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Hippocampal SWR Activity Predicts Correct Decisions during
the Initial Learning of an Alternation Task

Annabelle C. Singer1,2, Margaret F. Carr2,3, Mattias P. Karlsson2,4, and Loren M. Frank2,*

1McGovern Institute for Brain Research and MIT Media Lab, MIT, Cambridge, MA 02139, USA
2Center for Integrative Neuroscience and Department of Physiology, University of California, San
Francisco, CA 94143-0444, USA
3CNC Program, Stanford University, Stanford, CA 94305, USA
4Janelia Farms Research Campus, HHMI, Ashburn, VA 20147, USA

SUMMARY
The hippocampus frequently replays memories of past experiences during sharp-wave ripple
(SWR) events. These events can represent spatial trajectories extending from the animal’s current
location to distant locations, suggesting a role in the evaluation of upcoming choices. While SWRs
have been linked to learning and memory, the specific role of awake replay remains unclear. Here
we show that there is greater coordinated neural activity during SWRs preceding correct, as
compared to incorrect, trials in a spatial alternation task. As a result, the proportion of cell pairs
coactive during SWRs was predictive of subsequent correct or incorrect responses on a trial-by-
trial basis. This effect was seen specifically during early learning, when the hippocampus is
essential for task performance. SWR activity preceding correct trials represented multiple
trajectories that included both correct and incorrect options. These results suggest that reactivation
during awake SWRs contributes to the evaluation of possible choices during memory-guided
decision making.

INTRODUCTION
New experiences are accompanied by profound increases in the level of coordinated
memory reactivation in the hippocampus during sharp-wave ripple (SWR) events (Foster
and Wilson, 2006; Cheng and Frank, 2008; Karlsson and Frank, 2008; O’Neill et al., 2008).
These reactivation events frequently replay entire behavioral trajectories representing either
past or possible future locations (Foster and Wilson, 2006; Diba and Buzsáki, 2007;
Davidson et al., 2009; Karlsson and Frank, 2009; Gupta et al., 2010) and reactivation
strength during and after an experience correlates with subsequent memory (Nakashiba et
al., 2009; Dupret et al., 2010). Disrupting SWRs during sleep leads to subsequent
performance deficits in a spatial memory task (Girardeau et al., 2009; Ego-Stengel and
Wilson, 2010), and disrupting SWRs during behavior causes performance deficits in a
spatial learning task (Jadhav et al., 2012). While these findings have established the
importance of SWRs for learning, it is unclear how SWR activity contributes to memory-
guided behavior.
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We have hypothesized that SWR reactivation represents recent and possible future paths to
aid ongoing memory-guided navigation (Karlsson and Frank, 2009; Carr et al., 2011).
However, to date no one has examined whether reactivation during learning is related to
choice behavior in a hippocampally dependent spatial task. We asked how SWR reactivation
could aid memory-guided decisions in animals learning a W-track alternation task in
initially novel environments (Frank et al., 2000; Karlsson and Frank, 2008; Kim and Frank,
2009). We focused on the outbound, SWR-dependent component of the task (Jadhav et al.,
2012). On outbound trials, animals begin in the center arm of the track. Correct performance
of the task is to alternate between outside arms. To accomplish this, animals must remember
which outside arm they visited most recently and choose a path to the opposite arm.
Hippocampal lesions and SWR interruption impair learning on outbound trials (Kim and
Frank, 2009; Jadhav et al., 2012), but both lesioned and SWR interruption animals
eventually behave at above chance levels, indicating that the hippocampus plays a
particularly important role in rapid initial learning of the task.

We found that during this early learning period, there was more SWR reactivation preceding
correct as compared to incorrect trials. Enhanced reactivation preceding correct trials tended
to reflect outbound paths from the animal’s current location. These results suggest that
hippocampal reactivation contributes to a process whereby animals use past experience to
make memory-guided decisions.

RESULTS
Our goal was to examine how SWR reactivation of distal locations could inform
hippocampal-dependent spatial learning. We therefore studied the activity of ensembles of
neurons from hippocampal areas CA3 and CA1 during hippocampal SWRs recorded from
animals learning an alternation task in which they had to recall their past location to select
their future trajectory (Figure 1A) (Frank et al., 2000; Karlsson and Frank, 2008; Kim and
Frank, 2009). In this task, animals are always rewarded for visiting the arms in the following
order: center, left, center, right, center, left, and so on. We examined SWR activity when
animals were in the center arm because, at that point, animals must remember the previous
arm visited to select the next arm. We focused on times when the animal was within 20 cm
of the reward well and moving at less than 1 cm/s, because SWR activity is strongest during
stillness (Buzsáki, 1986). The 20 cm cutoff was chosen to exclude place field activity of
cells whose fields extend from the center arm past the choice point (CP), defined as the
location where animals must choose to go left or right from the center arm. Further, because
inbound runs to the center arm were always rewarded, examining activity when animals
were located near the center well ensured that the recent reward history of the animal was
consistent across all examined data and thereby controlled for the presence of reward-related
increases in SWR activity (Singer and Frank, 2009). Thus, we examined behavioral
performance and spiking during SWRs preceding outbound trials, defined as trials when the
animal was leaving the center arm and had to select the outside arm that was opposite the
outside arm last visited.

Animals were first exposed to one novel track, T1, and then 3 days later to a second novel
track, T2 (Figure 1A). Animals were exposed to T1 for two sessions each day and then, from
day 4 onward, animals were exposed to T1 for one session per day and exposed to novel T2
for two sessions per day (Figure 1A). All animals had been pretrained to run back and forth
for reward on a linear track, but animals had no experience with the alternation task prior to
the first exposure to T1.
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Classification of Behavioral Performance
The hippocampus is particularly important for rapid learning (Nakazawa et al., 2003; Kim
and Frank, 2009), and thus we would expect that the hippocampal contribution to decision
making would be most evident during task acquisition. Behavioral performance was close to
chance levels during the first session of the first day on T1 (Figure 1B). Behavioral
performance improved during the second session, indicating that animals had begun to learn
the task. In contrast, while animals also performed poorly during the first session in T2, their
behavior improved more rapidly in T2 than in T1 (Figure 1C), probably due to their
previous experience with the task in T1.

