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Phosphorylation of VE-cadherin is modulated
by haemodynamic forces and contributes to the
regulation of vascular permeability in vivo
Fabrizio Orsenigo1,*, Costanza Giampietro1,*, Aldo Ferrari2, Monica Corada1, Ariane Galaup3, Sara Sigismund1,

Giuseppe Ristagno4, Luigi Maddaluno1, Gou Young Koh5, Davide Franco2, Vartan Kurtcuoglu2,6,

Dimos Poulikakos2, Peter Baluk7, Donald McDonald7, Maria Grazia Lampugnani4 & Elisabetta Dejana1,8

Endothelial adherens junctions maintain vascular integrity. Arteries and veins differ in their

permeability but whether organization and strength of their adherens junctions vary has not

been demonstrated in vivo. Here we report that vascular endothelial cadherin, an endothelial

specific adhesion protein located at adherens junctions, is phosphorylated in Y658 and Y685

in vivo in veins but not in arteries under resting conditions. This difference is due to shear

stress-induced junctional Src activation in veins. Phosphorylated vascular endothelial-cad-

herin is internalized and ubiquitinated in response to permeability-increasing agents such as

bradykinin and histamine. Inhibition of Src blocks vascular endothelial cadherin phosphor-

ylation and bradykinin-induced permeability. Point mutation of Y658F and Y685F prevents

vascular endothelial cadherin internalization, ubiquitination and an increase in permeability by

bradykinin in vitro. Thus, phosphorylation of vascular endothelial cadherin contributes to a

dynamic state of adherens junctions, but is not sufficient to increase vascular permeability in

the absence of inflammatory agents.
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T
he control of vascular permeability is of pivotal importance
in several vascular pathologies including inflammation,
interstitial oedema, ischaemic stroke and others1–3. Besides

transcellular transport systems, plasma fluids can cross the
endothelial barrier through cell junctions. These specialized
structures include tight and adherens junctions (AJ), which
maintain endothelial cell-to-cell adhesion2,4,5. At endothelial AJ,
adhesion is mediated by a cell-specific member of the cadherin
protein family called vascular endothelial cadherin (VEC)2,6,7.
VEC promotes homophilic adhesion and forms zipper-like
structures along endothelial cell contacts. The cytoplasmic
domain of VEC interacts with several intracellular partners,
including b-catenin, plakoglobin and p120, which transfer
intracellular signals and modulate interaction with the actin
cytoskeleton2,6,7.

VEC has an important role in the control of vascular
permeability in vitro and in vivo1–3,7–12. Blocking antibodies to
VEC induce a dramatic increase in lung and heart permeability
accompanied by oedema and hemorrhages8. More subtle changes
in the organization and strength of AJ are associated with tyrosine
phosphorylation of the VEC cytoplasmic domain in cultured cells
or organ extracts11,13,14.

Much of our knowledge of the molecular regulation of
permeability is based on cultured endothelial cells. Although
informative, in vitro systems do not fully reproduce in vivo
conditions. Most importantly, different types of vessels respond
quite differently to inflammatory mediators in vivo. For instance,
veins are the typical targets of inflammatory mediators while
small-calibre arteries are rarely affected1,15. This suggests that
there are mechanisms that sensitize veins to inflammatory
mediators in vivo.

In the present study, we approached this issue using specific
antibodies against phosphorylated VEC. Surprisingly, we found
that in vivo VEC is constitutively tyrosine phosphorylated in
veins but not in arteries. VEC phosphorylation is likely mediated
by mechanosensor mechanism(s) that activate junctional Src
under venous shear stress. Src inhibitors block VEC phosphor-
ylation and bradykinin-induced vascular permeability. In search-
ing for a mechanism of action we found that phosphorylation
makes VEC particularly sensitive to bradykinin-induced endocy-
tosis which, in turn, mediates a rapid but reversible increase in
vascular permeability. Although VEC internalization has been
reported to be a crucial step in the increase of vascular
permeability in vitro4,10, this report is the first to monitor
modifications of endothelial junction architecture in vivo under
normal and pathological conditions.

Results
Development of antibodies against phosphorylated VEC. In
order to test the relevance of tyrosine phosphorylation of VEC
(pYVEC) in vivo, we developed two antibodies directed against
phospho-peptides of the cytoplasmic region of VEC correspond-
ing to amino acid 646–669 (spanning Y658; antibody pY658-
VEC) and to amino acid 671–700 (spanning Y685; antibody
pY685-VEC) (Fig. 1). We selected these two peptidic sequences as
they were predicted to be strongly antigenic, the respective tyr-
osines are highly conserved among species and were previously
found to be phosphorylated by permeability-increasing
agents12,16,17. Furthermore, phosphorylation of Y658 was reported to
reduce the binding of p120, an important stabilizer of cadherins
at the cell membrane18,19. Y685 is a target of Src12 and its
phosphorylation modulates the association of the kinase csk, an
inhibitor of src and implicated in contact inhibition of cell
growth16. The antibodies were affinity-purified against the
respective antigen and absorbed on VEC-null endothelial cells
for any residual non-specific binding. Specificity was further
supported through multiple in vitro and in vivo tests. First, the two
antibodies did not recognize VEC in which the region of amino
acid 622–702 (Fig. 1b), spanning both phosphopeptides (Fig. 1a),
was deleted20. The same mutant was instead recognized by the
commercially available pY658-antibody (Fig. 1h). Second, both
antibodies codistributed with an anti total-VEC antibody but did
not recognize endothelial cells treated with VEC short interfering
RNA (siRNA) (Fig. 1c), VEC-null endothelial cells20 (Fig. 1d) or
VEC null embryos21 (Supplementary Fig. S1a). Third, in perva-
nadate-treated cells, point mutation in phenylalanine (Y658F and
Y685F) abolished both staining and recognition by western blot of
the respective antibody (Fig. 1e–g). Conversely, both antibodies
recognized VEC-wild-type (wt) or the unrelated mutant (Fig. 1e–g).
Pixels of VEC/pYVEC co-localization are highlighted in white in
Fig. 1e (right panel) (pY658-VEC) and Fig. 1f (right panel)
(pY685-VEC). Fourth, both antibodies gave a junctional specific
in vivo staining (Fig. 2), which was inhibited by coincubation with
the respective phospho-peptides, but not with the corresponding
non-phospho-peptides (Supplementary Fig. S1b). The pY685-
VEC antibody was effective in binding mouse VEC but weak on
human VEC because of low homology of the peptide antigen
(Fig. 1a). By contrast, antibody pY658-VEC could bind VEC in
both species. Therefore, the experiments performed on human
umbilical vein endothelial cells (HUVEC) were done with anti-
body pY658-VEC. Staining of murine VEC (mVEC) with either
pY658 or pY685 appears to give comparable results (see below). In
this work we studied phosphorylation of Y658 and Y685 only and

