trips from Node 2 to Node 16 and ten person-trips 

from Node 6 to Node 16. In Figure 2.2a, the person-trips detour onto a sub path between 
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Nodes 8 and 20 that is 8 miles in length compared to a shorter sub path that is 5 miles in 

length, shown in Figure 2.2b. In Figure 2.2a, the average flow overlap for a unit flow from 

Node 2 to Node 16 (𝑍2,16
𝑘 ) is 15.66 (14.83) person-trips, respectively. Despite the increase in 

flow overlap, clearly this is a counter-productive detour, as both sets of ten person-trips 

travel on longer paths, yet these detours do not produce additional overlaps. 

 
Figure 2.2 Network flows (a) with unproductive detours, and (b) without unproductive detours 

 

To address this issue, we will only permit person trips on a subset of links in the 

network. I refer to this subset of links as the least cost shared path (LCSP) subgraph. The 

LCSP subgraph includes at least one connecting path for every OD demand pair with a detour 

distance less than Δ𝑚𝑎𝑥 . Moreover, as the name suggests, the LCSP determines the links with 
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the lowest cumulative cost that satisfy the OD-pair path connection and detour distance 

constraints. Appendix A: Least Cost Shared Path (LCSP) Subgraph provides a mathematical 

formulation form the LCSP subgraph problem.  

This LCSP subgraph prevents any and all unproductive detours because every link in 

the LCSP subgraph must have some non-negative flow. If this was not the case (i.e., the link 

could be excluded and every OD pair would still have a connected path with detour less than 

Δ𝑚𝑎𝑥), then the link would be removed, as removing it would decrease the cost of the 

subgraph. Hence, for travelers between OD pairs with multiple connecting paths, any detour 

from a shorter path will be productive as the detour will involve overlapping with travelers 

with which it could not otherwise overlap.  

Notably, Δ𝑚𝑎𝑥 has a significant impact on the LCSP subgraph. As Δ𝑚𝑎𝑥 increases, more 

paths between each OD are feasible, thereby allowing for decreases in the cumulative link 

cost in the LCSP subgraph. In the case of the network and the OD demand pairs in Figure 2.1, 

if Δ𝑚𝑎𝑥 < 2, then the LCSP subgraph includes links AD, BD, and CD with LCSP cost equal to 

14 distance units. However, if Δ𝑚𝑎𝑥 ≥ 2, then the LCSP subgraph includes links AB, BC, and 

CD with LCSP cost equal to 10 distance units. Conversely, in the case of the network and the 

OD demand pairs in Figure 2.2, the LCSP is always links 2-6, 6-8, and 8-16, independent of 

Δ𝑚𝑎𝑥. 

As a note, while it is possible to define 𝐾𝑝 as the finite set of all acyclic paths between 

OD pair 𝑝, it is computationally demanding (or impossible, depending on the network size) 

to generate all paths. It is also unrealistic for a person trip to be assigned to a path 𝑘 ∈ 𝐾𝑝 

that detours too far away from their shortest path, unless they are given significant 
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compensation (König and Grippenkoven, 2020; Zhang et al., 2016). In the context of a specific 

shared-ride service, Lobel and Martin (2020) show that expected detours for travelers are 

small and penalizing detours is economically beneficial.  Hence, in this study I restrict the 

paths in 𝐾𝑝 to have a detour less than Δ𝑚𝑎𝑥. In practice, there are many ways to determine 

𝐾𝑝, such as including all paths between OD pair 𝑝 with an absolute detour less than 𝑥 miles 

and/or less than 𝑦 percent longer than the shortest path. In this study, I use Yen's algorithm 

to generate all acyclic paths between each OD pair limited to a distance threshold, as 

discussed in Section 2.4.4 (Yen, 1971). 

2.3 Literature Review 

The concept of ‘shareability’ has arisen in the transportation literature over the past 

decade with the emergence of SMMs beyond taxis and fixed-route and -schedule transit lines. 

Several research studies use the term shareability and/or present shareability metrics; 

however, these metrics and studies differ from the person-trip shareability metrics in this 

chapter of the dissertation. The first subsection below provides an overview of shareability 

metrics and studies in literature, while the second subsection differentiates my shareability 

metrics from those in the literature. 

2.3.1 ‘Shareability’ in the Literature 

Several studies analyze the potential to reduce vehicle trips through having travelers 

share space in vehicles. Tsao et al. (1999) examine the potential for inter-household 

carpooling to reduce vehicle commuting trips. Similarly, Cici et al. (2013) estimate ride-

sharing’s potential to reduce vehicle trips when travelers are willing to share rides, where 

they use cell phone data to infer home and work locations.  
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Whereas Tsao et al. (1999) and Cici et al. (2013) focus on conventional ride-sharing 

and carpooling where both drivers and riders have their own trip origins and destinations, 

recent research analyzes sharing potential for mobility services with dedicated drivers (e.g. 

taxi or Ride-hailing drivers). Santi et al. (2014) introduce the concept of ‘shareability 

networks’, where network links connect pairwise shareable trips, to model taxi trip sharing 

in a deterministic setting. They apply methods from graph theory, after formulating the 

problem as a maximum matching problem, to determine the percentage of shareable trips in 

a subregion as a function of vehicle capacity and traveler willingness to detour from their 

preferred paths. Tachet et al. (2017) plot shareability network curves from Santi et al. (2014) 

for 4 cities, namely New York, Vienna, Singapore and San Francisco, where the x-axis is trip 

density and the y-axis is percent of shareable trips. The curves show similar patterns in all 

cities—sharing probability rises steadily at low densities and quickly saturates above 98%. 

Another recent study extends concepts from Santi et al. (2014) for a shared-ride system, 

wherein they jointly consider detour length and the economic value from allowing detours, 

and prove fundamental limits on the sum of detours and economic value for shared rides 

(Lobel and Martin, 2020) 

Several studies focus on dynamic shared-ride mobility (or taxi) services and each find 

significant benefits of shared-rides over non-shared-rides. Gurumurthy & Kockelman (2018) 

use cell phone traces to infer OD locations in Orlando, Florida, and then they employ a 

dynamic ride-sharing algorithm within an agent-based simulation model to serve the OD 

trips. Alonso-mora et al. (2017) extend the shareability network concept to match feasible 

requests together and then match vehicle request sets to vehicles in the online case, for 

vehicles with 10-person capacities. Two other recent studies illustrate the benefits of 
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shared-ride over non-shared-ride services in a dynamic stochastic setting (Hyland and 

Mahmassani, 2020; Simonetto et al., 2019). 

A pair of recent studies further extend the shareability networks in Santi et al. (2014). 

Kucharski and Cats (2020) develop several person-level shareability metrics using their 

Exact Matching of Attractive Shared rides (ExMAS) algorithm. They use total travel demand 

in Amsterdam and evaluate shareability purely from a demand perspective; they match 

shareable trips to each other rather than to fleet vehicles. Kucharski and Cats (2020) 

measure shareability across different scenarios by varying system parameters such as total 

demand, matching time window horizon, and price discount for sharing rides compared to 

ride hailing. Soza-Parra et al. (2022) apply the approach from Kucharski and Cats (2020) to 

examine shareability by varying spatial distributions of trip patterns for different number of 

urban centers, destinations, and trip length distributions.  

Although the focus is not on shareability, there is another stream of research that 

aims to characterize urban forms, transportation networks, and/or travel patterns. Tsai 

(2005) and  Oke et al. (2019) develop aggregate region level metrics and create typologies 

to classify cities based on their urban form and transportation system characteristics. Such 

studies provide valuable insights into the general characteristics of an urban area that may 

be valuable for the design of SMMs. For example, empirical research finds that fixed transit 

is more effective in highly clustered cities compared to sprawled-out cities (Cervero and 

Seskin, 1995; Dill et al., 2013; Guerra et al., 2018; McIntosh et al., 2014; Stead and Marshall, 

2001). Similarly, studies such as Srinivasan (2002) and Ewing & Cervero (2010) show that 

urban form and the built environment have a strong influence on travel behavior (e.g. mode 
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choice). Other studies such as Yang et al. (2016) and Saberi et al. (2017) characterize urban 

mobility patterns using trip data and derive metrics to identify activity location clusters and 

their interactions. Finally, Schieber et al. (2017) focus on network topology and characterize 

transportation network structures, but they do not consider demand. 

2.3.2 Spanning Trees and Subgraphs 

Section 2.2.5 introduces LCSP subgraphs and Appendix A: Least Cost Shared Path 

(LCSP) Subgraph provides the associated math program. The LCSP subgraph problem is 

related to the well-known minimum spanning tree problem (Kruskal, 1956; Nesetril and 

Nesetrilová, 2023; Prim, 1957), and the Steiner tree problem (STP). The STP determines the 

least cost tree that connects a subset of vertices (called terminals) on a given undirected 

graph with non-negative edge weights (van Oudheusden, 1995). While there are extensions 

of the STP involving directed graphs (Charikar et al., 1998; Hsieh et al., 2006; Zelikovsky, 

1997), and budget constraints on terminal-to-terminal travel times (Costa et al., 2009; Moss 

and Rabani, 2007), the LCSP formulation further extends the STP. The LCSP applies to 

directed graphs with multiple OD pairs (not just a list of vertices or terminals), and 

constraints on the maximum path cost (or distance) between each OD pair. While the output 

of the minimum spanning tree problem and the STP are trees, as their names suggest, the 

output of the LCSP subgraph problem is a directed subgraph. Hence, more than one path may 

connect an OD pair in an LCSP subgraph. 

2.3.3 Contributions and Research Gaps Addressed 

This study makes several contributions to the existing literature. First, I believe this 

is the first study to conceptualize, define, and formulate the person-trip sharing potential 
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(i.e., shareability) of a subregion (i) considering the overlap of person-trip flows on network 

links, and (ii) with partial-sharing between person-trips. No other studies capture either of 

these two features. I expand on this statement below.  

In addition to not focusing on shareability, the studies that aim to characterize urban 

forms, transport networks, and traveler patterns in Section 2.3.1 either quantify the urban 

form and land use alone (Srinivasan, 2002; Tsai, 2005); the transportation network alone 

(Schieber et al., 2017); or travel patterns alone without considering the underlying 

transportation network (Yang et al., 2016). Even though Saberi et al. (2017) model mobility 

patterns as a complex network of flows and compute metrics using shortest network path 

distances, they do not capture how trips from different OD pairs might interact (and overlap) 

within the network.  

Recent work by Kucharski and Cats (2020) and a follow-up study by Soza-Parra et al. 

(2022) are the most closely related to the current study. While these two studies measure 

shareability by analyzing person-trips independent of vehicles, their shareability metrics do 

not model travel demand as flows through a network. Moreover, their shareability metrics—

which include reduction in VMT, number of shareable rides, and total passenger utility—are 

fundamentally different from the person-trip shareability metrics proposed in this 

dissertation. Kucharski and Cats (2020) shareability metrics are based on the number of 

requests that can be pooled together in a given time window, whereas the shareability 

metrics proposed in this dissertation are based on the potential spatial and temporal overlap 

of person-trip flows on network links. 
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The major practical difference between Kucharski and Cats (2020) and the current 

study is that I consider ‘partial’ shareability between person-trips in the network. For 

example, in my model-based metric, a traveler assigned to a network path with, for example, 

fifteen links (i.e., 15 street segments) may overlap (i.e., share space) with large numbers of 

person-trips from many OD pairs for only a link or two, before their paths divert (or end). 

While I capture this partial shareability/overlap explicitly, Kucharski and Cats (2020) and 

all other shareability metrics in the literature, including Santi et al. (2014) and Tachet et al. 

(2017), require explicit matching between two-or-more travelers. This difference stems 

from these other studies modeling individual trips, whereas I model OD demand flows.  

The partial shareability property in our metrics is amenable to informing high-

capacity fixed-route/-schedule transit and semi-flexible transit where travelers can and do 

transfer. In fact, my shareability metric is consistent with the concept of Mobility-as-a-

Service, where travelers might need to transfer between modes, transit lines, and vehicles, 

as they travel from their origin to their destination through a physical network.  

Second, the current study defines and formulates the MNFLOP—a novel 

mathematical program able to quantify the maximum network-wide flow overlap (i.e., this 

study’s measure of shareability) of a network and OD demand, jointly, subject to hard 

constraints on maximum person-trip detour distance. As far as I know, this formulation 

represents a novel network model. Moreover, this study also analyzes the sensitivity of 

maximum shareability in a given network to changes in the maximum allowed detour. 

Another valuable feature of MNFLOP is that it applies to any network with a set of flows, not 

just transportation networks. Traditionally, constraints and objective functions in network 
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flow models try to avoid, either explicitly or implicitly, condensing flows onto few links, 

because most network flow applications involve link or node capacity constraints that are 

binding and/or flow-based link or node congestion penalty functions. However, as indicated 

in this study, there are potential network flow applications where condensing flows onto 

fewer and fewer links is an appropriate objective. I believe MNFLOP may apply outside of 

the transportation domain, as many other network models do. 

Third, this study introduces a node-/location-level metric that jointly quantifies the 

spatial distribution of demand from one node/location and the underlying transportation 

network, termed demand dispersion. Much of the existing literature that aims to characterize 

demand for shared mobility systems only considers the magnitude of demand emanating 

from a single homogenous subregion, e.g., Li & Quadrifoglio (2010), Nourbakhsh & Ouyang 

(2012), and Quadrifoglio & Li (2009). 

2.4 Mathematical Formulation 

This section utilizes the concept and formulation of flow overlap to create a 

mathematical program that maximizes network-wide flow overlap, called the MNFLOP—

Maximum Network Flow Overlap Problem. Cumulative network-wide flow overlap is one of 

the study’s primary person-trip shareability metrics. In the following four subsections, I state 

the maximum network flow assignment problem, formulate the math program for MNFLOP, 

discuss computational complexity considerations, and describe the solution method, 

respectively. 
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2.4.1 Problem Statement 

Let the directed graph 𝐺 = (𝑁, 𝐴) with nodes 𝑁 and directed street segments 𝐴, 

represent a road network. Moreover, let there be a set of origin-destination (OD) demand 

pairs 𝑃, indexed by 𝑝 ∈ 𝑃 or (𝑜, 𝑑) ∈ 𝑃, where 𝑜 ∈ 𝑂 ⊆ 𝑁 and 𝑑 ∈ 𝐷 ⊆ 𝑁. Each link 𝑎 ∈ 𝐴 has 

a non-negative link cost, 𝑐𝑎, that measures the length of the link. Each OD pair has a demand 

flow (measured in person-trips), 𝐹𝑝, and a set of acyclic paths, 𝐾𝑝. Each path 𝑘 ∈ 𝐾𝑝 has a 

detour distance, Δ𝑝
𝑘 , relative to the shortest path connecting OD pair 𝑝, which is less than the 

maximum detour distance for person-trips, Δ𝑚𝑎𝑥 . Given this information, the problem is to 

determine (i) the flow assigned to each path 𝑘 ∈ 𝐾𝑝 for every OD pair, 𝑝 ∈ 𝑃, which I denote 

𝑥𝑝
𝑘 , and (ii) whether each link 𝑎 ∈ 𝐴 is included in the LCSP subgraph, where the binary 

variable 𝑦𝑎 equals one if the LCSP subgraph includes the link and zero if not, such that: 

cumulative network-wide flow overlap is maximized; the sum of the link costs in the LCSP 

subgraph is minimized; all person-trips between each OD pair 𝑝 are assigned to a path 𝑘 ∈

𝐾𝑝; and there is a connected path between each OD pair 𝑝.  

2.4.2 Problem Formulation 

Given the decision variables, parameters, constraints, and objective in the previous 

section, I formulate MNFLOP as a math program, as shown in Equation 3 through Equation 

8. Below, I first explain the objective function (written in both Equation 2 and Equation 3), 

then each of the constraints (Equation 4 to Equation 8). 

𝑀𝑎𝑥 𝑍 = ∑ ∑ 𝑥𝑝
𝑘(𝑍𝑝

𝑘 − ϵ ⋅ Δ𝑝
𝑘 )

𝑘∈𝐾𝑝𝑝∈𝑃

− 𝑀1 ∑ 𝑐𝑎

𝑎∈𝐴

𝑦𝑎 (2) 
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The first term in the objective, ∑ ∑ 𝑥𝑝
𝑘𝑍𝑝

𝑘
𝑘∈𝐾𝑝𝑝∈𝑃 , is the network-wide flow overlap. 

Equation 1 defines 𝑍𝑝
𝑘 , the flow overlap for a unit flow between OD pair 𝑝 on path 𝑘. 

Multiplying 𝑍𝑝
𝑘 by the flow assigned to path 𝑘 for OD pair 𝑝, and summing over all OD pairs 

𝑃, and all paths 𝐾𝑝 gives the network-wide flow overlap.  

The second term in the objective function, ∑ ∑ 𝑥𝑝
𝑘 ⋅ ϵ ⋅ Δ𝑝

𝑘
𝑘∈𝐾𝑝𝑝∈𝑃 , effectively breaks 

ties between two solutions with the same amount of network-wide flow overlap. Hence, ϵ is 

a small positive real number. Among alternative solutions with the same network-wide flow 

overlap, the second term ensures the selection of the one with the shortest cumulative 

detour.  

The last term in the objective function,  𝑀1 ∑ 𝑐𝑎𝑎∈𝐴 𝑦𝑎, denotes the total cost of all the 

links in the LCSP subgraph, multiplied by a large positive value, 𝑀1. This term ensures that 

(i) the cumulative cost (distance) of used links is minimized, and, therefore, (ii) the final flow 

assignment does not include any unproductive detours—the issue identified in in Section 

2.2.5.  

I include this term in the objective function with the large weight 𝑀1, as opposed to 

first determining the LCSP subgraph (and then determining the path flows on the LCSP 

subgraph that maximize flow overlap), because it is possible that there are multiple 

subgraphs with the same ‘least cost’. Among the possible least cost subgraphs, we want the 

one that permits the most flow overlap.  
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The value for 𝑀1 can be set as the largest possible increase in the value of the overlap 

term in the objective function between any two feasible solutions, which is 𝐹 ⋅ (𝐹 − 1) where 

𝐹 = ∑ 𝐹𝑝𝑝∈𝑃  denotes the total demand (person-trips) in the network.  

Equation 3 replaces the 𝑍𝑝
𝑘 in Equation 2 with the right-hand side of Equation 1. In 

Equation 1, 𝑓𝑎
𝑝𝑘 and 𝐹𝑝

𝑘 are given; however, in Equation 3, 𝑓𝑎
𝑝𝑘 is an auxiliary decision 

variable and the decision variable 𝑥𝑝
𝑘  replaces 𝐹𝑝

𝑘. Equation 4 displays the formula for the 

auxiliary decision variables, 𝑓𝑎
𝑝𝑘. We compute the auxiliary decision variable 𝑓𝑎

𝑝𝑘 for all links 

𝑎 ∈ 𝐴 that belong to each path 𝑘 ∈ 𝐾𝑝 from all OD pairs 𝑝 ∈ 𝑃. The variable 𝑓𝑎
𝑝𝑘represents 

the overlapping flows on link 𝑎 for a particular path 𝑘 ∈ 𝐾𝑝 from OD pair 𝑝 ∈ 𝑃, where the 

sum is over every path for every OD pair, except for path 𝑘 ∈ 𝐾𝑝 from OD pair 𝑝 ∈ 𝑃. Since 

the path assignment for maximum flow overlap of an OD pair depends on the path 

assignment of other OD pairs, this implies that MNFLOP is a Quadratic Program.  

𝑀𝑎𝑥 𝑍 = ∑ ∑ 𝑥𝑝
𝑘 (∑

𝑓𝑎
𝑝𝑘𝑐𝑎δ𝑎

𝑝𝑘

∑ (𝑐𝑎δ𝑎
𝑝𝑘

)𝑎∈𝐴𝑎∈𝐴

+ (𝑥𝑝
𝑘 − 1) − ϵ ⋅ Δ𝑝

𝑘 )

𝑘∈𝐾𝑝𝑝∈𝑃

− 𝑀1 ∑ 𝑐𝑎

𝑎∈𝐴

𝑦𝑎 (3) 

s.t. 

𝑓𝑎
𝑝𝑘 = ∑ ∑ 𝑥𝑞

ℎ

ℎ∈𝐾𝑞|𝑘𝑞 ∈ 𝑃

∗   δ𝑎
𝑞ℎ      ∀𝑎 ∈ 𝐴, ∀𝑝 ∈ 𝑃, ∀ 𝑘 ∈ 𝐾𝑝 (4) 

∑ 𝑥𝑝
𝑘

𝑘∈𝐾𝑝

= 𝐹𝑝 ∀𝑝 ∈ 𝑃 (5) 

∑ ∑ 𝑥𝑝
𝑘δ𝑎

𝑝𝑘

𝑘∈𝐾𝑝𝑝∈𝑃

≤ 𝑀2 ⋅ 𝑦𝑎 ∀𝑎 ∈ 𝐴 (6) 
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𝑥𝑝
𝑘 ≥ 0 ∀𝑝 ∈ 𝑃, ∀ 𝑘 ∈ 𝐾𝑝 (7) 

𝑦𝑎 ∈ {0,1} ∀ 𝑎 ∈ 𝐴 (8) 

Equation 5 requires that the sum of flows across all paths 𝑘 ∈ 𝐾𝑝 between an OD pair 

𝑝, 𝑥𝑝
𝑘 , equal the total demand (person flows) for the same OD pair, 𝐹𝑝. Equation 7 mandates 

non-negative path flows for all paths from all OD pairs. 

Equation 6 ensure that if a path 𝑘 ∈ 𝐾𝑝 has a positive flow value (i.e., 𝑥𝑝
𝑘 > 0), then all 

the links on path 𝑘 are included in the LCSP subgraph. 𝑀2 is a large positive number whose 

value can be set to the maximum number of person-flows on any link in the network, which 

would be equal to the total demand flows between all OD pairs in the network, 𝑀2 = 𝐹 =

∑ 𝐹𝑝𝑝∈𝑃 . Equation 8 enforces the binary constraint on decision variable 𝑦𝑎. 

2.4.3 Computational Complexity Considerations 

This section provides a brief overview of the computational complexity associated 

with the MNFLOP. If a network has |𝑃| OD pairs and |K| paths between each OD pair, then 

the number of path flow choice decision variables in the optimization problem is |𝑃| × |𝐾|. 

The number of path flow decision variables is independent of the number of links in the 

network and depends only on the number of OD pairs and the paths between them. However, 

the quadratic nature of the objective function in Equation 3 means that an optimal path flow 

for an OD pair is strongly influenced by the optimal path flows for all other OD pairs with 

which there is an overlapping link on their paths. The number of quadratic terms in the 

objective function increases as the OD pairs increase in spatial closeness, as this results in 

more overlapping links between paths from multiple OD pairs. Naturally, the number of 
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quadratic terms also increases with network size, as larger networks have more links on 

which different OD pairs are likely to have overlapping paths.  

For a network with |P| OD pairs and |K| paths between each OD pair, the MNFLOP 

could have up to a maximum of ( |𝑃|×|𝐾|
2

) quadratic terms in the objective function. ( |𝑃|×|𝐾|
2

) 

is the number of combinations of overlapping paths. More quadratic terms results in slower 

convergence while trying to find an exact optimal solution. The LCSP sub-problem in 

MNFLOP is also computationally intensive. Heuristics and approximation algorithms may be 

required to solve MNFLOP ensuring productive detours for large networks and a greater 

number of origin/destination nodes. 

2.4.4 Solution Methodology 

MNFLOP instances are solved as constrained quadratic programs using the Gurobi 

optimization package in Python programming language. I use the Networkx package to 

create the network and perform other network-related operations. As an input to the 

MNFLOP, a finite set of acyclic paths are pre-computed for each OD pair: 𝐾𝑜𝑑 = 0,1,2, .. 

indexed by 𝑘 ∈ 𝐾𝑂𝐷, where 𝑘 = 0 denotes the shortest path between OD pair (𝑜, 𝑑), 𝑘 = 1 

denotes the second shortest path and so on. A variation of the Yen’s algorithm (Yen, 1971) is 

used to find all acyclic paths between each OD pair with distance detours less than Δ𝑚𝑎𝑥. The 

maximum allowable detour distance could either be absolute (measured in miles) or relative 

percentage increase in detour distance (measured in percentage). Here detour distance for 

each path 𝑘 ≥ 1 is relative to the shortest path (k = 0). 

Unfortunately, the number of paths increases exponentially with network size. 

Moreover, given the nature of MNFLOP, it is important for the set of 𝑘 paths to be distinct for 
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each OD pair. As such, future research that applies MNFLOP to large networks must grapple 

with the challenge of determining a good set of paths for each OD pair. 

2.5 Shareability Metrics from MNFLOP output 

The MNFLOP model output can provide a variety of shareability metrics at various 

levels of aggregation, such as the OD level, link level, node level (origin or destination), and 

the network level. Table 2.1 provides a comprehensive list, along with descriptions and 

formulations, of shareability metrics. 

Since flow overlap is defined at the OD level (for a unit trip), most of the OD-level 

metrics in Table 2.1 come directly from the Conceptual Framework section (Section 2.2). To 

clearly distinguish and show the relation between shareability metrics calculated at different 

levels of aggregation, I use the notation 𝑜𝑑 instead of 𝑝 to denote an OD demand pair (𝑜, 𝑑). 

Flow overlap, 𝑍𝑜𝑑
𝑘 , is from Equation 1; trip overlap percentage (𝑍𝑜𝑑

k,%) normalizes flow 

overlap for an OD pair by all OD demand; detour distance for a path 𝑘 between an OD pair 

(Δ𝑂𝐷
𝑘 ) is straightforward and measured relative to the shortest path distance; the marginal 

overlap (𝑀
𝑍𝑜𝑑

𝑘 ) captures the ratio of overlap increase to detour distance when switching from 

the shortest path to path 𝑘 for an OD; and finally, overlap distance (𝐿𝑜𝑑
𝑘 ) parallels flow 

overlap but instead of dividing the sum product of link flows and link distances by total path 

distance, overlap distance divides the sum product by total OD demand.  

