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Abstract

Confronting Complexity in Marine Population Dynamics and Management

by

Owen Ruiya Liu

Species dynamics and interactions in nature often fail to conform to classical ecological

models because species interactions can be driven by environmental forcing in complex

ways. Appropriate management requires an understanding of how these biotic and abiotic

forces jointly drive dynamics, particularly for valuable resources that face the additional

pressure of human harvesting. My research uses modern quantitative tools for spatial and

time series analysis to help unravel complex ecological dynamics. The first part of the

dissertation uses nonlinear time delay embedding to reconstruct and analyze species in-

teractions in a California kelp forest across decades of environmental variability. We show

that environmental context greatly alters the strength and direction of species interac-

tions, and therefore equilibrium assumptions about kelp forest community dynamics are

likely inadequate for predicting how these systems will respond to environmental change.

The second portion of the dissertation investigates a human-wildlife conflict between

California sea otters and the southern California red sea urchin fishery at a productive

fishing ground. We use Bayesian models that combined fishing and otter predation to

reconstruct the past dynamics of the sea urchin fishery and predict the likely effects of

future otter population growth. We find that in the past, the urchin fishery rather than

otter predation contributed to urchin population decline, but in the near future, contin-

ued sea otter population growth will severely reduce sustainable fishery harvest levels.

In the final part of the dissertation, I investigate broad spatial patterns in interannual
vii



fluctuations in the distributions of two important harvested species in the eastern Bering

Sea: snow crab and one of its primary predators Pacific cod. I show how both species dis-

tributions respond to environmental gradients related to temperature and depth, but in

distinct and often opposite directions, leading to emergent spatial patterns in expected

predation risk. In combination, the projects in my dissertation reveal how long term

spatial and time series data can be leveraged through modern quantitative methods to

better understand and manage dynamic species distributions and interactions.

viii



Contents

Curriculum Vitae vi

Abstract vii

List of Tables x

List of Figures xi

Introduction 1

1 Environmental Context Dependency in Species Interactions 5
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Recovery of an Endangered Species Threatens a Harvested Resource 33
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



3 Environmental Variability Drives Predation Risk: A Bering Sea Exam-
ple 75
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Bibliography 110

x



List of Tables

1.1 Multivariate S-map models for each species. ρ is the predictive skill, MAE
is mean absolute error between observations and predictions. All signifi-
cantly cross-mapped variables were included as predictors. . . . . . . . . 27

2.1 Data used in model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2 Quantities estimated as combinations of the fitted parameters . . . . . . 64
2.3 Parameters of the Pella Tomlinson surplus production model, common to

all four models developed in the text . . . . . . . . . . . . . . . . . . . . 65
2.4 Parameters specific to each of the four predation models . . . . . . . . . 65
2.5 Parameter fits for the linear predation model. . . . . . . . . . . . . . . . 69
2.6 Parameter fits for the predation rate model. . . . . . . . . . . . . . . . . 70
2.7 Parameter fits for the predator satiation model. . . . . . . . . . . . . . . 70
2.8 Parameter fits for the predator functional response model. . . . . . . . . 71
2.9 Model comparison using leave-one-out log-likelihoods of CPUE estimates 73

xi



List of Figures

1.1 Raw data used in the study. . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Reconstructed kelp forest interaction web. . . . . . . . . . . . . . . . . . 17
1.3 Distributions of all estimated interactions. . . . . . . . . . . . . . . . . . 20
1.4 Macrocystis effects on Pterygophora. . . . . . . . . . . . . . . . . . . . . 22
1.5 Competition and herbivory under variable environmental conditions. . . 24
1.6 Simplex forecasting for all species. . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Simplex forecasting for all species . . . . . . . . . . . . . . . . . . . . . . 28
1.8 Output of univariate S-map forecasting for all species. . . . . . . . . . . . 29
1.9 CCM results for all species-species and species-environment interactions. 30
1.10 Example multivariate attractor . . . . . . . . . . . . . . . . . . . . . . . 31
1.11 Box-and-whisker plots of estiamted species interaction strengths. . . . . . 32

2.1 Sea urchin fishery landings . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Otter population growth along the California coast and at San Nicolas

Island. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 Estimated urchin population size over time. . . . . . . . . . . . . . . . . 51
2.4 Exploitation rate of human fishers and sea otters at San Nicolas Island. . 53
2.5 Simulated maximum sustainable sea urchin yield. . . . . . . . . . . . . . 55
2.6 Simulated future sea urchin yield. . . . . . . . . . . . . . . . . . . . . . . 57
2.7 Model 1 prior and posterior parameter distributions. . . . . . . . . . . . 68
2.8 Model 2 prior and posterior parameter distributions. . . . . . . . . . . . 69
2.9 Model 3 prior and posterior parameter distributions. . . . . . . . . . . . 71

xii



2.10 Model 4 prior and posterior parameter distributions. . . . . . . . . . . . 72

3.1 Eastern Bering Sea study area. . . . . . . . . . . . . . . . . . . . . . . . 80
3.2 The first two spatial factors describing snow crab and Pacific cod distri-

butions in the Eastern Bering Sea. . . . . . . . . . . . . . . . . . . . . . 86
3.3 Values of the first spatio-temporal factor for encounter probability in each

year in the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4 Loadings for each species on to each spatial and spatio-temporal factor. . 90
3.5 Loadings of all classes on to the first two factors for spatio-temporal vari-

ation in positive abundance. . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Abundance-weighted center of gravity for each class across the study period. 93
3.7 Correlations between species abundances and between abundances and

temperature anomalies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.8 Size-frequency distributions for the five classes in the model. . . . . . . . 101
3.9 The third spatial factor for average encounter rate and positive abundance.102
3.10 The second spatio-temporal factor for average encounter rate. . . . . . . 103
3.11 The third spatio-temporal factor for average encounter rate. . . . . . . . 104
3.12 The first spatio-temporal factor for positive abundance. . . . . . . . . . . 105
3.13 The second spatio-temporal factor for positive abundance. . . . . . . . . 106
3.14 The third spatio-temporal factor for encounter rate. . . . . . . . . . . . . 107
3.15 Predicted log-abundance of immature snow crab across the EBS in each

year in the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.16 Predicted log-abundance of medium-sized Pacific cod across the EBS in

each year in the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xiii



Introduction

Ecologists, conservation biologists, resource users, and managers all depend upon an

accurate understanding of species population dynamics. In an era of elevated human

impacts on natural systems, understanding the drivers of change in those systems is

more important than ever. But populations observed in nature often fail to conform to

classical ecological models because ecological processes like competition and predation

interact with abiotic forcing in complex, often nonlinear ways to produce chaotic emergent

dynamics. Species that interact with humans can display especially complex dynamics,

thereby exacerbating human-environment conflicts. My dissertation uses a collection

of modern, data-driven statistical modeling tools to confront ecological complexity and

better understand and predict the dynamics of species in nature.

The first part of the dissertation uses empirical dynamic modeling (EDM) to reconstruct

and analyze species interactions in a California kelp forest across 30 years of environ-

mental variability. As a fundamentally nonlinear approach to multivariate analysis that

uses time delay embedding, EDM is flexible in its application to the complex, state-

dependent dynamics that characterize many ecosystems. In applying the method to

existing monitoring data from subtidal kelp forests, we reveal how environmental con-

text greatly alters the strength and direction of species interactions. In particular, while

the dynamics of the foundation species—the giant kelp Macrocystis pyrifera—are an im-
1



CHAPTER 0. INTRODUCTION

portant driver of the dynamics of other, associated species, its interactions and role in

the ecosystem are strongly dependent on prevailing environmental conditions. We show

how estimated species interactions may vary in strength and direction depending on the

current ecosystem state, revealing how environmental fluctuations drive kelp forest com-

munity dynamics. The significant context dependency in species interactions found in

the study argues for a greater utilization of long term data and empirical dynamic mod-

eling in studies of the dynamics of other ecosystems. More generally, we show that long

term ecological monitoring data can be used not just for looking at trends, but for deep

ecological inference, and therefore EDM should be used as a complement to controlled

ecological experiments to understand species dynamics in real ecosystems.

The second portion of the dissertation investigates a human-wildlife conflict playing out

in the same southern California kelp forests. An important keystone predator, the en-

dangered southern sea otter (Enhydra lutris nereis), has been recovering and recolonizing

its historic range, but is now threatening the existence of a fishery for one of its preferred

prey, the red sea urchin (Mesocentrotus franciscanus). The goals of the study were to

reconstruct past influences of the fishery and otter predation on the sea urchin resource,

and predict the likely effects of continued otter population growth on urchin fishery

sustainability. I use urchin fishery landings and otter population data to fit Bayesian

biomass dynamics models, extending these traditional fisheries models to include multi-

ple representations of otter predation. We show that although predation by otters has

had a negative effect on sea urchin populations, this effect has historically been small

when compared to the greater pressure put on the resource by the fishers themselves.

In the future, though, continued population growth of sea otters will reduce sustainable

fishery harvest levels and possibly preclude the urchin fishery altogether from some areas.

The quantitative characterization of the fishery-otter conflict can inform future urchin
2



fishery management actions, and my findings have relevance to the broader literature on

recovering natural predators and human-wildlife conflict in managed ecosystems.

In the final part of the dissertation, I tackle another complex species interaction that

has significant ramifications for two valuable fisheries in the eastern Bering Sea: snow

crab (Chionoecetes opilio) and Pacific cod (Gadus macrocephalus). Both snow crab and

Pacific cod are subject to intense fishing pressure, but their spatial distributions are

known to respond to environmental variability in bottom temperature and winter sea ice

extent. Moreover, Pacific cod is a known predator of small snow crab, but importance

of predation relative to the influence of the environment on spatio-temporal snow crab

dynamics is unknown. In the study, we use a dynamic multispecies distribution model to

uncover the major drivers of spatial and temporal variation in Pacific cod and snow crab

distributions in the Bering Sea and investigate their interaction. Utilizing more than 30

years of spatially-explicit, fishery-independent data on the distribution and abundance of

snow crab and cod, we show how both species are likely responding in divergent ways to

environmental variability, meaning that their distributions should significantly overlap

only under specific environmental conditions. We find further evidence of this in the

strong negative correlations between abundances of cod and crab that manifest only in

specific, but predictable locations. We propose that in the eastern Bering Sea, environ-

mental variability drives large-scale changes in Pacific cod and snow crab distributions,

which in turn lead to greater distributional overlap and presumed predation risk in cer-

tain years. Our analyses are relevant to the sustainable management of the snow crab

fishery, while the statistical approach is a powerful tool for understanding pattern in

complex multispecies dynamics more generally.

Ecologists are entering a new, exciting era in our ability to characterize and predict com-

plex ecosystem dynamics. I show through multiple projects in my dissertation how careful
3



CHAPTER 0. INTRODUCTION

analysis of long term spatial and time series data with modern statistical techniques can

lead to ecological insights. Together, my dissertation projects emphasize the importance

of both short and long term environmental variability in driving species distributions

and the strength of their interactions. Furthermore, I show how these same analyses

can be utilized to manage human-wildlife conflict and harvested resources. Beyond the

specific cases examined in my dissertation, the approaches I use have broad applicability

to the understanding of species distributions, dynamics, and interactions in any natural

or human-dominated ecosystem.

4



Chapter 1

Environmental Context Dependency

in Species Interactions

Abstract

Ecological interactions are not uniform across time. They commonly vary with environ-

mental conditions. Yet, interactions among species are often measured with short-term

controlled experiments whose outcome can depend greatly on the particular environ-

mental conditions under which they are performed. Running multiple experiments is one

option to address this context challenge, but experimental investigation becomes infea-

sible over longer time frames. As an alternative, we utilize empirical dynamic modeling

applied to a 30-year time series from coastal kelp forests to estimate species interactions

across a wide range of environmental conditions. We show that environmental context

greatly alters the strength and direction of species interactions. In so doing, we confirm

and extend results from previous studies on the utility of empirical dynamic modeling.

We identify potentially important but understudied kelp forest dynamics, underscoring
5



CHAPTER 1. ENVIRONMENT AND INTERACTIONS

the importance of specifically studying variation in interaction strength rather than mean

interaction outcomes. The significant context dependency in species interactions found

in this study argues for a greater utilization of long-term data and empirical dynamic

modeling in studies of the dynamics of other ecosystems.

Introduction

Interactions between species drive patterns of diversity, stability, resilience, and produc-

tivity in nature [1]–[4]. In any ecosystem, the collection of species interactions deter-

mines community dynamics. Until recently, most studies viewed these dynamics—e.g.,

the bleaching and recovery of a coral reef, or the assembly and disassembly of terrestrial

plant communities—as processes resulting from static, predictable species interactions.

However, the observation that species interactions are not temporally uniform [5]–[8]

calls into question assumptions of interaction stability.

Ecologists recognize now that important species interactions may vary over time, but

this context dependency remains difficult to measure and describe. Experiments that

measure interactions are generally performed at only a few places over a relatively short

window of time. They are therefore subject to a specific environmental context that may

not encompass the full range of conditions experienced by that ecosystem over longer

time scales [9]. The resulting narrow perspective increases the chance that the profound

influence of environmental context on the outcome of species interactions ranging from

keystone predation[7], to competition[5], [10], [11], to protective symbioses[12]–[14] will

remain underappreciated.

Moreover, even when context dependency of species interactions has been examined,

studies commonly focus on estimating mean interaction strengths, rather than more com-
6



INTRODUCTION

prehensive examinations of interaction variance [8]. This focus may be misguided, since

interactions that are variable in magnitude and direction—and therefore “weak” when

averaged—may actually be some of the most important in driving community dynamics

[4]. If key species interactions are variable in this way across environmental gradients,

then important species interactions may be dismissed as insignificant observational noise.

It is therefore critical to be able to place interspecific interactions into their appropriate

environmental contexts. Controlled experiments can sort out the relative and interactive

effects of a few orthogonal environmental drivers at a time; for example, examination of

the effects of ocean warming and acidification on algal competition[15]. But as species

interaction webs and lists of important environmental variables grow in size, fully factorial

experimental designs quickly become unwieldy. Instead, a complementary approach to

these difficulties inherent in examination of species interactions in a variable environment

is to a) collect ecological observations over a long time period, across a large range of

environmental contexts, and b) employ analytical methods that can directly estimate

context-dependent species interactions from those observations. Such an approach could

help to characterize environmental contingencies in species interactions and explicitly

examine interaction variability.

One potential option is to use empirical dynamic modelling (EDM[16]) to estimate a

varying species interaction network and establish environmental context dependency in

interaction strength and direction. Empirical dynamic modelling uses information from

single or multiple time series to empirically model relationships between variables through

the reconstruction of dynamic attractors (https://youtu.be/8DikuwwPWsY). The gen-

eral modelling framework for all EDM methods is readily adaptable to many different

sorts of time series variables, including environmental variables manifesting at different

scales [17]–[19]. Because the methods are specifically designed for nonlinear dynamic
7
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CHAPTER 1. ENVIRONMENT AND INTERACTIONS

systems, EDM—in theory—should be able to illuminate context-dependent patterns in

species interactions.

