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Abstract 

It is argued that the vectors of N -extended supergravity theo­

ries should be thought of as self-dual tensor fields, and that they 

contribute to the anomalies of the (S)U(N) currents. Some im­

plications of these anomalies are discussed. The total anomaly is 

found to vanish for N > 4, so the composite gauging scenario is 

consistent in these cases. 

lThis work was supported in part by the Director, Office of Energy Research, Office of High 

Energy and Nuclear Physics, Division of High Energy Physics of the u.s. Departmtnt of 
Energy under Contracts DE·AC03·76SF00098 

~Miller Fellow in Thoeoretical Physics 

3 Participating guest at Lawrence Berkeley Laboratory 

The scalars of an extended supergravity theory parameterize a coset space 

G / H, where G is a noncompact Lie group and Hits maximal1y compact 

subgroup. The theory has a physical global G symmetry acting on al1 the 

fields, but can be written with a global G symmetry acting only on the bosons 

and a local H symmetry acting on the fermions [1]. In this formalism the 

scalars are treated as a vielbein 11 transforming under both G and H. After 

noting that the compact (H) part of the "left invariant one form" 1I-1d1l 
transforms as a gauge field under H transformations, Cremmer and Julia 

conjectured that a dynamical mechanism could make these composite vector 

fields physical, resulting in an effective low energy theory with a gauged H 

group [1]. This scenario has important consequences but is very difficult to 

judge quantitatively, as it involves bound state problems. 

In a recent paper [2] it was suggested that insight into this conjecture 

could be found by studying the question of anomalies in the H symmetry~ 

This work was based on the study of anomalies in nonlinear sigma models 

[3]. Such anomalies would imply that the formulation of the theory with aux­

iliary scalar fields and a local H invariance is not equivalent to a "physical 

gauge" formalism, and that the H symmetry could not become dynamically 

gauged. The authors argued that only fermions contribute to this anomaly 

and, adding the contribution of the spinors and Rarita-Schwinger fields, con­

cluded that the symmetry was indeed anomalous. This calculation is some­

what delicate since the scalar vielbein transforms under both G and H. Thus 

while the vector field strengths transform under G, their product with the 

(inverse) vielbein transforms under H. In this letter this problem is avoided 

by choosing a physical gauge. The results suggest that the calculation of ref. 

[2] is incorrect. 

A natural physical parameterization of the scalar vielbein is 11 = e~, with 

<P in the noncompact part of the algebra [4]. In order to remain in this 

gauge, G transformations must °be accompanied by particular H transforma­

tions, and the only remaining symmetry is a global G invariance. Unlike the 

G (is) H symmetry, this transformation acts on the states of the theory, giving 

a physical symmetry. The compact transformations act linearly on the fields 

generating a global H symmetry. The noncompact transformations are non­

linear, with the scalars transforming as Goldstone bosons to lowest order. 

The other fields transform linearly under the induced local H transforma­

tions. It must be emphasized that the parameters of these H transformations 
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helicity 2 3/2 1 1/2 0 -1/2 -1 -3/2 -2 

8U(8) 1 8 28 56 70 56 28 8 1 

field ea 
p. tPL, ? xiJK ¢IJKL 

XJJK ? tP~1 er 
p. 

Table 1: The Particles and Fields of N = 8 8upergravity 

are not arbitrary, but are particular combinations of the group elements and 

the scalar fields. Thus, while the theory has the structure of a gauge theory, 

it has no elementary gauge fields. The composite gauge fields are seen by 

defining the operator 

V-1dV == d + Q + P == D + P (1) 

Here P - de/> is in the coset and transforms covariantly. Q is in the subgroup 

and acts as a gauge field for the induced composite gauge transformations, 

so that D is the H-covariant derivative. The lagrangian has the structure 

of a locally gauge invariant theory with respect to P and Q, and it is again 

reasonable to invoke dynamical gauging. It should be noted, however, that 

the field strength of the gauge symmetry is restricted by the Maurer-Cartan 

equation 

F[Q] == (d + Q) 1\ (d + Q) = -P 1\ P . (2) 

This immediately follows upon squaring the operator of eq. (1). 

To study the anomalies of the H transformation, it is necessary to know 

how the fields of the theory transform. At this point it is useful to be specific 

and to consider N = 8 supergravity. Here the symmetry group is E7,7, which 

has 8U(8) as its maximally compact subgroup [1]. The 8U(8) transformation 

is that of the physical supersymmetry algebra [5] 

The particle and field content of the theory are summarized in table 1. 