To examine how reactivation changes during learning, we took advantage of the variability
between animals in how quickly each acquired the task in T1 and T2 (Figures 1B and 1C).
All animals reached significantly above chance performance individually (p < 0.05 based on
the state-space algorithm from Smith et al., 2004), allowing us to develop a set of behavioral
criteria describing each animal’s behavioral performance over time. All animals started with
performance below 65% on the first exposure to the task in T1, and eventually reached
performance of at least 85% after several days of training, so we divided the behavior
performance into four categories reflecting (1) this initial poor performance, below 65%, (2)
the first session of task acquisition, between 65 and 85%, (3) the first session of asymptotic
performance, above 85%, and (4) maintained asymptotic performance, defined as
subsequent sessions above 85%.

Neural Activity during SWRs Preceding Correct and Incorrect Trials
We examined SWR activity from sessions corresponding to these performance categories.
See Table S1 for the number of cells from each animal for each performance category. We
compared SWR activity preceding correct and incorrect trials to determine whether SWR
reactivation was related to correct performance in the task. We focused on the coactivation
probability of cell pairs (see Experimental Procedures for explanation of focus on pairs),
defined for each pair as the proportion of SWRs in which both cells from that pair were
active. To quantify differences in coactivation probability across correct and incorrect trials,
we used a Z score measure. For each pair of cells with place fields on the track, we
computed the proportion of SWRs preceding correct trials in which both cells fired and,
separately, the proportion preceding incorrect trials (Figure 2A). We converted the
difference between these proportions into a Z score for each cell pair (see Experimental
Procedures). This approach is more conservative than examining the proportions themselves
because it accounts for differences in the number of SWRs observed on correct and incorrect
trials. To determine whether the difference between SWR reactivation on correct and
incorrect trials was significant, we compared Z scores both to a Z score of 0 and to Z scores
derived from shuffling the outcome of each trial while leaving the structure of neural
activity on that trial intact (see Experimental Procedures).

We found a transient increase in the Z scores of the change in coactivation probability
during the early improvement in behavioral performance (Figure 2B) in both T1 and T2.
Beginning with T1, the median of the distribution of Z scores was close to zero for
performance category 1, reflecting approximately equal coactivation probability before
correct and incorrect trials (174 cell pairs, signed-rank test Z scores versus 0, p > 0.3).
However, during the sessions when the percentage correct first exceeded 65% (performance
category 2), the median Z score was significantly greater than zero (250 cell pairs, p < 10−5

versus 0 and versus shuffled, signed-rank test and rank-sum test, respectively), indicating
that cell pairs were more coactive preceeding correct than incorrect trials. These larger Z
scores persisted during the first session of high behavioral performance (performance
category 3; 86 cell pairs, Z score rank-sum p < 10−4 versus 0 and versus shuffled). When
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animals consistently performed the task well (performance category 4), the median Z score
was once again not significantly different from zero (79 cell pairs, signed-rank test Z scores
versus 0, p > 0.1), reflecting similar levels of coactivation probability preceding correct and
incorrect trials. These patterns were consistent across individual animals (Figure S1B).

We found a similar increase in the Z scored proportion change in coactivation probability
preceding correct trials during task acquisition in T2, even though task acquisition was faster
in T2 than T1. The median Z score was not different from zero for poor performance
(performance category 1, Figure 2B, 51 cell pairs, signed-rank test Z scores versus 0, p >
0.3). In contrast, when performance first improved (performance category 2) and initially
reached high behavioral performance (performance category 3), the median Z scores were
greater than zero (performance category 2: 155 cell pairs, p < 10−4 versus 0 and versus
shuffled; performance category 3: 324 cell pairs, p’s < 10−6 versus 0 and versus shuffled),
indicating greater coactivation probability before correct than incorrect trials. When animals
consistently performed the task well (performance category 4), the median Z score remained
greater than zero but was not greater than the Z score from the shuffled data (113 cell pairs,
p > 0.1 versus shuffled). These patterns were consistent across individual animals (Figure
S1A) and manifested as a larger number of positive Z scores for the cell pairs from
performance categories 2 and 3 (Figure 2C; Komolgorov-Smirnov and rank-sum test, both
p’s < 0.001).

Across both tracks, the pattern of increased coactivation probability during performance
categories 2 and 3 remained present for areas CA3 and CA1 when cell pairs from these
regions were considered separately (Figure S1B), although most cells were from CA1.
Similarly, the same results were obtained when we included only pairs of cells in which one
or both place fields were located past the CP at the end of the center arm (Figure S1C). In
addition, while single-cell activation probabilities and the number of cell pairs active were
numerically higher before correct than incorrect trials, neither of these factors could fully
account for the measured pairwise differences (Figures S1D and S1E). These findings
suggest that specific sets of cell pairs were strongly activated before correct trials, a
possibility we confirm below.

We have previously shown that coactivation probability during SWRs is high in novel
environments and then decreases with experience (Cheng and Frank, 2008). Here we found
that there was greater relative coactivation probability preceding correct, as compared to
incorrect, trials for 65%–85% and >85% correct performance categories. We therefore
sought to understand how differences in coactivation probability between correct and
incorrect trials interacted with the overall decrease in coactivation probability with
experience.

We combined data across tracks and found that coactivation probability preceding correct
trials remained high from the first exposure through the first session with >85% correct
performance (Figure 2D; p’s > 0.1 for comparisons among correct trials for <65% correct,
65%–85% correct, and >85% correct performance categories). In contrast, coactivation
probability dropped significantly for incorrect trials during learning (65%–85% correct and
>85% correct, p’s < 0.001 versus <65% correct). Finally, once animals achieved consistent
>85% correct performance, coactivation probabilities dropped for correct trials (p’s < 0.001
versus <65% correct, 65%–85% correct, and >85% correct) to a level similar to that seen on
incorrect trials. These findings suggest that errors made during learning reflect lower levels
of place cell pair coactivation during SWRs.

