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ABSTRACT OF THE DISSERTATION

Interannual Variability in the North Pacific Ocean

from Observations and a Data-Assimilating Model

by

Elizabeth M. Douglass

Doctor of Philosophy in Oceanography

University of California, San Diego, 2007

Professor Dean Roemmich, Co-chair

Professor Detlef Stammer, Co-chair

Interannual variability of the volume, heat, and freshwater circulation in the North

Pacific Ocean is explored through a joint analysis of observations and the output

from a data-assimilating model. High-resolution repeated expendable bathyther-

mograph (XBT) transects provide an observational basis for analysis of transport

of volume, heat, and freshwater in the North Pacific. The Estimating the Cli-

mate and Circulation of the Ocean (ECCO) Consortium uses the adjoint method

to constrain an ocean circulation model with observations, producing dynamically

consistent time-varying ocean state estimates. These state estimates provide a

context in which the detailed information from the observations can be used for

analysis of the mean and variability of ocean circulation.

An initial analysis of volume transport in the Northeast Pacific demon-

strates that comparisons between a global ocean state estimate and the data are

useful in understanding the large-scale gyre interactions, as well as connections

with larger scale signals. To improve the accuracy of the ocean state estimate in

the North Pacific, several experiments are performed with the ECCO model in

xiii



a regional setting. First, we withhold subsets of the data from the assimilation

to emphasize the importance of including all available data in order to obtain an

accurate state estimate. Separately, we determine that increasing the weights on

the subsurface data increases the accuracy of the subsurface estimate with min-

imal cost to the accuracy of the surface estimate. This new North Pacific state

estimate is used to develop heat and freshwater budgets. A trans-Pacific XBT

track defines the southern boundary of a closed region, and in that region the

balance between cross-track advective transport and surface fluxes gives an esti-

mate of the time-varying storage of heat and freshwater. The mean estimates of

transport and storage compare well with previous research. In addition, estimates

of the magnitude of variability are provided. The freshwater budget is found to be

relatively stable, while the heat budget has large interannual variability. Connec-

tions between the variability of the heat storage in the North Pacific and the El

Niño/Southern Oscillation climate signal are found.
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1

Introduction

The large-scale circulation of the ocean is a critical component in the

global environment. Observing this system and understanding the dynamics gov-

erning it on time scales from days to decades is a central aspect of oceanographic

research. On time scales of decades, the ocean acts as a heat reservoir, and changes

in its heat content are one of the signals of long-term global climate change. On

interannual time scales, the climate signal of El Niño is conveyed from its origin

in the Tropical Pacific to other locations through oceanic and atmospheric tele-

connections. Annually and interannually, ocean circulation affects the distribution

of heat and nutrients, which in turn impact biological productivity. The intercon-

nections between ocean circulation and climate underscore the need for a more

complete understanding of the dynamics controlling them.

Observations are essential to developing our understanding of these pro-

cesses. Ocean-going research vessels, autonomous floats, and gliders make in situ

measurements of temperature, salinity, nutrients, and velocity throughout the wa-

ter column, while satellites monitor surface properties from space. Spatial and

temporal resolution, accuracy, and cost vary widely between systems, and each

technique has its place in understanding different aspects of the ocean. The most

accurate representation of the ocean state will not come from any one particular

dataset, but from a synthesis of all available data into a consistent product which

1
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emphasizes the benefits of each type of data and minimizes its limitations.

Numerical models provide another tool with which to expand our under-

standing. These range from simple box models of individual processes to global

coupled atmosphere-ocean circulation models. Models have the advantage of full

temporal and spatial resolution, limited only by computer power. The main disad-

vantage is that no model is capable of simulating the broad range of temporal and

spatial scales on which processes take place in the ocean. As a result, in large-scale

simulations of ocean circulation, subgrid-scale processes must be parameterized.

Understanding the assumptions inherent in these parameterizations is essential to

determining how a models results fit into the broader system.

Ocean state estimation synthesizes observations with numerical models

in an attempt to use each to their fullest advantage and produce dynamically

consistent, time-varying ocean state estimates. The Estimating the Climate and

Circulation of the Ocean (ECCO) Consortium (Stammer et al., 2002a) provides

such state estimates. Using a framework built on the MIT general circulation

model, and using the adjoint method to constrain the estimate with observations,

ECCO has produced dynamically consistent global state estimates with horizontal

resolution of 1◦ and regional estimates with even higher resolution, spanning time

periods of up to 50 years (Stammer et al., 2002b, 2003, 2004; Wunsch and Heim-

bach, 2007; Köhl et al., 2007). The development and analysis of a regional ECCO

state estimate for the North Pacific is one of the goals of this dissertation.

In chapter 2, a global, 1◦ ECCO state estimate is compared with a long-

term, high resolution expendable bathythermograph (XBT) dataset in an analysis

of the circulation of the Northeast Pacific Ocean. The contrast between model

and data estimates of circulation in the region of interest highlights the difficul-

ties of comparing smooth, lower-resolution model output with sparse, point-wise

measurements of temperature and salinity in a region of the ocean where subsam-

pled mesoscale features complicate synoptic estimates of ocean structure. Despite

these difficulties, similarities between model and data estimates are found in the
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structure and variability of the currents in the system and their volume transport.

Time-scales, magnitudes, and forcing mechanisms associated with the different

modes of variability observed in the region are discussed. This section is an exam-

ple of the synthesis of the model and the data and the results we can obtain from

such a synthesis.

Chapter 3 focuses on the development of the ECCO state estimate and

the details of the assimilation process. The relative influence of each type of data is

explored by withholding subsets of data from the assimilation and then comparing

the resulting state estimates both to the constraining data and to data not used as

constraints. The results of these experiments emphasize that excluding data from

the assimilation is detrimental to the final result. An additional experiment was

performed to determine the merits of adjusting the weights applied to the data. In

the ECCO assimilation process, the cost of each type of data is proportional to the

number of observations, and the weight associated with those observations. The

high spatial and temporal coverage provided by satellites means that the number

of surface measurements is much greater than the number of subsurface measure-

ments. Consequently, surface measurements have higher relative influence on the

model solution. In our experiment, the weights on the subsurface data are in-

creased in order to increase their relative influence in the assimilation. Because

the model has 1◦ horizontal resolution and does not resolve mesoscale features, the

danger of this experiment is the unintentional projection of aliased eddy features

onto the large-scale estimation. This could result in unrealistic results either in the

state estimate or in the forcing fields associated with it. In this case, however, the

increase in weights on subsurface data decreased the model-data misfit, particu-

larly in the subsurface data, without adding unphysical or otherwise unacceptable

features to the result. Additionally, this improvement was accomplished without

too much loss of accuracy in the surface data. The conclusion of chapter 3 is that

an increase in the weights on the subsurface data in the regional model in the

North Pacific could produce an estimate to be used for more accurate analysis of
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the mean and time-varying dynamics of the North Pacific.

The lessons learned in the previous two chapters are brought together

in an analysis of heat and freshwater transport in the North Pacific in Chapter

4. The state estimate used in this section results from the regional assimilation

with increased weights on subsurface data developed in Chapter 3. The analysis

is similar to that in Chapter 2, expanded to include heat and freshwater transport

in addition to volume circulation. The region of analysis is expanded to the full

North Pacific, bounded at the south by a trans-Pacific high-resolution XBT tran-

sect. By combining model and data estimates of advective transport with surface

fluxes, time-varying budgets of heat and freshwater can be calculated. The fresh-

water budget is relatively stable, but the heat budget has significant variability

on time scales of 2-3 years. Further analysis of the dynamics of the heat budget

demonstrates connections with El Niño. This analysis of variability from 1992-

2004 is more complete than could be performed using data alone. Using state

estimation to synthesizing disparate datasets in a dynamically consistent way pro-

vides a clear picture of interannual variability on the scale of the full basin, which

both falls within range of previous estimates of heat and freshwater transport, and

elucidates time-scales and magnitudes of variability which would be more difficult

to study without the spatial and temporal coverage provided by the ocean state

estimate. Additionally, direct comparisons with the high-resolution XBT transect

at the southern boundary of the region provides insight into issues of temporal

and spatial aliasing and high-resolution variability which are smoothed in the 1◦,

monthly model output. This is an example of using observations and a regional

model to enhance our understanding of the large-scale circulation, its variability,

and possible connections to the larger global environment.



2

Interannual Variability in

Northeast Pacific Circulation

2.1 Introduction

The present work investigates the mean state and interannual variability

of the circulation of the eastern North Pacific. As shown schematically in Fig-

ure 2.1, the eastward-flowing North Pacific Current (NPC) supplies source water

for both the subpolar gyre and the subtropical gyre. The Gulf of Alaska and the

California Current region are both important upwelling zones with high productiv-

ity. A description of the large-scale circulation of the northeast Pacific region is an

important step toward understanding the biologically and economically important

elements that are imbedded in it.

Historically, coastal processes and their impacts on economically impor-

tant fisheries have been the focus of much research in the Northeast Pacific (Royer,

1998; Hickey, 1998; Chelton et al., 1982). For example, the collapse of the Califor-

nia sardine fishery in the 1940s resulted in the establishment of the California

Cooperative Oceanic Fisheries Investigations (CalCOFI) program (Bograd and

Lynn, 2003). This project now provides one of the longest continuous oceano-

graphic time-series available. Other research in the region focuses on the Pacific

5
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.

Figure 2.1: Area of study. Shown is the mean transport streamfunction in the top
800 m as it results from the ECCO 1◦ optimized solution (see text for details).
XBT lines, shown as solid, define the edges of the part of the NE Pacific under
consideration (the “box”). Line PX37 is from Honolulu, HI, to San Francisco, CA,
and line PX38 is from Honolulu, HI, to Valdez, AK. The main components of circu-
lation along PX38 are indicated. These include the North Pacific Current (NPC),
Alaska Current (AKC), and North Hawaiian Ridge Current (NHRC). The dashed
lines indicate a square box used to estimate the effects of spatial interpolation on
the calculations.
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Decadal Oscillation (PDO), a large-scale climate phenomenon affecting much of

the North Pacific Ocean (Mantua et al., 1997). One motivation for the study of

the PDO was the covariability between salmon catches in Alaska and those in

Washington and Oregon.

Most previous in situ studies in this region consist of individual hydro-

graphic transects or short-term surveys which provide synoptic views of the large-

scale circulation (Reed, 1984; Musgrave et al., 1992). These studies provide very

little information on long-term variability. The CalCOFI dataset described above

has long temporal extent, but its spatial coverage is limited. Another long time

series of in situ data in this region is a hydrographic line of 13 stations from

British Columbia to Ocean Station Papa (located at 50◦ N, 145◦ W), known as

Line P, which has been occupied regularly since 1959. These data have been used

for a variety of studies from short-term observations of El Niño effects (Freeland,

2002) to 25-year analyses of dynamic height variability (Tabata et al., 1986). Like

CalCOFI, the spatial extent of Line P is small relative to the two-gyre system

considered here.

In a notable study on long-term variability in the northeast Pacific, Chel-

ton and Davis (1982) examined coastal sea level and observed a coherent rise and

fall on interannual time scales along the full North American coast. This led the

authors to hypothesize “a quasi-permanent transport of the West Wind Drift in

the central North Pacific which bifurcates in the eastern North Pacific either with

most of the transport turning northward or most of the transport turning south-

ward” as a possible mode of long-term variability in this region. This concept is

represented schematically in Figure 2.2(a): the input through the North Pacific

Current is constant, but the bifurcation of the transport varies on interannual time

scales. Other possible modes of variability are also presented. In Figure 2.2(b),

variability in the two gyres (and therefore across the XBT lines) is a direct result of

variability in the source waters in the NPC. Changes in the volume of source water

are split proportionately between the two gyres; the bifurcation does not change.
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In Figure 2.2(c), in the upper layer, transport into the region differs from transport

out of the region. In this case, the upper-layer volume changes on interannual time

scales, as net volume is either stored in the box or exported from the region.

In this study we examine the circulation of the North Pacific and the

connections between the subtropical and subpolar gyres in the context of these

interannual modes of variability. The study is based on a joint analysis of observa-

tional data and output from a global ocean circulation model constrained by most

of the available ocean observations from 1992 to 2002. Each mode of variability

will be considered, independently and in combination with the others, in order

to determine its relative contribution to the total variability, and to characterize

variability in this region as fully as possible.

In situ data, remotely sensed data, and model output are used in this

analysis. Each of these contributes to the overall description of the region but

has its limitations. In situ data provide direct measurements of some aspects

of the circulation, at specific times and locations, with known uncertainty. The

main dataset here consists of two repeated tracks of XBT data, a zonal section

from San Francisco, CA, to Honolulu, HI, and a meridional section from Valdez,

AK, to Honolulu, HI. These lines are referred to as PX37 and PX38, respectively

(Figure 2.1). Along these lines, spatial resolution is high, but elsewhere, in situ

measurements are sparse. Remotely sensed data are also available. These data

have good spatial and temporal coverage and resolution, but provide information

only at the surface; information about the subsurface structure must be inferred

indirectly. A third information source, model output, also has good spatial and

temporal coverage, but resolution is lower than data. In an attempt to reduce

uncertainties, models have been developed that assimilate data while maintaining

dynamical consistency. Here, the results from the “Estimating the Climate and

Circulation of the Ocean” (ECCO) data assimilation effort (Stammer et al., 2002b)

will be used; see Köhl et al. (2007) for a detailed description of the model and the

assimilation approach. At this point, uncertainties of the estimates are unknown
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.

Figure 2.2: Possible modes of variability of the north-east Pacific. In (a), the
amount of incoming water remains constant, but the ratio of transport going north
to that going south, changes in time; output variability depends on the bifurcation.
In (b), the volume of water entering the box changes, and transport in each of the
two gyres changes proportionately. In this case the north/south ratio is constant
and output variability depends only on input variability. In (c), the volume of
upper-layer water leaving the box is not the same as the volume entering the box.
In this case upper-layer storage in the box or net outflow occurs.
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and difficult to determine, due to limitations in computer resources. One aspect

of the present study is therefore to determine the model’s skill where observations

are available, in order to subsequently use the model to study components of the

ocean circulation that are otherwise difficult to observe. For that purpose, the data

and the model output are compared within our study region. They are then used

in a combined interpretation to obtain the most comprehensive representation of

the region’s circulation.

The structure of the paper is as follows: in Section 2, we describe the data

and model results. Section 3 presents methods of comparing the model output

with the data. Section 4 describes the mean state of the circulation as well as its

variability, as derived from both model and data. Discussion of the results is in

Section 5, and conclusions are presented in Section 6.

2.2 Data and Model

2.2.1 XBT and Satellite Data

The primary in situ data source in this analysis is the High Resolution

Expendable Bathythermograph (HR XBT) Program. XBTs are deployed from

merchant ships along commercial shipping routes. The data consist of temperature

profiles, with a nominal depth of 800 m, having high along-track resolution of

30-50 km in the open ocean and 10 km near boundaries or interesting features,

such as the rough topography of the Hawaiian Ridge. The temporal resolution

of approximately four cruises per year is only marginally adequate to resolve the

seasonal cycle, but should be sufficient to resolve low-frequency variability, with

the caveat that temporal aliasing and eddy noise can mask long-period changes.

On each cruise, there are occasional expendable conductivity-temperature-depth

(XCTD) casts, which provide salinity information for the calculation of density.

Their spatial resolution is lower, approximately one cast per 500 km. Processing

of all profiles and interpolation onto a uniform grid with resolution of 10 m depth
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by 0.1◦ latitude (for meridional sections) or longitude (for zonal sections), over a

depth range of 800 m, is described in detail by Gilson et al. (1998). Data collection

began in 1991 on line PX37 and 1993 on line PX38 and continues to the present;

data through 2002 are used in this analysis.

Satellite altimetry, which provides high temporal and spatial coverage

unavailable from in situ data, is also employed in this project. Sea surface height

(SSH) has been measured continuously by TOPEX/Poseidon (T/P) since 1992.

Precise geoid information is not yet available, so absolute SSH cannot be deter-

mined. However, SSH anomaly is well suited for studies of variability. The present

study is based on a merged SSH product from T/P, ERS-1, ERS-2, and Jason,

provided by Aviso (Ducet et al., 2000). This product is an objective analysis in

space and time of all those data sets onto a regular spatial grid with 1/3-degree

resolution and a time step of seven days. For our analysis, we created monthly

mean fields by averaging the seven-day grids.

2.2.2 Model

The model output used here is obtained by the ECCO Project by con-

straining the ECCO model with most of the available basin- and global-scale data

sets. The goal of ocean data assimilation is to synthesize in situ and satellite data

with the dynamics embedded in ocean models to obtain the best possible dynami-

cally consistent description of the changing ocean. Stammer et al. (2002b) provide

details of the assimilation approach. The assimilation was performed on a global

1◦ grid over the period 1992 through 2002 by bringing the ECCO model into con-

sistency with the ocean data using the model’s adjoint. Data constraints included

satellite altimetry, surface drifter velocities, and hydrographic information from

conductivity-temperature-depth sensors (CTDs), moorings, and floats (Köhl et al.,

2007). In addition, monthly means of temperature and salinity were constrained

by the Levitus 1994 hydrographic fields (Levitus and Boyer, 1994; Levitus et al.,

1994). The model’s initial conditions and daily surface forcing fields were adjusted
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to bring the model into consistency with most available datasets. The model drift

in temperature and salinity over the 11 year period was also constrained at each

grid point to avoid numerical drift away from observed hydrographic conditions.

The ECCO model output used here is provided on a global 1◦ grid as

monthly averages over the 11-year period. Temperature, salinity, sea surface

height, and all components of the velocity field are included in the output. Be-

cause the surface forcing required to bring the model into consistency with the

data is estimated during the assimilation procedure, surface wind stress, heat flux

and freshwater flux are also part of the solution. See Stammer et al. (2004) for a

discussion of the quality of the estimated surface fluxes.

2.3 Approach

Comparisons between data and model results are an essential step in gain-

ing an understanding of the skill of the model as well as its limitations. However,

performing a meaningful comparison is complicated. The inherent differences be-

tween what was measured and what the model resolves must be considered. The

ocean contains variability from processes taking place on a wide range of spatial

and temporal scales, and XBT casts are quasi-synoptic point measurements. In

contrast, model fields have 1◦ spatial resolution; eddies and other mesoscale fea-

tures are not resolvable on these scales. Temporal variability is further reduced

by the use of monthly means. Thus the model fields are significantly smoother

than the data in both time and space. In addition, although some drift in tem-

perature or transport might occur in the ocean, constraints reduce the drift in the

model. It is important to keep this in mind when evaluating the model’s perfor-

mance against long time-scales in the data (see Köhl et al. (2007) for a detailed

discussion of long-term changes in the model).

