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Diffusion model predictions for kinetic energy, mass, angular distributions 
and Y-ray mul t ip l i c i t i e s in heavy ion induced reactions* 

L. G. Moretto 
The Department of Chemistry and Lawrence Berkeley Laboratory, 
University of California, Berkeley, California 94720, USA 

' - r t -

Abstract: In the present formalism the diffusion along the mass asymmetry 

coordinate has been generalized by refining the treatment of the radial and 

angular motion necessary for an adequate reproduction of the kinetic energy 

and angular distributions. The radial potential is used to evaluate the 

radial force. The interaction time and the average penetration for each 

Jl-wave are estimated. The diffusion calculation is then carried out for the 

duration of the interaction time. The angular rotation during diffusion is 

calculated for each fragment on the basis of the tangential energy. The 

resulting average deflection function shows the deep inelastic rainbow 

observed experimentally. The rainbow angle moves from positive to negative 

angles with increasing bombarding energy. Good agreement is obtained for 

the average final kinetic energy as a function of angle. The calculated 

Z distributions become broader as the excitation energy increases. The 

angular distributions for individual fragments show the characteristic * 

disappearance of the side peaking and the development of forward peaking 

as the distance in Z from the projectile increases. The calculated Z angular 

and Y-ray multiplicity distributions are successfully compared with the 

experimental data. 

Introduction 

Heavy ion reactions have provided substantial evidence of relaxation 

mechanisms, associated with a number of collective degrees of freedom . The -

experimental evidence suggests a hierarchy of characteristic times in the 

relaxation of these modes. From-faster to slower, one can list the neutron-

to-proton ratio of the fragments, their relative motion, the fragment intrinsic 

rotation and the mass asymmetry of the system. The relaxation of the asym

metry mode extends well into times when all the previous modes have essentially 

reached equilibrium.' 

*This work has been partially supported by the Niels Bohr Institute, Copenhagen, 
and partially supported by the U.S. Energy Besearch and Development Administration. 
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It is useful to think of the system as a reaction intermediate or 
intermediate complexv ' which, during its lifetime, undergoes equilibration 

. processes which • are interrupted at various stages of completion at the time' 
% of decay. 

The dissipation of large-amounts of kinetic energy into the internal 
degrees of freedom generates a thermal background which introduces brownian 
perturbations in the collective motions. One is then led to believe, from 
this and other experimental evidence, that the time evolution, at least 
for the: slower modes, may be diffusive in its nature and deacribable in 

(2,3) 
terms of the Master Equation or its equivalent, the Fokker-Planck equation . . 

f . • • ,• . 

It is the purpose of this paper 'to present a simple model which tries 
to; describe: specifically the time evolution of the mass asymmetry degree of 
freedom. As it is not possible to experimentally isolate this particular 
mode from all the others, the model must account for them to some extent. 

A brief summary of the relevant physical facts follows . The 
experimental data are consistent with complete dissipation.of the radial 
kinetic energy, while the tangential kinetic energy seems to be dissipated . 
to a lesser'degree. This has the consequence that for large impact param
eters there is less energy relaxation than-for small Impact parameters. 

There is some indication that the interaction time increases with (1 4) increasing radial velocity ' , which shows, that such a time arises from 
a. dynamical rather than a statistical mechanism. Such a dependence is 
inferred from.the increase of the mass or charge distribution widths with 
bombarding energy and from the decrease of the same widths at constant 
energy with, increasing angular momentum. Of course, the alternative 
explanation of such a feature may. lie in the dependence of the diffusion 
form factor: upon radial penetration. The - two explanations, are not mutually 
exclusive as will be seen below. 

The gross angular distribution is characterized by a rainbow (deep 

inelastic rainbow) which moves from positive to negative angles as the 
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energy (and the lifetime) increases. As this occurs, the angular distribu

tion evolves from side-peaked to forward-peaked • . Again the overall effect 

may be due to an increase in lifetime as well as in an increase in .the 

angular velocity resulting from the angular momentum increase and in an 

average decrease of the moment of inertia with increasing average radial 

penetration. 

A simple correlation can be established between the experimentally 

detected short and long interaction time patterns and the ratio E/B 
' * 

of the entrance channel kinetic energy and the interaction barrier. 