The lower levels of coactivation probability on incorrect trials also account in large part for
the differences in Z scores before correct and incorrect trials. We computed the mean
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difference in coactivation probability for each pair, defined as the mean coactivation
probability on correct trials minus the mean coactivation probability on incorrect trials. Not
surprisingly, this coactivation probability difference was strongly correlated with the Z score
measure (r = 0.85, p < 10−4). This indicates that large differences in coactivation probability
for individual pairs is a strong driver of the Z score effects, with the remaining variability in
the Z scores arising from the influence of the different numbers of SWRs before correct and
incorrect trials. We then asked whether incorrect or correct trial coactivation probability
alone was a better predictor of Z score. We found that coactivation probabilities on incorrect
trials for individual cell pairs were significantly negatively correlated with the Z score
measure for those pairs (r = −0.59, p < 10−4). Thus, low coactivation probability predicted
high Z score differences. In contrast, there was a very small and nonsignificant relationship
between coactivation probability and Z score for correct trials (r = 0.06, p > 0.05). Thus, we
found that the Z-scored proportion change in coactivation was higher preceding correct than
incorrect trials, mainly due to a decrease in coactivation probability preceding incorrect
trials during learning.

We further noted that the low values of coactivation probability on incorrect trials were due
in large part to the high proportion of cell pairs that were never coactive preceding incorrect
trials. We combined data from T1 and T2, performance categories 2 and 3 (65%–85% and
>85% correct), and for each cell pair we compared the coactivation probability before
correct and incorrect trials (Figure 3A). We found that the distribution of coactivities for
incorrect trials was largely made up of pairs that were never coactive (605 of 778 pairs),
while a much smaller number of pairs were never coactive before correct trials (27 of 778).
Excluding data from the pairs that were never coactive before incorrect trials rendered the
differences in pairwise Z scores between correct and incorrect trials nonsignificant (p > 0.6).
The same analysis applied to performance categories 1 and 4 (Figure 3B) yielded a smaller
proportion of pairs that were never coactive before incorrect trials (212 of 416 pairs) and a
larger proportion of pairs that were never coactive before correct trials (51 of 416). Taken
together, these results demonstrate that the difference between SWR reactivation preceding
correct and incorrect trials is largely due to lower coactivation probabilities preceding
incorrect trials. This effect was most prominent in performance categories 2 and 3.

Our group has previously shown that new experiences drive cell pairs to fire together during
SWRs more than expected relative to the activity of the individual cells in each pair (Cheng
and Frank, 2008). We refer to this as “coordinated activity.” To determine whether
coordinated activity differed when SWRs preceded correct versus incorrect trials, we
compared the actual level of coactivation probability to that predicted, assuming that cells
were activated independently during SWRs. To compute this predicted level of coactivation
probability for each trial type, we calculated the product of the measured single-cell
activation probabilities for the two cells.

We found that for data from performance categories 2 and 3, coordinated activity was
present on correct trials but was not detectable on incorrect trials (Figure 3C; correct trials
actual versus predicted coactivation probability p < 10−5, incorrect trials: p > 0.1, sign test).
We then examined all cell pairs in which the expected coactivation probability was greater
than zero for a given trial type (correct or incorrect) to focus on the cell pairs in which both
cells were active during SWRs for that trial type. Of these cell pairs, 79% (608 of 774) of
cell pairs were more coactive than predicted if the cells fired independently preceding
correct trials, while only about half (54%; 161 of 297) were more coactive than predicted
preceding incorrect trials. In contrast, coordinated activity was present preceding both
correct and incorrect trials for comparable data from performance categories 1 and 4 (Figure
3D; actual versus predicted activation p’s < 10−4 for both correct and incorrect trials; sign
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test). These findings indicate that during learning, strong coordinated activity preceded
correct trials but was not present before incorrect trials.

We also sought to understand how coordinated activity contributed to the measured Z
scores. Our goal was to estimate the Z score distributions we would have measured if the
individual cells fired independently. To do so, we calculated the expected Z score exactly as
for the actual Z score but using the predicted coactivation probability rather than the actual
coactivation probability. We then compared these Z scores to the actual Z scores. We found
that the actual Z scores were significantly higher than the estimated Z scores (median actual
z = 0.46; median estimated z = 0.25, rank-sum test p < 0.001). Thus, the activation of cell
pairs during SWRs at levels greater than expected, given the activity of the individual cells,
also contributes to the higher measured Z scores.

Trial-by-Trial Prediction of Correct and Incorrect Choices
We then asked whether we could predict upcoming correct or incorrect choices based on
coactivation during SWRs. We found that the proportion of coactive cell pairs was
predictive of performance on a trial-by-trial basis. We randomly selected equal numbers of
correct and incorrect trials from each behavioral session of T1 and T2 and calculated the
proportion of cell pairs that were coactive during SWRs on each trial (see Experimental
Procedures). We then randomly selected half of these data for training a logistic regression
model and reserved the other half for testing. We repeated that process 1,000 times,
randomly selecting different trials for each iteration and using equal numbers of correct and
incorrect trials to train and test the model. We found that the proportion of coactive cell pairs
was predictive of trial-by-trial performance for performance categories 2 and 3 (Figure 4;
mean 60% correct p < 10−5 compared to a chance level of 50%, signed-rank test). In
contrast, the same analyses applied to performance category 1 (<65% correct) yielded
predictions that were at chance levels (p > 0.0135 compared to a chance level of 50%, which
is not significant when taking into account multiple comparisons).