Recently-developed EDM methods exist for uncovering dynamic species interactions from

time series data [16], but these methods have to date been applied only to simulated and

planktonic communities. Their utility to the study of other ecological systems remains

untested. Here we extend the exploration of dynamic species interactions using EDM to

giant kelp forests in southern California, a diverse and temporally dynamic ecosystem

in which many important species interactions are well-documented through decades of

experimental and comparative studies [20]–[22]. The study of kelp forests has been foun-

dational to ecological theory, especially regarding the relative influence of top-down and

bottom-up structuring forces in ecosystems [23]–[27]. Recently, however, findings from

long-term kelp forest research programs have begun to challenge many long-held beliefs

about the drivers of kelp forest ecosystem dynamics [28]. In particular, a longer-term

perspective has led to a recognition of the importance of environmental context—such as

level of physical disturbance or the current state of El Niño conditions—for understand-

ing kelp forest processes [29]–[32]. In this study we analyze long term monitoring data[33]

from kelp forests at San Nicolas Island—a small, remote member of the California Chan-

nel Islands in the northeast Pacific—to explore the efficacy of EDM in unraveling the

context dependence of kelp forest ecosystem dynamics.

To characterize environmental context dependency in kelp forest interactions between

species, we take three general steps (see Methods; A full step-by-step description and

reproducible code used to produce all analyses and figures are available in this online

repository). First, we use empirical dynamic modeling causality tests called convergent

cross-mapping [34] to construct a kelp forest species interaction network directly from

time series data. In so doing, we test for all unidirectional causal signals between five
8
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INTRODUCTION

common kelp forest species, as well as between five exogenous environmental variables

and those species. Second, for each identified causal link between species, we reconstruct

the actual species interactions over time, using another EDM tool called multivariate

S-maps (sequential locally weighted global linear maps) [16], [35]. Finally, we show how

variability in key species interactions can be related back to the environmental context

under which they took place.

Our analyses focus on the dynamics of five common southern California kelp forest

species, whose interactions are thought to be important in structuring kelp forest ecosys-

tems[20], [22], [36] (Figure 1.1). The giant kelp Macrocystis pyrifera is the eponymous

foundation species[37], the primary canopy- and habitat-forming kelp along most of the

central and southern coast of California [21]. The monitoring data include young Macro-

cystis recruits (sporophytes identified as Macrocystis but less than 1 meter tall [33]). We

explore Macrocystis dynamics and its interactions with two presumptive competitors and

two abundant herbivores. The understory kelp species Laminaria farlowii and Ptery-

gophora californica compete with Macrocystis for space, light, and nutrients [38]–[40].

The two herbivores—the purple sea urchin Strongylocentrotus purpuratus and the red sea

urchin Mesocentrotus franciscanus—are thought in many places to control Macrocystis

density and can sometimes wipe out entire giant kelp forests, leading to the alternative

ecosystem state known as an urchin barren [41], [42]. In southern California, Macrocystis

population dynamics can be driven by nutrient availability and physical disturbance [27],

[31]. The availability of nitrate is inversely related to seawater temperature[43] and, over

longer time scales, is associated with oscillations in patterns of upwelling and oceanic

currents. Accordingly, we include five environmental variables in our analyses to test

their relationship to kelp forest species dynamics and interactions: sea surface tempera-

ture (SST), physical disturbance (measured by maximum seasonal wave height, SWH),
9
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Figure 1.1: Raw data for species and physical drivers included in the study. All variables
normalized to zero mean and unit variance

10



METHODS

and three indices of low-frequency climate modes: the Multivariate El Niño Index (MEI)

[44], the Pacific Decadal Oscillation (PDO) [45], and the North Pacific Gyre Oscillation

(NPGO) [46].

Methods

Data standardization

San Nicolas Island is a small, remote island situated about 100 kilometers offshore from

southern California. The data in the analysis are from a sampling station on the western

end of San Nicolas Island. The benthic monitoring data herein have been collected more

or less every six months for more than 35 years by the USGS and its Western Ecological

Research Center (USGS-WERC)[33]. The monitoring site consists of 10 permanent tran-

sects (see ref. 33 for full monitoring protocols). Data from the 10 transects were combined

to produce single long time series, leveraging spatial replication to create denser mani-

folds, a technique called dewdrop regression[47], [48]. Each species’ time series therefore

consisted of 630 total observations (63 monitoring periods across 10 replicates).

Physical data included historical sea surface temperature (SST) from NOAA’s Optimally

Interpolated Sea Surface Temperature (https://www.ncdc.noaa.gov/oisst), the Mul-

tivariate El Niño Index (MEI)[44], the Pacific Decadal Oscillation (PDO)[45], and the

North Pacific Gyre Oscillation (NPGO)[46]. The actual measures included in analyses

for these four indices were the average values for the four months preceding each period

in the benthic monitoring data. This metric was chosen to approximate the general envi-

ronmental conditions under which species interactions were occurring. The measure for

maximum seasonal wave height combined modeled wave height data from the USGS Geo-
11
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CHAPTER 1. ENVIRONMENT AND INTERACTIONS

physical Fluid Dynamics Laboratory (http://cmgwindwave.usgsportals.net/) with

updated modeled data from the California Coastal Data Information Program (CDIP

MOPv1.1[49]), both based on data from an array of buoys distributed across the South-

ern California Bight. Significant wave height is here defined as the average maximum

daily wave height across the same four months preceding each benthic monitoring period.

This is meant to capture any large storm events and provide a general measure of physi-

cal disturbance. Unlike the biological data, where there are unique spatial replicates, the

physical data have only one value for each of the 63 monitoring periods. Hence, the time

series for the physical drivers are identical for each of the 10 spatial replicates.

For attractor reconstruction, all time series were standardized zero mean and unit vari-

ance, common practice in empirical dynamic modeling[18].

Convergent Cross Mapping

We used convergent cross mapping (CCM) to test causal relationships between vari-

ables[34]. CCM is described in detail elsewhere[18], [34], but is introduced here.

All EDM analyses, including the convergent cross mapping (CCM) and multispecies

S-maps algorithms used in this study, are based on extensions of Takens’ theorem of

nonlinear dynamic systems [35], [50]. Takens showed that a dynamic system could be

accurately represented using “shadow attractors”, or manifolds, built from time series

of observed variables in that system. In basic terms, an attractor or manifold is built

from a set of E-length state-space vectors, where E is the number of progressive lags

of a single variable (for CCM), or the number of separate variables (for multispecies

S-maps) used in the reconstruction. E is called the embedding dimension. Each

E-length vector, for example xt =< xt, xt−1, xt−2 > is a point on the attractor, and the

set of E-length vectors used for the reconstruction is called the library. Takens showed
12
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that these reconstructions are topologically invariant to the “true” (unobserved) dynamic

system, with a one-to-one mapping between points on the attractor and points on the true

manifold. This powerful theory is what allows EDM to draw inference about nonlinear

dynamic systems through attractor reconstruction.

Before variables were included in CCM causality tests, we ensured that each variable

could be properly embedded using univariate simplex projection[18] (Figure 1.6). Univari-

ate simplex projection uses attractors built from multiple lags of single time series (e.g. for

variable x an attractor with an E of 3 would consist of vectors xt =< xt, xt−1, xt−2 >). To

predict xt+1, the simplex algorithm finds the E +1 nearest neighbors of xt in the library

of vectors, and the prediction x̂t+1 is the average of those nearest neighbors’ values at

t + 1, weighted by their Euclidean distance from xt at t. This is the essence of simplex

projection: a forecast for a given point in state space is surmised from the forward tra-

jectories of observed nearby points. Keep in mind that because of the way attractors are

reconstructed, the nearest neighbors are not necessarily nearby in time, but rather close

in ecosystem “state” to the predicted point. Applying this method, all variables in the

analysis showed significant univariate predictability based on out-of-sample prediction

skill (Supplementary Figure 1.6). The best embedding dimension (that is, the number of

lags included for each variable that gave optimal predictability) was extracted for each

variable. These best Es are an estimate of the dimensionality of the dynamic system

experienced by each species.

Extensions of Takens’ theory state that if two variables (in our case, species or physical

variables) are part of the same dynamic system, their univariate attractors should be

topologically invariant from the true attractor, and therefore, should be topologically

invariant from one another[17], [19], [34], [48]. This means that there will be a one-

to-one mapping (“cross-mapping”) between points on the reconstructed attractor of one
13
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variable and the corresponding points on the other variable’s attractor. Taking advantage

of this property, significant cross-mapping is evidence of causation. In practical terms,

if (for example) giant kelp is causally forced by sea urchins, that forcing should leave

a signature on the giant kelp time series. CCM tests for causation by using the same

simplex algorithm as described above, except that now we use an attractor/manifold built

from the time series of one variable (X) to predict contemporaneous values of another

variable (Y ). If the attractor can accurately predict the dynamics of the second variable,

we assert that the second variable has a causal influence on the first. In simple terms, the

causal effect of X on Y is determined by how well Y cross-maps X [34]. In this way, the

inference from cross-mapping is the converse direction of causation. In our example, if

sea urchins drive giant kelp, the dynamic information from the urchin time series should

be reflected in the kelp dynamics, and therefore we should be able to recover (cross-map)

dynamic information about sea urchins using the kelp time series. Moreover, as we use

more data in the cross-mapping, the predictive skill should increase. This is because with

more data the attractor “fills in” or becomes denser, and consequently predictions made

from nearest neighbors become more accurate. This property is called “convergence”

(hence “convergent cross mapping”) and is an essential criterion for causation and what

distinguishes correlation from causation[34]. We assessed convergence by testing whether

cross-mapped prediction accuracy (Pearson’s ρ between observations and predicted values

of the cross-mapped variable) improves with library length (the number of embedded

vectors used to construct the attractor). If two variables are spuriously correlated and

not causally linked, CCM will not display convergence (concepts more fully explored in

refs. 34 and 17).

Following Sugihara et al.[34], each separate CCM test used an attractor built from one

variable to predict another. Causation was tested by plotting predictive skill ρ against
14
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library size. The two criteria for CCM to establish causality were first, that cross-

map skill using all available data was significantly greater than zero, and second, that

predictability was convergent. All species-species and species-environment interactions

were tested using CCM (Figures 1.2 and @ref(fig:ccm_all)), and significant interactions

among species were retained for use in building multispecies attractors.

Multivariate S-maps

Multivariate attractors follow the same logic as the attractors described above, except

that instead of using single variables to reconstruct the attractors, we use contempora-

neous values of multiple variables[16]. That is, instead of library vectors or points in

state-space taking the form of, for example, < xt, xt−1, xt−2 >, they now are formed

in true multivariate space, e.g. < Kelpt, Urchint, Nutrientst >. Additionally, instead

of making predictions using only nearest neighbors, S-maps (sequential locally weighted

global linear maps[35]) uses all library vectors, and exponentially weights them by their

distance to the prediction vector before using linear regression to make a forecast; vec-

tors closest to the prediction vector have the greatest weight. Because library vectors

are weighted individually in this manner, a separate linear map is created for each pre-

dicted vector. This is why the procedure is called “sequentially weighted global linear

maps”. Conceptually, as the dynamic system moves along the surface of the attractor,

S-maps sequentially computes new linear maps to the next point. The varying species

interactions (the measure of interest) are the coefficients of these local linear maps.

Mathematically, when making a prediction for a target point x∗, each library vector

(point on the attractor) xk is given a weight

wk = exp
−θ || xk − x∗ ||

d̄
15
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where || xk−x∗ || is the Euclidean distance between the library and target vector, and d̄ is

the average distance to all library vectors. By controlling the strength of local weighting,

the single parameter θ controls the nonlinearity of the model[16], [35].

As described in Results, the multivariate model for each species consisted of all the species

that showed significant causation through CCM analysis. An example of a multispecies

attractor is shown in Figure 1.10. Additionally, the preferred model for each species was

the constructed by finding the value of θ (the amount of nonlinearity) that optimized

out-of-sample prediction. Each resulting model estimated 520 interactions, which were

then compared to the environmental conditions under which they took place (Figures 1.4

and 1.5). For individual model θ and performance metrics, see Supplementary figures.

Analyses were performed in R[51], especially utilizing the rEDM package (v. 0.7.4[52]).

Reproducible code for all analyses available in an online repository.

Results

Applying convergent cross mapping[34] (CCM) to the set of six biological and five physical

variables, we find a relatively dense interaction network (Figure 1.2). Out of 90 possible

unidirectional links among species and between species and the environmental variables,

41 are significant. Adult Macrocystis density is driven by all five environmental variables,

with SWH, SST, and the NPGO showing the strongest causal signals. This finding

aligns with recent work by others using different methods [31], [53] that showed that

these same three variables were the primary controls of giant kelp biomass dynamics

across the California coast. More generally, although the included physical variables

show significant links to many of the biological variables, the NPGO shows the strongest

links to almost all of the biological variables. Our analysis suggests that more attention
16
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Figure 1.2: Reconstructed interaction web using results of convergent cross mapping.
Each arrow represents a significant causal signal, and link width and opacity scale with
the strength of causal forcing. Species abbreviations: M. pyr: Macrocystis pyrifera; L.far:
Laminaria farlowii; P.cal: Pterygophora californica; M.fra: Mesocentrotus franciscanus;
S.pur: Strongylocentrotus purpuratus. Physical drivers: NPGO: North Pacific Gyre Os-
cillation; MEI: Multivariate El Niño Index; PDO: Pacific Decadal Oscillation; SST: Sea
surface temperature; SWH: Significant wave height.

should be focused on the effects of the NPGO in southern California. Interestingly,

in turn, adult Macrocystis shows strong causal links to every other biological variable.

This is despite the fact that the study site at San Nicolas Island does not have a stable

giant kelp forest (see raw time series, Figure 1.1); rather, the site has transitioned from

an urchin barren[42] to a Pterygophora and Laminaria-dominated state to a Macrocystis

forest at various times throughout the 30-year time series. The implication is that, despite

not maintaining dominance in the typical ecological sense of word (large abundance and
17
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biomass), Macrocystis remains a key foundation species in this ecosystem, because its

dynamics are fundamentally important in driving the dynamics of all the other kelp

forest species[21].

CCM analysis confirms that the system studied represents a complex array of significant

interactions between algal species and their herbivores. However, CCM alone does not

elucidate the direction and magnitude of species interactions. To obtain estimates of

the interactions themselves, we use multivariate S-maps[16], [35] (see Methods). S-maps

reconstruct dynamic “attractors” by casting the abundances of causally-related species

into state space. For a set of causally-related species, a point in multivariate space can be

plotted using each species’ abundance as an axis. The attractor is then created by tracing

this multispecies trajectory forward in time (see example attractor, Figure 1.10). For each

point along the attractor, S-maps compute a Jacobian matrix, the elements of which are

the estimated partial derivatives between species. These interaction matrix elements are

our measure of species interactions. Because Jacobians are computed sequentially for

every point along reconstructed attractors, we obtain estimates of interaction strength

that vary with ecosystem state.

Dynamic ecosystems are analogous to a landscape of variable topography, where our

position on the landscape represents the current ecosystem state. In this analogy, each

cardinal direction represents the density of a different species (i.e., axis in state-space),

and our movement across the landscape through time represents movement along the

multivariate attractor as species densities change. S-maps are simply our reconstructed

topographic maps of these ecosystem landscapes. At a given point in time as we move

across the landscape, we may be on top of a steep pinnacle, on a flat plain, or in a

shallow valley. Regardless, it is the slope of the landscape in each direction (the partial

derivative) that defines the local interaction strength between species: a steep upward
18
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slope represents a strong positive interaction between species, while a flat surface is a

neutral or weak interaction interaction, and a slight downward slope is a weak negative

interaction.

