
Lawrence Berkeley National Laboratory
LBL Publications

Title

SimpleSSD: Modeling Solid State Drives for Holistic System Simulation

Permalink

https://escholarship.org/uc/item/7sq2d9v0

Journal

IEEE Computer Architecture Letters, 17(1)

ISSN

1556-6056

Authors

Jung, Myoungsoo
Zhang, Jie
Abulila, Ahmed
et al.

Publication Date

2018

DOI

10.1109/lca.2017.2750658
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sq2d9v0
https://escholarship.org/uc/item/7sq2d9v0#author
https://escholarship.org
http://www.cdlib.org/


SimpleSSD: Modeling Solid State Drives
for Holistic System Simulation

Myoungsoo Jung , Jie Zhang, Ahmed Abulila,
Miryeong Kwon, Narges Shahidi, John Shalf,

Nam Sung Kim, and Mahmut Kandemir

Abstract—Existing solid state drive (SSD) simulators unfortunately lack hardware

and/or software architecturemodels. Consequently, they are far from capturing the

critical features of contemporary SSD devices. More importantly, while the

performance of modern systems that adopt SSDs can vary based on their numerous

internal design parameters and storage-level configurations, a full system simulation

with traditional SSDmodels often requires unreasonably long runtimes and

excessive computational resources. In this work, we propose SimpleSSD, a

high-fidelity simulator that models all detailed characteristics of hardware and

software, while simplifying the nondescript features of storage internals. In contrast

to existing SSD simulators, SimpleSSD can easily be integrated into

publicly-available full system simulators. In addition, it can accommodate a complete

storage stack and evaluate the performance of SSDs along with diversememory

technologies andmicroarchitectures. Thus, it facilitates simulations that explore the

full design space at different levels of system abstraction.

Index Terms—Hardware, computer architecture, parallel processing, computa-

tional modeling, systems simulation, microprocessors, software

Ç

1 INTRODUCTION

IN the past decade, solid state disks (SSDs) have reshaped modern
memory hierarchy by replacing conventional spinning disks and/
or blurring the boundary between main memory and storage sys-
tems. Thanks to their high performance and low power consump-
tion characteristics, SSDs have already become the dominant
storage type in diverse computing domains, ranging from embed-
ded to general-purpose and high-performance computing systems.
This in turn has led to a wide spectrum of research, including the
comprehensive exploration of the full design space, storage stack
optimization, and architecture renovation at various layers of
memory and storage subsystems.

While simulations are indispensable for system designers and
computer architects, very few SSD simulators have been released
to the public domain [5], [7], [8], [10]. Further, these simulators
have constraints that prevent them from filling the needs of design
space exploration for emerging memory and storage subsystems.
First, all existing SSD simulators lack system-level simulation capa-
bility, and integrating these simulators with publicly-available full-
system simulators is a non-trivial task. While the execution of a
CPU instruction only takes a few cycles in a simulation, a storage
access requires tens of millions (even billions) of cycles for its ser-
vice. Similarly, a file access in an accurate SSD simulation model
can exhibit a long execution time because it needs to go through
the SSD’s intricate software stack and hardware architecture.

Traditional SSD simulators cannot fully account for the important
functionalities of the underlying firmware and model the underly-
ing hardware in detail. Thus, they are far from capturing the criti-
cal features of contemporary high-performance SSD architectures.

In this work, we propose SimpleSSD, a high-fidelity simulator
that models all of the detailed characteristics of hardware and soft-
ware while simplifying the nondescript features of storage internals
such as multi-cycle operations to address a target page on a flash
interface. The proposed hardware and software simplifications allow
SimpleSSD to accommodate a complete storage stack. Thus, system
designers and computer architects can evaluate the SSDs perfor-
mance along with diverse memory technologies and can explore the
full design space of an SSD architecture. Moreover, SimpleSSD can
easily be integrated with publicly-available full-system simulators
and can capture relevant CPU performance characteristics impacted
by different storage types employed by the system. As a case study,
we integrated SimpleSSD with the popular full-system simulator,
gem5 [6], and evaluated its system-level performance from various
aspects. Note that traditional SSD simulators [5], [7], [10] capture
only storage-related metrics such as bandwidth and latency by
replaying block-level I/O traces; this ignores system-level interaction
between the host-side CPU and storage subsystems. In contrast, the
proposed SimpleSSD1 can report detailed information from low-
level memory to each firmware module in order to determine the
host-side CPUperformancewhile executing entire applications.