For E/B < 1.5 we observe the short interaction time regime, characterized 

by side-peaked angular distributions and narrow mass or charge distributions 

peaked at the projectile A, or Z. For E/B > 1.5 one enters the long inter

action time regime, with forward-peaked angular distributions and very broad 

charge or mass distributions. , 

A most interesting feature, strongly supporting the diffusion picture, 

is the dependence of the angular distribution upon the mass or charge of 
(14) the emitted fragment . If the gross distribution is forward-peaked, the 

individual fragment angular distribution becomes less forward-peaked as 

the distance, in Z from the projectile increases. If the gross angular dis

tribution is side-peaked, the individual fragment angular distribution 

evolves from side-peaked to forward-peaked as the distance in Z from the 

projectile increases, as can be seen in fig. 3. These features are 

due to the progressive time delay introduced by diffusion in populating 

configurations farther and.farther away from the entrance channel configura

tion. 

* '.It is this set of properties that the present theory shall try' to 

reproduce.-

The diffusion equations 

We assume that the intermediate complex has a shape close to that of 



-two touching 'fragments'. -'.Charge to mass equilibration is assumed to be. a 
rather fast process, so that the asymmetry of the system can be character
ized by,the mass or by the charge of one of. the two fragments. We further 
assume that the time evolution along the asymmetry coordinate, is diffusive 
in nature and describable in terms of the Master Equation: 

'•(Z.t) - /*dZ'[A(Z,Z,)*(Z,)-A(Z',Z)i|>(Z)] '"(1) 

where 4>(Z,t) , $(Z,t) are the populations of the configurations character-
. ized by the atomic number Z of one of the fragments, and their time 
derivative at time t; and A(Z,Z'), A(Z',Z) are the macroscopic transition 
probabilities. 

If in eq. (1) one writes: Z" = Z + h and all the quantities are 
expanded about Z in powers of h, one obtains to lower order: 

which is the well-known Fokker-Planck equation1 . The quantities \i^ and 
y„ are the first' and second moment of the transition probabilities: 

W^-^hA(Zih)dh ; U 2 = jfh2A(Z,h)dh (3) 

The Fokker-Planck equation has simple analytical solutions when 
ji., u, are constant and for the initial condition <KZ 0, 0) = 6(Z-Z Q): 

4>(Z,t) - (2mi 2t)~ 1 / 2 exp - [Z - ( Z o + U 1t)] 2/2u 2t (4) 

Notice that the centroid of the gaussian moves with velocity u^ which can 
be related to the driving force F - - V and to the friction coefficient 
K by the relation: K - Vj/F. 

An analytical solution is also available when the force is harmonic 
of: -

VZ = f ̂ s y / - 1 C h 2 ; 

the solution is: 



1 2 
1/2 I" / 2ct\l~2~ c[h-h exp-ct /K] 

*(h,t ) = c 1 ' 2 ^ T ^ l - e x p - ^ J ] 2 e x p - ^ ^ ^ (5) 

where we have made use of the Einstein re lat ion P-iAu = ~ V'/2T and T i s 

the temperature. 

The transition probabil i t ies 

From general phase space considerations one can consider the following 
' ' • • • " ( 2 ) 

ansatz for the transit ion probabilit ies : 
1/2 A(Z,Z*) = X(Z,Z*) p 2 = icfP z / (P z P z , ) • , where X(Z*Z*) i s the micro-

. • i • • • 

scopic transition probability, p_ i s the f inal state density, K i s a particle 

f lux and f i s the window area between the two fragments. This can be 

rewritten as ' ,< 
A(Z,h) - Kf exp - Vzh/2T (6) 

The Fokker-Planck coeff ic ients can then be calculated: 

V± * - 2<{ s:lnh VZ/2T = - <f V'/T ; V2 = 2Kf cosh VZ/2T « 2Kf (7) 

which for large T sa t i s fy the Einstein re lat ion . 
i ' T 

Such an-.ansatz implies for the f r i c t i on coefficient: K = —r . 

Alternatively ±f the particle transfer between two fragments with chemical 

potential differing by an energy a = V'h i s considered, one. can write: 

. . . . • ' • \ - . ' . . . ' . • - . ' ( 8 ) . ' ' 

where A i s some strength constant and g the average single part ic le level 

density. The f ina l result i s : 
\ • 

• \ • . ' 

•'•' 1^ = - Ag V z \, W2 = Ag V z coth v y z / 2 T = 2 AgT • (9) 

again satisfying the Einstein relat ion. The frict ion coeff icient i s : K = -r— . 

