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ABSTRACT OF THE DISSERTATION

Stability of Current Density Impedance Imaging and Uniqueness for the Inverse
Sturm-Liouville Problem

by

Robert Julius Lopez

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2021

Dr. Amir Moradifam, Chairperson

In a joint effort with my advisor, we study stability of reconstruction in current density

impedance imaging (CDII), that is, the inverse problem of recovering the conductivity of

a body from the measurement of the magnitude of the current density vector field in the

interior of the object. Our results show that CDII is stable with respect to errors in interior

measurements of the current density vector field, and confirm the stability of reconstruction

which was previously observed in numerical simulations, and was long believed to be the

case. Next, we show that CDII is stable with respect to errors in both measurement of the

magnitude of the current density vector field in the interior and the measurement of the

voltage potential on the boundary. This completes the authors study of the global stability of

Current Density Independence Imaging. These results are accomplished through analysis on

a related functional from the so-called least gradient problem as well as geometric arguments

on the level sets of the induced voltage potential function. These geometric arguments are

dependent upon some ad hoc conditions which are shown to be guaranteed by reasonable

sufficient conditions.

Additionally, we study the Inverse Sturm-Liouville problem which is the problem of

reconstructing the coefficient function q from the second order elliptic differential operator

−∇+ q using the boundary spectral data. While there are several results in one dimension
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and higher dimensions using complete spectral data and even finitely many terms omitted,

none have explored results for a subsequence of spectral data. We aim to establish such results

in one dimension and higher dimensions by using the asymptotic behavior of eigenfunctions

on the boundary.
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Chapter 1

Introduction

The aim of this thesis is two study two distinct problems in the field of Inverse Problems.

This field is broadly concerned with determining the causes or conditions that led to certain

effects or results. In partial differential equations this often occurs in the form of determining

the coefficients of a differential operator from knowledge of the solution to a given equation

(likely in tandem with additional information). There are myriad applications using the

principles of inverse problems, many of which have important physical implications. Problems

that arise in medical imaging often take the form of an inverse problem. The process involves

some sort of external probing which results in a quantitative reading on the tissue in question.

The goal is to then interpret this reading to the point where the conditions that caused it

can be determined.

Another point of interest relating to inverse problems is stability. In other words, can

we guarantee the parameters we wish to solve for will be continuous with respect to the

observed quantities? Again, in terms of medical imaging this equates to determining the

effects of “noise” or some sort of disturbance in the data on the resulting image.
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1.1 Electrical Impedance Tomography

The classical Electrical Impedance Tomography (EIT) aims to obtain quantitative information

on the electrical conductivity, σ, of a conductive body from measurements of voltages

and corresponding currents at its boundary. Mathematics of EIT has been extensively

studied, and many interesting results have been obtained about uniqueness, stability and

reconstruction algorithms for this problem. See [4, 5, 6, 9] for excellent reviews of the results.

It is well known that that EIT is severely ill-posed (with respect to initial conditions), and

provides images with very low resolution away from the boundary [13,21].

The method of EIT is based on the Calderón problem which can be stated in the

following way: Suppose σ(x) is the electrical conductivity for each x ∈ Ω where Ω ⊂ Rn is a

bounded, open set with C∞ boundary. Imposing a voltage f ∈ L1(∂Ω) on ∂Ω then induces

a potential u on the interior of Ω which solves the conductivity equation with Dirichlet

boundary condition

∇ · (σ∇u) = 0 in Ω (1.1)

u = f on ∂Ω.

Solving this problem employs the so called Dirichlet to Neumann map defined in the following

way

Λσ(f) = σ
∂u

∂ν

∣∣∣
∂Ω

where ν denotes the outer normal vector to ∂Ω. This is also sometimes also referred to as

the voltage to current map (due to the scenario outlined previously).

In this problem, one assumes knowledge of the Dirichlet to Neumann map and, as a result,

is able to recover the conductivity, σ. However, knowledge of the Dirichlet to Neumann map

would require knowledge of the induced current for every possible voltage f imposed on ∂Ω.

The following method offers an alternative approach to obtaining σ.
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1.2 Current Density Impedance Imaging

A more recent class of Inverse Problems seeks to provide images with high accuracy and by

using data obtained from the interior of the region. Such methods are referred to as Hybrid

Inverse Problems or Coupled-physics methods, as they usually involve the interaction of two

kinds of physical fields. An example of such a problem is the method of Current Density

Impedance Imaging (CDII). This is the inverse problem of recovering the conductivity of

a body from the measurement of the magnitude of the current density vector field in the

interior of the object. Interior measurements of current density is possible by Magnetic

Resonance Imaging (MRI) due to the work of M. Joy and his collaborators [16, 17]. This

problem has been studied in [26,28,30,31,32]. See also [33] for a comprehensive review.

Much like EIT, CDII involves the equation (1.1) and the recovery of σ. In contrast with

EIT, the method of CDII requires a single voltage f to be imposed on ∂Ω and the magnitude

of the induced current (denoted by J) to be known in order to recover σ. Thus, this method

simply requires the knowledge of the pair of measurements (f, |J |) as opposed to knowledge

of the Dirichlet to Neumann map.

While the uniqueness of the reconstruction in CDII is established and a robust recon-

struction algorithm is developed in [27], the global stability of CDII was an open problem

until [19]. In this paper, my advisor and I were able to show a detailed analysis on the

stability of this problem. The stability hinged on few assumptions which fit quite logically

into a physical setting (which will be outlined in chapter 2).

1.3 The Inverse Sturm-Liouville problem

The inverse Sturm-Liouville problem is concerned with recovering the potential function for

a second order equation based on knowledge of the eigenvalues and eigenfunctions of the

second order elliptic operator. The author in [18] outlines that this is indeed possible in the

one dimensional problem beginning with the following equation subject to Robin boundary
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conditions:

y′′ + (λ− P )y = 0

for x ∈ [0, π]. Subject to

y(0) cosα+ y′(0) sinα = 0, y(π) cosβ + y′(π) sinβ = 0

y(0) cosα+ y′(0) sinα = 0, y(π) cos γ + y′(π) sin γ = 0

In the multi-dimensional case the authors in [29] extend this result to a smooth bounded

domain Ω ⊂ Rn for the problem

−∆u+ qu = µu in Ω

u = 0 on ∂Ω.

The arguments in each of these papers do suggest that it may be possible to only consider

partial spectral data. In [14], the author shows that the multi-dimensional results still hold

when lacking finitely many terms from the spectrum of this operator. However, it is also

suggested that one could take this idea further to only consider a subsequence of the spectral

data. This will be further discussed in chapters 4 and 5.
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Chapter 2

Stability of Current Density

Impedance Imaging (CDII)

2.1 Introduction

Let σ be the isotropic conductivity of an object Ω ⊂ Rn, n ≥ 2, where Ω is a bounded open

region in with connected boundary. Suppose J is the current density vector field generated

by imposing a given boundary voltage f on ∂Ω. Then the corresponding voltage potential u

satisfies the second order elliptic equation

∇ · (σ∇u) = 0, u|∂Ω = f. (2.1)

By Ohm’s law J = −σ∇u, and u is the unique minimizer of the weighted least gradient

problem

I(w) = min
w∈BVf (Ω)

∫
Ω
a|∇w|dx, (2.2)

where a = |J |, and BVf (Ω) = {w ∈ BV (Ω), w|∂Ω = f}, see [26,28,30,31,32].