Velocity is calculated from XBT casts by combining temperature mea-

surements with historical salinity, corrected with XCTDs, to determine density
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(see Gilson et al. (1998) for details). Horizontal density gradients are used to

calculate cross-track geostrophic velocities, as:

−Φ′ =
∫ p

0

δdp =
∫ p

0

(

1

ρ(S, T, p)
−

1

ρ(35, 0, p)

)

dp (2.1)

ug(p) − ug(p0) =

(

1

f

)(

∂

∂x
(Φ′(p) − Φ′(p0))

)

(2.2)

vg(p) − vg(p0) =

(

−1

f

)(

∂

∂y
(Φ′(p) − Φ′(p0))

)

Here ρ is the density, p is the pressure, and f is the Coriolis parameter. For compar-

ison, model temperature and salinity fields were interpolated onto the same loca-

tions as the data. The interpolated model fields were used to calculate geostrophic

model velocities, which are directly comparable to the geostrophic velocities calcu-

lated from the data. In addition, the model has complete velocity fields that include

an ageostrophic component. For each XBT track, the component of model veloc-

ity perpendicular to the track was extracted, and compared with the geostrophic

velocities calculated from the model and the data. These comparisons reveal both

the magnitude of ageostrophic components such as Ekman flow, and the difference

between data and model results.

Geostrophic velocities are calculated relative to a “level of known motion”

(p0 in Equation 2.2) of 800 m, the nominal maximum depth of the XBTs. Velocities

were calculated relative to zero flow at 800 m, and also relative to model velocity

at 800 m. The model’s vertical velocity fields were used to determine which of

these two calculations resulted in a more physically consistent picture. If upper-

layer volume is converging in the box, vertical transport should be downward, out

of the box. This would lead to anticorrelation between horizontal and vertical

transport. Correlations were higher when the reference velocity was taken from

the model fields. As a result, all transports shown below are calculated relative to

the model’s velocity at 800 m. Figure 2.3 shows the magnitude and variability of

the component of transport resulting from the velocity at 800 m.
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Figure 2.3: Component of transport resulting from using the model velocity at 800
m as a reference velocity instead of zero, across lines (a) PX37 and (b) PX38. In
each case, the thin solid line shows the time series of monthly transport estimates.
The thick solid line shows the same time series, subsampled at only those months
when XBT data are available. The thin and bold dashed lines show the same
results for the full and subsampled time series after smoothing using a 12-month
running mean.
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Ocean velocities and the associated transport can be decomposed into a

geostrophic component (Tg), an Ekman component (TEk), and a residual ageostrophic

component (Ta).

T = Tg + TEk + Ta (2.3)

The left-hand side (T ) can be calculated directly from model velocity fields. How-

ever, only the first term on the right-hand side can be determined from the

data. Geostrophic volume transport is the flux of volume through an area due

to geostrophic velocities.

Tg =
∫

A

→

vg ·

→

dA (2.4)

The second term on the right-hand side, the Ekman transport (TEk), can be cal-

culated from the ECCO-estimated wind stress according to:

→

TEk= (T x
Ek, T

y
Ek) = (

τ y

ρf
,
−τx

ρf
) (2.5)

Here, ρ is seawater density, f is the Coriolis parameter, and τ y and τx are the

components of wind stress. For our analysis, the wind stress was interpolated to

the XBT lines, the Ekman transport was calculated at each location along the line,

and the component of this transport normal to the ship track was subsequently

extracted. This cross-track Ekman transport (TEk) has a magnitude of 1.4±0.65

Sv (1 Sv = 1 Sverdrup = 106 m3/s) on line PX37 and 0.56±0.68 Sv on line

PX37. The non-Ekman ageostrophic component of transport (Ta) was computed

as the residual that remains after the geostrophic (Tg) and Ekman (TEk) parts

were removed from the total transport (T ). Ta is small, with a magnitude of only

-0.55±0.36 Sv on line PX37 and -0.16±0.39 Sv on line PX38.

In the remainder of this paper, cross-track volume transports are esti-

mated in three ways for each calculation.

T1 =
∫

0

−800

vmdA (2.6)

T2 =
∫

0

−800

(vd
g + vm(−800))dA + TEk (2.7)
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T3 =
∫

0

−800

(vm
g + vm(−800))dA + TEk (2.8)

The first estimate, T1, is based on the cross-track component of the model’s full

velocity field (vm). The second estimate, T2, uses geostrophic velocities from the

data (vd
g), relative to model results at 800 m (vm(−800)), to determine cross-track

transport. Ekman transport (TEk), determined from the model’s wind stress, is

added to this quantity at each time step. For the final estimate, T3, geostrophic

velocities calculated from model output (vm
g ), relative to model results at 800 m, are

used to estimate transport. As with the estimate from data, an Ekman component

is added.

Model output is linearly interpolated in space to the locations of the

XBT casts using the month closest to the time of the observations. During the

comparisons of results from the model and the data, only those months when

XBT data are available are considered. During 1992-2002, 42 sections along line

PX37 and 30 sections along line PX38 were recorded. Although the cruises are

approximately evenly spaced in time, it is possible that some features of the flow

are misrepresented or missed entirely as a result of the low sampling rate. An

estimate of temporal aliasing in the XBT dataset can be obtained by comparing

the full time series of model output with the same time series subsampled at the

months when data are available. In general, the main features of the time series

are retained by the subsampled series. We note, however, that this estimate does

not include the effects of mesoscale eddies.

Since this analysis is focused on interannual variability, it is helpful to ac-

centuate lower frequencies by filtering out higher frequency components. Monthly

estimates were produced through linear interpolation of the data and high-frequency

variability was subsequently removed with a 12-point running filter. Model output

was processed the same way: it was subsampled to the months when XBT data

are available and smoothed with a 12-month filter. The following discussion will

be based on those smoothed results.
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2.4 Circulation

Figure 2.1 shows the mean transport streamfunction in the top 800 m,

as calculated from model output. Transport from the full model velocity field is

integrated across the region, relative to zero at the coast, according to

Ψ(x, y) =
∫ y

coast
Tu(x, y′)dy′ = −

∫ x

coast
Tv(x

′, y)dx′ (2.9)

The streamfunction is computed over all months when XBT data are available

during the eleven-year period covered by the model, 1992-2002. The expected

two-gyre structure is evident, with the eastern half of the anti-cyclonic subtropical

gyre covering the basin between latitudes of about 15◦ N and 45◦ N, and the

cyclonic subpolar gyre mostly contained within the Gulf of Alaska. About 15 Sv

are transported by the subtropical gyre, while the subpolar gyre carries about 9 Sv.

Because transport from the XBT data can only be computed across ship tracks,

the spatial structure depicted in the figure cannot be compared to data directly.

Comparisons are limited to cross-track transports.

Figure 2.4 shows upper-layer (0 - 800 m) cross-track volume transport as

a function of time. Transport across line PX38 (around 9 Sv), transport across line

PX37 (around -9 Sv), and total lateral transport into the box (PX37+PX38) are

shown. Each quantity is estimated from the full model field, from the data using

geostrophy, and from the model using geostrophy (see eqs. 2.6-2.8). Positive values

indicate flow into the box (northward flow across PX37 or eastward flow across

PX38). The large magnitude of interannual variability in the region is apparent.

Net transport across PX38 is positive, dominated by the eastward-flowing NPC,

while net transport across PX37 is negative, dominated by the subtropical gyre

exporting water from the region. Data-based estimates of the time-mean gyre

transport determined from cross-track transports give results similar to those from

the model transport streamfunction in Figure 2.1: about 18 Sv in the subtropical

gyre and about 9 Sv in the subpolar gyre. The net upper layer transport into

the box estimated from the full velocity fields has a mean value of 1.03 Sv and a



18

. 1992 1994 1996 1998 2000 2002

−15

−10

−5

0

5

10

15
Volume Transport Into Box

S
ve

rd
ru

ps

PX38

PX37

TOTAL

Model (full)
Data
Model (geostrophic)

Figure 2.4: Volume transport into the box. The top three lines are different
transport estimates across PX38 above 800 m, the bottom three lines are respective
transport estimates across PX37, and the middle three lines are the net transport
estimates above 800 m into the box. Dashed lines are transport estimates resulting
from the model full velocity fields, solid lines represent estimates from geostrophic
velocities calculated from data, and dotted lines are transport estimates based on
geostrophic velocities calculated from the model. All geostrophic estimates use the
model’s velocity as a reference level at 800 m. Ekman transport, calculated from
model wind stress, has been added to the geostrophic estimates of transport and
are part of the full model estimates as well.
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standard deviation of 1.02. The downwelling of -1.00±0.88 Sv calculated from the

model’s vertical velocity fields confirms that in the time-mean, volume is balanced

in the box. Geostrophic estimates of horizontal transport are significantly larger:

2.39 ± 1.79 Sv in the data, and 1.73 ± 1.09 Sv in the model. This suggests that

the full flow fields are required for budget estimates.

Across line PX37, geostrophic upper-layer transport in the model closely

matches that in the data, with a root-mean-square (RMS) difference of 0.88 Sv.

The estimate from the full model velocity also agrees well with the data, with an

RMS difference of 0.77 Sv. In contrast, there are substantial differences between

model- and data-based transport estimates across PX38. The geostrophic model

estimate is slightly closer to the data (RMS difference of 1.91 Sv) than the estimate

using the full velocity field (RMS difference of 2.08 Sv). A local minimum in the

model estimate in 1994 is not seen in the data, while a peak in the data estimate

during 1998 is entirely missing from the model estimates. These disparities result

in large differences in total transport.

In order to examine the differences between the data and the model along

line PX38, we divided the line into three segments, distinguished by the direction

of flow (see Figure 2.1), and calculated transport for each section. The northern-

most section is the Alaska Current (AKC). This westward-flowing current, north

of about 54oN, is the upper arm of the subpolar gyre. South of the AKC, the

North Pacific Current (NPC) is the broad section of eastward flow. The lower

boundary of the AKC, defined as the point separating westward AKC flow from

eastward NPC flow, is constant in time. The flow turns west again south of about

30oN, in the North Hawaiian Ridge Current (NHRC). To find the boundary be-

tween the NHRC and the NPC, transport was integrated along the track, starting

from Hawaii. The minimum in integrated transport marks the point where the

currents change from flowing westward to flowing eastward, and thus, the south-

ern edge of the NPC. This location is highly variable, especially for data estimates

of transport. If the boundary between the NPC and the NHRC is not determined
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correctly, discrepancies could appear in the transport estimates that do not reflect

the information in either the data or the model.

Figure 2.5 shows transport estimates for all three sections. In the AKC,

shown in Figure 2.5(a), there is reasonable agreement between model and data

results. Both tendency and magnitude agree for most of the time series. The

RMS difference between the data and model geostrophic estimates is 0.56 Sv,

and instantaneous differences rarely exceed one Sverdrup. This region shows the

largest differences between the estimate from the full model field and the model

geostrophic estimate, indicating the local importance of friction terms.

Differences are larger in the NPC (Figure 2.5(b)). The main difference

between the estimates is that the magnitude of the data estimate is approximately

4 Sv larger than either model estimate. The slopes are similar throughout the time

series, and all three estimates capture a large increase in transport between 1995

and 1999. The standard deviation of the difference between the model geostrophic

estimate of transport and the data estimate is 0.81 Sv. The large bias but small

standard deviation suggests that there is no fundamental difference between model

and data in the structure of variability. Details of the location of the boundaries

between the currents could lead to the bias.

In the southernmost segment of PX38, the NHRC, both a bias and a

structural difference are evident (Figure 2.5(c)). The data estimate is biased high,

by approximately 2 Sv. It is interesting to note that in this case, as in the NPC, the

magnitude of the data estimate is larger than the magnitude of the model estimates.

However, when the sum of NHRC and NPC transport across PX38 is considered,

the magnitudes of data and model estimates are similar (see Figure 2.4). Unlike

the NPC, the slopes of the estimates do not match for the NHRC. The most

significant discrepancy occurs in 1998, when the magnitude of transport surges

in the model estimate but decreases sharply in the data estimate. We note that

it is this discrepancy in the NHRC estimate that leads to the large difference

between model and data estimates of total transport (see Figure 2.4). In this
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Figure 2.5: Volume transport above 800 m across the three sections of PX38. (a) is
the transport through the Alaska Current (AKC), (b) is the North Pacific Current
(NPC) and (c) is the North Hawaiian Ridge Current (NHRC). See Figure 2.1 for
the location of these currents. Dashed lines are transports estimates resulting
from the full model velocity fields, solid lines are based on geostrophic + Ekman
transport from data, and dotted lines represent geostrophic + Ekman transport
from model output.
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region, the synoptic nature of in situ data could have a large effect on data-based

estimates. Previous observations have demonstrated that “the NHRC appears and

disappears on timescales of less than one month” (Bingham, 1998). As a result,

in this region, monthly means may not be adequate for comparisons with synoptic

data. In addition, complex small-scale dynamics occur in this region as a result of

the rough topography of the Hawaiian ridge that are not resolved by the model’s

one-degree grid.

2.5 Modes of Variability

It is evident that there is strong variability in the upper-layer circulation

in this region. In order to explore the variability and possible covariability of

the two gyres, we compare their transports (Figure 2.6). For this comparison,

the subtropical gyre is defined as the sum of the transport across PX37 and the

transport across the southernmost segment of PX38 (the NHRC). The subpolar

gyre consists of the AKC segment of PX38. Since the NPC transport contributes

to both gyres, and its bifurcation is undetermined and possibly variable, it is not

included in either gyre. In this way, it is possible to distinguish changes in the gyres

from changes in the NPC. All estimates in Figure 2.6 show large variability. In the

subpolar gyre, data and model estimates are similar, but in the subtropical gyre

there are significant differences. Data estimates of the gyres are uncorrelated with

each other, but there are weak positive correlations between the gyres in both

the model geostrophic estimate (r=0.24) and the full model estimate (r=0.44).

This indicates a relationship between the gyres in the model that is fundamentally

different than the relationship in the data.

One possible mode of variability, illustrated schematically in Figure 2.2(a),

assumes a constant NPC, and attributes the variability of transport in the gyres to

changes in the bifurcation of the incoming flow. This would lead to anticorrelation

between the two gyres; an increase in southward transport would correspond to
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Figure 2.6: Estimates of volume transports in the subpolar gyre (AKC) and the
subtropical gyre (PX37+NHRC). The solid lines are the estimates from the data,
the dashed lines are the estimates from the model velocity fields, and the dotted
lines are the estimates from model geostrophic velocities.
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Figure 2.7: Similar to Fig. 2.6, but showing the gyre transports which have been
normalized by the amount of the instantaneous incoming transport (the NPC).
Dashed lines represent model estimates from the full velocity fields, solid lines
indicate data estimates, and dotted lines indicate model geostrophic estimates. As
before the Ekman transports were added to the geostrophic estimates.

a decrease in northward transport. Although the NPC is not constant, its bifur-

cation can still modulate the gyre transports. In order to isolate the effect of the

bifurcation, the transport in each gyre must be normalized by the magnitude of

the NPC at each time step.

Figure 2.7 shows the normalized gyre estimates, or equivalently, the frac-

tion of NPC transport in each gyre. Correlation coefficients of these time series are

-0.54 in the data, -0.39 in the full model, and -0.34 in the geostrophic model. This

negative correlation in all cases indicates that a change in bifurcation is occurring.

The time scale of the variability is approximately 4 years. The anticorrelation is

most evident in late 1997, when a significant El Niño event occurred in the trop-

ical Pacific. A minimum in the normalized subtropical gyre transport, shown in



25

Table 2.1: Correlations between Normalized Gyre transports and the SOI

Subpolar gyre Subtropical gyre
Model (full) 0.65 -0.57
Model (geostrophic) 0.51 -0.70
Data 0.76 -0.65

Figure 2.7, is in agreement with previous studies of transport in the California Cur-

rent that associate El Niño events with decreased horizontal circulation (Chelton

et al., 1982). Previous studies of El Niño connections with the subpolar gyre have

been inconclusive (McGowan et al., 1998), but Figure 2.7 shows a concurrent peak

in normalized subpolar transport. To determine the extent to which the present

analysis supports a connection between the bifurcation of NPC transport and El

Niño, correlation coefficients were calculated between the Southern Oscillation In-

dex (SOI), a pressure-based index which is related to the El Niño signal (Trenberth

and Shea, 1987), and the normalized gyre transports (see Table 2.1). In both gyres,

all estimates show significant correlation.

Gyre transports could also covary with the magnitude of the incoming

NPC transport (Figure 2.2(b)): the transport in each gyre would increase when the

incoming transport increased. Figure 2.8 shows the magnitude of the transports

of the NPC (the incoming flow) and of each of the gyres. As in previous plots, the

estimates of the subpolar gyre transport agree fairly well. Data estimates for NPC

transport and subtropical gyre transport are greater than the model estimates

for the same quantities. In the NPC, the difference is a simple bias, but in the

subtropical gyre there is substantially more variability in the data estimate than

in either model estimate. However, even in the data estimate, a long-term upward

trend is evident in both the subtropical gyre and the NPC. Correlation is apparent

between the NPC and the subpolar gyre as well: the main signal in the subpolar

gyre is a peak in 1998 which also appears in the NPC. The correlations of NPC

with gyre transports are shown in Table 2.2.

The most significant signal in this time series is the long-term increase in
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Table 2.2: Correlations between gyre transport magnitudes and the magnitude of
the NPC

Subpolar gyre Subtropical gyre
Model (full) 0.85 0.71
Model (geostrophic) 0.81 0.54
Data 0.58 0.57
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NPC transport. This robust signal is observed in all three estimates of transport

(see Figure 2.5(b)), and indicates changes on time-scales longer than the 4-year

signal in the bifurcation. Previous research has suggested the possibility of decadal

variation in this region (e.g. McGowan et al. (1998) and Chelton et al. (1982)), and

the increase in NPC could support these theories. Figure 2.9 shows the transport

streamfunction, from the model, averaged over the two time periods 1992-1995 and

1999-2002. The subtropical gyre is significantly stronger in the latter period, but

the subpolar gyre remains essentially unchanged. The change in streamfunction is

shown in Figure 2.9(c).

For a region in Sverdrup balance, the vertically integrated mass transport

can be calculated from the curl of the wind stress as:

Hv =
∫ x

coast

1

ρβ

(

∂Ys

∂x
−

∂Xs

∂y

)

dx (2.10)

Here Xs and Ys are the zonal and meridional components of wind stress, respec-

tively. Using Equation 2.10, the difference in Sverdrup transport between the two

time periods was determined. The result is shown in Figure 2.9(d). The simi-

larities between Figures 2.9(c) and 2.9(d) support the hypothesis that the large-

scale changes in the model’s transport streamfunction are largely due to long-term

changes in the local wind forcing of the east North Pacific.