There are two important characteristics of S-maps that deserve mention. First, the

S-map estimation procedure, like all EDM methods, is specifically designed for nonlin-

ear systems, and is therefore an appropriate tool for investigating ecosystems exhibiting

nonlinear dynamics such as alternative stable states or hysteresis[16]. Secondly, because

S-maps utilize reconstructed multispecies attractors, each estimated interaction is fun-

damentally based on observations of similar past ecosystem states—where each state is

represented as a multivariate vector of causally-linked species’ densities—rather than a

phenomenological extrapolation of the most recent dynamics. For example, instead of

asking, “What is our prediction for the strength of herbivory based on last year’s observed

dynamics,” S-maps are concerned with, “What is our best estimate for the strength of

herbivory, based on our knowledge of times in the past when the ecosystem was most

similar to today?” In the San Nicolas kelp forest, we find a striking prevalence of vari-

ables and positive species interactions (Figure 1.3). After grouping species interactions

by type, only herbivory (the effect of urchins on algal species) is predominantly negative.

Conversely, the effect of the algal species on the urchins has a flatter distribution, with

occasional strong negative and strong positive interactions. Likewise, contrary to our

expectations, interactions between the algal species and between the urchin species are

not always antagonistic. These results suggest that facilitation—direct or indirect—can

arise in kelp forests in multiple contexts[54]. For example, since there is evidence here of

strong herbivory, then there may be indirect facilitation between algal species because

of a shared herbivore[55]: a greater algal density in general could ameliorate the neg-

ative effect of herbivory on any one species. This indirect, associative facilitation may
19
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Figure 1.3: Smoothed kernel density histograms of all estimated interactions by type.
From top to bottom: Algal competition, urchin competition, herbivory, algae effect on
urchins, intraspecies. Solid lines denote means across all estimated interactions of that
type.
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sometimes outweigh the strength of direct algal competition. Additionally, Macrocystis

forests can mediate current strength and as a result, can also help retain reproductive

propagules of other species[21]. These types of indirect facilitation in kelp forests have

received comparatively little attention[56], [57] relative to the strong focus on exploita-

tive competition between these species for light and nutrients[38], [40], but similar effects

have been documented in other ecosystems[58]. Our analysis does not contradict the

importance of competition in kelp forest ecosystems. Rather it suggests that facilitation,

especially indirect facilitation, may be an additional important structuring force [56]. As

a case in point, consider the interaction of adult Macrocystis and the understory kelp

Pterygophora californica. Macrocystis is often assumed to be the dominant competitor in

kelp forests for nutrients and light[38], [40]. However, at this site, Macrocystis generally

has a neutral to positive effect on Pterygophora (Figure 1.4, a result seemingly incongru-

ous with the established competitive hierarchy. However, the study site (a small offshore

island) is highly exposed to strong currents and winter storms, partly because it is com-

posed of low-rugosity reefs. These habitat characteristics are known to reduce the ability

of Macrocystis to be competitively dominant [21], [38]. Our findings strongly suggest

that Macrocystis competitive dominance is quite rare at this site, or at the very least

is outweighed by facilitation in most instances. Facilitation of Pterygophora by Macro-

cystis might take the form of associative avoidance of herbivory or facilitation through

Macrocystis’ retention of Pterygophora reproductive propagules, as described above[21],

[55]. Regardless of the underlying mechanism(s), these results show little evidence for

consistent giant kelp dominance and suggest that further attention should be paid to the

potential direct and indirect facilitative roles of Macrocystis[56].

Organizing the species interaction data by using the oceanographic indices enables us

to further unravel the context-dependency in the Macrocystis-Pterygophora interaction
21
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Figure 1.4: Distributions of Macrocystis effects on Pterygophora, under high (greater
than 1) and low (less than -1) values of five normalized environmental indices. Solid
lines: mean interactions under each regime.
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(Figure 1.4). After splitting the estimated species interactions by those that took place

under “low” versus “high” values of the five oceanographic indices (greater than 1 stan-

dard deviation below or above the mean conditions in the raw oceanographic data), it im-

mediately becomes clear that strong negative effects of Macrocystis on Pterygophora only

occur under low values of the MEI, PDO, and SST, or high values of the NPGO. These

are all climate regimes associated with increased availability of nutrients in southern

California[44]–[46]. In southern California, Macrocystis is known to be a better competi-

tor under cold-water, nutrient-rich conditions[39], and therefore has a greater chance of

flipping its interaction from positive to negative—and asserting interspecies dominance—

under low values of the MEI and PDO, and high values of the NPGO (Figure 1.4. Hence,

despite the weak mean interaction and common facilitation by Macrocystis at this site,

the rare negative effects of Macrocystis on Pterygophora conform to expected patterns

across decadal-scale climate shifts[39], [59]. Environmental context alters the strengths

of other species interactions as well. Figure 1.5 shows how algal competition and her-

bivory vary with environmental conditions in the San Nicolas kelp forest. For example,

while red urchin M. franciscanus herbivory is a strong negative effect (high percentage of

significantly negative interactions) under all conditions, the purple urchin, S. purpuratus,

has a stronger effect in higher-nutrient contexts (low MEI, PDO, and SST). Addition-

ally, Laminaria farlowii is a demonstrably better competitor under conditions that are

stressful to Macrocystis, including low-nutrient, high-temperature, and high-disturbance

regimes[39]. Perhaps most clear in Figure 1.5 is, again, the role of Macrocystis as both

competitor and facilitator. Under El Niño conditions, or strong positive phases of the

PDO, Macrocystis acts more as a facilitator than a competitor with the other brown

algae species, and likewise for low levels of physical disturbance. Only when sufficient

nutrients are available under La Niña conditions or cooler sea surface temperatures does

Macrocystis have predominantly negative effects on the other algae species. The precise
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Figure 1.5: Competitive and herbivory effects of selected species under highly negative
(Neg: index is less than -1) normal (Norm: index between -1 and +1), and highly positive
(Pos: index greater than 1) values of five environmental indices. Each bar represents the
percentage of each species’ effects that are significantly positive or negative (effects not
significantly different than zero not shown). Note varying scale on y-axis. Abbreviations:
NPGO: North Pacific Gyre Oscillation; MEI: Multivariate El Niño Index; PDO: Pacific
Decadal Oscillation; SST: Sea surface temperature; SWH: Significant wave height.
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mechanisms behind the balancing of positive and negative effects of Macrocystis can-

not be determined directly from these results, but it is clear that the role of this key

foundation species shifts with environmental context.

Discussion

Ecosystem dynamics are composed of nonlinear species relationships, played out within

shifting environmental contexts. A significant challenge in the study of ecosystem dy-

namics has been the difficulty in appropriately extrapolating experimental results to real

ecosystems, where multiple species-species and species-environment interactions are op-

erating simulateously. We have shown in this study that empirical dynamic modeling can

help to tackle this challenge, using time series data to accurately reconstruct nonlinear

ecosystem trajectories. Beginning with a published monitoring dataset from a kelp forest

ecosystem, EDM methods helped to elucidate causation, build interaction networks, and

investigate the influence of large-scale environmental drivers on interaction strength. In

this particular ecosystem, our analyses of time series data confirmed decades of exper-

imental work regarding the foundation species Macrocystis pyrifera, but also were able

to contextualize those classic interactions as to when they were important. A classic

algal competitive dominance hierarchy[39] is seemingly weak at this site under average

conditions, but not absent—under predictable nutrient, temperature, and disturbance

regimes, Macrocystis can have both competitive and facilitative effects on other species.

An important implication of our study is that if a research goal is to understand the

dynamics of entire ecosystems, studying solely the mean outcome of single species inter-

actions may not be adequate. Indirect associations between multiple species and shifting

environmental contexts may give rise to rare, critical moments when fleeting strong in-
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teractions determine ecosystem shifts. This idea needs further investigation in multiple

systems. For example, EDM could be utilized to investigate further the connection be-

tween environmental regime shifts and ecosystem tipping points[60]. If widely found

in other systems, our general findings imply that context dependency—and its role in

mediating varying species interaction strengths—deserves more attention than the iden-

tification of context-averaged mean interactions[8]. In a growing number of ecosystems,

EDM is helping in this endeavour[16], [61], [62].

EDM does not take the place of experimentation. Rather, we argue that it can help to

both contextualize and guide insights from short term experiments. Our analyses are

a proof of concept: we started with simple time series from a monitoring dataset in a

well-studied but complex ecosystem and showed how previous experimental results play

out over a longer time period. The consistency of findings in this well studied system

support the potential for this approach to provide credible insights in other ecosystems,

where time series data exist but where important interactions may not be nearly as well-

established. Where important interactions are known, EDM can help to explore whether

environmental context matters in interaction variance. Where ecosystem interactions are

not as well known, EDM may be a helpful first step in identification of ecosystem links

whose mechanisms can then be further established through other methods.

Supplementary Information
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Figure 1.6: Output of simplex forecasting for all species, relating embedding dimension
(the number of lags of each variable to use in attractor reconstruction) to forecast skill
measured as the Pearson correlation between observations and predictions. The embed-
ding dimension that produced the best forecast skill was used in all further analyses

Table 1.1: Multivariate S-map models for each species. ρ is the predictive skill, MAE is
mean absolute error between observations and predictions. All significantly cross-mapped
variables were included as predictors.

Modeled Species Predictors ρ MAE
Macrocystis Macrocystis >1m, Laminaria, Purple urchin, Red urchin, Macrocystis

<1m
0.557 0.504

Purple Urchin Purple urchin, Macrocystis >1m, Pterygophora, Red urchin,
Macrocystis <1m

0.734 0.435

Laminaria Laminaria, Macrocystis >1m, Purple urchin, Red urchin 0.396 0.486
Young Macrocystis Macrocystis <1m, Laminaria, Macrocystis >1m, Pterygophora, Red

urchin
0.439 0.544

Red Urchin Red urchin, Laminaria, Macrocystis >1m, Pterygophora, Macrocystis
<1m

0.756 0.423

Pterygophora Pterygophora, Macrocystis >1m, Purple urchin, Red urchin,
Macrocystis <1m

0.577 0.388
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Figure 1.7: Output of simplex forecasting for all physical variables, relating embedding
dimension (the number of lags of each variable to use in attractor reconstruction) to
forecast skill measured as the Pearson correlation between observations and predictions.
The embedding dimension that produced the best forecast skill was used in all further
analyses
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Figure 1.8: Output of univariate S-map forecasting for all species, relating degree of
nonlinearity (see Methods) to forecast skill measured as the Pearson correlation between
observations and predictions. All species showed increased forecast skill for values of θ
greater than zero, suggesting significant state-dependent dynamics. The value of theta
that produced the best forecast skill was used in all further analyses
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Figure 1.9: The result of applying CCM to all species-species and species-environment
interactions. Putative forcing variables are on the x-axis, while predicted variables are
on the y-axis. Numbers are the mean predictive skill at library size 500. All non-
significant links are grey. Aligns with Figure 2 in the main text. Species abbreviations:
M. pyr: Macrocystis pyrifera; L.far: Laminaria farlowii; P.cal: Pterygophora califor-
nica; M.fra: Mesocentrotus franciscanus; S.pur: Strongylocentrotus purpuratus. Physical
drivers: NPGO: North Pacific Gyre Oscillation; MEI: Multivariate El Niño Index; PDO:
Pacific Decadal Oscillation; SST: Sea surface temperature; SWH: Significant wave height.
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Figure 1.10: An example multivariate attractor using real data from San Nicolas Island.
To make predictions for the red point using simplex projection, we take the average of
the nearest neighbors (in this case, the 3 green points), projected forward one step in
time. For an S-map model, all points in the state space would be used, with each point
exponentinally weighted by its distance to the target (red) point
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Figure 1.11: Box-and-whisker plots of estimated species interaction strengths from S-map
models for the five focal species (panels top to bottom): Macrocystis adults, Macrocystis
juveniles, Pterygophora, Laminaria, purple urchin, and red urchin. Each colored box
represents the distribution of all estimated interaction coefficients (x-axis) of an interact-
ing or forcing species (left y-axis) on a modeled species (right y-axis) across all data for
a given model (white triangles: mean; vertical lines: median; box: interquartile range;
whiskers extend to data point at most 1.5*IQR from the box). Each box represents 500-
520 estimated interactions. Correlation coefficient between predictions and observations
denoted for each model. Color denotes hypothesized interaction type, including inter-
specific competition (between algae species or between urchin species), herbivory (urchin
effect on algae), consumption (algae effect on urchins), and intraspecies interaction (the
estimated interaction of a species with itself).
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Chapter 2

Recovery of an Endangered Species

Threatens a Harvested Resource

Abstract

Many conservation projects have resulted in successful recoveries of previously threatened

or endangered natural predators, leading in some cases to competition with humans for

harvested prey resources. Informed natural resource management in these situations

requires an understanding of the relative effects of human and predator harvesting on

the resource. In this study, we investigate one such conflict, between sea otters and the

southern California sea urchin fishery. Taking advantage of a natural experiment from

San Nicolas Island, where otters were introduced in the late 1980s at a location with an

already active sea urchin fishery, we develop and compare Bayesian models that separate

the effects of fishery harvesting and sea otter predation on sea urchin biomass. Fitting of

multiple models with different functional forms of predation allows us to more accurately

represent uncertainty in reconstructed dynamics. We find that the sea urchin fishery, not
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sea otter population growth, likely had the most important role in the decline of urchin

biomass at the study site. However, as the otter population continues to grow, yield

for the fishery may decline to zero within the next 20 years. In the future, continued

pursuit of predator recovery in natural systems will lead to difficult decisions between

human livelihoods and cultural values. Models like those developed in this study offer a

quantitative tool for tackling these tradeoffs.

Introduction

Defaunation is a major global phenomenon in the Anthropocene, and in many ecosys-

tems is most dire for higher trophic level species[63], [64]. The goal of many conservation

projects is the recovery of natural predator populations[65], [66]. However, these re-

covering predators often compete with humans for important prey. In any ecosystem, if

human harvesting of prey species developed in the context of a defaunated world, current

harvest levels may not be sustainable as natural predators recover[67].

As a result, initial predator conservation successes may lead naturally to management

conflict[68], [69]. Often human harvesting of prey will slow, halt, or reverse predator re-

covery[70], but in other cases natural predators can threaten (or be perceived to threaten)

the livelihoods of human harvesters[67], [71], [72]. When such tradeoffs are unavoidable,

balancing predator conservation objectives with societal and industry benefits from har-

vested resources will require difficult choices. The conflict surrounding such decisions

can be greatly elevated if they are forced by ongoing conflicts rather than considered in

an informed discussion up front. Can we use effective forecasts of predator recovery to

anticipate what the expected effect on the shared prey will be? Can human harvesting

and healthy predator populations sustainably coexist? Answering these questions is key
34



INTRODUCTION

to having informed management discussions, and to reducing opposition to prospective

conservation efforts when conflicts with human uses are unlikely to occur.

Competition between marine mammals and fisheries is one important category of human-

wildlife conflict. In some instances fisheries have caused declines in populations of natural

predators. For example, heavy exploitation of important fish species has been an impedi-

ment to Steller sea lion (Eumatopias jubatus) recovery in large parts of its range[73]. The

opposite effect has also occurred: in some cases the perception of a predator’s negative

effect on fisheries has led to calls for extensive predator culls. From South Africa and the

North Sea to eastern Canada and California, culls of marine mammals have been sug-

gested to protect fisheries harvests, even though multiple analyses have suggested that

predator culls could actually lead to declines in overall harvests through unanticipated

trophic interactions[74]–[76]).