Remark 2.1.1. In general, the least gradient problem (2.2) may not have a minimizer [7, 35].

Throughout the paper we shall assume that (2.2) has a solution. For sufficient conditions

5



for the existence of minimizers of weighted least gradient problems we refer to [8, 15, 25].

Note also that any voltage potential u solving the equation (2.1) is also a minimizer of (2.2).

In particular, if 0 < a(x) ∈ C(Ω) and ∂Ω satisfies a Barrier condition (see Definition 3.1 in

[15]), then for every f ∈ C(∂Ω) the least gradient problem (2.2) has a minimizer in BVf (Ω).

In other words, the set of weights for which the least gradient problem (2.2) has a solution

is open in C(Ω) if ∂Ω satisfies a barrier condition.

Since any stability result trivially implies uniqueness, it is evident that one needs

additional assumptions to prove any stability result. Indeed stability analysis of CDII is a

challenging problem. The first stability result on CDII was proved by Montalto and Stefanov

in [23].

Theorem 2.1.2 ([23]). Let u solve equation (1) and let ũ solve equation (1) for σ̃ with

|∇ũ| > 0 in Ω. For any 0 < α < 1, there exists s > 0 such that if ‖σ‖Hs(Ω) < L for some

L > 0 then there is an ε > 0 such that if

‖σ − σ̃‖C2(Ω) < ε, (2.3)

then

‖σ − σ̃‖L2(Ω) < C‖|J | − |J̃ |‖αL2(Ω)

Later in [22], Montalto and Tamasan proved the following stability result.

Theorem 2.1.3 ([22]). Let σ ∈ C1,α(Ω), 0 < α < 1, be positive in Ω. Let u solve equation

(1) with |∇u| > 0 in Ω. There exists ε > 0 depending on Ω and some C > 0 depending on ε

such that if σ̃ ∈ C1,α(Ω) with ũ solving (1) for σ̃, u = ũ = f on ∂Ω, σ = σ̃ on ∂Ω, and

‖σ − σ̃‖C1,α(Ω) < ε,

then

‖σ − σ̃‖L2(Ω) ≤ C‖∇ · (Π∇u(J − J̃))‖
α

2+α

L2(Ω)
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where Π∇u(J − J̃) is the projection of J − J̃ onto ∇u.

Note that both of the above results assume a priori that σ and σ̃ are close, and a natural

question which remains open is that whether there exists two distant conductivities σ and σ̃

which could induce the corresponding currents J and J̃ with ||J | − |J̃ || arbitrarily small. In

this paper we address the this question and show that the answer is negative, and hence

show that CDII is actually stable. Under some natural assumption, we shall prove that in

dimensions n = 2, 3 the following stability result holds

‖σ − σ̃‖L1(Ω) ≤ C‖|J | − |J̃ |‖
1
4

L∞(Ω), (2.4)

for some constant C independent of σ̃ (see Theorems 2.4.6 and 2.4.7 for precise statements

of the results).

This chapter is organized as follows. In Section 2, under very weak assumptions, we will

prove that the structure of level sets of the least gradient problem (2.2) is stable. In Section

3, we will provide stability results for minimizers of (2.2) in L1. In Section 4, we will prove

stability of minimizers of (2.2) in W 1,1, and shall use them to prove Theorems 2.4.6 and

2.4.7 which are the main results of this paper.

2.2 Stability of level sets

In this section, we show that the structure of the level sets of minimizers of the least gradient

problem (2.2) is stable. Throughout the paper, we will assume that a, ã ∈ C(Ω) with

0 < m ≤ a(x), ã(x) ≤M, ∀x ∈ Ω, (2.5)

for some positive constants m,M . The following theorem which was proved in [25] by the

second author, shall play a crucial role in the proof of the results in this section.

Theorem 2.2.1 ([25]). Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and

assume that a ∈ C(Ω) is a non-negative function, and f ∈ L1(∂Ω). Then there exists a

7



divergence free vector field J ∈ (L∞(Ω))n with |J | ≤ a a.e. in Ω such that every minimizer

w of (2.2) satisfies

J · Dw
|Dw|

= |J | = a, |Dw| − a.e. in Ω, (2.6)

where Dw
|Dw| is the Radon-Nikodym derivative of Dw with respect to |Dw|.

Remark 2.2.2. Throughout chapters 2 and 3 we will assume that ∂Ω is Lipschitz at the very

least (that is to say, the boundary is sufficiently regular).

Lemma 2.2.3. Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (2.2) with the

weights a and ã, respectively. Then

∣∣∣∣∫
Ω
a|Du|dx−

∫
Ω
ã|Dũ|dx

∣∣∣∣ ≤ C‖a− ã‖L∞(Ω), (2.7)

for some constant C = C(m,M,Ω, f) independent of u and ũ.

Proof. First note that in view of (2.5) we have

m

∫
Ω
|Dũ|dx ≤

∫
Ω
ã|Dũ|dx ≤

∫
Ω
ã|Dw|dx ≤M

∫
Ω
|Dw|

for any w ∈ BVf (Ω). Thus
∫

Ω |Dũ| ≤ C, and similarly
∫

Ω |Du| ≤ C for some constant C

which depends only on m,M, and Ω. Hence

max

{∫
Ω
|Dũ|,

∫
Ω
|Du|

}
≤ C, (2.8)

for some C(m,M) independent of ũ and u. Since u, ũ are the minimizers of (2.2) with the

weights a and ã,

∫
Ω
a|Du|dx−

∫
Ω
ã|Du|dx ≤

∫
Ω
a|Du|dx−

∫
Ω
ã|Dũ|dx

≤
∫

Ω
a|Dũ|dx−

∫
Ω
ã|Dũ|dx.
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Thus ∫
Ω

(a− ã)|Du|dx ≤
∫

Ω
a|Du|dx−

∫
Ω
ã|Du|dx ≤

∫
Ω

(a− ã)|Dũ|dx,

and we get

−‖a− ã‖L∞(Ω)‖Du‖L1(Ω) ≤
∫

Ω
a|Du|dx−

∫
Ω
ã|Du|dx

≤ ‖a− ã‖L∞(Ω)‖Dũ‖L1(Ω).

Hence (2.7) follows from (5.4). �

Let νΩ denote the outer unit normal vector to ∂Ω. Then for every T ∈ (L∞(Ω))n with

∇ · T ∈ Ln(Ω) there exists a unique function [T, νΩ] ∈ L∞(∂Ω) such that

∫
∂Ω

[T, νΩ]u dHn−1 =

∫
Ω
u∇ · Tdx+

∫
Ω
T ·Dudx, u ∈ C1(Ω̄). (2.9)

Moreover, for u ∈ BV (Ω) and T ∈ (L∞(Ω))n with ∇ · T ∈ Ln(Ω), the linear functional

u 7→ (T ·Du) gives rise to a Radon measure on Ω, and (2.9) holds for every u ∈ BV (Ω) (see

[1, 3] for a proof). We shall need the weak integration by parts formula (2.9).