As indicated there, there is a problem with writing the helicity one par­

ticles. The other particles are represented by fields transforming covari­

antly under 8U(8) (with the 70 scalars satisfying the "reality" condition 

e/>IJKL = fIJKLMNOPe/>MNOP)' The helicity one states, however, cannot be 
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represented by 28 vector fields as there is no real 28 dimensional represen­

tation of 8U(8). The solution of this dilemma is that in the 8U(8) transfor­

mation F'~~ = A1KAJLF(j"r, iFp.v should be interpreted as 

This implies that the 8U(8) transformations rotate the Bianchi identity 

dF = 0 into the equation of motion dF = 0, and that 8U(8) covariance 

only holds on shell. 80me insight into the peculiar form of the 8U(8) trans­

formations can be found by examining the form of the theory with eight 

Majorana (real) gravitini 'l!~ == tP~ + tP~/' This is mathematically equivalent 

to using the Weyl gravitini, but now i 'l!~ must be interpreted as i'l'l!~. For 

the helicity one particles the manifestly covariant object is 

l. IJ - F" IJ 'p-IJ 
",,,= IA,,-a IA'" (3) 

which is a 28 of 8U(8). At the linearized level, and using the equations of 

motion, yIJ satisfies 

yIJ = i 7IJ (4) 

and 

(5) 

It is thus a "self-dual" tensor. As required by CPT invaria"nce, its complex 

conjugate is an anti-self-dual tensor in a 28 of 8U(8). 8ince it is a chiral 

field, it can contribute to anomalies. This is also plausible [6] since it is not 

possible to write a lagrangian that implies eqs (4) and (5), without breaking 

y:t up as in eq. (3), thereby losing manifest 8U(8) covariance. This is 

analogous to the case of a real self.,.dual tensor field in 4n + 2 dimensions, for 

which no manifestly Lorentz covariant lagrangian exists [7]. 

The full nonlinear equation of motion of this field can be written relatively 

simply using this formalism4• It is 

7IJ = i t lJ (6) 

where t IJ is the "supercovariantized" generalization of yIJ (appropriate 

fermion bilinears are added). The Bianchi identity, eq. (5), becomes 

(7) 

"This is derived from ref 11], where ':,; is denoted 1~v and equals "V' 1';',. 
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Expanding and using explicit indices, this gives 

(8) 

This equation shows the typical gauge invariant "look" of the theory. One 

can again show that F must satisfy the Maurer-Cartan equation (2) for the 

consistency of the theory by applying D to eq. (8). The same result also 

arises in the gravitino sector. 

We can now examine the question of anomalies. In general there are 

two types of anomalies: a pure "gluon" anomaly derived·from the six form 

tr F /\ F /\ F [8], and a mixed anomaly derived from tr F /\ tr R /\ R, where R 

. is the Riemann two form. The latter anomaly only exists if there is a U(I) 

factor in H~ There is a question of interpretation in these formulae, since in 

the fundamental theory F is a composite object restricted by the Maurer­

Cartan equation. However, if one is concerned with dynamical gauging, the 

resulting field strength should be thought of as that of a physical gluon, and 

the naive interpretation should be correct. 

. In principle the anomalies could be calculated directly from Feynman 

diagrams, but this would be somewhat tedious. It is also unclear how to 

evaluate the self-dual tensor contribution. The gauge field Q couples to an 

object like F" ... A", which is not covariant, so the trick used for the gravita­

tional anomaly calculation in reL [6] cannot be used. Fortunately it is now 

known that anomalies can be easily evaluated by the Atiyah-Singer index 

theorem [9]. The gravitational indexes of the three fields, used for the axial 

anomaly, are 

1 (1/2) 
A II x,/2 ' 
A == . h / -+ (1 - pJ/24) 

, sm Xi 2 

1 (1) A 1 II A x - 2coshxi -+ 2 (1 + Pl/12) 
2 i" 

(9) 

The expansions above are written for four dimensions, with 

~ 2 1 
PI == ~ Xi = - -2 tr R /\ R . 

. 811" • 
For anomaly calculations, fermionic fields give an additional minus sign. The 

results for the spin 1/2 and spin 3/2 fields are given in refs [10]. The gauge 
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1 Xl XIJ X IJK XIJKL 

Co 1 N N(N-I) N(N-IHN-2) N{N-IHN-2HN-3) 
2' 3' 4! 

C2 0 1 N-2 (N-2)(N-3) (N-2)(N-3)(N-4) 
-I-! 2! 3! 

C3 0 1 N-4 (N-6)(N-3) (N -8)(N-3)(N -4) 
l! 2! 3! 

Table 2: Group Theory Factors for SU(N) 

anomaly is given byeq. (9) multiplied by the Chern class (tr e'F/2"). In four 

dimensions this means that the anomaly contribution of a helicity h field is 

summarized by the six-form 

--(- )2h 2h tr F /\ F /\ F - tr F /\ tr R /\ R ., -i ( (2 - (2h)2) ) 
3!(211")3 8 

(10) 

The extension to arbitrary helicity fields is found by considering them to be 

symmetric products of Dirac spinors. 