2 SSD-ENABLED SYSTEM SIMULATION OVERVIEW

Fig. 1 shows an overview of a holistic system simulation with the
proposed SimpleSSD. Application(s) simulated on the host can
place an I/O request through a virtual file system (VFS) and native
file system. The VFS buffers small-sized requests through a page
cache, whereas the native file systemmanages the data accesses and
system memory. The request then arrives at a block layer that reor-
ders and combines multiple requests into a specific order. This CPU
processing part can communicate with the layered firmware of
SimpleSSD via a disk controller. Then, the layered firmware simu-
lates the SSD process part by interacting with an abstraction model,
which simulates the given SSD hardware architecture including
multiple flash dies, module interfaces, and channels. Although
SimpleSSD leveraged gem5 running in full-system mode to simu-
late such CPU processing in this study, it can easily be integrated
into other full-system simulators such asMARSSx86 [13].

Layered Firmware. One of the main challenges of simulating an
SSD is supporting diverse flash firmware versions, which greatly
influences the target storage performance. We model a flexible flash
translation layer (FTL) whose address translation mechanism can
simply be reconfigured based on different associativity granular-
ities defined by system architects. We also decouple I/O schedul-
ing and page allocation mechanisms from the FTL so that new
scheduling proposals that are aware of SSD-internal parallelism
can be embedded without changing the FTL. Although we do not
cover all types of potential FTLs, the implemented reconfigurable
mapping algorithm can capture/support diverse operational char-
acteristics of a block-level mapping FTL, a fully-associative FTL,
and various hybrid mapping schemes that employ different levels
of block and page mapping tables in their address translations. In
addition, our simplified but reconfigurable layered firmware also
offers diverse research opportunities where system and computer
architects can simply modify some performance-critical compo-
nents such as garbage collection and wear-leveling algorithms
with different mapping mechanisms.

! M. Jung, J. Zhang, and M. Kwon are with the Computer Architecture and Memory
Systems Lab, Yonsei University, Seoul 03722, Republic of Korea.
E-mail: {m.jung, jie}@yonsei.ac.kr, mkwon@camelab.org.

! A. Abulila and N. Sung Kim are with the University of Illinois Urbana-Champaign,
Champaign, IL 61820. E-mail: {abulila2, nskim}@illinois.edu.

! N. Shahidi and M. Kandemir are with Pennsylvania State University, State College,
PA 16801. E-mail: nxs314@psu.edu, kandemir@cse.psu.edu.

! J. Shalf is with the Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
E-mail: jshalf@lbl.gov.

Manuscript received 22 Feb. 2017; revised 29 Mar. 2017; accepted 12 May 2017. Date of
publication 10 Sept. 2017; date of current version 19 Mar. 2018.
(Corresponding author: Myoungsoo Jung.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2017.2750658

1. The SimpleSSD source code can be freely downloaded from the following
website: http://simplessd.camelab.org.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 37

1556-6056! 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9832-5801
https://orcid.org/0000-0002-9832-5801
https://orcid.org/0000-0002-9832-5801
https://orcid.org/0000-0002-9832-5801
https://orcid.org/0000-0002-9832-5801
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
http://simplessd.camelab.org.