The modes of variability described so far have been based on the premise

that mass is constant in the upper layer of the box, so that the transport out of this

layer must be the same as the incoming transport. However, if mass were stored

in the upper layer, the variability of outgoing transport would be independent

of the incoming volume, as in Figure 2.2(c). This possibility can be explored

by considering SSH. There are two processes that contribute to SSH variability:

changes in steric height, which result from density changes; and changes in mass

storage in a region, i.e., uncorrelated to any density change. Steric height changes

(∆h) are determined as:

∆h =
1

g

∫

0

−H
δ(T, S, p)dp (2.11)
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Figure 2.9: Four-year averages of streamfunction representing the period (a) be-
fore (1992-1995) and (b) after (1999-2002) the change in NPC. The difference
between streamfunction estimates is shown in (c). Panel (d) shows the difference
in Sverdrup transport as it results for the same periods, using ECCO wind stress
estimates, smoothed over 6 degrees latitude
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Here g is gravitational acceleration (9.8 m s−2), δ is specific volume anomaly, and p

is pressure. Figure 2.10 shows a time series of steric height anomalies, from the top-

to-bottom model field, averaged over the wedge-shaped region shown in Figure 2.1.

SSH from the model output and from Aviso data are also plotted. Interannual

variability of more than 3 cm is apparent. The high correlation between steric

height and SSH shows that changes are mainly due to density variability rather

than mass storage. An exception can be found in 1997, when the SSH anomaly

as measured by the model and by Aviso is almost a centimeter higher than steric

height anomaly would suggest, indicating net mass storage in the box. We note

that in this region, the model’s density is more strongly dependent on salinity

than temperature: the correlation between a time series of halo-steric height and

steric height is -0.92 (higher salt leads to higher density which leads to lower steric

height), while the correlation between thermo-steric height and steric height is only

0.31. A comparison with in situ data from Line P confirms that the salinity signal

in the model has skill and suggests the need for more in situ salinity measurements

to study the North Pacific and to constrain models.

Figure 2.4 shows that the total time-mean horizontal upper-layer trans-

port into the box is not zero. The downwelling transport, calculated from the

model fields of vertical velocity, accounts for -1.00±0.88 Sv of transport. When

this is added to the horizontal transport, the result is a net inflow of 0.02±0.61 Sv.

In the model, then, horizontal transport into the box in the upper layer is balanced

by vertical transport into a deeper layer and then horizontal deep transport out

of the region. As Figure 2.4 illustrates, the temporal variability of this process is

strong. The question of how this variability propagates into the deeper layers of

the ocean can be considered using the model’s velocity fields. When the transport

is calculated for the full depth of the ocean, following the same process of subsam-

pling to XBT months, interpolating, and then using a 12-point filter, the transport

into the box is 0.34±2.3 Sv. The large variability of this quantity is surprising. If,

instead of subsampling, all months of model output are used, the transport into
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Figure 2.10: Estimated steric height (solid line) calculated from model temperature
and salinity fields over the full model depth and averaged over the box. Also shown
are spatial averages of the model’s SSH (dashed line) and of T/P SSH observations
(dotted line). For each estimate, a time-mean was removed.
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the box is -0.88±0.77 Sv. The reduced variability, signified by low standard devi-

ation, illustrates that the subsample-and-interpolate method used throughout this

analysis has the potential to exaggerate some signals and minimize others. This

possibility, an effect of aliasing, cannot be corrected. There is still a slight negative

bias in the full time series calculation. If the wedge defined by the XBT lines is

replaced by a square box, such as that outlined in dashed lines in Figure 2.1, the

need for spatial interpolation of the velocity vectors is eliminated, and the time-

mean transport into the box decreases to 0.1±0.02 Sv. These results emphasize

that caution must be used when drawing conclusions about the nature of variabil-

ity from data without including model information, or from model output without

validation of data.

2.6 Conclusions

The objective of this work was to analyze high resolution datasets to-

gether with a coarser resolution data assimilating model in order to provide an

improved description of the mean and time-varying circulation of the Northeast

Pacific from 1992-2002. Both the model and the data agree in that, on average, in

the upper 800 m, about 25 Sv flow eastward in the North Pacific Current between

latitudes 30◦ N and 52◦ N. This broad eastward current bifurcates west of the

North American coast along 47◦ N. About 8 Sv turn north and follow the coastline

of the Gulf of Alaska into the Alaskan Current, while the remaining 17 Sv turn

south and then west in the subtropical gyre. The broad gyre circulation reaches

as far south as 15◦ N, where it joins the North Equatorial Current. The flow that

recirculates north of Hawaii is referred to as the North Hawaiian Ridge Current.

This current has an average magnitude of about 9 Sv, but its standard deviation

is 2.5 Sv, or more than 25% of the magnitude of the flow, indicating very high

variability.

The largest interannual signal observed during this period, and also simu-
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Figure 2.11: Comparison of four-year average velocity structure, before (1992-1995)
and after (1999-2002) the change in NPC. (a) and (b) are XBT data velocities,
before and after the change, respectively. (c) and (d) are model velocities, before
and after the change, respectively. Shaded areas are westward velocities and light
areas are eastward velocities. In all panels, the contouring interval is 0.01 m/s.
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lated by the data-constrained model, was the increase in the transport of the NPC,

and the associated intensification of the subtropical gyre. This signal is observed as

a rise in NPC and subtropical gyre transport magnitudes through the first half of

the time series, as illustrated in Figure 2.8. Streamfunctions in Figure 2.9 demon-

strate the structure of the increase in the strength of the subtropical gyre. This

evolution is associated with changes in the curl of the wind stress. The difference

in four-year time-mean maps of Sverdrup transport, as calculated from the curl

of the wind stress, has the same structure as the difference in the streamfunc-

tion for the same time periods (Figures 2.9(c) and 2.9(d)). The vertical structure

of this change is illustrated by the sections of mean velocity along PX38 prior

to and after the change (Figure 2.11). After smoothing the data over 4 degrees,

differences between model and data are still evident. Model output is smoother,

and the small-scale structure in the data represents both unresolved structure and

noise from temporal aliasing of the in situ measurements. However, both data and

model still show intensification of the jet structure at the southern end of the line

and an increase in the large-scale incoming transport between about 40◦ N and

50◦ N. This signal is an example of the “NPC-dependent variability” illustrated in

Figure 2.2(b).

On a shorter time scale, covariability between the gyres indicative of

changes in the bifurcation of the incoming current is evident. This is the pattern

suggested by Chelton and Davis (1982) as depicted in Figure 2.2(a). To observe

this, we compare the outflows of the two gyres. Net transport across PX37 is the

part of the subtropical gyre water that does not recirculate north of Hawaii, and

hence is the part closest to the California coast described by Chelton and Davis

(1982). The AKC plays the same role in the subpolar gyre. Model and data

estimates of these transports are shown in Figure 2.12. Anticorrelated variability

on a 3-4 year time scale is evident. The largest increase in subpolar gyre strength

occurs at the peak of the 1997-1998 El Niño event. Similarly, when the fraction

of NPC transport in each gyre was considered (another indicator of bifurcation
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variability), a correlation with the SOI was noted. This is indicative of a possible

teleconnection of the subpolar regions with the tropics.

The third mode of variability illustrated in Figure 2.2, the storage of

upper layer volume in the box, is not evident in this region of the ocean. Model

sea surface height, satellite altimetry, and steric height calculated from the model’s

temperature and salinity fields are all in good agreement. There is a significant

change in steric height, which we find to be mainly a result of changes in salinity

rather than temperature. The importance of salinity in the large scale changes in

this region underscores the need for more in situ measurements to observe change

and help constrain models.

Overall, the agreement between the model and the data was good with

some notable exceptions. To some extent, this is to be expected, since the assim-

ilation approach did incorporate the same data we compare against. However, as

discussed by Köhl et al. (2007), the underlying ECCO solution to first order was

not constrained by the XBT profile data set we use here, but by the climatological

hydrography, the altimetry and other surface data. Taking this into account, our

comparison can be seen as a quasi-independent check of the consistency of the

ECCO solution with in situ data.

Along line PX37 and in the Alaska Current region, data and model esti-

mates agreed very well both in their mean and time-varying components. However,

problems in determining and resolving the boundary between the NPC and NHRC

led to differences in mean and time-varying transports between the data and model.

When the estimates are summed, the mean bias essentially disappears. The off-

sets shown in Figs. 2.5(a) and 2.5(b) therefore have to be considered somewhat

artificial.

More problematic is the fact that data and model based transport esti-

mates show different temporal variability, particularly in the NHRC. To first order,

this indicates the need for more spatial resolution in the model simulations: the

model has only a one-degree resolution and is therefore not able to properly sim-
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ulate the currents around Hawaii or any other topographic feature. It is worth

recalling, however, that XBT data have fairly high spatial sampling density but

are available only once every quarter. This temporal sampling is not adequate and

will inevitably lead to aliasing of the energetic eddy field. The respective errors in

the in situ estimates have to be taken into account during our comparisons between

monthly means of model output and quasi-synoptic shipboard measurements. The

lack of proper in situ salinity observations is yet another source of errors in the

data-based estimates.

Given all those uncertainties in the in situ and the model estimates, find-

ing essentially the same time-mean and time-varying transport estimates from both

sources is very encouraging and confirms that using a high-resolution data assim-

ilation approach as part of an observing and synthesis system is a good strategy

to obtain the best possible estimates of observable and unobservable quantities of

the ocean circulation.

Chapter 2 appears with minor modifications as Douglass, E., D. Roem-

mich, and D. Stammer, Interannual variability in northeast Pacific circulation,

Journal of Geophysical Research, 111, C04001, doi:10.1029/2005JC003015, 2006.

The dissertation author was the primary investigator and author of this paper.
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Data-sensitivity of the ECCO

state estimate in a regional

setting

3.1 Introduction/Background

In order to understand the ocean’s role in climate and climate variability,

its time-varying physical state must be accurately known, including temperature

and salinity structure, circulation and property transports, and air-sea exchanges

of momentum, heat, and freshwater. Hydrographic measurements of subsurface

structure are important, but even with global observational projects such as the

World Ocean Circulation Experiment, efforts to determine time-mean transports

by combining one-time transects from different seasons and years are complicated

by inconsistencies due to the time-variability of the ocean (Ganachaud and Wun-

sch, 2003; Wunsch, 1978). More recent subsurface datasets such as the Argo array

of profiling floats contain spatial and temporal information, but with limited res-

olution and depth range. Satellite observations, on the other hand, provide mea-

surements with good spatial and temporal coverage of surface parameters such as

sea surface height and temperature, but are not adequate to describe the subsur-

37
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800 m from the STANDARD experiment is shown. Stars indicate the positions of
Station Aloha north of Hawaii and Ocean Station Papa in the Northeast Pacific.
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face structure and its evolution in time. Existing estimates of air-sea exchanges

are subject to substantial systematic errors in addition to their limited resolu-

tion. In the short-term, it is not practical to use data alone to fully characterize

seasonal-to-decadal variability in the oceans.

Ocean state estimation is an approach to describing the ocean state that

synthesizes the existing sparse ocean observations using the dynamics of numerical

ocean circulation models. This process provides estimates of time-varying ocean

circulation with temporal and spatial coverage unavailable from in situ or satellite

data. However, ocean processes take place on spatial scales ranging from centime-

ters to hundreds of kilometers, and temporal scales from seconds to years. Spatial

resolution of syntheses is limited at the present time by computing power, with

the consequence that small-scale processes must be parameterized. Knowing the

uncertainties of the estimates a model provides, and testing their sensitivity with

respect to the data used as constraints and the prior errors of those data, are

important precursors to using them for analysis.

The Estimation of Climate and Circulation of the Ocean (ECCO) Con-

sortium (see Stammer et al. (2002a)) provides such dynamically consistent esti-

mates of time-varying ocean circulation by constraining the MIT general ocean

circulation model with most available ocean data sets. This model, which uses

the adjoint approach to ocean state estimation, has been used to provide global

syntheses of ocean data on a 1◦ grid for a period of up to 50 years (Stammer

et al., 2002b, 2003, 2004; Wunsch and Heimbach, 2007; Köhl et al., 2007). These

results have been used to study various oceanic problems as well as to initialize

coupled ocean-atmosphere circulation models (Dommenget and Stammer, 2004;

Pierce et al., 2004; Ponte et al., 2007).

In the present work, we analyze the sensitivity of the ECCO data-assimilating

system in a regional setting to changes in the type and weighting of assimilated

datasets. The adjoint assimilation procedure used by this model attempts to min-

imize a weighted model-data misfit. In this case, the model has 1◦ horizontal
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resolution, so mesoscale processes are unresolved. The subsurface data, however,

are sparse point-wise measurements which subsample these processes, introducing

a mismatch between processes observed in the data and those present in the model,

called a representation error. Ideally, full error covariances would be used to weight

the data appropriately, accounting for both measurement error and representation

error. Currently, such covariances are not known. Weights are estimated from

available data. If the weights used for assimilation of these data are too high,

resolution errors can lead to inaccurate solutions that alias eddy effects into the

large-scale synthesis results. However, if the weights are too low, the influence of

the subsurface data is marginalized, and the assimilation process will not take full

advantage of this extensive data set. An analysis of the weighting scheme is needed

to determine if the model is adequately adjusting to the subsurface information

available to it. To this end, the model is run with assimilation of only surface data

and with assimilation of only subsurface data, to determine the relative influence

of each type of data on the model estimate. In addition, the model is run with

higher weights on the subsurface data, to demonstrate the model’s sensitivity to

these weights, and the costs and benefits associated with changing them.

The structure of the paper is as follows. Section 2 describes model and

the four experiments used in the analysis. Section 3 compares the results from each

experiment with two of the assimilated data sets to demonstrate how accurately

they are estimated by the model. Section 4 is a comparison with independent

data, providing an assessment of the quality of each estimate. Section 5 compares

the present Pacific regional estimates with an existing global ECCO estimate, in

terms of both the model-data misfits and the adjustments to control parameters.

Finally, section 6 has discussions and conclusions.
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3.2 Model Description

The present analysis employs the ECCO model in a regional setting in

the Pacific Ocean north of 26◦S. The model and adjoint assimilation approach is

explained in detail in Stammer et al. (2002b) and Köhl et al. (2007); in this work we

present only a conceptual description. In this method, the model runs forward to

simulate the time-varying ocean state. From this state, a cost function is calculated

from a weighted model-data misfit. The adjoint model is subsequently used to

provide the gradient of the cost function with respect to the model variables. A

standard descent algorithm then uses these gradients to provide adjustments to

the surface forcing and initial conditions to reduce the misfit while maintaining

dynamical consistency. A new forward run is then performed using the adjusted

forcing, and a new cost function is calculated. The process is repeated iteratively

to minimize the cost function.

The model cost function provides a quantitative measure of the overall

misfit of the model relative to observations. In addition, it is a useful tool in

analyzing the model results. It is calculated as follows:

J =
∑

(model − data)2
∗ Wdata +

∑

(control adjustments)2
∗ Wcontrol (3.1)

The first term is composed of the misfit between the simulated ocean state and data

used as constraints, while the second term quantifies the changes to the control

variables, which in this case consist of the model’s initial conditions and the surface

forcing of heat flux, freshwater flux and wind stress. Each type of data and each

control variables have a corresponding weight matrix determined from the inverse

of the prior error. Minimizing the cost function is equivalent to finding the best

dynamically consistent fit between the model and the data.

For the present work, the region of study is the Pacific Ocean north

of 26◦S, as shown in Figure 3.1. The model has horizontal resolution of 1◦ in

latitude and longitude, and 50 vertical levels. The level thicknesses increase from

5 m at the surface to 500 m at depth. All the model runs span the time period
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1992-2004, and the output consists of daily SSH fields and monthly means of

temperature, salinity, and zonal, meridional, and vertical velocity. The output

also includes an adjustment to the initial conditions and adjustment fields every

two days for the surface forcing. Initial temperature and salinity are from the

Levitus 1994 climatology (Levitus and Boyer, 1994; Levitus et al., 1994), and the

NCEP reanalyses of heat flux, freshwater flux, and zonal and meridional wind

stress are used for initial surface forcing (Kalnay et al., 1996).

The model domain is bounded by land to the north and to the east, but

the southern boundary is open to the South Pacific, and the western boundary

is open to the Indonesian Throughflow. Temperature, salinity, and zonal and

meridional velocity are prescribed on the boundaries. These values were obtained

from a global product produced by the ECCO Consortium spanning the time

period 1992-2004 (hereafter ECCO-GODAE; see Wunsch and Heimbach (2007)).

While the horizontal resolution of the ECCO-GODAE model is the same as in our

experiment, a significant difference is the increase in vertical resolution from 23

levels to 50. Linear interpolation was used to obtain 50-level boundary conditions

from the global 23-level solution. Another difference is that the weights used by

the ECCO-GODAE model differ from the weights used in any of the experiments

described below. We chose the ECCO-GODAE model for boundary conditions

because it spanned the full time period from 1992-2004, and no model synthesis

for the full time period using any of the weighting schemes described below was

available.

Four experiments, described below, were performed with the model. The

physics of the model do not change between the experiments; all differences are

a result of the datasets used as constraints and the error information associated

with those data.

The first model experiment consists of a standard run (referred to here-

after as STANDARD). The estimate in this case is constrained by all available

data, including satellite measurements such as sea surface height (SSH) from al-
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timetry and surface winds from scatterometry, other surface measurements such

as Reynolds sea surface temperature (SST) and sea surface salinity (SSS), and

in situ measurements from expendable bathythermographs (XBTs), conductivity-

temperature-depth sensors (CTDs), drifters, and Argo profiling floats. Observa-

tional data are bin-averaged onto the model grid, a process which removes some of

the eddy noise from the data. Additionally, the model climatology is constrained

to Levitus climatology. Finally, the drift of temperature, salinity, and vertical ve-

locity between the first and final years of the state estimate is constrained. The

STANDARD model uses the same weights as a global run previously performed at

Scripps Institution of Oceanography (Köhl et al., 2007). Since the implementation

of full error covariances is not computationally feasible at this time, the weighting

matrices are diagonal, with the inverse of the prior variances on the diagonal. See

Köhl et al. (2007) for further details on the choice of data and prior diagonal error

fields.

The second experiment (called NOINSITU) does not assimilate any sub-

surface data. All measurements from XBTs, CTDs and Argo profiling floats are

excluded from the computation of the control adjustment fields. The satellite

measurements of SSH and winds are still assimilated, as are SST and SSS. The

misfit between the subsurface measurements and the model output fields is still

calculated as a diagnostic to aid in comparison between the different model ex-

periments, but this misfit is not considered when the adjustments to forcing fields

are determined, and therefore these data have no influence on the resulting state

estimate.