The two approaches lead to different r e s u l t s , namely the f i r s t predicts a 

fr ic t ion coefficient proportional to the temperature, the second to a constant. 
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Other approaches described in literature* 3 , 5^ lead to friction coefficients 
with a temperature dependence intermediate between the two extreme cases 
described above. 
The diffusion'constant 

In eq. (7) the quantity K£ can be considered a form factor for the 
transition probability, which, should depend upon the overlap between the two 
fragments. If one takes the idea of particle transfer seriously, it is 
possible to write such a quantity, which is a particle transfer rate, as 
suggested by Kandrup : 

Ktzfn do = 2ir n R b i|»(p (10) 

where n is the particle flux in nuclear matter at saturation density, 
C 1 C 2 R = is a reduced radius expressed in terms of the central radii of 
1 2 

the two fragments, b is the skin thickness and t|i(£) is a universal function 
depending upon the separation between the sharp surface of the two fragments 
in units of the surface thickness. - This approach neatly factors out the 

, geometrical features of the problem. 
The asymmetry potential energy 

In general, the potential energy of the.intermediate complex as a 
function of Z can be written as 

v(z,w - v L D(z) + v U )(z T-z) + v p r o x(z,a) + v c 6 u l + v R o t (ii) 
where i, is the total angular momentum, V T n represent the liquid drop energies 
of the two fragments, and V_ is the nuclear interaction or proximity -
energy* '. 

The total potential V depends on the fissionability of the system 
x, on 9. and on the distance between centers D. At low values of all of 
these parameters, V monotonically increases* from Z = 0 to Z where it reaches 
a maximum. As x, 1, D increase,, the second'derivative at' Z goes through 
zero and cnanges sign: thus for large values of these parameters, -



V i n i t i a l l y increases with Z, i t reaches a maximum at some intermediate 

value of Z-, i t then decreases unt i l i t reaches a minimum at Z 
sym 

The driving force which arises from this potential depends dramatically 
on the entrance channel asymmetry, as well as on x, &, D. It may either 
drive.the system towards symmetry or towards extreme asymmetries. For a 
reaction like 600 MeV Kr + Au the driving force is in the direction of 
symmetry most of the time. In fact, the potential energy vs mass asymmetry 
for this and similar reactions can be approximated by a parabola. The 
knowledge of the ̂ -dependent second derivative at the minimum and of the 
position of the injection point allows us to use an approximate analytical 
solution (eq. 5) to the Master Equation, thus greatly simplifying the. 
calculations. 
The radial and tangential motion 

Both the diffusion constant and the asymmetry potential energy depend 
upon the distance between the two fragments. This distance is controlled 
by the radial motion of the system. Furthermore the extent to which the 
diffusion proceeds depends upon the interaction time. One needs then to 
study the radial motion in some detail. Unfortunately such dynamical studies 
available in literature appear to be inadequate for our purposes. We shall 
therefore limit ourselves to an extremely simplistic treatment which, however, 
respects the experimental evidence closely. 

The radial potential can.be written as: 
. Z(Z - Z ) e

2
 h2„2 

V ( D > - V „ _ + — 1 -+„^7oS (12) Prox D T2jm 

^y\£) being an appropriate moment of inertia. 
It is not very clear how much the fragments must interpenetrate before 

the above equation breaks down. This makes it difficult to formulate the . , 
dynamical problem which, among other things should give the time dependence 
of the ratial penetration of the two fragments x(t,K.) and. the average interaction 

http://can.be


time T(&). - Such a problem is unfortunately, far from settled. For the 
present we shall just use the above potential to calculate the average force 
F„(«.) at the Interaction distance D. -. F_U) = 3 V ( D ) / 3 D L - From the R int R | D i n t 

knowledge, at interaction radius, of the reduced mass u, of the radial 
velocity v R and of the radial force'F_ for each l.value, one can introduce 
the -following two ansatz for the interaction time T and the average penetra
tion x: : 

.1/2 a R ( 1 3 ) 

* max / 
it-

Vac relatively small radial velocities, the functional form of the Interaction 
./' 

time depends little upon the radial friction. The same cannot be said for 
the average penetration. In order to evaluate the latter we rely on a 
free parameter a. When better dynamical calculations become available 
it will be a trivial-matter to substitute the ansatz in eq. 13 with more 
reliable., expressions.. 

The diffusion along the asymmetry coordinate is then allowed to proceed 
with a form factor dependent upon x(£) for a time x(ft) . 

The tangential motion, is treated assuming for the equation of motion 
the simple form: 

• F T > uY(rt0 - ^ i g ) 

where bj and ,u>_, are the two limiting'orbital angular velocities corresponding 
to sliding and sticking. We then obtain for the angular velocity 

••V "-"Rig* tao-'W*** 
and for the angle of rotation during the interaction tike: 

9:". >g * + V _ 1 % - <-Rig) a - exp - Yt) 
Such a formulation allows us to evaluate the exit channel kinetic energy. 



The overall angle of rotation is calculated by adding the Coulomb orbit 
contribution from the entrance and exit channel. 

All the equations are trivially modified for deviations from the 
entrance channel asymmetry. 