In still other locations, fishery-predator conflicts are just emerging. Sea otters (Enhydra

lutris) are part of an iconic conservation story, but are also voracious predators on benthic

invertebrates[77], [78]. Once ranging from northern Japan all the way across the northern

Pacific island chains to Alaska and down to Baja California, the species was hunted nearly

to extinction in the 19th century before an international treaty banned hunting in 1911.

In California, only one small population of less than 50 individuals remained on the Big

Sur coast[79]. Since its protection, however, this southern sea otter (E. lutris nereis) has

expanded its range both north and south, and now ranges from approximately Pigeon

Point near Santa Cruz to just southeast of Point Conception in Santa Barbara County[80].

In the absence of a dominant predator for a century, benthic invertebrates became the

basis for multiple productive fisheries in California[81], [82]. Abalone (Haliotis spp.)

is one informative example[83], [84]. The commercial fishery for abalone in California

lasted from the 1920s until approximately 1980, and peaked around 1950 at more than
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two million landed tons annually. Abalone is a preferred food for sea otters[78], and otter

recolonization of the California coast hastened the decline of the already overexploited

abalone fishery. The boom and bust of the abalone fishery was likely a result of interacting

effects of overfishing, otter predation, the abalone’s slow-growing life history, disease,

and increasing prices, all leading to complete collapse of the resource and functional

extirpation of abalone in many parts of the California coast[83].

Now, as sea otter populations continue to expand, they are nearing the historically most

productive red sea urchin (Mesocentrotus franciscanus) fishing grounds in the northern

California Channel Islands. The 7 million dollar sea urchin fishery is one of the most

valuable in California, and lands approximately 5000 metric tons annually (Fig. 2.1).

Although landings have been relatively stable for the last ten years, the fishery is likely

fully exploited or overexploited[82]. Concurrently, the state has been struggling to accu-

rately monitor the sea urchin resource and increase its knowledge of the dynamics of the

stock[85]. The fishery operates throughout the state, but the majority of landings come

from south of Point Conception, in the Southern California Bight region. Sea otters have

slowly been extending their range into this region, partially because of an assisted translo-

cation program to San Nicolas Island (one of the California Channel Islands) through the

Endangered Species Act, and also through natural southward range expansion along the

mainland California coast(Figure 2.2)[80], [86], [87]. Permanent otter breeding colonies

do not yet exist in the northern Channel Islands, where much of the sea urchin catch

originates, but it may be only a matter of time before otters recolonize those islands[88].

This situation raises a potentially serious management problem. A new source of sea

urchin mortality may be introduced as sea otters expand[88], at a time when the re-

source itself is likely already fully exploited by the fishery. Therefore, understanding the

expected effect of sea otters on the urchin resource is key to setting appropriate expecta-
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tions or making proactive management decisions for one of California’s most important

natural resources. The naturally-expanding otter population at San Nicolas Island, which

was otter-free for at least a century before the early 1990s, provides a natural experi-

ment through which to test the impact of sea otters on sea urchin fisheries in southern

California. Combining these otter population data with landings and effort data from

the sea urchin fishery, we parse the relative effects of fishing and natural predators on

sea urchin populations using a Bayesian surplus production model modified to include

natural predation. We identify the extent of past sea urchin population reduction due

to sea otter predation relative to the effect of fishing, and then simulate future harvests

under a continuously-growing sea otter population. Finally, we discuss the implications

of our approach and results for other systems where recovering predators compete with

humans for resources.

Methods

Data Sources

Urchin fishery data

Urchin fishery landings data were obtained from the California Department of Fish and

Wildflife. After each fishing trip, urchin divers are required to submit landings receipts

which denote landings by weight and where those landings were obtained, referencing a

10’ by 10’ spatial statistical block (approximately 250 square km). Receipts also contain

information on the port where the urchins were landed, the date, and a unique fishing

vessel identification number.

In fisheries production models, catch-per-unit-effort (CPUE) is often used as an index of
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Figure 2.1: California statewide (top) and San Nicolas Island (bottom) sea urchin fishery
landings in 1000s of metric tons (solid lines) and effort in 1000s of landings receipts
(dashed lines).
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Figure 2.2: (left) Otter population growth along the mainland California coast and at
San Nicolas Island. Annual numbers are 3-year running average, while dashed line is
the de-listing threshold population size under the Endangered Species Act. (right) Sea
otter range in California in 2017. Notice the translocated otter population at San Nicolas
Island, lower right.
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abundance, in the absence of an independent measure of biomass or population size[89].

We modeled standardized CPUE[89] to use as an index of sea urchin abundance in

the population model described below. Standardizing CPUE helps to reduce potential

bias in the raw abundance index associated with external factors which may influence

catchability of a species. For example, CPUE standardization can help to account for the

differences in targeting behavior or skill of different fishing vessels. For the calculation

of the CPUE index, urchin landings from the two statistical blocks at San Nicolas Island

were aggregated by year, and each individual diver receipt was considered a unit of effort

(i.e., one trip by one urchin diver). Then, following Maunder and Punt (2004)[89], the

CPUE index was derived from the best fit model among a set of generalized linear models.

The preferred model estimated CPUE (landed urchin weight per receipt) as a linear

combination of year, fishing port, and fishing vessel (for full description of model selection,

see Supplementary Information). We extracted the year fixed effects for the median

fishing vessel from the preferred model, and these year effects comprise our standardized

CPUE index and our index of sea urchin abundance.

Sea otter population data

The southern sea otter population along the mainland coast is censused annually as

part of the official population counts under the Endangered Species Act (methodological

details found in refs.[90], [91]). The census measures both sea otter range extent and

population size. For this study, total otter population numbers at San Nicolas Island are

used to estimate predation effects. Individual sea otters can vary with respect to prey

selection and preference[78], [92], but red sea urchins are often a priority diet item when

available, including at the San Nicolas study site[93], [94].
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Modeling approach

We approached the task of estimating fishery and predator harvest using a Bayesian

surplus production model combined with four alternative representations of predation.

Our representation of urchin population growth and fishery harvest—common across all

models—is described first, followed by an explanation of each different predation model.

Urchin mortality due to fishing and sea otter predation are modeled as latent unobserved

processes by using our standardized CPUE index to fit a combined fishing and natural

predation process model. Each model represents annual changes in biomass Bt of red sea

urchins as a function of intrinsic population growth, harvesting, and predation:

Bt+1 = Bt +Growtht −Harvestt − Predationt (2.1)

Growth and Harvest

To represent the Growtht term in equation (2.1), we use the Pella-Tomlinson surplus

production model[95]. In the Pella-Tomlinson model, biomass is measured as a function

of the previous year’s biomass, plus natural growth and mortality, minus fishery removals.

The deterministic process equation is

Bt = Bt−1 +
r

p− 1
Bt−1

(
1−

(Bt−1

K

)p−1)
− Ct (2.2)

where Bt is biomass in year t, r is the instrinsic growth rate of the population, K is the

carrying capacity, and Ct is the observed fishery harvest. In the Pella-Tomlinson model,

the value of intrinsic productivity r determines how fast the population grows, as well as
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the sustainable level of fishing mortality. The additional term p in the Pella-Tomlinson

model allows the shape of the resulting yield curve to vary.

This model assumes that r captures natural processes such as birth rate and natural

mortality. Additionally, it considers all individuals in the urchin population as reproduc-

tively identical, and does not account for age structure. Ignoring age structure has the

potential to lead to errors in estimation of reference points[96], [97]. When using a logis-

tic surplus production model like the Pella-Tomlinson to estimate population parameters

for a previously unexploited fishery, non-equilibrium processes such as the fishing-down

of accumulated biomass can dominate the exploitation history and introduce bias into

estimates of reference points. We do not have size or age-structured data for the San

Nicolas sea urchin fishery, and so we cannot include age structure in our main analysis.

We link our observed data—the standardized CPUE index—to the growth model using

a proportionality constant. Often in fisheries models, we cannot actually observe fish

biomass, and instead use an index of abundance such as CPUE to track population

changes. The CPUE index It is assumed to be directly proportional to total biomass,

Ît = qBt (2.3)

where the proportionality constant q is known as the catchability coefficient. Combining

equations (2.2) and (2.3) allows us to use our CPUE index and observed urchin harvests

to estimate year-to-year changes in urchin population size.

We translate the deterministic process model above into a Bayesian framework to allow

for the observed data to inform the level of uncertainty in estimated model parameters.
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The stochastic versions of equations (2.2) and (2.3) can be written as,

log(Bt)|Bt−1, K, r, p, σ2
p = log

{
Bt−1 +

r

p− 1
Bt−1

(
1− Bt−1

K

p−1)
− Ct

}
+ ϵt (2.4)

log(Ît)|Bt, q, σ
2
o = log(q) + log(Bt) + υt (2.5)

In equation (2.4), biomass at t = 1 is assumed to be at its carrying capacity (an unfished

stock), and the subsequent Bt are modelled as lognormal random variables with process

errors ϵt ∼ Normal(0, σ2
p). We also observe the CPUE index It with observation error

υt ∼ Normal(0, σ2
o).

Sea Otter Predation

All models represent urchin population growth and fishery harvest using equations (2.4)

and (2.5), but they differ in how sea otter predation is represented (Predationt in equation

(2.1)). Sea otters have high metabolic rates and consume up to a quarter of their body

mass in food per day[98]. To meet this metabolic demand, otters display a wide variety

of prey preferences and foraging behaviors, though M franciscanus is often a priority

prey item because of its relatively high caloric density[78], [92]. Given this diversity in

sea otter foraging, the true functional form of sea otter predation dynamics is uncertain.

We therefore develop four separate representations of predation to include in models of

sea urchin population abundance at San Nicolas Island. The four models all share the

Pella-Tomlinson form of urchin population growth and fishery harvesting. Each predation

model represents a plausible hypothesis for the functional form of the interactions between

M. franciscanus and Enhydra lutris.The goal of estimating multiple models is to compare

inferences derived from the different forms of the predator-prey ecological process. In

particular, using multiple models helps in assessing whether the general population and
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fishery dynamics, the values of key parameters like the population’s intrinsic growth rate,

and the relative influence of predator and fishery on the urchin resource are robust to

different specifications.

The models generally scale in complexity from Model 1 to Model 4, from an assumption of

a constant per capita predation rate to a two-step model that estimates the percent of an

individual otter diet comprised of sea urchins, then scales that value to a population-wide

consumption rate.

The four predation models are:

1. A linear predation model, where per capita otter consumption is constant, there-

fore total consumption of sea urchins by otters is a linear function of predator

abundance.

2. A predation rate model, analogous to a Lotka-Volterra predator-prey interaction,

where predation is proportional to both sea otter abundance and urchin abundance.

3. A predator satiation model, following Hollowed et al. (2000)[99], where the sea otter

populution is modeled as if it were a separate fishing fleet, but with an asymptotic

satiation point beyond which total consumption does not increase.

4. A predator functional response model, where known urchin densities are related to

the percent of urchins in the sea otter diet, subject to a Holling Type III functional

response. Subsequently, per-otter urchin consumption is calculated by multiplying

that percent in the diet by the energy requirements of an average adult otter.

Model 1: Linear predation The simplest predation model estimates the effects of

otters as linear, ζNt, where ζ is the per capita effect of annual otter abundance Nt on
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urchin biomass, such that a process equation is:

Bt+1 = Bt +Growtht −Harvestt − ζNt (2.6)

Model 2: Predation rate The predation rate model represents predation as a func-

tion of both predator and prey abundance, following the classical predator-prey models of

Lotka and Volterra. In this representation, total predation is reduced when prey density

declines (unlike in equation (2.6) above). The predation rate is denoted α.

Bt+1 = Bt +Growtht −Harvestt − αNtBt (2.7)

Model 3: Predator satiation Models 3 and 4 represent sea otter predation as a

functional response curve. Following a representation of predation mortality from a fish-

ery stock assessment[99], the predator satiation model represents predation as a separate

fishery, where the predator has a “catchability” coefficient qpred relating predator abun-

dance to sea urchin consumption. Sea otter predation scales with prey density, similarly

to Models 1 and 2. However, the predator can also become satiated, setting a ceiling on

the total amount of predation per year.

Bt+1 = Bt +Growtht −Harvestt − qpredN
−S(

Ut
Umax

−1)

t (2.8)

In equation (2.8), S controls the shape of the satiation curve, and allows for approx-

imation of different Holling-Type curves. A value of S of 0.7 approximates a Holling
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Type II functional response. This predation model requires a new data source: Ut and

Umax correspond to current and maximum prey (urchin) density within the study site.

The values of Ut were taken from a subtidal monitoring time series from San Nicolas

Island[33], and Umax was fitted in the model.

Model 4: Predator functional response The last predation model estimates total

annual consumption of otters in a two step process, where Dt is the percent of the otter

diet in year t that is composed of urchins.

Dt =
FmaxU

H
t

NH
half + UH

t

(2.9)

Bt+1 = Bt +Growtht −Harvestt −NtDreqDt (2.10)

In equation (2.9), Fmax is the maximum percent urchins in the diet, andNhalf is the urchin

density at which otter diet percentage is at half of its maximum. H, the Hill exponent,

controls the functional response type, where H = 1 is a Type II functional response, and

H = 2 is a Type III functional response. We use a value of 2 for H, to estimate a Type

III functional response. In equation (2.10), Dreq is the annual energy requirement of an

average adult otter, in units of urchin biomass. Dreq is assumed as a constant and is a

function of the average weight and caloric energy content of sea urchins[93], [100] and

the average metabolic demand of an adult otter[98]. In the estimation of equations (2.9)

and (2.10), Dreq is held constant, while Fmax and Nhalf are fitted and the Ut are the same

data as in equation (2.8).
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Fitting and Model Comparison

In the full hierarchical models, we link the observed CPUE index to the unobserved quan-

tities of interest using a lognormal likelihood, treating the otter population and fishery

harvests as known. We implemented the model in Stan[101], and fit the model through

Hamiltonian Markov Chain Monte Carlo with three chains and 6000 total iterations per

chain (2000 warmup and 4000 sampling iterations)[102].

We compare models using the log-likelihood of the observed catch-per-unit-effort index,

I, given our estimates of catch-per-unit-effort Ît and observation error σ2
o :

log(It) ∼ Lognormal(log(Ît), σ
2
o) (2.11)

Using the loo package in R[103], we compare the models with leave-one-out cross-

validation for Bayesian models using Pareto smoothed importance sampling[103]. The

measure of predictive fit used to rank the models is the expected log predictive density

(equation 4 in Vehtari et al. (2017)[103]):

elpdloo =
n∑

t=1

logp(It|I−t) (2.12)

where p(It|I−t) is the leave-one-out predictive density given the data without the ith data

point.

Complete fit statistics and posterior parameter estimates for each model are provided in

the Supplementary Information.
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Maximum Sustainable Yield and Future Simulation

After model fitting, we use draws from the posterior distributions of each model to calcu-

late maximum sustainable yield and project the future dynamics of the urchin population,

the urchin fishery, and otter predation. For each posterior draw of p, r, and k from the

Monte Carlo simulation, we first calculate maximum sustainable yield in the absence

of predation using equation (2.13). Then, using the values of the predation parameters

from the same posterior draw, we adjust the calculation of maximum sustainable yield

by subtracting the share of the resource that would be taken by predation (equations

(2.6) to (2.10)). In this way, the calculation of maximum sustainable yield changes from

year to year, accounting for otter predation.