Predictions based on performance categories 2 and 3 were also significantly better than
predictions based on either the proportion of single cells active during SWRs on each trial or
information about the last outbound trial that included the correct or incorrect status and the
specific left or right trajectory involved in that trial (Figure 4). Predictions based on single-
cell activation were slightly better than chance (mean = 52% correct, p < 0.001) and,
interestingly, the prediction based on the previous outbound trial was slightly but
significantly better than chance (mean = 56% correct, p < 0.001). We examined these trials
in detail and found that if the previous outbound trial was incorrect (n = 26), the next
outbound trial was likely to be correct (n = 19 correct; n = 7 incorrect; p < 0.001 Z test for
proportions). In contrast, if the previous outbound trial was correct (n = 62) the next
outbound trial was approximately as likely to be correct (n = 25) or incorrect (n = 37; p >
0.1). Thus, animals tended to make correct choices after incorrect outbound trials.
Nonetheless, as predictions based on the proportion of coactive pairs were superior to those
based on previous trial outcome, effects due solely to the status of the previous outbound
trial cannot explain our findings. The same analyses applied to T1, performance category 4
(>85% asymptotic) yielded predictions similar to those based on the previous outbound trial
(mean = 56% correct, p < 0.001). T2, performance category 4 data yielded a prediction that
was also significantly greater than chance (mean = 68% correct, p < 0.001), but this
prediction is more difficult to interpret because the Z scores for T2, performance category 4
were not significantly different from the shuffled data, suggesting that the above chance
predictions could be due to sampling biases.
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Control Analyses
The significant differences in SWR activity preceding correct and incorrect trials could not
be explained by differences in time spent at the well, number of SWRs, animal head
direction during SWRs, or cluster quality. Differences in coactivation probability could not
be explained by different amounts of time spent at the reward well: there were no significant
differences in time spent at the well preceding correct and incorrect trials during task
acquisition (Figure 5A, p’s > 0.1 except T2 performance category 4, p < 0.01). Furthermore,
we found no differences in the numbers of SWRs preceding correct and incorrect trials
(Figure 5B, p’s > 0.05, T1: 13, 20, 56, and 170 correct trials and 8, 6, 13, and 39 incorrect
trials, T2: 9, 22, 42, and 110 correct trials and 14, 10, 10, and 20 incorrect trials for
performance categories 1–4, respectively).

Additionally, we found that in both tracks and for both correct and incorrect trials, more than
98% of the SWRs included in our analyses occurred when the animal was facing the well
and that the proportion did not differ across tracks or across trial types (p’s > 0.05). Finally,
we also found no consistent differences in cluster quality, measured as the isolation distance
(Schmitzer-Torbert et al., 2005) for each cell included in the analysis (Figure S1F). Thus, we
conclude that the greater pairwise reactivation preceding correct trials reflects coordinated
patterns of neural activity.

Reactivation of Spatial Trajectories during SWRs
Given this bias for greater coordinated activity during SWRs preceding correct trials, we
then asked whether this activity reflected the reactivation of specific trajectories that related
to the most recent past or the upcoming future trajectory (Figures 6A and 6D, Figures S2A
and S2C). We noted that during learning, there were often multiple detected SWRs per trial
(Figure 5B), indicating that reactivation events could contribute to subsequent choices in
multiple ways. If, for example, there is reactivation of both possible upcoming trajectories
(the correct future and incorrect future trajectory), then reactivation events could serve to
provide information about possible upcoming choices to other brain regions that would then
evaluate those possibilities and make a decision. Alternatively, if there is only reactivation
of the correct future trajectory, then reactivation events could inform downstream brain
regions of the correct future path. Finally, if only reactivation of the most recent past
trajectory occurs, then reactivation events could provide information about a specific past
experience. This would inform downstream areas of the specific past experience necessary
for the subsequent decision about which outer arm to visit next.

The place cells we recorded were generally active in both directions of motion (Karlsson
and Frank, 2009), consistent with previous observations for place cells in novel
environments (Frank et al., 2004). As a result, we cannot unambiguously separate forward
from reverse replay events in this data set. Further, it is not yet clear how downstream brain
areas interpret forward and reverse replay. We therefore classified events using only the
direction of propagation of the spatial representation. In particular, we asked whether SWR
reactivation events preceding correct trials were more likely to reflect outbound paths that
progressed away from the animal or to reflect inbound paths that progressed toward the
animal (Figure 6A, Figure S2A).

We focused on the reactivation events present during task acquisition (performance
categories 2 and 3), although the results were similar across all performance categories
(Figures S2A and S2B). For these analyses, we used a previously developed decoding
algorithm (Davidson et al., 2009; Karlsson and Frank, 2009) that translates neural activity
during SWRs into trajectories through the environment. These trajectories consist of a
probability distribution function (pdf) over location for a series of 15 ms bins in which there
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is spiking during the SWR. We fit a line to samples from the sequence of pdfs and assigned
each SWR as either outbound or inbound based on the progression of spatial representations
within the SWR. Increases in distance with time manifest as a positive slope of the line,
consistent with outbound trajectories from the center arm to an outside arm.

We have previously shown that most replay events begin with locations near the animal and
proceed to more distant locations (Karlsson and Frank, 2009). We therefore examined the
proportion of inbound and outbound reactivation events preceding correct trials (Figure 6A,
Figures S2A and S2B). We found a bias toward outbound trajectories, a result consistent
with our previous findings (Figure 6B, p’s < 0.005 except for T2 > 85%: p > 0.5 z test for
proportions; T1: 148 and 89 SWRs, T2: 74 and 116 SWRs for 65%–85% and >85% correct
respectively) across tracks. The same bias was present when we restricted our analysis to
significant replay events, defined as those events for which the R value of the regression line
fit to the pdfs was greater than the R value derived from shuffled data at the p < 0.05 level
(Figure 6C; z proportion test: p < 10−10, Z score = −13.8414 for correct trials, and p < 10−10;
the same was true for incorrect trials: Z score = −6.0416, data not shown). SWRs were
collapsed across all track and performance categories to provide a sufficient number of
events for analysis (190 SWRs preceding correct trials, 67 SWRs preceding incorrect trials).
Thus, the representations reactivated during these events originated near the animal’s current
location in the center arm and proceeded away from the animal. We found similar biases
before and after task acquisition (<65% correct and >85% correct asymptotic, Figures S2A
and S2B).