Figure 1 | pY658- and pY685-VEC antibodies specifically recognize phosphorylated VEC in vitro. (a) The cytoplasmic tail of murine VEC and human

VEC contains eight and nine tyrosine residues, respectively, as indicated. Antibodies to murine pYVEC have been developed using the sequences around

residue Y658 and Y685 (red), respectively. The corresponding human (hVEC) sequences are reported. The sequence deleted in human VEC-D622-702

mutant is indicated. (b) Immunoprecipitation (IP) of wt human VEC followed by western blot (WB) showed that antigen recognition by pY658-VEC and

pY685-VEC antibodies was increased upon 5 min VEGF treatment. Both pYVEC antibodies did not recognize the VEC-D622-702 mutant, conversely an

unselective anti-phosphorylated tyrosine antibody (pY) could bind both VEC-wt and VEC-D622-702 mutant. (c) VEC-siRNA treatment of VEGF-stimulated

HUVEC inhibited pY658-VEC staining (in red) of endothelial cells junctions, VEC is shown in green. Scale bar: 20mm. (d) Antibody pY685-VEC did not

decorate cell junctions of VEGF-stimulated mVEC-null endothelial cells (right panels). Staining with pY658-VEC gave comparable results (not shown).

Scale bar: 20mm. (e) Antibody pY658-VEC did not bind to VEC-Y658F mutant (left panels), but recognized VEC-Y685F mutant (central and right panels)

in pervanadate-treated cells. (f) Conversely, antibody pY685-VEC did not recognize VEC-Y685F mutant (left panels) but could bind to VEC-Y658F mutant

(central and right panels) in pervanadate treated cells. Pixels presenting the co-localization of pY658- or pY685-VEC with total VEC are highlited in white.

Scale bar: 50mm. (g) Antibody pY658-VEC did not bind to immunoprecipitated VEC-Y658F mutant (central lanes), but recognized VEC-wt or VEC-Y685F

mutant (left and right lanes). Conversely, antibody pY685-VEC did not recognize immunoprecipitated VEC-Y685F mutant (right lanes), but could bind to

VEC-wt or VEC-Y658F mutant in pervanadate-treated cells (left and central lanes). (h) IP of wt hVEC followed by WB showed that antigen recognition by

the commercially available antityrosine-phosphorylated-(Y658)-VEC antibody was increased upon pervanadate treatment. However, the antibody tested

was also equally able to recognize the VEC-D622-702 mutant, in which the indicated tyrosine is not present. Data shown are representative of at least

three independent experiments.
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along the text we refer to pYVEC when the protein is recognized
by the two anti-pY658-VEC and pY685-VEC antibodies.

Constitutive VEC phosphorylation in veins. In vivo staining of
mice blood vessels with both pYVEC antibodies (pY658-VEC or

pY685-VEC) and total VEC antibody revealed that pYVEC was
detectable in endothelial cells of veins under resting conditions
(Fig. 2a,b). The staining followed cell junctions in all endothelial
cells along the whole length of the vessels. In striking contrast,
endothelial cells of small arterioles were not stained by any of the
pYVEC antibodies, but were stained by antibodies to total VEC
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(Fig. 2c,d). The different expression of pYVEC in veins and not in
small arterioles was reproducible in all the tissues examined and
clearly distinguished contiguous arterioles from veins (Fig. 2c,d).
Quantification of pYVEC distribution in the different types of
vessels is shown in Fig. 2e,f.

As a control, we stained the vessels with antibodies directed to
different junctional proteins (PECAM-1, b-catenin, p120)22. All

antibodies stained the endothelial cell junctions of arteries and
veins equally well (Supplementary Fig. S1c,d), demonstrating that
the accessibility of the antibodies was comparable and that the
general organization of junctions did not differ substantially in
both the types of vessels.

To test whether endothelial cells arterio/venous identity con-
stitutively influences VEC phosphorylation, we examined freshly
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Figure 2 | In vivo phosphorylation of VEC in veins but not in arteries. Staining of veins (V) and capillaries (C) of diaphragm and bladder with anti-pY658-

VEC (a), anti-pY685-VEC (b) (both in red) and an antibody against total VEC (green). Both pYVEC antibodies label cell junctions. Scale bar: 50mm.

pY658-VEC (c) and pY685-VEC (d) antibodies stain endothelial junctions in veins but not in small arterioles (A). Scale bar: 50mm. The boxes represent

the area of magnification where pixels presenting VEC/pYVEC co-localization are highlighted in white. Scale bar: 20 mm. Data in a–d are representative of

at least 10 independent mice per group. (e,f) Quantification of vessels positive or negative to either pY658-VEC (e) or pY685-VEC antibody (f); data are

expressed as percentage of positive (red columns) and negative (blue columns) vessels grouped by diameter (mm), n is the total number of vessels

considered for each group (P.C., postcapillaries).
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isolated venous and arterial endothelial cells in culture. We found
that pYVEC staining in vitro did not differ in both the endothelial
cell types (Supplementary Fig. S1e), suggesting that arterio/
venous identity does not influence VEC phosphorylation per se
but factors such as shear stress or hydrostatic pressure present
in vivo may be important.

Hemodynamic conditions modulate VEC phosphorylation. We
hypothesized that the observed difference in VEC phosphoryla-
tion in arteries and veins could be due to the hemodynamic
conditions to which the endothelial cells are exposed. To test this
hypothesis, cultured HUVEC were exposed to a range of different
shear stresses (Fig. 3a,b). We found that in static conditions VEC
phosphorylation was low, but was significantly increased by
exposure to 3.5 dynes cm� 2, but then declined when shear stress
was increased to up to 28 dynes cm� 2. At higher shears, VEC
phosphorylation further decreased to baseline levels.

The shear stress values to which vessels are exposed in vivo are

much debated and vary between veins and arteries. For the in vitro
studies above we refer to Kroll et al.23, who reported that venous
shear stress range 0.76–7.6 dynes cm� 2 while arterioles range
19–60.8 dynes cm� 2. To extend the study to in vivo conditions we
switched to an experimental system in the rat, taking advantage
of species cross-reactivity of antibody pY658-VEC. Figures 3c,d
shows that VEC was phosphorylated in the jugular vein and, to a
much lower extent, in the carotid artery. To expose venous endo-
thelial cells to a higher shear stress we connected the carotid artery to
the jugular vein to produce an in vivo shunt. Under these conditions
pYVEC staining of venous endothelial cells was decreased. Overall,
these observations show that VEC phosphorylation is influenced by
hemodynamic conditions and suggest that at high shear rates
phosphorylation of VEC tends to decrease.