In each simulation, we assume that fishing will continue at the average exploitation rate

estimated for the last five years in each draw. Also, we assume continued sea otter

population growth. The otter population is assumed to grow at a per-capita growth rate

starting at the average rate observed the most recent five years in the data (approximately

12 percent per year), and declining to zero over the time frame of the simulation. Under

these assumptions, 33 years is the approximate time the otter population at San Nicolas

would take to reach its estimated carrying capacity of just under 500 individuals[88], and

so each simulation is run for 33 years. Because each Monte Carlo chain is run with 4000

sampling iterations and three chains, we obtain 12 thousand separate simulations per

model, or 48 thousand total simulations.
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Results and Discussion

Historical trends in urchin fishery and otter populations

The red sea urchin fishery began on the California coast in the early 1970s, and quickly

expanded in response to growing Japanese demand[81]. By the middle of the 1990s,

annual statewide harvest had peaked and began to decline (Figure 2.1). The decline was

steep, but by the early 2000s statewide harvest stabilized around five thousand metric

tons, down from a peak of more than 20 thousand tons. Since 2013, landings have again

begun to decline.

The landings from San Nicolas Island follow a similar pattern (Figure 2.1). After the

fishery began at the island in the late 1970s, effort and landings expanded quickly, and

landings were high but variable from the mid-1980s to mid-1990s, oscillating around a

thousand metric tons—a substantial contribution to statewide harvest. However, after

1995 landings declined quickly, from more than 1500 to less than 100 tons.

Sea otters have expanded their range and population size in California during the same

time frame (Figure 2.2). Since the modern annual sea otter census[90] began in California

in 1985, the sea otter population has more than doubled. The species is now close

to its federally-designated population size threshold necessary for delisting under the

Endangered Species Act[90]. At San Nicolas Island, the translocated population struggled

to establish for several years, but has been growing steadily in the past ten years to

more than 80 individuals[90] (Figure 2.2). The population at the island is likely still

substantially below its estimated carrying capacity[88]. Given the negative correlation

between urchin fishery landings and the sea otter population, a reasonable hypothesis is

that otters were the primary cause behind the observed fishery decline. We use combined
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population growth and predation models to test this hypothesis.

Effects of fishing mortality and predation on urchin landings

Each of the four models fit the observed catch-per-unit-effort data well, and all models

produce similar estimates of common parameters, even though the underlying predation

process model was different for each (model selection and fit statistics are provided in

the Supplementary Information). The mean posterior estimate for the intrinsic urchin

population growth rate r is between 0.2 and 0.3 in all models, and carrying capacity

K is approximately 33 thousand tons. Additionally, for all models the estimated Pella-

Tomlinson shape parameter p is greater than 2, suggesting that maximum sustainable

yield for this population occurs at a population size greater than half of the carrying

capacity K
2
.

We compared models using Bayesian leave-one-out cross-validation[103]. The predator

satiation model (Model 3) had the highest log-likelihood, but the standard error of the

model likelihood was greater than the difference between models. Therefore, the observed

data did not definitively provide evidence for one model over the others (Table S9).

Estimated sea urchin population size at San Nicolas follows the declining trend in catch

per unit of effort (CPUE, Figures 2.1 and 2.3). The population declined steadily from

the beginning of the fishery through the mid 1990s, and has remained at less than a

third of estimated carrying capacity since the mid-1990s. The early 1990s was also when

the translocated sea otter population was first establishing itself at the island, again

raising the question of whether the large observed decline in sea urchin CPUE—and the

corresponding estimated decline in urchin abundance—was caused by the arrival of sea

otters.

Despite the negative correlation otter and urchin populations, our model estimates sug-
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Figure 2.3: Urchin population size over time, San Nicolas Island. Solid lines are mean
posterior estimates of biomass in each year from the predator satiation model, although
estimates from all models showed a similar trend. Error bars encompass 95 percent
credible intervals. Sea otters were translocated to San Nicolas Island in 1990, shown
with a vertical bar
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gest that human harvesting has had a much larger impact than sea otter predation on

sea urchin populations at San Nicolas Island. Using model estimates of total removals of

sea urchins by fishers and otters, we estimate annual exploitation rates attributable to

each mortality source (Figure 2.4). These exploitation rates show that total pressure on

the sea urchin resource has been dominated by fishery-induced mortality for most of the

time series. It was not until at least 2001 that the mean estimate of otter exploitation

rate exceeded the estimate of fishing mortality, estimated in the predation rate model.

Other models suggest an even smaller otter effect, and in the predator satiation model

(Model 3), otter exploitation rate never exceeds fishing mortality. In all models, esti-

mated fishing exploitation rate reached a peak in 1995, after which it declined rapidly,

coinciding with the observed decline in total urchin harvest (Figure 2.1).

After 2000, models diverge on the estimated effects of sea otters versus fishers, with

implications for future projections. In Models 1, 3, and 4, exploitation rate of otters

has remained low (less than five percent removal of the total sea urchin stock per year).

However, in the predation rate model, the mean posterior estimate of otter exploitation

rate is approximately 10 percent per year, with an upper bound as high as 20 percent.

The predation rate model also has much higher uncertainty, however, in the estimated

otter effect (Figure 2.4). This is likely because total predation in that model (Equation

(2.7)) varies as a function of both predator and prey abundance, without a saturating

predation response, as is present in the predator satiation and functional response models.

Therefore, it is possible the upper bound of otter exploitation in the predation model is

an overestimation. Regardless of the model, the total effect of otters relative to the effect

of fishers has grown since 2000 as a combined function of otter population growth and

fishing effort decline.
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Figure 2.4: Exploitation rate (proportion of the urchin population harvested per year)
of human fishers and sea otters at San Nicolas Island estimated by each model. Solid
lines are mean posterior estimates of the exploitation rates in each year, while ribbons
encompass 95 percent credible intervals.
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Future yield

Using posterior model estimates of parameters for the Pella-Tomlinson production model

(equation (2.2)), along with additional mortality from sea otter predation, we can es-

timate maximum sustainable yield for each process model and simulate future harvests

under the assumption of an otter population that will continue to grow. For simplic-

ity, in our projections we assume that fishing exploitation rate remains at its estimated

mean value from the most recent five years in the data, while the otter population grows

logistically towards its estimated carrying capacity at San Nicolas of approximately 500

otters. As the otter population continues to grow, maximum sustainable yield declines in

all simulations (Figure 2.5). Annual urchin removals by sea otters have already reached

levels at which maximum sustainable yield for fisheries is zero under the predation rate

model. Under the predator satiation model, however, the median estimate of maximum

sustainable yield is estimated at 800 metric tons, declining slowly with an increased ot-

ter population. For the linear predation and predator functional response models, it is

estimated that a level of zero sustainable yield will be reached within 20 years. Because

of overfishing, though, urchin harvests are already well below the estimates of maximum

sustainable yield. This overfishing, combined with continued growth in the population of

otters at San Nicolas Island, means that a rebound in the urchin population is unlikely.

We can use model estimates to project future harvests starting from current conditions

to make short-term predictions (Figure 2.6). In our simulations, we assume that urchin

fishing continues at the same exploitation rate as it has for the past five years. As in the

calculation of maximum sustainable yield, the projected harvests depend on the chosen

predation model. For Models 1, 2, and 3, simulated urchin harvests decline over the

next 30 years, with a median projection reaching zero harvest in as little as 16 years (top

left panel of Figure 2.6). For the predator satiation model, projected urchin harvests
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Figure 2.5: Maximum sustainable sea urchin yield under otter population growth for
each fitted predation model. Solid lines are median estimates of maximum sustainable
yield for each predation model across all simulations, adjusted for estimated sea otter
predation. The dotted line is the projected sea otter population size, which is the same
across all simulations.
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actually increase over the course of the simulation, but with high uncertainty. Overall,

our projections suggest a high probability of the disappearance of a sea urchin fishery at

San Nicolas Island within the next 20 to 30 years. Estimated annual harvests decline to

less than 50 metric tons in half of all simulations within 20 years, and by 30 years in the

future, harvests are zero in a quarter of simulations. Our analysis does not account for

some additional dynamics that may help to improve future studies. First, we do not in-

clude an explicit population growth model for the predator, thereby implicitly assuming

that otter population growth is independent of sea urchin abundance. Because sea otters

are generalist predators, their abundance is not necessarily closely tied to the abundance

of sea urchins per se[104]. However, in situations where a predator is known to rely ex-

clusively on a prey that is also targeted by humans, the inclusion of a feedback from prey

to predator would be important. Likewise, we do not include an explicit link between

the fishers and otters themselves. Sea otters at San Nicolas Island took many years to

establish a stable population after their managed translocation, and the reasons for this

are still unknown[105]. While it is possible that fishing activity or even direct mortality

imposed on the otter population by the urchin fishery affected otter population growth,

evidence is lacking on any effects of this type, and therefore that dynamic is excluded

from our models.

An additional limitation of our analysis is that it does not account for the age structure

of the sea urchin population because we did not have the requisite data for sea urchins at

San Nicolas. Not including age structure means that our models do not explicitly account

for the transient dynamics associated with “fishing down” the accumulated mature stock

of sea urchins[96]. Ignoring age structure can lead to bias in estimates of maximum sus-

tainable yield through mis-estimation of carrying capacity[97], and the direction of that

bias is unknown and depends upon the nature of the transient dynamics[96]. Therefore,
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Figure 2.6: Simulated future urchin fishery yield in metric tons for the four models. Sim-
ulations are performed using posterior draws of population and predation parameters
from each model, with a constant fishery exploitation rate but a growing sea otter pop-
ulation. Solid lines are median estimates of yield from all simulations for a given model,
while ribbons denote the 5 percent and 95 percent quantiles of the simulations.
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our projections of future and maximum sustainable yield should be considered illustrative

of a general pattern rather than a precise estimate of the speed of urchin fishery decline.

However, whether our estimate of carrying capacity is high or low does not affect our

findings in the historical trend analysis on the relative impacts of fishers and otters at any

given point in the past. Nevertheless, in the future it would be informative to perform

an analysis like ours with age-structured data.

As predator populations recover from historical pressures, new human-wildlife conflicts

like the one analyzed here are emerging. In the marine realm in particular, recovering

predators will likely compete with humans for valuable prey[67]. Designing appropriate

management of these emerging conflicts will be predicated on our ability to estimate,

and ideally forecast, the relative impacts of human and natural predators[106]. Even

relatively simple models like those developed in our study can assist in the interpretation

of data and the framing of management responses.

We took advantage of a natural experiment—the translocation of California sea otters

to an island where they had been absent for more than 100 years—to measure natural

predator impact on a valuable fishery. Although the reintroduced otters took many years

to establish a stable population at San Nicolas Island[90], their eventual population in-

crease seemed to correspond with a steep decline in the landings and catch efficiency of

the red sea urchin fishery. Surprisingly, however, our models strongly agree that the sea

urchin population and fishery decline were primarily caused by human overharvesting,

not predation. We were able to come to this conclusion only through the use of models

that combined dynamic representations of human and predator exploitation of the re-

source, allowing the data to inform the relative evidence for and against the alternative

hypotheses, with associated uncertainty.

Our approach allowed us to use data from the past to inform thinking about the future of
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human-wildlife conflict in our study area, and has wider relevance to other systems where

recovering predators may exacerbate human-wildlife conflicts surrounding harvested re-

sources[107]. The fitting of multiple model representations of predation in a Bayesian

framework allowed us to utilize multiple, disparate types of data, and gain additional

insight through their comparison. For example, our linear predation and predation rate

models were fit using only catch per unit effort, harvest, and otter population data—

standard data types available for many types of natural resource problems. Alternatively,

the predator satiation model utilized an additional, independent urchin density time se-

ries, and the predator functional response model made use of known relationships between

urchin caloric energy content and sea otter metabolic demand to produce a “bottom-up”

estimate of urchin consumption. By tying all of these representations of predation to their

effect on sea urchin population size, and thereby to the availability of the resource to fish-

ers, we were able to reconstruct the exploitation history of the red urchin at San Nicolas

Island. This fitting of multiple models provides more confidence in overall conclusions

than one model alone, while concurrently allowing for a more nuanced look at the uncer-

tainties inherent in our understanding of the system (e.g., in the divergent trajectories

of our harvest simulations). We recommend that other researchers and managers take

a similar, multi-model comparison approach when approaching human-wildlife conflicts

with high uncertainty.

Predator recovery projects involve contending with the predator’s effect on natural re-

sources (prey) that may be of economic or intrinsic value to humans[67]. The type of

conflict described in our analysis is not unique. For example, in the greater Yellowstone

ecosystem, recovering populations of gray wolves threaten both livestock and populations

of recreationally-hunted elk. An explosive management issue is whether and how to con-

duct lethal control (culling) of the wolf population[71], a conversation which should be
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fundamentally informed by knowledge of the historical—and predicted future—relative

effects of humans and natural predators on the resources of value. One analysis of histor-

ical Yellowstone data found, as in our sea otter case, that human harvesting and severe

climate impacts likely had a much larger impact on elk populations than wolves[108]. Ap-

portioning impact like this to one mortality source over another is often a primary topic

in policy discussions, because it is used as evidence for or against active management of

predator populations[71].

Understanding past dynamics also offers a baseline to help us set expectations for the

future, and could help predict the effects of proposed management actions. In our analy-

sis, we were able to use the fitted model parameters to explore what effect the continued

growth of the sea otter population will have on sustainable urchin fishery yields. Ac-

cording to their Species Recovery Plan under the Endangered Species Act, sea otters

are still substantially below their estimated carrying capacity at San Nicolas Island[105].

We estimate a decline in sea urchin yields with an increasing otter population, but the

slope of that decline varies substantially depending on the predation model used. This

finding is relevant for other predator recoveries because multiple plausible but divergent

models provide natural resource managers with bounds on the range of potential futures.

Predicting when and how extensively predator recovery may negatively impact future

sustainable harvests is a primary endeavor of many recovery programs, but making in-

correct predictions may have undesirable consequences. For example, in the East China

Sea, management focused solely on the recovery of large predatory fish may cause de-

clines in prey species that are the basis of some of the most productive fisheries in the

world[69]. In other cases, though, explicit predator removal can also cause declines in

prey. In the Benguela ecosystem of southern Africa, a cull of recovering fur seals was

strongly considered to protect an important fishery. However, careful food web analy-
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sis suggested that the proposed cull would likely do more harm than good, and might

actually cause a decline in the catch of the target species because of indirect trophic inter-

actions[75], [109]. In a terrestrial example, lethal culling of coyotes in the western United

States likely causes a negative indirect effect on the greater sage-grouse, the species the

cull is purportedly intended to benefit[110]. This type of unintended consequence is not

uncommon: in 113 predator removal experiments reviewed by Sih et al.[111], prey den-

sity declined after predator removal in 54 of them. Ultimately, effective prediction and

management of complex predator-prey systems requires models like ours that combine

human harvesting with ecological processes[68].