We then focused on the specific path reactivated during each outbound event and found
reactivation consistent with both the correct future path and the path not taken on correct
trials. We selected SWRs with activity that represented locations past the CP at the end of
the center arm and classified these SWRs as future correct or future incorrect depending on
whether the area under the pdfs of the decoded locations past the CP was larger on the future
correct or incorrect trajectory. We found that there was a numerical bias toward greater
reactivation of the correct future trajectory but that both the correct future and incorrect
future (the path not taken) paths were reactivated during outbound events on correct trials
(Figures 6D and 6E;Figures S2C and S2D; p’s > 0.03, which is not significant when taking
into account multiple comparisons, except T2 > 85%: p < 0.001; T1: 18 and 18 SWRs, T2:
13 and 21 SWRs for 65%–85% and >85% correct, respectively). Similarly, there was
approximately equal reactivation of both the actual past path and the other possible past path
during inbound reactivation events. (Figures 6F and 6G; Figures S2E and S2F; p’s > 0.05).

DISCUSSION
We found that, as animals acquired a spatial alternation task, stronger reactivation of pairs of
place cells during SWRs was associated with subsequent correct choices. This greater
coactivation probability preceding correct trials manifested as coordinated firing in which
pairs were more active than would be expected from the activity of the individual place cells
during SWRs. In contrast, coactivation probabilities were at chance levels preceding
incorrect trials. Further, the proportion of cell pairs activated during SWRs was predictive,
on a trial-by-trial basis, of subsequent correct or incorrect choices. These changes in
coactivation probability could not be explained by differences in reward history, numbers of
SWRs preceding correct or incorrect trials, time spent at the well, or general increases in
single-cell activity. The specific trajectories reactivated during SWRs preceding correct
trials were biased toward representing sequences that proceeded away from the animal’s
current location. Interestingly, there were generally multiple SWRs preceding each correct
trial, and the trajectories represented in these SWR events included both the upcoming
correct outer arm of the maze as well as the other, incorrect, outer arm.
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Learning the best path to a goal requires representing both past paths taken and possible
future choices to reach the desired goal. Our groups’ recent demonstration that disrupting
SWRs caused a specific impairment in learning and performing outbound trials in this task
demonstrated that SWR activity was necessary for this process (Jadhav et al., 2012) but did
not link a specific aspect of reactivation to learning. Similarly, Dupret et al. (2010)
demonstrated that increases in overall SWR activity during learning were correlated with
memory of rewarded locations measured during a later behavioral session but did not report
a trial-by-trial relationship between the strength of reactivation and the immediate
subsequent choice.

Our results establish that, on a trial-by-trial basis, greater SWR reactivation is predictive of a
subsequent correct choice, suggesting that reactivation contributes to correct path selection
during learning. We found that there were generally multiple SWRs preceding each correct
trial. The reactivation events present during these SWRs tended to represent sequences of
locations that proceeded away from the animal, but across sequences both the correct and
the incorrect outer arm of the track were represented. Thus, spiking during these SWRs
could provide information about possible future choices, based on past experience, which
would then be evaluated by other brain structures. Alternatively, it is possible that these are
reverse replay events representing past trajectories from the upcoming correct outer arm. In
either case, we also note that we observed a significant bias toward reactivating the future
correct arm when animals were first performing very well (>85% correct) in track 2,
suggesting that in some cases the hippocampus may become biased toward reactivating
specific correct possibilities.

Greater coactivity and coordinated activity could support accurate evaluation of upcoming
possibilities and past experiences. Conversely, the specific reduction of coactivation
probability before incorrect trials during learning suggests that a failure to reactivate
possible choices leads to errors in decision making. At the same time, our results confirm
previous observations of, at best, a weak relationship between the content of replay or
replay-like events on each trial and subsequent behavior (Johnson and Redish, 2007;
Davidson et al., 2009; Gupta et al., 2010). Rather, reactivation during SWRs seems best
suited to provide downstream areas with information about possible paths through the
environment. In particular, coding of paths extending from the current to remote locations,
similar to what we observed during SWR reactivation, is an efficient and rapid way to
represent possible options to reach a goal (Johnson and Redish, 2007; Carr et al., 2011).
Reactivation during SWRs has also been linked to the consolidation of memories (Girardeau
et al., 2009; Nakashiba et al., 2009; Dupret et al., 2010; Ego-Stengel and Wilson, 2010),
suggesting that reactivation could contribute simultaneously to memory retrieval and to the
storage of the retrieved memories.

Previous results have established that SWR reactivation is strongest in novel environments
and becomes less prevalent as the environments become more familiar. (Foster and Wilson,
2006; Cheng and Frank, 2008; Karlsson and Frank, 2008; O’Neill et al., 2008). Additionally,
we have shown that receipt of reward also enhances reactivation and that reward-related
reactivation is strongest when animals are learning (Singer and Frank, 2009). Here we
controlled for immediate reward history by examining outbound trials that always followed
a rewarded inbound trajectory. We found that SWR reactivation reflects both novelty and
trial-by-trial variability related to the upcoming decision on that trial. Coactivation
probability during SWRs preceding correct trials was high when the environments were
novel and the animals performed poorly. Coactivity probability remained high as animals
learned the task and only dropped once animals reached >85% asymptotic performance. In
contrast, while coactivation probability preceding incorrect trials was also high when the
track was novel and animals performed poorly, this coactivation probability dropped once
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animals achieved >65% correct performance and remained lower on these trials throughout
the remainder of the training. Taken together, these findings link the strength of SWR
reactivation to the engagement of hippocampal circuits in learning and decision-making
processes. Thus, strong reactivation in novel environments probably reflects a consistently
high level of hippocampal engagement related to ongoing learning about the environment.
Similarly, strong reactivation before or after individual trials probably reflects shorter
timescale periods of engagement related to receipt of reward, task learning, and decision
making.

Rapid learning of the W-track alternation task requires an intact hippocampus, but animals
with hippocampal lesions eventually learn the task (Kim and Frank, 2009). Similarly, SWR
disruption impairs learning on this task (Jadhav et al., 2012), but animals can still learn to
perform at above chance levels. Similarly, we find SWR reactivation is increased preceding
correct trials only during early learning. This increase in reactivation was no longer present
after animals had mastered the task, indicating that it is not necessary for task performance
after learning. Thus, the lower levels of SWR reactivation seen after learning may reflect the
disengagement of reactivation from memory-guided decision making.