Src activation is required for shear-induced pYVEC. Previous
work showed that Src is implicated in VEC phosphorylation11.
We investigated whether differences in activation of Src may
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Figure 3 | Shear stress modulates VEC phosphorylation. (a,b) Parametric study of cultured HUVEC exposed to different levels of shear stress as

indicated. Low and medium shear stress (from 3,5 dynes cm� 2 up to 28 dynes cm� 2) increased pY658-VEC junctional staining as compared with static

conditions. Further increase of shear stress up to 50 dynes cm� 2 (corresponding to high arterial flow) induced a progressive reduction of pY658-VEC

junctional staining until levels similar to control cells. Scale bar: 20mm. Chart in (b) shows the co-localization (VEC/pY658-VEC) data as Pearson’s

correlation coefficient. Ten to 20 stacks were collected on different fields (each containing an average of 10 cells) for each sample under analysis. The grey

area shows the co-localization value for static control plus/minus two times its s.e. Statistical comparisons of Pearson’s coefficients measured in different

fields from two to three independent specimens were performed with non-parametric two-tailed Mann–Whitney tests (a¼0.05); see Methods for details.

(c) Mean fluorescence intensity of co-localized pY658-VEC and total VEC pixels as in (d). Statistical significance was determined on four individual

animals by independent two-tailed t-test assuming unequal variances. (b.p., bypass, n¼4 rat per group). (d) Untreated rat carotid artery showed lower
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20mm). *Po0.01 by the above specified test.
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explain the different phosphorylation of VEC in arteries and
veins. In vivo staining with antibodies directed against Src or its
active form, pY418-Src, showed that this kinase is localized at
endothelial cell contacts both in arteries and in veins (Fig. 4a, left
panels). However, junctional Src is activated only in veins and not
in arteries (Fig. 4a, right panels). Accordingly, specific inhibitors
of Src activation (Fig. 4b,c) inhibited pYVEC staining in vivo in
veins (Fig. 4d,e), or in vitro in endothelial cells exposed to flow
(Fig. 4f,g). These findings support the concept that hemodynamic
conditions influence Src activation and, as a consequence, VEC
phosphorylation in veins.

Detection of pYVEC is decreased by inflammatory mediators.
Next, we asked what the functional meaning of the distinct
phosphorylation pattern of VEC in veins and arteries might be.
We reasoned that the expression of pYVEC might increase the
sensitivity of vessels to permeability-inducing agents. To test this
possibility we treated mice with bradykinin, a well-documented
permeability-increasing inflammatory mediator24–26. Four min
after bradykinin injection we found a significant increase in
permeability in veins, but not in arterioles, as detected by
extravasation of fluorescent microspheres24 (Fig. 5a,f and
Supplementary Fig. S2a). The effect of bradykinin was fast, potent
and reversible24,25. Surprisingly, in areas of increased permeability
we noticed a strong decrease in pYVEC staining (Fig. 5a,b;
Supplementary Fig. S2a) that was restored within 10 min when
also the baseline level of permeability was restored. A close
analysis of endothelial junctions showed that pYVEC staining was
decreased only in the areas of increased beads extravastion
(Fig. 5b). Small gaps at cell-to-cell junctions can be observed
(arrows) as described24, although only minor changes in total
VEC staining at cell junctions was observed (Fig. 5b, middle
panels) suggesting that pYVEC represents a fraction of total VEC
and is a specific target of bradykinin. In contrast, we did not
detect extravasation of microspheres or change in VEC phos-
phorylation in arterioles (Fig. 5a, asterisk).

We also treated mice with another permeability-increasing
agent. Histamine acted in a way similar to bradykinin by reducing
VEC phosphorylation in the areas of increased permeability
(Supplementary Fig. S2b,c). Consistent with the staining,
immunoprecipitation and western blot of lung extracts showed
that bradykinin induced a significant decrease in pYVEC, as
detected by both pY658-VEC and pY685-VEC antibodies
(Fig. 5d,e). We also found that Src activation is required for
bradykinin-induced permeability as pretreatment of mice with
the Src inhibitor AZD0530 (see Fig. 4b) inhibited the increase in
permeability (Fig. 5c,f).

As a further control, before bradykinin administration, we
treated the mice with angiopoietin-1, which is known to stabilize
the vasculature and counteract the action of several inflammatory

mediators9,24,25,27–29. Angiopoietin-1 administration strongly
reduced the effect of bradykinin on vascular permeability and
counteracted the decrease in pYVEC-staining at junctions
(Fig. 5a,d,e,f; Supplementary Fig. S2a).

A possible explanation of the strong reduction of VEC phos-
phorylation is the activation of some specific phosphatase. To test
this possibility, we performed proteomic analysis (gel separation
of proteins, in-gel digestion and LC-MS/MS analysis30) of VEC-
associated proteins in lung extracts after bradykinin stimulation
of mice (10 mg kg� 1, for 3 min), but we could not detect
associated phosphatases including VE-PTP, SHP2 or Dep-1,
which are able to associate to VEC complex17,31 (data not shown).

Treatment of endothelial cells with siRNA targeting VE-PTP
and Dep-1 increased resting VEC phosphorylation, as expected
(Fig. 6a,b and Supplementary Fig. S3e). However, after activation
with bradykinin, pYVEC at the membrane was reduced both in
controls and in Dep-1 or VE-PTP siRNA-treated cells, indicating
that inactivation of these phosphatases does not prevent the
decrease of pYVEC after bradykinin treatment.

pYVEC is internalized upon bradykinin treatment. We hypo-
thesized that pYVEC disappearance from junctions is due to
endocytosis followed by degradation. To study this possibility,
unfixed cells were incubated with anti-VEC antibodies and then
activated by bradykinin in the presence of chloroquine, an inhi-
bitor of protein degradation in lysosomes and recycling to the
membrane32,33. Upon acid wash, antibodies linked to membrane-
bound VEC were lost, while antibodies bound to internalized
VEC could still be detected33. Bradykinin treatment strongly
increased VEC internalization (Fig. 6c). Co-staining of inter-
nalized VEC with antibody pY658-VEC showed that a significant
amount of internalized VEC was phosphorylated in tyrosine
(Fig. 6d). Furthermore, by immunofluorescence analysis, brady-
kinin reduced pYVEC staining at junctions (Fig. 6e) and this
effect was counteracted by chlorpromazine, an inhibitor of cla-
thrin-dependent endocytosis30,34 (Fig. 6e).