Hardware Abstraction. The performance characteristics of the
underlying hardware vary based on i) the intrinsics of latency of
individual flash characteristics and ii) their different levels of paral-
lelism. A cycle-level simulation for each component can accurately
evaluate all SSD internals. However, full-system simulations with
an SSD at the cycle level require an unreasonably long runtime and
excessive resources. In this work, we abstracted both flash-level
and subsystem-level hardware characteristics. We implemented an
FPGA-based memory controller built on Xilinx Spartan-6 and then
used this to characterized different memory technologies. Based on
the extracted characteristics, we first design a die-level latency
model by simplifying the flash transactions. Specifically, we exam-
ined all flash transactions specified by the open NAND flash inter-
face (ONFi 3." [1]) and classified various timing components of
the corresponding protocol into a few transaction activities. With
this simplified latency model, the proposed SimpleSSD simulates
varying numbers of flash chips over many interconnection buses
by modeling the executions across different hardware resources
and resource contentions. Even though this simplified model can-
not account for all of the characteristics from the flash at a cycle
level, it can capture the close interactions among the designs of the
firmware, controller, and architecture by being aware of flash
latency intrinsics and internal parallelism.

3 SIMPLESSD

Fig. 2 shows a high-level view of SimpleSSD and explains how
our simulator processes the incoming I/O requests. A request is
first taken by the host interface layer (HIL), and the corresponding
target address is translated by the flash translation layer (FTL). The
parallelism allocation layer (PAL) then services the request by
abstracting the physical layout of interconnection buses and flash
dies. The completion of an I/O request is reported from PAL to the
host-side controller via HIL.

3.1 Fully-Functional Firmware Simulation
Host Interface Layer.In SimpleSSD, HIL first receives an incoming
request from the disk controller of gem5 and enqueues the request
in a device-level queue. During this phase, it parses the host-side
information and translates it a logical block address (LBA), request
type, number of sectors, and a host’s system time information (e.g.,
tick). HIL then forwards this translated information to the underly-
ing FTL through communication APIs, ReadTransaction() and
WriteTransaction(). Since there are many different types of

simulation models for a full system (e.g., discrete event-driven,
activity-driven, and continuous), HIL exposes all request comple-
tions through a latency map table, which includes the finish time
(i.e., finishTick) along with each requested address. Once the
latency for each request is updated by the underlying simulation
modules, HIL updates the table with the completion time, and the
full-system simulator (e.g., gem5) retrieves it in an asynchronous
fashion. While the current queue implementation of HIL is first-
come-first-served, system and computer architects can insert their
buffer cache, I/O reordering logic, or scheduler into HIL.

Flash Translation Layer. The I/O sizes requested by a host applica-
tion vary and can be even larger than the page size that a single flash
die could accommodate. Therefore, in this work, FTL separates the
request forwarded by HIL into multiple sub-requests, each indicated
by a logical page number (LPN). If it is a read, FTL directly translates
the sub-requests’ LPNs to physical page numbers (PPNs) by looking
up its own address mapping table. Otherwise, FTL allocates new
page(s) and updates the table with appropriate block and/or page
addresses and other meta-data information. In SimpleSSD, this
address translation mechanism is implemented in a functional API,
called FTLmapping(). The translated or allocated PPNs are then
issued into the underlying module’s queue by calling SendRe-

quest(), and FTL repeats this process until there is no waiting
sub-request. When there is no available page for a write, FTL per-
forms garbage collection (GC) to reclaim a set of new pages in flash
block(s). At the beginning of GC, it selects the victim blocks and free
block(s) to allocate as a new block, which can be determined by a
wear-leveling algorithm. After this selection, FTL reads the data
from all valid pages of the victim blocks, writes them into the new
block, and updates the address table for the reclaimed blocks. Note
that the additional read and write operations imposed by GC(s) are
treated just like other sub-requests from PAL viewpoint, but the
latency associated with all the internal I/O requests is aggregated
and exhibits long tail from FTL and HIL perspectives. In this work,
we consider a simple GC algorithm (cf. greedy), which selects a vic-
tim block with the maximum number of invalid pages. The number
of free blocks and GC threshold can be reconfigured based on user
inputs. Besides, the wear-leveling algorithm we implemented
always allocates new block(s) by considering the minimum erase
count among the free blocks in a reserved pool. Users can replace
these algorithms by updating the GarbageCollection() and
WearLeveling().