The node-level and network-level metrics parallel the OD-level metrics. In fact, all the 

node-level and nearly all the network-level metrics can be derived by summing the OD-level 

metrics.  



   

36 
 

At a node level, the metrics of shareability characterize the ‘dispersion’ of trips 

originating from or destined to a given node. Trips originating from a node exhibit a high 

degree of dispersion when their trip-ends are scattered to destinations in the network such 

that the paths to these destinations have limited overlaps. Conversely, when trips from a 

node are bound to a limited number of destinations and/or the paths to the destinations are 

highly overlapping, trips from the node exhibit low dispersion. The node overlap percentage 

metric (𝑍𝑜
%) shown in Table 2.2 quantifies dispersion of trips from a single node for an 

illustrative example (Figure 2.3). A high value of node overlap percentage indicates that trips 

from the node are highly concentrated. Additionally, node overlap distance (𝐿𝑜) denotes the 

average distance for which trips originating from a node that share paths with other trips 

originating from the same node. To understand the difference between node overlap and 

node overlap distance, consider nodes Node-A and Node-B that have similar overlap and 

overlap percentage. If Node-A has a higher node overlap distance, then trips from Node-A 

share paths for longer distances than trips from Node-B.  

At the link level, shareability metrics include the number of person-trips on each link, 

as well as the number of links in the network that have non-zero flow values. The link flows 

can also be aggregated at the network level to find the link-length-weighted average number 

of person-trips on links with non-zero flows. A higher number of person-trips per link with 

non-zero flows indicate a higher concentration of trips in a region onto fewer links and 

potentially fewer corridors, the objective of MNFLOP. 
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Table 2.1 MNFLOP based Shareability metrics at different levels of aggregation in a network 

Metric Unit Aggregation  Description Formula 

Trip Overlap 
Person-

trips 
OD 

Average number of other flows with which 

a unit trip from O to D on path 𝑘 shares its 

path (Equation 1) 

𝑍𝑜𝑑
𝑘  

Trip Overlap 

Percentage 
% OD 

Percentage of other flows in the network 

with which a unit trip from O to D on path 

𝑘 shares its path, where 𝐹 is total OD flow.  
𝑍𝑜𝑑

𝑘,% =
𝑍𝑜𝑑

𝑘

𝐹 − 1
100 

Detour Miles OD 
Difference in distances between path 𝑘 and 

the shortest path from O to D 
𝛥𝑜𝑑

𝑘  

Marginal 

Overlap 
Person-

trips/mile 
OD 

Marginal change in overlapping flows for 

every detour mile obtained from shifting 

from the Shortest Path to path 𝑘 for an OD 
𝑀𝑍𝑜𝑑

𝑘 =
𝑍𝑜𝑑

𝑘 − 𝑍𝑜𝑑
𝑆𝑃

𝛥𝑜𝑑
𝑘  

Overlap 

Distance 
Miles OD 

Average distance a unit trip on path 𝑘 from 

O to D shares with all other flows in the 
network  

𝐿𝑜𝑑
𝑘

= ∑
𝑐𝑎 ∗ 𝛿𝑎

𝑜𝑑𝑘 ∗ (𝑓𝑎
𝑜𝑑𝑘 + 𝐹𝑜𝑑

𝑘 − 1)

𝐹 − 1
∀𝑎∈𝐴

 

Node Overlap 
Person-

trips 
Origin Node 

Average number of other flows from origin 

O that a unit flow originating from the 

same node shares its path. 

𝑍𝑜 =
1

𝐹𝑜

∑ ∑ 𝑍𝑜𝑑
𝑘 𝐹𝑜𝑑

𝑘

∀𝑘∈𝐾𝑜𝑑∀𝑑∈𝐷

 

Node Overlap 

Percentage 

(Dispersion) 

% Origin Node 
Percentage of demand that originates from 
a node that shares paths in whole or in part 

with other flows from the same node.  

𝑍𝑜
% =

1

𝐹𝑜

∑ ∑ 𝑍𝑜𝑑
𝑘,%𝐹𝑜𝑑

𝑘

∀𝑘∈𝐾𝑜𝑑∀𝑑∈𝐷

 

Node Overlap 

Distance 
Miles Origin Node 

Average distance a person-trip overlaps 

with all other trips from the same origin.  
𝐿𝑜 =

1

𝐹𝑜

∑ ∑ 𝐿𝑜𝑑
𝑘 𝐹𝑜𝑑

𝑘

∀𝑘∈𝐾𝑜𝑑∀𝑑∈𝐷

 

Average 

Network 

Overlap 

Person-

trips 
Network 

Average number of other flows with which 

a unit trip in the network shares its path 
𝑍 =

1

𝐹
∑ ∑ ∑ 𝑍𝑜𝑑

𝑘 𝐹𝑜𝑑
𝑘

∀𝑘∈𝐾𝑜𝑑∀𝑑∈𝐷∀𝑜∈𝑂

 

Average 

Network 

Overlap 

Percentage 

% Network 
Percentage of total demand in the network 
that share paths 

𝑍%

=
1

𝐹
∑ ∑ ∑ 𝑍𝑜𝑑

𝑘,%𝐹𝑜𝑑
𝑘

∀𝑘∈𝐾𝑜𝑑∀𝑑∈𝐷∀𝑜∈𝑂

 

Average 

Network 

Detour  

Miles Network 
Demand weighted average of detour miles 

for all flows in the network 
𝛥 =

1

𝐹
∑ ∑ ∑ 𝛥𝑜𝑑

𝑘 𝐹𝑜𝑑
𝑘

∀𝑘∈𝐾𝑜𝑑∀𝑑∈𝐷∀𝑜∈𝑂

 

Average 

Network 

Detour Ratio 

- Network 

Ratio of average trip length in MNFLOP 

assignment to the average length of trips in 

Shortest Path assignment 

𝛥𝑟 =
𝐴𝑣𝑔 𝑇𝑟𝑖𝑝 𝐷𝑖𝑠𝑡𝑀𝑁𝐹𝐿𝑂𝑃

𝐴𝑣𝑔 𝑇𝑟𝑖𝑝 𝐷𝑖𝑠𝑡𝑆𝑃

 

Marginal 

Network 

Overlap 

Person-

trips/mile 
Network 

Total increase in overlap in the network 

using MNFLOP assignment for a unit 

detour from Shortest Path 
𝑀𝑍 =

𝑍𝑀𝑁𝐹𝐿𝑂𝑃 − 𝑍𝑆𝑃

𝛥
 

Marginal 

Network 

Overlap 

Percentage 

% Network 

Total increase in percentage of overlapping 

flows in the network using MNFLOP 
assignment for a unit detour from Shortest 

Path 

𝑀𝑍%
=

𝑍%
𝑀𝑁𝐹𝐿𝑂𝑃 − 𝑍%

𝑆𝑃

𝛥
 

Links Used Number Link/Network 
Number of links with non-zero person-trip 

flows 
- 

Avg Link 

Flows 
Person-

trips 
Link/Network  

Link-length-weighted-average person-trips 

on links that have positive flows 
- 
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2.5.1 Toy Example to Demonstrate Location/Node-Level Metrics 

The node level metrics of shareability presented in this chapter consider the 

magnitude of demand, the spatial distribution of demand and the underlying road network, 

as well as the overlapping distance of demand emanating from a node, rather than just 

demand density (trips per time unit per area unit).  

Figure 2.3 displays four different toy networks to illustrate the calculation of node-

level measures and their potential value for characterizing shareability from a single node. 

Notably, the origin nodes in the four scenarios (Nodes A1 to A4 in Scenarios 1 to 4 

respectively) have the same demand density originating from them: 90 person-trips per time 

unit per area unit. In scenario (1), all flows from Node-A1 are bound to Node-B. In scenarios 

(2) to (4), flows from Nodes A2, A3, and A4 are equally distributed among nodes B, C and D. A 

visual inspection of the scenarios in Figure 2.3, confirmed by the values in Table 2.2, indicate 

clear differences in flow overlap and dispersion, and therefore differences in shareability 

across the scenarios, despite the same magnitude of total demand in each case.  

 
Figure 2.3 Example Scenarios to Illustrate Overlap/Dispersion and Overlap Distance at Node Level 
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In Scenario (1), all trips are bound to a single destination; hence, all flows share the 

same path, making the demand emanating from Node-A1 highly concentrated; the overlap 

percentage is 100% (i.e., zero dispersion). A unit trip in this scenario overlaps with 89 other 

trips. Overlap distance in this scenario is the same as the average trip distance since a unit 

trip from Node-A overlaps with all other flows from Node-A1 on its entire path.  

Table 2.2 Comparison of Node Level Shareability Metrics for Example Scenario 

Metrics of Shareability for Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Total Demand (Person-trips) 90 90 90 90 

Avg Overlap (Person-trips) 89 69 75.7 29 

Avg Overlap Percentage (%) 100 77.5 85 32.6 

Avg Trip Distance (Miles) 2 1.67 2.67 2 

Avg Overlap Dist. (Miles) 2 1.22 2.22 0.65 

 

Scenario (4) exhibits the highest dispersion of trips because a unit trip from Node-A4 

on average shares paths with only 29 other trips (or 32.6% of all trips in the network) for an 

average overlap distance of 0.65 miles. The average overlap distance in this scenario being 

much less than the average trip distance indicates that each trip has a small overlap with 

other trips. Even though there are no overlapping paths between the three OD pairs in 

Scenario (4), a unit trip from Node-A4 in this scenario still overlaps with 29 other trips 

heading to the same destination.  

Scenarios (2) and (3) have similar network structures except for the length of the link 

connecting Node-A2 and Node-A3 respectively with Node-B. The values of overlap and 

overlap percentage are slightly higher for scenario (3) than scenario (2) because flows share 

paths for a longer distance on link A3B in scenario (3) compared to link A2B in scenario (2). 

The value of average overlap distance for scenario (3) is one-mile more than in scenario (2), 
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which means that the average trip from Node-A3 in scenario (3) overlaps with all other flows 

for a mile longer than an average trip from Node- A2 does in scenario (2). 

The node level measures of overlap provide some interesting implications for the 

efficiency of shared mobility services operated in a location. Even though a lower demand 

density in an area (trip requests per unit area per unit time) is likely to be less favorable for 

ridesharing services, such methods do not fully capture the direction of the demand and thus 

the extent of the demand’s overlap and sharing potential ( Li and Quadrifoglio, 2010; Mehran 

et al., 2020; Qiu et al., 2015; Quadrifoglio and Li, 2009; Ronald et al., 2013; Tong et al., 2017; 

Zheng, 2018). Similarly, existing studies on multi-modal design of transit and microtransit 

services generally pair a microtransit service to a fixed transit route and derive the optimal 

operational parameters of the vehicles(Chen and Nie, 2018, 2017a, 2017b; Luo and Nie, 

2020; Pinto et al., 2019; Stiglic et al., 2018). However, such studies are applied to small sub-

regions of a city without considering the overall travel demand patterns in the region. The 

routes of fixed transit services in many cities were designed before the wider availability of 

other shared mobility modes that could either substitute or complement fixed transit. The 

node level example scenario presented in this section indicates how the same total demand 

density in an area can lead to different levels of shareability and hence implications on the 

viability and operational efficiency of such services. This is further examined in detail (along 

with other scenarios) in the next chapter of the dissertation. 

2.6 Conclusion 

This chapter introduced the concept of flow overlap based person-trip shareability to 

measure sharing potential in transportation systems. The chapter used this conceptual 
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framework to formulate the Maximum Network Flow Overlap Problem (MNFLOP) that 

assigns person-trips (flows) between different OD pairs onto different paths that maximize 

network level overlap. This represents the ceiling for sharing in transportation systems, 

given the structure of the transportation street network, OD person-trip travel demand and 

the maximum detour distance parameters. I used path flow results of MNFLOP to derive 

metrics of shareability at different levels of aggregation in the network. I finally provided an 

illustrative example to demonstrate how shareability measures calculated using MNFLOP at 

a location/node level could distinguish between multiple scenarios with the same magnitude 

of demand density. The next chapter of this dissertation performs extensive analysis of 

MNFLOP-based overlap measures for different scenarios and also tests its statistcal validity 

in influencing the efficiency of operating shared mobility modes. 
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Chapter 3. MNFLOP based Shareability Metrics – Case Studies and 

Validation 

3.1 Introduction  

Overlap-based shareability metrics presented in Chapter 2 capture the sharing 

potential of trips in a region by capturing overlaps in path flows between different OD pairs 

in a network. Given the road network structure of a region, its OD person-trip travel demand, 

and the maximum detour distance willingness for trips between each OD pair, MNFLOP finds 

the optimal path flows between each OD pair that maximizes flow overlap (or shareability) 

in the network. The results of MNFLOP can determine the sharing potential of a region at 

different levels of aggregation. This chapter takes forward the conceptual framework, 

problem formulation and metrics defined in the previous chapter and applies it to several 

different scenarios. The objective of this chapter is to apply MNFLOP-based metrics to 

different scenarios to examine how meaningful the metrics are in capturing variations in 

travel demand patterns and test the sensitivity of shareability to maximum detour 

willingness. This chapter also aims to test the statistical validity of MNFLOP based 

shareability metrics in affecting the operational efficiency of a shared mobility mode. 

The rest of this chapter is organized as follows. Section 3.2 briefly describes the 

MNFLOP implementation methodology and also describes the various scenarios for analysis. 

In Section 3.3, I verify the ability of MNFLOP (i) to increase flow overlaps compared to 

shortest path assignment; (ii) to differentiate between demand patterns in terms of their 

overlap; and (iii) to capture the magnitude and directionality of demand emanating from a 

single node/location while considering the road network. Moreover, in Section 3.4, I validate 
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maximum overlap as a useful measure of sharing potential and estimate the elasticity of 

vehicle fleet miles with respect to shareability metrics for a microtransit last-mile transit 

feeder service. Section 3.5 discusses the various inferences that can be drawn from the 

results and also lists some limitations of the study. Finally, Section 3.6 concludes the first 

study in my dissertation (Chapter 2 and Chapter 3). 

3.2 Case Studies 

3.2.1 Study Network 

To verify MNFLOP and the associated 

metrics and to illustrate their usefulness for 

characterizing shareability, this study 

employs the Sioux Falls road network 

(Stabler, 2019). The Sioux Falls network 

includes 24 nodes and 76 directional links 

(Figure 3.1).  

The study employs Gurobi’s 

quadratic programming solver to solve the 

MNFLOP model. The solver runs on a system with 64 GB RAM and an Intel i9 processor with 

a clock speed of 3.60 GHz. The solver took at most 10 minutes to converge to the optimal 

solution across all scenarios (Sections 3.3.1 to 3.3.4) with a relative optimal gap value of 

1.00e-04.  

As described in the previous chapter, the solution of MNFLOP depends on Δ𝑚𝑎𝑥. I use 

Yen’s algorithm to find all paths between each pair of demand nodes in the network with 

Figure 3.1 Sioux Falls Street Network 



   

44 
 

detours less than Δ𝑚𝑎𝑥 (Yen, 1971). I filter the generated paths based on the minimum of 

absolute and relative maximum detour distance constraints (denoted by Δ𝑚𝑎𝑥
𝑎𝑏𝑠  and Δ𝑚𝑎𝑥

𝑟𝑒𝑙  

respectively). Unless specified otherwise, this study uses Δ𝑚𝑎𝑥
𝑎𝑏𝑠 = 8 miles and Δ𝑚𝑎𝑥

𝑟𝑒𝑙 = 50%. I 

chose 8 miles because it represents approximately one-third of the maximum distance 

between any O-D pair in the study network (23 miles). I chose 50% because I believe it 

represents a reasonable value for travelers who are willing to share rides. In practice, these 

parameter values should be set based on a variety of behavioral and network factors. 

Travelers in one city may be more willing to take a detour than travelers in another city. 

Moreover, travelers may be more likely to accept longer detours if they are financially 

compensated for longer detours. Transportation planners would benefit from collecting data 

on the willingness of travelers to detour in their respective cities, before applying the 

MNFLOP.  

3.2.2 Scenarios for Analysis 

This chapter compares the output path flows and the resultant shareability metrics 

from these path flows based on two types of flow assignment approaches: 

1. Maximum Network Flow Overlap (MNFLOP) Assignment: Trips between OD pairs 

are assigned to paths to maximize the total flow overlap in the network. The optimal 

path choice solution depends on Δ𝑚𝑎𝑥, thus evaluate the trade-offs between overlaps 

and detours by changing the Δ𝑚𝑎𝑥 parameter and restricting the set of paths 𝐾𝑜𝑑 for 

each OD pair with detours less than Δ𝑚𝑎𝑥. 

2. Shortest Path (SP) Assignment: All trips between an OD pair are assigned to the 

shortest path between their OD pair. This is achieved by restricting the input set of 
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paths for each OD pair to only those with 0 detour. It should also be noted that the 

objective function formulation in Equation 3 ensures overlap maximizing optimal 

paths (path flows) for each OD pair if there are multiple paths between an OD pair 

with the same path length.  

Table 3.1 provides a summary of the various scenarios analyzed in this study. The 

scenarios vary in terms of Origin and Destination nodes, total demand, maximum detour, and 

flow assignment methods. The objective of Scenario Set-1 (Section 3.3.1) is to evaluate how 

optimal path flows and shareability metrics vary for different maximum relative detour 

values (including the no-detour shortest path). Scenario Set-2 (Section 3.3.2) aims to 

demonstrate how the origin level overlap measures for trips starting from each of the 24 

nodes varies using MNFLOP as well as SP assignment. Scenario Set-2 also aims to show how 

demand from a single location can be expressed in terms of both its magnitude as well as 

dispersion (in terms of overlap percentage) where the dispersion measure comes from the 

output of MNFLOP. The objective of Scenario Sets 3 and 4 (Sections 3.3.3 and 3.3.4 

respectively) is to demonstrate that MNFLOP can differentiate between the 

shareability/overlap in a network under the same (or similar) magnitude of total demand 

but different spatial distributions of demand. Section 3.4 aims to validate the usefulness of 

MNFLOP-based origin-level shareability metrics by testing the hypothesis that these metrics 

are positively associated with the efficiency of a microtransit last-mile transit feeder service. 

Demand flows are expressed as person-trips. 
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Table 3.1 Summary of Scenarios for Analysis 

Scenario Description 
Maximum Overlap 

(MNFLOP) 
Shortest Path (SP) 

Scenario 1 
6 Origin Nodes in North to 6 Destination Nodes 

in South (Total Demand = 6,000 trips) 
Yes (Δ𝑚𝑎𝑥

𝑟𝑒𝑙  = 5 to 75%) Yes (Δ𝑚𝑎𝑥  = 0) 

Scenario Set 

2 
Demand from each Origin Node to all 23 other 

Destination Nodes 
Yes (Δ𝑚𝑎𝑥

𝑎𝑏𝑠  = 8 miles, 

Δ𝑚𝑎𝑥
𝑟𝑒𝑙 = 50%) 

Yes (Δ𝑚𝑎𝑥  = 0) 

Scenario Set 

3 
Same Total Demand (1000 trips), Same Set of 

Origin Nodes, Different Destination Nodes 
Yes (Δ𝑚𝑎𝑥

𝑎𝑏𝑠  = 8 miles, 

Δ𝑚𝑎𝑥
𝑟𝑒𝑙 = 50%) 

No 

Scenario Set 

4 
Same Total Demand (1000 trips) Distributed 

between Different OD pairs 

Yes (Δ𝑚𝑎𝑥
𝑎𝑏𝑠  = 8 miles, 

Δ𝑚𝑎𝑥
𝑟𝑒𝑙 = 50%) 

No 

3.3 Results 

3.3.1 Scenario Set 1: Comparing Assignment Methods in Baseline Scenario 

In this scenario, I assign trips between 6 origin nodes in the North and 6 destination 

nodes in the South of the Sioux Falls network for three different values of Δ𝑚𝑎𝑥
𝑟𝑒𝑙  – 50%, 25% 

and 0% (SP).  

Figure 3.2 show the link flows on the Sioux Falls network for MNFLOP-50%, MNFLOP-

25% and SP assignments (from left to right). Link thickness is proportional to the number of 

trips assigned on each link. Examining the link flows from the rightmost to the leftmost plots 

clearly demonstrates the ability of MNFLOP-based assignment to increase flow overlap as 

Δ𝑚𝑎𝑥
𝑟𝑒𝑙  increases. Increasing Δ𝑚𝑎𝑥

𝑟𝑒𝑙  leads to a higher chance of overlapping with more trips from 

other OD pairs. The plots also show that MNFLOP-50% concentrates trips between O-D pairs 

onto the fewest links, followed closely by MNFLOP-25%, whereas SP spreads person-trips 

across many links.  

Table 3.2 provides the network level shareability metrics for Scenario 1. Many of the 

metrics directly confirm the conclusions derived from analyzing  
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Figure 3.2. Namely, MNFLOP-50% has the highest flow overlap, followed by MNFLOP-

25%. However, also indicates that this increase in flow overlap comes at a small cost in terms 

of detour distance for the Sioux Falls network.  

According to Table 3.2, MNFLOP-50% more than doubles the number of overlapping 

flows for an average unit flow in the network compared to SP (1740 person trips to 3613 

person trips) for a mere 11% increase in the average detour. This suggests that small detours 

from shortest paths can significantly increase flow overlaps. As expected, MNFLOP-25% 

assignment produces slightly less overlap and lower detours than MNFLOP-50%. However, 

MNFLOP-25% still increases overlap by nearly 80% with only a 5% increase in distance 

compared to SP. The results indicate that path assignments based on MNFLOP-25% have a 

higher value for marginal increase in overlap per detour mile as well as a higher value for 

distance elasticity of overlap compared to MNFLOP-50% (12.3 vs 10.1).  

The average overlap distance for a unit trip in the network increases from 4 miles to 

9.6 miles with MNFLOP-50% compared to SP assignment. This implies that moving flows 

away from the shortest path not only increases the number of overlapping trips, but also the 

distance along the path in which the average person-trip shares path with all other trips.  

Table 3.2 also shows that total cost of the LCSP subgraph (the sum of lengths of links 

with non-zero flows) decreases with increasing Δ𝑚𝑎𝑥
𝑟𝑒𝑙 . The average flows on LCSP subgraph 

links are also highest for MNFLOP-50%, followed by MNFLOP-25% and SP. This metric, along 

with the number of links included in the LCSP subgraph, shows that MNFLOP effectively 

concentrates the person-trips onto fewer links.  
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Appendix B: Additional MNFLOP Results for Sioux Falls Scenario 1  includes further 

results for Sioux Falls Scenario Set 1, including Table B-1 that displays overlap/shareability 

metrics and path choice for every OD pair for all three assignment methods.  

Finally, although the MNFLOP formulation in Section 2.4.2 permits demand from one 

OD to use multiple paths, the path flow results in this scenario (as well as all other 

subsequent scenarios) indicate that at optimality, the demand flow from an OD pair always 

uses one and only one path. This outcome is logical given the quadratic nature of the 

objective function and the lack of capacity constraints on links.  

Table 3.2 Network Level Overlap Metrics for Scenario 1 

Metric 
MNFLOP-50%  

(𝚫𝒎𝒂𝒙
𝒓𝒆𝒍  = 50%) 

MNFLOP-25%  

(𝚫𝒎𝒂𝒙
𝒓𝒆𝒍  = 25%) 

SP 

Avg Overlap, 𝑍 (person-trips) 3613 2859 1740 

Avg Overlap Perc., 𝑍% (%) 56.4 44.7 27.2 

Avg Trip Distance (miles) 17.28 16.44 15.62 

Avg Overlap Distance (miles) 9.6 7 4 

Avg Detour (miles) 1.66 0.82 - 

Avg Detour (ratio) 1.11 1.05 - 

Marginal Overlap (trips/detour-mile) 1128.3 1365 - 

Marginal Overlap Perc. (% /detour-

mile) 
17.6 21.3 - 

Detour Distance Elasticity of Overlap 10.1 12.3 - 

Cost of LCSP (miles) 62 71 117 

Avg Flow on LCSP Links (person-trips) 1784 1482 855 

# Links with Non-zero Flows 18 21 31 
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Figure 3.2 Link Flows (Person trips) for Scenario-1: MNFLOP - 50% Detour (left), MNFLOP- 25% Detour (middle), and SP (right)  
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3.3.1.1 Sensitivity Analysis for Maximum Detour Distance 𝜟𝒎𝒂𝒙 

The results of MNFLOP are highly sensitive to Δ𝑚𝑎𝑥. This section examines how 

shareability metrics for Scenario 1 change with Δ𝑚𝑎𝑥, expressed in this instance in terms of 

relative percentage change in path length compared to the shortest path length (Δ𝑚𝑎𝑥
𝑟𝑒𝑙 ). 

MNFLOP is run for a range of Δ𝑚𝑎𝑥
𝑟𝑒𝑙  values from 0% (SP) to 75% by restricting the path set 

𝐾𝑜𝑑 for each OD pair to those that are within Δ𝑚𝑎𝑥
𝑟𝑒𝑙 .  

Figure 3.3 displays average overlap percentage for the network and demand for 

Scenario 1 as a function of Δ𝑚𝑎𝑥
𝑟𝑒𝑙 . As previously observed, increasing Δ𝑚𝑎𝑥

𝑟𝑒𝑙  increases the 

number of overlapping flows for an average unit flow in the network. Average overlapping 

flows (and hence the percentage of overlapping flows) increases monotonically with 

increasing Δ𝑚𝑎𝑥
𝑟𝑒𝑙  (Figure 3.3).  