Lemma 2.2.4. Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (2.2) with the

weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed

by Theorem 2.2.1. Suppose 0 ≤ σ(x) ≤ σ1 in Ω for some constant σ1 > 0, where σ is the

Radon-Nikodym derivative of |J |dx with respect to |Du| . Then

∫
Ω
|J ||J̃ | − J · J̃dx ≤ C‖a− ã‖L∞(Ω), (2.10)

where C = C(m,M, σ1,Ω, f, u) is a constant independent of ã.
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Proof. We have

∫
Ω
|J ||J̃ | − J · J̃dx =

∫
Ω
σ|J̃ ||Du| − σJ̃ ·Dudx

≤ σ1

∫
Ω
|J̃ ||Du| − J̃ ·Dudx

= σ1

∫
Ω
|J̃ ||Du|dx−

∫
∂Ω
f [J̃ , νΩ]dx

= σ1

∫
Ω
|J̃ ||Du| − J̃ ·Dũdx

= σ1

∫
Ω
|J̃ ||Du| − |J̃ ||Dũ|dx,

where we have used (2.6) and the integration by parts formula (2.9). On the other hand it

follows from lemma 2.2.3 that

σ1

∫
Ω
|J̃ ||Du| − |J̃ ||Dũ|dx = σ1

∫
Ω
|J̃ ||Du| − |J ||Du|+ |J ||Du| − |J̃ ||Dũ|dx

= σ1

(∫
Ω

(a− ã)|Du|dx+

∫
Ω
a|Du| − ã|Dũ|dx

)
≤ σ1(‖Du‖L1(Ω)‖a− ã‖L∞(Ω) + C‖a− ã‖L∞(Ω)),

which yields the desired result. �

Roughly speaking, Lemma 2.2.4 implies that as a→ ã, Du
|Du|(x) becomes parallel to Dũ

|Dũ|(x)

at points where the two gradients do not vanish. We are now ready to prove the main result

of this section.

Theorem 2.2.5. Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (2.2) with the

weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed

by Theorem 2.2.1. Suppose 0 ≤ σ(x) ≤ σ1 in Ω for some constant σ1 > 0, where σ is the

Radon-Nikodym derivative of |J |dx with respect to |Du| . Then

‖J − J̃‖L1(Ω) ≤ C‖a− ã‖
1
2

L∞(Ω), (2.11)

10



where C = C(m,M, σ1,Ω, f, u) is a constant independent of ã.

Proof. We have

(
|J − J̃ |2

) 1
2

=
(
|J |2 + |J̃ |2 − 2J · J̃

) 1
2

=

(∣∣∣|J | − |J̃ |∣∣∣2 + 2(|J ||J̃ | − J · J̃)

) 1
2

≤
∣∣∣|J | − |J̃ |∣∣∣+

(
2(|J ||J̃ | − J · J̃)

) 1
2
.

Hence,

‖J − J̃‖L1(Ω) =

∫
Ω

(∣∣∣|J | − |J̃ |∣∣∣2) 1
2

dx

≤
∫

Ω

∣∣∣|J | − |J̃ |∣∣∣ dx+

∫
Ω

(
2(|J ||J̃ | − J · J̃)

) 1
2
dx

=

∫
Ω
|a− ã|dx+

∫
Ω

(
2(|J ||J̃ | − J · J̃)

) 1
2
dx

≤ |Ω|‖a− ã‖L∞(Ω) + |Ω|
1
2

(∫
Ω

2(|J ||J̃ | − J · J̃)dx

) 1
2

≤ |Ω|‖a− ã‖L∞(Ω) + (2|Ω|)
1
2 (C‖a− ã‖L∞(Ω))

1
2

=

(
|Ω|‖a− ã‖

1
2

L∞(Ω) + (2C|Ω|)
1
2

)
‖a− ã‖

1
2

L∞(Ω),

where we have used the Holder’s inequality and Lemma 2.2.4. �

Remark 2.2.6. In view of Theorem 2.2.1, Du
|Du| and Dũ

|Dũ| are parallel to J and J̃ , respectively.

So Theorem 5.1.3 implies that if ã is close to a, then the structure of level sets of ũ is close

to that of u.

2.3 L1 stability of the minimizers

In this section, we establish stability of minimizers of the least gradient problem (2.2) in L1.

In general, (2.2) does not even have unique minimizers, so in order to prove any stability
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results further assumptions on the weights a, ã, and on the corresponding minimizers are

expected.

Definition 2.3.1. Fix the positive constants σ0, σ1 ∈ R. We say that u ∈ C1(Ω̄) is admissible

if it solves the conductivity equation (2.1) for some σ ∈ C(Ω) with

0 < σ0 < σ ≤ σ1,

and m ≤ |J | = |σ∇u| ≤ M , where m and M are positive constants as in (2.5). We shall

denote the corresponding induced current by J = −σ∇u.

Remark 2.3.2. Let Ω ⊂ Rn with n ≥ 2 be a bounded Lipschitz domain and suppose ∂Ω

satisfies the barrier condition defined in Definition 3.1 in [15]). A. Zuniga proved in [36] that

if 0 < a ∈ C2(Ω), then for any boundary data f ∈ C(∂Ω) the least gradient problem (2.2)

has a minimizer u ∈ C(Ω). If |∇u| > 0 in Ω, then

σ =
a

|∇u|
∈ C(Ω),

and by elliptic regularity u ∈ C1(Ω), and therefore (2.2) has an admissible minimizer. To

guarantee the condition |∇u| > 0 on Ω, in dimension n = 2 it suffices to assume that the

boundary data f ∈ ∂Ω is two-to-one, i.e. f has only two critical points on ∂Ω (see Theorem

1.1 in [2]). In higher dimensions, it is still an open problem to find sufficient conditions

under which |∇u| > 0 on Ω.

We will first prove our results in dimension n = 2 and then extend them to dimensions

n = 3.

Let u ∈ C1(Ω) with |∇u| > 0 in Ω. Then it follows from the regularity result of De

Giorgi (see, e.g, Theorem 4.11 in [8]) that all level sets of u are C1 curves. We will assume

that the length of level sets of u in Ω is uniformly bounded, i.e.

sup
t∈R

∫
{u=t}∩Ω

1dl = LM <∞. (2.12)

12



Theorem 2.3.3. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω = f, and

corresponding current density vector fields J and J̃ , respectively. If u satisfies (2.12), then

‖u− ũ‖L1(Ω) ≤ C ‖ |J | − |J̃ | ‖
1
2

L∞(Ω), (2.13)

for some constant C(m,M, σ0, σ1, f, u, LM ) independent of ũ and σ̃.

Proof. Since u is admissible,

|∇u(x)| = |J(x)|
σ(x)

≥ m

σ1
> 0, ∀x ∈ Ω.