The other ingredient neeaed for the calculation is the value of the group 

theory traces. In N-extended supergravity the symmetry group is SU(8) for 

N = 8 and SU(N)®U(I) for N ::::; 6. If there is a U(I) factor, eq. (10) gives 

rise to four possible anomalies. These involve the group theory quantities 

str ~ = qCo 
strA~~ lco 
str ~ ~o ~6 q 60b C2 

str ~o ~bxc dobc C3 ., (11) 

where str denotes the symmetrized trace and q is the charge of the represen­

tation. The dimensions Co and the Casimirs C2 and C3 are given in table 2. 

They can be calculated using the Chern class, but are more easily written 

by finding their zeros, and using 
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SU(6) Wgr •• qA W YM D qC q3 A 

1/;: 6) -21 6 3 1 1 6 

F,IJ 
2 152 4 30 -2 2 8 120 

F_6 1-6 " -6 " 0 0 -216 

X~JK 203 1 60 1 0 18 540 

X~5 6_5 " -30 " 1 -5 -750 

LW 0 0 0 0 

Table 3: The'Anomaly Contributions' for N = 6 supergravity. The W's are 

the,weights of the different helicities. 

For N = 8 there is only one possible anomaly. The Casimir C3 has the 

ratios 1 : 4: 5 for the 8, 28 and 56 of SU(8). Substituting this into eq. (10), 
one sees that the anomaly vanishes : 

(-3) x 5+ (2) x 4 + (-1) x 1 = 0 

There is thus no obstruction to the dynamical gauging of SU(8) in N = 8 

supergravity. It is also interesting to examine the work of Ellis, Gaillard 

and Zumino [11] in this light. They attempted to study the results of a 

composite gauging by considering the linear N = 8 supermultiplet containing 

the composite gauge field. Some of this multiplet was then interpreted as 

the physical composite particles. One constraint used was that the spin 1/2 

particles be in an anomaly free representation, which led to the breaking 

of SU(8) to SU(5). It is amusing that, using eq. (10), the entire multiplet 

is already anomaly free. However, as shown above, it is inconsistent to 

couple unconstrained gauge fields to self-dual tensors (and gravitini), so the 

restriction to spinors may be justified. 

The N = 6 case is summarized in table 3. There is a remarkable can­

cellation and all four anomalies vanish. A similar cancellation occurs for 

N= 5. 

In N 4 supergravity both the SU(4) and the Uti) symmetries are 
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anomalous. In that case, the self-dual tensor is a 6 of SU(4), which is a real 

representation. The entire SU(4) anomaly thus comes from the 4 spinor and 

the 4 spin 3/2 field. As the anomaly is proportional to the helicity, there is 

a relative factor of 3 between these contributions, and they do not cancel. 

The coefficient of the pure Uti) anomaly is 

(-3) x 4 x 13 + (2) x 6 x 23 + (-1) x 4 x 33 = -24 , 

and that of the mixed Uti) gravitational anomaly is 

(-21) x 4 xl + (4) x 6 x 2 + (1) x 4 x 3 = -24 , 

so they, too, do not vanish. As the scalars of N = 4 supergravity are in 

the coset SU(I,I)/U(I), there is no composite SU(4) gauge field and that 

symmetry would not be expected to become dynamical. The Uti) symmetry, 

on the other hand, would appear to be on the same footing as the SU(8) of 

N = 8 supergravity or the U(I)'s of N = 5 and N = 6 supergravity, and 

it is rather surprising that it is anomalous. For N < 4, all the symmetries 

are anomalous (except for SU(2) which has no complex representations), and 

there are no scalars to form composite gauge fields. 

Aside from the issue of dynamical gauging, it is unclear what, if any, is. 

the significance of these anomalies. Certainly if the anomaly vanishes, as in 

N > 4 supergravity, there can be no problems. If there are no scalars, as 

in the SU(4) of N = 4 supergravity, the Maurer-Cartan equation is simply 

F = 0 so, presumably, the anomalies should be irrelevant. For the Uti) 

subgroup of N = 4 supergravity F = -p 1\ P'. This means that the pure 

Uti) anomaly becomes 

tr F 1\ F 1\ F -+ -(P 1\ p')3 , (12) 

which vanishes. However, the mixed anomaly becomes 

- P 1\ P' 1\ tr R 1\ R , (13) 

which can give rise to a U(l) anomaly in the fundamental theory. 

The main issue has now been settled, but for completeness the question 

of composite anomaly cancellations in other dimensions can also be studied. 

