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HIGHLIGHTED ARTICLE
| INVESTIGATION

A Population Phylogenetic View of
Mitochondrial Heteroplasmy

Peter R. Wilton,*,1 Arslan Zaidi,† Kateryna Makova,† and Rasmus Nielsen*,‡

*Department of Integrative Biology and ‡Department of Statistics, University of California, Berkeley, California 94720, and
†Department of Biology, Penn State University, University Park, Pennsylvania 16802

ORCID ID: 0000-0003-1591-588X (P.R.W.)

ABSTRACT The mitochondrion has recently emerged as an active player in myriad cellular processes. Additionally, it was recently
shown that .200 diseases are known to be linked to variants in mitochondrial DNA or in nuclear genes interacting with mitochondria.
This has reinvigorated interest in its biology and population genetics. Mitochondrial heteroplasmy, or genotypic variation of mito-
chondria within an individual, is now understood to be common in humans and important in human health. However, it is still not
possible to make quantitative predictions about the inheritance of heteroplasmy and its proliferation within the body, partly due to the
lack of an appropriate model. Here, we present a population-genetic framework for modeling mitochondrial heteroplasmy as a process
that occurs on an ontogenetic phylogeny, with genetic drift and mutation changing heteroplasmy frequencies during the various
developmental processes represented in the phylogeny. Using this framework, we develop a Bayesian inference method for inferring
rates of mitochondrial genetic drift and mutation at different stages of human life. Applying the method to previously published
heteroplasmy frequency data, we demonstrate a severe effective germline bottleneck comprised of the cumulative genetic drift
occurring between the divergence of germline and somatic cells in the mother, and the separation of germ layers in the offspring.
Additionally, we find that the two somatic tissues we analyze here undergo tissue-specific bottlenecks during embryogenesis, less
severe than the effective germline bottleneck, and that these somatic tissues experience little additional genetic drift during adulthood.
We conclude with a discussion of possible extensions of the ontogenetic phylogeny framework and its possible applications to other
ontogenetic processes in addition to mitochondrial heteroplasmy.

KEYWORDS somatic evolution; cell lineage; development; phylogeny

AS the energy providers of the cell, mitochondria play a
vital role in the biology of eukaryotes. Much of the

metabolic functionality of the mitochondrion is encoded in
the mitochondrial genome, which in humans is � 16:5 kb in
length and inherited from the mother. While it was long
thought that the mitochondria within the human body are
genetic clones, it is now recognized that variation of mito-
chondrial DNA (mtDNA) is common within human cells and
tissues. This variation, termedmitochondrial heteroplasmy, is
a normal part of healthy human biology (Li et al. 2010, 2016;

Rebolledo-Jaramillo et al. 2014), but it is also important in
human health and disease, being the primary mode of inher-
itance of mitochondrial disease and playing a role in cancer
and aging (reviewed in Wallace and Chalkia 2013; Stewart
and Chinnery 2015).

Because of its importance in human health, it is crucial to
understand how mitochondrial heteroplasmy is transmitted
between generations and becomes distributed within an in-
dividual. Heteroplasmy frequencies can change drastically
between mother and offspring, owing to a hypothesized
bottleneck in the number of segregating units of mitochon-
drial genomes during early oogenesis (Cree et al. 2008).
There has been considerable debate about whether themech-
anism of this bottleneck involves an actual decrease in the
number of mitochondrial genome copies vs. cosegregation of
genetically homogeneous groups of mitochondrial DNA (e.g.,
Jenuth et al. 1996; Cao et al. 2007; Cree et al. 2008; Wai et al.
2008; Carling et al. 2011). Nevertheless, in order to better
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predict the change in heteroplasmy frequencies between gener-
ations, previous studies have sought to infer the size of the
oogenic bottleneck, either through direct observation (in mice)
of the number of mitochondrial DNA genome copies (Cao et al.
2007; Cree et al. 2008), or through indirectmeasurement, mak-
ing statistical conclusions about the bottleneck size based on
observed frequency changes between generations (Millar et al.
2008; Hendy et al. 2009; Rebolledo-Jaramillo et al. 2014;
Johnston et al. 2015; Li et al. 2016). Recently, Johnston et al.
(2015) have proposed a statistical framework that combines
direct observations of mtDNA copy number with genetic vari-
ance in order to make inferences about the dynamics of the
oogenic bottleneck. Inmice, estimates of the physical bottleneck
size have ranged from200 to.1000 (Cao et al. 2007; Cree et al.
2008; Johnston et al. 2015), and in a recent reanalysis of pre-
vious data, it was claimed that the minimal bottleneck size may
have only small effects on heteroplasmy transmission dynamics,
depending on the details of how oogonia proliferate (Johnston
et al. 2015). In humans, indirect estimates of the effective ge-
netic bottleneck size have ranged from one to 200, depending
on the dataset and the statistical methods used to estimate the
bottleneck size (Marchington et al. 1997; Guo et al. 2013).

Surveys of heteroplasmy occurrence in humans have also
found that heteroplasmic variants are often more numerous and
at greater frequency in older individuals, and that older mothers
transmitmoreheteroplasmies to their offspring (Sondheimer et al.
2011; Rebolledo-Jaramillo et al. 2014; Li et al. 2015). It has also
been observed that heteroplasmy frequencies vary fromone tissue
to another within an individual (Rebolledo-Jaramillo et al. 2014;
Li et al. 2015). These observations underscore the fact that heter-
oplasmy frequencies change not only during oogenesis in the
mother, but also during embryogenesis and throughout adult life.
Ideally, any indirect statistical inferences made about the bottle-
neck size or other aspects of heteroplasmy frequency dynamics
would account for all sources of heteroplasmy frequency change
simultaneously. Such an approach would need to account for the
phylogenetic and developmental relationships between sampled
tissues in order to make full use of the information contained in
the observed heteroplasmy allele frequencies. While a number of
studies have employed or developed population-genetic models
to study mitochondrial heteroplasmy (e.g., Wonnapinij et al.
2008; Hendy et al. 2009; Johnston et al. 2015; Johnston and
Jones 2016), few have considered the phylogenetic relationship
between tissues in doing so, often because only a single tissue type
is under consideration. Recently, Burgstaller et al. (2014) inferred
tissue-specific rates of heteroplasmy segregation in artificially het-
eroplasmic mouse lines, implicitly relating the sampled tissues by
a star-like phylogeny. In a study of heteroplasmy frequencies sam-
pled from 11 tissues in unrelated individuals, Li et al. (2015)
constructed a phylogeny of the tissues but did not combine it with
population-genetic analysis.