Using the coarea formula we get

m

σ1

∫
Ω
|u− ũ|dx ≤

∫
Ω
|∇u||u− ũ|dx =

∫
R

∫
{u=t}∩Ω

|u− ũ|dldt. (2.14)

Since |∇u| > 0 in Ω, it follows from the regularity result of De Giorgi (Theorem 4.11

in [8]) that all level sets of u are C1 curves. Now let Γt be a connected component of

{x ∈ Ω: u(x) = t} ⊂ Ω, and γ : [0, L] → Γt to be a path parameterized by the arc length

with γ(0) ∈ ∂Ω. Define

h(s) := u(γ(s))− ũ(γ(s)).

Then h(0) = 0. Moreover since ∇u(γ(s)) · γ′(s) = 0 on Γt,

h′(s) = ∇u(γ(s)) · γ′(s)−∇ũ(γ(s)) · γ′(s)

=
(σ
σ̃

(γ(s))∇u(γ(s)−∇ũ(γ(s)
)
· γ′(s).

We can rewrite the above equality as

h′(s) =
J(γ(s))− J̃(γ(s))

σ̃(γ(s))
· γ′(s).

13



Now let x∗t be a point on Γt where the maximum distance between u and ũ along the path

γ occurs, i.e.

|u(x∗t )− ũ(x∗t )| = max
x∈Γt
|u(x)− ũ(x)|.

Then x∗t = γ(s0) for some s0 ∈ [0, L], and

|u(x∗t )− ũ(x∗t )| = |h(s0)| =

∣∣∣∣∣
∫ s0

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ

∣∣∣∣∣
≤

∫ s0

0

1

σ̃(γ(τ))
|J(γ(τ))− J̃(γ(τ))|dτ

≤ 1

σ0

∫ s0

0
|J(γ(τ))− J̃(γ(τ))|dτ.

In particular for every x ∈ Γt

|u(x)− ũ(x)| ≤ |u(x∗t )− ũ(x∗t )| ≤
1

σ0

∫ L

0
|J(γ(τ))− J̃(γ(τ))|dτ,

where L denotes the entire length of Γt. Hence

∫
Γt

|u(x)− ũ(x)|dl ≤ |u(x∗t )− ũ(x∗t )|
∫

Γt

1dl

≤ LM |u(x∗t )− ũ(x∗t )|

≤ LM
σ0

∫ L

0
|J(γ(τ))− J̃(γ(τ))|dτ

=
LM
σ0

∫
Γt

|J − J̃ |dl,

and therefore ∫
{u=t}∩Ω

|u− ũ|dl ≤ LM
σ0

∫
{u=t}∩Ω

|J − J̃ |dl. (2.15)

Thus we have

14



∫
R

∫
{u=t}∩Ω

|u− ũ|dldt ≤ LM
σ0

∫
R

∫
{u=t}

|J − J̃ |dldt

=
LM
σ0

∫
Ω
|∇u||J − J̃ |dx

≤ LM
σ0
‖∇u‖L∞(Ω)

∫
Ω
|J − J̃ |dx

≤ C‖a− ã‖
1
2

L∞(Ω)

C(m,M, σ0, σ1, f, u, LM ) independent of ũ and σ̃, where we have used (2.15) and Theorem

5.1.3. �

Next we generalize Theorem 2.3.3 to dimension n = 3. In order to do this, we need the

following additional assumption on level sets of u.

Definition 2.3.4. Let u ∈ C1(Ω̄) be admissible. We say that level sets of u can be foliated

to one-dimensional curves if for almost every t ∈ range(u), every conected component Γt

of {u = t} (equipped with the metric induced from the Euclidean metric in R3) there exists

a function gt(x) ∈ C1(Γt) such that 0 < cg ≤ |∇gt| ≤ Cg, for some constants cg and Cg

independent of t. Moreover, every connected component of {u = t} ∩ {gt = r} ∩Ω is a C1

curve reaching the boundary ∂Ω for almost every t ∈ range(u) and all r ∈ R. Similar to the

case n = 2, we assume that the length of connected components of {u = t} ∩ {gt = r} ∩ Ω

are uniformly bounded by some constant LM .

Remark 2.3.5. It follows from the regularity result of De Giorgi (see, e.g. Theorem 4.11 in

[8]) that for a function u ∈ BV (Ω), level sets {u = t} is a C1-hypersurface for almost all

t ∈ range(u). Note also that every connected component of {u = t} reaches the boundary

∂Ω (see [26, 28, 30, 31]), for almost every t. Now let Γt be a C1 connected component of

{u = t}. If f has only two critical points (one minimum and one maximum points) on

∂Ω, then Γt is a simply-connected C1 surface reaching the boundary ∂Ω, and hence there

exists a C1 homeomorphism Ft from B(0, 1) ⊂ R2 to the closure of Γt in Ω (see Theorem
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3.7 and Theorem 2.9 in [11]). It is easy to see that the unit ball B(0, 1) can be foliated to

one dimensional curves by level sets of g : B(0, 1)→ R defined by g(x, y) = y. Consequently

Γt can be foliated into one dimensional curves reaching the boundary of ∂Ω by level sets of

gt(X) = g(F−1
t (X)), X ∈ Γt. Note also that since g and F−1

t are both C1, and since Γt is

compact, there exists constant c(t), C(t) > 0 such that

0 < c(t) < |∇gt| < C(t) on Γt. (2.16)

Indeed the above argument shows that (2.16) holds for every connected components of

almost every level sets of a function u ∈ BV (Ω), for some constant c(t), C(t) depending

on t. So in Definition 2.3.4 the only significant assumption is that the constants c(t) and

C(t) are uniformly bounded from below and above by two positive constant cg and Cg. In

particular, if u is a C1 function with |∇u| > 0 in Ω and {x ∈ ∂Ω : f(x) = t} has finitely

many connected components for all t, then it follows from the implicit function theorem that

every level set of u is a C1 surface, and hence existence of cg and Cg follows immediately

from compactness of range(u), and hence level sets of u can be foliated to one-dimensional

curves in the sense of Definition 2.3.4.

Definition 2.3.6. Let t ∈ range(u) and suppose Γit, i ∈ I, are C1 connected components of

{u = t}, where I is countable. In view of Remark 2.3.5, there exists functions git : Γit → R

whose level sets foliate Γit into one dimensional curves in the sense of Definition 2.3.4. We

define gt : {u = t} → R be the function with

gt|Γit = git, i ∈ I. (2.17)

We shall use this notation throughout the paper.

Theorem 2.3.7. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω = f and

corresponding current density vector fields J and J̃ , respectively. Suppose the level sets of u
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can be foliated to one-dimensional curves in the sense of Definition 2.3.4. Then

‖u− ũ‖L1(Ω) ≤ C‖|J | − |J̃ |‖
1
2

L∞(Ω), (2.18)

where C(m,M, σ0, σ1, f, u, LM , cg, Cg) is independent of ũ and σ̃.