3.2 Hardware Simulation for Scalable SSD Parallelism
Parallelism Abstraction Layer. In this work, we introduce PAL under-
neath FTL and decouple SSD parallelism from other flash firmware
modules for improved simulation efficiency and a better research-
wise structure. PAL basically stripes all incoming requests across
different channels, packages and dies, based on user configura-
tions, which is similar to the striping method employed by RAID.
At the beginning, PAL dequeues the requests issued by FTL and
disassembles the target page address by being aware of the under-
lying hardware configuration (e.g., numbers of channels, flash

Fig. 1. Overview of SimpleSSD.

Fig. 2. High-level view of SimpleSSD.

38 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018



packages, and dies). This is implemented with PPNdisassemble

(). Based on the disassembled information, PAL simulates SSD
internal state and schedules the flash transaction at a finer granu-
larity to capture the memory-specific latency, idle time, and even
scheduling penalties imposed by resource contentions. In other
words, the latency of a sub-request can be dynamically simulated
in SimpleSSD by considering not only the hardware resource
availability but also the storage media configuration. After process-
ing the I/O request, PAL returns the simulated latency for each
sub-request to FTL. FTL then collects and reevaluates them to gen-
erate an appropriate latency for the I/O request that possesses
such sub-requests. By being aware of the states of the underlying
hardware, users can explore new parallelism strategies and sched-
ulers. The order for sub-request striping or management of flash
transactions can be determined by modifying PPNdisassemble

() and TimelineScheduling(), respectively.
Latency Variation Mapping. To make the storage denser with the

same number of transistors, flash can storemultiple states into a sin-
gle storage cell. For example, triple-level cell (TLC) flash stores eight
different states into a target storage core. Each state is represented
by different voltage thresholds (V th). Because a TLC core can main-
tain 3-bit data, the TLC technology can drastically increase the stor-
age capacity of an SSD. However, the materials of the TLC storage
core are not fundamentally different from that of a single-level cell
(SLC) or multiple-level cell (MLC), which can represent 1-bit or 2-bit
data per cell, respectively. Instead, the flash logic of TLC (andMLC)
writes (i.e., programs) data into a target in a different manner com-
pared with SLC flash. This is referred to as an increment step pulse
program (ISPP [14]) and introduces significant latency variation. To
characterize the latency behavior incurred by the ISPP, we built an
FPGA-based controller by using Xilinx Spartan-6 and tested SLC,
MLC, and TLC NAND flash devices. Figs. 3a and 3b illustrate the
latency variation observed for writes and reads on TLC 25 nm flash
technology [11], respectively; we provide only the TLC results
owing to the page limit, but other flash technologies also exhibited
the same latency trend that we observed for TLC. The evaluation
data were measured for every single block and page. For writes, the
latency of the most significant bit (MSB) pages was longer than those
of the center significant bit (CSB) and least significant bit (LSB) pages
by approximately 1.3 and 8 times, respectively. The reads on TLC
flash also exhibited similar latency variation characteristics. Specifi-
cally, the read latency of MSB pages is longer than that of CSB pages
and LSB pages by 37 and 84 percent, on average, respectively. Since
the latencies between different pages exhibit a notable difference,
this can have a great impact on parallelism and hardwaremodeling.

We observed that the first five pageswithin a block always exhibited
LSB page performance, and the latency of the next three pages (i.e.,
after the first five) was the same as that of the CSB pages. These eight
pages, referred to as meta pages, are usually used for storing the
metadata of flash firmware, such as mapping information associ-
ated with the block. The latency for all remaining pages can be
mapped with the following simple function: fðaddrÞ ¼ ðaddr&
nmetaÞ=nplane modnstate where addr, nmeta, nstate and nplane are the
input address, number of meta pages, number of states per cell and
number of planes within a flash die, respectively. If fðaddrÞ is 0, it is
an LSB page. If fðaddrÞ is 1, it is a CSB page. Otherwise, the address
indicates anMSB page.