Here, we describe a model of heteroplasmy dynamics
throughout several key stages of human growth and repro-
duction. Our approach is to model heteroplasmy frequency
change as a population-genetic process of genetic drift and
mutation that occurs along the branches of an ontogenetic

phylogeny, which we define as the tree-like structure relating
sampled tissues by their developmental and ontogenetic his-
tories.Ourmodel is similar to typical population-phylogenetic
inference models (e.g., Pickrell and Pritchard 2012; Gautier
and Vitalis 2013), but it also includes features that are unique
to ontogenetic phylogenies. We employ ourmodel in a Bayes-
ian inference procedure that uses Markov chain Monte Carlo
(MCMC) to sample from posterior distributions of genetic
drift and mutation rate parameters for various develop-
mental processes. After demonstrating the accuracy of our
methodwith simulated data, we apply it to real heteroplasmy
frequency data and present new insights into the dynamics of
heteroplasmy frequency change in humans.

Methods

Ontogenetic phylogenies

We model the mitochondria in tissues sampled from one or
more related individuals as a group of populations related by
an ontogenetic phylogeny. Along each branch of the ontoge-
netic phylogeny, heteroplasmy frequencies within some ances-
tral tissue change due to the action of genetic drift and
mutation.Weassumethattheshapeoftheontogeneticphylogeny
is given.

Our ontogenetic phylogenymodel differs in a few important
ways from the typical population-phylogenetic likelihood
framework. In the typical population-genetic model, each
branch is considered to be an independent period of evolution-
ary history and thus is under control of an independent pa-
rameter. In contrast to this, we allow a single parameter to
determine the dynamics on multiple parts of the phylogeny,
since a single developmental process canact inmultiple related
individuals, and this developmental process can be assumed to
act similarly in each individual. Furthermore, while it is typi-
cally assumed that each locus has been transmitted through a
single phylogeny and thus has been subject to the same pop-
ulation-genetic forces, we allow the effects of genetic drift and
mutation to depend on the age of the sampled individuals. In
particular, for certain ontogenetic processes, wemodel the rate
of accumulation of genetic drift and mutation with age. This is
motivatedbypreviousobservations thatheteroplasmicvariants
segregate and accumulate with time within somatic tissues
(Sondheimer et al. 2011; Rebolledo-Jaramillo et al. 2014; Li
et al. 2015) and within the germline (Rebolledo-Jaramillo
et al. 2014; Li et al. 2016; Wachsmuth et al. 2016). Finally,
in the typical population-phylogenetic model, each branch of
the phylogeny represents a single period in evolutionary his-
tory and is modeled by a single parameter. Because multiple
ontogenetic processes of interest can occur along a single
branch of an ontogenetic phylogeny, we allow branches on
the ontogenetic phylogeny to be broken into multiple distinct
ontogenetic processes, controlled by independent parameters.
Figure 1 demonstrates these features with an ontogenetic phy-
logeny representing the relationships between two tissues
sampled in both a mother and her offspring.
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Each ontogenetic process in the phylogeny is parameter-
ized by a genetic drift parameter and a mutation rate. The
mutation rate is u ¼ 2Nem;whereNe is the effective size of the
relevant cell population and m is the per-replication, per-base
mutation rate. Genetic drift can be modeled in one of three
ways, namely as a fixed amount of genetic drift, as an explicit
bottleneck size, or as a rate of accumulation of genetic drift
per year.

Likelihood calculation

Given ontogenetic tree T with k ontogenetic processes, ge-
netic drift parameters b ¼ fb1; . . . ; bkg; and mutation rates
u ¼ fu1; . . . ; ukg; our likelihood is

LT ðb; ujDÞ ¼ PT ðDjb; uÞ; (1)

where D represents the heteroplasmy frequency data. (Be-
low, the T subscript is left off for brevity.) Suppose hetero-
plasmy frequencies were sampled from F families. Writing Ci

for the number of heteroplasmic sites in family i, Dij for the
heteroplasmy frequency data at the jth heteroplasmic locus
(of Ci) in family i, and Hij for the event that site j is hetero-
plasmic in family i, our likelihood can be written

Lðb; ujDÞ ¼ PðD; b; uÞ ¼
YF
i¼1

PðCi; b; uÞ
1
a

YCi

j¼1

PðDijjHij; b; uÞ;

(2)

where PðCi; b; uÞ is the probability of Ci heteroplasmic vari-
ants occurring in family i and PðDijjHij; b; uÞ is the probability
of the observed heteroplasmy data at the jth heteroplasmic
locus in family i, conditional on heteroplasmy (i.e., polymor-
phism) in at least one tissue at that locus. We assume that Ci

is Poisson distributed with rate G � PðHij; b; uÞ; where G is the
genome size, and PðHij; b; uÞ is the probability that site j is
heteroplasmic in family i. We note that PðHijÞ ¼ PðHikÞ for
each j and k; that is, the probability of heteroplasmy depends
on the family (specifically, on the age of individuals in the
family) and not on the particular locus.

Wepenalize thepart of the likelihood involving thenumber
of heteroplasmic variants with the parameter a in order to
make inference less sensitive to experimental heteroplasmy
detection, which is a nontrivial problem, especially for hetero-
plasmies segregating at low frequency (Li and Stoneking
2012; Rebolledo-Jaramillo et al. 2014). Without such a pen-
alty, the likelihood is too strongly influenced by the number of
observed heteroplasmies, a quantity influenced both by false
positives—at a rate of up to � 10% for low-frequency hetero-
plasmies in Rebolledo-Jaramillo et al. (2014)—and by false
negatives caused by conservative minimum allele frequencies
thresholds (1% in Rebolledo-Jaramillo et al. 2014). On the
other hand, if the number of heteroplasmies is completely
absent from the likelihood, such that all information about
drift and mutation is taken only from the heteroplasmy fre-
quencies, posterior distributions of mutation rates are sensitive
to outlier allele frequencies that do not fit a model of genetic
drift and (infrequent) mutation as well. As a compromise, we
set the value of this likelihood penalty to a ¼ 100; which, in
effect, artificially reduces the total number of sites considered
in this component of the likelihood, such that if, in reality,
500 heteroplasmic sites are observed out of a total of
100; 000 sites, the contribution to the likelihood would be
the same as if five heteroplasmic sites were observed in a total
of 1000 sites.

With our likelihood (2), we implicitly ignore linkage be-
tween heteroplasmic sites within a family, even though, in
reality, the lack of recombination means that the sites are
perfectly linked. We justify this approximation in two ways:
first, there are usually few heteroplasmic variants cosegregat-
ing in a family [mean 2.6 in Rebolledo-Jaramillo et al. (2014),
1.0 in Li et al. (2016)], and, second, among heteroplasmic
variants cosegregating in a family, most segregate at low fre-
quency, so that changes in the frequency of one heteroplasmy
do not greatly affect the frequency of another. Thus, the dy-
namics at several heteroplasmic sites should closely resemble
those of a model in which each site truly segregates indepen-
dently. This assumption is supported by simulations of non-
recombining mitochondrial genomes (see section Simulation
below). We further assume that heteroplasmy frequencies
are independent between families.