Proof. The proof is similar to the proof of Theorem 2.3.3, and we provide the details for

the sake of the reader. Since u is admissible,

m

σ1

∫
Ω
|u− ũ|dx ≤

∫
Ω
|∇u||u− ũ|dx =

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt. (2.19)

The level sets of u can be foliated into one-dimensional curves by level sets of some

function gt in the sense of Definition 2.3.4. Thus

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt =

∫
R

∫
{u=t}∩Ω

|∇gt|
|∇gt|

|u− ũ|dSdt

=

∫
R

∫
R

∫
{u=t}∩{gt=r}∩Ω

1

|∇gt|
|u− ũ|dldrdt

≤ 1

cg

∫
R

∫
R

∫
{u=t}∩{gt=r}∩Ω

|u− ũ|dldrdt.

Similar to the two dimensional case, we parameterize every connected component Γt of

{u = t} ∩ {gt = r} ∩ Ω by arc length, γ : [0, L] → Γt with γ(0) ∈ ∂Ω, and let h(s) =

u(γ(s))− ũ(γ(s)). Let x∗t be the point that maximizes |u− ũ| on Γt and suppose γ(s0) = x∗t

for some s0 ∈ (0, L), where L is the length of Γt. Then by an argument similar to the one in

the proof of Theorem 2.3.3 we get

|u(x∗t )− ũ(x∗t )| ≤
1

σ0

∫ L

0
|J(γ(τ))− J̃(γ(τ))|dτ,

and consequently
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∫
Γt

|u(x)− ũ(x)|dl ≤ LM
σ0

∫
Γt

|J − J̃ |dl.

Hence, ∫
{u=t}∩{gt=r}∩Ω

|u− ũ|dl ≤ LM
σ0

∫
{u=t}∩{gt=r}∩Ω

|J − J̃ |dl. (2.20)

Using this estimate and the coarea formula we have

m

σ1

∫
Ω
|u− ũ|dx ≤

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt

≤ 1

cg

∫
R

∫
R

∫
{u=t}∩{gt=r}∩Ω

|u− ũ|dldrdt

≤ LM
cgσ0

∫
R

∫
R

∫
{u=t}∩{gt=r}∩Ω

|J − J̃ |dldrdt

=
LM
cgσ0

∫
R

∫
{u=t}

|∇gt||J − J̃ |dSdt

≤ LMCg
cgσ0

∫
R

∫
{u=t}

|J − J̃ |dSdt

=
LMCg
cgσ0

∫
Ω
|∇u||J − J̃ |dx

≤ LMCg
cgσ0

‖∇u‖L∞(Ω)

(
C‖|J | − |J̃ |‖

1
2

L∞(Ω)

)
≤ LMCgM

cgσ2
0

(
C‖|J | − |J̃ |‖

1
2

L∞(Ω)

)
,

where we have applied Theorem 5.1.3. �

2.4 W 1,1 stability of the minimizers

In this section, we prove stability of minimizers of (2.2) in W 1,1. As mentioned in previously,

in general (2.2) does not even have unique minimizers, so in order to prove stability results

in W 1,1, it is natural to expect stronger assumptions on on the minimizers.

Lemma 2.4.1. Let n = 2, 3, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω = f ∈

L∞(∂Ω) and corrsponding conductivities σ and σ̃, and current density vector fields J and J̃ ,
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respectively. Suppose σ, σ̃ ∈ C2(Ω̄) with

‖ σ ‖C2(Ω), ‖ σ̃ ‖C2(Ω)≤ σ2 (2.21)

for some σ2 ∈ R. Let

G(x) :=
J̃(x)− J(x)

σ̃(x)
, x ∈ Ω, (2.22)

with G = (G1, G2) for n = 2 and G = (G1, G2, G3) for n = 3. Then

‖∇Gi‖L1(Ω) ≤ C1‖J − J̃‖
1
2

L1(Ω)
, (2.23)

for some constant C1 which depends only on Ω, σ0, σ2 and ‖ f ‖L∞(Ω).

Proof. Since u and ũ satisfy (2.1), it follows from elliptic regularity that

‖ u ‖H3(Ω), ‖ ũ ‖H3(Ω)≤ C1 ‖ f ‖L2(Ω)≤ C1|Ω|
1
2 ‖ f ‖L∞(Ω), (2.24)

for some constant C1 depending only on σ0, σ2, and Ω. Now note that

G(x) = ∇ũ− σ

σ̃
∇u.

Thus it follows from (2.21) and (2.24) that

‖ D2Gi ‖L1(Ω)≤ |Ω|
1
2 ‖ D2Gi ‖L2(Ω)≤ C, 1 ≤ i ≤ n, (2.25)

for some constant C which only depends on σ0, σ2, Ω and ‖ f ‖L∞(Ω). On the other hand it

follows from Gagliardo-Nirenberg interpolation inequality that

‖∇Gi‖L1(Ω) ≤ C2‖D2Gi‖
1
2

L1(Ω)
‖Gi‖

1
2

L1(Ω)
, (2.26)

19



for some C2 which only depends on Ω. Combining (2.25), (2.26), and

‖ Gi ‖L1(Ω)≤
‖ J − J̃ ‖L1(Ω)

σ0
, 1 ≤ i ≤ n,

we arrive at the inequality (2.23). �

Next we prove that u and ũ are close in W 1,1(Ω). In order to do so, we need additional

assumptions on the structure of level sets of u.

Definition 2.4.2. Suppose u is admissible, n = 2, and x ∈ Ω. Pick h ∈ R2 with |h| = 1, and

t ∈ R small enough such that x+ th ∈ Ω. Let Γ and Γt be the level sets of u passing through

x and x+ th, respectively. Parametrize Γ and Γt by the arc length such that γ(0), γt(0) ∈ ∂Ω,

and denote these parametrizations by γ and γt, respectively.

Similarly in dimension n = 3, let u be admissible and suppose level sets of u can be

foliated to one-dimensional curves in the sense of Definition 2.3.4. Pick x ∈ Ω and h ∈ R3

with |h| = 1, and choose t small enough such that x+ th ∈ Ω. Let Γ and Γt be the unique

curves in

{{u = τ} ∩ {gτ = r} τ, r ∈ R}

which pass through x and x + th, respectively, and let γ and γt be the parametrization of

these curves with respect to arc length with γ(0), γt(0) ∈ ∂Ω.

We say that level sets of u are well structured if the following conditions are satisfied

(a) There exists K ≥ 0 such that

∣∣∣∣∣γ
′
t(s)− γ

′
(s)

t

∣∣∣∣∣ ≤ K (2.27)

for every s ∈ [0, L], t ∈ R, x ∈ Ω and h ∈ Sn−1. In particular,

γ
′
t(s)→ γ

′
(s) as t→ 0, (2.28)

where γ′(s) = dγ(s)
ds and γ′t(s) = dγt(s)

ds .
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(b) There exists a bounded function Fx,h(s) = F (x, h; s) ∈ L∞(Ω× Sn−1 × [0, LM ]) such

that

lim
t→0

γt(s)− γ(s)

t
= Fx,h(s) (2.29)

for every s ∈ [0, L], x ∈ Ω and h ∈ Sn−1.