 
Figure 3.3: Maximum Relative Detour vs. Average Overlap Percentage for Scenario 1 

Figure 3.4 displays average overlaps (person trips) and average detour (miles) for the 

above-mentioned range of Δ𝑚𝑎𝑥
𝑟𝑒𝑙  values. Interestingly, Figure 3.4 shows there is a non-

monotonic relationship between average detours and average overlaps because there is also 
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a non-monotonic relationship between average detours and Δ𝑚𝑎𝑥
𝑟𝑒𝑙 . For example, when Δ𝑚𝑎𝑥

𝑟𝑒𝑙  

increases from 40% to 45%, overlapping flows increase by nearly 500 person trips. 

However, the average detour of the resultant MNFLOP path assignment decreases slightly 

from 1.5 miles to 1.4 miles. This result is possible because MNFLOP is attempting to 

maximize flow overlaps, and when more paths are feasible (i.e., there are more paths in 𝐾𝑝) 

it is possible that while the set of overlap-maximizing paths take advantage of the increase 

in Δ𝑚𝑎𝑥
𝑟𝑒𝑙  from 1.4 to 1.5, the overlap-maximizing paths for many other OD pairs actually 

decrease in detour distance.  

Figure 3.4 also shows that the change in average detour for the MNFLOP path 

assignment increases at a lower rate than Δ𝑚𝑎𝑥
𝑟𝑒𝑙 . For instance, the average detour for Δ𝑚𝑎𝑥

𝑟𝑒𝑙  = 

75% is about 2 miles which is only a 12% increase in average trip distance compared to SP. 

This implies that even when Δ𝑚𝑎𝑥
𝑟𝑒𝑙  is set to a high value, overlap-maximizing flows between 

most OD pairs still only detour slightly from their SP. Therefore, significant increases in 

overlap are possible even when flows from most OD pairs only need to make a slight detour 

from their shortest paths. 
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 Figure 3.4: Trade-offs between Average Detour and Average Overlap for Scenario-1  (Each point is 

marked with the maximum relative detour parameter value for which it was produced) 

3.3.2 Scenario Set 2: Origin-level Shareability Analysis  

Scenario Set 2 analyzes the extent of overlaps between trips originating from each 

node of the Sioux Falls network by solving MNFLOP as well as the SP assignment problem, 

for each origin separately. The maximum detour parameter used in this scenario (and all 

subsequent scenarios) is the minimum of Δ𝑚𝑎𝑥
𝑎𝑏𝑠  = 8 miles and Δ𝑚𝑎𝑥

𝑟𝑒𝑙  = 50%. Moreover, for each 

scenario (i.e., each origin), we only consider the trips originating from said origin. This 

analysis gives insights into the relative dispersion of trips originating from an individual 

location.  

Figure 3.5 displays the magnitude of demand along with the overlap percentage for 

all 24 origin demand nodes in the Sioux Falls network using MNFLOP and SP. The plots show 

that assigning trips using MNFLOP increases the overlap percentage for each origin node 

when compared to SP assignment. Overlap percentage for origin nodes such as Node-1 

nearly doubles when trips are assigned based on MNFLOP compared to SP. On the other 
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hand, there is only a minor increase in overlap percentage for trips originating from Node-9, 

Node-10, Node-14, and Node-19.  

Figure 3.5 also shows that trips originating from Node-2 exhibit the highest overlap 

percentage (i.e., the lowest dispersion) under both MNFLOP and SP assignment. Node-2 has 

a flow overlap percentage of over 60% for MNFLOP. This means that when flows are 

assigned based on MNFLOP, the average trip starting from Node-2 shares its paths with 60% 

of all other person-trips originating from Node-2. On the other hand, trips originating from 

Node-10 have the lowest overlap percentage—22% for MNFLOP—despite having a high 

magnitude of originating trips.  

Figure 3.5 further reinforces that both the magnitude (indicated by total demand per 

unit time or total demand per unit area per unit time) as well as the dispersion of demand 

(indicated by percentage of overlap) are necessary to fully characterize of the shareability of 

trips from an origin location. Node-2 has a low magnitude of originating demand (4,000 

person-trips), but a high overlap percentage value of 62%, meaning that trips from this 

location are still highly shareable. This might suggest that operating a shared mobility feeder 

mode from this location might be viable, despite its low magnitude of demand. While Node-

16 has a lower overlap percentage value of 23%, since its magnitude of demand is high 

(26,000 person-trips), the average trip from Node-16 still shares paths with nearly 7,000 

person-trips (26% of 26,000 person-trips). This means that even though trips from Node-16 

are more dispersed, a unit flow from Node-16 is still likely to share a path in part or whole 

with nearly three times as many person-trips as compared to a unit person-trip starting from 

Node-2. 
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Figure 3.5 Demand Magnitude and Overlap Percentage for Origin Nodes in Sioux Falls with MNFLOP 

(top) and SP (bottom) Assignment 

Figure 3.6 displays the link flows using MNFLOP for trips originating from Node-2 

and Node-5. These two origin nodes have similar magnitudes of total originating demand, 

whereas the overlap percentage for Node-2 is twice as much as Node-5. The higher value of 

overlap percentage for Node-2 is evident in Figure 3.6, where flows have a tree structure 

with a root at Node-2 and flows to destination nodes only use a few links/branches, 

indicating high overlap between paths. On the other hand, Figure 3.6 displays a tree structure 

with flows emanating from Node-5 branching out across many links on the way to 

destination nodes. 
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The MNFLOP link flows for demand originating from Node-2 shown in Figure 3.6 also 

help to demonstrate partial shareability of trips captured in this dissertation. For example, a 

unit flow between OD pair (2,17) shares paths with person flows between OD pair (2,5) for 

9

14
 of its path length; person flows between OD pairs (2,7) for 

7

14
 of its path length; and with 

person flows between OD pair (2,10) for 
12

14
 of its path length. The results in this case show 

that all flows between Node-2 and Nodes 5, 7, 10 and 17 are assigned on their respective 

shortest paths under MNFLOP assignment. Even though the shortest path from Node-2 to 

Node-9 is 2-6-8-9 (10 miles), MNFLOP assigns all flows between these nodes to the path 2-

6-8-16-10-9 (12 miles) to maximize network wide overlap of flows. Thus, a unit flow 

between OD pair (2,17) shares paths with flows between OD pair (2,9) for 
12

14
 of its path 

length. At the same time, it shares its entire path with person flows between OD pairs (2,19), 

(2,20) etc. The average overlap for a unit trip between (2,17) is close to 2613 person trips. 

This value captures the average amount of overlapping flows from all other OD pairs in the 

network that overlap in part or in whole with a unit trip between (2,17).  
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Figure 3.6: MNFLOP Assignment from Node 2 (left) and Node 5 (right) 

 

3.3.3 Scenario Set 3: Same Origin, Different Destinations Shareability Analysis 

This scenario set aims to highlight the difference in shareability for different demand 

patterns for the same (or similar) magnitude of total demand originating from the same set 

of origin locations in the Sioux Falls network. The Northern nodes in the Sioux Falls network 

(nodes 1 through 6) are the origin nodes for all cases in this scenario set. I assign a total 

demand of 1000 person-trips from these origin to three different sets of destination nodes 

to show how shareability depends on the spatial distribution of demand.  

I obtain the demand between each OD pair in each case by first slicing the original OD 

table to include only the selected OD pairs relevant to each case. I multiply the remaining OD 

table cells by a single factor such that the total demand of the OD table adds up to 1000 trips. 

Then I round the OD flows to the nearest whole number. Hence, the total demand may vary 
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slightly from 1000 trips across the scenarios. This small variation does not affect the 

shareability metrics or inferences drawn.  

Table 3.3 provides the shareability metric values for the three cases. All assignments 

are MNFLOP using Δ𝑚𝑎𝑥values as indicated in Table 3.1. The first case (N to CBD) includes 

trips from origin nodes in the North to the CBD (Nodes 10 and 16), as shown in Figure 

3.7Figure 3.7a. The second case shows trips from origin nodes in the North to destination 

nodes in the South, as shown in Figure 3.7b. In the final case, we randomly assign trips from 

origin nodes in the North to destination nodes scattered throughout the network, as show in 

Figure 3.7c. 

The results in Table 3.3 indicate that the magnitude of overlap, as well as overlap 

percentage, are highest when trips from the six northern origin nodes are sent to a few 

destination nodes that are close to each other (i.e., the N to CBD case). The number of 

overlapping trips and overlap percentage are the lowest when trips are bound to destination 

nodes scattered throughout the network (N to Scatter case). The higher marginal values of 

overlap for a unit detour for the first two cases compared to the third case (N to Scatter case) 

further indicate that when trip patterns are concentrated onto fewer destinations that are 

close to each other, there is significant potential for these trips to overlap on network links. 

The ratio of average overlap distance to average total trip distance is highest for the N to CBD 

case followed by N to S and the N to Scatter cases. This indicates that a unit trip in the N to 

CBD case overlaps with the largest fraction of other flows in the network along each link in 

its path. This is again due to trip destinations being clustered, enabling more overlaps. The 

highest overlap and overlap percentage values for the N to CBD case are also reflected in its 
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high value of average link flows and the fewest links used. Even though the number of links 

with non-zero flows is similar in both the N to S and N to Scatter cases, the average link flows 

are higher for the former, since the destinations are more clustered compared to the latter 

case. Even though the N to CBD case has the highest value of overlap and overlap percentage, 

as well as their marginal values, it does not have the highest value for detour elasticity of 

overlap. This is because the base SP assignment overlap is already quite high for the N to 

CBD case. MNFLOP results in the most improvement in overlapping flows in the N to S case 

compared to SP assignment. 

Table 3.3 Network Level Shareability Metrics for Scenario Set-3 (MNFLOP) 

Network level Shareability Metric N to CBD N to S N to Scatter 

Total Demand 1001 1008 999 

# Origins 6 6 6 

# Destinations 2 6 6 

Avg Overlap 𝑍 (person-trips) 566.3 548.8 289.9 

Avg Trip Distance (miles) 12.98 17.13 13.95 

Avg Overlap Distance (miles) 7.3 9.2 3.8 

Avg Overlap Percentage 𝑍% (%) 56.63 54.78 29.04 

Avg Detour (miles) 0.58 1.5 1.66 

Avg Detour (ratio) 1.05 1.1 1.14 

Marginal Overlap (trips/detour-mile) 272.6 186.3 42.1 

Marginal Overlap Perc. (% /detour-mile) 27.3 18.6 4.2 

Detour Distance Elasticity of Overlap 8.3 10.8 2.4 

Avg Link Flow (person-trips) 342 277 205 

Cost of LCSP (miles) 38 62 68 

# Links with Non-zero Flows 10 18 19 
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(a) 

 
(b) 

 
(c) 

Figure 3.7: Link Flows using MNFLOP under (a) Scen. 3-1, (b) Scen. 3-2, and (c) Scen. 3-3 

 

3.3.4 Scenario Set 4: Different Origins, Different Destinations Shareability Analysis 

This scenario set aims to highlight the difference in shareability metrics when the 

same (or similar) magnitude of total demand in the network has different underlying trip 
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patterns. Unlike the prior scenario set, in Scenario Set 4 both the origins and destinations 

vary across the four cases. This section uses the same process as Scenario Set 3 for generating 

an OD table for each scenario. Once again, the OD table for each case has around 1000 person 

trips. 

The first case (Case 4-1) involves trips assigned from non-CBD nodes toward CBD 

nodes (Nodes 10 and 16). The second and third cases (Case 4-2 and Case 4-3) involve trips 

assigned between OD pairs scattered throughout the Sioux Falls network. The fourth case 

(Case 4-4) has trips assigned between a set of clustered origin nodes and a set of clustered 

destination nodes. 

Table 3.4 outlines the shareability metrics for all four cases in this scenario set. The 

person-trips on links in each of the four cases are shown in Figure 3.8. Results show that, like 

what was observed in the previous subsection, the magnitude and percentage of overlapping 

trips are comparatively higher in cases where trips either originate from and/or terminate 

at nodes that are fewer or closer to each other. Case 4-4 (Figure 3.8d) has the highest 

magnitude (676 trips) as well as percentage (68%) of overlapping trips because both the 

origin nodes and the destination nodes are clustered. Clustered origins and destinations 

allow MNFLOP to increase overlapping flows by assigning trips to paths with a small detour 

(average detour of 17% of shortest path trip distance). This is further corroborated by the 

high distance elasticity of overlap observed in this case (8.3). The high ratio of average 

overlap distance to average trip detour distance in this case also reflects the fact that a unit 

trip shares paths with a high fraction of all flows in the network on each link in its path. This 
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case also has the highest average link flows as well as the fewest number of LCSP subgraph 

links, indicating that MNFLOP can assign more flows onto fewer links and fewer corridors.  

Table 3.4 Network Level Shareability Metrics for Scenario Set-4 (MNFLOP) 

Network level Shareability Metric 
4-1 Outskirts 

to CBD 

4-2 

Scattered 

Case A 

4-3 

Scattered 

Case B 

4-4 Clustered O’s 

to Clustered Ds 

Total Demand 998 1000 995 998 

# Origins 22 5 10 5 

# Destinations 2 8 5 5 

Avg Overlap 𝑍 (trips) 164 114.6 137.7 676.2 

Avg Overlap Perc. 𝑍% (%) 16.45 11.47 13.85 67.8 

Avg Trip Distance (miles) 8.97 7.16 9.13 16.54 

Avg Overlap Distance (miles) 1.4 0.8 1.2 10.7 

Avg Detour (miles) 0.46 0.45 0.99 2.42 

Avg Detour (ratio) 1.05 1.07 1.12 1.17 

Marginal Overlap (trips/detour-mile) 44.1 50 36.9 163.8 

Marginal Overlap Perc. (% /detour-

mile) 
4.4 5 3.7 16.4 

Detour Distance Elasticity of Overlap 2.6 3.6 3 8.3 

Avg Link Flow (person-trips) 105.4 79.6 80.4 412.7 

Cost of LCSP (miles) 85 90 113 40 

# Links with non-zero flows 24 23 31 11 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.8: MNFLOP Link Flows (Person trips) for Scenarios (a) 4-1, (b) 4-2, (c) 4-3, (d) 4-4 
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Case 4-1 (Figure 3.8a) has the 2nd highest magnitude and percentage of overlaps 

because even though the origin nodes are scattered all over the region, all trips are bound to 

the CBD nodes (Node-10 and Node-16) that are close to each other. Case 4-2 (Figure 3.8b) 

and Case 4-3 (Figure 3.8c) have low shareability compared to the other two cases since their 

origin and destination nodes are scattered throughout the network. It is also interesting to 

note that even though Case 4-1 has a higher value for overlapping trips as well as overlap 

percentage compared to Case 4-2 and Case 4-3, it has lower values for marginal overlap, 

marginal overlap percentage, and distance elasticity of overlap. This is because MNFLOP is 

not able to significantly increase overlapping flows in Case 4-1 compared to when all flows 

are assigned on shortest paths in this case. A 1% increase in trip distance yielded only a 2.5% 

increase in overlapping flows for Case 4-1—the lowest value among all cases. Case 4-1 also 

has a high number of used links, due to the spatial extent of origin nodes being scattered all 

over the network.  

3.4 Validation of Origin Level Shareability Metrics 

The prior subsections verify that (i) the MNFLOP results are consistent with the flow 

overlap conceptualization and MNFLOP formulation and (ii) flow overlap and MNFLOP 

effectively operationalize my definition of person-trip shareability. I believe these are major 

contributions in (transportation) network science. However, this section aims to go one 

further step and validate the usefulness of MNFLOP in terms of (i) quantifying a subregion’s 

shareability/sharing potential and (ii) connecting TSAs to the efficiency of a SMM, as 

displayed in  Figure 1.2 Specifically, I test the hypothesis that as my person-trip shareability 

metrics increase, the SMM’s efficiency metrics will increase. The null hypothesis, which 
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would invalidate my shareability metrics if we are unable to reject it, is that there is no 

association between our shareability metrics and SMM efficiency. To test the null hypothesis, 

I model a microtransit SMM operating as a transit feeder service from a commuter rail 

station to travelers’ final destinations. 

To validate the usefulness of MNFLOP and test this hypothesis, I designed a set of 

computational experiments. I assume that the commuter rail station is at Node-10 in the 

Sioux Falls network (Figure 3.1), and the microtransit vehicles serve batches of requests with 

origins at Node-10 and destinations at the other 23 nodes, before returning empty to Node-

10. I create 10,000 problem instances, where the problem instances vary in terms of the 

distribution of destination nodes for the set of requests. In each instance, there are 10 

requests, a fleet of 5 vehicles starting at Node-10, with a capacity of 5 seats each. I set the 

traveler drop-off time window constraints using the same absolute and relative maximum 

detour distance values used for generating shortest paths while solving MNFLOP (as 

specified in Section 3.2.1). Given one instance of ten traveler requests, I solve MNFLOP and 

a capacitated multi-vehicle routing problem with time-windows (CMVRPTW). I formulate 

CMVRPTW (representing the microtransit service) based on Kallehauge et al. (2005) and 

solve CMVRPTW to optimality using Gurobi. It is the CMVRPTW, not MNFLOP, that limits the 

problem size. I measure microtransit service efficiency in terms of fleet vehicle miles 

traveled (VMT) and average vehicle occupancy (AVO); hence, I hypothesize a negative 

association between flow overlap measures and VMT and a positive association between 

flow overlap measures and AVO. I estimate the following two empirical models using 

ordinary least squares regression: 
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𝑙𝑛(𝑽𝑴𝑻) = 𝛽0 + 𝛽1𝒁𝒐
% + 𝛽2𝑙𝑛(𝑷𝑴𝑻) + 𝜺 

𝑙𝑛(𝑨𝑽𝑶) = 𝛽0 + 𝛽1𝑙𝑛(𝒁𝒐) + 𝜺 

where 𝑽𝑴𝑻 and 𝑨𝑽𝑶 are the vectors of VMT and AVO, respectively, for all problem 

instances. In the first model, I control for the cumulative direct origin (i.e., the rail station at 

Node-10) to destination distance for the 10 travelers (𝑷𝑴𝑻). Table 2.1 defines origin-level 

overlap percentage (𝒁𝒐
%) and origin-level overlap (𝒁𝒐). 𝜺 is the vector of error terms for all 

problem instance that I assume is independently and identically normally distributed with 

mean zero. I log transform the variables, except 𝒁𝒐
%, to directly obtain the elasticity between 

the shareability measures and mobility service efficiency measures. I do not log-transform 

𝒁𝒐
% because its units are already in percentage form.  

Table 3.5 and Table 3.6 show the estimation results for the two models defined above. 

As a note, I removed 50 scenarios (0.5% of all scenarios) as the CMVRPTW was infeasible for 

these instances.  

The results in Table 3.5 allow us to reject the null hypothesis that there is no 

association between our shareability metrics and shared mobility efficiency. We can reject 

the null hypothesis from a statistical perspective (see the high t-value and low p-value) and 

practical perspective (see the coefficient value). In fact, the coefficient for 𝒁𝒐
% implies that 

VMT decreases by 0.71% for every unit (i.e., 1%) increase in 𝑍𝑜
%. A 0.71% elasticity value is 

quite high and confirms a strong connection between person-trip shareability and the 

efficiency of a SMM.  
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The results in Table 3.6 also allow us to reject the null hypothesis, from a statistical 

and practical perspective. The coefficient for 𝑍𝑜 indicates that AVO increases by 

approximately 0.27% for every 1% increase in 𝑍𝑜 . This lends support to the notion that when 

the OD travel patterns of person trips in the region exhibit greater overlaps (as measured 

using the flow overlap value for a unit trip in the region), a shared ride vehicle can effectively 

combine more person trips into the same vehicle, resulting in a higher AVO. 

Table 3.5 Effect of Origin Overlap % (𝒁𝒐
%) on VMT 

Dependent Variable: ln(VMT)   R Square 0.3876 

Variable Coefficients 
Standard 

Error 
t Stat P-value 

Intercept 1.5752 0.0429 36.7431 0.0000 

ln(𝑷𝑴𝑻) 0.6870 0.0095 72.13787 0.0000 

𝒁𝒐
% -0.0071 0.0001 -47.303 0.0000 

 

Table 3.6 Effect of Origin Overlap  (𝒁𝒐) on Avg Vehicle Occupancy 

Dependent Variable: ln(AVO)   R Square 0.236 

Variable Coefficients 
Standard 

Error 
t Stat P-value 

Intercept -0.0964 0.004 -22.367 0.0000 

ln(𝒁𝒐) 0.266 0.005 55.408 0.0000 

 

3.5 Discussion 

The results and analysis presented in the prior subsections show that (i) the MNFLOP 

model and a commercial solver can significantly increase overlaps in a transportation 

network compared to shortest path assignment; (ii) the MNFLOP and its associated 

shareability metrics capture the relative dispersion/concentration of trips emanating 

from/to and origin/destination node; (iii) the MNFLOP formulation and the optimal path 

flows can capture partial shareability of person trips in a region (iv) the MNFLOP and its 
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associated shareability metrics can effectively differentiate between the shareability 

potential of the same network under different OD trip tables, wherein clustered origins 

and/or clustered destinations increase flow overlaps and shareability potential relative to 

the same total demand scattered across the network; and (v) origin level measures of 

shareability such as average origin overlap (𝑍𝑜) and average origin overlap percentage (𝑍𝑜
%) 

show a statistically and practically significant association with efficiency metrics for a 

microtransit last-mile transit feeder service.  

The ability of MNFLOP and its associated metrics to achieve each of these five 

outcomes indicates that researchers can use it to meaningfully differentiate between 

subregions within cities in terms of the subregion’s sharing potential at the person-trip level. 

Unfortunately, the computational complexity of the problem formulation limits city-scale 

analysis; hence, developing scalable formulations consistent with our person-trip 

shareability definition is an important future research direction. The next section, in addition 

to summarizing the study and discussing limitations, provides an extensive discussion of the 

potential uses of MNFLOP and its shareability metrics proposed in the first study of the 

dissertation. 

Finally, I note that MNFLOP and its associated shareability metrics fully 

operationalize person-trip shareability according to the principles in Section 2.2.2. 

3.5.1 Limitations  

One shortcoming of the current study is the reliance on a commercial solver for the 

quadratic programming model. Future research should work to develop alternative exact, 

approximate, and heuristic solution algorithms to solve the problem for larger networks, as 
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well as consideration of alternative formulations and approximations of the original model. 

Approaches include reducing the problem size by clustering trip origin and destination 

locations or restricting the other candidate OD pairs that constitute overlapping flows when 

calculating overlap for a specific OD pair. In terms of heuristic solution approaches, genetic 

algorithms are potentially appealing as they can explore the solution space effectively and 

efficiently. Tailored heuristics that efficiently estimate, rather than fully evaluate, the 

objective function in sub-iterations may also be effective.  

A second shortcoming of the shareability study is the path-based formulation of the 

problem. Even with better exact, approximate, or heuristic solution algorithms, the challenge 

of enumerating paths for OD pairs remains—path enumeration is exponential in network 

size. For large networks, even trying to identify a small number of 𝑘 reasonably distinct paths 

is challenging. Hence, an important future research direction involves operationalizing 

person-trip shareability using alternative metrics and mathematical models. A link-based 

formulation is conceivable, but this is a significant challenge. As of now, the metrics and 

mathematical model in the current study are the only meaningful operationalization of 

person-trip shareability in the literature.  

A third shortcoming is the lack of consideration of link capacities in the model. 

Despite wanting to maximize flow overlaps in the network by condensing flows onto fewer 

links, real-world street segments do have maximum capacities. To incorporate and estimate 

link capacity for shared mobility, one might consider the maximum person throughput of a 

heavy rail line as the upper limit on link flows in MNFLOP. Another option is to determine 
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the maximum person throughput of a bus rapid transit line, in the case where heavy rail lines 

are not feasible.  

3.6 Conclusion 

Chapter 2 and Chapter 3 of this dissertation contain a novel approach to quantify the 

shareability of person-trips in a region, given OD travel demand, a road network and 

maximum willingness to detour. The study conceptualizes and defines mathematically the 

notion of ‘flow overlaps’ for a unit person-trip in a network. The study employs the flow 

overlap concept to formulate the MNFLOP, a path- and flow-based Quadratic Program, to 

find the shareability for a given network and OD demand. A solution to the MNFLOP includes 

the optimal path flows (paths) between each OD pair that maximize shareability in the 

network. The study then uses the MNFLOP output to calculate several shareability metrics 

at various levels of aggregation: OD, origin, link, and network level. The study uses the 

MNFLOP model to analyze shareability in the Sioux Falls network, under multiple demand 

scenarios. The shareability metrics proposed in this dissertation add another dimension to 

measuring demand apart from its magnitude, specifically the dispersion (or overlap 

percentage) of trips from a node/location capture the directional component of demand. 

The computational results verify the MNFLOP and associated shareability metrics can 

meaningfully distinguish between the shareability of a given street network across different 

spatial distributions of demand. The results also indicate that slight increases in detour for 

some OD pairs, compared to their shortest paths, can significantly increase flow overlaps in 

a network.  
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Finally, the study validates MNFLOP as a useful measure of person-trip shareability. I 

do so by performing a large number of computational experiments, wherein I vary the spatial 

demand patterns in a given network across the experiments, calculate MNFLOP and vehicle 

fleet miles for a microtransit last-mile transit feeder service, and test the null hypothesis that 

there is no association between MNFLOP-based shareability metrics and vehicle fleet miles. 

We reject the null hypothesis and find an elasticity of -0.71 between vehicle fleet miles and 

my shareability metric. The chapter also discussed the limitations of the MNFLOP based 

shareability metrics and suggested several directions of future research involving both the 

applications of MNFLOP based shareability metrics as well as enhancements to the 

methodology to overcome some of the discussed limitations. 