Consistently, selective immunoprecipitation of internalized or
surface VEC (Fig. 6f,g) upon bradykinin stimulation showed that
surface pYVEC is reduced while internalized pYVEC is increased.
These effects were detectable at 3 min and further increased at
30 min. The lasting presence of internalized VEC upon bradyki-
nin stimulation in vitro, as compared with in vivo conditions, is
likely due to the fact that cells were treated with chloroquine
preventing protein degradation in intracellular vesicles.

Consistently, flow-induced pY658-VEC co-localization with
VEC was also significantly reduced by 3 min bradykinin treat-
ment and this effect was abrogated by pretreatment of the cells
with chlorpromazine (Fig. 5g). Thus, bradykinin induces inter-
nalization of pYVEC consistently with pYVEC disappearance
from endothelial cell junctions in vivo.

Figure 4 | Shear stress induced VEC phosphorylation is mediated by Src activation. (a) Src (green) and VEC (red) staining of arterial and venous

endothelium in the mouse diaphragm. Staining presented in left panels shows junctional distribution of total Src in both vessel types (n¼4 mice).

Conversely, active Src (pY418-Src, right panels) is present at cell-to-cell contacts in veins only (n¼4 mice). (b,c) In vivo staining for active Src (pY418-Src)

of venous endothelium (mouse diaphragm) was abolished by treatment with a Src inhibitor (AZD0530). Mean fluorescence intensity of co-localized VEC

and pY418-Src pixels is shown in (c). Data are mean±s.e.m. of five mice analysed. Statistical significance was determined by independent two-tail t-test

assuming unequal variances. Scale bar: 50mm. (d,e) VEC phosphorylation (pY658- or pY685-VEC in red, total VEC in green) of venous endothelium of

mouse diaphragm was abrogated by AZD0530. Quantification in (e) reports mean fluorescence intensity of co-localized VEC/pY658-VEC (left) or pY685-

VEC (right) pixels. Data are mean±s.e.m. of at least 10 veins analysed. Statistical significance was determined by independent two-tail t-test assuming

unequal variances. Scale bar: 50mm. (f,g) Flow-induced Y658-VEC phosphorylation in cultured HUVEC was abolished upon treatment with Src inhibitors

PP1 or SU6656 by immunofluorescence (f). Co-localization (VEC/pY658-VEC) analysis (g) is reported as fold change versus static conditions. Statistical

comparisons of Pearson’s coefficients measured in different fields from two to three independent specimens were performed with non-parametric two-

tailed Mann–Whitney tests (a¼0.05); see Methods for details. Scale bar: 20mm. *Po0.05 and **Po0.01 by the above specified test.
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Figure 5 | pYVEC staining is decreased by bradykinin treatment. (a) At 4 min, bradykinin (bradyk) treatment in vivo strongly increased venous

permeability of the trachea vasculature, as measured by fluorescent microsphere extravasation (white), and markedly reduced pY685-VEC staining (red),

VEC is shown in green. At 10 min permeability and pY685-VEC staining were restored. Permeability did not increase in small arteries (asterisk). Treatment

with angiopoietin-1 (Ang-1) strongly inhibited the effect of bradykinin on both pY685-VEC staining and permeability. (b) Magnifications of the boxed areas

for control and bradykinin-treated mice (4 min). Junctional pY685-VEC was strongly reduced in the sites of altered permeability while total VEC was still

present with similar intensity than in control mice (lower panels and arrows). Middle panels show that in the areas unaffected by bradykinin treatment,

pY685-VEC was only minimally altered. Staining with pY658-VEC antibody resulted in superimposable results (see Supplementary Fig. S2a). Scale bars:

50mm (left images) and 20mm in magnified fields. (c) Bradykinin-induced vascular permeability in the mouse trachea was blocked by Src inhibitor

AZD0530 as shown by extravasated microspheres (red, upper panels). Higher magnifications are shown in the lower panels and show VEC staining

(green) and extravasated microspheres (red). Scale bar: 500mm. (d) Immunoprecipitation (IP) of VEC from lung extracts showed that in the presence of

bradykinin, phosphorylation of both Y658 and Y685 was reduced and Ang-1 prevented this effect. (e) Quantification of normalized band intensity as in (d).

Data are mean±s.e.m. of five separate experiments. (f) Quantification of the areas covered by extravasated beads as in (a) and (c). Data are mean±s.e.m.

of at least three mice considering 10 separate fields per mice in each group. Statistical significance was determined by analysis of variance test (e) or by

independent two-tailed t-test assuming unequal variances (f). (g) Bradykinin reduces the co-localization of VEC with pY658-VEC in flow conditioned

HUVEC (see Fig. 3a,b) while chlorpromazine inhibits this effect. Statistical comparisons were performed as in Fig. 3b. *Po0.05 and **Po0.01 by the above

specified test.
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Figure 6 | Phosphorylated VEC is internalized. (a) Immunoprecipitation (IP) of surface VEC in HUVEC. Bradykinin treatment reduces surface VEC and its

pY658 phosphorylated form. Treatment of the cells with siRNA targeting VE-PTP and Dep-1 increased resting VEC phosphorylation, but did not inhibit the

decrease of surface amount of total and pYVEC induced by bradykinin. Western blot (WB) analysis of silencing efficiency (470%) is shown in

Supplementary Fig. S3e. (b) Quantification of surface VEC (left) and pY658-VEC (right) reduction in siRNA-treated cells (Control, Dep-1 or VE-PTP siRNA

in blue, red or green, respectively) after bradykinin stimulus, fold change versus unstimulated cells. Right graph depicts the quantification (fold change

versus control siRNA) of surface pY658-VEC in siRNA-treated cells (Dep-1 or VE-PTP siRNA in red or green, respectively). (c) 30 min bradykinin (bradyk)

treatment of HUVEC, in the presence of chloroquine. Acid wash highlights the signal from internalized VEC (right panels and magnification). VEC

internalization corresponded to partial disruption of endothelial junctions as can be observed in the absence of acid wash (left panels and magnification).