If we value both healthy predator populations and the livelihoods of natural resource

harvesters, then we must establish whether they can coexist. Our projections of future

maximum sustainable yield and fishery harvests suggest that if the sea otter population

continues to grow at San Nicolas Island, an urchin fishery will no longer be viable in the

near future. But from another perspective, otters and urchin fishers have coexisted at

the island since 1990. Extensions of our work could further explore the long-term impli-

cations of alternative predator management actions for the urchin fishery, such as culling

(currently illegal under the Endangered Species Act) or the managed spatial separation

of otters and fisheries. Regardless of the actual actions taken, managers must proactively

plan for the consequences of an overexploited fishery now facing an increasing additional

mortality source from a recovering predator. However, management decisions should

also consider other effects of predators beyond their direct impacts on prey resources, in-

cluding overall ecosystem health. Sea otters, as a keystone species, promote the creation

and resilience of healthy kelp forest ecosystems. Wolves and other terrestrial preda-

tors are known to preferentially select older and diseased ungulates, helping to maintain

herd health[112]. Amid a push towards a greater emphasis on holistic, ecosystem-based
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management, these broader implications of predator recovery should be considered.

The Anthropocene has ushered in elevated human pressures on harvested natural re-

sources and the natural predators that depend on them. At the same time, a growing

conservation ethic and appreciation of the ecological importance of predators means

that decision-makers must contend with difficult tradeoffs and complex dynamics in try-

ing to balance predator recovery with human livelihoods and economic values. Models

like those presented in this study offer a way to leverage known ecological relationships

and commonly available data to confront these tradeoffs in human-wildlife conflicts in a

quantitatively-robust way.

Supplementary Information

Model Structure

Urchin mortality due to fishing and sea otter predation were modeled as latent unob-

served processes by fitting a standardized CPUE index to a combined fishing and natural

predation process model. Each model represents change in biomass Bt of urchins over

time as a function of intrinsic growth, harvesting, and predation:

Bt+1 = Bt +Growtht −Harvestt − Predationt

For all models, Growtht−Harvestt is modeled with the Pella-Tomlinson model (Equation

2 in the main text):

Bt = Bt−1 +
r

p− 1
Bt−1

(
1−

(Bt−1

K

)p−1)
− Ct
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In a classic logistic growth model without p (sometimes known as the Schaefer or Graham-

Schaefer model in fisheries applications), the maximum sustainable yield—the biomass

that can be consistently withdrawn from the stock year over year—occurs at a stock

size equal to half the carrying capacity, K
2
. In the Pella-Tomlinson model, the biomass

level producing the maximum sustainable yield (BMSY ) can occur at any fraction of k

(equations (2.13) and (2.14)), dependent on the fitted parameter p. When p = 2, the

model reduces to the simple logistic growth model. When p > 2, maximum sustainable

yield occurs at a stock size greater than half the carrying capacity, and when p < 2,

maximum sustainable yield occurs at a stock size less than half the carrying capacity.

MSY = rk(
(1
p

)1+ 1
p−1 (2.13)

BMSY = k
(1
p

) 1
p−1 (2.14)

In the fitting of the Pella-Tomlinson models, harvest Ct is treated as known (observed

urchin harvest) and r, p, and K are fitted. Biomass Bt is linked to the observed catch-

per-unit-effort data It via a fitted catchability coefficient q:

Ît = qBt

The four models differed in their representation of Predation, described below.

Model Data and Parameter Descriptions

Note: otter daily caloric demand is defined as 15.7 MJ per day (98). To put the value

into units of red urchin biomass, this number was divided by the average caloric energy

content of a medium-to-large urchin (60-100 mm test diameter) of 142.8 kJ (93) to get a
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Table 2.1: Data used in model fitting
Data Description Source
Ct Harvest of red sea urchins in year

t
California Department of Fish
and Wildlife

It Standardized CPUE index Standardized from California De-
partment of Fish and Wildlife

Nt Otter population at San Nicolas
Island in year t

USGS Western Ecological Re-
search Center

Ut Red sea urchin density at San
Nicolas Island in year t (predator
satiation and functional response
models)

Kenner et al.(2013)

Dreq Annual caloric demand of an
adult sea otter if 100 percent of
the diet were urchins* (predator
functional response model)

Yeates et al.(2007), Bentall et
al.(2005), Shears et al.(2012)

maximum number of urchins eaten per day, then multiplied by the average total weight

of that same urchin (60-100 mm diameter) of 231g (100). Finally, the caloric demand

was scaled up from a daily to an annual value in metric tons.

Table 2.2: Quantities estimated as combinations of the fitted parameters
Quantity Description Equation

in main
text

Bt Biomass of red sea urchins at San Nicolas
Island in year t

2,4

Ît Estimated CPUE index of abundance in year
t

3,5

Dt Percent urchins in the sea otter diet in year
t

9
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Table 2.3: Parameters of the Pella Tomlinson surplus production model, common to all
four models developed in the text

Parameter Definition Prior
K Carrying capacity of red sea

urchins at San Nicolas Island
Normal(10max(Ct), 10max(Ct))

r Intrinsic population growth rate Normal(0.4,0.2)
p Pella-Tomlinson shape parameter Normal(2,4)
Log(q) Log of catchability coefficient

(scaling factor relating ’true’
biomass to the index of abun-
dance

Uniform(-15,-1)

σp Biological process error InvGamma(2,1)
σo Observation error in the CPUE

index
InvGamma(2,1)

Table 2.4: Parameters specific to each of the four predation models

Model Parameter Definition Prior/Value

Linear predation ζ Consumption of red sea urchins
per otter

Normal(5,5)

Predation rate α Lotka-Volterra type predator
prey interaction term

Uniform(1,10)

Predator satia-
tion

qpred Sea otter catchability coefficient Normal(5,5)

S Shape of predator satiation curve Normal(0.7,0.7)

Umax Maximum prey density 9 (constant)

Predator func-
tional response

Fmax Maximum percent sea urchins in
otter diet

Normal(0.5,2)

Nhalf Urchin density at which otter diet
percentage is at half of its maxi-
mum

Uniform(0,9)
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Choice of Prior Parameter Distributions

Bayesian models can be sensitive to the choice of prior distributions. The priors used in

our models reflect the degree of knowledge for each model parameter, and although many

parameters were fit starting from extremely broad or “uninformative” prior distributions,

other priors were based on findings from previous research. For many (but not all) of

the parameters estimated, the posterior distributions departed significantly from these

priors, suggesting that our data contain sufficient information for reasonable estimation

of parameters. Here we briefly discuss the choices behind prior distributions for model

parameters.

For the Pella-Tomlinson model, a minimally informative prior was chosen for carrying

capacity (a normal distribution with mean and standard deviation equal to ten times the

maximum recorded sea urchin catch), since we had no prior information on K. For the

intrinsic growth rate r, we used a prior distribution based on another study of a red sea

urchin population in Baja California[113]. The Pella-Tomlinson shape parameter p was

normally distributed around the value (2) that would result in the simple logistic model,

but with a large standard deviation since the shape of the sea urchin yield curve is not

well-known. The catchability coefficient q was unknown and therefore its prior was an

uniformative uniform distribution. The inverse gamma priors for process and observation

error were also minimally informative.

Each separate predation model required priors for model-specific parameters. In Model

1, the normal prior distribution for ζ was broad, with its mean at the maximum annual

estimated biomass of large urchins consumed by an adult male otter if 50 percent of the

diet were composed of urchins (using the same calculation for caloric demand used in

Model 4). In Model 2, the predation rate constant was unknown and was therefore fit
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starting from a uniform prior distribution. For Model 3, qpred is analogous to ζ and so

the same reasoning was used for its prior. S describes the shape of the predator functional

response curve, and its prior was normally distributed around a value of 0.7, which would

produce a Holling Type II curve[99]. Finally, for Model 4, the maximum percent in the

sea otter diet composed of sea urchins (Fmax) was based on observed data from two sea

otter foraging studies[93], [94], while the density at which the diet percentage was at half

of its maximum (Nhalf) used a uniform prior distribution varying between zero and the

maximum density ever observed at San Nicolas Island.

Key Model Parameter Fit Statistics

Each of the models below represents sea otter predation in a different way. We show each

predation equation, followed by model fit statistics and posterior parameter distributions.

Every model is fit in Stan[101] through Hamiltonian Markov Chain Monte Carlo[102].

Each model is fit with 3 chains of 4000 iterations each.

The model parameter tables below show mean, standard deviation, and the 2.5%,

50%,and 97.5% quantiles of the estimated posterior distribution for each key parameter

in each model. Rhat and n_eff are Bayesian fit statistics. n_eff indicates the effective

sample size for a given parameter, which is the number of independent draws from

the posterior. The Rhat statistic is the Gelman and Rubin potential scale reduction

statistic[114], and helps in determining whether the n_eff effective sample size is too

low for reliable inference about a parameter. Across chains, Rhat measures whether the

separate chains have reached a stable posterior distribution, despite being seeded at

different initial values. Rhat should be less than 1.1[114].
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Figure 2.7: Model 1 prior and posterior parameter distributions. Prior distributions are
shown in black lines, posterior distributions as the colored curves for each parameter.

Model 1: Linear Predation

Bt+1 = Bt +Growtht −Harvestt − ζNt

Model 2: Predation Rate

Bt+1 = Bt +Growtht −Harvestt − αNtBt
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Table 2.5: Parameter fits for the linear predation model.
Parameter Rhat n_eff mean sd 2.5% 50% 97.5%
r 1.001 4424 0.261 0.158 0.027 0.244 0.609
K 1.001 4550 31647 9262 17214 30404 52830
q 1.002 2911 0.000 0.000 0.000 0.000 0.000
p 1.001 5381 5.748 2.988 0.496 5.599 12.028
ζ 1.000 6578 5.529 3.552 0.357 5.054 13.474

Figure 2.8: Model 2 prior and posterior parameter distributions. Prior distributions are
shown in black lines, posterior distributions as the colored curves for each parameter.
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Table 2.6: Parameter fits for the predation rate model.
Parameter Rhat n_eff mean sd 2.5% 50% 97.5%
r 1.000 3967 0.272 0.166 0.037 0.251 0.642
K 1.001 5354 28886 9134 16147 27509 49685
q 1.001 3935 0.000 0.000 0.000 0.000 0.000
p 1.001 3386 4.341 2.955 0.174 3.996 10.866
α 1.000 4335 2.363 1.692 0.127 2.039 6.404

Model 3: Predator Satiation

Bt+1 = Bt +Growtht −Harvestt − qpredNtexp(−S( Ut

Umax
− 1))

Note: Umax is set at 9 urchins per square meter, the 0.95 quantile of all observed urchin

densities at San Nicolas Island (Kenner et al.2013).

Table 2.7: Parameter fits for the predator satiation model.
Parameter Rhat n_eff mean sd 2.5% 50% 97.5%
r 1.000 4241 0.265 0.161 0.026 0.247 0.615
K 1.000 3570 32275 9258 17690 31103 53071
q 1.000 2400 0.000 0.000 0.000 0.000 0.000
p 1.000 4307 5.512 2.943 0.464 5.395 11.687
qpred 1.000 5409 4.450 3.226 0.207 3.805 12.149
S 1.000 8544 0.708 0.465 0.043 0.644 1.743

Model 4: Predator Functional Response

Dt =
FmaxUH

t

NH
half+UH

t

Bt+1 = Bt +Growtht −Harvestt −NtDreqDt
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Figure 2.9: Model 3 prior and posterior parameter distributions. Prior distributions are
shown in black lines, posterior distributions as the colored curves for each parameter.

Table 2.8: Parameter fits for the predator functional response model.
Parameter Rhat n_eff mean sd 2.5% 50% 97.5%
r 1.001 5716 0.250 0.156 0.019 0.233 0.587
K 1.000 6689 31646 8751 18192 30519 51752
q 1.001 4624 0.000 0.000 0.000 0.000 0.000
p 1.001 5895 6.042 2.926 0.669 5.949 12.123
Fmax 1.003 1606 0.466 0.355 0.244 0.384 1.333
Nhalf 1.002 2073 0.959 0.981 0.131 0.707 3.817
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Figure 2.10: Model 4 prior and posterior parameter distributions. Prior distributions are
shown in black lines, posterior distributions as the colored curves for each parameter.
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Model Comparison Using Leave-one-out Log-likelihoods

We compare models using the log-likelihood of the observed catch-per-unit-effort index,

I, given our estimates of catch-per-unit-effort Ît and observation error σ2
o :

log(It) ∼ Lognormal(log(Ît), σ
2
o)

Using the loo package in R, we compare the models with leave-one-out cross-validation

for Bayesian models using Pareto smoothed importance sampling[103]. The measure of

predictive fit used to rank the models is from equation 4 in Vehtari et al. (2017)[103],

called the “expected log predictive density”:

elpdloo =
n∑

t=1

logp(It|I−t)

where p(It|I−t) is the leave-one-out predictive density given the data without the ith

data point. In the table, elpd is the expected log predictive density and SE elpd is

Table 2.9: Model comparison using leave-one-out log-likelihoods of CPUE estimates
Model elpd SE elpd Difference
Predator Satiation 9.158 3.709 0.000
Predation Rate 8.933 3.774 -0.225
Predator Functional Response 8.636 3.699 -0.522
Linear Predation 8.328 3.675 -0.830

the standard error of expected log predictive density. According to log likelihoods, the

difference in model likelihoods is smaller than the scale of the standard error, signaling

no strong support (in the likelihood context) for one model over the others.

Note: the lack of strong support for one model over any others was true as well for WAIC
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(widely applicable information criterion) computed from the pointwise log-likelihood.

One of the reasons for this is that the models do not differ immensely in their complexity

(i.e., no one model has a much greater number of parameters than any other).
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Chapter 3

Environmental Variability Drives

Predation Risk: A Bering Sea

Example

Abstract

Species interactions and environmental variability can impede effective ecosystem-based

fishery management. Even in some of the most studied and valuable fisheries in the world,

stock collapses or recovery failures have been attributed to some combinations of unantic-

ipated species interactions and environmental changes. One important example of these

complex dynamics is in the eastern Bering Sea, where Pacific cod (Gadus macrocephalus)

are known predators of snow crab (Chionoecetes opilio). In this study, we use a multi-

species, size-specific dynamic distribution model to uncover the major drivers of spatial

and temporal variation in Pacific cod and snow crab distributions in the Bering Sea. We

perform a spatial dynamic factor analysis, finding that average distributions of cod and
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crab follow interpretable spatial patterns associated with bottom temperature and depth.

But, their distributions across the eastern Bering Sea have also oscillated markedly from

1982 to the present, and the two species ordinate on the dominant spatio-temporal fac-

tors in divergent ways. This finding indicates that Pacific cod and snow crab populations

respond differently to environmental fluctuations. Using modeled spatial abundance, we

find that cod and crab distribution shifts in specific regions are significantly correlated

with temperature anomalies. Moreover, there are strong, consistent negative correlations

between abundances of the two species in some locations. We propose that in the eastern

Bering Sea, environmental variability drives large-scale changes in Pacific cod and snow

crab distributions, which in turn leads to variability in the overlap of their distributions

and altered predation risk across years. Given the influence of temperature variability in

this system, climate change will undoubtedly alter species distributions and interactions

in this system. Models like those utilized here provide one way to understand and predict

how complex spatio-temporal dynamics in marine systems may shift in the future.