The next pair of chapters (Chapter 4 and Chapter 5) presents the second study in my 

dissertation that deals with MOD services with Virtual Stops – called Corner-to-Corner 

services - that require users to walk the first/last mile of the trip to/from nearby Pickup and 

Dropoff (PUDO) locations. Chapter 4 introduces and defines the Corner-to-Corner Ride-

pooling (C2C-RP) problem, offering a scalable decomposition-oriented method to address 

this problem. In Chapter 5, I present results from an extensive evaluation of user, operator, 

and computational expenses is conducted for both the C2C and D2D iterations of Ride-

pooling (RP) and Ride-hailing (RH) services. 
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Chapter 4. Operating MOD Services with Virtual Stops – Problem 

Description and Scalable Solution Approach 

4.1 Introduction 

4.1.1 Background and Motivation 

Mobility-on-Demand (MOD) services, enabled by smartphones and their applications, 

and offered by Transportation Network Companies (TNCs) such as Uber, Lyft, and Didi, 

emerged over a decade ago. The dominant MOD service option offered by TNCs is Ride-

hailing (also known as ride-sourcing or e-hailing without shared rides), where vehicles can 

only carry one traveler request at a time. Several MOD service variants have emerged in 

recent years that aim to increase sharing and vehicle occupancies relative to Ride-hailing in 

order to decrease negative externalities from these systems.  

The second most common variant is the shared-ride or Ride-pooling MOD service, 

such as Uber Pool and Lyft Line (now Lyft Shared) offered by Uber and Lyft. Ride-pooling 

MOD services involve pooling together sets of traveler requests that have similar, but not 

necessarily the same, origin and destination locations and request times into one vehicle. 

The envisioned benefits of Ride-pooling services include decreases in required fleet sizes 

(i.e., decreases in required drivers active on Uber and Lyft platforms at a given instant) and 

operational miles, potentially lowering the prices service providers can offer customers. 

Service providers also often market Ride-pooling as a service option that can reduce 

congestion, energy consumption, greenhouses gases, and local pollutants.  
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In conventional Ride-hailing and Ride-pooling MOD services, service providers offer 

and operate door-to-door (D2D) services, meaning that vehicles pick up and drop off 

travelers at their requested origin and destination locations, respectively. However, the need 

to pick up and drop off every traveler at their preferred origin and destination locations may 

significantly hamper MOD operational efficiency.  

To address the operational inefficiencies associated with D2D MOD services, service 

providers now operate flexible Ride-pooling MOD services wherein travelers must walk to 

pickup (PU) locations from their trip origins, and from drop-off (DO) locations to their trip 

destinations. In this study of the dissertation, I refer to this MOD service as a Corner-to-

Corner (C2C) Ride-pooling service. C2C Ride-pooling is quite similar to historical variants of 

dial-a-ride and flexible transit services, and several emerging on-demand microtransit 

services that require users to walk to/from their PU/DO locations instead of being served at 

their doorstep. 

The premise behind C2C MOD services is that having travelers walk to nearby PUDO 

locations that are convenient for non-idle vehicles can increase MOD service fleet 

productivity measured in terms of travelers served per time unit, while also reducing fleet 

distance per request served and increasing vehicle occupancies. However, these operational 

improvements are likely to come at the cost of inconvenience for travelers, in terms of 

increased walk distances and increased request-to-destination travel times.  

4.1.2 Research Goals, Problem Overview 

Given this background on MOD services, the goals of the second study of my 

dissertation are two-fold. First, I aim to systematically analyze the trade-offs between 
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operator costs and user costs across four MOD services—D2D Ride-hailing (D2D-RH), C2C 

Ride-hailing (C2C-RH) D2D Ride-pooling (D2D-RP), and C2C Ride-pooling (C2C-RP), where 

every service responds to on-demand requests. Analyzing these four options requires 

decision policies and algorithmic frameworks for operating each MOD service, as well as a 

simulation environment. While the academic literature includes significant research on 

decision policies and solution algorithms for D2D-RH and D2D-RP services, the same is not 

true for C2C-RH and C2C-RP. Hence, the second goal of this study is to develop a scalable and 

effective decision policy and algorithmic approach for dynamically operating C2C MOD 

services, particularly C2C-RP. This chapter extensively lays out the formulation and a 

scalable solution methodology for the C2C-RP problem. The next chapter (Chapter 5) in the 

dissertation analyzes the cost trade-offs for MoD services with or without Ride-pooling and 

C2C options. 

Developing a scalable and effective approach for C2C-RP services is a significant 

modeling and algorithmic challenge. The challenge stems from the size of the decision 

vector/space. A C2C-RP service provider needs to determine PUDO Virtual Stops for each 

traveler, while also matching travelers to vehicles, sequencing and scheduling PUDOs for 

each vehicle, and assigning vehicles to transportation network paths. Moreover, the fleet 

operator needs to make these decisions repeatedly in real-time, as new information (i.e., new 

requests and changes in network travel times) enters the system. To address the problem, I 

propose a decision policy that decomposes the full decision problem at each decision epoch 

into two subproblems that I solve sequentially and iteratively. The two subproblems are the 

PUDO locations selection subproblem and the vehicle-traveler matching subproblem, 

wherein the second subproblem embeds the vehicle sequencing and scheduling of traveler 
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PUDOs. Given the decomposed sub-problems, I test several decision policies for a C2C-RP 

service. Specifically, I compare the case where the fleet operator assigns travelers to PUDO 

locations first for each candidate vehicle, then matches travelers to vehicles vs. a policy 

where the operator matches travelers to vehicles first, then assigns PUDO locations for the 

traveler based on the matched vehicle. 

4.1.3 Terminology and Abbreviations 

Before going any farther, I want to clarify some key terminology and abbreviations 

that I will use throughout the rest of the dissertation. I use the abbreviation PUDO when 

referring to pickup and drop-off, whereas I will use the abbreviation PU/DO when referring 

to pickup or drop-off. Additionally, if I am only referring to a pickup, I will use the 

abbreviation PU, and if I am only referring to a drop-off, I will use the abbreviation DO. A 

request is associated with two PUDO locations (or links)—a pickup location (or link) and a 

drop-off location (or link).  

Moreover, I want to differentiate between locations and links where PUDOs occur. I 

use the term PUDO location when discussing C2C-RP and C2C-RH in general, as in practice 

vehicles can pick up and drop off travelers anywhere (i.e., at nodes, or along links, or in 

designated PUDO spots). However, I use the term PUDO link to be precise in regard to the 

simulation model functionality in this study, as the simulation model allows PUDOs along 

network links.  

4.1.4 Chapter Outline 

The remainder of this chapter is structured as follows. Section 4.2 reviews the 

literature related to C2C MOD services and delineates the contributions of the current study. 



 

75 
 

Section 4.3 describes the C2C-RP operational problem. Section 4.4 presents the decision 

policy and solution algorithm for the C2C-RP operational problem. Section 4.5 concludes the 

chapter.  

4.2 Literature Review 

In this section, I present an overview of the existing literature related to C2C-RP. I 

focus my literature review on C2C-RP, as this is the focus of the second study of the 

dissertation. I refrain from providing a detailed review of D2D-RH and D2D-RP, as there is 

extensive literature in this area. However, for readers interested in D2D-RH and D2D-RP, 

there are several recent review articles worth mentioning.  

 Zardini et al., (2022) present a recent extensive review of automated MOD (AMOD) that 

covers operational-level and planning-level problems related to MOD services with 

automated vehicles. Many of the insights from this review article relate to MOD services 

without automated vehicles. In addition to characterizing different elements of AMOD 

modeling studies, the paper reviews solutions for matching, routing, and rebalancing for 

D2D-RH, and these three subproblems plus Ride-pooling for D2D-RP. Narayanan et al. 

(2020) provide a review of research on shared autonomous vehicles, which is another name 

for AMOD. Their review is quite broad, covering models of demand, parking, fleet sizing, 

vehicular traffic, matching, repositioning, pricing, and charging for electric vehicles. Mourad 

et al., (2019) survey shared mobility studies and focus on the operational problem. They 

consider travelers sharing rides with other passengers, and with parcels.  

The remainder of this background and literature review section covers mobility 

services that include walking trips in general (Section 4.2.1), and mobility services with 
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walking legs wherein the fleet operator selects PUDO locations for travelers in real-time 

(Section 4.2.2). I conclude by delineating the contributions of my study (Section 4.2.3). 

4.2.1 PUDO Locations Selection 

One of the critical decisions in operating C2C MOD services is where to pick up and 

drop off travelers. PUDO locations selection impacts (i) the distance/time/cost required for 

a vehicle to serve each request; and (ii) each traveler’s walking distance. Thus, the PUDO 

locations selection problem significantly impacts both operator and user costs.  

Several studies develop strategies for selecting PUDO locations in C2C services. Wang 

et al. (2022) categorize these strategies into three approaches: 1) strict meeting points, 2) 

relaxed meeting points, and 3) no meeting points. As the simplest approach, strict meeting 

points determines a single set of PUDO points for each vehicle (Wang et al., 2022). All riders 

sharing the same vehicle walk from their respective origins to one common PU location and 

from one common DO location to their respective destinations (Aissat and Oulamara, 2014; 

Czioska et al., 2017; Stiglic et al., 2015). This approach entails few stops per vehicle trip and 

thus is convenient for the drivers. In fact, the strict meeting points approach is more common 

in conventional carpooling and ridesharing where the driver has their own trip origin and 

destination, rather than in MOD services with a dedicated driver. While being convenient for 

drivers, the strict meeting points approach limits the potential to match drivers and riders 

in a region.  

To address the shortcomings associated with the strict meeting points approach, 

several studies enable multiple intermediate PUDO locations on a vehicle’s route, which is 

the relaxed meeting points approach (Wang et al., 2022). The relaxed meeting points 
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approach clusters riders before assigning them a common location for PU/DO (Czioska et al., 

2019; Martínez et al., 2015) or limits the candidate PUDO locations to a small subset of road 

nodes (Araldo et al., 2019; Gurumurthy and Kockelman, 2022). Studies using the relaxed 

meeting points approach, unlike the fixed meeting points approach, rarely assume that 

drivers have their own destinations (a special case is Miklas-Kalczynska and Kalczynski 

(2021)), rather, most studies focus on C2C-RP MOD services. A recent study by Lotze et al. 

(2022) is a special case of the relaxed meeting points approach, as they attempt to 

dynamically assign each new request to an existing planned vehicle stop. However, if the 

algorithm does not find a feasible existing PU and/or DO stop for a new request, then the 

algorithm has a vehicle pick up and/or drop off the traveler at the traveler’s origin and/or 

destination.  

Finally, the no meeting points approach does not restrict riders to share PU or DO 

points with other travelers (Wang et al., 2022). Some studies using the no meeting points 

approach (Balardino and Santos, 2016; Zheng et al., 2019) propose variants of the shortest 

covering path problem (SCPP) or generalized traveling salesman problem (GTSP) 

formulations for the carpooling or flex-route transit applications, where the selection of 

PUDO locations is a deterministic problem. Other studies dynamically select the PUDO 

locations for each stochastic request (Fielbaum et al., 2021; Li et al., 2020; Lyu et al., 2019). 

Given that the approach in my study involves no meeting points and dynamic selection of 

PUDO locations, I focus the remainder of my review on studies that dynamically select PUDO 

locations without explicit meeting points.  
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4.2.2 Dynamic PUDO Locations (Virtual Stops) Selection 

Dynamic selection of PUDO locations without explicit meeting points theoretically 

permits better solutions in terms of service quality and operational than approaches with 

predetermined or limited meeting points (Wang et al., 2022). Table 4.1 compares C2C MOD 

studies with dynamic PUDO locations selection. 

Most C2C MOD studies focus on Ride-pooling since the purpose of incorporating 

walking access and egress trip legs is often the same as incorporating pooled rides—to 

reduce fleet miles, operational costs, congestion, and emissions (Fielbaum et al., 2021; Li et 

al., 2020; Lyu et al., 2019). However, Martin et al. (2021) consider C2C in a Ride-hailing 

service with the objective of minimizing the riders’ travel cost. With a fixed vehicle speed, 

Martin et al. (2021) test the performance of C2C-RH with a 400-meter walk range in the 

Manhattan road network. They also mainly compare static PUDO assignment with dynamic 

PUDO locations selection for C2C-RH and find that the impact on operational efficiency is 

relatively minor. 

Other studies simulate C2C-RP services on various real-world city networks including 

Manhattan, Shanghai, and Chengdu (Fielbaum et al., 2021; Li et al., 2020; Lyu et al., 2019). 

These studies all assume deterministic link travel times or fixed vehicle speeds (i.e., the 

vehicles travel the same speed on all links). Notably, two studies that do incorporate 

stochastic travel times in large scale networks— (Gurumurthy and Kockelman, 2022; Zwick 

et al., 2021) in POLARIS and MATSim, respectively—use fixed or relaxed meeting points 

approaches. Hence, ours is the first study to incorporate stochastic link travel times (and 

congestible links) in a simulation, where the C2C service does not have fixed meeting points.  
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The number of MOD requests for the studies Table 4.1 range from 9,000 to 10.7 

million. However, the hourly average request rates only range from 9,000 to 22,000 requests 

per hour. Fleet sizes in the literature range from 40-13,181. My study has the longest analysis 

period of 24 hours, and the number of requests and fleet size are consistent with prior 

research.  

Vehicle capacity ranges from 1-20. As my study is the only study to consider C2C-RP 

and C2C-RH, it is also the only one to consider vehicle capacities of one and greater than one 

in the same study.  

For maximum walking distance, parameter values range between 300 and 1000 

meters. Similar to other studies, I vary the parameter between 250 and 1000 meters, to 

understand its impact on key performance metrics.  

For walking speed, every study assumes 5 or 5.04 km per hour. In this study, I 

consider a walking speed of 5 km per hour, but also a ‘walking’ speed of 20 km per hour that 

is more akin to an electrified bike or scooter. I include this parameter to evaluate the benefits 

of electrified bikes and scooters on system performance metrics for C2C-RH and C2C-RP.  

The third to last column in Table 4.1 refers to whether vehicles wait for travelers at 

PU locations. There are two interrelated aspects here, related to the simulation environment 

and the fleet’s operational strategy. If the simulation does not include stochastic link travel 

times, then the service provider fully determines whether vehicles wait for travelers at PU 

locations (the second aspect of this service dimension). However, if the simulation does 

include stochasticity, then vehicle waiting is not fully in the operator’s control. As ours is the 
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only study with stochastic travel times, it is also the only study where the arrival time of 

vehicles at PU locations is uncertain; hence, vehicles may arrive before requests and have to 

wait. Of course, this is consistent with a real-world MOD service, where travel time is 

uncertain. Interestingly, Lyu et al. (2019) also consider the case where the vehicles wait at 

PU locations. However, since their model is deterministic in link travel times, they 

intentionally have vehicles wait for travelers at PU locations. Their model explicitly captures 

the waiting cost for onboard passengers. The other studies do not specifically mention the 

possibility of vehicles waiting for travelers at PU locations (Fielbaum et al., 2021; Li et al., 

2020). 
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Table 4.1 Summary of Existing Studies Analyzing C2C MOD Services (with dynamic PUDO locations 
selection) 

Paper MOD 
Services 
in Study  

Road Network 
& Travel Time 

Avg. Request 
Rate 
(req./hr.) and 
Simulation 
Period 

Fleet Size 
(veh.) and 
Vehicle 
Capacity 
(seats) 

Walk 
Range 
(m) and 
Walk 
Speed 
(km/h) 

Vehicle 
Waiting 
for 
Request? 

Procedure for 
Identifying PUDO 
Locations  
Candidates  

Selecting PUDO 
Locations and 
Vehicle-Request (R-V) 
Matching 

Fielbaum 
et al. 
(2021) 

C2C RP 
D2D RP 

Manhattan, NY 
with fixed link 
travel times 

9,970  
over 1 hour 

2,000- 
3,000 
and 
6-9 

417, 1000 
and  
5 

No Recursive search 
of neighboring 
PUDO locations 
within walk range 
that reduce 
vehicle travel cost 

Joint optimization of 
PUDO locations 
selection and R-V 
matching 

Li et al., 
(2020) 

C2C RP Shanghai, China 
with fixed 
vehicle speeds 

10,000  
over 2 hours 

1,200 
and  
20 

100, 200, 
300, 400, 
500 
and  
5.04 

No All PUDO locations 
within walk range 

R-V matching first, 
PUDO locations 
selection second  

Lyu et al. 
(2019) 

C2C RP Chengdu, China 
with fixed 
vehicle speeds 

22,500 
over 28 days 
and 17 hours 
per day 

12,725-
13,181 
 and  
3 

300 
and  
N/A 

Yes, 
planned 
early 
vehicle 
arrivals 

All PUDO locations 
within walk range 

PUDO locations 
selection for pooled 
requests first, 
R-V matching second 

Martin et 
al. 
(2021) 

C2C RH Manhattan, NY 
with fixed 
vehicle speeds 

40–160 total 
requests 

40–400 
and  
1 

400 
and 5.04 

No All nodes from 
request’s origin 
within walk range. 
DO location 
unchanged. 

Dynamic Case: PU 
location selection for 
candidate R-V pairs 
first, 
R-V matching second. 
 
Static Case: PU location 
selection independent 
of vehicle 

This 
study 

C2C RH 
C2C RP 
D2D RP 
D2D RH 

Bloomington, IL 
with dynamic 
stochastic 
congestion-
dependent link 
travel times 

9,200  
over 24 hours 

1,000–
10,000 
and  
1 (RH),  
4 (RP) 

250, 500, 
750, 1,000 
and 
5, 20 

Yes, 
stemming 
from 
vehicle 
arrival 
time 
uncertaint
y 

PUDO links 
selected based on 
walk range and 
vehicle travel 
direction 

Option 1: R-V matching 
first, PUDO locations 
selection for matched 
R-V pairs second. 
 
Option 2: PUDO 
locations selection for 
candidate R-V pairs 
first, R-V matching 
second 

 

Finally, I want to describe the different decision policies and algorithmic approaches 

for C2C-RP in the literature. Lyu et al. (2019) maintain a waiting queue for unassigned 

requests. When new requests arrive, their approach attempts to sequentially match each 

new request with unassigned requests already in the waiting queue to form companion 

candidate pairs. Then, they determine the ‘maximum sharing satisfaction utility’ set of 

companion candidate pairs where the PUDO locations of candidate pairs can be pooled 

together in one vehicle. Alternative PUDO locations are determined by finding walkable 
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nodes from each request’s origin and destination in the companion pair, and then choosing 

the best set of PU and DO locations that minimize total tour distance. Next, the approach aims 

to insert additional requests into the previously identified best companion pairs. The seat 

capacity is four in their study, so only two more requests can be inserted into the original 

companion pair. Finally, their approach assigns the closest idle vehicle to the first stop in the 

stop sequence corresponding to the set of least cost requests. A main difference between my 

approach and that in Lyu et al. (2019) is that they do not allow the insertion of new requests 

into a vehicle’s route plan, until the vehicle completes all its current PU and DO tasks. This 

almost certainly limits the operational effectiveness of the proposed decision policy and 

solution algorithm.  

Li et al., (2020) select PUDO locations for each new request after matching each 

request to a vehicle. Li et al., (2020) sequentially assigns each new request to a vehicle, 

wherein the algorithm considers the cost of inserting the new request’s origin and 

destination locations into the planned routes of each vehicle. After request-vehicle matching, 

the algorithm adjusts the traveler’s PUDO locations to minimize the matched vehicle’s 

detour. The approach evaluates all walkable PUDO locations near the request’s origin and 

destination, respectively. Additionally, the approach includes a post-processing stage in 

which PU and/or DO locations of two requests are merged if they are close to each other. 

These requests are assigned to the same vehicle subject to time window constraints and 

vehicle not waiting for request constraint. 

There are three key differences between my study’s decision policy and solution 

algorithm compared to Li et al., (2020). First, I perform request-vehicle matching using bi-
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partite matching after batching requests together over a time interval. Second, my 

methodology allows for the flexibility to adjust PUDO locations either before or after request-

vehicle matching. Third, I shortlist PU/DO candidates for a request-vehicle pair based on the 

vehicle’s planned travel direction, in addition to walk distance restrictions. Experiments 

suggest that this added condition improves operational efficiency and computational run 

time. 

Fielbaum et al. (2021) batch new requests received between decision epochs and 

solve an integer-linear program (ILP) assignment problem that may assign multiple requests 

to the same vehicle in a single decision epoch. They extend the request-vehicle ILP matching 

algorithm in Alonso-Mora et al. (2017) to incorporate the selection of PUDO locations for 

each request-vehicle match. The extended model and algorithm shortlists PUDO candidates 

for a request-vehicle match by evaluating neighboring network nodes around the request’s 

origin and destination—if a neighboring node can reduce the matching cost for the request-

vehicle pair it is put on the shortlist. This procedure continues by evaluating the neighbors’ 

neighbors until no remaining PUDO location candidates reduce the total cost of matching. 

The solution approach then jointly optimizes request-vehicle assignment and selection of 

PUDO locations for each request. The joint optimization of an ILP request-vehicle matching 

with PUDO locations selection is computationally intensive, limiting its scalability. Fielbaum 

et al. (2021) mention that incorporating PUDO locations selection increases request-vehicle 

matching by approximately 10 times.  

Our approach differs from Fielbaum et al. (2021) in several ways. First, I decompose 

PUDO locations selection and request-vehicle matching to decrease computational 
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complexity and increase scalability. My proposed approach also considers the directionality 

of non-idle vehicles when shortlisting PU and DO locations for each request—this is not the 

case in Fielbaum et al. (2021). Finally, unlike Fielbaum et al. (2021), my approach considers 

the resequencing of all planned PUDO stops assigned to each vehicle, after inserting each 

new request into a vehicle’s planned route, and after choosing each new request’s PUDO 

locations.  

4.2.3 Contributions and Research Gaps Addressed 

This study makes several contributions to academic literature. The first set of 

contributions relate to the evaluation of C2C-RP against alternative MOD services and the 

design of C2C-RP services. The second set of contributions relates to the decision policy and 

solution algorithm I develop to solve the C2C-RP problem.  

This study compares four MOD services (C2C-RH, C2C-RP, D2D-RH, D2D-RP) in terms 

of operator and user costs. Prior research analyzes at most one pair of these MOD services. 

Conversely, I systematically compare all four services in terms of operator and user costs, 

under a unified modeling and algorithmic framework, and a common simulation 

environment. Assuming D2D-RH is the baseline service, I can isolate the operational benefits 

(and user costs) stemming from (i) pooling rides and (ii) incorporating walking legs. We can 

also evaluate the synergistic benefits (and costs) between (i) and (ii).  

Moreover, I perform the comparison in a state-of-the-art agent-based transportation 

system simulation model—POLARIS—that captures road network congestion dynamics. 

This is another contribution of the study. The simulation permits analysis of a severely 

overlooked problem related to operating C2C MOD services, namely, vehicles needing to wait 
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for travelers at PU locations (Wang et al., 2022). In the real world, and in ABM simulations 

that capture link travel time stochasticity, it is frequently the case that vehicles arrive at PU 

locations before travelers. This negative outcome significantly impacts the efficiency and 

productivity of vehicles in the fleet. Capturing link travel time uncertainty in the simulation 

environment permits a much more realistic assessment of the benefits and costs of C2C 

service relative to D2D service.  

My study also evaluates the impacts of maximum walking distance on fleet 

performance for a dynamic C2C-RP service without meeting points. This is an important 

service design parameter for C2C-RP that impacts customer and operator costs. My study is 

also the first to consider a ‘walking’ speed in a C2C MOD service that is reflective of travelers 

having access to an electrified scooter or bike.  

Additionally, I propose novel decision policies and algorithmic strategies for C2C-RP 

that are scalable and operationally effective. Ultimately, as described above, the problem of 

dynamically operating a C2C-RP service is a highly complex decision problem, where the 

enormous size of the decision space for even small problem instances essentially precludes 

elegant models, algorithms, and decision policies, which appears to have stymied research 

related to C2C-RP. This is particularly discouraging given the potential of a C2C-RP to meet 

societal and transportation system goals, such as reducing vehicle miles traveled, traffic 

congestion, energy consumption, and harmful emissions, while providing lower cost 

(compared to D2D-RH) and high-quality mobility. This study tackles the C2C-RP service 

problem as the complex set of engineering problems that it entails. The proposed solution 

framework considers the trade-off between computational run time and solution quality 
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within a particular decision epoch. I decompose the decision problem in each epoch into a 

subproblem that matches vehicles to travelers, sequences, and schedules PUDOs for each 

vehicle, and a second subproblem that assigns travelers to PUDO locations. This 

decomposition permits the use of optimization techniques for the first subproblem, and a 

flexible solution algorithm that explores the solution space for the second subproblem. 

Moreover, I propose an algorithm that efficiently solves these two subproblems sequentially 

and iteratively.  

My proposed solution approach includes several important algorithmic 

contributions. I only allow PUDOs on links that are in the planned direction of travel of non-

idle vehicles. Links in conflicting directions will either never be chosen in the PUDO selection 

step, or if they are chosen, will likely harm the operational efficiency of the fleet. Moreover, 

like several other studies, my approach decomposes the decision problem into the request-

vehicle matching subproblem and the PUDO selection problem. However, unlike other 

studies in the literature, my approach allows PUDO selection before or after request-vehicle 

matching. This permits the service provider to explicitly trade-off between computational 

run time and solution quality, as selecting PUDOs for candidate request-vehicle matches 

before the matching step improves solution quality but it increases computational run time. 

Importantly, I also batch requests over a given time interval and solve the batched request-

vehicle matching problem using the bi-partite assignment problem as the engine. My 

solution approach leverages the benefits of bi-partite matching (i.e., it is highly scalable) 

while addressing its major limitation for Ride-pooling (i.e., it can only assign one request per 

vehicle) by iteratively matching requests to vehicles within one decision epoch, such that 

multiple requests can ultimately be assigned to one vehicle in each decision epoch.  
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4.3 Problem Description 

4.3.1 Nomenclature 

The below list describes the notations used for all sets, indexes, variables, and 

parameters used throughout the rest of this chapter and the following chapter in the 

problem formulation, methodology and results sections. 