More broadly, the enhanced SWR coactivation probability differs in important ways from
previously observed patterns of hippocampal place cell activity that predict upcoming
choices. Unlike prospective and retrospective coding, in which individual place cells fire
differently in a location depending on the animal’s past or intended future locations (Frank
et al., 2000; Wood et al., 2000; Ferbinteanu and Shapiro, 2003; Ainge et al., 2007), these
reactivation events were nonlocal in that they emphasize place representations that are
distant from the animal’s current position. Reactivation events also represent multiple paths,
not just the path the animal has just taken or is about to take. Further, reactivation events
appeared early in task acquisition, suggesting a role in learning. We therefore suggest that
enhanced SWR reactivation may play an important role in early learning by providing
specific sequential representations of possible paths to other brain areas, while other forms
of memory-related activity may arise later during the learning process.

EXPERIMENTAL PROCEDURES
Behavioral Paradigm and Data Collection

Data from animals 1 and 2 were reported previously and the associated methods were
described in detail in Karlsson and Frank (2008). The methods for the other animals
followed the same paradigm. Briefly, male Long-Evans rats (500–600 g) were food deprived
to 85%–90% of their baseline weight and trained to run on a linear track to receive a reward
at each end of the track, in a different room from the recording experiments. After
pretraining in the linear track, animals were implanted with a microdrive array containing 30
independently movable tetrodes. After 5–6 days of recovery, animals were once again food
deprived to 85% of their baseline weight. In animals 1 and 2, the tetrodes were arranged
bilaterally in two 15 tetrode groups centered at AP −3.7 mm and ML ±3.7 mm. Each group
was located inside an oval cannula whose major axis was oriented at a 45° angle to the
midline, with the more posterior tip of the oval closer to the midline. Tetrodes in the anterior
and lateral portion of each group targeted lateral CA3, while more posterior and medial
tetrodes targeted CA1. In animals 3, 4, and 5, 15 tetrodes were arranged in a group
unilaterally centered at AP −3.6 mm and ML 2.2 mm to target CA1.

Each recording day consisted of two or three 15 min run sessions in W-shaped tracks, with
rest sessions in a black box before and after each run. Geometrically identical but visually
distinct, the two tracks were open to the room but separated from one another by a black
barrier (Figure 1A). The tracks had one reward well at the end of each arm, and animals
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learned by trial and error to perform a continuous alternation task in which, starting from the
center arm, they alternated visits to each outer arm for liquid reward (center, left, center,
right, and so on; Frank et al., 2000, 2004; Kim and Frank, 2009). Animals were allowed to
behave freely and were never forced to choose a particular trajectory. Errors were not
rewarded, and after an incorrect choice of an outer arm, no reward was given until the
animal returned to the center arm. Recordings began on the first day of exposure to T1.
Animals ran on T1 for 3 days and then ran on both T1 and T2 from day 4 onward.

Data Analysis
Behavioral data were divided into four performance categories, based on the animals’
performance on each session. These categories roughly separate sessions into periods of (1)
initial exposure to the task, (2) early learning, (3) early good performance, and (4) later good
performance. The categories divided the sessions into (1) the first session animals performed
at less than 65% correct, (2) the first session the animal performed between 65% and 85%
correct, (3) the first session animals performed above 85% correct, and (4) subsequent
sessions animals performed above 85%. Less than 65% was selected for the first category
because all animals performed at less than 65% on the first exposure to the task, the first
session in T1. Above 85% was selected for the third and fourth category because all animals
were able to perform the task in T1 at above 85% after many days of training. Because
categories 1–3 are only for the first session in which animals reach the criterion, only one
session per animal could be included in each category. Since more than one session per
animal could be included in category 4, only the first such session per day was used to avoid
counting cell pairs more than once per category. Data from all animals were included
through exposure ten for T1 and exposure seven for T2. Exposures past these were excluded
because they represented data from three or fewer of the five animals.

To detect SWRs, we recorded local field potentials (LFPs) from one channel of each tetrode,
and SWRs were detected on all tetrodes in CA1. The LFP signal from these tetrodes was
band-pass filtered between 150 and 250 Hz, and the envelope was determined by Hilbert
transform. SWR events were detected if the envelope exceeded a threshold of mean plus
three standard deviations for at least 15 ms on any tetrode in CA1. Events included times
around the triggering event during which the envelope exceeded the mean. We examined
SWRs when animals were within 20 cm of the center well moving at a linear speed less than
1 cm/s.

We also defined two measures to determine which cells to include in the analysis.
Coactivation probability per SWR was the number of SWRs in which both cells in a pair
were active, divided by the total number of SWRs. Activation probability per SWR was the
number of SWRs in which a single cell was active divided by the total number of SWRs.
Only cell pairs with coactivation of at least 0.01 or single cells with activation of at least
0.01 in either correct or incorrect trials were included to exclude cells and cell pairs that
never or almost never fired during SWRs. This resulted in the inclusion of a few single cells
that were not included in the pairwise analyses (2, 0, 5, and 21 cells from performance
categories 1–4). We therefore repeated the analyses with these cells excluded and found that
all comparisons remained the same. Only trials with at least one SWR with a pair of coactive
neurons were used for the analyses.

Our data set included only well-isolated cells with tightly clustered spikes and clear
refractory periods. Because our results involved comparisons of spiking from the same
clusters within a day, poor clustering is very unlikely to account for the effects we observed,
but we measured isolation distance (Schmitzer-Torbert et al., 2005) for each track and
performance category as a secondary check on the data. All analyses were restricted to
putative principal neurons with place fields on the track (n = 112, 122, 191, 98, and 128 for
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animals 1–5, respectively). To identify cells with place fields, we calculated the “linearized”
activity of each cell from times when animals were running forward at least 2 cm/s. The
behavioral data were separated into different spatial trajectories (e.g., A to B, B to A, and B
to C), and the animal’s linear position was measured as the distance in cm along the track
from the reward site on the start arm. All the trials when the animal was on that trajectory
were included to calculate occupancy normalized firing rate maps. We used 2 cm spatial
bins and smoothed with a 4 cm standard deviation Gaussian curve with a total extent of 20
cm. Bins with an occupancy less than 0.1 s were excluded. Cells with a peak linearized
firing rate greater than 3 Hz were considered to have a place field on the track. Generally in
this maze, cells had only one place field on the track.