Introduction

The goal of ecosystem-based fisheries management (EBFM) is to promote sustainable

marine ecosystems and fisheries through consideration of interactions between humans

and both biotic and abiotic elements of the natural environment. Although EBFM has

been actively pursued for decades[115], [116], implementation has been a difficult goal to

achieve[117]. One of the reasons for the slow adoption of EBFM is the technical difficulty

inherent in trying to simultaneously account for the influences of species interactions

and varying environmental conditions on species’ abundances and distributions across

space[118].
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Some fishery collapses or lack of recoveries have been attributed to a failure to account for

species interactions[119], [120]. Importantly, omitting species interactions like predation

from models of population dynamics may lead to an underestimation of uncertainty

and perhaps to overly optimistic or risky management advice[99]. At the same time,

environmental drivers act on these interacting species, influencing phenology, patterns

of species movements, recruitment of new individuals into differen locations, and by

extension, overall productivity[121], [122]. When environmental change drives greater

spatial overlap between predators and prey, interactions will intensify and the relative

influence of predation will strengthen[123]. In this way, environmental variability can

determine patterns of species interactions.

Given that fishing pressure alone cannot explain widespread declines from historic abun-

dances in many harvested species, many studies have attempted to attribute causation to

species interactions or environmental change in addition to fishing pressure[124], [125].

One such fishery is the snow crab (Chionoecetes opilio) fishery in the eastern Bering

Sea (EBS). The fishery for snow crab is one of the most valuable crustacean fisheries in

the world, but has experienced marked fluctuations in stock size over the course of its

exploitation history[126]. Production in the snow crab fishery peaked in the 1991, but

landings declined by more than an order of magnitude from that point until to the early

2000s. In spite of conservative, scientifically-informed management measures since, the

stock has remained at low levels relative to the past, and in 2016 the stock was estimated

at its lowest point in the history of the fishery[127].

A number of hypotheses have been suggested to explain the fluctuations in the snow

crab population in the EBS, including oceanographic and climate forcing[126], [128],

[129]. Juvenile snow crab settlement has been correlated to the annual spatial extent

of the “cold pool” across the middle portion of the shelf, an area with near-bottom
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temperatures < 2◦C which is created by severe stratification of the water column as ice

melts across a large portion of the Bering Sea in the spring[130], [131]. After warmer

winters, the cold pool extent is reduced to the northwest, while after colder winters it can

extend across a wide area of the shelf to the southeast. Moreover, after warm years as the

snow crab population contracts to the northwest, the stock can have trouble recolonizing

the southern portion of the shelf. Orensanz et al. (2004)[129] postulated that this is

due to the fact that prevailing currents in the region flow in a northwesterly direction,

preventing larvae from being advected “upstream” to other portions of the shelf, even

after environmental conditions have returned to normal[132].

Predation by fish predators on juvenile snow crab may be another important driver of

their spatial population dynamics[129], [133], [134]. Previous research suggests that the

southern boundary of snow crab distribution in the Bering Sea is mediated by Pacific cod

(Gadus macrocephalus) predation. Pacific cod in some years consume enormous amounts

of juvenile snow crab, just as Atlantic cod predate on snow crab in eastern Canada[133],

[135]. This effect of cod predation on snow crab mortality is size dependent for both

species[134]; that is, the size of snow crab consumed by cod is dependent on both crab

size and cod size. It has been suggested that this predation effect can interact with

and exacerbate the cold pool effect on juvenile snow crab settlement[129]. Pacific cod

distribution also responds to environmental variability. In warmer years the centroid of

adult cod distribution moves to the northwest[128], although juvenile cod distribution

is relatively stable across the EBS[136]. When snow crab distribution retracts to the

northwest in warmer years, the expanded cod distribution may be an additional factor

preventing the reexpansion of the snow crab stock towards the southeast.

In this study, we investigate the spatial distributions of snow crab and Pacific cod us-

ing spatial dynamic factor analysis applied to size-structured annual trawl survey data.
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We examine the time period from the early 1980s to the present (2016), a time period

characterized by large fluctuations in both crab and cod abundance. The hypothesis is

that cod and crab will both respond to fluctuations in patterns relating to environmental

drivers, specifically bottom temperature and depth. In addition, after constructing a

spatio-temporal model of crab and cod distributions, we test whether cod abundance is

significantly correlated with crab abundance in the EBS, which would indicate a poten-

tial predation effect. Given the previous research on Pacific cod diet, we expect that cod

abundance will be significantly negatively associated with the abundance of small snow

crab, but that this effect will depend on interannual changes in environmental conditions.

Data and Methods

Trawl survey data

To investigate the spatio-temporal patterns in Pacific cod and snow crab distributions,

we use a joint dynamic species distribution model(JDSDM)[137]. JDSDMs estimate

“factors” representing latent spatial and spatio-temporal patterns in observed data.

We fit the model to fishery-independent bottom trawl survey data from the Gulf of

Alaska. The survey, conducted each summer, enumerates all species caught in each

of approximately 375 tows across a 20 by 20 nautical mile grid, providing an annual

census of the Bering Sea demersal fish and invertebrate communities (full survey

details can be found at https://www.fisheries.noaa.gov/resource/document/

groundfish-bottom-trawl-survey-protocols). Along with the number and weight

of species caught, the survey also records near-bottom temperature, depth, and area

swept by the trawl. For both cod and crab, all individuals are sexed and measured by
79

https://www.fisheries.noaa.gov/resource/document/groundfish-bottom-trawl-survey-protocols
https://www.fisheries.noaa.gov/resource/document/groundfish-bottom-trawl-survey-protocols


CHAPTER 3. BERING SEA COD AND CRAB

Figure 3.1: The study area in the eastern Bering Sea. Locations of trawl survey data
points used to train the spatial dynamic factor analysis model are shown in gray. Bathy-
metric lines indicate the 50 and 100m depth contours, which broadly delineate the coastal,
middle, and outer domains of the Bering Sea referred to in the text.
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fork length (FL) for cod or carapace width (CW) for crabs. Additionally, the survey

denotes crab maturity stage, enabling us to distinguish between immature and mature

crabs.

From the survey data, we extract all observations of snow crab and cod, then sort them

into size bins. For snow crab, we defined two classes: immature snow crab and mature

female snow crab. Mature males were not included in the analysis as we were focused

primarily on factors affecting the spawning stock of snow crab. We defined immature

crabs as crabs of both sexes that were smaller than 58 mm CW and sexually immature.

The 58 mm cutoff is based on a diet study that found that 95% of all crabs found in

Pacific cod stomachs are smaller than 58mm. We define mature female crabs as any

mature females, regardless of egg-carrying status or size. Size at maturity for snow crab

varies with latitude and year, although in most regions and years, primipara (first-time

female spawners) are larger than 50 mm CW[132].

For Pacific cod, we enumerate total abundance at each survey station for cod within

three size classes. As with snow crab, our size classes were based on previous studies

of cod predation, which found that cod containing snow crab in their stomachs were

typically between 200 and 800 mm FL[133], [134]. We define small cod as those <200

mm FL, medium cod as between 200 and 800 mm, and large cod as larger than 800

mm. Therefore, with our definitions, we would expect a predation interaction between

medium cod and immature snow crab. Size frequency distributions for all classes used

in the model are shown in the Supplementary Information. In the following, we refer to

the two crab and three cod categories in the data as “classes”.

Temperature and depth are included as environmental covariates in the model described

below. To ensure the environmental covariates matched the observed data as closely as

possible, we extracted near-bottom temperature and depth directly from the survey itself,
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and then used inverse-distance weighting to interpolate values between survey points.

Joint dynamic species distribution model

We implement the JDSDM through the publically available Vector Autoregressive

Spatiotemporal R package VAST. VAST uses a delta-generalised linear mixed modeling

method and takes into account spatio-temporal correlations among species (or size

classes of one species, as in our model). A full description of the modeling framework

can be found elsewhere[137], [138], but we describe the key equations here.

The JDSDM is a dimension-reduction technique that models response variables as a

multivariate process where the predicted abundance of a class at a location is represented

as the combination of two linear predictors: encounter rate (i.e., presence/absence of a

class at a given location), and positive catch rate (i.e., the prediction of abundance given

the presence of a class in a location). VAST estimates fixed and random effects for the two

linear predictors that are each a function of an intercept, a spatial effect, a temporal effect,

and any density covariates. In our model, bottom temperature and depth were used as

density covariates. More specifically, the first linear predictor represents encounter rate

for sample i as,

p1(i) = β1(ci, ti)+

nω1∑
f=1

Lω1(ci, f)ω1(si, f)+

nϵ1∑
f=1

Lϵ(ci, f)ϵ1(si, f, ti)+

np∑
p=1

γ1(ci, ti, p)X(si, ti, p)

(3.1)

where pi is the linear predictor for encounter rate, β1(ci, ti) is the intercept term in year t

for class c, the terms starting with Lω and Lϵ are the spatial and spatio-temporal factor

models, respectively, and X is the matrix of density covariates defined for each location

s, time t and covariate p that have linear effects γ on the predictor. In the factor model

terms, Lω and Lϵ are loading matrices relating the classes to each of f factors, and ω(s, f)
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and ϵ(s, f, t) are vectors of random effects representing latent spatial and spatio-temporal

variation at each location. VAST models average spatial variation ω as being constant

across years, while spatio-temporal variation ϵ varies among years. The second linear

predictor, representing positive abundance, has an analogous formulation.

We use a log-link to transform both linear predictors to predict the observed data (see

138 for all model equations):

r1(i) = 1− exp(−ai × exp(p1(i)))r2(i) =
ai × exp(p1(i))

r1(i)× exp(p2(i))
(3.2)

where ai is the area associated with sample i in the survey. Positive abundance is modeled

with a gamma distribution.

An important feature of VAST is that it accounts for spatial autocorrelation, or the fact

that values nearby in space tend to be more similar than locations further away. Each

spatial (ω) and spatio-temporal (ϵ) factor in both linear predictors is represented as Gaus-

sian random fields, where the covariance between nearby locations is approximated with

a Matern correlation function[139] through the R-INLA software[140]. The correlation

function follows geometric anisotropy, where the rate of decline in correlation between

locations can be different in different directions (i.e., correlation can decline more rapidly

in the east-west than the north-south direction).

Parameter estimation for VAST is accomplished through Laplace approximation of the

marginal likelihood for fixed effects while integrating across the random effects using the

Template Model Builder software[141]. The model requires the estimation of 87 fixed

effects and 25752 random effects. For this study, we are primarily interested in the

spatial and spatio-temporal factors, and how the five classes in our study relate to those

factors, represented by the factor loadings matrices. We estimated three spatial and
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three spatio-temporal factors for both linear predictors, while including temperature and

depth as covariates. As derived quantities, VAST can also calculate each class’ spatial

abundance-weighted center of gravity and effective area occupied within the EBS, as well

as an overall (non-spatial) index of abundance. We use these derived quantities to further

explore the spatial and temporal dynamics of snow crab and cod.

Results

Dominant spatial and spatio-temporal patterns

The estimated spatial and spatio-temporal factors represent latent (unobserved) spatial

variables or patterns that underlie the observed spatial trends in species abundances.

The intuition is that the collection of time series—in our case, the time series of cod and

crab abundances at each survey station across years—can be represented in a reduced

number of dimensions through the identification of common spatial patterns. These

patterns are called latent factors and can be thought of as representing unmeasured

environmental drivers of processes that drive a degree of synchronization of the time

series. Each individual time series can then be represented as a linear combination of

the factors, which is precisely what is shown in equation (3.1). The goal of the analysis

is to identify this reduced set of spatial patterns in the data in order to explore how the

patterns relate to known environmental drivers.

We estimate three factors for spatial and spatio-temporal variation in the five classes

(two snow crab and three Pacific cod classes). To visualize the factors, we estimate all

spatial values within 100 distinct spatial regions across the EBS, analytically chosen to

minimize the average distance between those locations and the available data. There are
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clear, interpretable patterns apparent in the average spatial variation of cod and crab.

These patterns manifest in both the northeast-to-southwest dimension (the longer axis),

and the cross-shelf or shorter axis of the EBS. Figure 3.2 shows the spatial distribution

of the first two factors describing presence/absence and positive abundance. The first

factors for both encounter rate and positive abundance (panels a and c of Figure 3.2) have

negative values in the southeast towards Bristol Bay, increasing to positive values with

greater depth and latitude. The second factors for encounter rate and positive abundance

show slightly different patterns. For encounter rate, positive values clearly delineate

the mid-depth band of the EBS. It is strongly and significantly associated with lower

temperatures (Pearson’s ρ -0.51), picking up the signal of the EBS cold pool. The second

factor for positive abundance shows a transverse pattern across the shelf from northeast

to southwest, and is also significantly associated with temperature (ρ 0.47). Figure 3.2

shows the main static patterns in size-structured cod and crab distributions in the EBS,

but we can also investigate the major patterns in species distributions over time through

the estimation of spatio-temporal factors, i.e. the ϵ(s, f, t) terms in equation (3.1). These

latent spatio-temporal factors are important in describing interannual variation in species

distributions, but display complex temporal patterns. For example, consider Figure 3.3

that shows the values of the first spatio-temporal factor for positive abundance (i.e.,

abundance given the presence of a class at a location). In many years, much of the

factor is near zero, with occasional strong spatial signals in specific areas of the EBS. For

example, in 1983 and 1999, the factor displays strong negative values in the Bristol Bay

and southeastern coastal areas, while in 1985 and 2012 there are strong positive values

in the northern coastal portion of the study area.

The variation apparent in Figure 3.3 is not clearly associated with near-bottom temper-

ature anomalies across the study period. The average spatial values of the factor in each
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Figure 3.2: The first two spatial factors describing encounter rate (presence or absence,
panels a and b) and positive abundance (panels c and d) of snow crab and Pacific cod
in the EBS. Panels a and c are the first factor of encounter rate and positive abundance,
respectively, and panels b and d are the second factors. Warmer colors represent positive
values of the factor, while cool colors represent negative values.
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location across years are not signficantly correlated with average temperature anomaly

(p>0.05), and while in certain years the relatoinship between the factor and temperature

is significant, some of these correlations are positive and others are negative. It is likely,

therefore, that the spatio-temporal factors represent the combined influence of a number

of temporally-varying environmental and predation processes and are therefore difficult

to interpret through any single environmental variable. Maps of all three factors for all

four linear predictors are shown in the Supplementary Information.

Species associations with spatial and spatio-temporal factors

Figures 3.2 and 3.3 show some of the major patterns in cod and crab distributions across

the EBS, but to explore how each species associates with these patterns, we investigate

the factor loading matrices Lω and Lϵ. Figure 3.4 shows the loadings of each species on to

the three factors for each linear predictor. The first two factors for average spatial vari-

ation explain 85.1% and 88.2%, respectively of the between-class variance in encounter

rates and positive abundance (the left two columns of Figure 3.4). Snow crab and cod

show opposite relationships to the first spatial factor for both encounter rate and positive

abundance. Snow crab, and mature females in particular, are strongly positively asso-

ciated with the first factor, while small cod are negatively associated and medium and

large cod have smaller loadings. The encounter probabilities of snow crab and small cod

are positively associated with the second factor for average spatial variation in encounter

probability, while all classes except immature crabs are positively associated with the

second factor for variation in positive abundance.