𝑅: Set of all requests, indexed by 𝑟 ∈ 𝑅 
𝑉: Set of all vehicles, indexed by 𝑣 ∈ 𝑉 
𝐿: Set of all links in the road network, indexed by 𝑙 ∈ 𝐿 
𝑇: Set of time steps in simulation, indexed by 𝜏 ∈ 𝑇 
Δ: Time between decision epochs 
(𝑟, 𝑣): Request 𝑟, Vehicle 𝑣 pair (match or match candidate) 
𝑜𝑟: Original PU link of request 𝑟  [(x,y) coordinate representing average location along the link] 
𝑑𝑟: Original DO link of request 𝑟  [(x,y) coordinate] 
𝑜𝑟

′ : Adjusted PU link of request 𝑟  [(x,y) coordinate] 
𝑑𝑟

′ : Adjusted DO link of request 𝑟  [(x,y) coordinate] 
𝐿𝑜𝑟

: Set of PU links that are within walk range from 𝑜𝑟 , indexed by 𝑜𝑟
′ ∈ 𝐿𝑜𝑟

 

𝐿𝑑𝑟
: Set of DO links that are within walk of 𝑑𝑟 , indexed by 𝑑𝑟

′ ∈ 𝐿𝑑𝑟
  

𝜏𝑟: Request initiation time of request 𝑟  [Simulation time (sec.)] 
𝑉𝑟: Set of feasible candidate vehicles for unassigned request 𝑟 
𝑅𝑣: Set of requests in 𝑣’s PUDO sequence (Empty for idle vehicles) 

𝑐𝑣𝑒ℎ: Vehicle capacity [Seats] 

𝑘𝑣𝑒ℎ: Maximum number of candidate vehicles for each unassigned request 

𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒: Minimum number of candidate idle vehicles for each unassigned request 

𝜃𝑚𝑎𝑥: 
Maximum angle between a request’s Euclidean path vector and a vehicle’s average future path vector 
(see Figure 4.2) 

𝐷𝑑𝑖𝑟
𝑚𝑎𝑥: 

Maximum remaining distance for a candidate vehicle to complete its current tour so as to be exempt 
from directionality and detour compatibility constraints [Meters] 

𝐷𝑟𝑒𝑣(𝑟, 𝑣): 
Euclidean distance between vehicle 𝑣’s current link and the projection of 𝑜𝑟  onto the average future 
path of vehicle 𝑣  [Meters] 

𝐷𝑟𝑒𝑣
𝑚𝑎𝑥: 

Maximum distance a vehicle can travel in a direction opposite to vehicle’s average future path to pick up 
a new request (see Figure 4.3)  [Meters] 

𝐷𝑑𝑒𝑡𝑜𝑢𝑟(𝑟, 𝑣): Euclidean detour distance from vehicle 𝑣’s current average path to 𝑜𝑟  (see Figure 4.3)  [Meters] 

𝐷𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥 : 

Maximum Euclidean detour distance from vehicle 𝑣’s current average path to 𝑜𝑟  (see Figure 4.3)  
[Meters] 

𝜏𝑟,𝑣
𝑃𝑈: Time at which request 𝑟 gets picked up by vehicle 𝑣 at the finalized PU link [Simulation time (sec.)] 

𝜏𝑟,𝑣
𝐷𝑂: Time at which request 𝑟 gets dropped off by vehicle 𝑣 at the finalized DO link [Simulation time (sec.)] 

𝑡𝑟,𝑣
𝑤 : Total wait time for request 𝑟 to be picked up by vehicle 𝑣 [Duration (sec.)] 

𝑡𝑚𝑎𝑥
𝑤 : Maximum PU wait time for a request [Duration (sec.)] 

𝑡(𝑜𝑟 , 𝑑𝑟): 
Approximate direct travel time from 𝑜𝑟  to 𝑑𝑟 , calculated based on Euclidean distance and average 
hourly speeds in the zones associated with 𝑜𝑟  and 𝑑𝑟  during time of matching [Duration (sec.)] 

𝑡𝑟,𝑣
𝑖𝑣 : 

In-vehicle travel time (IVTT) for request 𝑟 in vehicle 𝑣 from the finalized PU link location to finalized DO 
link location [Duration (sec.)] 

𝑡𝑟,𝑣
𝑖𝑣𝑚𝑎𝑥: 

Maximum IVTT for request 𝑟 in vehicle 𝑣 from the finalized PU link location to finalized DO link location 
(initially 𝑜𝑟  and 𝑑𝑟 , respectively) [Duration (sec.)] 

𝑡𝑚𝑎𝑥𝑎𝑏𝑠

𝑖𝑣 : Maximum allowable increase in IVTT for any request [Duration (sec.)] 

𝑡𝑚𝑎𝑥𝑟𝑒𝑙

𝑖𝑣 : Maximum allowable increase in IVTT relative to a request’s direct travel time [%] 

𝑡𝑆𝑟,𝑣
: Time it takes for vehicle 𝑣 to complete PUDO sequence 𝑆𝑟,𝑣 after insertion of request 𝑟 [Duration (sec.)] 

𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
: Cost of inserting request 𝑟 into vehicle 𝑣 with PU at 𝑜𝑟  and DO at 𝑑𝑟  [Duration (sec.)] 
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4.3.2 Problem Statement 

In this section I describe the C2C-RP problem. I model a central controller operating 

a fleet of homogeneous vehicles 𝑉 = {1,2, . . , 𝑣, … |𝑉|}. These vehicles provide service to a set 

of requests 𝑅 = {1,2, . . , 𝑟, … |𝑅|} over the analysis/simulation period 𝑇 = {1,2, . . , 𝜏, … |𝑇|}, 

where each request 𝑟 ∈ 𝑅 has an origin 𝑜𝑟 and a destination 𝑑𝑟 within a geographical service 

region or network. All requests have a walking speed of 𝑠𝑤. Each request, 𝑟, also has a request 

initiation time 𝜏𝑟 , as well as set of feasible PU locations 𝐿𝑜𝑟
 and feasible DO locations 𝐿𝑑𝑟

. 

Most importantly, the 𝜏𝑟 values for each request 𝑟 are unknown to the fleet controller before 

𝜏𝑟 . Similarly, the fleet controller only knows 𝐿𝑜𝑟
 and 𝐿𝑑𝑟

 for each request 𝑟 at 𝜏𝑟 . Hence, the 

fleet controller faces a stochastic dynamic decision problem.  

The fleet controller’s problem is multi-objective; the objectives include maximizing 

requests served, minimizing request in-system time, and minimizing total fleet miles. To 

meet its objectives, the fleet controller must dynamically assign or match requests to 

vehicles, where (𝑟, 𝑣) denotes a request-vehicle match or a candidate request-vehicle match, 

and 𝑋𝑣,𝑟 is the binary decision variable equal to one if (𝑟, 𝑣) is a match. In this study, I batch 

requests that arrive every Δ seconds, which is the time between decision epochs. After 

𝑤𝑤𝑡: Weight parameter for wait time in insertion cost function 
𝑤𝑖𝑣𝑡𝑡: Weight parameter for IVTT in insertion cost function 

𝐷𝑤𝑎𝑙𝑘 
𝑃𝑈 , 𝐷𝑤𝑎𝑙𝑘

𝐷𝑂 : Maximum effective walk ranges from 𝑜𝑟  to 𝑜𝑟
′  and 𝑑𝑟

′  to 𝑑𝑟 , respectively [Meters] 

𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 : Maximum walk range for PU leg, and Maximum walk range for DO leg [Meters] 

𝑠𝑤: Average walk speed [Kilometers per hour] 

𝜃𝑏𝑢𝑓: 
The buffer angle around coordinate-axes to shortlist candidate PUDO links based on their link bearings 
and the vehicle’s travel direction (Section 4.4.3.3)  [Degrees] 

𝑘𝑃𝑈𝐷𝑂: 
Maximum number of candidate feasible PU/DO links to be chosen for each new (𝑟, 𝑣) match or match 
candidate for PUDO links adjustment 

𝛾𝐶2𝐶: 
Boolean parameter to set sequence of PUDO links adjustment and request-vehicle matching. TRUE 
indicates PUDO links are adjusted before matching stage. FALSE indicates PUDO links are adjusted after 
matching stage 
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matching a request 𝑟 to a vehicle 𝑣, the fleet controller cannot later reject the request 𝑟 or 

serve it with another vehicle. Embedded inside the request-vehicle matching subproblem is 

the sequencing and scheduling of traveler PUs and DOs. Moreover, the fleet controller must 

determine PUDO locations for requests, where 𝑜𝑟
′ ∈ 𝐿𝑜𝑟

 and 𝑑𝑟
′ ∈ 𝐿𝑑𝑟

 denote the selected PU 

and DO locations of request 𝑟, respectively. In this study, PUDO locations are at the upstream 

node of each link. Therefore, the fleet controller must determine PUDO links, rather than a 

generic PUDO location. 

The fleet controller also faces several hard constraints. The first is the vehicle capacity 

constraint, where 𝑐𝑣𝑒ℎ is the parameter representing vehicle capacity. Other constraints and 

their associated parameters include maximum PU wait time for requests (𝑡𝑚𝑎𝑥
𝑤 ), maximum 

in-vehicle travel time detour (𝑡𝑚𝑎𝑥𝑎𝑏𝑠
𝑖𝑣 ) and maximum percent increase in in-vehicle travel 

time relative to the request’s shortest path travel time (𝑡𝑚𝑎𝑥𝑟𝑒𝑙
𝑖𝑣 ). I also enforce a maximum 

walk distance for both the access and the egress walking legs (𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ). I also enforce a 

constraint on non-idle vehicles that they can only travel in the opposite direction of their 

planned route for a given maximum distance (𝐷𝑟𝑒𝑣
𝑚𝑎𝑥). 

4.4 Solution Methodology 

4.4.1 Overall Flow and Sequence  

Figure 4.1 shows the flowchart of the decision policy and iterative solution algorithm 

at each decision epoch for the C2C-RP problem. The time between decision epochs is Δ, a 

fixed input parameter. The inputs at each decision epoch are the current status of requests, 

vehicles, and the network inclusive of link, node, and zonal information. The outputs at each 

decision epoch are the new assignments of requests to vehicles, the unmatched requests, the 
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updated PUDO links for every matched request, and the updated vehicle routes and vehicle 

schedules. Each iteration of each decision epoch involves 3 main stages: (i) finding feasible 

(𝑟, 𝑣) match candidates, (ii) optimizing request-vehicle matches, and (iii) adjusting PUDO 

links. The following three subsections describe these three main stages in detail.  

However, I first want to motivate and describe the iterative nature of my decision 

policy and solution algorithm. The algorithm is iterative because I use bi-partite matching as 

the engine of the optimal request-vehicle matching module, similar to Hyland and 

Mahmassani (2020); Navjyoth Sarma et al. (2020); and Simonetto et al. (2019). Bi-partite 

matching is highly efficient because dropping the integrality constraint in the math program 

and using an exact solution method still returns binary solutions. Unfortunately, this 

property, stemming from the constraint matrix being totally unimodular, comes at a cost—

a vehicle can only be matched to at most one request per call to optimal R-V matching 

module. To partially address the shortcoming of the bi-partite matching approach, we call 

the bi-partite matching module multiple times in each decision epoch. After solving one 

instance of the bi-partite matching problem, we then (i) insert the PU and DO links of the 

newly assigned requests into their matched vehicles and (ii) find a new set of feasible match 

candidates composed of remaining unassigned requests and vehicles with updated planned 

routes and schedule. Next, we call the bi-partite matching algorithm again. This iterative 

process terminates at each decision epoch when there are no feasible request-vehicle 

matches remaining. 

I test two different decision policies, wherein the only difference is whether we adjust 

PUDO links for candidate request-vehicle matches before optimal request-vehicle matching, 
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or we adjust PUDO links for finalized request-vehicle matches after optimal matching. If the 

𝛾𝐶2𝐶 parameter is equal to one, the algorithm adjusts PUDO links before matching.  

 
Figure 4.1 Overview of C2C-RP decision policy and solution algorithm (R-V = Request-Vehicle) 

4.4.2 Finding Feasible Request-Vehicle Match Candidates  

Algorithm 1 describes the overall procedure for finding feasible vehicle candidates, 

for a single unassigned request. The solution approach repeats Algorithm 1 for each 

unassigned request at the beginning of each iteration of the iterative optimal matching 

procedure. Importantly, as we determine candidate vehicles for each request independently, 

we can easily parallelize across requests.  

The following subsections detail the requirements each candidate vehicle must meet 

to be a feasible match candidate for an unassigned request. These requirements relate to the 

directionality of vehicle and request travel, the maximum detour for each new request and 

the requests inside each non-idle vehicle, and time-window constraints. Moreover, in order 
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to properly determine whether a request-vehicle pair meets the maximum detour and time 

window requirements, it is necessary to determine the optimal sequence and schedule of 

traveler PUDOs for a given vehicle (considering each new potential request). 

Algorithm 1 – Finding feasible vehicle candidates for unassigned request 𝑟  

 

 

 

Input: Set of Vehicles 𝑉, Unassigned request 𝑟 
Output: Set of feasible vehicles for request 𝑟, 𝑽𝒓;  
Optimal PUDO sequence for all requests in 𝑣, including new request 𝑟, for all vehicles 𝑣 ∈ 𝑉𝑟 , 𝑺𝒓,𝒗

∗ ;  

Cost of inserting 𝑟 into each vehicle 𝑣 ∈ 𝑉𝑟 , 𝑪𝒗,𝒓(𝒐𝒓,𝒅𝒓)
  

Procedure: 
𝑉𝑟 =  ∅  
𝑘 =  0  

Find 𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒  idle vehicles near request 𝑟 and store in set 𝑉𝑟

𝑖𝑑𝑙𝑒  
𝑉𝑟 = 𝑉𝑟 ∪ 𝑉𝑟

𝑖𝑑𝑙𝑒   
𝑘 = 𝑛(𝑉𝑟)  
Let 𝑉𝑟

𝑜𝑡ℎ𝑒𝑟  be the set of all other available vehicles (idle/non-idle with capacity available) near request 
𝑟 within the 𝑡𝑚𝑎𝑥

𝑤  time range. 
for each 𝑣 ∈ 𝑉𝑟

𝑜𝑡ℎ𝑒𝑟  do 
 if 𝑘 == 𝑘𝑣𝑒ℎ  then 
  break 
 end if 

if 𝑣 is idle and 𝑣 ∉ 𝑉𝑟 then 
  𝑉𝑟 = 𝑉𝑟 ∪ 𝑣  
  𝑘 =  𝑘 + 1  
  continue 
 end if 
 else 
  Check direction and detour compatibility for 𝑟 with non-idle vehicle 𝑣 (Algorithm 2) 
  if TRUE then 
   𝑆𝑟,𝑣

∗  = Find optimal PUDO sequence after inserting 𝑟 into 𝑣’s PUDO sequence (Algorithm 3) 

   Evaluate time-window constraints based on 𝑆𝑟,𝑣
∗  (Section 4.4.2.3) 

   if TRUE then 
    Calculate insertion cost based on 𝑆𝑟,𝑣

∗  (Section 4.4.2.4) 

    𝑉𝑟 = 𝑉𝑟 ∪ 𝑣  
    𝑘 =  𝑘 + 1 
   end if     
  end if 
 end else 
end for 
return 𝑉𝑟; 𝑆𝑟,𝑣

∗  and 𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
 ∀𝑣 ∈ 𝑉𝑟  

 

4.4.2.1 Direction and Vehicle Detour Checks 

This step involves checking the direction compatibility and vehicle path detour 

constraints for matching a new request 𝑟 with a non-idle vehicle 𝑣 that has capacity available 
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to serve the new request. A vehicle is considered non-idle if it has a non-empty PUDO 

sequence due to unserved requests matched to it either from a previous decision epoch or 

from a previous iteration of the optimal matching procedure in the same decision epoch. The 

procedure to evaluate direction and detour compatibility of a candidate (𝑟, 𝑣) pair is 

described in Algorithm 2. Figure 4.2 and Figure 4.3 provide illustrations of the procedure. 

Direction and vehicle detour constraints are not evaluated for a non-idle vehicle if it is close 

to completing its current PUDO sequence (Based on the 𝐷𝑑𝑖𝑟
𝑚𝑎𝑥  parameter). Further 

description of this step is added in Appendix C. 

Algorithm 2 – Evaluating direction and detour compatibility of request 𝒓 with non-idle vehicle 𝒗 

 

 

 

Input: Unassigned request 𝑟, Candidate non-idle vehicle 𝑣 
Output: Direction Compatibility TRUE/FALSE  
Procedure: 
Calculate 𝐷𝑣  – The remaining distance in vehicle 𝑣’s current tour (PUDO sequence) 
if 𝐷𝑣 ≤ 𝐷𝑑𝑖𝑟

𝑚𝑎𝑥  then 
 return TRUE 
end if 
Calculate angle θ between vectors representing average future path of vehicle 𝑣 and Euclidean path 
between 𝑜𝑟 and 𝑑𝑟 (See Figure 4.2 and Appendix C for description) 
if θ > θ𝑚𝑎𝑥  then 
 return FALSE 
end if 
Calculate 𝑢 parameter value (Equation 𝐶2, Figure 4.3, Appendix C) 
if 𝑢 >  1 then 
 return TRUE 
end if 
if 𝑢 <  0 then 
 𝑣 needs to travel in reverse direction 

 Calculate 𝐷𝑟𝑒𝑣(𝑟. 𝑣) (Equation 𝐶3, Figure 4.3, Appendix C) 
 if 𝐷𝑟𝑒𝑣(𝑟. 𝑣) > 𝐷𝑟𝑒𝑣

𝑚𝑎𝑥  then 
  return FALSE 
 end if 
else if 𝑢 ≤  1 then 

 Calculate 𝐷𝑑𝑒𝑡𝑜𝑢𝑟(𝑟, 𝑣) (Equation 𝐶4, Figure 4.3, Appendix C) 
 if 𝐷𝑑𝑒𝑡𝑜𝑢𝑟(𝑟, 𝑣) ≤ 𝐷𝑑𝑒𝑡𝑜𝑢𝑟

𝑚𝑎𝑥  then 
  return FALSE 
 end if 
end if 
return TRUE 
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Figure 4.2 Directionality check for finding feasible request-vehicle pairs. 

 
Figure 4.3. Vehicle path detour check for finding feasible request-vehicle pairs, considering (a) PU 

travel direction threshold and (b) PU travel detour threshold. 

4.4.2.2 Finding Optimal PUDO Sequence after Insertion  

This step involves finding the optimal order of PUDOs after the new unmatched 

request is inserted into each candidate vehicle obtained in the previous stage. The insertion 

location and the revised optimal PUDO sequence is found using a greedy algorithm based on 

R-tree similar to Gurumurthy and Kockelman (2022). The procedure is described in 

Algorithm 3 and illustrated in Figure 4.4.  

Algorithm 3 – Find optimal PUDO sequence after inserting request 𝒓 into (candidate) vehicle 𝒗 

 

 

 

 

 

 

Input: Unassigned request 𝑟, Candidate vehicle 𝑣 
Output: Optimal PUDO Sequence 𝑆𝑟,𝑣

∗ , Time to complete sequence 𝑡𝑆𝑟,𝑣
∗  

Procedure: 
Insert 𝑣’s current link location coordinates into R-tree 
Insert coordinates of 𝑣’s current PUDO links into R-tree 
Insert 𝑜𝑟 and 𝑑𝑟 into R-tree 
Let 𝑥𝑣 be the current link location coordinates of 𝑣 
Let 𝑆𝑟,𝑣

∗  be an empty FIFO queue denoting the optimal PUDO sequence after inserting 𝑟 into 𝑣 

while R-tree is not empty do 
 𝑦𝑣 = Query from R-tree the nearest location to 𝑥𝑣 that satisfies precedence constraints 
 Push 𝑦𝑣 to 𝑆𝑟,𝑣

∗  

 Delete 𝑦𝑣 from R-tree 
 𝑥𝑣 = 𝑦𝑣  
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end while 
return 𝑆𝑟,𝑣

∗  , 𝑡𝑆𝑟,𝑣
∗  

 

 
Figure 4.4 R Tree Query to find optimal PUDO sequence: (a) PUDO Sequencing and (b) Updated Path 

4.4.2.3 Evaluation of Time-Window Constraints 

In this step, time window constraints are checked for each request (new and 

previously assigned) in the revised PUDO sequence obtained from Algorithm 3. Starting from 

the vehicle’s current link location and the current simulation time, I estimate arrival times at 

each PUDO link using a Euclidean distance approximation for each trip leg in the candidate 

vehicle’s revised PUDO sequence. I use the average hourly zonal speeds at the origin and 

destination zones of each trip leg in the tour (at the current simulation time) to estimate the 

arrival times at each PUDO link. The subroutine checks the following two time window 

constraints for all requests in the revised PUDO sequence for each (𝑟, 𝑣) match candidate: 

1. Latest PU time constraint - The latest PU time constraint mandates that the vehicle arrival 
time at the PU link for any request must be no later than the latest allowable PU time of 
the request corresponding to that PU link. The PU link is assumed to be the origin link for 
the new request that is inserted into the candidate vehicle (before PUDO links 
adjustment). For requests that have already been assigned to the vehicle, PU links in the 
PUDO sequence could either be their origin link or an adjusted origin based on the 
decision made in Section 4.4.3 while matching the request to the vehicle. The latest 
allowable PU time of a request is the request time plus the value of the 𝑡𝑚𝑎𝑥

𝑤  parameter. 
The constraint is expressed in Equation 9 and Equation 10. 

𝑡𝑟,𝑣
𝑤 = τ𝑟,𝑣

𝑃𝑈 − τ𝑟 (9) 

 

𝑡𝑟,𝑣
𝑤 ≤ 𝑡𝑚𝑎𝑥

𝑤 (10) 
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2. Maximum in-vehicle travel time delay constraint – This constraint mandates that the in-
vehicle travel time for each request in the revised PUDO sequence (both previous 
assigned and new request) from PU time to DO time should not be more than a delay 
threshold. The subroutine includes two delay thresholds, one is an absolute delay value, 
and the other is a relative delay value. The constraint is expressed in Equation 11 to 
Equation 13.  

𝑡𝑟,𝑣
𝑖𝑣 = τ𝑟,𝑣

𝐷𝑂 − τ𝑟,𝑣
𝑃𝑈 (11) 

𝑡𝑚𝑎𝑥
𝑖𝑣 = 𝑚𝑖𝑛(𝑡(𝑜𝑟 , 𝑑𝑟) + 𝑡𝑚𝑎𝑥𝑎𝑏𝑠

𝑖𝑣  , 𝑡(𝑜𝑟 , 𝑑𝑟) × [1 + 𝑡𝑚𝑎𝑥𝑟𝑒𝑙
𝑖𝑣 ]) (12) 

𝑡𝑟,𝑣
𝑖𝑣 ≤ 𝑡𝑚𝑎𝑥

𝑖𝑣   (13) 

Euclidean distance along with the average zonal speed at the origin and destination 

of the request at the time of matching are used to approximate the direct automobile travel 

time. (𝑟, 𝑣) match candidates that fail to meet either of the time window constraints after 

inserting the new request are discarded in this step. 

4.4.2.4 Insertion Cost Calculation for Feasible Candidates 

In this step, the cost of adding the new request to a candidate vehicle’s tour is 

calculated for each feasible (𝑟, 𝑣) match candidate that fulfilled all time window constraints, 

and directionality and detour related constraints listed in the previous steps. I use the cost 

associated with each (𝑟, 𝑣) match candidate in the optimal matching stage (described in 

Section 4.4.4). The insertion cost is calculated as a factor of change in total request wait time 

and in-vehicle travel time for all requests associated with the candidate vehicle based on the 

revised optimal PUDO sequence obtained upon inserting the new request into the candidate 

vehicle. This is expressed in the following equation: 
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𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
= 𝑤𝑤𝑡 ∗ 𝑡𝑟,𝑣

𝑤 + 𝑤𝑖𝑣𝑡𝑡 ∗ (𝑡𝑟,𝑣
𝑖𝑣 − 𝑡(𝑜𝑟 , 𝑑𝑟)) + ∑ [𝑤𝑤𝑡 ∗ Δ𝑡𝑟′,𝑣

𝑤 + 𝑤𝑖𝑣𝑡𝑡 ∗ Δ𝑡𝑟′,𝑣
𝑖𝑣 ]

∀𝑟′∈𝑅𝑣

(14) 

The first term in the expression represents the PU wait time for the new request 𝑟 if 

matched with vehicle 𝑣. The second term represents the increase in in-vehicle travel time for 

the new request 𝑟 based on match candidate (𝑟, 𝑣) compared to the direct travel time 

between the request origin and destination if the person chose to drive alone instead of 

choosing a C2C-RP service. The terms in the expression after S represent the change in wait 

times and in-vehicle travel times for all other requests that are in vehicle 𝑣’s PUDO sequence 

during the time of matching other than the newly inserted request 𝑟.  

4.4.3 PUDO Links Adjustment 

As the name suggests, the PUDO links adjustment subroutine, involves selecting PU 

and DO links for a request-vehicle match or a candidate request-vehicle match, depending 

on whether the PUDO links adjustment subroutine occurs before (𝛾𝐶2𝐶 = 1 − 𝑇𝑅𝑈𝐸) or after 

(𝛾𝐶2𝐶 = 0 − 𝐹𝐴𝐿𝑆𝐸) the optimal request-vehicle matching subroutine. The purpose of the 

PUDO links adjustment subroutine is to decrease vehicle detours and detours for in-vehicle 

travelers. Figure 4.5 displays an overview of the PUDO links adjustment subroutine for a 

request-vehicle. The following five subsections describe the components of the subroutine 

in more detail.  