Scale bars: 20 and 50mm in magnifications. (d) Co-staining of VEC and pY658-VEC upon cell treatment with bradykinin and acid wash in the presence of

chloroquine. Channels merge (bottom panel) shows that a fraction of internalized VEC is phosphorylated (arrows). Scale bars: 20 mm and 50mm in

magnified fields. (e) HUVEC showed a discontinuous junctional staining with pY658-VEC (in red), which was lost upon bradykinin treatment. This effect

was prevented by chlorpromazine, a general inhibitor of endocytosis. VEC is shown in green. Scale bar: 50mm. (f) IP of internalized VEC in HUVEC after 3

or 30 min bradykinin treatment. Internalized VEC was tyrosine (Y658) phosphorylated and still bound to p120. Quantification of normalized band

intensities is shown in bottom panel. (g) IP of surface VEC. Bradykinin decreased the amount of total and pYVEC present on the surface. Quantification of

normalized band intensities is shown in right panel. Data in (c,d and e) are representative of at least three independent experiments per group. Data in (b),

(f, bottom panel) and (g, right panel) are mean±s.e.m. of three independent experiments. *Po0.05 and **Po0.01 by independent two-tailed t-test

assuming unequal variances.
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To test whether phosphorylation is required for bradykinin-
induced VEC internalization, we analysed VEC-null endothelial
cells reconstituted with VEC-wt or point mutants (VEC-Y658F
and VEC-Y685F) unable to undergo phosphorylation in these
specific tyrosine residues. We found that only VEC-wt could be
internalized upon bradykinin treatment while both VEC-Y658F
and VEC-Y685F were rather insensitive to this agent and
remained on the cell surface (Fig. 7a,b). Furthermore, when cells
were treated with Src inhibitor AZD0530, which inhibits VEC

phosphorylation, bradykinin-induced internalization of the pro-
tein was inhibited (Fig. 7c).

The effect of bradykinin on endothelial permeability
in vitro was strongly reduced in VEC mutant cells (Fig. 7d).
Moreover, pretreatment of cells expressing VEC-wt with two
inhibitors of protein internalization (chlorpromazine or
dynasore) reduced bradykinin-induced permeability to the same
level observed in cells expressing Y658F or Y685F mutants
(Fig. 7d).
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Finally, to test whether VEC protein displays a higher mobility
on the cell membrane when it is phosphorylated on Y658,
we performed fluorescence recovery after photobleaching
(FRAP)35,36 analysis of VEC recovery at cell-to-cell junctions
using Cherry-conjugated wild-type or Y658F mutant (Fig. 7e–g).
In previous work it was found that the recovery at junctions of
E-cadherin after photobleaching is due to endocytosis and sub-
sequent exocytosis35. We observed that membrane recycling of
VEC-Y658F was significantly slower than VEC-wt (Fig. 7e,f).
Chlorpromazine increased the halftime of recovery of VEC-wt
but not of Y658F mutant, suggesting that the constitutive mobi-
lity of the protein is mediated by its internalization and that Y658
phosphorylation has a central role in this part of the process.

VEC is ubiquitinated after bradykinin treatment. In search for
a mechanism of pYVEC internalization and degradation we tes-
ted whether ubiquitin was involved in these processes. We found
that bradykinin treatment induced VEC ubiquitination in vivo
(Fig. 8a) and in vitro (Fig. 8b,c). Importantly, VEC ubiquitination
in vivo correlated with the decrease in pYVEC detection (Fig. 8a)
and staining (see Fig. 5a). Furthermore, Y658F and Y685F point
mutants showed poor, if any, ubiquitination after bradykinin
treatment (Fig. 8c) supporting the concept that VEC phosphor-
ylation in these tyrosines is required for its ubiquitination. These
data also suggest that ubiquitination is involved in pYVEC
internalization and disappearance from junctions in vivo.

Cadherin internalization and degradation may be also regu-
lated by p120(refs 18,19,33,37,38) and VEC phosphorylation in
Y658 may reduce the affinity for p120 binding, promoting
its internalization18,39. We found that bradykinin does not
induce p120 dissociation from VEC as shown by co-
immunoprecipitation assay of total and internalized VEC
(Supplementary Fig. S3c and Fig. 6f respectively), or by codis-
tribution of internalized VEC and p120 (Supplementary Fig. S3a, b).
Moreover, in vivo p120 codistributed with pY-VEC at endothelial
junctions (Supplementary Fig. S1d). Thus, under our experi-
mental conditions, we have been unable to demonstrate a clear
link between p120 dissociation and VEC internalization.

Discussion
VEC has a central role in the control of vascular permeability, and
deregulation of its expression or function is associated with
increased oedema and vascular fragility1–3,7,8,40. While recent
studies have begun to uncover the mechanisms through
which VEC activity is regulated in vitro7,9,17,41–43, few
data11,31,44,45 are available on VEC functional modulation
in vivo. In starved endothelial cells in vitro, VEC
phosphorylation in tyrosine is extremely low but is increased by

permeability-increasing agents such as vascular endothelial
growth factor (VEGF) or leucocyte adhesion14,41,43.

By in vivo staining we observed that VEC is phosphorylated in
Y658 and Y685 in veins also in the absence of inflammatory
agents or vascular leakage. Therefore, VEC phosphorylation at
these two tyrosine residues in vivo is not sufficient per se to reduce
endothelial barrier function. Nevertheless, as discussed below,
VEC phosphorylation may act as a priming mechanism to
sensitize veins to permeability-inducing agents.

An important question is how VEC phosphorylation is
modulated in vivo. We report evidence that hemodynamic
conditions modulate VEC phosphorylation through Src activity
and that this mechanism acts mostly in veins but not in small
arteries. We have shown that in veins there is a constitutive and
prolonged activation of Src, which in turn may mediate VEC
phosphorylation.

Activation of Src family kinases and the subsequent VEC
phosphorylation has been described as a critical step in the
induction of permeability by growth factors and inflammatory
cytokines9,11,44. In vivo we observed that Src is constitutively
activated in veins and this is necessary but not sufficient to induce
vascular leakage. These observations are in agreement with Adam
et al.46 who showed that phosphorylation of VEC by Src was not
sufficient to decrease barrier function of cultured endothelial cells.

The reasons why the above phenomena do not occur in arteries
are not clear, notwithstanding the multiple differences that exist
between arterial and venous vessels. These differences include the
pattern and degree of investment by smooth muscle cells and/or
pericytes, electrical coupling, distribution of endothelial markers
such as ephrins and receptors to inflammatory mediators, and
others1,47,48. The data reported here suggest that hemodynamic
factors also may modulate Src activity and, as a consequence,
VEC phosphorylation. As reported here VEC phosphorylation is
influenced by shear stress in vitro and exposure of venous
endothelial cells to arterial blood flow in vivo leads to a decrease
in VEC phosphorylation.