The right two columns of Figure 3.4 show how the presence and abundance of each

class is related to annually-varying factors. Together, the first and second factors de-

scribing spatio-temporal variation in encounter rates explained 84.8% of between-species
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Figure 3.3: Values of the first spatio-temporal factor for encounter probability in each
year in the study. Warmer colors represent positive values of the factor, while cooler
colors represent negative values.
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variance. The first factor shows clear differences between species, where snow crab are

negatively associated and Pacific cod positively associated. Conversely, crab and large

cod are positively associated with the second factor, while small cod is negatively associ-

ated. Finally, the first factor describing spatio-temporal variation in positive abundance

primarily represents the distributions of the two crab classes. The second factor for

spatio-temporal variation in positive abundance separates the two crab classes, where

the positive abundance of immature crabs is negatively associated and the abundance of

spawners positively associated. The third factor in all four linear predictors show more

positive associations across all classes, but explains a much smaller proportion of overall

variance in cod and crab distributions. However, the third factor seems to be where much

of the variance in the distribution of medium-sized cod is contained—the highest loading

of medium cod on to any factor is for the third factor of spatio-temporal variation in

positive abundance. Figure 3.4 suggests that for the most part, crab and cod associate

in divergent ways to the spatial and spatio-temporal patterns described above. The sep-

aration between species is more clearly evident when plotted in two-dimensional space.

For instance, Figure 3.5 shows the first two factors describing spatio-temporal variation

in the positive abundance of all five classes in the study. Clearly, the two species are

distinguished along the first factor, while the second factor segregates immature from

mature crabs. Medium and large cod have little relationship to either factor, but small

cod is associated positively with both factors. Comparing factor loadings (Figures 3.4

and 3.5) to factor maps (Figures 3.2 and 3.3) gives a view of the major patterns across

species’ distributions. For example, the average encounter probability for immature snow

crab is described well by the first factor (panel (a) in Figure 3.2), showing that on av-

erage, immature crabs are more likely to be found towards the northern section of the

EBS, and much less likely to occur in the Bristol Bay region. At the same time, we

know from Figures 3.4 and 3.5 that distributional change over time in the same class is
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Figure 3.4: Factor loadings for each class (bars), linear predictor (columns) and factor
(rows), where positive loadings are shown in red and negative loadings in blue. Numbers
in the upper right corner indicate the overall between-class variance explained by each
factor. The five classes are small immature snow crab (Opilio Immature), spawner snow
crab (Opilio Spawner), and small (<200mm FL), medium (between 200 and 400mm),
and large (>800mm) Pacific cod.
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Figure 3.5: Loadings of all classes on to the first two factors for spatio-temporal variation
in positive abundance. Triangles indicate snow crab classes and circles indicate cod
classes.
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well-described by the first spatio-temporal factor for positive abundance, which is seen

in Figure 3.12. The map of this factor clearly represents the major changes in juvenile

snow crab stock. Especially apparent is the depressed abundance throughout the south-

ern and middle regions of the EBS from the mid-1990s until at least 2005. Moreover,

these spatial and spatio-temporal patterns are more similar within than across species,

showing that these two species likely to not track each other’s distributions, but rather

are each independently responding to environmental changes, which subsequently leads

to greater or lesser overlap in specific years and locations.

Species center-of-gravity

Together, the factors describing the variations in distribution of cod and crab across the

EBS result in predictions of their abundances across space. Predicted total abundance

in any location is simply the product of encounter rate and positive abundance and is

produced as a derived quantity in our analysis. Along the same lines, we can derive

measures of the abundance-weighted center of gravity of each class to explore how that

center has varied over time, as well as an overall non-spatial index of stock abundance.

Although we can map species distributions across space and time (see predicted abun-

dance plot for immature snow crab in the Supplementary Information), the important

general trends in species distributions are apparent in their centers-of-gravity. In Figure

3.6, it is clear that in general, the bulk of snow crab abundance is centered towards the

north and west, while small cod occur in the south and east (Bristol Bay). The center of

larger-sized abundances of both species occur towards further to the south and west than

their smaller counterparts, more towards the middle and outer portions of the EBS shelf.

There have also been major changes in these species and size-specific centers of gravity

over time. In particular, the north-south fluctuations in the snow crab distribution are
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Figure 3.6: Eastward (top row) and northward (bottom row) components of abundance-
weighted center of gravity for each class (columns) across the study period.

clearly evident, with a rapid northward shift in the juvenile distribution of approximately

150 km from the mid-1990s to the mid-2000s. This could be due to strong crab recruit-

ment pulses pulling the center of gravity northward, but this is also the period of severely

depressed landings in the snow crab fishery. In more recent years, a strong shift in cod

distribution is apparent, with the distribution of small cod retreating to the south and

east over time. Since the mid-2000s, the distributions of medium and large cod have also

shifted east and towards the inner or coastal domain of the EBS.

Relationships between abundance and temperature

Lastly, we can use the derived abundances of each class to explore significant relation-

ships among species abundances and between species abundances and environmental

variables. We find no strong correlations—positive or negative—between overall abun-

dances of classes, when we combine data across all locations (Figure 3.7a). This is
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contrary to our hypothesis that immature snow crab and medium-sized cod abundances

should be negatively correlated. In fact, they show a significant positive, if small, corre-

lation, suggesting that cod may be tracking crab abundance. However, when we separate

correlation estimates across space, a clearer picture begins to emerge. Figure 3.7b shows

the correlation between medium cod and immature crab abundance, calculated across

years but separately for each spatial location. Medium cod and immature crab abundance

are strongly negatively correlated in Bristol Bay and in the coastal domain of the EBS

(throughout much of the core distribution area of cod), but not significantly correlated

in the rest of the study area except for small pockets in the middle and far northwest

domains of the study area. Although the negative correlation between the two species

is strongest in Bristol Bay, this is an area where snow crab almost never occur in the

survey, so the pattern in Bristol Bay may be due more to inhospitable environmental

conditions than cod predation. However, the negative correlation between medium cod

and immature crab abundance along the edge of the middle domain suggests that preda-

tion may be an important factor driving snow crab dynamics in that area. But we know

from the factor analysis that both species are responding to other environmental cues as

well, which may alter predation risk for snow crab in different years. Figure 3.7c provides

further evidence that immature crab distribution responds to temperature. In a broad

region of the southeast shelf, immature snow crab abundance is strongly negatively corre-

lated with annual temperature anomalies; in other words, when temperatures are warmer

in these areas, crab abundance seems to decline, due either to distributional change or

direct mortality. Significant negative correlations between immature crab abundance

and temperature anomalies are also found in select other areas of the study area, one

area notably around St. Matthew Island, the remote island towards the north of the EBS.

Medium cod distribution has an even more striking spatial relationship with temperature

anomalies (Figure 3.7d). Abundance of medium-sized cod is strongly positively related
94



RESULTS

Figure 3.7: Correlations between species abundances and between abundances and
temperature anomalies. In all panels, cool colors indicate negative correlations, while
warm colors indicate positive correlations and gray indicates non-significant correlation.
(a)Correlations in predicted abundances of all species across all locations. (b)Spatial cor-
relations between predicted abundances of medium-sized cod and immature snow crab.
(c)Spatial correlations between immature snow crab and annual near-bottom temperature
anomalies. (d)Spatial correlations between medium-sized cod and annual near-bottom
temperature anomalies.
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with years of elevated temperatures in the far north region of the EBS, most strongly

right around St. Matthew Island. Conversely, cod abundance is negatively associated

with temperature anomalies in the middle domain of the shelf, offshore and southwest of

St. Matthew.

Discussion

Ecosystem-based fishery management requires sorting through the influences of environ-

mental drivers and species interactions on the distributions and dynamics of harvested

resources. Increasingly, scientists and practitioners are contending with the realities of

complex managed ecosystems that require the use of dynamic tools and adaptive man-

agement[116]. The complexity introduced by interacting, spatially-structured marine

populations can confound even the most scientifically-advanced and well-managed fish-

eries in the world, such as those in the Bering Sea. Models that can take advantage

of spatio-temporal data to uncover drivers of fluctuations in species distributions and

abundance over space and time are key ingredients for appropriate management.

We used a spatial dynamic factor model to delineate the major spatial and spatio-

temporal patterns in the size-structured distributions of snow crab and Pacific cod in

the Eastern Bering Sea. Both species are targets of large, profitable fisheries in one of

the most productive marine ecosystems in the world. Previous studies have described

how each species seems to respond to environmental variability, specifically bottom tem-

perature[136], [142], and how their distributions may be altered as a result[126], [131].

Moreover, there is ample evidence from stomach content analyses that Pacific cod pre-

dation may be an important determinant of snow crab distribution in certain places and

times[128], [133], [134]. We sought in this study to integrate these lines of inquiry by
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uncovering whether snow crab and Pacific cod have predictable distributions across the

EBS, describing coherent patterns in how those distributions have shifted across time,

and assessing the places and conditions under which we would expect cod to pose a

significant predation risk to snow crab.

Our dynamic species distribution model encompassed five species/size classes that in-

cluded snow crab predicted to be vulnerable to Pacific cod predation (immature crabs

smaller than 58mm CW), and cod of the appropriate size to consume those crabs (cod

between 200 and 800mm FL). The model estimated the presence/absence and positive

abundance separately for both average spatial distributions and spatio-temporal variabil-

ity (changes in the distributions through time) through a dynamic factor analysis.

The resulting spatial and spatio-temporal factors reveal cohesive patterns in crab and

cod distributions in the EBS. The primary factors for average spatial distributions of

both species revealed variation along both the northwest-to-southeast and east-to-west

axes of the EBS, and were significantly related to temperature and depth gradients. In

addition, and in agreement with other work[126], [129], the loadings of each class on

to these spatial factors reveal that cod and crab ordinate in opposite ways to those

environmental gradients. While snow crab are primarily associated with the colder,

more northerly sections of the middle and outer domains of the EBS, Pacific cod occur

towards the southeast and Bristol Bay regions. The estimated spatio-temporal factor

loadings suggest further that cod and crab may respond to interannual environmental

fluctuations in opposite ways. Although the spatio-temporal factors themselves did not

seem to be strongly related to near-bottom temperature anomalies, this finding implies

that a suite of environmental drivers (including but not limited to temperature) determine

the conditions under which to expect greater overlap between the distributions of snow

crab and Pacific cod. The intuition from the combined spatial and spatio-temporal factor
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analysis is that there is a spatial push-and-pull dynamic between the distributions of the

two species, driven by the environment: in years and locations where cod extends from

its average distribution, we would expect a corresponding contraction in the snow crab

distribution, and vice versa.

The center-of-gravity and spatial abundance analyses allowed us to explore more specif-

ically how cod and crab distributions have shifted over time. The model recovered ma-

jor events that are known to have occurred in these two stocks, especially the severe

contraction of snow crab distribution to the far north of the EBS from the mid-1990s

to the mid-2000s, and the contraction of cod to the southeast in recent years. These

fluctuations correspond broadly with trends in estimated abundance from official stock

assessments[127], [143]. Currently, the snow crab population is below its biological fish-

ery reference points, and the Pacific cod stock is close to being overfished and recently

observed one of the smallest recruitment events in the time series.

Together, the available lines of evidence suggest that when environmental conditions

are optimal for crab, they are sub-optimal for Pacific cod. Our observation of large

fluctuations (on the order of hundreds of km) in the distribution centers of the two species

over time implies—though does not prove—that the two species respond on large scales

to the environment, and that interaction between the two species may be important only

in specific places and times. This is contrary to our original expectation to find clear,

significant negative covariance between cod and crab that would be suggestive of an

important interaction. Others have stressed the importance of Pacific cod predation as

a primary determinant of snow crab natural mortality[133] and documented fluctuations

in cod predation that track crab recruitment pulses, but in general have found no overall

strong correlations between Pacific cod and crab abundance[134]. We confirmed this

lack of a strong non-spatial correlation across the entire study area. However, when
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we segregrated the data by location, we found spatially-explicit negative correlations

in cod and crab abundance in some locations along the coastal and southern middle-

depth domains of the EBS. We found that these apparent interactions may be linked to

interannual near-bottom temperature anomalies: in warm years, cod abundance shifts

to the north and may increase predation mortality for snow crab in the far northern

part of the middle domain. Hence, cod predation seems to be a spatially-constrained

driver of snow crab dynamics, but in years with positive temperature anomalies, the

spatial footprint of cod predation risk could expand towards the centroid of snow crab

abundance. This finding contextualizes and extends the hypothesis originally stated by

Orensanz et al. (2004) that Pacific cod may “chop off” the southern distribution of snow

crab in the EBS.

Although the findings of the study suggest a substantial degree of nuance in the inter-

annual spatial distribution shifts of Pacific cod and snow crab, they nevertheless provide

important insights for management. Our findings support the hypothesis that it is in-

terannual environmental shifts, not predation per se that drives changes in snow crab

distributions. The distribution shifts in snow crab can happen rapidly, and it is im-

portant for managers to be able to predict these shifts to make better estimations of

overall abundance in the stock. Our analysis indicates that to make these predictions, it

is more important to focus on predicting changes in bottom-up environmental forcings

rather than top-down predation. Near-bottom temperature changes drive changes in the

distributions of both species, which in turn drive spatial patterns of predation.

Extensions of our work could use a process-based model to account for movement and

better characterize cod predation risk. The most important finding from this study is

that temperature and predation likely interact in complex ways as combined drivers to

affect crab distribution at specific places in specific years. Although we have delineated
99



CHAPTER 3. BERING SEA COD AND CRAB

interpretable spatial patterns in this species-environment interaction, we cannot defini-

tively state the absolute effect of Pacific cod on snow crab in the EBS. Nevertheless,

we can confidently propose that temperature is a strong driver of distribution, with pre-

dation becoming increasingly important only when environmental conditions are right.

An interesting future area of study would be to investigate bottom-up control of snow

crab prey on Pacific cod productivity (i.e., the inverse of the predation effect on snow

crab investigated here). Given that both fisheries are currently experiencing low abun-

dance, it is important to consider bi-directional effects of the species interaction and its

implications for fishery rebuilding.

Given the significant patterns associated with temperature found in our study, it is clear

that future climate change in the Bering Sea will alter species distributions in the region

and determine the future potential for interactions between Pacific cod and snow crab.

Joint dynamic species distribution models similar to ours can be used to forecast distri-

bution change while potentially accounting for interactions and the directional influences

of climate change[144]. Moving forward with adaptive, ecosystem-based fishery manage-

ment will require this type of model to understand and predict how the distribution and

abundance of valuable managed resources may change in response to both climate and

predation.
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Figure 3.8: Size-frequency distributions for the five classes included in the model, includ-
ing all observations (n=103,550 observations)
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Figure 3.9: The third spatial factor for average encounter rate (a) and positive abundance
(b). Warmer colors represent positive values of the factor, while cool colors represent
negative values.
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Figure 3.10: Values of the second spatio-temporal factor for encounter probability in
each year in the study. Warmer colors represent positive values of the factor, while
cooler colors represent negative values.
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Figure 3.11: Values of the third spatio-temporal factor for encounter probability in each
year in the study. Warmer colors represent positive values of the factor, while cooler
colors represent negative values.
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Figure 3.12: Values of the first spatio-temporal factor for positive abundance in each year
in the study. Warmer colors represent positive values of the factor, while cooler colors
represent negative values.
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Figure 3.13: Values of the second spatio-temporal factor for positive abundance in each
year in the study. Warmer colors represent positive values of the factor, while cooler
colors represent negative values.
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Figure 3.14: Values of the third spatio-temporal factor for positive abundance in each
year in the study. Warmer colors represent positive values of the factor, while cooler
colors represent negative values.
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Figure 3.15: Predicted log-abundance of immature snow crab across the EBS in each
year in the study
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Figure 3.16: Predicted log-abundance of medium-sized Pacific cod across the EBS in each
year in the study
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