As a small note, the subroutine does not consider very short trips, i.e., trips with a trip 

origin to destination Euclidean distance less than the total maximum walking range (2 ⋅

𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ). Additionally, the PUDO links adjustment procedure sequentially adjusts PU links and 

then DO links for a request-vehicle pair.  
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Figure 4.5. Overview of PUDO links adjustment procedure (Repeated sequentially for PU link 

adjustment and DO link adjustment) 

4.4.3.1 Walk Range Calculation 

The walk range calculation subroutine determines the maximum distance a traveler 

can walk to PU links from their trip origin (𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) and from DO links to their destinations 

(𝐷𝑤𝑎𝑙𝑘
𝐷𝑂 ), respectively, for a given request-vehicle pair. While we have a hard upper-bound for 

the maximum walk distance to PU links and from DO links (𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ) to prevent travelers from 

having to walk long distances, there is another important consideration when considering 

PU links for a request-vehicle pair. This consideration is how far away the vehicle is from the 

request origin location at the current simulation time for a request-vehicle pair. If the vehicle 

is very close to the request origin, then ‘allowing’ the request to walk 300-500 meters to a 

PU location would almost certainly require the vehicle to wait for the request at the PU 

location for several minutes. Having vehicles, particularly non-idle vehicles, wait at PU 
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locations for travelers to arrive via walking can significantly reduce the efficiency (and 

therefore productivity) of the vehicle fleet. Although not captured in the decision model or 

simulation environment, having vehicles wait at PU locations can also negatively impact 

traffic flow on the PU link.  

The walk range for DO links is always 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  because a vehicle will never need to wait 

for a request after dropping them off.  

𝐷𝑤𝑎𝑙𝑘
𝐷𝑂 = 𝐷𝑤𝑎𝑙𝑘

𝑚𝑎𝑥 (15) 

The estimated PU walk range for a new request 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  depends on the (i) initial 

distance between the request origin link and the vehicle’s current link, (ii) the average walk 

speed, and (iii) the average vehicle speed during the matching time step. The initial distance 

between the request origin and the vehicle’s current position is approximated using 

Euclidean distance. Average walk speed (𝑠𝑤) is an input parameter. The average vehicle 

speed (𝑠𝑣) is approximated as the average of the zonal speeds at the request origin and the 

current vehicle link at the current simulation time. 

Figure 4.6a illustrates the approach used to estimate the PU walk range for the new 

request. The Euclidean path assumption between the request origin and the vehicle’s current 

link at the current decision epoch is made irrespective of the PUDO sequence of the vehicle. 

I make this assumption so as not to over-estimate the initial distance of separation between 

the request origin and vehicle position, and hence minimize vehicle wait time at the adjusted 

PU link by not setting a high value for 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 . Based on this assumption, the following 
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equation describes the initial Euclidean distance between the vehicle position and the 

request origin (𝐷): 

𝐷 = 𝑠𝑤𝑡 + 𝑠𝑣𝑡 

where 𝑡 is the approximate time that the request and vehicle will occupy the same point in 

Euclidean space if they were to travel directly toward each other. From the above equation, 

𝑠𝑤𝑡 is the walk range of the request such that the vehicle does not have to wait at the adjusted 

PU link for the request to arrive. Rearranging the above equation to solve for 𝑡 yields the 

following: 

𝑡 =
𝐷

𝑠𝑣 + 𝑠𝑤

(16) 

Therefore, the PU walk range for the new request is obtained as follows: 

𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 = 𝑠𝑤𝑡 =

𝐷 ⋅ 𝑠𝑤

𝑠𝑣 + 𝑠𝑤

(17) 

PU walk range is capped at a maximum value of 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  set as an input parameter. 

Therefore, the effective maximum PU walk range for a request in a request-vehicle pair: 

𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 = 𝑚𝑖𝑛(𝐷𝑤𝑎𝑙𝑘

𝑃𝑈 , 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 ) (18) 

4.4.3.2 Walk Range-based PU/DO Link Elimination 

The walk range-based PU/DO link elimination subroutine is the first among several 

PU/DO link elimination subroutines. The initial set of PU and DO link candidates for each 
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(potential) request-vehicle match is the set of all walkable links in the network. The link 

elimination subroutines remove links from this set for each request-vehicle pair.  

 
Figure 4.6. PU/DO Links Adjustment: (a) determining the maximum walk range for PUs, (b) 

eliminating links considering walk range, (c) eliminating links based on their bearing and the 
vehicle’s current planned path, (d) determining 𝒌𝑷𝑼𝑫𝑶 candidate links nearest to the vehicle path 

when the request origin/destination is within the bounding box, and (e) choosing a pair of PU and DO 
links that minimize cost 

Figure 4.6b displays the subroutine. The process applies to both PU locations and DO 

locations, so I will only describe the process for PU locations. Prior to the simulation (i.e., 

offline), I create one-Origin to many-destination Dijkstra trees for every walk link in the 
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network. The Dijkstra trees only extend from each link to the links within 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 . Given the 

PU walk range (𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) for a request-vehicle pair determined in the walk range calculation 

subroutine, the walk range-based PU/DO link elimination subroutine eliminates all links 

from the request origin link’s Dijkstra walk tree that are not within 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 . 

4.4.3.3 Link Bearing-based PU/DO Link Elimination 

The link bearing-based PU/DO link elimination subroutine further eliminates PU and 

DO link candidates for a request-vehicle pair. Figure 4.6c displays this link elimination 

subroutine. The overall solution algorithm does not call this link elimination subroutine for 

the new request’s DO location if the request’s destination would be the vehicle’s last planned 

stop at the current iteration of the current decision epoch.  

The link bearing-based PU/DO link elimination subroutine considers the future 

direction of travel of the vehicle after picking up or dropping off a new request. The future 

travel direction of the vehicle is obtained by measuring the bearing of the vector connecting 

the new request’s link (origin 𝑜𝑟 for PU link adjustment and destination 𝑑𝑟 for DO link 

adjustment) and the matched vehicle’s preceding stop. The subroutine classifies the vector 

into one of 4 directional quadrants based on its relative direction with respect to the North-

South and East-West direction axes. Based on this classification, the subroutine eliminates 

links that do not have a bearing within the same directional quadrant as the future vehicle 

path, plus a bearing buffer of θ𝑏𝑢𝑓 in the upper and lower bounds of the quadrant. 

4.4.3.4 Proximity-based Candidate Link Selection 

The proximity-based candidate link selection subroutine involves selecting up to 

𝑘𝑃𝑈𝐷𝑂 feasible candidate PU links for a request’s origin and up to 𝑘𝑃𝑈𝐷𝑂 feasible candidate 
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DO links for a request’s destination. For each origin and destination, the available  𝑘𝑃𝑈𝐷𝑂 are 

those links remaining after walk range-based and link bearing-based link eliminations.  

As stated earlier, the PUDO links adjustment algorithmic step adjusts PU and DO links 

sequentially for an (𝑟, 𝑣) match or candidate match, in which it adjusts PU links before DO 

links. The procedure to choose 𝑘𝑃𝑈𝐷𝑂 candidate links for PU and DO link adjustment for a 

request-vehicle (candidate) match is described as follows: 

1. Construct an R-Tree of all feasible candidate PU/DO links (PU links for PU link 
adjustment, DO links for Dropoff link adjustment) that have fulfilled the walk distance 
range and link bearing constraints as described in Sections 4.4.3.1 and 4.4.3.2. 

2. Perform a find nearest links search query on this R-Tree to find 𝑘𝑃𝑈𝐷𝑂 candidate links 
based on the following criteria: 

a. For DO link adjustment where the new request’s destination is the last stop in the 
vehicle’s tour, query the 𝑘𝑃𝑈𝐷𝑂 nearest feasible candidate links from the R-Tree 
closest to the stop preceding the new request’s DO link. This is illustrated in Figure 
4.7.  

b. For all other cases, construct a minimum bounding box rectangle using the 
maximum and minimum coordinates of the stops preceding and succeeding the new 
request’s link (origin link for PU link adjustment, destination link for DO link 
adjustment) in the vehicle’s tour. Also construct a polyline object denoting the 
vehicle’s Euclidean path connecting the stops preceding and succeeding the new 
request’s link. The 𝑘𝑃𝑈𝐷𝑂 nearest link search query is performed based on the 
location of the new request link with respect to the bounding box: 

i. If the new request link is within the bounding box, then query the 𝑘𝑃𝑈𝐷𝑂 
nearest candidate links from the R-Tree closest to the vehicle path. This is 
illustrated in Figure 4.6d. 

ii.  If the new request link is outside the bounding box, then query the 𝑘𝑃𝑈𝐷𝑂 
nearest candidate links from the R-Tree closest to the bounding box. This is 
illustrated in Figure 4.8. 
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Figure 4.7. DO Links Adjustment in Case of Last DO in vehicle tour: (a) Finding Walkable Links and (b) 

Finding the Closest Link from Preceding Stop 

 
Figure 4.8. PU/DO Links Adjustment in the Outside Bounding Box Case 

4.4.3.5 Best adjusted PU/DO Link Selection 

This step involves choosing the best link for PU/DO link adjustment by evaluating 

from the 𝑘𝑃𝑈𝐷𝑂 feasible candidate links returned from the R-Tree query in the previous step. 

The PU/DO link is adjusted if it results in a reduction in total vehicle travel time to complete 

the sequence of PUDOs in its tour (including serving the new request) as known during the 

matching time step. PU/DO link adjustment is not performed if none of the candidate PU or 

DO links returned from the previous step results in a travel time reduction for the vehicle. 

The procedure to select the best candidate PU/DO link is described below in Algorithm 4. 

Sections 4.4.3.1 to 4.4.3.5 are performed first for PU link adjustment for a (𝑟, 𝑣) pair and 

repeated for DO link adjustment. 
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Algorithm 4 – Optimal Adjusted PU/Dropoff Link for New (𝒓, 𝒗) pair 

 

 

Input: Unassigned request 𝑟, Vehicle 𝑣, PU adjustment or DO adjustment (Boolean) 
Output: Adjusted PU/DO Location, PUDO Sequence, Insertion Cost and Travel time after PU/DO 
adjustment 
Procedure: 
Let 𝑆𝑟,𝑣

∗  be the Optimal PUDO Sequence for vehicle 𝑣 after inserting request 𝑟 (from Algorithm 3) 

Let 𝑡𝑆𝑟,𝑣
∗  be the minimum total travel time for the vehicle 𝑣 to complete the optimal PUDO sequence 𝑆𝑟,𝑣

∗  

Let 𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
 be the insertion cost of adding request 𝑟 to trip sequence of vehicle 𝑣 before PUDO links 

adjustment 
Let 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

∗  be the insertion cost of adding request 𝑟 to trip sequence of vehicle 𝑣 after PU Link adjustment 

Let 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

∗  be the insertion cost of adding request 𝑟 to trip sequence of vehicle 𝑣 after DO Link 

adjustment 
Let 𝐿𝑃𝑈/𝐷𝑂  be the set of optimal PU/DO links returned from Section 4.4.3.4 

Let 𝐿 be the set of links to evaluate 
Let 𝑙∗ be the optimal adjusted PU/DO link 
Initialize values based on whether PU or DO link is being adjusted 
if PU Link Adjustment then 
 𝑆𝑟,𝑣

∗  = 𝑆𝑟,𝑣
∗  returned by Algorithm 3 before PU Link adjustment 

 𝑡𝑆𝑟,𝑣
∗  = 𝑡𝑆𝑟,𝑣

∗  returned by Section before PU Link adjustment 

       𝐿 = 𝐿𝑃𝑈  feasible alternative PU links returned by Section 4.4.3.4 
 𝑙∗ = 𝑜𝑟  
 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

∗ =  𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
 returned by Section 4.4.2.4 before PU Link adjustment 

end if 
if Dropoff Link Adjustment then  
 𝑆𝑟,𝑣

∗  = 𝑆𝑟,𝑣
∗  returned by Algorithm 4 after PU Link Adjustment 

 𝑡𝑆𝑟,𝑣
∗  = 𝑡𝑆𝑟,𝑣

∗  returned by Algorithm 4 after PU Link Adjustment 

 𝐿 = 𝐿𝐷𝑂  feasible alternative Dropoff links returned by Section 4.4.3.4 
 𝑙∗ = 𝑑𝑟    
 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )

∗  =  𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)
 returned by Algorithm 4 after PU Link adjustment  

end if 
for each 𝑙 ∈ 𝐿 do 
 if PU Link Adjustment then 
  𝑜𝑟

′ = 𝑙  
 end if 
 if Dropoff Link Adjustment then 
  𝑑𝑟

′ = 𝑙 
 end if 

Find updated optimal PUDO sequence 𝑆𝑟,𝑣
′  and updated vehicle travel time 𝑡𝑆𝑟,𝑣

′  using Algorithm 3 

Find updated request travel times 𝑡𝑟′,𝑣
𝑤  and 𝑡𝑟′,𝑣

𝑖𝑣  ∀𝑟′ ∈ 𝑣𝑟 ∪ {𝑟} from Section 4.4.2.24.4.2.2 for the 

updated         PUDO sequence 𝑆𝑟,𝑣
′   

Check for violation of time window constraints ∀𝑟′ ∈ 𝑣𝑟 ∪ {𝑟} based on the new optimal PUDO 
sequence 𝑆𝑟,𝑣

′  after adjusting PU link (Section 4.4.2.3) 

Choose the PU/DO link that results in the least vehicle travel time without violating time window 
constraints 

 if no time window constraints violated and 𝑡𝑆𝑟,𝑣
′  < 𝑡𝑆𝑟,𝑣

∗  then 

  𝑡𝑆𝑟,𝑣
∗  = 𝑡𝑆𝑟,𝑣

′  

              𝑙∗ = 𝑙  
Update insertion cost for the (𝑟, 𝑣) pair after adjusting PU or DO link based on Section 4.4.2.4 

  if PU Link Adjustment then 
           𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

∗ = 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)

′   
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  end if 
        if Dropoff Link Adjustment then 
          𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )

∗ = 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

′   

  end if 
 end if 
end for 
Finalize adjusted PU/DO link, Insertion Cost, PUDO sequence corresponding to 𝑡𝑆𝑟,𝑣

∗  

if PU Link Adjustment then 
        𝑜𝑟

′ = 𝑙∗  
        𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

= 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟)

∗  

        return 𝑜𝑟
′ , 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟)

, 𝑆𝑟,𝑣
∗ , 𝑡𝑆𝑟,𝑣

∗  

end if 
if Dropoff Link Adjustment then 
 𝑑𝑟

′ = 𝑙∗  
 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )
= 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )

∗   

 return 𝑑𝑟
′ , 𝐶𝑣,𝑟

(𝑜𝑟
′ ,𝑑𝑟

′ )
, 𝑆𝑟,𝑣

∗  , 𝑡𝑆𝑟,𝑣
∗  

end if 

 

4.4.4 Optimal Request-Vehicle Matching 

The optimal matching of requests to vehicles is performed either before or after 

PUDO links adjustment based on the 𝛾𝐶2𝐶  parameter. If PUDO links adjustment is performed 

before matching, then the cost value associated with each candidate (𝑟, 𝑣) match is the 

insertion cost 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

 returned by Algorithm 4 after adjusting the PU and DO links for 𝑟 if 

assigned to 𝑣. Thus, the PUDO links adjustment is also a deciding factor in the optimal (𝑟, 𝑣) 

matching process since the objective function reflects the change in insertion cost for each 

(𝑟, 𝑣) candidate upon adjusting the PUDO links. If PUDO links adjustment is performed after 

matching, then the cost value for each (𝑟, 𝑣) match candidate is the insertion cost before 

PUDO links adjustment calculated in Section 4.4.2.4. In this case 𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

= 𝐶𝑣,𝑟(𝑜𝑟,𝑑𝑟)
. The 

objective of each iteration of the optimal request-vehicle matching procedure is to match 

unassigned requests to available vehicles such that the total insertion cost is minimized: 
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𝑍 = 𝑚𝑖𝑛 ∑ ∑ (𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

− 𝑃)

∀𝑣∈𝑉𝑟∀𝑟∈𝑅𝑢

⋅ 𝑋𝑣,𝑟 (19) 

where 𝑅𝑢 is the set of all unassigned requests at the beginning of each iteration of the optimal 

matching stage, and 𝑉𝑟 is the set of all feasible vehicle candidates for request 𝑟, where 𝑉𝑟 ⊂ 𝑉. 

𝐶𝑣,𝑟
(𝑜𝑟

′ ,𝑑𝑟
′ )

 is the insertion cost of assigning request 𝑟 to vehicle 𝑣 with the following PUDO 

links (𝑜𝑟
′ , 𝑑𝑟

′ ). 𝑃 is a penalty cost incurred for not making an assignment; 𝑃 is a large positive 

number. 𝑋𝑣,𝑟 is the binary decision variable denoting whether request 𝑟 is matched with 

vehicle 𝑣.  

The matching problem is subject to two sets of constraints. The set of constraints in 

Equation 20 suggest that each request 𝑟 ∈ 𝑅𝑢 can be assigned to at most one vehicle. The set 

of constraint in Equation 21 limit each vehicle to be assigned to at most one unassigned 

request.  

∑ 𝑋𝑣,𝑟

𝑣∈𝑉

≤ 1 ∀𝑟 ∈ 𝑅𝑢 (20) 

∑ 𝑋𝑣,𝑟

𝑟∈𝑅𝑢

≤ 1 ∀𝑣 ∈ 𝑉 (21) 

The C2C-RP problem is solved iteratively (Sections 4.4.2 to 4.4.4) at each decision 

epoch until there are no unassigned requests left (𝑅𝑢  =  ∅) or no feasible candidate vehicles 

for each unassigned request (𝑉𝑟 = ∅,  ∀𝑟 ∈ 𝑅𝑢).  
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4.5 Conclusion 

This chapter introduced, formulated, and presented a solution methodology for the 

Corner-to-Corner Ride-pooling problem (C2C-RP) that involves MOD services with dynamic 

and flexible PUDO locations called Virtual Stops. This chapter includes several algorithmic 

contributions related to addressing the C2C-RP operational problem, delineated in Section 

4.2 relative to the existing literature and described in Section 4.4. The chapter describes the 

challenges involved in solving the C2C-RP problem in a scalable manner due to the number 

of sub-problems involved that increase the decision space. The chapter presents a 

decomposition-based solution methodology to solve the C2C-RP problem that involves 

matching requests to vehicles, updating PUDO order sequences for each vehicle and also 

adjusting PUDO locations (or links) for each request to nearby locations (or links). The 

solution methodology presented is different from the existing literature in several ways, 

including but not limited to the procedure to identify viable alternative PUDO locations, 

dealing with early vehicle arrivals at PU locations, and the sequence of decision making.  

The next chapter (Chapter 5) implements the solution algorithm proposed in this 

chapter in an Agent Based Modeling framework (POLARIS) and performs extensive analysis 

of user, operator, and computational costs for C2C and D2D variants of Ride-pooling and 

Ride-hailing services.  
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Chapter 5. Analyzing Cost Trade-offs in MOD services with Virtual 

Stops 

5.1 Introduction 

In the previous chapter, I described a scalable solution algorithm for the C2C-RP 

problem, which involved MOD services with dynamic and flexible PUDO locations (called as 

Virtual Stops). The most commonly used type of MOD service today is the Door-to-Door Ride-

hailing service (or D2D-RH) that serves a single request from/to their doorstep. Significant 

gains in operator efficiency could be obtained when multiple requests are served by the same 

vehicle at the same time (Ride-pooling or RP) and/or when flexibility is introduced to the 

Pickup and Dropoff locations of the request (C2C services). However, such gains in operator 

efficiency could come at the expense of i) increased inconvenience to travelers due to 

increases in travel time and/or having to walk a short distance for the first/last mile of their 

trip, and ii) increased computational cost for the operator as C2C services introduces 

additional sub-problems for the operator to solve apart from matching and PUDO 

sequencing in D2D services. The objective of this chapter is to systematically analyze the 

user, operator, and computational cost trade-offs for D2D and C2C variants of MOD services. 

The rest of the chapter is organized as follows: Section 5.2 describes the simulation 

environment in which I test the proposed C2C-RP decision policy and compare the four MOD 

service options (C2C-RP, D2D-RP, C2C-RH, D2D-RH). Section 5.2 also describes the 

computational experiments, including the performance metrics and scenarios to assess the 

operator and user costs associated with the four MOD service options. Section 5.3 presents 

and discusses the results of the computational experiments and sensitivity analysis. Section 
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5.4 concludes the second study of my dissertation (Chapter 4 and Chapter 5) with a summary 

as well as limitations and discussion of future research directions. 

5.2 Computational Experiments Setup  

To evaluate the performance of the proposed C2C-RP decision policy and algorithmic 

approach, I constructed a large number of computational experiments. This section 

describes the simulation environment wherein I embed the proposed C2C-RP decision policy 

and algorithmic approach (Section 5.2.1), the road network model (Section 5.2.2), the 

performance metrics for analysis (Section 5.2.3), and the scenarios for testing (Section 5.2.4). 

The four MOD service types evaluated are C2C-RP, C2C-RH, D2D-RP, D2D-RH. To operate 

D2D services I use the same decision policy and solution algorithm as the C2C service, except 

that PUDO links are not adjusted (i.e., Section 4.4 excluding section 4.4.3). Similarly, to 

operate Ride-hailing services, I use the same decision policy and solution algorithm as the 

Ride-pooling service, except that I only consider idle vehicles in the matching subproblem.  

5.2.1 POLARIS Simulation Environment 

I use the large-scale agent-based simulation framework called POLARIS (Auld et al., 

2016) to compare the four MOD service types and evaluate the C2C-RP decision policy and 

algorithmic approach. POLARIS integrates supply and demand and allows the simulation of 

MOD services in a congestible network with full feedback (Gurumurthy et al., 2020). 

POLARIS and its modules can simulate activities and trips in a large metropolitan region with 

over 10 million people in under 5 hours.  

POLARIS is a high-performance C++ codebase for agent-based modeling of 

transportation demand and supply. The tool consists of several modules for population 
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synthesis, long-term and short-term planning, vehicle routing, traffic flow, and has 

functionality to model transit, MOD services, and freight at a high-level of detail. The 

population synthesis module creates person agents for the target region based on underlying 

demographic information as sourced from the Census and American Community Survey 

(ACS) in the United States. Consistent with agent-based modeling, each individual makes 

travel and activity decisions based on its individual characteristics and information available 

to the individual regarding the state of the system (e.g., prevailing travel times, modal 

attributes, destination attributes, etc.). 

5.2.1.1 Corner-to-Corner Routing Module in POLARIS 

The MOD module in POLARIS models operations through a centralized operator. The 

operator maintains control over all fleet vehicles, tracks their real-time information, and 

runs algorithms to determine the next set of instructions to pass to the vehicles. To enable 

easy incorporation of new algorithms, a generic structure exists in POLARIS for different 

aspects of MOD control: such as matching, repositioning, charging (in the case of EVs), and 

parking. These strategies are custom coded to either serve a single purpose like a matching 

algorithm or the modeler can control several aspects of operation simultaneously like the 

joint control of matching, repositioning, and charging of fleet vehicles (Dean et al., 2022).  

I now briefly describe the general flow of information and control in POLARIS for a 

MOD request to be received and served. The fleet operator is informed of requests that 

originate from person agents. Requests encompass information on time of request, PU 

location, DO location, and the estimated fare, travel time, and costs associated with serving 

it. The matching subroutine receives trip requests from the operator and can either 
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immediately assign an available vehicle or batch the requests over a pre-defined duration 

and then solve an optimization-based request-vehicle matching problem. Once the matching 

subroutine is complete, an update regarding the match is passed on to both the person agent 

and the assigned vehicle (if matched). Assuming the match is successful, the vehicle is 

instructed to route itself to the PU location and then, on picking the traveler, proceed to the 

DO location. While en-route, new requests can be added to the existing vehicle trip, with the 

vehicle reporting available seats remaining.  

The C2C service in this study requires travelers to walk to their PU locations and from 

their DO locations. Trips in POLARIS are typically modeled to start and end at activity 

locations. Activity locations represent buildings and places that are typical origins and 

destinations. Depending on network density incorporated in the model, some level of 

aggregation may exist in the number of activity locations used to represent the underlying 

origins and destinations. Route computation considers all possible links associated with the 

origin and destination activity locations as candidates for the shortest path, and finally 

results in a link-to-link vehicle trajectory. Once in the network, vehicles follow the trajectory 

subject to constraints of the traffic flow model. Trips are completed when the vehicle enters 

the last link of its trajectory. While Gurumurthy and Kockelman (2022) show the benefits of 

aggregation at the activity location level for C2C MOD service, their approach does limit 

flexibility in assigning travelers to PUDO locations in the region. Hence, in the current study, 

we allow traveler PUDOs in every link in the network. This approach both reduces overall 

VMT and improves traveler experiences compared to the approach in Gurumurthy and 

Kockelman (2022), as the later study requires all travelers to walk to PUDO locations, even 

if these walking trips do not improve vehicle utilization and productivity. Changes in PUDO 
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links are transmitted to the person and vehicle agents at the end of each batching interval 

once the iterative procedure terminates.  

5.2.2 Study Network  

I use the default network in POLARIS – the Bloomington IL network (Figure 5.1Figure 

5.1) – to evaluate the C2C-RP algorithm. The network includes 3057 intersections, 4527 

directional drive links, 6885 walk links and 185 Traffic Analysis Zones (TAZs). The walk 

network is broken down into links with a maximum length of 250 meters. There are 2,833 

activity locations in the network which represent request origins and destinations. The 

default PU link and DO link for each new request is the link closest to the request origin and 

destination activity locations respectively.  