The third experiment (called NOSAT) assimilates the subsurface data,

but excludes surface data. This category includes satellite altimetry, wind scat-

terometry, and SST and SSS fields. As in the NOINSITU run, misfits are still

calculated, but now the adjustments to the forcing are solely determined by the

subsurface data. The resulting state estimate provides perspective on the impor-

tance of subsurface data in determining the adjustments the model makes.
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The first three experiments use the same weighting matrices, and vary

by the inclusion or exclusion of particular types of data constraints. The fourth

experiment (WEIGHTED), is constrained by all available data, but changes the

weights relative to the STANDARD case. In our assimilation, the number of

subsurface observations is low, relative to the number of surface observations.

Additionally, the error bars prescribed to the subsurface data, in order to account

for both measurement error and mesoscale representation error, are relatively large,

with standard deviations ranging from more than 0.5◦C and 0.14 psu at the surface

to 0.05◦C and 0.01 psu at depth. As a result, the relative weights on the subsurface

data are small, and their effect on the resulting state estimate is minor. Larger

weights on the subsurface data will increase their relative influence on the solution.

To achieve this increased influence, in the WEIGHTED run, the weights on the

subsurface data are increased by a factor of 16 relative to the standard case, which

is equivalent to decreasing the prior error by a factor of four (see Equation 3.2-

3.4). The surface data are assimilated with the same weights used in the other

experiments. This increases the relative impact of the subsurface data on the

solution.

σweighted =
σstandard

4
(3.2)

W =
1

σ2
(3.3)

Wweighted = 16 ∗ Wstandard (3.4)

As an initial demonstration of the trade-off in cost between decreasing

model-data misfit and increasing adjustments to the forcing, as well as an indica-

tor of some of the differences between the model results, the evolution of several

components of the cost function is shown in Figure 3.2. Panel (a) shows the per-

centage cost decrease, or the total cost normalized by the initial cost, for the first

30 iterations of each experiment. The WEIGHTED estimate (triangles) has the

greatest percentage decrease in total cost. Panels (b), (c), and (d) show the cost

contributions of XBT misfits, SSH misfits, and heat flux adjustments respectively,
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Figure 3.2: (a) Total cost of each of the four experiments as a function of iteration,
normalized by initial value. (b) Normalized cost of the model-XBT misfit for each
experiment. (c) Same as (b), for sea surface height anomaly misfit. (d) Normalized
cost of adjustments to the heat flux. See text for details.
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normalized by their prior variances. Since cost is proportionate to the square of

the misfit, as the model converges to a solution, the misfits approach the data

variance, and the normalized cost converges to unity. In order to compare the

four experiments directly, the misfits from all experiments are normalized by the

prior variances from the STANDARD experiment. Thus, the differences in Fig-

ure 3.2 are due only to model-data misfit. Cost contributions from XBTs and

SSH decrease with each iteration in all experiments. The XBT cost has decreased

the most in the WEIGHTED experiment, which has the highest penalty associ-

ated with this misfit, and the least in the NOINSITU experiment, which does not

assimilate these data. The NOSAT and STANDARD costs are nearly identical,

indicating that the assimilation of surface data has little effect on the estimation

of subsurface data. One might expect the NOSAT experiment to match the XBT

data more closely than it does, since there are no competing costs from surface

data to constrain it. However, relative to the XBT cost component, the cost of the

adjustments to the forcing is too high to justify the changes necessary for a reduced

misfit. In the WEIGHTED experiment, weights on the XBTs are so high that the

relative cost of adjusting the forcing is small, so large adjustments are made and a

smaller model-data misfit is attained. In the NOSAT experiment, similar changes

would increase the cost of the forcing more than they would reduce the cost of the

model-data misfit; thus, the estimate does not make those adjustments, and the

misfit between XBTs and the model is comparatively higher.

A similar effect is noted in the SSH cost component (Figure 3.2(c)). The

largest model-data misfit in SSH, not unexpectedly, occurs in the NOSAT estimate,

which does not assimilate those data. The cost of SSH misfit in the NOINSITU

experiment is almost identical to the STANDARD cost, indicating that the esti-

mation of surface data is not affected by the additional assimilation of subsurface

data in the STANDARD experiment. This also suggests that even in the NOIN-

SITU experiment, which is not restricted by the constraints of the subsurface data,

the cost of adjusting the forcing to match the SSH data more accurately is higher
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than the reduction in cost that would result from such changes. Since there is no

experiment with higher weights on the SSH data, it is harder to be sure in this case

than it was in the case of the XBTs. In this component, the misfit between the

WEIGHTED model estimate and the measured SSH is slightly larger than that in

the STANDARD run, indicating that the improved match to the XBT data comes

at the expense of the a reduced match to the SSH data. This may be due in part

to a warm bias in the XBT data (Gouretski and Koltermann, 2007), introducing a

level of inconsistency between the XBT and SSH data. This is considered further

in the discussion section.

The costs of the adjustments made to the heat flux are shown in Figure

3.2(d). These are largest in the WEIGHTED experiment, indicating that larger

adjustments are necessary for increased accuracy in the fit to the data. While these

adjustments are significant relative to the adjustments of the other three model

estimates, the normalized costs are still below 0.2, indicating that the magnitude

of the changes is, on average, less than 20% of the prior variance. Therefore, on

average, these adjustments are well within the expected limits. It is important to

note that the total cost and the model-data misfits are still decreasing, indicating

that the solutions have not fully converged. However, enough iterations are com-

plete to demonstrate robust differences resulting from the various weighting and

assimilation schemes.

3.3 Comparison with Assimilated Data

Comparisons between the model output and the data to which it is con-

strained are informative in several ways. First of all, differences between the data

sets and the model results indicate the extent to which the model is accurately rep-

resenting the data. Second, because the experiments assimilate different subsets of

the data, the differences between the versions demonstrate the extent to which each

type of data affects the model output. Therefore we compare the model estimates
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Figure 3.3: Coverage of XBT data displayed as the depth-integrated number of
measurements available at each location from 1992-2004.

to the XBT temperature profiles, which comprise the largest subsurface dataset,

and to the satellite altimetric height dataset, the most complete surface dataset,

to determine the realism of our various simulations and the relative importance of

surface and subsurface data.

3.3.1 Heat Content/SST

The XBT temperature data is the subsurface dataset with the best cov-

erage both temporally and spatially. Even so, its coverage is inhomogeneous, as

seen in Figure 3.3, which shows the depth- and time- integrated number of mea-

surements for each location. When comparing model and data estimates, the

sparse nature of this data must be accounted for. At each time step, the heat con-
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Figure 3.4: (a) RMSD between heat content estimated by the STANDARD exper-
iment and heat content estimated from XBT data. (b) Difference between RMSD
between NOINSITU estimated heat content and XBT-derived heat content, and
STANDARD RMSD as shown in panel (a). (c) Same as (b), for NOSAT estimate.
(d) Same as (b), for WEIGHTED estimate. In difference maps, red indicates
positive differences (higher RMSD than STANDARD) and blue indicates negative
differences (lower RMSD than standard). Units are Joules.
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tent was computed from the model output at the positions where XBT data are

available, and maps of estimated heat content were constructed. The root-mean-

square difference (RMSD) between data- and model-estimated heat content (mean

removed) are mapped in Figure 3.4. Figure 3.4(a) shows the mapped RMSD be-

tween the STANDARD model estimate and the data, and panels (b), (c), and (d)

are differences between the STANDARD RMSD and the RMSDs from other model

estimates. Positive numbers (red) indicate higher RMSD than STANDARD, while

negative (blue) areas indicate a lower RMSD than STANDARD and thus a more

accurate estimate. Several features are immediately evident. In panel (a), we see a

region of high RMSD in the region off the coast of Japan, where the Kuroshio sep-

arates from the coast and meanders east to the Kuroshio extension region. This

is a highly variable region with intense mesoscale activity, which is not present

in the model but which aliases XBT measurements. Panels (b) and (c) indicate

that both NOINSITU and NOSAT have higher RMSDs (less accurate estimates)

than the STANDARD experiment in this region. In panel (d), the WEIGHTED

estimate has negative values in this region, indicating that it simulates the data-

based heat content more accurately than the STANDARD experiment. Overall,

the NOINSITU RMSDs are slightly worse than any of the other model estimates.

This is expected, since NOINSITU is not constrained by these data. The NOSAT

estimate matches the XBT estimate more closely than the STANDARD estimate

does in some areas such as the Gulf of Alaska, but has higher RMSDs in the

Kuroshio region and south of the equator. The WEIGHTED estimate is the most

accurate, indicating that the change in weights is making a significant difference

in the assimilated product.

A time series of heat content anomaly in the upper 750 m of the ocean,

calculated from optimally interpolated XBT data (Willis et al., 2004, hereafter

WRC), is also available for comparison with the model estimate. There are sev-

eral issues to be considered with this comparison. First, as mentioned previously,

Gouretski and Koltermann (2007) have found a time-varying but systematically
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warm bias in XBT measurements, which introduces a highly correlated error into

both the WRC product, and into the data being assimilated by the model. This

kind of error is not accounted for in the covariances used to assimilate these data,

and could have serious impacts on model estimates of temperature, especially since

it is inconsistent with other data being assimilated. In addition, or possibly as a

result, a large secular increase in heat content is found in the ECCO estimates.

While heat content is thought to increase over this time period (Levitus et al.,

2005), the temperature drift in the model estimates implies a heat uptake that is

larger than expected. In their estimate, Köhl et al. (2007) found an increase in heat

content corresponding to a global net ocean heat uptake in their model estimate

of 1.1 W/m2. When the domain is restricted to the Pacific Ocean north of 26◦S,

as in our setting, the average heat uptake is 1.5 W/m2. The average heat uptake

for each of the four estimates and for the data are found in Table 3.1. Of the

four model experiments, the smallest uptake, of only 0.78 W/m2, is found in the

NOSAT estimate. The largest uptake is found in the NOINSITU estimate, which

averages 3.30 W/m2. The STANDARD estimate shows an average heat uptake of

2.83 W/m2, while the WEIGHTED estimate averages 2.62 W/m2 over the time

period. The data from WRC indicate an average heat uptake of only 0.41±0.12

W/m2.

The secular heat increase in the model estimates makes direct compar-

isons with heat content estimated from XBT data more difficult. To determine if

variability in the model is correlated with that in the data, the trend is removed

from the model- and data-derived heat content estimates. Figure 3.5 shows de-

trended heat content from the data and from the four experiments. The monthly

model estimates and quarterly WRC estimates are smoothed over one year to re-

move higher frequency variability. Correlation coefficients for these detrended and

smoothed time series are listed in Table 3.1. The WEIGHTED experiment es-

timates heat content variability most accurately, with a correlation coefficient of

0.54. Figure 3.5 shows that the STANDARD estimate is nearly identical to the
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Figure 3.5: Time series of heat content anomaly as a function of time, from an
optimally interpolated XBT dataset, and from each of the four estimates. All
timeseries were detrended to remove a secular heat content trend from the model
output.
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Table 3.1: Basin-averaged heat uptake and correlation coefficients for comparison
between model- and XBT-estimated heat content.

Net Heat Uptake Correlation Coefficient
Data (WRC) 0.41 N/A
STANDARD 2.84 0.49
NOSAT 0.78 0.19
NOINSITU 3.30 0.26
WEIGHTED 2.62 0.54

WEIGHTED estimate, and its correlation coefficient it only slightly lower at 0.49.

The NOINSITU and NOSAT estimates have significantly lower correlations, at

0.29 and 0.19 respectively, indicating the importance of both surface and subsur-

face information when estimating an integrated quantity such as heat content.

Another test of realism of the temperature estimate comes from empirical

orthogonal functions, or EOFs, of SST. EOFs represent the decomposition of a time

series into orthogonal modes representing the most energetic patterns of variability

(Lorenz, 1956). Each EOF has two parts: the spatial pattern of variability, and

the associated amplitude time series. Prior to the decomposition, the mean was

removed and a 12-month smoothing was applied to remove the seasonal cycle

and other high-frequency variability. Mantua et al. (1997) defined the Pacific

Decadal Oscillation (PDO) index as the time-series associated with the first EOF

of SST in the North Pacific. The spatial pattern of variability associated with this

index is seen in Figure 3.6(e), the EOF for the Reynolds SST data: a horseshoe

shape centered in the North Pacific, with high values in the center and to the

west and lower values in the coastal areas to the north and east as well as at

the equator. This mode represents 37% of the variance of the SST data. The

other panels of FIgure 3.6 show differences between the first EOFs of the model

estimates and that of the data. The WEIGHTED result has lower values than

the data in the northern half of the Pacific, and higher values in the south, but

the differences are generally small in amplitude. The first EOF represents 36%

of the variance of the WEIGHTED estimate. The NOINSITU result has deeper
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Figure 3.6: (a)-(d) Maps of the differences between the first EOF of SST from the
four experiments and the first EOF of SST from Reynolds SST data (e) Map of
the first EOF of the Reynolds SST data.
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Figure 3.7: Amplitude time-series associated with the first EOF of SST for each
of the four experiments and also for the Reynolds SST data.



56

lows at the equator and in the northern and eastern coastal regions, in a pattern

similar to the PDO, indicating that the physical processes associated with this

variability are stronger in the NOINSITU estimate. This mode represents 32% of

the variance of NOINSITU. The STANDARD EOF indicates a deeper low at the

equator but a lower peak in the central North Pacific, with differences of larger

amplitude than either WEIGHTED or NOINSITU. The first EOF of STANDARD

represents only 31% of the variance. The first EOF of the NOSAT estimate has

differences of the largest amplitude, which could indicate that in this experiment,

the most energetic mode, representing 39% of the variance, is associated with

different physical processes than in the other experiments. The amplitude time-

series associated with the first EOFs, shown in Figure 3.7 for the data and for each

model experiment, reinforce the conclusion that the NOSAT estimate is distinct

from the others. All model time-series have a correlation with the data of greater

than 0.9 except NOSAT, which has a correlation below 0.75.

3.3.2 Sea Surface Height

SSH has been measured continuously by satellites since 1992. The model

assimilates daily fields of along-track SSH anomaly from the TOPEX/Poseidon and

Jason satellites. Using a method similar to that used for heat content to account

for inhomogeneously distributed data, maps of the RMSD between measured and

modeled SSH anomalies are created (Figure 3.8). Panel (a) shows the RMSD

between STANDARD SSH anomaly and altimetric height data, and panels (b), (c),

and (d) show the difference between the NOINSITU, NOSAT, and WEIGHTED

RMSD and the STANDARD RMSD, respectively. As with heat content, the main

signal is evident in the Kuroshio Extension region, an area with intense mesoscale

activity. The differences between NOINSITU and STANDARD (Figure 3.8(b))

are approximately evenly split between positive and negative, and all differences

are small in magnitude. This indicates that the skill of the two experiments in

estimating SSH is about equal, implying that the effect of assimilation of subsurface



57

.

Figure 3.8: As Figure 3.4, but for SSH instead of heat content. Units are cm.
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data on estimation of SSH with the weights used in the STANDARD model is

minimal. The WEIGHTED RMSD is higher than the STANDARD RMSD in most

regions, as indicated by Figure 3.8(d). This implies that adhering more closely to

subsurface data in these areas is detrimental to the objective of minimizing SSH

misfit. However, these differences are still smaller than those indicated on the map

of differences between NOSAT and STANDARD RMSD (Figure 3.8(c)). It is clear

that the NOSAT experiment, which does not assimilate any surface data, is the

least accurate estimate of SSH anomaly.

As with SST, EOF analysis is used to compare observed SSH signals to

their representation in the experiments. Monthly estimates of sea surface height

anomaly were smoothed over 12 months to remove the annual cycle as well as

other high frequency variability. The first EOFs for the data and each model

estimate are shown in Figure 3.9. The EOF of the data shows a large feature

in the tropics, with a high region at the equator east of about 160◦W, extending

about 5 degrees north and south of the equator, and a low area to the west,

with less zonal extent but greater meridional extent. There is also a signal in the

North Pacific similar to the PDO pattern seen in the SST EOF, with low values

in the central North Pacific extending to the western edge, and high values in the

northern and eastern coastal regions. The signal in the North Pacific has smaller

magnitudes than that in the tropics, indicating that the tropical signal is dominant

in amplitude. The STANDARD and NOINSITU estimates (panels (a) and (b)

respectively) show both the tropical and subtropical signals with approximately

the right magnitudes. The STANDARD has a high region north of the equator

that does not appear in the data. The NOSAT estimate (panel (c)) is the least

similar to the data. The equatorial peak is much lower, and values throughout

the North Pacific are considerably higher. The WEIGHTED estimate (panel (d))

replicates the main features of the data, but with slight differences such as a weaker

high at the equator in the east, a weaker low in the central North Pacific, and

higher values in the northern and eastern coastal regions than in the data. In this
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estimate, the tropical signal and North Pacific signal seem to have approximately

equal amplitude. In general, the NOINSITU model, for which altimetric height

data comprises the majority of the assimilated data, replicates the dominant mode

of variability of these data more accurately than any of the other experiments.

In the amplitude time-series associated with these EOFs (Figure 3.10),

the most significant feature, replicated in all estimates, is a peak just before the

end of 1997, associated with a strong El Niño event that occurred in 1997-98.

This, together with the spatial pattern indicating the high level of energy in the

tropics, confirms that the most energetic mode of interannual variability in SSH is

associated with the El Niño oscillation. All time series in Figure 3.10 are highly

correlated, with correlation coefficients greater than 0.9. These time series are also

well correlated with the amplitude time-series of the first EOF of SST (Figure 3.7),

indicating that the most energetic modes of SST and SSH are controlled by the

same dynamics.

3.4 Comparison with Independent Data

So far, we have investigated the skill of the individual experiments in

simulating the data to which they were constrained. In the following, independent

data from two time series not used as constraints are used to assess the skill of the

estimates.

3.4.1 Station Aloha

The Hawaii Ocean Time-series (HOT) is a time series of hydrographic

measurements at Ocean Station Aloha, which is just north of Oahu, Hawaii at

22◦45’ N, 158◦00” W (Karl and Lukas, 1996). Temperature and salinity have been

measured at this location approximately once per month since October of 1988.

This dataset was not assimilated in any of the four experiments. As a result, it is

independent and can be used as a test of the model’s realism.
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Figure 3.9: (a)-(e) Spatial maps of the first EOF of SSH, for the four experiments
and for the altimetric height data.
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Figure 3.10: Amplitude time-series associated with the first EOF of SSH for each
of the four experiments and also for the Topex SSH data.
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Figure 3.11: (a)-(d) Temperature difference in the top 500 m between model esti-
mate and data at Station Aloha, for each of the four estimates. (e) The temperature
time series at Station Aloha. All units are ◦C.
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Figure 3.12: (a)-(d) Salinity difference in the top 500 m between model estimate
and data at Station Aloha, for each of the four estimates. (e) The salinity time
series at Station Aloha. All units are psu.