A site is determined to be heteroplasmic according to the
filtering steps described in Rebolledo-Jaramillo et al. (2014),
which include filters for mapping quality, base quality, minimum
allele frequency (1%), coverage (. 10003 ), local sequence
complexity, and contamination. Rather than calculate likelihoods
based on called allele frequencies, we model binomial sam-
pling error in the number of consensus and alternative reads
sampled from a true, unknown allele frequency. Thus Dij rep-
resents the number of consensus and alternative alleles at the

Figure 1 Ontogenetic phylogeny for sampled tissues in mother-child
duos from Rebolledo-Jaramillo et al. (2014). Each color represents a dif-
ferent tissue or developmental process. The leaves of the tree represent
the blood and cheek epithelial tissues sampled from the mother and her
child. Solid lines show processes modeled by a fixed amount of genetic
drift and dashed lines show processes in which genetic drift accumulates
linearly with age. The red component, representing early oogenesis, mod-
els a single-generation bottleneck with subsequent doubling of the pop-
ulation size back up to a large size. Parenthetical descriptions in gray
show the timing of notable developmental events.
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jth heteroplasmic locus in family i. Conditional on hetero-
plasmy (i.e., polymorphism), the probability of the observed
read counts Dij at locus j in family i is

PðDijjHi; b; uÞ ¼
P

xijPðDijjxijÞPðxij; b; uÞ
PðHi; b; uÞ

; (3)

where xij is the true, unknown, allele frequency at locus j in
family i. The sum is performed over all possible allele fre-
quencies in the sampled tissues. Both the numerator and
the denominator can be calculated using Felsenstein’s
(1981) pruning algorithm—a dynamic programming algo-
rithm frequently used in likelihood calculations for phyloge-
netic trees. Details of how we calculated these quantities are
given in Appendix A. The pruning algorithm requires calcu-
lating allele frequency transition distributions for different
genetic drift and mutation parameter values. As described
in Appendix B, we achieved this by numerically precomputing
allele frequency transition distributions under the discrete-
generation Wright-Fisher model, and linearly interpolating
between precomputed values. The pruning algorithm also re-
quires a distribution of allele frequencies at the root of the
phylogeny, which, in our application (see below), represents
the unobservable distribution of heteroplasmy allele frequen-
cies in the mother as an embryo. Following Tataru et al.
(2015), we use a discretized, symmetric beta distribution with
additional, symmetric probability weights at frequencies 0 and
1. The two parameters specifying this distribution are inferred
jointly with genetic drift and mutation parameters.

Inference

We take a Bayesian approach to inference. Prior distributions
are Log-Uniform ð53 1024; 3Þ for genetic drift parameters,
measured in generations per Ne (henceforth “drift units”).
For genetic drift parameters specified by a rate of accumula-
tion of drift units per year, the lower (resp. upper) limit of
the (Uniform) prior distribution limits are divided by
the minimum (resp. maximum) of the ages by which the rate
is multiplied. We did not allow the effects of genetic drift to
decrease with age. Prior distributions on bottleneck sizes are
Log2Uniformð2500Þ; and, for mutation rate parameters
u ¼ 2Nem; the prior distribution is Log-Uniform ð1028; 1021Þ:

We employ an affine-invariant ensemble MCMC proce-
dure (Goodman and Weare 2010) to sample from posterior
distributions, as implemented in the Python package emcee
(Foreman-Mackey et al. 2013). We assess convergence by
visual inspection of the posterior traces. Running 500 chains
in the ensemble MCMC for 20,000 iterations each, we find
good convergence after � 2500 iterations, and, thus, dis-
card the first 5000 iterations of each chain as burn-in. With
� 100 heteroplasmic loci, a run takes 60–80 CPU hours, but,
due to the parallel nature of ensemble MCMC, calculations
can be efficiently spread across CPUs, so that, on a 20-core
compute node, results are obtained in �4 hr. Reported 95%
credible intervals (CIs) are intervals of the highest posterior
density.

As a way of evaluating the relative support for different
ontogenetic models, we estimate Bayes factors (i.e., ratios of
posterior evidence integrals) for alternative ontogenetic
models of the accumulation of drift within cell lineages. For
models M1 and M2; the Bayes factor is

BFðM1;M2Þ ¼
R
pðuÞLðujD;M1ÞduR
pðuÞLðujD;M2Þdu

; (4)

where pð�Þ is the prior distribution and Lð�jD;MkÞ is the likeli-
hood under model k. These posterior evidence integrals are
approximated using emcee’s (Foreman-Mackey et al. 2013)
implementation of an approach using thermodynamic inte-
gration (see Goggans and Chi 2004).

Simulation

We performed two sets of simulations to test our inference
procedure. The first simulations were performed under the
model assumed by our inference procedure. As described
above, this model assumes that each locus segregates inde-
pendently, allele frequency transitions occur according to the
Wright-Fisher model of genetic drift and biallelic mutation,
and heteroplasmy frequencies in the root of the ontogenetic
phylogeny are controlled by the two parameters of a discre-
tized, symmetric beta distribution with extra probability
weight at frequencies zero and one. These simulations were
performed forward in time using a custom Python script.

The second set of simulations tested how our assumption
that loci segregate independently affects inference when the
data are simulated from nonrecombining genomes sampled
from many different families. These simulations were per-
formed using a custom interface to the simulation package
msprime (Kelleher et al. 2016), which simulates genetic varia-
tion under the standard neutral coalescent model with infinite-
sites mutation. In these simulations, population sizes and
branch lengths are equivalent to those under the forward-time
simulations, but at the root of the ontogenetic phylogeny, we
assume that ancestral lineages trace their ancestry back in time
in a single panmictic population of constant size. Simulations
were performed under conditions in which the distribution of
the number of heteroplasmic variants per family roughly
matched the distribution observed in the data.

Data

We applied our inference procedure to a publicly available
dataset, containing allele frequencies for 98 heteroplasmies
sampled from 39 mother-offspring duos, originally published
byRebolledo-Jaramillo et al. (2014). In this dataset, mitochon-
dria from blood and cheek epithelial cells were sampled from
both mother and offspring, resulting in a ontogenetic phylog-
eny with four leaves, each representing one of the four tissues
sampled from amother-offspring duo. Details of heteroplasmy
discovery are described in Rebolledo-Jaramillo et al. (2014).

To model the segregation of heteroplasmy frequencies
during the ontogeny of the four tissues sampled from each
duo, we used the ontogenetic phylogeny shown in Figure 1.
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This ontogenetic phylogeny models several life stages. The root
of the phylogeny occurs at the divergence of the mother’s so-
matic and germline tissues when she is an embryo. On the
branch leading to the somatic tissues in the mother, there is a
brief period of early embryonic development before the blood
and cheek epithelial cell lineages diverge at gastrulation as
members of the ectodermal (cheek epithelial) and mesodermal
(blood) germ layers. After diverging at gastrulation, each so-
matic tissue undergoes independent periods of genetic drift
and mutation during later embryogenesis and early growth,
and, finally, for each tissue there are independent rates of accu-
mulation of genetic drift and mutation throughout adult life.