 
Figure 5.1. Bloomington, IL Network 

5.2.3 Metrics for Analysis 

To compare the four MOD service types, I consider two cost dimensions, operator 

costs and user costs. I use average vehicle kilometer traveled (VKT) per served request as 

the main operator cost metric. I normalize by ‘served requests’ to prevent outcomes where 
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an efficient and productive service generates more VKT while serving a large number of 

requests than an inefficient and unproductive service that generates lower VKT while 

serving significantly fewer requests.  

The main customer cost metric is request-to-destination time, which as the name 

suggests, measures the total time between a traveler requesting a vehicle and the same 

traveler arriving at their destination location. In C2C services, request-to-destination time 

includes time waiting to be assigned, access walking time, waiting time at the PU link, in-

vehicle time, and egress walking time. The results will explicitly delineate the time travelers 

spend in each state.  

I also include matching rate, the percentage of all MOD traveler requests who are 

served by the MOD service, as a key performance metric. This metric is necessary for a 

holistic comparison of MOD service types; without matching rate, a service type or decision 

policy that prioritizes easy-to-serve requests may perform well in terms of VKT per served 

request and request-to-destination time for served request, compared with other policies 

that attempt to serve all requests.  

The final metric I use is average vehicle occupancy (AVO) per VKT. AVO per VKT 

includes empty vehicle kilometers as well as vehicle kilometers with one passenger, two 

passengers, three passengers, and four passengers. This metric does not perfectly align with 

either operator costs or user costs, but it is a metric of interest to transportation planners 

and policymakers. 
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5.2.4 Scenarios 

This section describes the scenarios developed to help answer the study’s two main 

research questions. I first introduce the baseline scenarios, specifically which parameters I 

vary in the baseline scenarios and which parameters are fixed. Next, I describe the additional 

scenarios developed to provide insights into various service design decisions, the 

inefficiencies associated with travel time uncertainty, and various algorithmic strategies and 

decision policies.  

Table 5.1 shows that in the set of baseline scenarios, the only two parameters that 

vary are the MOD service type and the fleet size. Maximum walk range, walking speed, and 

the sequencing of matching and PUDO links selection are fixed. These baseline scenarios aim 

to compare and contrast the four MOD service types under various supply-demand ratios, 

where the demand is fixed, and the supply varies across scenarios. The results of the baseline 

scenarios are described in Section 5.3.1. The number of available seats for Ride-pooling 

services (C2C-RP and D2D-RP) is fixed at 4. 

After the baseline scenarios, I create several additional sets of scenarios. The first 

additional set of scenarios involves varying the maximum walk range parameter 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  

alongside the MOD service type and fleet size to perform sensitivity analysis on user and 

operator costs. I vary 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  between 250 and 1000 meters in an increment of 250 meters. 

The results are presented in Section 5.3.2. 

The second additional set of scenarios varies ‘walking’ speed 𝑠𝑤 alongside MOD 

service type and fleet size. In these scenarios, there I use a baseline 𝑠𝑤 of 5 km per hour 
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speed, and the ‘fast walking’ (or e-scooter) speed of 20 km per hour. Results of this analysis 

are provided in Section 5.3.3. 

The third additional set of scenarios varies the sequence of Request-Vehicle matching 

and PUDO links selection sub problems, alongside MOD service type and fleet size. This is 

done by enabling/disabling the Boolean flag γ𝐶2𝐶 . The two alternative orders are adjust 

PUDO links after matching and adjust PUDO links before matching. Section 5.3.4 describes 

the results of this analysis. 

Finally, I also run a set of scenarios to analyze the computation time and scalability of 

the implemented solution methodology for the C2C-RP problem (Section 5.3.5). This is done 

by analyzing the total computational time and stage-wise computational time by varying 

𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥 , 𝑠𝑤 and γ𝐶2𝐶  parameters across different MOD service types for 2 different fleet sizes 

(5,000 and 10,000 vehicles).  

To ensure consistency while comparing across several scenarios, the total demand, 

origin, destination as well as the request initiation times are kept fixed across all scenarios. 

Repeating the same scenario with all parameters unchanged yielded a less than 0.1% change 

in values of the metrics evaluated. The spatial distribution of the initial location of vehicles 

at the beginning of simulation is also same across scenarios. Fleet repositioning is also 

disabled so as to control for idle vehicle movements from biasing the output metrics 

evaluated across the four different MOD types. 
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Table 5.1 Fixed and Variable Parameters for Baseline Scenario (Section 5.3.1) 
Fixed or varying? Parameter Parameter Values 

Varying Params 
MOD Service Type 

D2D-RH (𝑐𝑣𝑒ℎ = 1) 
D2D-RP (𝑐𝑣𝑒ℎ = 4) 
C2C-RH (𝑐𝑣𝑒ℎ = 1) 
C2C-RP (𝑐𝑣𝑒ℎ = 4) 

Fleet Size (veh.) 
1000, 1500, 2000, 3000, 4000, 5000, 

6000, 7500, 9000, 10000 

Fixed Params for PUDO 
Links Adjustment  

(C2C-RP and C2C-RH) 

𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  1,000 m 

γ𝐶2𝐶  
FALSE 

(Adjust PUDO link after matching) 
𝑠𝑤  5 km/h 

𝑘𝑃𝑈𝐷𝑂  5 link candidates 
𝜃𝑏𝑢𝑓 30° 

Fixed Params for R-V 
Matching (All Four MOD 

Services) 

𝑘𝑣𝑒ℎ  8 vehicles 

𝑘𝑣𝑒ℎ
𝑖𝑑𝑙𝑒  2 vehicles 

𝜃𝑚𝑎𝑥  30° 

𝐷𝑑𝑖𝑟
𝑚𝑎𝑥  3000 m 

𝐷𝑟𝑒𝑣
𝑚𝑎𝑥  3000 m 

𝐷𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥  6000 m 

𝑡𝑚𝑎𝑥
𝑤  1200 seconds 

𝑡𝑚𝑎𝑥𝑎𝑏𝑠
𝑖𝑣  900 seconds 

𝑡𝑚𝑎𝑥𝑟𝑒𝑙
𝑖𝑣  50% 

𝑤𝑤𝑡  1.0 

𝑤𝑖𝑣𝑡𝑡  1.0 

Simulation Parameters 

Analysis Period 24 hours 
Δ 30 seconds 

# Requests 
221,711 (Fixed)  

1 request = 1 traveler 
Initial Fleet 

Location 
Distributed inversely proportional to TAZ 

area 
Fleet Repositioning FALSE 

 

5.3 Results and Discussion 

5.3.1 Operator-User Cost Trade-off in MOD Systems – Baseline Scenario 

This section aims to answer this study’s main research question: what are the trade-

offs between operational costs and user costs across D2D-RH, D2D-RP, C2C-RH, and C2C-RP? 

Figure 5.2b shows significant operator cost differences between the four MOD services, 

particularly when the supply (i.e., vehicle fleet size) is low. With a fleet size of 2000 vehicles, 
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C2C-RP has an average VKT per request of nearly 5.5, which is lower than the D2D-RP at 6.0, 

and substantially lower than C2C-RH at 7.0 and D2D-RH at over 7.6. The operator cost 

benefits of pooled-rides at low fleet sizes are even more impressive when considering the 

significantly higher matching rates for Ride-pooling than Ride-hailing. Hence, there are clear 

operational cost benefits associated with pooled rides, as found in many other studies 

(Hyland and Mahmassani, 2020). 

Figure 5.2b also shows there is undoubtedly an operational benefit associated with 

C2C service over D2D service. Interestingly, this gap in VKT per request seems to remain 

steady, or even increase, as the fleet size increases. This is an important finding, particularly 

the quantification of the VKT per request gap between C2C and D2D services. While the gap 

is not as large as the Ride-pool vs. Ride-hail gap for matching rate in Figure 5.2a, at low to 

medium fleet sizes, C2C service does have a significantly higher matching rate than D2D, 

especially at lower values of fleet size. 

Figure 5.2c shows the clear downsides of Ride-pooling and C2C service, relative to 

Ride-hailing and D2D service, respectively in terms of total user travel time. Given the low 

matching rates for both Ride-hail services at fleet sizes below 3000, I will compare the 

services in terms of request-to-destination time for fleet sizes 3000 and larger. At a fleet size 

of 3000 vehicles, D2D-RH service has an average request-to-destination time of slightly over 

8 minutes, whereas the C2C-RH service is around 13 minutes. The gap between these two 

services is nearly all due to egress walk distance/time. There is also an approximately 4-

minute gap for request-to-destination time between C2C-RP and D2D-RP.  
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Figure 5.2. Performance metrics for MOD service types: (a) Matching Rate, (b) Average VKT per 
Request, (c) Average Travel Time broken down by Segment, and (d) Average Vehicle Occupancy 

Figure 5.2d is consistent with Figure 5.2a and Figure 5.2b and the features of each 

service design—the AVO per request is significantly higher for Ride-pool compared to Ride-

hail. There is also a gap between C2C and D2D, especially at low fleet sizes, but it is noticeably 

smaller than the gap between Ride-pool and Ride-hail.  

Additionally, Figure 5.2d shows that AVO decreases steadily as fleet size increases. 

This is simply the result of the decision policy using all the vehicles in the fleet to reduce 

traveler wait times as shown in Figure 5.2c. Interestingly, AVO per request of C2C-RP is 

slightly greater than D2D-RP for low fleet sizes, whereas AVO per request of C2C-RH is 

slightly lower than D2D-RH (or nearly the same) for all fleet sizes. This could potentially be 
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because adjusting PUDO links for a Ride-hailing service does not increase sharing of trips in 

the system since a Ride-hail vehicle serves only one request at a time. 

In summary, regarding the original research question, there is a clear trade-off 

between operator cost and user costs in these four MOD service designs. The gap between 

Ride-hail and Ride-pool is the most significant in terms of operator costs, but there is also a 

significant gap between C2C and D2D (5 to 10% reduction in VKT per served request for C2C 

services compared to D2D). In terms of user costs, there is not a huge gap between Ride-hail 

and Ride-pool, but there is a significant gap between C2C and D2D. However, the gap 

between C2C and D2D is almost entirely due to the egress walking distance/time.  

The implications of the gap between C2C and D2D being from egress walking distance 

are several. First, from a behavioral perspective, some users may find this egress walking to 

be both highly inconvenient and onerous, while other users may find a 3-or 4-minute walk 

to be only slightly inconvenient and even pleasant, depending on their schedule, the weather, 

and various other factors. The heterogeneity of travelers in terms of the willingness to walk 

suggests there is likely a role for multiple service offerings from the same MOD service 

provider.  

Second, from a decision policy/algorithm and service design perspective, it is possible 

to put more weight on the disutility of walking in the algorithm, in order to decrease average 

egress walking distances. However, this algorithmic change would likely increase the 

operator costs for a C2C service. Similar to applying more weight to the disutility of walking 

in the decision policy function, it is also possible to explicitly limit the maximum total and/or 
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egress walking distance for travelers. The next section analyzes variations in this parameter 

in terms of both operator and user costs.  

Figure 5.3 illustrates the effect on user and operator costs if MoD operators offer 

pooled C2C services with only PU Link adjustments (C2C-RP-PU) or only DO Link 

adjustments (C2C-RP-DO) compared to C2C-RP and D2D-RP for the baseline scenario 

parameters as listed in Table 5.1. Figure 5.3a shows that VKT per served request for C2C-RP-

PU is slightly less than D2D-RP while it is slightly more for C2C-RP-DO compared to C2C-RP. 

This is also reflected in the segment wise travel times shown in Figure 5.3, with total travel 

time of C2C-RP-PU being slightly more than D2D-RP, while total travel time of C2C-RP-DU 

being slightly less than C2C-RP. This trend can be explained when comparing the % of 

requests with PU Links adjusted with those with DO links adjusted (Figure 5.3c and Figure 

5.3d) as well as the average access and egress walk distances in their respective cases (Figure 

5.3e and Figure 5.3f). Even though the maximum walk range is 1,000 m for both C2C-RP-PU 

and C2C-RP-DO, the average access walk distance for adjusted PU links in C2C-RP-PU is less 

than half of the egress walk distance for adjusted DO links in C2C-RP-DO. This is because, the 

algorithm proposed in this study calculates the effective maximum PU walk range (𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) 

for each request-vehicle pair in such a way that instances of vehicles having to wait for the 

request at the adjusted PU link is reduced (Section 4.4.3.1). Whereas this does not apply for 

DO links adjustment. This also explains the higher instances of requests with DO links 

adjustment (Figure 5.3d) compared to those with PU links adjustment (Figure 5.3c).  
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Figure 5.3. Performance metrics with selective ‘PU Only’ or ‘DO Only’ link adjustments (a) Average 

VKT per Request, (b) Average Travel Time broken down by Segment, (c) % of Requests with PU Links 
Adjusted, (d) % of Requests with DO Links Adjusted, (e) Average Access Walk Distance when PU Link 

is Adjusted, and (f) Average Egress Walk Distance when DO link is Adjusted 

The percentage of instances as well as average access walk distance for adjusted PU 

links in C2C-RP-PU scenario is slightly more than C2C-RP. This could be because, since DO 
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links are not adjusted in C2C-RP-PU, it offers slightly more flexibility for the operator to 

adjust PU links without violating time window constraints. The prevalence of higher 

instances of DO links adjustment in C2C-RP-DO compared to C2C-RP can also be explained 

similarly. Additionally, the access walk range and percentage of requests with PU links 

adjustment decreases with increasing fleet size for both C2C-RP-PU and C2C-RP. This is 

because an unassigned request is closer to an available vehicle as fleet size increases. On the 

other hand, % of requests with DU links adjustment increases with increasing fleet size 

(Figure 5.3d) as more vehicles means less waiting time giving more flexibility to adjust DO 

links. It is also interesting to note that the average egress walk distance for requests with DO 

links adjustment remains more or less flat across fleet sizes. This could be because unlike 

calculating the effective maximum PU walk range, DO walk range calculation is not affected 

by proximity of requests to a vehicle. 

5.3.2 Sensitivity Analysis with respect to Walk Range  

Figure 5.4 displays the computational results for variations in maximum walking 

distance 𝐷𝑤𝑎𝑙𝑘
𝑚𝑎𝑥  (i.e., maximum walk range for PU as well as DO), across three fleet sizes and 

both C2C MOD services. The figure also shows the results for the two D2D MOD services, but 

these services always have zero walk range. Walk speed (𝑠𝑤) is kept fixed at 5 kmph. 

The matching rate results in Figure 5.4a indicate that for these three fleet sizes, 

walking range does not have significant practical impact on matching rate, although longer 

walking ranges do slightly increase matching rate.  

Figure 5.4b and Figure 5.4c show that as walking range decreases from 1000m to 

250m, VKT per request increases and request-to-destination time decreases for both C2C-
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RH and C2C-RP. Interestingly, the relationship is strongly linear for both C2C services, both 

performance metrics, and all three fleet sizes. However, the results indicate that there is a 

step change improvement in VKT per request when moving from D2D to some walking, i.e., 

a 250m walking range. This latter result suggests that even allowing a small walking distance 

can produce significant operational efficiencies in the system. This should not be surprising, 

but it is important, as having travelers walk even a short distance can prevent the worst-case 

PUDO links for vehicles. A small amount of walking can also ensure the PUDO links are on 

links with the same bearing as the vehicle’s direction of travel after picking up or dropping 

off a request. 

Figure 5.4d shows that walking range does not have a significant impact on AVO for 

Ride-pool or Ride-hail nor for any fleet size. Even though Figure 5.4d showed that the AVO 

for C2C-RP with a baseline walk range of 1000 meters is slightly more than D2D-RP for low 

fleet sizes, Figure 5.4d denotes that change in AVO for C2C-RP services for every 250 meter 

increment in maximum walk range is very minimal. 
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Figure 5.4. Sensitivity Analysis with respect to Walk Range: (a) Matching Rate, (b) Average VKT per Request, (c) Average Request-to-

destination Time, and (d) Average Vehicle Occupancy 
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5.3.3 What about e-scooters? Sensitivity Analysis with respect to Walk Speed  

This section analyzes the change in fleet performance and user cost with respect to 

changes in walk speed (𝑠𝑤). I compare the baseline walking speed of 5km/h with a much 

faster ‘walking’ speed of 20km/h. This analysis serves two purposes, namely, to assess the 

potential benefits of using ubiquitous—personal or shared—e-scooters as access and egress 

modes to/from adjusted PUDO links, and to illustrate the role of travel time uncertainty 

across service performance metrics. 

 
Figure 5.5. Sensitivity Analysis with respect to Walk Speed: (a) Matching Rate, (b) Average VKT per 

Request, (c) Average Request-to-destination Time, and (d) Average Vehicle Occupancy 

Figure 5.5 shows that increasing walking speed increases matching rate slightly, 

decreases average VKT per request, significantly decreases request-to-destination time, and 

does not significantly impact AVO, compared to results presented for baseline walk speed in 

Figure 5.2. Figure 5.5c shows that the increased walking speed decreases request-to-
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destination time by around 5 minutes. This five-minute reduction in travel time effectively 

makes C2C competitive with D2D for both Ride-hailing and Ride-pooling along this 

dimension, while retaining a significant advantage in terms of VKT per request. 

Figure 5.6 aims to provide insights on how/why faster walking speeds dramatically 

improve request-to-destination time, while also improving VKT per request and matching 

rate. Figure 5.6a shows the matching rate as a function of walking range, walking speed and 

fleet size. Naturally, as all three of these input parameters increase, particularly fleet size, the 

matching rate increases. Figure 5.6b shows the frequency (i.e., percentage) of users with 

adjusted PU links (i.e., a different PU link than their trip origin). As walk range and walk 

speed increase, the frequency of PU link adjustments increases. The relationship between 

fleet size and PU link adjustments is not monotonic. Matching rate and frequency of PU link 

adjustments are relevant background information, for the two main sets of results in Figure 

5.5c and Figure 5.5d. 
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Figure 5.6. PU Link Adjustments and Vehicle Waiting at PU Link (C2C-RP Scenarios): (a) Matching 

Rate, (b) PU Link Adjustment Rate, (c) Rate of Vehicles Waiting for Requests with Adjusted PU links, 
and (d) Average Vehicle Wait Time at Adjusted PU Link for Early Arrivals 

Figure 5.6c shows the probability a traveler’s assigned vehicle had to wait at the 

traveler’s PU link for the traveler to arrive, conditional on the traveler having an adjusted PU 

link. In such instances, the vehicle arrived earlier than the traveler at the adjusted PU link 

and hence has to wait for the traveler to complete their access walk trip to the adjusted PU 

link. The results clearly indicate that faster walking speeds drastically reduce the probability 

of a traveler’s vehicle having to wait for them to arrive at the adjusted PU link. Similarly, 

Figure 5.6d shows that even when a vehicle waits for a traveler in the faster walking speed 

case, which is much less likely to happen, the vehicle waiting time is significantly lower than 

the case with slower walking speeds.  
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Figure 5.6c and Figure 5.6d collectively illustrate why faster walking speeds can 

improve operational efficiency and significantly reduce request-to-destination travel time—

the faster walking speeds significantly reduce instances where vehicles wait for travelers, 

and in the case where vehicles do wait for travelers, the wait time is quite short. This 

combination reduces the amount of lost or unproductive vehicle time in the system. This 

could also be the reason why matching rate shown in Figure 5.5a is slightly higher for 20 

kmph walk speed compared to 5 kmph walk speed, especially for low fleet sizes. 

As mentioned in the Wang et al. (2022) review article, the issue of vehicles waiting 

for travelers at PU locations in C2C systems, is an overlooked issued. It is also an issue that 

does not or should not arise when travel times in the simulation environment are 

deterministic. However, travel times in congested real-world networks are not 

deterministic, they are uncertain. The POLARIS model used in this study enables us to 

capture this critical feature of C2C systems that is less relevant in D2D systems. I am 

concerned that other road network simulation models that do not capture travel time 

uncertainty may overestimate the benefits of C2C services. Similarly, as highlighted in 

Section 4.4.3.1, a good estimate of the effective pick up walk range (𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 ) value is required 

to reduce instances where vehicles have to wait for the request to arrive at the adjusted PU 

link. Using the network routed travel times would give a more accurate value for vehicle 

speed 𝑠𝑣 in Equation 17 to estimate 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈 , however it is computationally more intensive to 

perform this for each (𝑟, 𝑣) pair compared to using a heuristic. Overestimating 𝑠𝑣 would 

restrict the value of 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  thereby curtailing performance gains that could have been 

attained with a longer PU walk range. On the other hand, underestimating the value of 𝑠𝑣 

would lead to overestimating 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  thereby resulting in vehicles arriving early at the 
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adjusted PU link and waiting for the traveler to arrive. Vehicles having to wait too long at the 

curbside to pick up a traveler may also impact curb space utilization as well as congestion 

on the adjacent links. This study could be extended in the future to evaluate such significant 

externalities. 

5.3.4 What about the sequence of R-V Matching and PUDO Links Adjustment? 

This section compares two different algorithmic approaches (i.e., decision policies) 

for solving the C2C-RP problem. This is controlled by the γ𝐶2𝐶  parameter which determines 

whether PUDO Links adjustment is performed either after or before Request-Vehicle 

matching. In the baseline approach—labelled C2C-RP-A where the ‘A’ stands for ‘after’—we 

assign travelers to PUDO links after we assign them to vehicles (For each (𝑟, 𝑣) match). In 

the alternative approach—labelled C2C-RP-B where the ‘B’ stands for ‘before’—we assign 

travelers to PUDO links for each (𝑟, 𝑣) match candidate before we assign them finally to 

vehicles. The C2C-RP-B approach is computationally more intensive than the C2C-RP-A 

approach. This is because, the PUDO links adjustment procedure described in Section 4.4.3 

is repeated for every feasible (𝑟, 𝑣) candidate for each request in C2C-RP-B, whereas the 

procedure is performed only for optimal (𝑟, 𝑣) match pairs in C2C-RP-A. Since the effect of 

PUDO Links adjustment is also factored into the insertion cost used in the optimal Request-

Vehicle matching module (Section 4.4.4) for the C2C-RP-B strategy, it should be pareto-

improving in terms of operator and user costs. However, this depends on the accuracy of 

changes in insertion cost caused due to PUDO links so as to lead to a better optimal (𝑟, 𝑣) 

match after PUDO Links adjustment. 
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Figure 5.7a shows that there is basically no difference between the two algorithmic 

approaches in terms of matching rate. At low fleet sizes, C2C-RP-A does match slightly more 

travelers to vehicles. Figure 5.7b shows that C2C-RP-B produces significantly lower VKT per 

request than C2C-RP-A across all fleet sizes. This is because the optimal Request-Vehicle 

matching module is able to make better optimal (𝑟, 𝑣) pair matches since the best PUDO links 

have been chosen for each (𝑟, 𝑣) candidate. The gap between PUDO links adjustment before 

match, and PUDO links adjustment after match is not significant for the Ride-hailing case in 

Figure 5.7b. Figure 5.7c shows that at low fleet sizes, C2C-RP-B slightly increases request-to-

destination time relative to C2C-RP-A. This change seems to mostly arise from slightly higher 

access and egress walk times (or distances) for C2C-RP-B strategy compared to C2C-RP-A. 

This is because the current formulation of the optimal matching objective function (Equation 

19) does not include PUDO walk distances. Hence the optimal minimum insertion cost 

matching solution may have slightly longer access and/or egress walk distances. For Ride-

hailing, the gap between the two algorithmic policies is insignificant. Finally, Figure 5.7d 

shows that vehicle occupancy is higher for C2C-RP-B than C2C-RP-A, which could also be 

explained as C2C-RP-B factoring in PUDO links adjustment to make better optimal matching 

choices. 
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Figure 5.7. PUDO Links Adjustment after/before Traveler-Vehicle Matching: (a) Matching Rate, (b) 

Average VKT per Request, (c) Average Travel Time broken down by Segment, and (d) Average Vehicle 
Occupancy 

5.3.5 Computational Time Results 

This section aims to illustrate the scalability of the proposed decision policy and 

algorithmic approaches for the C2C-RP problem. All scenarios in this section were run on 

University of California Irvine’s High Performance Computing Cluster (HPC3). The system 

resources allocated to run the simulation on the cluster are 32 logical processors and 128 

GB of RAM. Figure 5.8 shows that for up to 10,000 vehicles serving up to 220,000 requests 

over the course of a day, in a detailed mesoscopic transportation system simulation model 

of Bloomington IL, model run times do not exceed 40 minutes. Additional test runs in the 
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Chicago network with similar fleet sizes and traveler requests indicate that model run time 

does not explode in a bigger network.  

Figure 5.8 further shows how computational run time changes with respect to several 

key parameters. As expected, larger fleet sizes require longer run times than shorter fleet 

sizes. Similarly, longer walk ranges require longer run times. The reason for this finding is 

that longer walk ranges increase the number of feasible PUDO links, thereby increasing the 

size of the PUDO links selection problem. In contrast, Figure 5.8 shows that run time 

increases slightly with higher walk speed. This can be attributed to the increase in effective 

PU walk range value 𝐷𝑤𝑎𝑙𝑘
𝑃𝑈  with a higher value of 𝑠𝑤 which increases the search space of 

feasible PU link candidates. 