Place field peak locations were determined by measuring the distance from the center well
to the peak linearized activity. Peaks less than 80 cm from the center well were deemed to
be in the center arm, while peaks farther than 80 cm from the center well were deemed past
the CP and outside the center arm. To determine which trajectory a cell’s place field was on,
we identified the trajectory with the maximum linearized activity. For cells with place field
peaks past the CP, the cells usually had place fields in similar locations on both inbound and
outbound trajectories, making it difficult to determine whether the reactivation was in a
forward or reverse direction. As such, we focused on the direction of propagation of the
spatial activity as inbound or outbound. We also noted that cell pairs that were coactive
during SWRs generally had place field peaks on the same trajectory.

We chose to examine pairwise coactivation probability during SWRs to avoid sampling
issues that arise in the analyses of sequential replay events. Identifying replay events
generally requires that each SWR contains spikes from at least five different place cells
(Karlsson and Frank, 2009) and, as a result, many events that happen to activate a smaller
number of recorded place cells cannot be examined. Further, because the number of active
place cells on the two outside arms of the W-track is never identical, there is always a bias
toward detecting replay events from one outer arm or the other, and it is not clear how to
properly compensate for this bias. This led us to use the most inclusive criterion (pairwise
coactivity during SWRs) that still allowed us to measure ensemble neural activity.

To determine whether cells were more coactive during SWRs preceding correct as compared
to incorrect trials, we computed the Z score for the difference between coactivation
probabilities during SWRs preceding correct and incorrect trials for each cell pair. For each
pair of cells with a place field on the track, we computed the coactivation probability for
each trial type:

where ncorrect (nincorrect) is the number of SWRs preceding correct (incorrect) trials in which
both cells were active and Ncorrect (Nincorrect) is the total number of SWRs preceding correct
(incorrect) trials. Our goal was to determine whether the difference in these probabilities,

, was consistently different from zero and different from shuffled data
across cell pairs. To do so, we used the standard z test for a difference in proportions to
convert  to a Z score for each cell pair. This involves estimating the SE of the difference
based on a binomial distribution:
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The Z score for each pair is then  across cell pairs. We then examined the Z
scores for each performance category and compared those both to zero and to the Z scores
derived from shuffling the outcome of each trial, while leaving the structure of neural
activity on that trial intact. This shuffling controls for the particular spatial pattern of errors
that might arise from turning biases, differences in the number of correct and incorrect trials,
etc. We used an essentially identical analysis to examine the single-cell activity across trials,
where for single cells ncorrect (nincorrect) is the number of SWRs in which an individual cell
was active before correct (incorrect) trials and all other variables are the same.

The advantage of the Z score approach is that it takes into account the number of SWRs
observed in estimating the uncertainty in the proportions of SWRs in which a given cell pair
was coactive. This approach also assumes that the differences in that proportion are
distributed according to a binomial distribution, which is true when the proportions
themselves are made up of independent draws from a Bernoulli distribution. Thus, our
analyses posit that the probability of a particular cell pair being active in a particular SWR is
the same for all SWRs. While this is probably an oversimplification given the complex
dynamics of the brain, there is no reason to think that there would be complex differences in
dependencies across SWRs before correct and incorrect trials that would result in illusory
significance values for our analyses. We also chose to use the number of cell pairs,
individual cells, or trials as the N in our statistical analyses, as is standard in the field. We
note here that our results are highly significant and consistent across individual animals and
across tracks.

We also carried out a complementary analysis to determine whether we could predict the
outcomes on individual trials. Our goal here was to use a measure that allowed us to
combine multiple run sessions from multiple animals together, and as each run session was
associated with a different number of recorded place cells, we measured the proportion of
possible cell pairs that were active before each trial. We calculated, for each run session, the
total number of possible coactive cell pairs, which is (number place cells recorded) 3
(number place cells recorded − 1)/2. We then determined, for each trial, the number of those
cell pairs that were coactive within an SWR preceding that trial and then divided that
number by the total to get a proportion.

Given that measure for each correct or incorrect trial, we then used logistic regression to
relate the proportion of coactive cells to the trial outcome (correct or incorrect). The model
was estimated based on half of the total data, subsampled to include an equal number of
correct and incorrect trials from each run session. The specific correct and incorrect trials
were chosen at random. We then tested the model prediction on the other half of the data,
once again subsampled to include an equal number of correct and incorrect trials from each
run session. We repeated that estimation and testing process 1,000 times with different sets
of correct and incorrect trials to produce a distribution of predictions and compared that
distribution across performance categories and to chance performance of 50% correct.

We also examined the content of individual SWRs. We used our previously developed
decoding approach (Karlsson and Frank, 2009) to translate the activity of neurons active
during the SWR to a trajectory through space. Briefly, for all SWRs with at least two active
place cells, we divided the SWR into 15 ms bins and for each bin used the place fields of
neurons active in that bin to derive a probability distribution function over distance from the
end of the center arm. For each bin, that pdf represented where we would expect the animal
to be on the track given that those cells had fired the observed numbers of spikes. To
determine whether a given decoded trajectory was best described as inbound or outbound,
we fit a line to samples from the sequence of pdfs plotted versus time. A positive slope
corresponds to an outbound trajectory beginning at low distances and proceeding to larger
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distances. Conversely, a negative slope corresponds to an inbound trajectory beginning at
farther distances and proceeding toward the end of the center arm. To determine whether an
SWR reactivated the past or future trajectory, we examined the total area under all of the
pdfs that represented positions past the CP on the past or future trajectory. We computed a
ratio of the areas on the past and future trajectory, (future – past areas)/(future + past areas),
such that 1 represents SWR activity that only reactivated the future trajectory and −1
represents SWR activity that only reactivated past trajectories. All SWRs with a past/future
area ratio <0 were classified as past, while all SWRs with an area ratio >0 were classified as
future. We obtained similar results with cutoffs of ±0.25 and ±0.5. For the past/future
analysis, only SWRs with at least one cell active at least 3 Hz at some point past the CP
were included. For both analyses, only SWRs with activity from at least two cells were
included. For the per trial analysis, only trials in which at least one SWR reached criteria
were included.