On the branch leading to the offspring tissues in the
ontogenetic phylogeny in Figure 1, the first stage represented
is the period of oogenesis prior to the birth of the mother,
when the oogenic bottleneck is thought to occur. This is fol-
lowed by the oocyte stage, during which we assume the mi-
tochondria accumulate genetic drift and mutation at some
rate linearly with the age of the mother before childbirth.
At fertilization, this branch undergoes the same period of
early somatic development experienced by the mother’s so-
matic tissues prior to gastrulation. Finally, the two somatic
tissues of the offspring diverge at gastrulation and go through
the same stages of development as the somatic tissues of the
mother. For an overview of the events of human develop-
ment, see, for example, Carlson (2014).

Effective oogenic bottleneck

Analyzing both simulated and real data, we find that there is
limitedpower to infer the sizeof theoogenicbottleneck.This is
to be expected, given that we also model the subsequent
genetic drift of the later stages of oocyte development and
in the early developing embryo; each of these three ontoge-
netic processes occurs along the same branch of the ontoge-
netic phylogeny of the tissues considered here (Figure 1),
which causes their respective contributions of genetic drift
to be conflated with one another. We note that the genetic
drift parameters of these ontogenetic processes are not truly
unidentifiable: power to distinguish genetic drift during the
early-oogenesis bottleneck from that of the later maternal
germline is provided by the differing effects of genetic drift
in mothers of different ages, and power to distinguish the
contribution of drift in the early embryo is provided by the
fact that this process occurs in both the mother and the off-
spring. Differences in effective population size (and thus
scaled mutation rates) also provide theoretical power to dis-
tinguish these parameters, but, nevertheless, we find that
these genetic drift parameters tend to become conflated with
one another.

As a way of counteracting this conflation, we combine the
genetic drift parameters of this branch in the ontogenetic
phylogeny into an effective bottleneck size (EBS), summariz-
ing the total genetic drift between mother and offspring. The
effective bottleneck is comprised of the oogenic bottleneck
per se, the accumulation of genetic drift in the oocyte prior to
ovulation, and the genetic drift in the embryo between fertil-

ization and gastrulation. To combine genetic drift parameter-
ized as a bottleneck with genetic drift parameterized in drift
units, we used the approximate relationshipNb � 2=d;where
d is genetic drift in drift units, and Nb is the bottleneck size.
This approximation is justified in Appendix C. Using this re-
lationship, our equation for the EBS has the form

Nbe ¼
2

dþ la
; (5)

where d is the summed genetic drift from the oogenic bottle-
neck per se and pregastrulation embryogenesis, l is the rate of
genetic drift accumulation in the oocyte, and a is the age of
the mother at childbirth. Because, in our model, genetic drift
accumulates in the oocyte as the mother ages prior to ovula-
tion, the size of the effective bottleneck decreases with age.
We summarize this rate of decrease by linearizing (5) be-
tween ages 25 and 34, the first and third quartiles ofmaternal
age at childbirth in the dataset from Rebolledo-Jaramillo
et al. (2014).

Data availability

Our inferenceprocedure is releasedunderapermissive license
in a Python package called mope, available at https://github.
com/ammodramus/mope or from the Python Package Index
(PyPI, http://pypi.python.org/). As we describe above, our
inference procedure requires precomputed transition distri-
butions. These can be generated by the user or downloaded
from https://github.com/ammodramus/mope. Our simula-
tion scripts are also provided with the inference procedure.

Data from Rebolledo-Jaramillo et al. (2014) are available
from that paper’s supplemental material and from the NCBI
Sequence Read Archive (www.ncbi.nlm.nih.gov/sra), acces-
sion SRP047378.

Results

Application to simulated data

The targets of our inference procedure are genetic drift pa-
rameters and population-size-scaled mutation rates for each
ontogenetic process in the ontogenetic phylogeny. Genetic
drift may be parameterized as a fixed amount of genetic drift
(in drift units, i.e., generations/Ne), as a rate of accumulation
of drift per year, or as a haploid bottleneck size. The scaled
mutation rates, u ¼ 2Nem are twice the product of the haploid
effective population size Ne and the per-replication, per-base
mutation rate m. Since m can be assumed to be the same in
every mitochondrion, the mutation rates can also be inter-
preted as relative effective population sizes. Two parameters
controlling the distribution of allele frequencies at the root of
the phylogeny are also inferred.

The inference procedure performed well on data simulated
under themodelofdrift andmutationassumedbythe inference
procedure. In a simulation of 500 independently segregating
sites sampled from two tissues in each of 100 differentmothers
and their offspring, under parameters producing a total of
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110 heteroplasmic variants, the branch lengths and mutation
rates were inferred without apparent bias (Figure 2), as were
the two root distribution parameters (data not shown). Poste-
rior distributions were generally narrower for genetic drift
parameters than for scaled mutation rates, likely correspond-
ing to the fact that there is less information about mutation
than genetic drift in the simulated data. Parameters of external
branches were inferred more precisely than those of internal
branches. Other parameter values produced similar results
(Supplemental Material, Figure S1 in File S1).

The procedure also performed well on data generated in
simulations that did not assume free recombination between
heteroplasmic sites (Figure S2 in File S1). In these simula-
tions, we simulated nonrecombining mitochondrial genomes
of 10; 000 bpin 30 mother-offspring duos, under parameters
resulting in 104 heteroplasmic variants. The � 3:7 hetero-
plasmies per family in these simulations is similar to the
� 2:6 observed in the data from Rebolledo-Jaramillo et al.
(2014), supporting our assumption that linkage between het-
eroplasmic variants within families does not greatly affect
inference results. We also tested for robustness against false
positive and false negative heteroplasmy detection. Applying
our method to simulations with a false negative rate of 0.4 for
truly heteroplasmic mutations between frequencies 0.1 and
2%, and a false positive rate of 33 1025 per basepair, so that
14 false negatives and five false positives were produced in a
dataset of 101 heteroplasmic loci, the inference procedure
was not apparently biased away from the true, simulated
parameter values (Figure S3 in File S1).

Application to real heteroplasmy data

In the application of our method to the heteroplasmy fre-
quency data from Rebolledo-Jaramillo et al. (2014) (Figure
3), we find that the posterior distribution of the size of the
early oogenesis bottleneck is broad, with a 95% CI spanning
from 10.6 to 433.2. As we describe above (see Effective
oogenic bottleneck), this is unsurprising given that in the as-
sumed ontogenetic phylogeny there are three independent
periods of drift andmutation along the branch containing the
oogenic bottleneck, namely the early oogenic bottleneck
itself, the turnover of mitochondria in the oocyte prior to
ovulation, and the period after fertilization but before gastru-
lation (Figure 1).