4 EVALUATION

System Devices and Software Configurations. We configure a host that
employs an eight-bank DDR3-1600 DRAM and 1 GHz CPU (ARM).
The underlying storage is configured as an eight-channel high per-
formance SSD device. Each channel connects eight packages, each
with four TLC flash dies. FTL of this baseline is configured with
a set-associative mapping algorithm, which associates eight log
blocks with a single physical block. FTL has 20 percent over-
provisioning (OP) space, and its GC threshold is set to 5 percent.
The detailed information for system configurations, including CPU,
SSD and flash, are given by Table 1. Lastly, we simulate SSDs with
Linux 3.13.0 and EXT2 file system driver.

Workloads. In this evaluation, we use 13 different workloads.
Specifically, ApacheBench [4] is used to measure the performance
of an HTTP web server, where a specified URL is processed by
generating heavy storage reads for the corresponding HTTP file(s).
Filebench [15] includes several storage-centric workloads; each cre-
ates, writes and reads a few thousand files. In addition to these
basic file I/Os, fileserver appends data and performs several file-
sync operations with multiple threads, whereas varmail and web-
server repeatedly read 1,000 small-sized files and write logs. Com-
pared with webserver, varmail has extra I/O operations related to
file deletion and creation. Finally, Iozone [12] evaluates a file system
with a given automatic mode, and mmap [3] keeps reading and
writing many files over POSIX library’s APIs. Table 2 lists the
important characteristics of these workloads.

4.1 Performance Validation
We compare the performance of SimpleSSD simulations in stand-
alone mode with that of a real device (Intel 750). Specifically, we
use multiple storage traces of ATTO [2] to analyze the disk-level
characteristics in detail. Basic read and write tests were performed
with varying I/O request sizes. Fig. 4 shows the results. For all
requests ranging in size from 8 KB to 32 MB, the percentage differ-
ence (i.e., error rate) between the results of SimpleSSD and Intel

Fig. 3. Analysis for flash intrinsic latency variation.

TABLE 1
Configurations for System Simulations

Channel Package Die Plane Block CPU ARMv7, 1 core, 1GHz

8 8 4 2 1024
Cache

L1I$/L1D$, 64KB, 4-way

DMA(MHz) Pages/blk Page OP GC L2$, 512KB, 8-way

400 256 8KB 0.2 0.05 DRAM DDR3, 1 channel, 2 rank

TABLE 2
Important Characteristics of the Tested Benchmarks

Workloads apache1 fileserver1 fileserver2 fileserver3 fileserver4 varmail1 varmail2 varmail3 varmail4 webserver1 webserver2 iozone mmap

Storage/K Instruction 26 82 127 86 126 8 6 7 6 5 4 57 109
SSD Read Ratio (%) 99 5.5 2.2 6.1 2.3 60 74 60 73 99 99 4 51
Max Instructions (B) 5 18 5 17 5 3 3 3 3 3 3 4 3

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 39



750 is 2.7 percent on average, and the performance trends are simi-
lar. When the request size is increased, the bandwidth of both
drives quickly increased and saturates at the 64 KB. On the other
hand, the percentage difference of the reads is 7.1 percent on aver-
age. While the performance trends of the two devices are similar,
the SimpleSSD performance increases more gradually than that
of the real device; this makes the read error rate slightly higher
than the write error rate. We conjecture that the real device has
vendor-specific optimization, such as read-ahead or caching. Note
that the current version of SimpleSSD has no specific buffer cach-
ing algorithm or acceleration model, which can introduce a greater
performance disparity (compared to Intel 750) for small-sized I/O
request tests. In addition to these microbenchmark tests, we also
validate SimpleSSD by comparing its performance with that of a
real device when executing 14 real storage workloads [9], [16],
which includes real storage access patterns of a web server, data-
base, and enterprise cluster. We observed that the performance
trend of SimpleSSD with these workloads is similar to that of the
real device. More practically, for these real workload evaluations,
the difference between them is 9 percent on average.