Although further work is required to define this mechanism in
detail, data are in favour of a shear-sensing mechanism that
modulates VEC phosphorylation. An interesting candidate is the
endothelial mechanosensory complex formed by VEC, PECAM-1
and VEGFR-2. PECAM-1 has been shown to bind directly to Src
and the binding is required for Src activation under shear49.
We cannot, however, exclude that other hemodynamic factors
such as hydrostatic pressure may contribute to low VEC
phosphorylation in arteries.

We also made efforts to understand the functional meaning of
the constitutive VEC phosphorylation in vivo. As most
inflammatory mediators act selectively and rapidly on veins, a
tempting speculation is that VEC phosphorylation is a

Figure 7 | VEC phosphorylation is necessary for its internalization. (a) VEC null murine endothelial cells were transduced with VEC-wt or non-

phosphorylatable mutants (VEC-Y658F and VEC-Y685F). Treatment of the cells with 30 min bradykinin, in the presence of chloroquine, increased the

number of cells showing internalized VEC-wt, but was ineffective on non-phosphorylatable mutants (lower panels, with acid wash). As observed for

HUVEC, VEC internalization corresponded to partial disruption of endothelial junctions on cells expressing wt, but not mutant, VEC (upper panels, without

acid wash). Scale bar: 50mm. (b) Quantification of VEC internalization is reported as percentage of cells showing internalized VEC as in (a). Data are

mean±s.e.m. of at least 100 cells analysed. (c) AZD0530 prevented bradykinin-induced VEC internalization. Data are shown as percentage of cells

showing internalized VEC and are mean±s.e.m. of at least 100 cells analysed. (d) Three or 30 min bradykinin treatment increased paracellular permeability

of cells expressing VEC-wt and, to a much lower extent, of cells expressing VEC-Y658F and VEC-Y685F (red diamonds, fold change over untreated cells).

Dynasore (green squares) or chlorpromazine (blue triangles) were able to block the effect on cell permeability induced by bradykinin. Data are mean±s.d.

of five replicates from a typical experiment out of three experiments performed. (e–g) FRAP experiment in HUVEC expressing fluorescent Y658F-cherry or

wt-VEC-cherry revealed a reduced protein motility of Y658F-cherry mutant compared with wt-VEC-cherry. The strongest difference was at 300 s after

bleach as shown in (f). Half-time of recovery (t1/2) of wt-VEC-cherry protein was two fold higher upon chlorpromazine treatment (g). Y658F-cherry

mutant presented a 2.5-fold higher basal t1/2 than wt-VEC-cherry, and it was insensitive to chlorpromazine. Statistical significance was determined on at

least 10 replicates. Scale bar is 4mm. *Po0.05 and **Po0.01, by analysis of variance test (c,d) or by independent two-tailed t-test assuming unequal

variances (b, e and g).
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prerequisite for a rapid and fully reversible opening of endothelial
junctions.

As for other cadherins, VEC endocytosis reduces endothelial
cells barrier function2,9,37,38,50. We found that bradykinin induces
a quick disappearance of pY658 and pY685 VEC from junctions
which, from the data collected in vitro, we interpret as
internalization. When we used VEC point mutants Y658F and
pY685F to inhibit phosphorylation we also blocked bradykinin-

induced VEC internalization and increase in vascular
permeability in vitro. It seems, therefore, that phosphorylation
of VEC at these two tyrosine residues is required for bradykinin-
induced vascular leakage.

To further elucidate the pathway through which pYVEC
contributes to its internalization and possibly degradation we
considered that cell–cell contacts are sites for recruitment of the
ubiquitination machinery30,50,51. Tyrosine phosphorylation of
E-cadherin attracts Hakai, an E3 ubiquitin-ligase, which mediates
its ubiquitination and endocytosis50. In agreement with this
observation, we report here that activation by bradykinin leads to
VEC ubiquitination and that this process requires tyrosine
phosphorylation of Y658 and Y685.

The decrease in phosphorylation of Y658 and Y685 in VEC
may also be due to association to phosphatases. As above, the best
candidates that were previously found to associate to VEC are
VE-PTP52 and Dep-1 (ref. 17). However, the knockdown of
these phosphatases did not prevent the decrease in VEC
phosphorylation upon bradykinin activation. Moreover,
proteomic analysis of lung extracts of mice treated with
bradykinin did not detect phosphatases associated to VEC
complex. Thus, we have been unable to find, at least in our
experimental system, a clear evidence for the role of phosphatases
in regulating VEC phosphorylation.

We did not perform a detailed analysis of the role of each
tyrosine present in the cytoplasmic tail of VEC but focused on
Y658 and Y685 instead. Both tyrosines are phosphorylated in
venous endothelium, and in vitro studies on VEC phosphomi-
metic mutants show that Y658 phosphorylation is important in
VEC internalization18,39. Phosphorylation of VEC at Y658 may
reduce its association to p120 and induce its internalization18,34.
Under the different experimental conditions used here, however,
we have been unable to detect a significant dissociation of p120
from internalized pYVEC. Others46 using endothelial cells
transfected by a constitutive active src, which induced pY658
phosphorylation, could not observe detachment of p120. Our
data are consistent with this last report. These observations do
not exclude that p120 is important for the stability of VEC at the
membrane. However, detachment of p120 is unlikely to be the
only way through which cadherins are internalized.

Gavard et al.10 reported that VEGF-mediated VE cadherin
phosphorylation in the highly conserved Ser-665 induces the
recruitment of b-arrestin2, VEC internalization and increase in
permeability in cultured cells. We do not know whether
phospho Ser-665 also contributes to bradykinin-induced VEC
internalization at this stage. However, we cannot exclude that
VEC activation by permeability increasing agents may result in
different steps of phosphorylation which, downstream, contribute
to the internalization of the protein.
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Figure 8 | Bradykinin induced VEC internalization is coupled by

ubiquitination. (a) IP of lung extracts followed by WB revealed that, at 4

min after bradykinin, reduction of VEC recognition by pY-VEC antibodies

was accompanied by a strong increase in ubiquitination. Quantification of

band intensity is shown as absolute values on the right panel. (b) HUVEC

were treated, in presence of chloroquine, with bradykinin or left untreated.

Bradykinin-induced VEC internalization (red staining) and co-localization in

intracellular vesicles with K63-linked ubiquitin (green staining) in HUVEC

cells. Pixels presenting VEC and ubiquitin colocalization are highlighted in

white in the magnified fields (bottom). Red arrowheads point to internalized

VEC. Data are representative of at least three independent experiments.