To counteract this conflation, we combined the genetic
drift into an effective bottleneck. The posterior distribution of
the size of this effective bottleneck (i.e., the EBS) was sub-
stantially narrower than that of the explicitly modeled bot-
tleneck, with a median of 24.5 (11.6–35.1, 95% CI) for a
mother of the mean age in this dataset (Figure 4A). This is
in line with the bottleneck size estimate of 32.3 produced by
Rebolledo-Jaramillo et al. (2014).

In our model, genetic drift accumulates in the oocyte as the
motherages,andthusthesizeof theeffectivebottleneckdecreases
with age of the mother at childbirth. The inferred relationship
between age at childbirth and EBS is shown in Figure 4B. At age
18, themedian posterior EBS is 26.1 (13.0–36.9, 95%CI), and at

age 40, it is 23.4 (10.5–34.2). The median posterior rate of de-
crease of the EBS is 20:075 bottleneck units per year, although
the central 95% CI for this rate of decrease is broad (0.0–0.34).
Given the range of this CI, there is apparently limited information
contained in the data about whether or not the EBS decreases
with age, or, equivalently, whether genetic drift accumulates
meaningfully in the oocyte.

The median posterior rates of genetic drift accumulation
in adult somatic tissues were very small, just 1:03 1023

(1:03 1023–1:23 1023; 95% CI) drift units per year for
blood, and 1:03 1023 (1:031023–1:23 1023) drift units
per year for cheek. These estimates are at the lower limit of
what is permissible under our model of genetic drift, which is
based upon distributions of allele frequency change in a fi-
nite-sized Wright-Fisher model (see Appendix B). On the
other hand, the inferred amounts of genetic drift occurring
during early development of the somatic tissues was greater:
0.015 (0.0067–0.023, 95% CI) drift units for blood, and
0.0044 (5:03 1024–0.011) drift units for cheek, roughly
equivalent to bottlenecks of size 136.2 (74.1–247.5) and
457.7 (103.9–2817.1), respectively.

The posterior distributions of scaled mutation rates were
broad, and, thus, limited information about the relative pop-
ulation sizes of different developmental and adult tissues is
contained in the heteroplasmy frequency data. This is un-
surprising given that the problem is similar to attempting to
infer population size history from � 100 single-nucleotide
polymorphisms (SNPs). A high scaled mutation rate
(2Nem. 1024) is (relatively) most supported in oogenesis,
reflecting the observation of possibly de novo mutations in
the dataset. However, the 95% CI of each developmental
process spans several orders of magnitude (at least
1028 ,2Nem, 1025), so firm conclusions cannot be drawn.

We assessed the fit of our model to the real heteroplasmy
data by simulating data under the maximum a posteriori
(MAP) parameter values and comparing to the real data.
Comparing the marginal distribution of allele frequencies in
the sampled tissues (i.e., the marginal site-frequency spec-
trum) from the actual data to the MAP simulation data, we
find that the marginal distribution of allele frequencies is
similar between the two datasets (Figure 5A), as is the dis-
tribution of absolute differences between each pair of sam-
pled tissues (Figure 5B).

In order to use Bayes factors (4) to compare the support for
differentontogenetic phylogenies,wecalculated theposterior
evidence integral for theontogenetic phylogeny inFigure1, as
well as for two additional ontogenetic phylogenies differing
in their assumptions about how genetic drift accumulates in
somatic tissues (Figure S4 in File S1). The first additional
model (termed “fixed,” Figure S4A in File S1), assumes that
all genetic drift and mutation particular to each somatic tis-
sue occurs early during development, and that there is no
additional drift accumulating later in life. The second, (“lin-
ear,” Figure S4B in File S1), assumes that genetic drift and
mutation accumulate linearly with age in somatic tissues. Our
original model (Figure 1)we term “both,” since it assumes that
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genetic drift both occurs in a fixed quantity during early de-
velopment and accumulates later in life.

We find that the “fixed” model is more supported than the
“both” or “linear” models, with the approximate log-evidence
values of the “fixed,” “both,” and “linear” models being
2170463; 2176464; and 2181663; respectively. In the
“both” model, in which there is both a period of genetic drift
andmutation in the somatic tissues during early development,
the inferred rates of drift accumulation are at the minimum
allowed by the inferencemethod (� 1023 drift units per year).
This, togetherwith the fact that the best-supportedmodel does
not include the accumulation of genetic drift in adult somatic
tissues, suggests that there is very little additional genetic drift
occurring after birth in the two somatic tissues considered here.

Discussion

Becausewemodeledgeneticdrift duringmultipleontogenetic
processes between embryogenesis in the mother and the
sampling of tissues in the child, our estimate of the size of
the oogenic bottleneck per se was imprecise, with a broad
95% CI (10.6–433.1). This is concordant with a recent anal-
ysis of the time-evolution of heteroplasmy variance in mouse
oocytes, which concluded that the actual minimal bottleneck
size is difficult to determine, and may have only limited im-
pact on overall heteroplasmy dynamics during oogenesis
(Johnston et al. 2015). However, our estimates of the EBS
(median 24.5, 95% CI: 11.6–35.1) are similar to other recent
estimates of the oogenic bottleneck size, including an esti-
mate of 32.3 in a previous analysis of the data used in this
study (Rebolledo-Jaramillo et al. 2014), and a previous esti-
mate of nine in Li et al. (2016).

Our inference framework allows for the size of the effective
oogenic bottleneck to decrease with the age of the mother as
genetic drift accumulates in the oocyte. We found a broad
posteriordistributionof the ratebywhich theEBSdecreases in
the oocyte (roughly 0.00–0.34 bottleneck units per year,
95% CI), demonstrating that, with the 39 mother-child pairs
and 98 heteroplasmic variants in the dataset we analyzed
(Rebolledo-Jaramillo et al. 2014), there is insufficient infor-
mation obtained by our model to determine whether genetic
drift accumulates with age in the oocyte. In the future, sam-
plingmore individuals and tissues, andwith larger pedigrees,
it may be possible to provide stronger statistical evidence for
or against genetic drift occurring in the oocyte; this will po-
tentially be informative on the question of how mitophagy
and mitochondrial turnover are involved in oocyte aging—a
topic of interest in the study of human fertility (see Zhang
et al. 2017).

In addition to the effective bottleneck betweenmother and
offspring,wealso quantifiedgenetic drift occurringduring the
embryonic development of the blood and cheek epithelial
lineages.We found that the embryonic genetic drift of hetero-
plasmy frequencies specific to these tissues was less than the
effective between-generation bottleneck but still appreciable,
with median posterior estimates of the EBSs being 136.2
(74.1–247.5, 95% CI) and 457.7 (103.9–2817.1) for blood
and cheek epithelial cells, respectively.