64

The time evolution of the difference between measured and modeled tem-

perature at Station Aloha is shown in Figure 3.11, for each of the four model

estimates. The quantity shown in the panels (a) through (d) is model minus data,

so that positive values indicate higher temperatures in the model, and negative

values indicate higher temperatures in the data. The temperature measurements

at Station Aloha are shown in panel (e) for reference. Surface temperature is higher

in all four model estimates than in the data. This is caused by problems with the

KPP mixed layer model in simulating the wind-induced mixed layer deepening in

late summer and the associated cooling of SST (Köhl et al., 2007). The overesti-

mation is weakest in the WEIGHTED time series (panel (d)), while the NOSAT

model (panel (c)) has the highest surface temperatures. This disparity in surface

temperatures is the strongest in the summer, when stratification in the model is

stronger than that in the data. The strong summer stratification is also confined

to a shallower depth in the model estimates than in the data, such that in all

estimates, the model temperatures at levels below about 100 m are too low. This

difference is magnified during the fall of each year, when summer stratification

breaks down earlier in the model than in the data, with the result in all estimates,

the modeled subsurface temperatures are as much as three degrees cooler than

the data. The difference in thermocline structure results in cooler temperatures

in the model estimates to a depth of almost 500 m. From about 1992-1997, the

largest differences are centered at 200-250 m, while from 1998-2004 they are at a

shallower depth of about 150 m. Unlike surface temperature, which was measured

more accurately by the WEIGHTED experiment, the subsurface bias has similar

magnitude in all experiments. The basic structure of overestimated surface tem-

peratures, a too-shallow thermocline, and underestimated subsurface temperatures

persist throughout the time series, and are consistent in all model estimates.

The time evolution of differences in salinity between the four model es-

timates and the observations are shown in Figure 3.12. As with temperature, the

quantity shown is model minus data, so that positive values indicate higher salinity
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in the model and negative values indicate higher salinity in the data. The structure

of the differences is similar to temperature, although the subsurface structure of

salinity is more complicated. At the surface, the modeled salinity is higher than

the data. This overestimation persists to a depth of more than 100 m in salinity, as

opposed to only 50 m in temperature. As we see in Figure 3.12(e), which shows the

salinity measurements at Station Aloha, salinity has a subsurface maximum, and

then decreases with depth. This subsurface maximum is shallower in the model

than in the data. Below the subsurface maximum, modeled salinity is consistently

lower than measured salinity, particularly from about 200 to 300 m depth. Al-

though this basic structure persists in all estimates throughout the time series, its

magnitude changes. During 1998, the difference between modeled and measured

salinity in the top 100 m increases markedly. We can see from the raw data in Fig-

ure 3.12(e) that measured salinity increased at this time, and the difference plots

indicate that in all four model estimates, the model salinity increased by more.

After this shift, the negative surface bias dominates the difference figures, and the

bias in the thermocline weakens. The structure of the differences is the same in all

four estimates, but the magnitudes are smallest in the WEIGHTED estimate.

The differences between estimated and measured temperature as a func-

tion of depth are shown in Figures 3.13(a) and 3.13(c). In Figure 3.13(a), which

shows the mean difference of modeled minus observed temperature, we see that

while all solutions overestimated surface temperature, the WEIGHTED model is,

on average, the closest. However, within 50 m of the surface, all four solutions

become cooler than the data. Below the surface, the NOSAT estimate has the

lowest bias throughout the depth range. Below about 200 m, the WEIGHTED

estimate is biased lower than any of the other estimates. WEIGHTED underes-

timates temperature by as much as 1.5◦ at 250 m depth. The NOINSITU and

STANDARD model estimates are similar at all depths, with NOINSITU slightly

better than STANDARD. However, with the mean removed, the RMS differences

between the data and the WEIGHTED model estimate are smaller than those of
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Figure 3.13: (a) Mean difference between model estimated temperature and mea-
sured temperature at Station Aloha as a function of depth, for each of the four
experiments. (b) Same as (a), for salinity. (c) RMS difference between model-
estimated temperature anomaly and measured temperature anomaly at Station
Aloha as a function of depth. (d) Same as (c), for salinity.
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any of the other estimates, for the full depth range shown (Figure 3.13(c)). At the

surface, the NOSAT estimate has the highest RMS difference, but below 200 m,

the NOINSITU estimate is the least accurate. This indicates that when the bias is

removed, the WEIGHTED experiment provides the model temperature estimate

with the time evolution most similar to the measured profile.

Mean and RMS differences between modeled and observed salinity as a

function of depth are shown in Figures 3.13(b) and 3.13(d). In Figure 3.13(b),

the mean difference is clearly the smallest in the WEIGHTED model estimate at

the surface, where the other three solutions overestimate by more than 0.2 psu.

Below 100 m, though, all four model estimates behave similarly, underestimating

the salinity at around 200 m depth by about 0.2 psu and then estimating salinity

correctly below about 400 m. The only significant difference in the mean estimates

is the accuracy of the WEIGHTED estimate at the surface. Figure 3.13(d) shows

that the STANDARD model estimate has the smallest RMS difference from the

data at the surface, and that the STANDARD and WEIGHTED estimates are

nearly identical for the top 200 m. The WEIGHTED estimate has a slightly smaller

RMS than the STANDARD estimate from 200 m to 400 m. The NOINSITU

and NOSAT estimates have higher RMS differences than either of the other two

through the top 400 m. Below 400 m all four model estimates become nearly

indistinguishable. This confirms that while there is some bias in the WEIGHTED

estimate, its simulation of the time evolution of salinity is at least as accurate and

often more accurate than any of the other estimates.

3.4.2 Ocean Station Papa

Another independent time series has been recorded in the northeastern

Pacific Ocean at 50◦N, 145◦W (Whitney and Freeland, 1999). This station, known

as Ocean Station Papa (OSP), was originally established in 1949. During the time

period spanned by the model estimates, measurements were taken approximately

3-6 times per year. While this is slightly less frequent than Station Aloha, there



68

.

1992199419961998200020022004

100

200

300

400

500

D
ep

th
 (

m
)

(a) STANDARD − Data

−2

−1

0

1

2

1992199419961998200020022004

100

200

300

400

500

D
ep

th
 (

m
)

(b) NOINSITU − Data

−2

−1

0

1

2

1992199419961998200020022004

100

200

300

400

500

D
ep

th
 (

m
)

(c) NOSAT − Data

−2

−1

0

1

2

1992199419961998200020022004

100

200

300

400

500

D
ep

th
 (

m
)

(d) WEIGHTED − Data

−2

−1

0

1

2

1992199419961998200020022004

100

200

300

400

500

D
ep

th
 (

m
)

(e) Data

4

6

8

10

12

Figure 3.14: (a)-(d) Temperature difference in the top 500 m between model esti-
mate and data (model minus data) at OSP, for each of the four estimates. (e) The
temperature time series at OSP. All units are ◦C.
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Figure 3.15: (a)-(d) Salinity difference in the top 500 m between model estimate
and data (model minus data) at OSP, for each of the four estimates. (e) The
salinity time series at OSP. All units are psu.
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Figure 3.16: (a) Mean difference between model estimated temperature and mea-
sured temperature at OSP as a function of depth, for each of the four experiments.
(b) Same as (a), for salinity. (c) RMS difference between model-estimated temper-
ature anomaly and measured temperature anomaly at OSP as a function of depth.
(d) Same as (c), for salinity.
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are still a significant number of profiles for comparison with the model output.

The time evolution of the difference between data and model tempera-

tures at OSP is shown in Figure 3.14 for each of the model estimates. As for

Station Aloha, the quantity shown is model minus data, so positive values indicate

higher temperatures in the model and negative values indicate higher temperatures

in the data. All four solutions underestimate the surface temperature throughout

the time series, by as much as three degrees at certain points. Starting in about

1996, observed temperatures between 100 and 300 m depth are significantly cooler

than the model estimates. Panel (e) shows that observed temperatures are not

changing significantly, so these changes must come from a continual warming in

the model estimates. The warming deepens to almost 500 m by the end of the

time series, reaching magnitudes of up to two degrees in all four model estimates.

The structure of the differences is the same in all four estimates, with the main

difference being that both the underestimation at the surface and the subsurface

warming have smaller magnitude in the WEIGHTED estimate.

The time evolution of modeled minus observed salinity at OSP is shown

in panels (a)-(d) of Figure 3.15. The quantity shown is model minus data, so

positive values indicate higher salinity in the model and negative values indicate

higher salinity in the data. Figure 3.14(e) shows that salinity structure is simpler

here than at Station Aloha, with minimum values at the surface, a sharp halocline

just below 100 m, and increasing salinity below that point. The main feature

of the difference plots is a band of much higher modeled than measured salinity

at about 100 m depth. This indicates that the halocline is deeper in the model

estimates than in the data. The bias introduced by this difference in halocline

structure can reach more than 0.6 psu. This systematic bias in all four estimates

indicates that a problem with the mixing is leading to too smooth a halocline.

Differences at both shallower and deeper levels than this feature are generally

of much smaller magnitude, although the magnitude of the overestimation by the

NOINSITU estimate of surface salinity after 2000 is close. In general, the structure
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of differences is the same in magnitude and sign in all four model estimates.

Comparisons between modeled and measured temperature and salinity

as a function of depth at OSP are shown in Figure 3.16. Figure 3.16(a) shows the

mean difference between modeled and observed temperature. The WEIGHTED

model only overestimates the mean by a maximum of 0.25 degrees in the top

100 m, which is significantly less than the other three estimates. Below 100 m,

the four model estimates have similar structure. Figure 3.16(c) shows that the

RMS difference between model and data is smallest for the WEIGHTED estimate

everywhere below 100 m. In the top 100 m, the NOSAT estimate is the worst,

while below that the NOINSITU estimate is the farthest from the measurements.

In salinity, Figure 3.16(b) demonstrates again that the only significant difference is

the incorrect halocline structure. The effect is slightly smaller in the WEIGHTED

estimate, a result balanced by a slight overestimation of salinity just below the

halocline, when all three of the other estimates match the mean salinity closely.

Figure 3.16(d) shows that the RMS differences from the data are nearly identical,

except that the NOINSITU estimate is somewhat less accurate in the top 150 m.

An important aspect of this comparison is the contrast with the compar-

ison with the Station Aloha profiles. The surface temperature biases are of the

opposite sign in the two locations. This indicates that rather than a large-scale

consistent bias, the differences between model estimates and measurements are

location-specific. However, at both stations, the WEIGHTED model provided the

most accurate overall estimate of temperature and salinity.

3.5 Comparison with Global Estimate

Of the four experiments described in this work, the WEIGHTED esti-

mate produces the best results when compared with assimilated data as well as

independent data. However, similar methods of data assimilation have produced

global, converged solutions, such as the ECCO-GODAE solution used for bound-
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Table 3.2: Normalized costs of the assimilated datasets, for the WEIGHTED re-
gional model and ECCO-GODAE model.

WEIGHTED ECCO-GODAE
(iteration 30) (iteration 177)

CTD T 2.29 3.05
CTD S 1.27 1.63
Argo T 2.99 4.26
Argo S 1.78 1.99
XBT 3.25 4.26
SSH (altimetric height) 2.52 1.32
SST (Reynolds) 1.60 2.01
SSS 1.83 2.40
SST (TMI) 1.58 1.89

ary conditions. It is important to determine how our estimate compares with these

other solutions.

3.5.1 Model-Data Misfits

One metric for comparison between the ECCO-GODAE solution to the

estimate from the WEIGHTED regional model is the normalized cost. In order

for these changes to be directly comparable, the normalization uses prior variances

from the STANDARD experiment. Costs for the ECCO-GODAE model are limited

to the North Pacific region. Thus differences in normalized costs are only due to

differences in the model-data misfit. These costs are listed in Table3.2.

For almost all data, the WEIGHTED estimate has lower costs than the

ECCO-GODAE estimate. There are various reasons for the differences. First, the

WEIGHTED estimate benefits from increased vertical resolution. Additionally, a

regional model has an advantage in that the assimilation will focus on features

specific to the region of interest. That is, in a global model, errors or misfits in

the Antarctic Circumpolar Current might dominate the assimilation simply as a

result of the magnitude of the signals in that region, with misfits in the Kuroshio

having less impact on the final estimate. In the North Pacific regional model,
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the Kuroshio itself is the largest feature, and therefore misfits and changes in

that region have a significant impact on the final estimate. However, the most

significant difference between the two estimates is the increased weight on the

subsurface data in the WEIGHTED experiment. It is clear that this change has

improved the model’s estimation of subsurface data, as well as most components

of surface data. From the difference in SSH cost between the two estimates, it

is evident that the improvement in the match to the subsurface structure is not

without cost to the surface data. While it is higher than the corresponding value

for the ECCO-GODAE estimate, the cost of SSH is not unreasonably high. The

other surface fields of SST and SSS have lower normalized costs in the WEIGHTED

estimate than in the ECCO-GODAE estimate. It is also important to note that as

was previously mentioned, the WEIGHTED model is not fully converged. Further

iterations are expected to reduce costs of all model-data misfits and provide a more

accurate final solution. The preliminary results presented here are only intended

to emphasize the importance of using the available subsurface data to their full

potential, rather than using such large error bars that they have only minimal

effects on the final state estimate produced by the model.

Maps of RMSD of heat content anomaly and SSH anomaly provide an-

other comparison between the WEIGHTED and ECCO-GODAE estimates (Fig-

ure 3.17). The first column displays RMSD between XBT-derived heat content

anomaly and model-estimated heat content anomaly. Panel (a) shows the result

from the WEIGHTED estimate and panel (c) the ECCO-GODAE estimate. Panel

(e) shows the difference, ECCO-GODAE minus WEIGHTED. Positive (red) val-

ues indicate that ECCO-GODAE has a higher RMS difference, and thus that

the WEIGHTED estimate is more accurate. In much of the region, and partic-

ularly in the Kuroshio region, the WEIGHTED RMSD is lower than that of the

ECCO-GODAE estimate. This implies that the WEIGHTED experiment pro-

vides a more accurate estimate of heat content anomaly as measured by XBTs.

The second column of Figure 3.17 shows RMSD between measured and modeled
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.

Figure 3.17: (a) RMS differences between WEIGHTED estimate of heat content
and XBT-derived heat content; (b) Same as (a), for SSH instead of heat content;
(c) Same as (a), for ECCO-GODAE instead of WEIGHTED; (d) Same as (a), for
ECCO-GODAE SSH instead of WEIGHTED heat content; (e) (c) minus (a); (f)
(d) minus (b). Heat content units are joules, SSH units are cm.
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SSH anomaly. Panel (b) shows the WEIGHTED RMSD, panel (d) shows the

ECCO-GODAE RMSD, and panel (f) shows the difference, ECCO-GODAE mi-

nus WEIGHTED. In this case the map is dominated by negative (blue) values,

indicating that WEIGHTED estimates of SSH anomaly are less accurate than

ECCO-GODAE estimates almost everywhere. This confirms what was suggested

in Table 3.2 by the higher normalized cost of SSH. However, the RMS differences

between the WEIGHTED estimate and the data are still not unreasonable, and

with more iterations and better convergence, the accuracy of this estimate will

continue to improve.

3.5.2 Surface Forcing Adjustments

Through the adjoint method, the WEIGHTED state estimate has reduced

its model-data misfits such that it now matches much of the data more accurately

than the ECCO-GODAE state estimate. These improvements have been achieved

in a dynamically consistent way by adjusting the fluxes of heat, freshwater, and

momentum imparted by the surface forcing. Since both the WEIGHTED and the

ECCO-GODAE estimates were initially forced by NCEP reanalysis fields, their

adjustments can be compared easily. Although the adjustments are made at two-

day intervals, only monthly means of forcing are available for the ECCO-GODAE

solution, so the comparisons are made between monthly adjustments.

The normalized costs for each of the four forcing terms are listed in Ta-

ble 3.3 for both of the estimates. As before, prior variances from the STANDARD

model are used for the normalization, and the calculation for the ECCO-GODAE

estimate is restricted to the North Pacific region. In this case, all results are sig-

nificantly less than one, indicating that the adjustments made to the forcing terms

are, on average, much smaller than the assumed prior errors.

The first two terms in Table 3.3 are for zonal and meridional wind stress

adjustments. For these parameters, normalized costs of the adjustments made by

the WEIGHTED and ECCO-GODAE estimates are similar, indicating that the
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Table 3.3: Normalized costs of the adjustments to the surface forcing, for the
WEIGHTED regional estimate and ECCO-GODAE estimate.

WEIGHTED ECCO-GODAE
Zonal Wind Stress 0.0924 0.0606
Meridional Wind Stress 0.0395 0.0278
Heat Flux 0.127 0.211
Freshwater Flux 0.0102 0.107

.

Figure 3.18: The mean adjustments to the zonal and meridional wind stress for
the ECCO-GODAE and WEIGHTED model solutions. Units are N/m2.
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changes made to these parameters are of the same order of magnitude. It is im-

portant to ensure that changes made to these parameters are reasonable in spatial

structure as well. The mean adjustments to the zonal and meridional wind stress

from the WEIGHTED and ECCO-GODAE estimates are shown in Figure 3.18.

The main signal in zonal wind stress forcing is a strengthening of the major wind

systems: the trades, near the equator, and the westerlies in the northern Pacific.

Prior research indicates that the wind fields of the NCEP reanalysis are biased low

relative to shipboard wind measurements (Smith et al., 2001). This supports the

adjustments evident in both model solutions. In meridional wind stress, there are

more differences between the two solutions. In both maps, adjustments are con-

centrated north of 45◦N, except for a feature at the equator on the east side of the

basin. The WEIGHTED estimate has an increase in northward wind stress near

the equator on the east side of the basin, while the ECCO-GODAE estimate has a

much weaker increase at that location, countered by a negative signal farther east.

Both solutions have their strongest adjustments in the north part of the basin, but

in the ECCO-GODAE estimate the dominant feature is a decrease in meridional

wind stress in the Bering Sea, while in the WEIGHTED estimate there is a strong

positive adjustment just east of the Okhotsk Sea. Despite these differences in

magnitude, the pattern of strong adjustments in the northwest region of the basin

is the same in both estimates. As noted, general patterns of zonal wind stress

adjustments are also the same in both estimates. This supports the hypothesis

that although the WEIGHTED estimate is not fully converged, the adjustments

made to the surface forcing by the assimilation thus far are reasonable.

The third and fourth terms in Table 3.3 are the normalized costs of heat

and freshwater fluxes. In both cases, the ECCO-GODAE estimate has made

much stronger adjustments than the WEIGHTED estimates. In the heat flux,

the ECCO-GODAE normalized cost is twice the WEIGHTED normalized cost. In

freshwater flux the difference is close to an order of magnitude. Maps of the mean

adjustments, seen in Figure 3.19, confirm this conclusion.
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.