Finally, Figure 5.8 shows that the pareto-improvement in operator and user costs 

when using the adjust PUDO links before match decision policy (C2C-RP-B), does come at the 

expense of computational time (i.e., a third ‘cost’). The computational run time is significantly 

larger for C2C-RP-B than C2C-RP-A, since PUDO links evaluation is performed for each (𝑟, 𝑣) 

candidate instead of just (𝑟, 𝑣) match pairs (Explained in Figure 5.9). Hence, in practice, fleet 

operators can choose between C2C-RP-A and C2C-RP-A depending on the computational 

power they have available and the size of individual problem instances. For the largest 

problem instances (10,000 vehicles, 1000 meters walk range and 5 km/h walk speed), C2C-

RP-A takes nearly 20% more computation time compared to D2D-RP (26 minutes vs 21 

minutes). C2C-RP-B on the other hand takes nearly 70% more computation time compared 

to D2D-RP (36 minutes vs. 21 minutes). 
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Figure 5.9 displays a breakdown of computational run time in each submodule of the 

C2C-RP solution implemented in POLARIS, for the largest problem instance—10,000 

vehicles, 5 km/h walk speed, 1,000-meter walk range. As the figure shows, much of the 

computational time is spent in the module for determining feasible request-vehicle match 

candidates (‘R-V Candidate Prep Time, Section 4.4.2). For the adjust PUDOs before matching 

case, the time spent adjusting PUDOs for each request is also quite high. Compared to the 

adjust PUDO links after matching case, the former case takes eight times longer, because 

PUDO links are adjusted for all eight candidate vehicles associated with each request (𝑘𝑣𝑒ℎ 

parameter in Section 4.4.2), rather than just the single matched vehicle. The computational 

time will also increase if the number of candidate PU/DO links being evaluated (𝑘𝑃𝑈𝐷𝑂) is 

increased. 

Fortunately, it is straightforward to parallelize the feasible request-vehicle search 

module as well as the PUDO links adjustment module in the code. The algorithm determines 

candidate vehicles for each request independently. Similarly, the algorithm adjusts PUDO 

links for each (𝑟, 𝑣) match or match candidate independent of the other (𝑟, 𝑣) 

matches/match candidates. The only C2C-RP module that cannot be parallelized is the 

request-vehicle matching optimization, but this module consumes very little computational 

resources compared to other stages as shown in Figure 5.9.  

The ‘other processing time’ incorporates the rest of the modules in POLARIS including 

traffic simulation and vehicle pathfinding. Much of this run time is independent of the C2C-

RP module.  
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Given that the runtime is relatively short to begin with, and the two MOD submodules 

that take the most time can be parallelized, it is clear that the proposed decision policy and 

algorithm strategy for the C2C-RP problem is highly scalable.  

 
Figure 5.8. Computational Time by (a) Walk Range and (b) Fleet Size 
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Figure 5.9. Computational Time by Matching-PUDO Links Adjustment Sequence (10,000 vehicles, 5 

km/h walk speed, 1,000 m walk range) 

5.4 Conclusion 

MOD services serve a sizable portion of demand in many urban areas. The D2D-RH 

service still dominates the MOD market, which is problematic because Ride-hailing includes 

significant deadheading miles and low vehicle occupancies. Several MOD service variants 

offer many of the benefits of D2D-RH with significantly fewer vehicle miles and higher 

vehicle occupancies. These variants include D2D-RP, C2C-RH, and C2C-RP. One of the two 

goals of this study is to compare these four MOD service variants in terms of user costs and 

operator costs. The second goal of this study is to develop an effective and scalable decision 

policy and solution algorithm to solve the C2C-RP operational problem.  

The C2C-RP operational problem is a complex highly dynamic sequential decision 

problem with a very large decision space. The C2C-RP operator needs to frequently assign 

new requests to vehicles and to PU and DO links. I propose a decision policy that decomposes 

the decision problem into two subproblems, the request-vehicle matching problem and the 

PUDO links adjustment problem. The decision policy utilizes the location and planned 

itineraries of every vehicle in the fleet, the status of each request in the system, forecasted 
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link travel times, and geospatial information to solve both subproblems in every decision 

epoch. The proposed decision policy dynamically assigns new requests to vehicles, 

sequences and re-sequences traveler PU and DO tasks, schedules and re-schedules traveler 

PU and DO tasks, and selects PU and DO locations for each request-vehicle match or 

candidate match. I also vary the order in which we iteratively solve the two subproblems.  

I use the POLARIS agent-based transportation systems simulation model to test the 

proposed decision policy for the C2C-RP problem and to compare the four MOD service 

variants. The computational results illustrate that the proposed decision policy is both 

operationally effective and scalable. The most computationally demanding components of 

the decision policy and solution algorithm can easily be parallelized to further reduce run 

time.  

The computational results also indicate that Ride-pooling provides significant fleet 

operational benefits over Ride-hailing services, in terms of VKT per request served, while 

only slightly increasing traveler request-to-destination times. The benefits for C2C services 

compared to D2D services are relatively smaller, with improvements in VKT per request 

coming at a large increase in traveler request-to-destination time. Moreover, combining 

Ride-pooling and C2C service appears to provide additive benefits, compared to D2D-RH.  

Additional computational experiments indicate that increasing the maximum 

customer walking range does not provide significant additional benefits in terms of VKT per 

request. Rather it is allowing walking legs at all, that provides much of the operational 

benefit, as allowing some walking can prevent highly inefficient PU and DO locations for 

vehicles.  
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The next chapter (Chapter 6) concludes the dissertation, summarizing the key 

objectives and takeaways from the two studies as well as providing various directions in 

which the research presented in my dissertation could be carried forward. 
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Chapter 6. Conclusion 

6.1 Summary 

Cities around the world exhibit huge variations in their transportation network 

structures, travel demand patterns and travelers’ willingness to share trips. The urban 

mobility sector also has several mobility modes that vary in capacity and flexibility of service. 

This dissertation presented two studies that comprehensively evaluated sharing and shared 

mobility services in urban transportation systems.  

The first study discusses a novel method for quantifying the shareability of person-

trips in a region based on travel demand, road network structure, and willingness to detour. 

The concept of 'flow overlaps' for individual person-trips is introduced and used to create a 

Quadratic Program called MNFLOP. This math program calculates optimal path flows 

between origin-destination pairs that maximize shareability. Various shareability metrics 

are derived from the MNFLOP results, calculated at different levels such as OD pairs, origins, 

links, and the entire network. The research applied this approach to the Sioux Falls network, 

demonstrating its ability to assess shareability under different demand scenarios. 

Computational results reveal that even short detours for some trips increase total flow 

overlap in the network. The study validates MNFLOP's efficiency through numerous 

experiments that show a meaningful link between shareability metrics and vehicle fleet 

miles for a microtransit last-mile service. The elasticity between vehicle fleet miles and the 

shareability metric is found to be -0.71. This indicates that a 1% increase in shareability leads 

to a 0.71% reduction in VMT implying that shared mobility services operate more efficiently 

in regions with high shareability. The results also show that the magnitude of demand in an 
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area alone does not capture the viability or efficiency of operating shared mobility services 

in the area. Location level metrics of shareability proposed in this study capture both the 

magnitude and dispersion/concentration of demand in a location. 

The second study introduced a scalable algorithm for operating MOD services with 

flexible and dynamic PUDO locations, called Corner-to-Corner (C2C) services, within a 

congested network. A comparative analysis of four MOD service types—Door-to-Door (D2D) 

Ride-hailing, D2D Ride-pooling, C2C Ride-hailing, and C2C Ride-pooling —was conducted 

based on operator and user costs. The algorithm used a decomposition approach to tackle 

the increased complexity of the C2C-RP problem with optimal decisions to be made on 

request-vehicle matching, PUDO sequencing for each vehicle and alternative PUDO locations 

selection for each request-vehicle pair. The findings indicate that Ride-pooling leads to 

reduced operator costs while slightly increasing user costs, whereas C2C decreases operator 

costs but significantly elevates user costs. Combining Ride-pooling and C2C emerges as a 

promising strategy to mitigate operator costs and decrease vehicle miles traveled (VMT) 

within MOD systems. 

6.2 Future Research 

This subsection includes an extensive discussion of future research directions related 

to MNFLOP and Corner-to-Corner MOD services presented in my dissertation. I believe that 

MNFLOP and the shareability metrics presented in the first study of the dissertation have 

significant potential to provide insights into shared mobility system planning and design 

decisions, beyond the experiments in Chapter 3. Similarly, future research could also be 

conducted on the C2C-RP decision policy, implementation, its impacts on the transportation 
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system and also for infrastructure planning practice to designate optimal PUDO locations in 

dense city centers. 

6.2.1 Shareability as Input for Shared Mobility System Design 

The original impetus for the study on shareability in this dissertation was that the 

existing flexible transit design literature did not effectively characterize demand dispersion 

alongside demand density in a service region, nor did the existing literature consider the 

region’s underlying transportation network. I first sought to determine the optimal SMM 

(i.e., fixed-route transit, flexible transit, ridesharing, or ridesourcing) or SMM combination 

for each subregion of a city given its TSAs. This study takes one step toward connecting TSAs 

and SMMs, but additional research is needed to fully connect subregions and the optimal 

SMM or SMM combination.  

Considering the study’s background, I believe the MNFLOP and associated 

shareability metrics can provide valuable insights for planning multi-modal shared mobility 

networks and even function as an input to planning and design models for multi-modal 

shared mobility networks. While researchers and practitioners understand the broad 

generalizations that (i) high-capacity, high-frequency fixed-route transit services work well 

in dense areas, and (ii) flexible, demand-adaptive door-to-door services work better in lower 

density areas, real-world urban areas do not fit neatly into these two extremes. Hence, 

deciding (i) where to operate specific SMMs ranging from heavy rail to ridesourcing and (ii) 

the optimal combination of SMMs in a city, are ongoing challenges that the MNFLOP and 

associated shareability metrics can help address.  
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In addition to helping assess the viability of specific SMMs, I believe the MNFLOP 

output, specifically the link flows in the network visualizations (e.g.,  

Figure 3.2), can identify street segments and corridors wherein high-capacity, high-

frequency transit lines are most viable. Similarly, for shared-ride mobility-on-demand 

services with Virtual Stops and walking legs, these network visualizations illustrate where 

service providers may want to cluster Virtual Stops for customer pickups and drop-offs.  

Finally, the origin level analysis and overlap percentage metric proposed in this study 

capture the magnitude and the extent of directional overlap of demand starting from an 

origin. Having a high percentage of flow overlap from a node, notwithstanding a low 

magnitude, indicates that it is possible to operate shared modes even in low density areas 

when there is high spatial and temporal overlap of flows starting from the location. These 

origin-level shareability metrics should provide considerable value when planning first- and 

last-mile feeder services around transit stations, as indicated in Section 3.3.2 and validated 

in Section 3.4. Future research involves developing a robust empirical model for microtransit 

service performance metrics (e.g., VMT, AVO, etc.) as a function of the shareability metrics 

and other relevant factors.  

6.2.2 Shareability Metrics as Predictors of Transit Ridership 

Transit ridership and transit mode share vary across cities. Moreover, demand for 

transit varies across spatial areas within cities. Similarly, the demand for ridesourcing and 

shared-ride mobility services vary across and within cities. Transit operators, mobility 

service providers, and transportation planners are quite interested in understanding the 

factors that cause these variations in transit usage across and within cities. The authors 
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believe that the shareability metrics presented in this study can be used, along with various 

other factors, to explain and forecast the usage of SMMs like public transit and shared-ride 

services. After controlling for sociodemographic attributes, a proxy for willingness to use 

shared-ride options, as well as transit expenditures and other factors, cities with higher 

shareability are likely to have higher transit ridership. Future research can test this 

hypothesis. 

6.2.3 Future Research on C2C-RP Services 

 The C2C-RP problem studied in my dissertation is one of only a few studies that 

address the problem at scale, in a congestible network and in an Agent Based Transportation 

model. Hence, there are several remaining areas for future research. First, in the proposed 

decision policy and solution algorithm, I chose to avoid making extensive calls to a 

pathfinding algorithm to determine high-quality estimates of travel times between vehicles 

and requests. However, future research should consider the added operational effectiveness 

benefits and computational costs of employing a pathfinding algorithm. This could also 

increase productivity in the system by reducing instances where the vehicle has to wait too 

long at the Pickup location for the traveler to walk to caused due to poor estimates of travel 

time. Second, in the current study, I do not consider vehicles blocking lanes of traffic or 

utilizing curb space when picking up and dropping off travelers. Future research should 

consider this possibility, as curb space utilization and double-parking violations especially 

in dense city centers are a hot topic among transportation planners, engineers, and 

policymakers. Third, future research should consider incorporating predictive models of 

supply and demand into the fleet operator’s decision policy at each decision epoch. Fourth, 

while the current study performs extensive computational experiments in Bloomington, IL, 
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future research should compare the four MOD services and evaluate the proposed decision 

policies effectiveness in different regions/networks. Preliminary results for Chicago suggest 

that the benefits of C2C-RP relative to D2D services are greater in Chicago, IL than 

Bloomington IL. 

6.2.4 MNFLOP Path Flows for C2C Service Planning 

The visualization of network flow overlap maximizing flows for various scenarios 

shown in Chapter 3 indicate that MNFLOP concentrates demand flows between various OD 

pairs onto fewer links to create corridors of overlapping flows within a given detour 

threshold for flows between each OD pair. These results provide interesting implications and 

possibilities to advance the research on C2C services. As noted in Chapter 1, there exist 

several variants of MOD services with varying flexibility in terms of route, schedule and 

PUDO locations. MNFLOP path flow results could be used to analyze travel patterns in a 

region to find optimal corridors to run Route-Deviation transit (Section 1.1.1) to serve 

passengers who are within a short detour from a maximum overlap corridor. Similarly, 

MNFLOP path flow results could be used to determine alternative PUDO locations or meeting 

points for travelers (nodes or intersections in the network from/to where overlapping flows 

merge/diverge).  

6.2.5 Alternative formulations and heuristic solutions for MNFLOP 

Using MNFLOP based methods to plan C2C or any form of MOD services requires the 

development of heuristics to solve MNFLOP in large networks. Another focus area of future 

research could be on creating different methods, including exact, approximate, and heuristic 

algorithms, to address the problem for larger networks. This involves exploring alternative 
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formulations to represent the original model. Other potential strategies to reduce 

computational complexity include shrinking the problem by grouping similar trip origins 

and destinations or limiting the considered OD pairs that create overlapping flows when 

assessing overlap for a particular OD pair. Genetic algorithms offer promise as a heuristic 

solution approach due to their ability to navigate the solution space with efficiency. 

Additionally, customized heuristics that quickly estimate the objective function rather than 

fully analyzing it during sub-iterations could prove to be successful. 
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Appendix A: Least Cost Shared Path (LCSP) Subgraph 

As mentioned in Section 2.2.5 while introducing the concept of maximizing flow 

overlap, we only allow detours onto paths/links between OD pairs that are part of the least 

cost shared path (LCSP) subgraph. The LCSP subgraph problem is formulated in Equations 

𝐴1 to 𝐴5.  

𝑀𝑖𝑛 𝜃 = ∑ 𝑐𝑎

𝑎∈𝐴

𝑦𝑎 (𝐴1) 

s.t. 

∑ 𝑤𝑝
𝑘

𝑘∈𝐾𝑝

≥ 1 ∀𝑝 ∈ 𝑃 (𝐴2) 

∑ ∑ 𝑤𝑝
𝑘δ𝑎

𝑝𝑘

𝑘∈𝐾𝑝𝑝∈𝑃

≤ 𝑀𝐴 ⋅ 𝑦𝑎 ∀𝑎 ∈ 𝐴 (𝐴3) 

𝑤𝑝
𝑘 ∈ {0,1} ∀𝑝 ∈ 𝑃, ∀ 𝑘 ∈ 𝐾𝑝 (𝐴4) 

𝑦𝑎 ∈ {0,1} ∀ 𝑎 ∈ 𝐴 (𝐴5) 

Where: 

𝐴: set of links/arcs in the graph representing the road network, indexed by 𝑎 ∈ 𝐴 

𝑃: set of OD node pairs that must be connected by the LCSP subgraph, indexed by 𝑝 ∈ 𝑃 

𝐾𝑝: set of paths for OD pair 𝑝 ∈ 𝑃 with detour distance less than 𝜃𝑚𝑎𝑥 , indexed by 𝑘 ∈ 𝐾𝑝 
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𝑦𝑎: binary variable equal to one if link 𝑎 ∈ 𝐴 is included in the LCSP 

𝑤𝑝
𝑘: binary variable equal to one if path 𝑘 ∈ 𝐾𝑝 connects OD pair 𝑝 ∈ 𝑃 

𝑐𝑎: cost or distance of link 𝑎 ∈ 𝐴 

δ𝑎
𝑝𝑘: link-path incidence matrix, with values equal to one if path 𝑘 ∈ 𝐾𝑝 for OD pair 𝑝 ∈ 𝑃 

contains link 𝑎 ∈ 𝐴  

𝑀𝐴: a large positive number 

The objective, Equation  𝐴1, minimizes the sum of the cost (or distance) of the links 

in the LCSP subgraph. The first constraint, Equation 𝐴2, ensures that there is at least one 

path connected each OD pair 𝑝 ∈ 𝑃. The second constraint, Equation 𝐴3, ensures that if a link 

𝑎 ∈ 𝐴 is included in any path 𝑘 ∈ 𝐾𝑝 for any OD pair 𝑝 ∈ 𝑃 then link 𝑎 ∈ 𝐴 must be included 

in the LCSP subgraph, i.e., if ∑ ∑ 𝑤𝑝
𝑘δ𝑎

𝑝𝑘
𝑘∈𝐾𝑝𝑝∈𝑃 ≥ 1, then 𝑦𝑎 = 1. The last two constraints 

ensure the two decision variables, 𝑦𝑎 and 𝑤𝑝
𝑘 take on binary values. 
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Appendix B: Additional MNFLOP Results for Sioux Falls Scenario 1  

Table B-1 displays each OD pair, the demand for each OD pair, as well as the optimal 

path, trip overlap, overlap percentage, detour distance, and marginal overlap for three 

separate assignment methods described in Section 3.3.1—MNFLOP-50%, MNFLOP-25%, 

and SP. 

Table B-1 Comparison of OD Level Overlap Metrics for Sioux Falls Scenario - 1 

OD 
Pair 

Dem
and 
(𝐹𝑝) 

MNFLOP-50% MNFLOP-25% SP 

k Optimal Path 
Trip 

Overlap  
(𝑍𝑜𝑑)  

Overlap % 
(𝑍𝑜𝑑

% ) 
D 

(Miles) 

Marginal 
Overlap (𝑀𝑍𝑝

) 

(Trips/Mile) 

Trip 
Overlap  

(𝑍𝑝)  

Overlap % 
(𝑍𝑝

%) 

Trip 
Overlap  

(𝑍𝑝)  

Overlap 
% (𝑍𝑝

%) 

1-13 500 0 1-3-12-13 4244.5 66.3 0 - 3817.2 59.7 2780.8 43.5 

1-20 300 4 1-3-12-13-24-21-22-20 3015.0 47.1 3 673.5 1279.0 20.0 994.5 15.5 

1-21 100 0 1-3-12-13-24-21 3821.2 59.7 0 - 3210.1 50.2 2165.7 33.8 

1-22 400 0 1-3-12-13-24-21-22 3619.0 56.6 0 - 2989.0 46.7 1999.0 31.2 

1-23 300 0 1-3-12-13-24-23 3769.6 58.9 0 - 3281.4 51.3 2199.0 34.4 

1-24 100 0 1-3-12-13-24 4125.7 64.5 0 - 3572.3 55.8 2439.0 38.1 

2-13 300 1 2-6-5-4-3-12-13 2899.0 45.3 5 198.8 2610.8 40.8 1904.9 29.8 

2-20 100 0 2-6-8-7-18-20 636.5 10.0 0 - 1130.2 17.7 1255.2 19.6 

2-22 100 23 
2-6-5-4-3-12-13-24-21-
22 

2886.1 45.1 10 185.9 2391.3 37.4 1027.6 16.1 

3-13 100 0 3-12-13 5699.0 89.1 0 - 4799.0 75.0 3399.0 53.1 

3-22 100 0 3-12-13-24-21-22 4099.0 64.1 0 - 3211.5 50.2 2074.0 32.4 

3-23 100 0 3-12-13-24-23 4406.7 68.9 0 - 3645.2 57.0 2352.8 36.8 

4-13 600 0 4-3-12-13 4971.7 77.7 0 - 4035.4 63.1 2671.7 41.8 

4-20 300 17 4-3-12-13-24-21-22-20 3335.0 52.1 8 271.4 1316.6 20.6 1163.7 18.2 

4-21 200 0 4-3-12-13-24-21 4265.7 66.7 0 - 3343.4 52.3 2099.0 32.8 

4-22 400 4 4-3-12-13-24-21-22 4019.0 62.8 2 1590.6 3109.0 48.6 943.4 14.7 

4-23 500 1 4-3-12-13-24-23 4240.2 66.3 3 1085.2 3422.5 53.5 1099.0 17.2 

4-24 200 0 4-3-12-13-24 4659.0 72.8 0 - 3732.3 58.3 2359.0 36.9 

5-13 200 0 5-4-3-12-13 4437.5 69.4 0 - 3537.5 55.3 2352.8 36.8 

5-20 100 0 5-6-8-7-18-20 539.0 8.4 0 - 1412.3 22.1 1279.0 20.0 

5-21 100 1 5-4-3-12-13-24-21 3989.0 62.3 1 3647.9 3089.0 48.3 277.9 4.3 

5-22 200 6 5-4-3-12-13-24-21-22 3789.9 59.2 5 684.1 1184.0 18.5 299.0 4.7 

5-23 100 1 5-4-3-12-13-24-23 3951.6 61.8 3 1005 3146.4 49.2 1036.5 16.2 

6-13 200 0 6-5-4-3-12-13 3604.9 56.3 0 - 2799.0 43.7 1869.6 29.2 

6-20 300 0 6-8-7-18-20 699.0 10.9 0 - 1599.0 25.0 1599.0 25.0 

6-21 100 12 6-5-4-3-12-13-24-21 3474.0 54.3 7 338.4 1126.8 17.6 1104.9 17.3 

6-22 200 0 6-8-7-18-20-22 542.8 8.5 0 - 1255.2 19.6 1192.8 18.6 

6-23 100 4 6-5-4-3-12-13-24-23 3420.7 53.5 3 870.6 2668.6 41.7 889.0 13.9 

6-24 100 1 6-5-4-3-12-13-24 3641.9 56.9 1 2687.9 2818.0 44.0 954.0 14.9 
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Appendix C 

Direction and Detour Checks in Request-Vehicle Matching (Section 4.4.2) 

The first step in finding feasible vehicle candidates for each new unassigned request 𝑟 

involves subjecting each vehicle 𝑣 to an elimination process based on direction compatibility 

and vehicle detour constraints. The procedure is described as follows: 

• If 𝑣 is idle and 𝑣 ∉ 𝑉𝑟 then add 𝑣 to 𝑉𝑟 
• If 𝑣 is not idle and has seats available, then add 𝑣 to 𝑉𝑟 if all the following conditions are 

also met: 
o Directionality check: Check if the angle between the vectors representing the 

average `future path of vehicle 𝑣 and the Euclidean path from the origin to the 
destination of request 𝑟 is within a threshold. The average future path of 𝑣 is 
formed by creating a unit vector from the current vehicle location in the direction 
of the average coordinates of all future PUDO links that the vehicle currently plans 
to visit (to pick up or drop off passengers), scaled by the total Euclidean distance 
of the remaining tour.  

θ = cos−1
𝑟 ⋅ �⃗�

||𝑟||  ||�⃗�||
(𝐶1) 

Where θ is the angle between the vehicle’s current average Euclidean path and the 

requests Euclidean path, 𝑟 denotes the vector connecting the origin and destination of 

request 𝑟 and �⃗� is the vector denoting the current average planned path of vehicle 𝑣. Vehicles 

that are on the final leg of their current tour (i.e., the total distance remaining for 𝑣 to 

complete its current tour is less than a minimum distance, are exempt from the directionality 

check. 

o Vehicle path detour check: This is done to ensure that the candidate vehicle 𝑣 does 
not detour beyond a certain threshold to pick up the new request. This is done 
based on the relative location of the request origin with respect to the vehicle’s 
current average planned path, found by calculating the below parameter: 
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𝑢 =
�⃗� ⋅ �⃗� 

||�⃗�||2 
(𝐶2) 

 

 

where �⃗� denotes the vector that starts from the vehicle’s current location and ends at 

request’s origin, and ||�⃗�|| denotes the Euclidean length of the vehicle’s current average path 

vector. The vehicle path detour check is done based on the 𝑢 parameter as follows: 

- If 𝑢 <  0, this means that the vehicle 𝑣 needs to travel in a direction opposite 
to its current planned path to PU the new request 𝑟. Vehicle 𝑣 is skipped if 

|𝑢 ⋅ 𝑣𝑥|  + |𝑢 ⋅ 𝑣𝑦|  > 𝑑𝑖𝑠𝑡𝑟𝑒𝑣
𝑚𝑎𝑥 (𝐶3) 

where 𝑣𝑥, 𝑣𝑦 denote the x and y components of �⃗� respectively, and 𝑣𝑒ℎ_𝑟𝑒𝑣_𝑑𝑖𝑠𝑡_𝑡ℎ𝑟𝑒𝑠ℎ 

denotes the maximum distance between the vehicle’s current location and the projection of 

the request origin onto the upstream of vehicle path �⃗�. If the above reverse distance 

threshold is met, the vehicle 𝑣 is also subjected to the next detour constraint. 

- If 𝑢 ≤ 1, then add 𝑣 to 𝑉𝑟 if  
 

||�⃗�|| + ||�⃗�|| − ||�⃗�|| ≤ 𝑑𝑖𝑠𝑡𝑑𝑒𝑡𝑜𝑢𝑟
𝑚𝑎𝑥 (𝐶4) 

 

 

Where �⃗� denotes the vector connecting the request origin and the end point of the 

average current vehicle path vector �⃗�, and ||�⃗�||, ||�⃗�|| and ||�⃗�|| respectively denote 
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the Euclidean distance between current vehicle location and request origin, request 

origin and end point of �⃗� and vehicle’s current average Euclidean path length.  

 

If 𝑢 >  1, vehicle 𝑣 is added to the candidate vehicle list 𝑉𝑟 for request 𝑟, since the 

request origin is in downstream of the vehicle’s current path end. 
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