At the same time, we inferred that there is little accumu-
lation of genetic drift in adult somatic tissues. This may seem
to contradict previous observations that heteroplasmies be-
come more numerous with age (e.g., Rebolledo-Jaramillo
et al. 2014; Li et al. 2016). If the effective population size
of the somatic stem cells supporting mitotic somatic tissues

Figure 2 Posterior distributions of genetic drift and mutation parameters inferred from data simulated under the model assumed by the inference
procedure. The top and bottom rows depict genetic drift and mutation rate parameters, respectively. Gray distributions depict prior distributions, and
colored distributions depict posterior distributions. Colors match the colors of the ontogenetic processes in Figure 1. Distributions hashed with diagonal
lines correspond to processes with drift parameterized by rates of accumulation of genetic drift with age. (That is, they correspond to the dashed lines in
Figure 1.) The circles in the red posterior distributions indicate that this process is modeled by an explicit bottleneck. All parameters are log10-transformed,
and the distributions correspond to these transformed variables. Vertical dashed lines show the simulated parameter values. Not shown are the two
parameters controlling the allele frequency distribution at the root of the phylogeny, which were inferred with comparable accuracy.
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is larger than the effective population size during embryogen-
esis or the maternal germ line, an accumulation of genetic
drift with age would produce additional de novo somatic het-
eroplasmies. On the other hand, if effective population sizes
of somatic stem cells are smaller than effective population
sizes during early development, a longer period of genetic
drift in adulthood would result in fewer heteroplasmic loci,
as genetic variation is lost due to ongoing genetic drift in a
smaller population. Here, the posterior distributions of pop-
ulation-scaled mutation rates are too broad to permit any-
thing to be concluded about the relative sizes of relevant stem
cell populations.

There are several ways our inference procedure could be
extended. Our model assumes selective neutrality, but it is
possible, or even likely, that neutral population-genetic models
do not completely describe the dynamics of heteroplasmy
frequency change. Studies of heteroplasmy occurrence in hu-
mans have found a relative lack of nonsynonymous hetero-
plasmic mutations (Rebolledo-Jaramillo et al. 2014; Ye et al.
2014), or an excess of nonsynonymous mutations at low vs.
high frequencies (Li et al. 2016), suggesting purifying selec-
tion. However, evidence for biased transmission of the major
heteroplasmic allele over the minor allele has been inconsis-
tent, with one recent study finding no systematic difference in
heteroplasmy allele frequency between other offspring (Li
et al. 2016), while the original publication of the data analyzed
here did find transmission to be biased toward the major allele
at nonsynonymous sites (Rebolledo-Jaramillo et al. 2014).
Other studies have also found evidence for positive selection
acting on heteroplasmies in somatic tissues, observing re-
peated occurrence of tissue-specific and allele-specific hetero-
plasmies in many unrelated individuals (Samuels et al. 2013;
Li et al. 2015). Studies in mice have also indicated that hetero-

plasmymay be under natural selection inmany instances (e.g.,
Fan et al. 2008; Stewart et al. 2008; Sharpley et al. 2012;
Burgstaller et al. 2014).

It is possible that the systematic biases in model fit repre-
sented in Figure 5 are caused by unaccounted-for natural
selection. For example, compared to the observed distribu-
tion of heteroplasmy frequencies, theMAPmodel parameters
produce an overabundance of intermediate-to-high-fre-
quency heteroplasmies in blood tissues (Figure 5). Hypothet-
ically, this could be caused by purifying selection against
harmful heteroplasmic mutations in blood, which could skew
the distribution of heteroplasmy frequencies toward zero. If
selection tends to act on only a single heteroplasmic variant
at a given time (i.e., if clonal interference between different
heteroplasmic alleles is rare), the method we present here
could potentially be adapted to make inferences about natu-
ral selection in place of mutation. We leave this for future
work.

Wenote that, in a recent studyfinding repeated convergent
heteroplasmy in specific tissues in humans, and, thus, evi-
dence of positive selection on heteroplasmy (Li et al. 2015),
the subjects under consideration were deceased, and, thus,
older than those considered by Rebolledo-Jaramillo et al.
(2014); if selection on mitochondrial heteroplasmy inten-
sifies with age, this may explain the lack of such repeated
convergence in Rebolledo-Jaramillo et al. (2014).

We chose to model heteroplasmy allele frequency dynam-
ics with theWright-Fisher population model from population
genetics. This model is well-studied and, thus, facilitates
interpretation, and it is general in the sense that many differ-
ent population-genetic models of reproduction closely resem-
ble theWright-Fishermodelwhenpopulation sizes are at least
moderately large (Ewens 2004). The Wright-Fisher model

Figure 3 Inference results for real heteroplasmy frequency data. The top row shows results for genetic drift parameters, and the bottom row shows
posterior distributions for scaled mutation rates. Distributions hashed with diagonal lines correspond to processes with drift parameterized by rates of
accumulation of genetic drift with age. (That is, they correspond to the dashed lines in Figure 1.) The circles in the red posterior distributions indicate that
this process is modeled by an explicit bottleneck. All parameters are log10-transformed, and the depicted distributions correspond to these transformed
variables. Distributions are not drawn to a common vertical axis.
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does not include mechanistic details of mtDNA dynamics
such as the hypothesized segregation of mtDNA copies in
genetically homogeneous nucleoids (e.g., Cao et al. 2007;
Khrapko 2008), or mitochondrial fission, fusion, degrada-
tion, and duplication. The coarse effects of many of these
mechanistic details are likely to be captured by the Wright-
Fisher model through appeals to the concept of an effective
population size, just as the details of reproduction of many
classical models of reproduction from population genetics
can often be reduced to a change in the effective population
size of the Wright-Fisher model (Ewens 2004; Wakeley
2009). Here, if we were to include these effects in our model,
there would likely be very little power to infer their proper-
ties, as sample sizes are small (n,100 heteroplasmies). In
larger, and differently structured, datasets, there may be
greater power to infer mechanistic details of mitochondrial
proliferation.

In a study of mitochondrial heteroplasmy transmission
between the mothers and children of two-parent-child trios
from the Netherlands, Li et al. (2016) found support for a
variable bottleneck size, where the size of the bottleneck for
a particular heteroplasmic locus is randomly sampled from a
distribution. The model we present here also allows for vari-
able bottleneck sizes, but it assumes a particular relationship
between the effective oogenic bottleneck size and the age of
the mother. As discussed above, our inference is inconclusive
about whether or not the bottleneck size is variable with age.
A variable bottleneck size, independent of mother’s age,
could also be implemented in our inference framework by
integrating over the distribution of bottleneck sizes during
the calculation of allele frequency transition distributions.
In this case, like Li et al. (2016), we would be inferring the
parameters of the bottleneck size distribution rather than a
single bottleneck size. We leave this as an opportunity for
future investigation.