Figure 3.19: The mean adjustments to the heat and freshwater fluxes, for the
ECCO-GODAE and WEIGHTED model solutions. Heat flux units are W/m2,
freshwater flux is m/s.
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First we consider the heat flux adjustments. Overall, both estimates in-

dicate that a net decrease in heat flux, equivalent to an increase in heat absorption

and storage by the ocean, is a necessary adjustment to the forcing field. In Fig-

ure 3.19(b), the WEIGHTED estimate has some of the same features seen in the

ECCO-GODAE estimate (Figure 3.19(a)), particularly a decrease in surface flux

(more heat into the ocean) in the western North Pacific just south of the Kuroshio

and an increase in surface flux (more heat into the atmosphere) north of this region.

The strongest feature in the ECCO-GODAE mean heat flux adjustment is the re-

gion of strong increased heat flux (less heat into the ocean) over the Pacific cold

tongue region. This feature is completely absent from the WEIGHTED estimate.

This could be a result of a less-converged result, or a fundamental difference in the

solutions. More iterations are necessary to be certain. Overall, the comparison

indicates that thus far, the heat flux results are reasonable.

Freshwater flux adjustments are also shown in Figure 3.19. In total, both

WEIGHTED and ECCO-GODAE indicate that a net flux of freshwater into the

ocean (precipitation and/or runoff) is necessary. Spatially, some basic features

are similar, such as an increase in evaporation (negative) south of the equator

and an increase in precipitation (positive) north of the equator. There are also

distinct differences between the estimates. The ECCO-GODAE estimate has a

strong feature in the North Pacific near 45◦N indicating decreased precipitation.

A similar feature is present in the WEIGHTED estimate, but is much weaker. The

ECCO-GODAE adjustments also indicate increased precipitation in the tropics in

the west, but this feature is entirely missing in the WEIGHTED result. In general,

the ECCO-GODAE solution has much more structure on small spatial scales than

the WEIGHTED estimate. As with heat flux, this could indicate fundamentally

different results, or it could be a sign that the solution is not yet fully converged.

More iterations are necessary, but the similarities between the two results are

encouraging.
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3.6 Discussion and Conclusions

The results of state estimation are dependent on many factors, including

the model resolution, the data being assimilated, and the error bars assigned to

both the data used as constraints and the control variables being adjusted to

improve the model’s skill in simulating the observations. The purpose of this study

was to compare the influence of surface observations as constraints on ocean state

estimates to that of subsurface observations. To that end, three model experiments

were constrained by subsets of the available data to analyze the relative importance

of those data to the solution. The control experiment (STANDARD) assimilated

all available data, a second experiment assimilated only subsurface data (NOSAT),

and a third assimilated only surface data (NOINSITU).

Comparisons between the resulting state estimates demonstrate the im-

portance of using both surface and subsurface data to obtain the best possible es-

timate of the time-varying state. The NOINSITU experiment matches SSH more

accurately than the STANDARD estimate, but is deficient in estimating heat con-

tent. The NOSAT experiment, conversely, is accurate in its heat content estimate

but highly inaccurate in estimation of SSH. In comparisons with independent data

at Station Aloha, the NOSAT estimate had a significant negative temperature

bias relative to the data, and the NOINSITU estimate had high RMS differences

indicating inaccurate representation of subsurface variability in both temperature

and salinity. At OSP, the NOINSITU estimate again did poorly at representing

subsurface variability. In general, the STANDARD experiment provided a state

estimate that was consistently more accurate than both NOSAT and NOINSITU,

demonstrating the importance of using all available data.

To determine the model’s sensitivity to the weights used on the constrain-

ing data, a fourth experiment (WEIGHTED) was performed. Both the STAN-

DARD and WEIGHTED experiments were constrained by all available data, but

with different weighting on the subsurface observations. Overall, the WEIGHTED
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estimate provides a more accurate solution. In total cost, the simplest measure of

overall accuracy, the percentage decrease was greatest for the WEIGHTED esti-

mate. In estimated heat content, the WEIGHTED solution had the lowest RMSD

and the highest correlation with the heat content calculated from optimally inter-

polated XBT data. In comparisons with independent data at Station Aloha and

OSP, WEIGHTED temperature and salinity estimates were generally less biased,

particularly in the top 100 m, and had lower RMS differences at depth. The EOFs

of SST and SSH from the WEIGHTED estimate captured the main signals seen

in the data. It is important to note that the WEIGHTED solution is less accurate

than the STANDARD solution when comparing estimates of SSH anomaly, but

overall, the increased weights on the subsurface data in the WEIGHTED experi-

ment have led to a more accurate model solution.

A comparison of the WEIGHTED estimate with a global, data-assimilating

model solution (ECCO-GODAE) reinforced the conclusion that the increased weights

on the subsurface data have improved the results. Again, the only shortcoming of

the WEIGHTED solution is in the estimation of SSH, which is expected to improve

with further iterations. The comparison with the global estimate also demon-

strated that adjustments to control parameters from the WEIGHTED experiment

have similar patterns to those from the ECCO-GODAE estimate. Whether dif-

ferences are true results of the model or are indicators of a lack of convergence

remains to be seen, but initial results are encouraging.

An important point to remember, which was mentioned briefly earlier, is

possible biases within the datasets themselves. Recent research has indicated that

there may be systematic, time-varying biases in XBT measurements as a result

of changes in instrumentation (Gouretski and Koltermann, 2007). The error esti-

mates used to determine weights include an assumption that error is uncorrelated,

but systematic bias is highly correlated and cannot be accounted for in this way.

Additionally, such errors result in inconsistencies between the various datasets. A

time-varying change in XBT bias, for example, would indicate variability in dy-
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namic height that would not be reflected in altimetric height variability, not to

mention disagreement with unbiased CTD or Argo temperature measurements.

Currently, there is ongoing research in determining a correction for the possible

systematic errors in the XBT dataset (Wijffels et al.). Such a correction will pro-

vide a more accurate dataset and will in turn lead to an improved ocean state

estimate.

This analysis was not intended to determine the optimal weights for as-

similation of subsurface data. The goal was to determine if the subsurface obser-

vations could be matched more accurately without a loss of realism in the overall

solution, which might be expected if the aliasing of mesoscale noise into the esti-

mate were too significant. The results of the WEIGHTED experiment indicate that

some increase in the weights when assimilating these data provides an improved

final product, with increased accuracy in the estimation of subsurface structure,

as well as appropriate evolution of forcing adjustments. The weights used in the

WEIGHTED experiment, when applied to a corrected XBT dataset and with fur-

ther iterations for convergence, could provide an improved ocean state estimate

for analysis of the dynamics of the North Pacific between 1992 and 2004.

Chapter 3 will be submitted for publication with minor modifications as

Douglass, E., D. Roemmich, and D. Stammer, Data-sensitivity of the ECCO state

estimate in a regional setting. The dissertation author was the primary investigator

and author of this paper.
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Interannual Variability in North

Pacific Heat and Freshwater

Budgets

4.1 Introduction

The transport of heat and freshwater by the large-scale ocean circulation

is a critical component in the global climate system. A better understanding of

the magnitude and frequency of variability in the ocean is essential to determining

its role in the climate and ecosystems we live in. Even synoptic estimates of heat

and freshwater transport are difficult to obtain, and the details of variability on

longer time scales remain to be explored. However, as data accumulate and global

and regional-scale models are developed and refined, estimates of mean transports

are improving and variability on a range of temporal and spatial scales is being

quantified.

The heat transport in the Pacific Ocean has been the subject of much

research. The magnitude of this component of the global heat budget has been

estimated both directly from hydrographic transects and indirectly from basin

integrals of surface fluxes. Early hydrographic estimates left even the sign of this

84
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Figure 4.1: Area of study. Contours indicate the mean transport streamfunction in
the top 800 m as it results from the ECCO state estimate. The mean track of line
PX37 is shown, as is the grid-box following approximate track used to eliminate
interpolation issues in the model.
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transport in dispute, but more recent work has determined that heat is transported

poleward, from the equator where heating takes place to regions where heat is

radiated to space. Recent direct estimates of heat transport into the North Pacific

from hydrography, including those from Bryden et al. (1991), Roemmich et al.

(2001), and Ganachaud and Wunsch (2003) have converged between 0.5 and 1.0

pW. Air-sea estimates, based on the concept that heat transported poleward must

be radiated to space, range from 0.8 to 1.03 PW depending on the surface flux

product used (from Roemmich et al. (2001)).

Freshwater transport is also important, but salinity has been measured

less often and with less coverage than temperature. As a result, large-scale esti-

mates of freshwater transport are scarce. Ganachaud and Wunsch (2003) use hy-

drographic sections from the World Ocean Circulation Experiment (WOCE) and

various surface climatologies to calculate positive freshwater flux into the North

Pacific, but caution that uncertainty is very large. Precipitation in the subpolar

regions and evaporation in the subtropical regions combine in such a way that even

the sign of freshwater flux into the North Pacific is not well known.

In this work, a long time series of high-resolution expendable bathyther-

mograph (XBT) transects and a regional ocean state estimate from a data-assimilating

numerical model are used to estimate the time-mean and variability of heat and

freshwater transport in the North Pacific between 1992 and 2004. The XBT tran-

sect, at approximately 24◦N, provides a southern boundary to a closed region for

which budgets can be calculated. The advective component of transport can be

estimated from the geostrophic velocity, temperature, and salinity available from

hydrographic transects, as well as from the output of the model. The model also

provides heat and freshwater flux fields which comprise the surface component

of the budget. For both heat and freshwater, the sum of the advective and sur-

face components provides an estimate of the time-varying storage in the region

north of the XBT transect. Broadscale XBT estimates of heat content provide an

independent check for the heat storage component.
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The structure of the paper is as follows. Section 2 provides a brief de-

scription of the model and the data used in this analysis. Section 3 analyzes the

volume transport in the closed region of the North Pacific. Section 4 provides a

complete heat budget for that region, and section 5 provides the freshwater bud-

get. Section 6 analyzes some aspects of forcing of the variability, and section 7 has

discussions and conclusions.

4.2 Model and Data

4.2.1 Model

This analysis uses output from a data-assimilating model developed by

the Estimating the Climate and Circulating of the Ocean (ECCO) Consortium

(see Stammer 2002a). This model has been developed to provide dynamically con-

sistent estimates of time-varying ocean circulation by using the adjoint method to

constrain the MIT general circulation model with ocean data. The model runs for-

ward to estimate the time-varying ocean state, and then calculates a cost function

from the misfit between the resulting state estimate and the constraining data. The

adjoint of the model is then used to obtain the gradient of this cost function with

respect to the model variables. A standard descent algorithm uses these gradients

to produce adjustments to the surface fluxes of heat, freshwater, and momentum to

bring the model into closer agreement with the data while maintaining dynamical

consistency. The process is repeated iteratively to minimize the costfunction. This

approach to data assimilation is explained in further detail in Stammer (2002b).

To obtain the state estimate used in this analysis, the ECCO model was

used in a regional setting in the Pacific Ocean north of 26◦S. The estimate was

performed for the time period from 1992-2004. Constraining data include hydrog-

raphy, satellite altimetry, sea surface temperature and salinity, profile data from

floats, drifter-derived velocities, and winds from scatterometry. The state estimate

used in this analysis results from assimilating all subsurface data with increased
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weights relative to the surface data, to increase their relative influence on the solu-

tion. A detailed analysis of the weighting scheme used here and comparison with

other state estimates is presented in Chapter 3 of this dissertation. The model has

horizontal resolution of 1◦ in latitude and longitude and 50 vertical levels. The

initial surface forcing used was provided by the National Center for Environmental

Prediction (NCEP). Output includes monthly estimates of temperature, salinity,

and the three components of velocity (zonal, meridional, vertical) and daily es-

timates of sea surface height, as well as the adjustments to the surface forcing

necessary for a dynamically consistent product.

As noted in Chapter 3, there are some inconsistencies between the data

sets in the state estimate as performed thus far. Specifically, a time-varying bias

due to changes in XBT instrumentation has yet to be removed. When such cor-

rections become available, this analysis will be refined.

4.2.2 XBT Data

The data used in the present work consist mainly of temperature pro-

files from XBT measurements along ship track PX37 (Figure 4.1). Collection of

temperature profiles from a cargo ship along this track from San Francisco, CA,

to Honolulu, HI, to Guam, to Hong Kong began in 1991 and continues to the

present. Cruises take place approximately every three months; between 1992 and

2004, the time period of interest, there were 49 cruises. These measurements have

high along-track spatial resolution, ranging from 50 km in the open ocean to 10 km

near shallow topography or interesting features. The probes measure temperature

to a nominal depth of 800 m. In addition, occasional expendable conductivity-

temperature-depth (XCTD) probes and, in recent years, profiles from Argo floats

provide supplemental salinity data. From temperature and salinity, density and

thus relative geostrophic velocity can be calculated. The process used to estimate

density profiles and determine geostrophic velocities is described in Gilson et al.

(1998).
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4.3 Volume Transport

From the XBT dataset, the geostrophic transport relative to 800 m can

be determined. For comparison with the data, geostrophic transport is calculated

from the model output as well. Model temperature and salinity are interpolated

spatially to the locations of XBT casts. From these estimates of temperature and

salinity, density is determined. Along-track density gradients are used to calculate

cross-track geostrophic velocities, and thus, geostrophic transports. Estimates of

geostrophic transport across PX37 from the model and from XBT data are shown

in Figure 4.2(a). For further clarification of the horizontal structure of these trans-

ports, the transect is divided into three segments, using the ports of call as natural

break points. The western segment spans the distance from Guam and Hong

Kong, and includes the Kuroshio. The middle segment is between Guam and

Honolulu, and most transport across this segment is zonal flow in the subtropical

gyre. Transport across the eastern segment, between Honolulu and San Francisco,

includes large-scale gyre circulation and the California Current along the eastern

boundary. All of these features are evident in the mean streamfunction contours

on Figure 4.1. Transports across each section are shown in Figure 4.2(b)-(d). It is

clear that while there are discrepancies between the total geostrophic transport es-

timated by the model and that estimated by XBTs, the main features of variability

in each section are replicated well. This is confirmed quantitatively by the correla-

tion coefficients between the time series. The correlation between the geostrophic

estimates of transport across the full track is only 0.21. However, a close look at

the time series indicates that many of the main features are replicated by both

model and data estimates. Both time series show a peak in 1995, a subsequent

peak in 1998, and lower variability from 2001 to the end of the time series. How-

ever, the XBT estimate is biased high by approximately 5 Sv from 1993-1997 and

from 1998 to the end of the time series. This time-varying bias is the reason for

the low correlation coefficient. When only the section from Hong Kong to Guam



90

is considered, the correlation increases to 0.76. It is also evident that part of the

bias seen in the full section is a result of a high bias in XBT transport in this

section, especially in the first few years. The section between Guam and Honolulu

is the most highly correlated at 0.86. This section also has the highest variabil-

ity, with transport as high as 10 Sv northward in the data, but dropping to net

southward transport from 1999-2002. This is another section in which the data is

biased high relative to the model, almost throughout the time series. In the final

section, between Honolulu and San Francisco, the data and model estimates have

a correlation of 0.51. This section shows the least bias. Both at the beginning and

end of the time series, there is a signal in which the southward transport estimated

by the data increases sharply in the data, but not in the model. However, both of

these signals are paralleled by an increase in northward transport between Guam

and Honolulu, indicating that this could be gyre transport that flowed south east

of Hawaii and then turned west (thus crossing both transects) in the data. This

could have occurred on a spatial or temporal scale unresolvable in the 1◦, monthly

model output, such that there was no significant change in the structure of model

transport. This is another indication of the differences between high-resolution

data and a 1◦ model. Also shown in Figure 4.2 for comparison with geostrophic

estimates is the transport as calculated from the model velocity fields, relative to

no motion at 800 m and with Ekman transport removed. In each case, the model

geostrophic transport is nearly identical to the model transport from the velocity

fields.

Geostrophic velocities are calculated relative to a reference velocity at a

level of known motion. In this analysis, the reference level is chosen to be 800 m,

the nominal depth of the XBT casts, and reference velocity is zero. The model

can be used to assist in analysis of this choice. The volume of transport in the top

800 m that would result from the model’s velocity at 800 m is shown in Figure

4.3. The mean transport is 0.70±1.31 Sv. Average transport is northward, but

the variability is so large that the mean transport is statistically equivalent to
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Figure 4.2: Transport across the full track and across each of the geographical
sections. Four estimates of transport are shown: geostrophic transport from the
XBT data, the full time series of geostrophic transport from the model, geostrophic
transport from the model subsampled to XBT cruise times, and transport from
the model velocity fields referenced to zero at 800 m and with Ekman transport
subtracted.
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Figure 4.3: Total transport in the top 800 m when the model’s velocity at 800 m
is used as a reference velocity.

zero. With this in mind, the reference velocity of zero is retained for estimates of

geostrophic velocity from the XBT data.

Geostrophic transport is only one part of the full volume budget. Ekman

transport is also a significant component of meridional transport in the subtropi-

cal North Pacific. This component is determined from the curl of the wind stress.

Ekman transports calculated using wind stress estimates from NCEP and from

ECCO are shown in figure 4.4. This demonstrates both the magnitude of the

adjustments made by the model to the wind stress, and the magnitude and vari-

ability of Ekman transport in this region during the time period of interest. It is

important to note that although the interannual variability in Ekman transport is

small compared to the higher frequency variability, it still has a range of almost

10 Sverdrups, comparable to interannual variability in geostrophic transport.

To examine the full depth volume budget from the model for the region

north of PX37, model velocities were interpolated to the exact locations of XBT

casts. However, because of the way deep topography is handled in the model, this
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Figure 4.4: Total Ekman transport into the North Pacific across PX37, estimated
from NCEP wind stress and model wind stress. Thin solid line is the unsmoothed
model transport, thin dashed line is unsmoothed NCEP transport, and the thick
lines are smoothed over 12 months.

interpolation created large, time-varying imbalances in the volume budget (Figure

4.5). This is an artifact of the construction of the model rather than a real feature

of the circulation. To eliminate interpolation, a track approximating the mean

ship track but following the edge of model grid boxes was used for estimates of

volume transports. This track is shown in Figure 4.1, and the full depth volume

transport across this approximate track is shown in Figure 4.5. It is clear that

the full-depth volume budget is adequately balanced for calculation of heat and

freshwater transport. This track is used for all calculations involving the model.

Changes in the cruise track cause further inconsistencies in the volume

balance. In 1999, the endpoint of the cruise track changed from Taiwan to Hong

Kong. The cruises after this change thus include transport west of Taiwan, in

the Taiwan Strait. To calculate a full budget, all transport into the North Pacific

must be included. In order to achieve this balance and alleviate inconsistencies

between the cruises, the model was used to calculate volume, temperature, and
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Figure 4.5: Difference between volume transport across exact XBT track from
model, and volume transport across approximate track following gridbox edges to
eliminate interpolation.

salt transport west of Taiwan. These results were then added to the data for

cruises ending in Taiwan. The model’s mean volume transport through the strait

was 2.4±1.1 Sv, comparable to results from studies such as Wang et al. (2003).