Scale bar: 20mm. (c) IP of wt or point mutated VEC followed by WB for

ubiquitin showed that bradykinin induces stronger ubiquitination of wt

protein than of Y658F- or Y685F-VEC mutants. Data in (a) are

mean±s.e.m. of three independent experiments. *Po0.01 by independent

two-tailed t-test assuming unequal variances.
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Lambeng et al.44 describe, in organ extracts, VEC tyrosine
phosphorylation under both resting and hormone-activated
conditions. Interestingly and consistently with our data,
phosphorylation of VEC was observed also under resting
conditions in some organs such as the lung. When angiogenesis
was stimulated by treatment with hormones, total VEC
phosphorylation increased but only in uterus and ovary. Using
heart extracts, Weis et al.11 show increased VEC phosphorylation
after VEGF treatment and inhibition of such an effect by Src
inhibitors. The stimuli and the organs studied are different from
those considered in our paper. Furthermore, the use of organ
extracts does not allow a detailed analysis of positive or negative
vessels. It is conceivable that angiogenic stimuli increase tyrosine
phosphorylation in the growing vasculature and as final result,
cause an increase in tyrosine phosphorylation of the whole organ
extract.

In conclusion, the data presented here help to draw a picture of
how VEC processing is regulated in vivo by inflammatory
mediators such as bradykinin or histamine. We report that VEC
may be phosphorylated in Y658 and Y685 in veins through the
action of hemodynamic forces. Our data suggest that phosphor-
ylation in these tyrosines sensitizes VEC to the action of
bradykinin, which induces rapid pYVEC internalization and
ubiquitination. pYVEC in veins may, therefore, be important to
prime the protein into a dynamic state that promotes, upon
activation, its rapid internalization, leading to the quick and
reversible opening of endothelial cells junctions and plasma
leakage. We speculate that any agent capable of inhibiting VEC
phosphorylation may effectively reduce vascular permeability
induced by inflammatory agents.

Methods
Animals and in vivo treatments. C57BL/6J wt (20–25 g) mice (Charles River)
were used. Mice anaesthetized with Avertin (2,2,2-tribromoethanol, 500 mg kg� 1

intraperitoneally) were injected intravenously with bradykinin (10 mg kg� 1,
Sigma), histamine (50 mmol kg� 1, Sigma) or 0.9% NaCl for the indicated time. For
immunofluorescence analysis, 1 min before fixation, blue or green fluorescent
microspheres (0.1 mm diameter, 50 ml, Duke Scientific) were intravenously injected.

COMP-ang-1 expressing adenovirus (109 plaque-forming units)28 were injected
via the tail vein. Age-matched control mice received an injection of adenovirus
expressing GFP. Eight days later, mice were challenged by intravenous injection of
bradykinin (as above).

AZD0530 (kind gift of Astra Zeneca) or vehicle (following
the manufacturer’s instructions) was orally administered (25 mg kg� 1, 6 h).

For carotid-jugular bypass, rats were anaesthetized with pentobarbital
(50 mg kg� 1 intraperitoneally) and injected with heparin (1000 U kg� 1

intraperitoneally) 30 min before surgery. A heparinized polyethylene catheter (PE-
60; Intramedic, Becton Dickinson) was inserted into the left carotid artery on one
side and into the right jugular vein on the other side. Arterial blood flow deviation,
from carotid artery to jugular vein, was applied for 30 min.

Antibodies. The following antibodies were used: goat anti-VEC (1:200, Santa
Cruz), rat anti-mouse-VEC (5mg ml� 1, BV13 (ref. 53) or 1:500, BD Transduction
Laboratories), mouse anti-human-VEC (10mg ml� 1, BV6)54, mouse anti-p120
(1:100, BD Transduction Laboratories), rabbit anti-b-catenin (1:200, Abcam),
hamster anti-CD31 (1:500, Chemicon), rabbit anti-p120 and rabbit anti-cSrc (1:200
and 1:100 Santa Cruz), rabbit anti-phospho-Tyr 418-Src (1:100, Invitrogen), mouse
anti-ubiquitin P4D1 (1:1,000, Santa Cruz), rabbit anti-K63-linked-polyubiquitin
clone Apu3 (1:250, Millipore), rabbit anti-VEC (pY658) (1:1,000, Biosource), goat
anti-Dep-1 (1:200, PTPRJ) (R&D System), Vinculin (1:1,000, Sigma).

Affinity purified rabbit antibody to VE-PTP (PTPRB, 5 mg ml� 1), pY658-VEC
and pY685-VEC were produced and purified by New England Peptide. Antibodies
pY658-VEC and pY685-VEC (10 mg ml� 1) in PBS containing 1% bovine serum
albumin (BSA) were further purified by three incubation cycles on VEC null
endothelial cells (30 min VEGF stimulated, fixed, permeabilized and blocked as
described in the relative section) for 1 h at room temperature and used for
immunofluorescence or western blot (1 or 5 mg ml� 1). Peptide-competition was
obtained by incubating the antibodies with a 200-fold molar excess of the relative
phosphorylated or non-phosphorylated peptide for 45 min at room temperature.

Secondary antibodies for immunofluorescence were donkey antibodies to the
appropriate species conjugated with Alexa-Fluor 488, 555 or 647 (1:400, Molecular
Probes).

Cells and in vitro treatments. HUVEC and murine endothelial cells genetically
ablated for VEC (VEC-null) were obtained and cultured as described55. VEC null
or HUVEC were lentiviral transduced to express mVEC (see ‘Constructs’). CHO
cells were cultured and transfected to express mVEC-mutants (see ‘Constructs’)
using standard techniques.

To knock down human VEC, PTPRB (VE-PTP) or PTPRJ (Dep-1) in HUVEC
we used ON-TARGET plus SMART pool siRNAs from Dharmacon and the
corresponding Stealth siRNAs control. Transfection was performed with
LipofectAMINE 2,000 (Invitrogen) following the manufacturer’s instructions.

Arterial and venous cells were isolated as described56. Confluent HUVEC or
murine endothelial cells were rendered quiescent for 3 or 24 h, respectively, in
MCDB131 medium (Invitrogen) containing 1% BSA. Bradykinin (1 mM, for the
indicated time), chloroquine (300 mM or 100 mM, 3 h), chlorpromazine (5 mg ml� 1,
30 min), sodium pervanadate (obtained by adding to the cells 0.2 mM sodium
orthovanadate and 0.4 mM H2O2, 5 min), AZD0530 (1 mM, 3 h), Cycloheximide
(0.1 mg ml� 1, 30 min), Dynasore (60 mM, 30 min) COMP-Ang-1 (200 ng/ml) or
VEGF (80 ng ml� 1, 10 min) was added at 37 1C.