The constant Y is chosen such as to approximately reproduce the mean 
kinetic energies as a function of angle assuming that all of the radial 
energy is lost. 
Results of the calculations 

The interaction times calculated for the reaction Au + Kr at three 
energies are shown in fig. la as a function of angular momentum. There is good 
experimental evidence for the angular momentum dependence predicted by our 
ansatz. It is interesting to notice the rather mild average increase in 
lifetime with increasing bombarding energy. In Fig. lb the average deflec
tion function is sturcn. Notice the well pronounced deep inelastic rainbow 
which moves from positive to negative angles as the bombarding energy increases. 

o 

The 600 MeV curve, predicting a rainbow angle of about 50 is in excellent 
agreement with experiment. The movement of the rainbow angle towards smaller 
and eventually negative angles results from the combination of three factors: 
i) increasing lifetime; ii) increasing angular momentum; ill) decreasing 
average moment of Inertia due.to the increasing average penetration. In 
figs. 2a,b the calculated angle-integrated Z distributions are compared with 
experiment for the reactions Au -I- Kr and Ta + Kr at 620 MeV . The agreement 
is reasonable over more than two orders of magnitude. Some of the apparent 
discrepancies arise from the fact that the experimental angular distributions 
have been integrated over a fixed angular range. In figs. 4a and b, examples 
of the angular distributions for fragment's of various Z are shown for both 
reactions. The theory nicely tracks the experiment in predicting forward 
peaked angular distributions at small Z's which develop into side-peaked 
angular distributions close to the projectile. For Z's above the projectile, 
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the'angular distributions slowly lose their side peak-and return forward 
peaked. The satisfactory reproduction of both the Z distributions and the 
angular distributions shows that the calculated dependence of the interaction 
times and of the diffusion constant upon angular momentum and radial velocity 
la reasonably good. 

There"is an additional confirmation of the validity of the diiiusion 
model. The intrinsic angular momenta for each asymmetry have been studied (8) by measuring the Y-ray" multiplicities as a function of Z v . Our model can 
readily predict the total average angular momentum for a given Z. Its 
partition between orbital and intrinsic components depends on details of 
the exit channel shape that the present model does not predict explicitly. 
However we can assume an arbitrary shape, like two touching rigidly rotating 
spheres in order to calculate the angular momentum partition, well realizing 
that this assumption will completely fail close to the projectile where 
rigid rotation is certainly not attained, not even in our model. Rigid 
rotation is most likely a good approximation two or three Z units away from 
the projectile. In fig. 3 the estimated multiplicities and the corresponding 
widths are shown together "with the experimental data '. The experimental 
data are corrected for the sequential fission occurring in the heavy fragment. 
The rise of the multiplicity at low Z's, expected for rigid rotation at constant 
angular momentum, is not seen in the calculation nor in the experiment. The 
reason lies in the driving force towards symmetry, much stronger at high than 
at low angular momentum. The diffusion process therefore selects out low 
angular momenta to populate the low Z configurations with the consequent low 

values of the Y-ray multiplicity. 
-There are two puzzling and possibly related difficulties. The first 

is the wrong dependence upon Z predicted for the y multiplicity. The second 
i 

is the nearly isotropic distribution of y-vayB as a function of the angle 
measured from an axis perpendicular to the reaction plane, rather than the 



11. 
expected W(8) <* (1 - cos 8) for stretched E2 transitions. The solution of 
the puzzle lies presumably in the depolarizing effect of dynamically generated 
angular momentum in the deep inelastic process. 

In conclusion it appears that the present model is able to reproduce in 
a near quantitative way a large amount of the new features associated with 
deep inelastic processes and that a greater and more profound effort is necessary 
in order to describe the complex dynamical features associated with the radial 
and tangential motion. 
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Figure Captions 
Fig. 1 Top. Dependence of the interaction time upon angular momentum at 

three bombarding energies for the reaction Au + Kr. Bottom. Average 
deflection functions for the same bombarding energies. 

Fig. 2 Angle integrated Z distributions for the reaction Au + 600 HeV Kr 
(a) and for Ta + 620 HeV Kr (b). The dots are the experimental points 
and the solid line the theoretical calculation. 

Fig. 3 Angular distributions of fragments of selected Z for the reaction 
Au + 600 HeV Kr (a) and for Ta + 600 HeV Kr (b). The dots are 
the experimental points and the solid lines the theoretical calcu
lations . • ' 

Fig. 4 Experimental and theoretical Y-ray multiplicities as a function of 
Z. The large band represent the theoretical width (± a) which is 
also plotted in the lower part of the figure. 
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