Johnston et al. (2015) have recently used a detailed,
mechanistic model of mitochondrial duplication, degradation,

and partitioning to study mitochondrial dynamics during oo-
genesis. The authors applied their model to data on the time
evolution of heteroplasmy frequency variance and mtDNA
copy number variation during oogenesis in mice, finding that
the size of the oogenic bottleneck is just one contributor to the
final variance in heteroplasmy frequencies after oogenesis is
complete, and that their analysis is inconclusive about the fine
details of segregation in nucleoids (except that nucleoids are
not very large and genetically homogeneous). This work is
broadly in agreement with the present study and is comple-
mentary in that it analyzes just one phase of ontogeny (namely,
oogenesis) and makes use of time series observations of het-
eroplasmy frequencies in mice rather than heteroplasmy fre-
quencies in multiple somatic tissues in adult humans.

However, it is still possible that the dynamics of hetero-
plasmy frequencychangedonotmeet thebasic assumptionsof
any population-geneticmodel. Any population-geneticmodel
of heteroplasmy would assume that the germ cells or somatic
stem cells giving rise to heteroplasmic variation would com-
pete with one another for reproduction, or at least be chosen
randomly for transmission or reproduction. If instead, for
example, there exists a cellular mechanism of quality control,
such that nonheteroplasmic eggs are given priority in ovula-
tion and tend to be ovulated before heteroplasmic eggs, the
number of transmitted heteroplasmies would increase with
mother’s age, but the dynamics would not be completely
described by any population-genetic model that assumes
random mating (with or without natural selection) and com-
petition among egg cells for offspring. Other suchmechanisms
of heteroplasmy propagation could be imagined. Even if stan-
dard population-genetic models cannot adequately describe
heteroplasmy frequency change, modeling heteroplasmy fre-
quency changes on an ontogenetic phylogeny would still be a
valid approach.

We assume that the shape of the ontogenetic phylogeny
relating the sampled tissues is known. For the dataset from
Rebolledo-Jaramillo et al. (2014), this is an appropriate

Figure 4 Posterior samples of the
EBS for mothers of different ages.
(A) Posterior distribution of the
effective, between-generation,
bottleneck size for younger, older,
and median-aged mothers. (B)
Relationship between mother’s
age at childbirth and the EBS. The
orange dashed line shows how the
median EBS varies with age at child-
birth. The solid blue lines show pos-
terior samples from the relationship
between EBS and age at childbirth,
with each having the form of (C.4),
where the genetic drift parameters
in this equation are jointly sampled
from the posterior distribution. A
total of n ¼ 1000 lines sampled

from the posterior are plotted. We note that each line necessarily decreases with mother birth age due to our assumption that genetic drift accumulates
at some rate in the oocyte [see (C.4)]; what varies from one line to another is the rate at which the EBS decreases due to this accumulation of genetic
drift.

Population Genetics of Heteroplasmy 1269

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/208/3/1261/6066461 by guest on 27 February 2022



assumption, since the two somatic tissues in the mother must
bemost closely related to one another, just as the two somatic
tissues of the offspring must be most closely related to one
another. For other datasets, differing in the number or iden-
tity of the sampled tissues, there may be less of an a priori
expectation for the shape of the ontogenetic phylogeny.
While there is a general understanding of the major divisions
of tissues during development, the embryonic origins and
lineage of somatic germ cell populations are not straightfor-
ward and still being established (e.g., Boisset and Robin
2012; Fuentealba et al. 2015; Romagnani et al. 2015). The
current model could easily be extended to ontogenetic phy-
logenies for families with two or more offspring. For families
with more than two offspring, the genealogy of the oogonia
eventually giving rise to the offspring would be unknown.
This part of the phylogeny could be inferred jointly with other
parameters, or, depending on the inferred rate of genetic drift
in the female germ lineage (here 1:63 1023 drift units per
year), it could be assumed that no genetic drift occurs be-
tween the birth of the youngest and oldest children.

The topology of the ontogenetic phylogeny could also be
made more complicated by admixture, which is not included
in our inference framework. Admixture could result from
biological processes, such as contributions to a mitotic tissue
from distinct, isolated adult stem cell niches, or from physical
sampling of an organ containingmultiple tissues derived from
distinct developmental lineages. Conceptually, our ontoge-
netic phylogeny approach could be extended to work
with admixture graphs (Patterson et al. 2012; Pickrell and
Pritchard 2012) by adapting the pruning algorithm for calcu-

lating likelihoods to the dependence structure introduced by
admixture. However, given the small size of current hetero-
plasmy frequency datasets compared to large whole-genome
SNP datasets, detecting admixture with f-statistics (Patterson
et al. 2012; Peter 2016), or amore typical population phylogeny
inference procedure (e.g., Treemix, Pickrell and Pritchard 2012),
would likely be more suitable.

The inference framework we present here should be ap-
plicable in future studies of heteroplasmydynamics inhumans
and other organisms. Our software mope is flexible with
respect to the pedigree of the sampled individuals, and, thus,
is suitable for studies of heteroplasmy both across several
generations and within unrelated individuals. Flexibility is
also given with respect to the number of tissues sampled—
even studies of just a single tissue may benefit frommodeling
multiple ontogenetic processes (e.g., Li et al. 2016). Our fully
Bayesian inference method provides a natural way of quan-
tifying uncertainty, which is important in studies of hetero-
plasmy as the number of polymorphic loci is often small
compared to other genomic studies. Finally, mope allows
the user to choose the ontogenetic processes to place in the
ontogenetic phylogeny; in the current version allele fre-
quency changes for each such ontogenetic process occur
according to the neutral Wright-Fisher model, but processes
governed by other dynamics (e.g., selection, mutation) could
be implemented by modifying the freely available source
code.

The ontogenetic phylogeny framework may also be useful
in areas other than the study of mitochondrial heteroplasmy.
In particular, in the study of the dynamics of cancer evolution,

Figure 5 Quantile-quantile comparison of real heteroplasmy data from Rebolledo-Jaramillo et al. (2014) and data simulated under maximum a
posteriori parameter estimates inferred from this data. (A) compares marginal distributions of allele frequencies in each tissue, and (B) compares
distributions of absolute differences in allele frequency between tissues. Each dot represents a sequential percentile of the distributions being compared.
Following Rebolledo-Jaramillo et al. (2014), alleles were polarized such that the minor allele in the mother (averaged across her two tissues) was denoted
as the focal allele.
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heterogeneous progression in samples of many tumors may
necessitate modeling per-day rates of genetic drift and mu-
tation (or natural selection) rather than fixed amounts com-
mon to all tumors. Our inference procedure could also be used
in the typical population phylogenetic setting to infer the
divergence history of a group of populations, but this appli-
cation is limited by the relatively small number of loci
[,Oð1000Þ] that our method can accept due to the compu-
tational costs of likelihood evaluations with the pruning
algorithm. A maximum-likelihood implementation of our
model, requiring fewer likelihood evaluations, may be appli-
cable to genome-scale SNP data, possibly comparing to Kim
Tree (Gautier and Vitalis 2013) and SpikeyTree (Tataru et al.
2015).
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Appendix A