The variability is mainly due to a strong seasonal cycle with a maximum in the

summer and a minimum in the winter. Due to the high temperatures in this region,

temperature transport through the strait is significant but strongly variable, at

0.15±0.17 pW. Salt transport through the strait is an insignificant component of

the freshwater budget.

A final issue that must be taken into account when comparing model and

data estimates is temporal aliasing. The model produces monthly output, but

cruises only occur approximately every three months. In order to estimate the

effects of aliasing, when comparing a model time series with the data, the model

estimate was subsampled at the times when cruises occurred. Both the subsampled

model output and the data were interpolated to obtain monthly estimates, and

then smoothed over 12 months to remove annual and higher frequency variability.
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In most cases, this processing had only minor effects on the shape of the time

series. As an example, both the subsampled and interpolated and the full time

series of geostrophic transport are shown in Figure 2.4. It is evident that while

both estimates preserve the main character and variability of the transport, the

differences in transport can reach a Sverdrup or more. To ensure that the results are

directly comparable, subsampled and interpolated time series of model estimates

are used in all comparisons with XBT data.

4.4 Heat Budget

A heat budget can be calculated for the Pacific Ocean north of PX37. Fig-

ure 4.6 shows estimates from the data and the model of advective heat transport,

surface heat flux, and heat storage in the region. Each component is discussed

below.

4.4.1 Advective Component

Advective heat transport is the product of volume of transport and the

temperature of that volume. Integrated across the full section, there is no net

volume transport, but if warm water transported northward is compensated with

cooler southward flow, net northward heat transport has occurred. For the model,

this calculation is straightforward, using the full depth temperature and velocity

fields. As shown in Figure 4.5, volume is balanced when the approximate track is

used. The model advective heat transport shown in the heat budget in Figure 4.6

is the full depth heat transport from the velocity fields.

Estimating advective heat transport from the data is slightly more compli-

cated. For this calculation, we distinguish between temperature transport, which

is the product of temperature times transport but which does not require a closed

region with no net volume transport, and heat transport. The heat transport

across the section can be calculated as the sum of geostrophic temperature trans-
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port, Ekman temperature transport, and a temperature transport whose volume

transport compensates for the other two components. Geostrophic temperature

transport in the top 800 m is calculated from the XBT information, using the

volume transport described previously. This transport, as shown in Figure 4.2,

is southward. Ekman transport, as shown in Figure 4.4, is northward across the

transect. For this analysis, we assume that Ekman transport occurs at the sur-

face temperature, an assumption that has been shown to introduce negligible error

into the calculation (Wijffels et al., 1994). When determining the sum of Ekman

and geostrophic components of temperature transport, difficulties arise as a result

of aliasing effects. If Ekman temperature transport is subsampled to the months

when XBT cruises occur, and then interpolated to obtain new monthly estimates

and smoothed to remove higher frequencies, discrepancies between the original

and subsampled time series are significant, as demonstrated in Figure 4.7. Ekman

temperature transport occur at the warmest temperatures, so small discrepancies

in volume are magnified by high temperature. In this case, the differences reach

magnitudes of up to 0.4 pW. This is due to aliasing of the high-frequency variabil-

ity evident in Figure 4.4. To avoid this issue, the XBT estimates of temperature

transports are interpolated to monthly values before the Ekman component, which

is a model product and therefore available in all months, is added. This aspect of

processing must also be replicated with the model estimates. Since Ekman veloc-

ity is incorporated as part of the model velocity fields, Ekman transport must be

calculated and removed prior to subsampling the estimate at XBT months, and

then added after interpolation. This ensures that the data and the model are being

processed in the same way, which is necessary for making comparisons.

To complete the estimate of advective heat transport from the data, the

volume must be balanced. The sum of Ekman transport and geostrophic trans-

port leaves a mean imbalance of 1.42±2.62 Sv. The model can be used to help

determine the best method to balance the volume. In terms of temperature trans-

port, there are two extremes for how the volume imbalance is compensated. On
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one hand, there could be a barotropic component of transport. If this were the

case, the compensating transport would occur throughout the water column, and

the net temperature transport would occur at the depth-averaged temperature.

The model estimate of depth-averaged temperature along PX37 is 2.9◦C. Alter-

natively, the compensating transport could be baroclinic, resulting from shear

below 800 m. In the extreme, if there were enough shear just below 800 m in

the warm western boundary current, the compensating transport would be at the

mean temperature of the Kuroshio. In the model, the mean temperature of the

Kuroshio transport is 12.8◦C; in the data, it is 13.8◦C. Although these two op-

tions offer a simplistic view of the velocity structure, applying them to the model

can provide some guidance as to how to balance volume in the data. To do this,

we calculate the model geostrophic transport relative to zero, as in Figure 4.2.

Adding Ekman transport gives us the residual volume to be balanced, and the

total heat transport is determined from the model by summing the geostrophic

temperature transport, the Ekman temperature transport, and the baroclinic or

barotropic volume-compensating temperature transport. The difference between

each of these estimates and the model’s full depth heat transport is shown in Figure

4.8. It is evident that neither estimate is perfect. However, on average, the amount

of temperature transport result from each is small, at -0.057±0.14 pW from the

baroclinic balance and 0.055±0.16 pW from the barotropic balance. The difference

is slight, but the barotropic version has a smaller average, and we therefore choose

that method of balancing the volume. Thus, the data-estimated advective heat

transport shown in Figure 4.6 is the sum of the geostrophic temperature transport,

the Ekman transport as estimated by the ECCO model, and a barotropic volume-

balancing component at the depth-integrated temperature of 2.9◦C at each time

step.

Heat is transported northward across PX37 into the North Pacific, as

demonstrated by positive estimates of advective heat transport from both the

model and the data in Figure 4.6. As with geostrophic transport, there are simi-
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Figure 4.8: The thick solid line shows the difference between the model estimate
of full depth heat transport, and the model estimate using geostrophic transport
relative to zero with a baroclinic assumption for volume balance. The dashed line
uses the barotropic assumption to balance the budget

larities between the model and data estimates of heat transport but they are sta-

tistically uncorrelated. Many of the discrepancies in heat transport coincide with

discrepancies in geostrophic transport, such as the high bias in the from 1993-1997

and again from late 1999 to the end of the time series. As with volume transport,

it is instructive to compare geographical subsections to determine the location of

the discrepancies. The temperature transport, including both geostrophic and Ek-

man components, across each of the three sections is shown in Figure 4.9. Model

and data estimates of temperature transport are highly correlated for each of the

three geographical sections. Correlation coefficients are 0.72, 0.88, and 0.79 for the

western, central, and eastern sections respectively. However, it is clear that north-

ward temperature transport in the data is much higher than that in the model

between Hong Kong and Guam, and that the southward temperature transport

estimated from the data between Honolulu and San Francisco is larger than the

model estimate as well. Noting the different scales of variability in the sections,

it is clear that the high bias between Hong Kong and Guam will dominate. This
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bias has the same structure as the volume differences between Guam and Hong

Kong. Additionally, it was noted in the previous sections that the data estimate of

mean temperature in the Kuroshio is higher than the model estimate, which would

contribute more to the high bias in the data. Although the temperature transport

between Guam and Honolulu has the largest magnitude, it does not seem to have

a particular bias, and probably does not contribute as much to the systematic

differences between the data and model estimates of advective heat transport.

The differences between model and data estimates of heat transport still

warrant further investigation. In particular, the data estimate of heat transport in-

creases throughout the time series, while the model estimate decreases. There are

several possible causes for this difference. One possibility is a change in the warm

northward Ekman transport compensated by cooler water in the subsurface layers,

which would lead to net heat transport northward. Because the same volume of

Ekman transport is used for both estimates, this would be visible as an increase

in observed surface temperature relative to model surface temperature. Another

possibility is that differences already noted in the magnitude of geostrophic trans-

port are magnified by differences in the temperature of the transport as well. The

evolution of the temperature anomaly along the transect, shown in Figure 4.10,

clarifies some of the issues at hand. For the full track and in each geographical

section, temperature was averaged both spatially and temporally to determine a

mean profile. At each time step, this mean profile was subtracted from a spatially

averaged profile, to determine the evolution of temperature anomaly as a function

of time and depth. The anomaly time series was smoothed over one year to remove

the annual cycle and higher frequency variability. The most significant signals are

not at the surface, implying that changes in Ekman temperature transport are not

to blame for the previously noted discrepancies in heat transport. A much more

significant and persistent signal is the warming in the thermocline throughout the

time series. This signal is present in the model but is much stronger in the data.

Around 1999, when the data estimate of advective heat transport deviates signif-
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Figure 4.10: Model and data-based estimates of the time evolution of temperature
anomaly as a function of depth, for the full track and for each of the geographical
sections.
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icantly from the model estimate, a strong warming signal is evident in the top

300 m between Hong Kong and Guam. Figure 4.9 confirms that at this time, the

temperature transport between Hong Kong and Guam is significantly higher than

the model estimate. Shortly after that signal, in around 2001, there is significant

warming of the thermocline between about 100 m and 300 m depth in the region

between Guam and Honolulu. This signal is significantly weaker in the model es-

timate. Figure 4.9 indicates that this discrepancy is not significant relative to the

size of the temperature transport until 2003, when the model seems to cool slightly

and the observed increase in thermocline temperature reaches its peak. There is

also an increase in data-estimated geostrophic transport at this point (Figure 4.2),

magnifying the excess of temperature transport in the data over the model. Be-

tween Honolulu and San Francisco, on the other hand, temperature transport is

southward, and is stronger in the data than the model (Figure 4.9), because mean

observed temperatures are warmer than those in the model. However, the magni-

tude of the variability in both the temperature anomaly and the volume transport

is much smaller in the east than that the rest of the transect, so the effect on the

total heat transport is minimal.

Another perspective on advective heat transport can be obtained by ex-

amining the temperature structure of the mean volume transport. Figure 4.11

shows the temperature classes in which transport occurs, for the model and the

data. The model transports are calculated from the model velocity fields, while the

transports for the data are calculated from geostrophy. Ekman transports calcu-

lated from the wind field from the model are added to geostrophic estimates. The

figure also shows standard deviations. The structure of total heat transport is sim-

ple. Large volumes of the warmest water are transported north. This warm flow

is compensated with a deep return flow, at a broad range of cooler temperatures.

Most of the warm northward transport occurs between Guam and Honolulu, and

can be attributed to northward Ekman transport. Transport throughout the water

column between Guam and Honolulu is northward, which is not true of either of
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Figure 4.11: Temperature classes of volume transport, for the model and for data
(geostrophic plus ekman). Shown for the full transect and for each of the geo-
graphical sections.
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the other two regions. Transport in the warmest classes between Hong Kong and

Guam is generally northward but highly variable. Transport in cooler temperature

classes in this region is southward and somewhat more stable, but error bars are

still significant relative to the magnitude of the signal. Most transport between

Honolulu and San Francisco is consistently southward and cool, with error bars

that are small relative to the size of the signal, indicating relative stability in this

region.

4.4.2 Surface Flux

Surface heat flux is another component of the heat budget shown in Figure

4.6. Two estimates of surface flux are shown, one from NCEP and the other from

the model. In both estimates surface flux is negative, indicating that net heat is

radiated to the atmosphere from the ocean. The two estimates are similar, with

a correlation coefficient of 0.36. In the assimilation process used by the ECCO

model, surface heat flux is one of the “control variables” which is adjusted to reduce

the model-data misfit. NCEP fields provide the starting point for the model, so

the difference between the model and NCEP estimates of heat flux are indicative

of the magnitude of the changes made by the model. In this case, the model

adjustments have had only small effects on the variability of the surface flux. The

mean has changed significantly: the magnitude of heat radiated from the region

has decreased by 0.16 pW. Additionally, there is a trend of decreasing magnitude

in the model surface heat flux during the time series that is not seen in the NCEP

estimate. Spatially, the difference between the two heat fluxes is shown in Figure

4.12. Figure 4.12(a) shows the time mean NCEP heat flux. The sign convention in

this figure is consistent with the rest of this work, with positive numbers indicating

heat absorption by the ocean from the atmosphere. The main feature of heat flux

north of PX37 is the distinct radiation of heat from the Kuroshio region. In

the northeast Pacific, heat flux is weakly absorbed by the ocean. Figure 4.12(b)

shows the mean adjustments made by the model to the heat flux. These include a
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Figure 4.12: (a) Map of mean NCEP heat flux (b) Map of mean difference between
model heat flux and NCEP heat flux. Units are W/m2
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significant weakening of the radiation over the Kuroshio, countered by an increase

in radiation (decrease in absorption) farther north. From the heat budget, it is

clear that the decrease in radiation over the Kuroshio dominates the changes.

4.4.3 Storage

The final term of the heat budget is the heat storage. There are two

methods of estimating heat storage. First, as this is a budget for a closed region,

the storage must be equal to the sum of the advective and surface terms in the

model (method one). Second, storage can also be calculated as the time derivative

of heat content (method two). Both of these methods are applied to the model and

shown in Figure 4.6. That these two estimates of heat storage are well correlated

(correlation coefficient of 0.81) only implies that the model is self-consistent. The

differences between them arise because the storage implied from heat content is

derived using the full model time series, while the advective part of the other

estimate is subsampled and interpolated to match the XBT estimate. A more

instructive comparison is with the third estimate of heat storage. This estimate

is calculated from the time derivative of heat content anomaly estimated from a

combination of broadscale XBT data and satellite altimetric height (Willis et al.,

2004, hereafter WRC). There are notable differences between this estimate and

the estimates from the model. In particular, the model estimates are biased high.

The mean of the model estimate from method one is 0.21±0.24 pW, while that of

the model estimate from method two is 0.19±0.15 pW. Both of these indicate a

time mean increase in heat content. The WRC estimate, on the other hand, has

a time mean of 0.0035±0.14 pW. All three estimates have variability of the same

order of magnitude. Despite the bias, the correlation between the WRC estimate

and the model estimate from method one is 0.77, and that between the WRC and

the model estimate from method two is 0.72. These high correlations confirm that

the model’s estimate of the variability of the heat storage is accurate.

Taken as a whole, the heat budget analysis demonstrates the large in-



109

terannual variability in heat transport in the North Pacific. Variability of surface

heat flux is secondary to advective heat transport, which can vary by as much as

0.5 pW. These changes in advective heat transport result from changes in both

geostrophic volume transport and thermocline temperature structure. As the sum

of two variable components, heat storage is itself highly variable, with a range of

almost 0.7 pW. In general, changes seem to occur on a time scale of 2-4 years.

4.5 Freshwater Budget

Calculation of a budget for freshwater is less straightforward. Because

changes in salinity are small relative to changes in transport velocity, salt trans-

port is very highly correlated with volume transport. In order to separate the

salinity variability from the interannual changes in volume transport, an equiva-

lent freshwater flux was calculated. The concept is relatively simple. Volume is

being transported into and out of the region at all times. If the incoming transport

has a higher salinity than the outgoing transport, the net effect is an increase in

salt content in the region. If the outgoing transport contained the same amount

of salt as incoming transport, but with more freshwater added, resulting in lower

outgoing salinity, the effect on the salt content of the region would be the same:

increased salinity, due to exported freshwater. In essence, we assume that the

same amount of salt is entering and leaving the region, and import and export of

freshwater is responsible for the variation of salinity.

The equivalent freshwater transport can be calculated as follows. Volume

must be conserved, so incoming volume transport is equal in magnitude to outgoing

volume transport, including freshwater. Incoming salt is also equal to outgoing salt

. Therefore we have:

Vin = Vout + FW (4.1)

ρ ∗ Vin ∗ Sin = ρ ∗ Vout ∗ Sout (4.2)
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In this equation, Vin and Vout are incoming and outgoing volume transport

respectively, Sin and Sout are incoming and outgoing salinity respectively, and ρ is

the density of seawater. We can solve for FW in terms of incoming or outgoing

velocity.

FW = Vin ∗
Sout − Sin

Sout

(4.3)

FW = Vout ∗
Sout − Sin

Sin

(4.4)

In this way we calculate a transport that accounts for the changes in

salinity, but in a way that is independent of the varying volume transport signal,

because of the requirement of balanced volume transport at every time step.

As was the case with temperature, the XBT dataset only provides infor-

mation in the top 800 m. Salinity is determined from a combination of historical

data, XCTD casts, and profiles from Argo floats where available. As with tem-

perature, most variability occurs in the top 800 m. A comparison between the

model estimates of full depth equivalent freshwater transport and the equivalent

freshwater transport in the top 800 meters is shown in Figure 4.13. Differences

are much smaller than the magnitude of the signal. Because the calculation of

equivalent freshwater transport requires balanced volume transport, and we have

demonstrated that using the top 800 m give the same magnitude of variability that

using full depth does, the calculation for the data estimate of equivalent freshwa-

ter transport will be performed using only the top 800 m, instead of estimating

baroclinic and barotropic closure schemes as was necessary for an accurate mea-

surement of heat transport and its variability.

The components of the freshwater budget are shown in figure 4.14. Panel

(a) shows the total freshwater storage in the North Pacific. This is calculated in

three ways: from XBT advective freshwater transport plus NCEP surface flux,

from the model advective freshwater transport plus model surface flux, and from

the time derivative of model salt content. There is not enough salinity data to
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Figure 4.14: Freshwater Budget for the region north of PX37. (a) Storage com-
ponents of the freshwater budget. Thick line is model advective plus surface, thin
line is data advective plus surface, and dashed line is derived from the time deriva-
tive of model salt content north of PX37 (b) Advective components of freshwater
transport. Thick line is from the model, thin line is from the data. (c) Surface
components of freshwater flux.
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calculate an independent salt content. The freshwater storage implied from model

salt content has a correlation of 0.98 with the sum of model advective freshwater

transport and model surface freshwater flux. This high correlation implies the

self-consistency of the model. However, the magnitude of variability is smaller in

the storage implied from salt content. The two time series derived from advective

transport plus surface flux (model and data) are also well correlated with each

other (correlation coefficient = 0.72). The mean of model advective freshwater

transport plus surface flux is -0.092±0.11 Sv, while the mean of XBT-estimated

advective freshwater transport plus NCEP surface flux is -0.041±0.075 Sv. Both

of these imply a net freshwater export, which would mean increasing salt content

in the region, but they also both have variability larger than the mean, indicating

that they are statistically equivalent to zero. This indicates that while there is

variability, the salt content in the North Pacific is, on average, conserved.

The advective component of the budget is shown in Figure 4.14(b). The

estimates of equivalent freshwater transport from the data and the model have a

correlation of 0.32. The data has signals of larger magnitude, such as an abrupt

decrease in freshwater export in 1999 of almost 0.2 Sv. The main characteristic of

the model estimate is a consistent increase in freshwater export from 1995 to the

end of the time series. Both time series are negative throughout the time period,

indicating that freshwater is exported through advection from this region.