Remark 2.4.3. Let x ∈ Ω, h ∈ R2 with |h| = 1, and t ∈ R be small enough such that

x+ th ∈ Ω. Also, as in Definition 2.4.2, let γ, and γt be the parametrization of the curves

passing through x and x+ th. In view of Remark 2.3.5 we have

γ(s) = Fu(x)(γ̄(s)) and γt(s) = Fu(x+th)(γ̄t(s)), (2.30)

where γ̄(s) and γ̄t(s) are parametrization of two level sets of the function g(x, y) = y =

Πy(F−1(x)) and g(x, y) = y = Πy(F−1(x + th)), respectively. Here Πy is the projection

operator on y-axis, and Fu(x) and Fu(x+th) are C1 diffeomorphisms from B(0, 1) to the

connected components of the level sets of u passing through x and x+ th, respectively. It is

easy to see that γ̄t(s) is continuously differentiable with respect to t, for each fixed s.

Now let Γx0 be the connected component of the level set of u that passes through x0,

and assume that |∇u| > 0 on Ω. Then in a neighborhood of r0 = u(x0) we can find C1

diffeomorphisms Fr so that Fr(y) is continuously differentiable with respect to r, for each

fixed y. Indeed let y ∈ B(0, 1) and consider the gradient flow

ży(q) = ∇u(zy(q)), zy(0) = F0(y), (2.31)

which has a unique solution as long as zy(q) ∈ Ω. Let r ∈ range(u) be and Γr be a connected

component of {u = r}. Define Fr : B(0, 1)→ Γr by

Fr(y) = Fr0(zy(qr)),

21



where qr ∈ R is the unique point where zy(qr) ∈ Γr. Also observe that the set

R = { r ∈ range(u) : F is well defined on {u = r}},

is both open and closed in range(u), and hence R = range(u) and therefore Fr could be

defined globally as above for all r ∈ range(u).

Since u, Fr0 , and zy are all C1, it is easy to see that Fr(y) is continuously differentiable

with respect to r, for each fixed y ∈ B(0, 1). Now notice that the level sets of the function

g(x, y) : B(0, 1)→ R defined by g(x, y) = y are well structured in the sense of Definition 2.4.2.

In view of the above arguments, it follows from the chain rule that γt(s) = Ft(γ̄t(s)), where

γ̄t(s) is a parametrization of the level set g(x, y) = y passing through F−1(x+th), and Ft and

γ̄t are both continuously differentiable with respect to t. Therefore, since (2.27), (2.28), (2.29)

hold for any parametrization of level sets of g(x, y) = y, an application of the chain rule

implies that (2.27), (2.28), (2.29) also hold under the assumptions of Definition (2.4.2). In

particular, if u is a C1 function with |∇u| > 0 in Ω and {x ∈ ∂Ω : f(x) = t} has finitely

many connected components for all t, then level sets of u are well structured in the sense of

Definition 2.4.2.

Theorem 2.4.4. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω =

f, corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (2.21). If u satisfies (2.12), and the level sets

of u are well-structured in the sense of Definition 2.4.2, then

‖∇ũ−∇u‖L1(Ω) ≤ C ‖ |J | − |J̃ | ‖
1
4

L∞(Ω), (2.32)

for some constant C(m,M, σ0, σ1, σ2, u, f, LM ) independent of ũ and σ̃.
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Proof. Fix x ∈ Ω and h ∈ R2 with |h| = 1. Then

L(x, h) := (∇ũ(x)−∇u(x)) · h = lim
t→0

[ũ(x+ th)− u(x+ th)]− [ũ(x)− u(x)]

t
.

First we estimate the above limit. Since all level sets of u reach the boundary ∂Ω, there

exist z, zt ∈ ∂Ω such that

u(x) = u(z) = ũ(z),

u(x+ th) = u(zt) = ũ(zt).

Thus,

[ũ(x+ th)− u(x+ th)]− [ũ(x)− u(x)] = [ũ(x+ th)− ũ(zt)]− [ũ(x)− ũ(z)].

Let γ and γt be the curves passing through x and x+ th, described in Definition 2.4.2

with γ(0) = z and γt(0) = zt. Suppose γ(s0) = x and reparamterize γt so that γt(s0) = x+th.

Then we have

[ũ(x+ th)− ũ(z)]− [ũ(x)− ũ(z)] = [ũ(γt(s0))− ũ(γt(0))]− [ũ(γ(s0))− ũ(γ(0))]

=

∫ s0

0
∇ũ(γt(s)) · γ′t(s)ds−

∫ s0

0
∇ũ(γ(s)) · γ′(s)ds.

Hence

L(x, h) = lim
t→0

1

t

(∫ s0

0
∇ũ(γt(s)) · γ′t(s)ds−

∫ s0

0
∇ũ(γ(s)) · γ′(s)ds

)
.

Substituting ∇ũ by J̃
σ̃ and using the fact that J is perpendicular to γ′ and γ′t we get

L(x, h) = lim
t→0

1

t

(∫ s0

0

J̃(γt(s))− J(γt(s))

σ̃(γt(s))
· γ′t(s)ds−

∫ s0

0

J̃(γ(s))− J(γ(s))

σ̃(γ(s))
· γ′(s)ds

)
.

Now define

G(x) :=
J̃(x)− J(x)

σ̃(x)
, x ∈ Ω.
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Hence

L(x, h) = lim
t→0

1

t

(∫ s0

0
G(γt(s)) · γ′t(s)ds−

∫ s0

0
G(γ(s)) · γ′(s)ds

)
.

The expression in the right hand side can be rewritten as

1

t

∫ s0

0
[G(γt(s))−G(γ(s))] · γ′t(s)ds+

1

t

∫ s0

0
G(γ(s)) · [γ′t(s)− γ′(s)]ds. (2.33)

It follows from the assumption (a) in Definition 2.4.2 that

∣∣∣∣γ′t(s)− γ′(s)t

∣∣∣∣ ≤ K,
and hence

∣∣∣∣1t
∫ s0

0
G(γ(s)) · [γ′t(s)− γ′(s)]ds

∣∣∣∣ ≤ K

σ0

∫ L

0
|J̃(γ(s))− J(γ(s))|ds. (2.34)

Now we turn our attention to the first term in (2.33). Let G = (G1, G2). Since

lim
t→0

γt(s)− γ(s)

t
= Fx,h(s)

for i = 1, 2 we have

lim
t→0

Gi(γt(s))−Gi(γ(s))

t
= lim

t→0

Gi(γ(s) + tF (s))−Gi(γ(s))

t

= ∇Gi(γ(s)) · F (s).
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Thus the first term of (2.33) can be rewritten as

lim
t→0

1

t

∫ s0

0
[G(γt(s))−G(γ(s))] · γ′t(s)dl

=

∫ s0

0
(∇G1(γ(s)) · F (s),∇G2(γ(s)) · F (s)) · γ′(s)dl

≤‖ F ‖L∞
∫ s0

0
|∇G1(γ(s))|+ |∇G2(γ(s))|dl

≤‖ F ‖L∞
∫ L

0
|∇G1(γ(s))|+ |∇G2(γ(s))|dl, (2.35)

where we have used the assumption (b) in Definition 2.4.2. Combining (2.34) and (2.35) we

obtain

|∇ũ(x)−∇u(x)| ≤ sup
h∈R2,|h|=1

L(x, h)

≤ K

σ0

∫ L

0
|J̃(γ(s))− J(γ(s))|dl

+ ‖ F ‖L∞
∫ L

0
|∇G1(γ(s))|+ |∇G2(γ(s))|dl.