Constructs. mVEC constructs (VEC-wt, VEC-Y658F, VEC-Y685F) were produced
using standard molecular biology procedures. Mutated VEC cytoplasmic tails were
amplified by PCR as two fragments carrying the mutations and the restriction sites
necessary for sub-cloning. Wild-type cytoplasmic tail was then replaced with the
mutated versions to generate full length mutated VEC complementary DNAs.
mCherry complementary DNA was subcloned into the pEGFP-N2 (Clontech) in
place of EGFP sequence. VEC (wt and Y658F mutant) were then subcloned to
generate fusion proteins. VEC constructs were introduced in lentiviral plasmids to
produce lentiviral vectors, as described57. Human VEC-D622-702 was described
elsewhere20.

Flow experiments. A custom-built flow chamber consisting of two parallel plates
made of polymethyl-methacrylate was used to apply uniform shear stress on
HUVEC monolayers. While the lower plate was flat, a rectangular channel was
engraved on the upper plate with an automatic milling machine.

HUVEC were grown to confluence on a patch of copolymer 2-norbornene-
ethylene58. The patch was then placed on the lower plate and the upper plate was
mounted to form a sealed channel of parallel-plate geometry.

The actual shear stress (t) applied to the cells can be expressed in terms of
volumetric flow rate (Q), medium viscosity (m, 8.4� 10� 4 Pa � s)59, width
(w, 20 mm) and height (h, 0.3 mm) of the channel: t¼ 6Qm/wh2. In our setup, flow
rates of 30, 90 or 107 ml min� 1 were applied to obtain shear stress values of 3.5, 7,
14, 28, 42 or 50 dynes cm� 2, respectively. The indicated flow rates were controlled
using a peristaltic roller pump (Model 66, Harvard Apparatus). Cells were fixed
after 14 h of constant flow.

PP1 (10 mM, Enzo Life Sciences) or dimethylsulphoxide was added to the culture
media before the onset of flow. SU6656 (10 mM, Sigma) was added to the culture
media 30 min before fixation. Chlorpromazine or chloroquine were added to the
culture media 30 min or 3 h (respectively) before bradykinin treatment.

Co-localization data originate from multichannel fluorescence stacks collected
using a Nikon-Ti (Nikon, Japan) wide-field microscope implemented with an Orca
R2 CCD camera (Hamamatsu, Japan) and a X60/1.2 NA water immersion objective
(Nikon). For each stack a single value of the Pearson’s coefficient (ranging
between� 1 and 1) was measured imposing a threshold value (calculated based on
the algorithms by Costes et al.,60) for green and red channels using the ‘co-
localization analysis’ section of Imaris (Bitplane).

Fluorescence recovery after photobleaching. HUVEC expressing mCherry-
constructs were grown to confluence on m-slide 8-well (Ibidi). Chlorpromazine
and/or Cycloheximide were added to the media 30 min before FRAP experiment.
FRAP was performed as specified in Supplementary Methods.

Immunofluorescence. Cells were fixed and permeabilized with 3% paraf-
ormaldehyde, 0.5% Triton X100 in PBS for 3 min followed by further 15 min
fixation with 3% paraformaldehyde in PBS. After anaesthesia, mice vasculature was
perfused as described24. Trachea, diaphragm, urinary bladder or 9.5 dpc embryos
were immersed in 1% paraformaldehyde in 0.1% triethanolamine, pH 7.5,
containing 0.1% Triton X100 and 0.1% NP-40 for 1 h at room temperature. For
immunostaining of tissues or cells, primary or secondary antibodies were diluted in
5% BSA, 5% donkey serum in PBS. CCD camera on epifluorescence microscope
(Leica) or Leica TCS SP2 confocal microscopy were used. ImageJ (NIH) was
employed for data analysis. Figures were assembled using Adobe Photoshop and
Adobe Illustrator. Only adjustments of brightness and contrast were used in the
preparation of the figures. For comparison purposes, different sample images of the
same antigen were acquired under constant acquisition settings.

Immunoprecipitation and western blotting. For additional detail see
Supplementary Methods. Briefly, for internalized or surface VEC immunopreci-
pitations, antibody–antigen (BV6) binding was performed in living cells before or
after (respectively) pharmacological treatment at 4 1C. After six washes with PBS
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(containing calcium and magnesium ions) to remove the unbound antibody, cells
were treated as follows: for internalized VEC immunoprecipitation, cells were
treated in complete medium at 37 1C. To remove cell surface bound antibody while
retaining internalized antibody, cells were acid washed five times in PBS, pH 2.7,
containing 25 mM glycine and 3% BSA before lysis in JS buffer (see Supplementary
Methods). For surface VEC immunoprecipitation, cells were lysed immediately in
JS buffer. Mouse lungs were collected and homogenized in modified radio-
immunoprecipitation assay buffer buffer (see Supplementary Methods). Protein
concentrations were determined using a BCA Protein Assay Kit (Pierce) following
the manufacturer’s instructions.

Internalization assay. Internalization assays were performed as previously
described33. Briefly, to measure internalization of endogenous VEC, confluent
HUVEC (or murine endothelial cells) were treated with 300 mM (or 100 mM)
chloroquine. BV6 (or BV13) antibody was incubated with cells at 4 1C for 1 h in
MCDB131 with 1% BSA medium. Cells were rinsed in ice-cold MCDB131 to
remove unbound antibody and then treated with 1 mM bradykinin. Cells were acid
or neutral (as indicated) washed five times and processed for immunofluorescence.

Gelatine–glutaraldehyde crosslinking. To enhance endothelial cell adhesion,
slides were coated with glutaraldehyde-crosslinked gelatin as described in
Supplementary Methods.

Paracellular flux tracer analysis. Endothelial cells were seeded on 0.4 mm pore-
size Transwell Permeable Supports (Corning), cultured in complete culture med-
ium and assayed for permeability to fluorescein isothiocyanate-dextran (70 kDa)
(Sigma,) as described57.

Study approval. Procedures involving animals and their care conformed to
institutional guidelines in compliance with national (4D.L.N.116, G.U., supplement
40, 18-2-1992) and international (EEC Council Directive 86/609, OJL358,1,12-12-
1987, National Institutes of Health’s Guide for the Care and Use of Laboratory
Animals, and United States National Research Council 1996) law and policies. All
efforts were made to minimize the number of animals used and their suffering.
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