I shall consider the maximal supergravity in six dimensions in some detail, 

and simply give the results of the other cases. In six dimensions particles 
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are classified by the little group SO(4) ~ SU(2) ® SU(2). The "N = 4 + 4" 

supergravity has two Sp(4) symmetries. The physical supersymmetries form 

a left-handed spinor in a four of one Sp(4) and a right-handed spinor in a 

four of the other Sp(4). As befits a maximally supersymmetric theory, there 

are a total of sixteen real components. The supersymmetry algebra is 

where the SO(16) indices of the Clifford algebra are broken into a (2,1,4,1) 

and a (1,2,1,4) of SU(2) ® SU(2) ® Sp(4) ® Sp(4). The states of the theory 

are thus given by the spinors of SO(16) broken into representations of this 

algebra. The bosons are given by 

(3,3,1,1) Efl (1,1,5,5) Efl (2,2,4,4) Efl (3,1,1,5) Efl (1,3,5,1) 

and the fermions by 

(3,2,1,4) Efl (2,3,4,1) Efl (1,2,5,4) Efl (2,1,4,5) 

The chiral fields of the theory are thus a self-dual tensor F:s, a left-handed 

gravitino tfJi,., a left-handed spinor X.,s and the opposite chirality fields ",ith 

the two Sp(4)'s interchanged. 

In six dimensions anomalies come from square graphs, and there are six 

possible nonvanishing combinations of external fields. Using the notation 

Yn == Li(Yi)n, the Chern classes of the 4 and 5 of Sp(4) can be written to the 

desired order as 

2 

ch(4) ~ 
4 + Y2 + Y2 _ Y4 

2 32 48 

ch(5) Y. 
~ 5 + Y2 + 12 

Using theseformulae (with z instead of Y for the second Sp(4)) together with 

eq. (10), one obtains the family index of the fields: 

( 
X2 x. x~ ) ( Y2 yi Y4) ( Z4 ) 1--+--+-- 4+-+--- 5+Z2+-
24 2880 1152 2 32 48 12 

(
4 + X2 _ 7 x. + x~) (5 + Z2 + Z4) 

3 360 72 12 

( 
19x2 49x4 43X~) ( Z2 zi Z4) 

5 + - + - - -- 4 + -2 + 32 - 48 24 576 1152 
(14) 
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One must next add these expressions, with an extra minus sign for the 

fermions, and antisymmetrize in Y and z to take account of the right-handed 

fields. When this is done, the entire expression vanishes up to and including 

eighth order terms! The anomaly, which is derived from the eight-form piece 

of the expression thus vanishes. 

This method can be used in all the remaining cases. In six dimensions 

the only other pure supergravity which does not have a fatal gravitational 

anomaly is the N = 2 + 2 theory, which has an Sp(2) ® Sp(2) symmetry. 

Unlike the N = 4 + 4 theory, the Sp(2)'s are anomalous, but there are 

no scalars to make composite gauge fields. In eight dimensions the N = 1 

supergravity has a U(I) invariance, and the.N = 2 a U(I) ®SU(2) invariance. 

The latter case is similar to four dimensions in that the three-index tensor 

from eleven dimensions rotates under the U(I), and should be thought of 

as a complex self-dual tensor. The SU(2) is trivially anomaly free, as its 

representations are real. In both theories the U(I) symmetry is anomalous. 

However only the N = 2 theory has the relevant fundamental scalars. 

Finally we come to ten dimensions. There the N = 1 and the nonchiral 

N = 1 + 1 supergravities have no symmetries, and the chiral N = 2 su­

pergravity has an SO(2) ~ U(I) invariance. This symmetry is anomalous 

and no dynamical vector should form. This case is somewhat unusual since 

when the Maurer-Cartan equation is used all the anomalies vanish. The only 

possible anomaly remaining is analogous to the mixed anomaly of eq. (13). 

However, in ten dimensions this becomes 

-p 1\ p' 1\ trRS , 

which vanishes by the antisymmetry of R. There are thus no anomalies in 

the fundamental theory. 

The main results of this paper can be summarized as follows. In super­

gravity theories one should work with the physical symmetry, and not the 

fake local symmetry. The self-dual combination of the vector field strengths 

and their duals transforms covariantly under this symmetry and contribute 

to the anomalies of the compact part of the group. Such anomalies may 

affect the consistency of the theories and make different formalisms inequiv­

alent. Furthermore, they ruin the possibility of dynamical gauging in the 

theory. In four dimensions only the U(I) of N = 4 supergravity has these 
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anomalies. All the symmetries of N > 4 supergravity are anomaly free and 

could become gauge symmetries in the effective action. 
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