Finally, we noted that most SWRs included occurred when the animal was facing the well
(1,660 SWRs preceding incorrect trials and 4,325 preceding correct trials in T1, 975 SWRs
preceding incorrect trials and 2,570 preceding correct trials in T2 when animals were facing
toward the well; 31 SWRs preceding incorrect trials and 56 preceding correct trials in T1, 9
SWRs preceding incorrect trials and 14 preceding correct trials in T2 when animals were
facing away from the well and toward the choice point). Given the small number of SWRs
that occur when the animal faced away from the well, we could not compute meaningful
measures of the content of reactivation on these SWRs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Alternation Task Performance
(A) Left: overhead view of the tracks, T1 and T2, separated by a black wall (dashed line)
and the rewarded alternation sequence, center (C), left (L), C, right (R), C. Tables on the
right show when animals were exposed to each track: two sessions of T1 per day on days 1–
3 and one session of T1 and two sessions of T2 per day on day 4 and onward.
(B and C) Proportion correct on outbound trials per exposure day for T1 (B) and T2 (C).
SEM and SE for all animals (left) and proportion correct for each animal (right). Animal 1,
red; animal 2, blue: animal 3, black; animal 4, magenta; animal 5, green.
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Figure 2. SWR Coactivity Is Enhanced Preceding Correct Trials during Task Acquisition
(A) Left: diagram of one set of possible future correct and incorrect trials. Examples of
SWRs (gray bars) in the raw LFP (top) and the LFP filtered for 150–250 Hz (bottom) when
the animal was at the center well are shown.
(B) Z score for the difference in proportion of SWRs in which each cell pair was active
preceding correct and incorrect trials across the following performance categories: 1, the
first session in which the animal performed at <65% correct; 2, the first session 65%–85%
correct; 3, the first session >85% correct; and 4, the first of subsequent sessions >85%
correct. Bar indicates upper and lower quartiles, and horizontal line shows median for T1
(top) and T2 (bottom).
(C) Z score for the difference in proportion of SWRs in which each cell pair was active
preceding correct and incorrect trials for performance categories 2 and 3 (green) and 1 and 4
(black).
(D) Coactivation probability per cell pair during SWRs preceding incorrect (blue) and
correct (red) trials for performance categories 1 through 4, combined across T1 and T2. See
also Figure S1 and Table S1. *p < 0.01, **p < 0.001, ***p < 0.0001.
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Figure 3. Differences in SWR Coactivity across Correct and Incorrect Trials
(A) Two-dimensional histogram showing the proportion of cell pairs with different values of
correct versus incorrect coactivation probability for performance categories 2 and 3 (65%–
85% and >85% correct). The histogram is truncated at 0.25 on each axis for visibility but
includes 99.0% of the data. The color scale indicates the proportion of cell pairs in each bin
of the histogram. The white arrow highlights the preponderance of probability mass along
the y axis, corresponding to pairs that were inactive or minimally coactive on incorrect
trials.
(B) Same as in (A) but for performance categories 1 and 4 (<65% correct and >85% correct
asymptotic). The histogram is truncated at 0.25 on each axis for visibility but includes
98.8% of the data. A smaller proportion of the probability mass is located along the y axis
(highlighted by the white arrow) as compared to the histogram for performance categories 2
and 3 (A).
(C and D) Expected versus actual coactivation probability per cell pair during SWRs
preceding correct (red) and incorrect (blue) trials for performance categories 2 and 3 (C) and
for performance categories 1 and 4 (D). Note that there are the same numbers of correct and
incorrect data points in each plot but for performance categories 2 and 3, most of these
incorrect data points lie on the x axis.
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Figure 4. Prediction of Subsequent Correct and Incorrect Responses with Pairwise Spiking
Activity during SWRs
The graph shows the proportion of trials on which the trial outcome, correct or incorrect,
was accurately predicted by a logistic regression model on the average proportion of cell
pairs active per SWR for all trials from performance categories 2 and 3 (65%–85% and
>85%; green line), for performance category 1 (<65%; black solid line), for single cells
active per SWR for performance categories 2 and 3 (65%–85% and >85%; gray dashed
line), or for a model based on the prior outbound trial trajectory and correct or incorrect
performance (gray solid line). *p < 0.01, **p < 0.001, ***p < 0.0001.
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Figure 5. Similar Time Spent at Well and Number of SWRs Preceding Correct and Incorrect
Trials
(A) Time spent at the center well preceding correct and incorrect trials for T1 (top) and T2
(bottom).
(B) Number of SWRs preceding outbound trajectories across performance categories for T1
(top) and T2 (bottom). Only trials in which at least one SWR met criteria for analysis were
included. *p < 0.01. See also Figure S1.
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Figure 6. SWR Reactivation Contains Information about Possible Trajectories
(A) Diagram of inbound (gray arrow) and outbound (black arrow) trajectory directions.
(B) Proportion of SWRs per trial in which the order of cells active during the SWR was
more consistent with outbound (dark gray) or inbound (light gray) directions in T1 (top) and
T2 (bottom).
(C) Distribution of slopes of best fit line to decoded locations across time bins.
(D) Diagram of an inbound trial and the subsequent correct future trajectory (dark gray
arrow) and incorrect future trajectory that was not taken (light gray arrow).
(E) Proportion of SWRs per trial in which cells active during SWRs have more place field
activity on the future correct (dark gray) or future incorrect (light gray) trajectory in T1 (top)
and T2 (bottom). *p < 0.01, **p < 0.001, ***p < 0.0001. Only trials in which at least one
SWR met criteria for analysis were included. See also Figure S2.
(F) Diagram of inbound reactivation corresponding to the actual past path taken and the
other past path.
(G) Proportion of SWRs per trial in which cells active during SWRs have more place field
activity on the most recent past (dark gray) or other (light gray) past trajectory in T1 (top)
and T2 (bottom).
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