Likelihood Calculation

Briefly, the pruning algorithm calculates, for each node n in the phylogeny and each frequency fj at node n, the probability
PðDðnÞ

��xðnÞ ¼ fjÞ; where DðnÞ is the data at all the leaves collectively having n as their most recent common ancestor, and xðnÞ is
the heteroplasmy allele frequency at node n. The algorithm proceeds up the tree, from the leaves to the root, using the fact that

P
�
DðnÞ

���xðnÞ ¼ fj
�
¼

Y
c

child  of   n

X
k

P
�
xðcÞ ¼ fkjxðnÞ ¼ fj

�
P
�
DðcÞ

���xðcÞ ¼ fk
�
: (A.1)

The probability PðxðcÞ ¼ fk
��xðnÞ ¼ fjÞ is the probability of transitioning from allele frequency fj in node ðnÞ to fk in node ðcÞ; a

child of ðnÞ: This probability is calculated using the discrete-generation Wright-Fisher model, as explained in Appendix B.
Here, and below, the current genetic drift parameters b and mutation rates u are implied. We model the probability of the

data at leaf (i.e., sampled tissue) node l as the binomial likelihood

P
�
DðlÞ

���xðlÞ ¼ fj
�
¼

�
Cl
hl

�
f hl
j ð12fjÞCl2hl ; (A.2)

where Cl and hl are, respectively, the total coverage and number of alternative alleles in that tissue.
Given each PðDðrÞ

��xðrÞ ¼ fjÞ for root node r, the overall likelihood is

P
�
DðrÞ

�
¼

X
j
P
�
xðrÞ ¼ fj

�
P
�
DðrÞ

���xðrÞ ¼ fj
�
: (A.3)

The probabilities PðxðrÞ ¼ fjÞ are given by the heteroplasmic allele frequency distribution at the root, a discretized symmetric
beta distribution with additional weight at frequencies 0 and 1, the parameters of which are inferred jointly with the genetic
drift and mutation parameters.

The probability of heteroplasmic polymorphism [cf. denominator of Equation (3)] can be calculated as

PðHi; b; uÞ ¼ 12 PðDjall  leaves  0Þ2 PðDjall  leaves  1Þ; (A.4)

with the second two terms giving the probability of the read count data in all the sampled tissues given that allele frequencies are
all 0 or 1, respectively.

Appendix B

Calculating Allele Frequency Transition Distributions

The pruning algorithm requires distributions of allele frequency transitions along a branch. Our approach to calculating allele
frequency transition probabilities is simple and intuitive: we precalculate transition distributions under the discrete-generation
Wright-Fisher model using numerical matrix multiplication on a grid of generations and mutation rates. To obtain a transition
distribution thatwas not precomputed, we linearly interpolate between precomputed distributions. Using a haploid population
size of N ¼ 2000 in ourWright-Fisher model calculations, we obtain a satisfactory approximation to numerically exact Wright-
Fisher transition probabilities by precomputing distributions at just 207 different generations, ranging from one to 20; 000; and
44 mutation rates, with u ¼ 2Nem ranging from zero to 7:53 1022: For ontogenetic processes modeled by a single-generation
bottleneck with subsequent expansion, we precompute allele-frequency transition distributions for 48 bottleneck sizes ranging
from two to 500, linearly interpolating between bottleneck sizes for distributions that are not precomputed.

Rather than use each ð20013 2001Þ transition matrix in its entirety, we combine discrete allele frequencies into 121 bins,
with bins unevenly distributed between zero and one such that low and high frequencies are more represented than in-
termediate frequencies. We bin allele frequencies according to the following scheme: Let P ¼ fPi;jg be a ð200132001Þ allele
frequency transition matrix for a Wright-Fisher model with N ¼ 2000; with Pi;j being the probability of transitioning from
frequency i to j. Let Q ¼ fQk;lg be a ð1213 121Þ binned transition matrix. If ða1; . . . ; amÞ are frequencies in bin k, and
ðb1; . . . ; bnÞ are frequencies associated in bin l, then
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Qk;l ¼

Pn
x¼1Pðmþ1Þ=2;bx m  odd

Pn
x¼1

�1
2
Pm=2;bx þ

1
2
Pm=2þ1;bx

�
m  even:

8><
>:

Appendix C

Calculation of the EBS

We define the effective bottleneck between mother and offspring as the combined genetic drift occurring during the early
oogenic bottleneck, the turnover ofmitochondria in thematernal germlineprior to ovulation, and thefirst fewcell divisions after
fertilization but before gastrulation. We combined the effects of genetic drift during these processes by (1) translating all drift
parameters into units of generations per effective population size (g=Ne; “drift units”), (2) summing the drift in these units, and
(3) translating this summed drift back into units of an instantaneous bottleneck. Since we assumed that bottlenecks occurred
for just a single generation followed by doubling back up to a large population size (here, N ¼ 2000), we determined that the
relationship between drift dg measured in drift units and Nb; an instantaneous bottleneck size, is close to

dg ¼
Xn
i¼0

1
Nb2i

; (C.1)

where n ¼ log2ðN=NbÞ is the number of generations it takes for the population size to double back up to the original population
size.

For Nb � N; this sum is well approximated by the integral

dg �
Z log2ðN=NbÞ

21
2

dt
2tNb

¼ N
ffiffiffi
2

p
2Nb

NNbln2
�

ffiffiffi
2

p

Nbln2
� 2

Nb
: (C.2)

The lower limit of integration follows froman interpretation of (C.1) as amidpoint Riemann sum, improving accuracy. Thus, we
also have

Nb �
2
dg
: (C.3)

For a mother of age a, the EBS is thus

Nbe ¼
2

2
Nb

þ alg þ ds
; (C.4)

where Nb is the early oogenesis bottleneck size, lg is the rate at which genetic drift accumulates in the maternal germline, and
ds is the amount of genetic drift occurring after fertilization but before gastrulation.

We confirmed (C.2) and (C.3) by finding, for different bottleneck sizes Nb; the amount of drift dg that minimized the total
variation distance between the allele frequency transition distributions specified by dg and Nb :

bdgðNbÞ ¼ argmin
dg

1
2

X
i

��pdgðiÞ2 qNbðiÞ
��: (C.5)

Here pdg is the probability transition distribution for drift parameterized by dg drift units, and qNb is the probability transition
distribution for drift parameterized by bottleneck size Nb: Minimizing (C.5) for different values of Nb shows that our approx-
imation (C.2) closely follows the numerically translation minimizing the total variation distance (Figure S5 in File S1).

1274 P. R. Wilton et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/208/3/1261/6066461 by guest on 27 February 2022

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300711/-/DC1/FileS1.pdf