Thus,

∫
Γ
|∇ũ(x)−∇u(x)|dl ≤ KLM

σ0

∫
Γ
|J̃(x)− J(x)|dl

+LM ‖ F ‖L∞
∫

Γ
|∇G1(x)|+ |∇G2(x)|dl,

and consequently

∫
{u=τ}∩Ω

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
{u=τ}∩Ω

|J̃(x)− J(x)|dl (2.36)

+LM ‖ F ‖L∞
∫
{u=τ}∩Ω

|∇G1(x)|+ |∇G2(x)|dl.

25



Using (2.36) and the coarea formula we have

m

σ1
‖∇ũ−∇u‖L1(Ω) ≤

∫
Ω
|∇u||∇ũ−∇u|dx

=

∫
R

∫
{u=τ}∩Ω

|∇ũ−∇u|dldτ

≤ KLM
σ0

∫
R

∫
{u=τ}∩Ω

|J̃ − J |dldτ

+ LM ‖ F ‖L∞
∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|dldτ

≤ KLMM

(σ0)2

∫
R

∫
{u=τ}∩Ω

|J̃ − J |
|∇u|

dldτ

+
LM ‖ F ‖L∞ M

σ0

∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|
|∇u|

dldτ

=
KLMM

(σ0)2

∫
Ω
|J̃ − J |dx

+
LM ‖ F ‖L∞ M

σ0

∫
Ω
|∇G1|+ |∇G2|dx

≤ KLMM

(σ0)2
‖ J − J̃ ‖L1(Ω)

+
2LMC1 ‖ F ‖L∞ M

σ0
‖ J − J̃ ‖

1
2

L1(Ω)

where we have used (2.4.1) to obtain the last inequality. Applying Theorem 5.1.3, and noting

that

‖ J − J̃ ‖
1
2

L1(Ω)
≤ 2M,

where M is defined in (2.5), we arrive at (2.32). �

Now we prove three dimensional version of this theorem.

Theorem 2.4.5. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω =

f, corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (2.21). In addition suppose u satisfies (2.12),

the level sets of u can be foliated to one-dimensional curves in the sense of Definition 3.4,

and the level sets of u are well-structured in the sense of Definition 4.2. Then
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‖∇ũ−∇u‖L1(Ω) ≤ C‖a− ã‖
1
4

L∞(Ω), (2.37)

for some constant C(m,M, σ0, σ1, σ2, u, f, LM , cg, Cg) is independent of ũ and σ̃.

Proof. With an argument similar to the one used in the proof of Theorem 2.4.4 we get

∫
Uτ,r

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
Uτ,r

|J̃(x)− J(x)|dl (2.38)

+LM ‖ F ‖L∞
∫
Uτ,r

|∇G1(x)|+ |∇G1(x)|+ |∇G3(x)|dl,

where Uτ,r := {u = τ} ∩ {gτ = r} ∩ Ω and G = (G1, G2, G3) is defined in (3.16).

It follows follows from (2.38) and the coarea formula that

m

σ1
‖∇ũ−∇u‖L1(Ω) ≤

∫
Ω
|∇u||∇ũ−∇u|dx

=

∫
R

∫
{u=τ}∩Ω

|∇ũ−∇u|dSdτ

=

∫
R

∫
{u=τ}∩Ω

|∇gτ |
|∇gτ |

|∇ũ−∇u|dSdτ

=

∫
R

∫
R

∫
Uτ,r

1

|∇gτ |
|∇ũ−∇u|dldrdτ

≤ KLM
σ0cg

∫
R

∫
R

∫
Uτ,r

|J̃ − J |dldrdt

+
LM ‖ F ‖L∞

cg

∫
R

∫
R

∫
Uτ,r

|∇G1|+ |∇G2|+ |∇G3|dldrdt

≤ KLMMCg
(σ0)2cg

∫
R

∫
R

∫
Uτ,r

|J̃ − J |
|∇u||∇gτ |

dldrdt

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
R

∫
R

∫
Uτ,r

|∇G1|+ |∇G2|+ |∇G3|
|∇u||∇gt|

dldrdt
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=
KLMMCg

(σ0)2cg

∫
R

∫
{u=τ}∩Ω

|J̃ − J |
|∇u|

dSdt

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|+ |∇G3|
|∇u|

dSdt

=
KLMMCg

(σ0)2cg

∫
Ω
|J̃ − J |dx

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
Ω
|∇G1|+ |∇G2|+ |∇G3|dx

≤ KLMMCg
(σ0)2cg

‖ J − J̃ ‖L1(Ω)

+
3LMC1M ‖ F ‖L∞(Ω) Cg

σ0cg
‖ J − J̃ ‖

1
2

L1(Ω)
,

where we have used (2.4.1) to obtain the last inequality. Applying Theorem 5.1.3, and noting

that

‖ J − J̃ ‖
1
2

L1(Ω)
≤ 2M,

we obtain the inequality (2.32). �

Now, we are ready to prove our main stability results.

Theorem 2.4.6. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω =

f, corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (2.21). If u satisfies (2.12) and level sets of

u are well-structured in the sense of Definition 2.4.2, then

‖σ − σ̃‖L1(Ω) ≤ C ‖ |J | − |J̃ | ‖
1
4

L∞(Ω),

for some constant C(m,M, σ0, σ1, σ2, σ, f, LM ) independent of σ̃.
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Proof. Using Theorem 2.4.4 we have

∫
Ω
|σ − σ̃|dx =

∫
Ω

∣∣∣∣∣ |J |(|∇ũ| − |∇u|)|∇u||∇ũ|
+
|J | − |J̃ |
|∇ũ|

∣∣∣∣∣ dx
≤

∫
Ω

|J |
|∇u||∇ũ|

||∇u| − |∇ũ|| dx+

∫
Ω

1

|∇ũ|

∣∣∣|J | − |J̃ |∣∣∣ dx
≤

∫
Ω

|J |
|∇u||∇ũ|

|∇u−∇ũ|dx+

∫
Ω

1

|∇ũ|

∣∣∣|J | − |J̃ |∣∣∣ dx
≤ Mσ2

1C

m2
‖ |J | − |J̃ | ‖

1
4

L∞(Ω) +
σ1|Ω|
m
‖ |J | − |J̃ | ‖L∞(Ω)

≤

[
Mσ2

1C

m2
+
σ1|Ω|(2M)

3
4

m

]
‖ |J | − |J̃ | ‖

1
4

L∞(Ω) .