Another aspect of the freshwater budget is revealed by examining the evo-

lution of the salinity profiles in time. Using the same method applied previously to

temperature, along-track salinity was averaged spatially and temporally to obtain

a mean profile. At each time step, this mean profile was subtracted from a spa-

tially averaged profile, to obtain a time series that shows the evolution of salinity

anomaly as a function of depth and time. This was performed for the full track,

and also for each of the previously defined geographical regions, to provide insight

into the spatial variability of salinity. Results from model and data are shown in

Figure 4.15. Unlike temperature, most of the salinity signals are stronger in the
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Figure 4.15: Model and data-based estimates of the time evolution of salinity
anomaly as a function of depth, for the full track and for each of the geographical
sections.
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model than in the data. The largest signals occur between Guam and Honolulu,

where there is an increase of salinity throughout the time series. This trend is the

main signal when the full track is considered, as well. The increase in salinity is

stronger and longer lasting in the model than in the data. Another interesting

feature of salinity signals, evident in both the model and the data, is the tendency

for a signal to originate at the surface and have its strongest signature there, and

then to propagate to depths of 200 m or more. Particularly between Guam and

Honolulu, a strong trend of increasing salinity is seen to start at the surface and

then propagate down to 200 m depth. This could indicate that these signals are

strongly influenced or caused by surface fluxes.

The surface component of freshwater transport is shown in Figure 4.14(c).

The components of surface flux of freshwater include precipitation and runoff (both

positive into the ocean) and evaporation (positive out of the ocean). The NCEP

freshwater flux is positive throughout the time series, with a mean of 0.094±0.044

Sv of freshwater into the ocean. In this case the model’s adjustments have been

large enough to change the sign of the freshwater flux. The model mean fresh-

water flux of 0.050±0.083 is positive, but the variability is strong enough that it

is statistically equivalent to zero. The spatial patterns of both the NCEP precip-

itation minus evaporation (P-E) and the adjustments to it are shown in Figure

4.16. These maps only show P-E; the runoff component is excluded. The map

of freshwater flux shows the band of positive freshwater flux into the ocean from

precipitation at a latitude of about 45◦N from the North Pacific storm track, and

a band of evaporation just south of that. In the region of interest, the adjust-

ments from the model are opposite the signals in the original field, indicating a

reduction of precipitation over the storm track and a reduction of evaporation at

the latitude of PX37. In Chapter 3, it was evident that the freshwater fluxes from

this model were much less structured than those from the more highly converged

ECCO-GODAE model, and it bears repeating that the model used in this analysis

is not fully converged. Since freshwater is a quantity that is less well-observed with
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Figure 4.16: (a) Map of mean NCEP P-E (b) Map of mean adjustments to P-E
made by the model.
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higher error bars on both the measurements and the forcing fields, it is reasonable

to think that more adjustments are necessary to bring this component of the model

to full convergence. Thus far, though, it does provide a well-balanced component

of the budget in Figure 4.14(a).

Overall, the freshwater budget seems to have less variability than the heat

budget. The magnitudes of variability in advective transport and surface flux are

the same as each other and as the magnitude of variability of freshwater storage.

Additionally, the changes that do occur take place on longer time scales than in the

heat budget, closer to 5 years rather than 2-4. In general, the freshwater budget

seems to be much more stable than the heat budget.

4.6 Forcing

The North Pacific evidently has a relatively stable freshwater budget but

a highly variable heat budget. Figure 4.6 shows significant variability in storage

on a time scale of 2-4 years. As stated previously, this variability in heat storage is

mainly a result of changes in advective heat transport, which are caused by changes

both in the volume of transport and the temperature structure of the water being

transported. Determining how these changes fit into the structure of the gyre-scale

circulation could help explain the forcing behind them. To investigate the changes

in volume transport, correlations between the geographical sections are considered.

The volume transport between Hong Kong and Guam is highly anticorrelated with

that between Guam and Honolulu. In a physical sense, this reflects the magnitude

of westward transport of both the southern limb of the subtropical gyre and the

North Equatorial Current (NEC) north of Guam. Because of the geography of

the track, this westward transport manifests itself as northward (into the region)

transport into the region between Honolulu and Guam, and corresponding south-

ward (out of the region) transport between Guam and Hong Kong. When the total

NEC transport increases, so do each of these components. As the NEC reaches the
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Figure 4.17: 800 m temperature transport from model and data with the SOI

western edge of the basin, it bifurcates, with transport going north in the Kuroshio

or south back into the equatorial circulation system. When the NEC transport is

at its largest (during El Niño events), it bifurcates at a higher latitude. This leads

to a smaller transport volume in the Kuroshio (Kim et al., 2004), and a lower net

northward transport west of Guam.

Volume transport is correlated with temperature transport in this case. In

the high El Niño phase, the increased northward transport between Honolulu and

Guam consists of warmer water. This warming is evident in the temperature profile

anomalies in Figure 4.10. In the Kuroshio, the higher bifurcation latitude and

corresponding smaller transport leads to less northward temperature transport.

At the same time, there is more southward transport west of Guam as a result of

the NEC meander. These combine to create a minimum in northward temperature

transport west of Guam during high El Niño phases. East of Guam, however, the

stronger, warmer NEC leads to northward temperature transport, not all of which

returns back to the south at the western edge of the basin. These results are

confirmed in Figure 4.17. Correlations are both visually apparent and statistically

significant. For the model, correlation between the temperature transport between
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Hong Kong and Guam and the Southern Oscillation Index (an index associated

with El Niño) is 0.86. Temperature transport between Guam and Honolulu is

strongly anticorrelated with the SOI at −0.86. In the data, correlations with the

SOI are 0.76 for temperature transport between Hong Kong and Guam and −0.77

for temperature transport between Guam and Honolulu, in agreement with the

model’s results.

With these varying effects vying for dominance in the net advective heat

budget, there is no clear correlation between the SOI and the total net heat trans-

port. Rather, the net heat transport is a result of the extent to which these two

opposite-sign results – increased northward temperature transport between Hon-

olulu and Guam, and increased southward temperature transport between Guam

and Hong Kong – cancel each other out.

The case of freshwater transport is slightly different. Because volume is

not balanced in individual segments, the “equivalent freshwater transport” cannot

be calculated separately for the legs of the cruise track. However, as shown in

Figure 4.18(a), mean transport can be broken down into salt classes. Overall,

there is southward transport in the saltiest and freshest classes, with northward

transport in the mid-range salinity classes. There is a lot of variability in the high-

salinity classes, as well as large discrepancies between model and data estimates. In

particular, the data indicate strong northward transport at around 34.5 psu, while

model components have considerably smaller magnitude. Transport with salinity

below 34.0 psu, on the other hand, is consistently southward with low variability

and good agreement between model and data.

Considering the geographical breakdown of these salinity classes provides

further enlightenment. In this case, only two segments are used: the region west

of Honolulu to Hong Kong, including the gyre-scale circulation and the Kuroshio

(Figure 4.18(b)), is compared to the region between Honolulu and San Francisco,

which includes the low-salinity California Current (Figure 4.18(c)). The freshest

transport, directed southward, is solely from the section of the cruise track be-
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Figure 4.18: Geographical breakdown of salinity classes. Panel (a) shows transport
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temperatures and salinities are used for Ekman. Model transport, in light gray
is from the full model velocity field. White indicates error bars: one standard
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tween San Francisco and Honolulu. This signal is strong and persistent, with low

variability, in both the data and the model. Higher salinity transport occurs in

both sections. Between Honolulu and San Francisco, most transport is southward

but standard deviations are high and magnitudes are low. West of Honolulu, the

data show a tendency toward southward transport in the highest salinity water

and northward in slightly fresher water. All salinities are higher than the Cali-

fornia Current, and all variabilities are high. The model estimate shows the same

signals, but with lower magnitudes and higher variability. In general, except the

fresh water attributed to the California Current, salt transport is characterized by

high variability rather than persistent signals or well-defined structure.

4.7 Conclusions

This analysis uses 13 years of in situ data and output from a data-

assimilating model to quantify the mean and variability of heat and freshwater

transport in the North Pacific. By combining the advective transport and surface

fluxes into a closed region, budgets have been calculated which demonstrate the

nature and magnitude of interannual variability of temperature and salinity.

The heat budget was estimated using both a regional ocean model and

data from a long time series of XBTs. The model was used to help determine

the validity of assumptions about a reference velocity of zero at 800 m depth, and

to determine that a barotropic transport was a reasonable method for closing the

volume budget. Almost all variability takes place in the top 800 m, and the mean

northward heat transport is 0.65±0.17 pW in the model and 0.90±0.14 pW in the

XBT data. These are within each other’s error bounds and within the range of

previous estimates of northward heat transport in the North Pacific. The surface

component of heat flux has also been quantified, and it is evident in the heat

budget (Figure 4.6) that the variability in the advective component dominates the

total storage variability. Variability in the surface component has much smaller
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magnitude. The variability of the advective component, in turn, is dominated by

the effects of the El Niño/Southern Oscillation (ENSO) climate phenomenon. The

effect is indirect; total changes in heat transport are a result of the extent to which

the gyre transport between Honolulu and Guam is cancelled out by the Kuroshio

west of Guam. Each of these two components is highly correlated with ENSO.

A budget for freshwater was calculated as well. Results indicate that the

salt balance in the North Pacific is stable. Variability in freshwater storage is a

result of both changes in advective transport and surface flux; these components

are comparable in mean and variability to each other and to the total freshwater

storage. A geographical breakdown of mean salt transport indicates that the export

of freshwater in the California Current is the strongest, most persistent component

of the freshwater budget, and that other components have low mean magnitudes

and high variability in both model estimates and data.

The agreement of the model and the data is an encouraging sign that by

using the two in conjunction with each other, understanding is enhanced. Fur-

ther work needs to be done to verify the freshwater budget and validate the salt

content in the North Pacific, but the present work expands on previous estimates

of the mean to provide estimates of variability and closed budgets including all

components of transport.

Chapter 4 is in preparation for publication as Douglass, E., D. Roemmich,

and D. Stammer, Interannual variability in North Pacific heat and freshwater bud-

gets. The dissertation author was the primary investigator and author of this

paper.
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Conclusions

The large-scale circulation of the ocean is a key component in the global

environment. On time scales from seasons to centuries, changes in the ocean reflect

and feed back into larger scale climate changes. Seasonally, the ocean transports

nutrients and heat necessary for biological productivity. These in turn influence

the success of fishing industries. The Pacific Decadal Oscillation, a basin-scale

signal related to both atmospheric and oceanic circulation, was first recognized as

an oscillation between good salmon production years in Alaska and in the Pacific

Northwest (Mantua et al., 1997). On interannual time scales, the El Niño/Southern

Oscillation variability was also first recognized as an anomaly by fishermen in Peru.

It is now a much-studied climate phenomenon, relating to anomalous conditions

in the equatorial Pacific Ocean and having global effects. In general, interannual

variability in the circulation of the Pacific Ocean has large magnitude and far-

reaching effects. In addition to this, with its large heat capacity and resulting

thermal inertia, the ocean responds on interdecadal time scales to the integrated

effect of small changes in climate. Because of this inertia, warming of the global

ocean is indicative of large-scale, long-term change. In order to understand and

identify long-term changes in the ocean, variability on interannual time scales must

be characterized as well.

The objective of this work is to bring together high-resolution datasets

123



124

and a coarser-resolution data-assimilating model in order to provide an improved

description of the mean and time-varying circulation of the North Pacific Ocean.

The data provide synoptic structural information, but are lacking in time resolu-

tion and spatial context; the model provides a smoother picture of the large-scale

environment, as well as the dynamically consistent forcing fields associated with

that environment. Together, they can characterize variability on many time scales.

The initial endeavor, as described in Chapter 2, focused on the time-

varying circulation of the Northeast Pacific. Two high-resolution XBT lines to-

gether with the coastline of North America form an enclosed region. A global

model provides context in which to analyze the circulation in this region, which

encompasses the eastern portions of both the subtropical and subpolar gyres of the

North Pacific. The data and model both span an 11-year period from 1992-2002,

allowing for analysis of interannual variability in the strength of the currents in

the region.

The difficulties encountered in this analysis are symptomatic of compar-

isons between model output and data. The model provides estimates of monthly

means of temperature, salinity, and velocity, while the data provide semi-synoptic

measurements of temperature approximately every three months. Observations

have high spatial resolution along the ship track, while models offer full coverage

of the region. The energetic mesoscale activity in the North Pacific aliases the in

situ measurements, while the 1◦ resolution of the model does not resolve mesoscale

variability, and is inadequate to truly capture sharp jet-like structures such as the

Alaska Current. The nominal depth of the XBT dataset is 800 m, while the model

has information to full depth. The lack of adequate salinity sampling contributes

another source of error to the data. All of these issues make comparisons difficult.

Despite these problems, comparisons between model and data estimates

of circulation showed similarities in magnitude and time scale of interannual vari-

ability. Correlations between the circulation in the subtropical and subpolar gyre

were found, indicating that the currents had some anti-correlation rooted in the
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bifurcation of the North Pacific Current, but that a stronger influence was the

increase in the North Pacific Current itself and the resulting increase in the mag-

nitude of circulation in both gyres. This was found to be a response to basin-scale

wind forcing. The ability to both find similarities and determine sources of the

disparities between the data and the model output is the strength of the synthesis

of the two in one analysis.

The next step was to improve the state estimate itself. Several experi-

ments were performed with the model to analyze possible areas of improvement.

First, the model domain was restricted to the Pacific Ocean north of 26◦S. This

is advantageous in that it is less computationally demanding, and it focuses the

assimilation on the area of interest. Additionally, the vertical resolution was in-

creased from 23 vertical levels to 50. Under these new conditions, four experiments

were performed. One experiment used all available data, while two others excluded

subsets of the available data in order to evaluate the relative contributions of each

dataset. From comparisons of these three, it was found that exclusion of either sur-

face or subsurface data leads to a significant degradation of the final state estimate.

For the best possible estimate, all available data must be included.

The final model experiment addressed the issue of the weights used for

the subsurface data. Since there are fewer subsurface data than the surface data,

under the standard weighting scheme, they have less influence on the final state es-

timate. Because these are point measurements in regions with energetic mesoscale

activity, the error bars must account for representation error as well as measure-

ment error and therefore must be relatively large. Thus, the weights on these

data are low, further reducing their influence in the state estimation process. The

experiment sought to determine whether increasing the weights on the subsurface

data would introduce unrealistic results or have other detrimental effects on the

solution provided by the model. After 30 iterations, this experiment outperforms

all three other model experiments performed in the North Pacific region. It has

lower model-data misfits and the largest percent decrease in total cost, but the
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adjustments to the forcing are well within their error bounds. This model estimate

also compares well with a global model with 177 iterations provided by the ECCO

Consortium. The new estimate has a lower model-data misfit when compared to

almost all the assimilated datasets, with the exception of SSH. The forcing fields

look similar to those from the ECCO-GODAE solution, and the differences could

result from the aforementioned differences in the model setting (resolution, extent,

weighting), or could simply indicate a lack of convergence. Regardless, the results

so far indicate that increasing the weights on the subsurface data had benefits that

outweighed any disadvantages, and should be investigated further.

There are several opportunities for further advancement in the develop-

ment of the model. Analysis of the error fields and associated weighting schemes

offers ample opportunity for improvement. A first step would be error fields for

subsurface data which varied by location. The error scheme for subsurface temper-

ature and salinity varied only with depth in this analysis. Intuitively, it seems like

areas such as the Kuroshio with higher mesoscale variability should have different

error profiles and radii of influence than other areas. A more advanced approach

would be to include full error covariances rather than the diagonal weighting ma-

trices currently in use. This problem is computationally demanding and difficult,

but full error covariances would allow each data point to influence those around

it, rather than only the specific gridpoint in which it is located. This would allow

the model to use these data more effectively.

A different approach to the same issue is to investigate the enhancement

of weight according to data type, as we did. In our experiment, weights were 16

times the “standard” weights used by Köhl et al. (2007) in their assimilation. While

it was clear that this improved the model results, this does not mean we have found

the ideal weights for assimilation of subsurface data. Further experimentation is

necessary to determine the most appropriate weighting scheme to maximize the

influence of the subsurface data without projecting eddy noise onto the solution,

and without introducing large errors into the surface fields such as SSH and SST.
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The final section of this dissertation dealt with the calculation of heat

and freshwater budgets for the North Pacific. This was an extension of both the

previous chapters. As in Chapter 2, the focus was on interannual variability in

circulation, but in this case the domain was expanded to the full North Pacific and

the analysis included heat and freshwater transport as well. The state estimate

used was the one developed in Chapter 3. From this combination, we attempted

to characterize the interannual variability in heat and freshwater transport and

storage as quantitatively as possible.

The analysis was complex, and relied on the model for resolution of issues

such as determining a reference velocity for the calculation of geostrophic transport

and balancing the volume transport, as is necessary for the development of an

accurate budget. We were able to use the model to understand and reconcile

many of the differences between the model and data estimates of transport, and to

determine an appropriate balance of advective transport and surface flux that lead

to time-varying estimates of heat and freshwater storage in the region. Magnitudes

of variability in the heat budget are large. Advective transport varies by around

0.5 pW. Surface fluxes are more stable with smaller variability, implying that the

changes in advective transport are the source of heat storage variability. Surface

fluxes and advective transports varied simultaneously, such that the heat storage,

the two components, had even larger variability than either component, with a

range of about 0.7 pW.

Calculation of the freshwater budget presented a different set of issues.

The first step was determining how to find freshwater transport from changes in

the advection of salt. This is a less straightforward problem than heat transport.

The calculation of an equivalent freshwater transport from changes in salinity of

transport provides a mechanism for this analysis. Analysis of surface freshwater

flux is straightforward, and the sum of these components leads to a storage com-

ponent implied by the time rate of change of salt content in the region of interest.

The freshwater budget seems to have a longer time scale of variability than the
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heat budget does, varying on time scales of more than 5 years, while heat storage

variability was 2-4 years. In the case of freshwater, advection and surface fluxes

have approximately equal contributions to this variability.

Combining the model with the data allows further analysis of the ob-

servations, by providing a context in which to interpret them. The changes in

heat transport are a physical result of the meander of currents during El Niño

cycles, while longer-term changes in freshwater budgets are associated with differ-

ent dynamics. The California Current, which provides the freshest component of

transport, is relatively stable on interannual time scales, but the higher salinity

transport is highly variable. Placing this variability in context helps to character-

ize it so as to distinguish it from long-term trends. Both specifically in this project

and in general, the combination of data and model is helps make this analysis more

complete. The model provides a more comprehensive picture of the ocean state we

are analyzing, while the high spatial resolution of the data allow a better charac-

terization of the synoptic state of the ocean. The result is a better understanding

of the interannual variability in circulation and property transport in the North

Pacific Ocean.
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