4.2 SSD-Enabled Full System Evaluation
Overall CPU Performance. Fig. 5a shows the CPU performance (IPC)
of hosts that employ different flash technologies (i.e., SLC/MLC/
TLC) as their storage subsystems. All IPCs are normalized to those
of the SLC version. As expected, the SLC-equipped systemhas better
IPC than the MLC- and TLC-equipped systems by averages of 44
and 141 percent, respectively. Interestingly, apache and webserver
show small or almost no performance benefit over SLC. As shown in
Fig. 5b, even though these servers read many files, most of them are
served fromVFS’s page cache. In contrast, fileserver, iozone andmmap
have poor locality regarding the target (i.e., they touch once and
never refer again), and have many fsync and/or flush operations,
which make the page cache inefficient. A total of the 19 percent of I/
O accesses is served by the page cache, on average. Even though var-
mail also exhibit many reads like webserver, it has slightly different
performance characteristics.We explain the reason shortly.

Storage Stack Analysis. Fig. 5c decomposes the execution time
spent for each component. It excludes overlaps of time with
the latency consumed by the underlying component. For a better

comparison, all MLC and TLC values are normalized to SLC ones.
As expected, file-intensive benchmarks including fileserver, iozone
and mmap, spend the most time accessing the underlying storage.
Thus, the SLC-equipped system performs better than the MLC-
and TLC-equipped systems by around 2:5" and 5:8", respectively.
However, apache shows a completely different performance behav-
ior than fileserver. Specifically, it consumes more CPU cycles at the
user application level (68 percent of the total time) rather than stor-
age accesses. This is because most of the cycles consumed by a
block layer and system call overlap with those of underlying stor-
age services, while processing the HTTP service keeps the entire
CPU busy. For better understanding, we analyze the time series of
CPU utilization and SSD utilization, which are measured at the
end of benchmark executions for 2s (cf. Fig. 6). Compared to file-
server1, which utilizes the CPU 11 percent of the time on average
while utilizing the SSD almost 100 percent of the time, apache acti-
vates CPU constantly. It has many overlaps with the SSD activities.
Even after the SSD completes all read services, apache continues to
process their data, which exhibit a high IPC.

Device Analysis. Fig. 5d shows the page-level latency breakdown

for four varmail workloads. Interestingly, the write patterns of var-

mail2 and varmail4 have no address associated with CSB and MSB

pages. Because all of the writes are served from the LSB pages, the

TLC-based SSD has 34 and 32 percent shorter latencies on average,

respectively, than the MLC-based SSD. However, these perfor-

mance benefits are not directly reflected in the IPC, as shown in

Fig. 5a. This is because, as shown in Fig. 5c, most of the time spent

by varmail is consumed by system calls, which are primarily related

to handling the page cache. This time consumed by the system calls,

which does not overlap with the underlying device operations,

accounts for more than 90 percent of the overhead for all executions.

4.3 Related and Future Work
There are very few SSD simulators in literature that are publically
available for download [5], [7], [8], [10]. Even with these simula-
tors, constraints prevent design space exploration for emerging
memory/storage hierarchies. First, the hardware organization of
existing simulators [5], [10] is unfortunately overly-simplified and
far from capturing the critical features of high-performance con-
temporary SSD architectures. There is neither a specific flash
microarchitecture nor an internal parallelism model. In addition,
these simulators cannot fully reflect the important functionalities

Fig. 4. Set of evaluations for performance validation.

Fig. 5. System-level performance analysis with three different non-volatile memory technologies.

Fig. 6. Time series analysis.

40 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018



of the underlying flash firmware, which also have a great impact
on system performance. The simulators have no FTL [7], [8] or an
ideal FTL [5]. Note that none of these existing SSD simulators can
be directly used for full system simulations.

In contrast, our SimpleSSD not only models contemporary
SSDs by employing a complete storage stack and detailed hard-
ware parallelism but also enables system-level simulation by con-
sidering different flash memory technologies. Thus it enables
researchers to study diverse system performance characteristics
from a holistic viewpoint.

Future Work. Computer Architecture and Memory Systems Lab-
oratory (CAMEL) is extending the current simulation framework
by implementing new features such as PCIe-enabled system/IO
crossbars, message-signaled interrupts, internal DRAM models,
NVMe interfaces and memory power models.

5 CONCLUSION

We proposed a high-fidelity SSD simulator that builds a complete
storage stack from scratch and models all detailed characteristics
of SSD internal hardware and software. This simulator can be inte-
grated into publicly-available full system simulators.

ACKNOWLEDGMENTS

This research is mainly supported by NRF 2016R1C1B2015312.
This work is also supported in part by IITP-2017-2017-0-01015,
NRF-2015M3C4A7065645, DOE DE-AC02-05CH 11231, and Mem-
Ray grant (2015-11-1731). Dr. Kim is supported in part by US
National Science Foundation 1640196 and SRC/NRC NERC 2016-
NE-2697-A. Dr. Kandemir is supported in part by US National
Science Foundation grants 1439021, 1439057, 1409095, 1626251,
1629915, 1629129 and 1526750.

REFERENCES

[1] Open NAND Flash Interface Specification Revision 3.0., ONFI Workgroup
Mar, 2011.

[2] ATTO Disk Benchmark, 2014. [Online]. Available: www.atto.com/disk-
benchmark

[3] mmap-benchmark, 2014. [Online]. Available: github.com/exabytes18/
mmap-benchmark

[4] Apache HTTP server benchmark tool, 2014. [Online]. Available: httpd.
apache.org

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc. USENIX
Annu. Tech. Conf., 2008, pp. 57–70.

[6] N. Binkert, et al., “The gem5 simulator,” ACM SIGARCH Comp. Archit.
News, vol. 39, pp. 1–7, 2011.

[7] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance
impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity,” in Proc. Int. Conf. Supercomputing,
2011, 96–107.

[8] M. Jung, et al., “NANDFlashSim: Intrinsic latency variation aware nand
flash memory system modeling and simulation at microarchitecture level,”
inProc. IEEE 28th Symp. Mass Storage Syst. Technol., 2012, pp. 1–12.

[9] S. Kavalanekar, B.Worthington, Q. Zhang, and V. Sharda, “Characterization
of storage workload traces from production windows servers,” in Proc. IEEE
Int. Symp.Workload Characterization, 2008. pp. 119–128.

[10] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, “Flashsim: A simulator for
NAND Flash-based solid-state drives,” in 1st Int. Conf. Advances Syst.
Simul., 2009, pp. 125–131.

[11] MICRON, Mt29f64g08, 2014. [Online]. Available: http://goo.gl/SdvjyV
[12] W. D. Norcott and D. Capps, “Iozone filesystem benchmark,” 2003.

[Online]. Available: http://www.iozone.org
[13] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system simula-

tor for multicore X86 CPUs,” in Proc. 48th ACM/EDAC/IEEE Des. Autom.
Conf., 2011, pp. 1050–1055.

[14] K.-D. Suh, et al., “A 3.3 v 32 mb NAND flash memory with incremental
step pulse programming scheme,” IEEE J. Solid-State Circuits, vol. 30,
no. 11, pp. 1149–1156, Nov. 1995.

[15] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework for
file system benchmarking,” USENIX, vol. 41, no. 1, 2016, https://www.
usenix.org/node/195598

[16] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “Srcmap: Energy pro-
portional storage using dynamic consolidation,” in Proc. 8th USENIX Conf.
File Storage Technol., 2010, pp. 20–20.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 41

www.atto.com/disk-benchmark
www.atto.com/disk-benchmark
http://goo.gl/SdvjyV
http://www.iozone.org
https://www.usenix.org/node/195598
https://www.usenix.org/node/195598