�

Theorem 2.4.7. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = ũ|∂Ω =

f, corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (2.21). If u satisfies (2.12), the level sets of

u can be foliated to one-dimensional curves in the sense of Definition 2.3.4, and the level

sets of u are well-structured in the sense of Definition 2.4.2, then

‖σ − σ̃‖L1(Ω) ≤ C‖|J | − |J̃ |‖
1
4

L∞(Ω), (2.39)

for some constant C(m,M, σ0, σ1, σ2, σ, f, LM , cg, Cg) independent of σ̃.

Proof. The proof follows from Theorem 2.4.5 and a calculation similar to that of the proof

of Theorem 2.4.6. �
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Chapter 3

Stability of CDII with Boundary

Errors

3.1 Introduction

A natural question which remains open is how the presence of errors in measurements of

the boundary voltage f together with errors in measurements of |J | affect reconstruction of

the conductivity σ in the interior? That is to say, if we consider the pair of interior and

boundary measurements (f, |J |) and (f̃ , |J̃ |) will the resulting σ and σ̃ be close in some

sense? In this Chapter, I will discuss the extension of the CDII problem outlined in the

previous chapter to the inclusion of boundary errors, which is covered in the work done in

[20]. The original setup will largely be the same, however we generalize our approach in [19]

to prove that in dimensions n = 2, 3 the following stability result holds

‖σ − σ̃‖L1(Ω) ≤ C1‖|J | − |J̃ |‖
1
4

L∞(Ω) + C2‖f − f̃‖
1
4

W 1,∞(Ω)
,

for some constants C1, C2 independent of σ̃ (see Theorems 3.4.4 and 3.4.5 for precise

statements of the results). The proofs are generalizations of the arguments developed in [19].
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This chapter is organized similarly to the previous. First, under very weak assumptions,

we will prove that the structure of level sets of the least gradient problem (2.2) is stable

under these new initial conditions. Next, we will provide stability results for minimizers

of (2.2) in L1. Finally, we will prove stability of minimizers of (2.2) in W 1,1, and shall use

them to prove Theorems 3.4.4 and 3.4.5 which are the main results of this chapter.

3.2 Stability of level sets

In this section, we show that the structure of the level sets of minimizers of the least gradient

problem (2.2) is stable. Throughout the chapter, we will assume that a, ã ∈ C(Ω) and

f, f̃ ∈ L∞(∂Ω) with

0 < m ≤ a(x), ã(x) ≤M ∀x ∈ Ω and |f(y)|, |f̃(y)| ≤M ∀y ∈ ∂Ω (3.1)

for some positive constants m,M .

Lemma 3.2.1. Let f , f̃ ∈ L1(∂Ω). Suppose u solves (2.1) for u|∂Ω = f , and ũ solves (2.1)

for ũ|∂Ω = f̃ . Then there exists C(m,M,Ω, f) > 0 such that

max

{∫
Ω
|Dũ|,

∫
Ω
|Du|

}
≤ C. (3.2)

Proof. Fix w ∈ BVf (Ω) and let w̃ ∈ BVf̃ (Ω). Then in view of (3.1) we have

m

∫
Ω
|Dũ|dx ≤

∫
Ω
ã|Dũ|dx ≤

∫
Ω
ã|Dw̃|dx ≤M

∫
Ω
|Dw̃|

≤ M

∫
Ω
|Dw|+M

∫
Ω
|D(w − w̃)|

≤ M

∫
Ω
|Dw|+MC1||f − f̃ ||L1(∂Ω)

≤ M

∫
Ω
|Dw|+M2C1|Ω| =: C(m.M,Ω, f),
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where we have used Theorem 2.16 in [8] to get the fifth inequality above. Similarly we can

establish an analogous estimate for u and show that
∫

Ω |Du| ≤ C, where C is the constant

appearing in the above estimates. Hence

max

{∫
Ω
|Dũ|,

∫
Ω
|Du|

}
≤ C,

for some C(m,M,Ω, f) independent of ũ, u, and f̃ . �

Lemma 3.2.2. Let f, f̃ ∈ L1(∂Ω), and assume u and ũ are the corresponding minimizers

of (2.2) with the weights a and ã, respectively. Then

∣∣∣∣∫
Ω
a|Du|dx−

∫
Ω
ã|Dũ|dx

∣∣∣∣ ≤ C1‖a− ã‖L∞(Ω) + C2‖f − f̃‖L1(∂Ω), (3.3)

for some constants Ci = C(m,M,Ω, f) independent of u, ũ, and f̃ .

Proof. Let w ∈ BV (Ω) such that w|∂Ω = f − f̃ . Suppose u, ũ are the minimizers of (2.2)

with the weights a and ã and boundary data f and f̃ , respectively. Note:

u− w ∈ BVf̃ (Ω), ũ+ w ∈ BVf (Ω)

We have

∫
Ω
a|Du|dx−

∫
Ω
ã|Dũ|dx =

∫
Ω

(a− ã)(|Du|+ |Dũ|)dx+

∫
Ω
ã|Du| − a|Dũ|dx (3.4)

Hence,

∫
Ω
a|Du|dx−

∫
Ω
ã|Dũ|dx ≤

(
‖Du‖L1(Ω) + ‖Dũ‖L1(Ω)

)
‖a− ã‖L∞(Ω) +

∫
Ω
ã|Du| − a|Dũ|dx

≤ 2C‖a− ã‖L∞(Ω) +

∫
Ω
ã|Du| − a|Dũ|dx
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Where we have applied Lemma 3.2.2 to the first term. Focusing on the second term, we have

∫
Ω
ã|Du| − a|Dũ|dx =

∫
Ω
ã|Du| − a|D(ũ+ w)−Dw|dx

≤
∫

Ω
ã|Du| − a|D(ũ+ w)|+ a|Dw|dx

≤
∫

Ω
ã|Du| − a|Du|+ a|Dw|dx

≤ ‖Du‖L1(Ω)‖a− ã‖L∞(Ω) +M

∫
Ω
|Dw|dx

This comes from the triangle inequality and the fact that u is a minimizer for (2.2) on

BVf (Ω). Now, by invoking the extension Theorem 2.16 in [8] we get:

‖Dw‖L1(Ω) ≤ C ′‖f − f̃‖L1(∂Ω) (3.5)

and subsequently

∫
Ω
a|Du|dx−

∫
Ω
ã|Dũ|dx ≤ 2C‖a− ã‖L∞(Ω) +MC ′‖f − f̃‖L1(∂Ω) (3.6)

Similarly, we can prove

∫
Ω
ã|Dũ|dx−

∫
Ω
a|Du|dx ≤ 2C‖a− ã‖L∞(Ω) +MC ′‖f − f̃‖L1(∂Ω),

and hence (3.3) follows. �

For the following, we will again need the weak integration by parts formula (2.9) (as outlined

in Chapter 2).

Lemma 3.2.3. Let f, f̃ ∈ L1(∂Ω), and assume u and ũ are minimizers of (2.2) with the

weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed

by Theorem 2.2.1. Suppose 0 ≤ σ(x) ≤ σ1 in Ω for some constant σ1 > 0, where σ is the
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Radon-Nikodym derivative of |J |dx with respect to |Du| . Then

∫
Ω
|J ||J̃ | − J · J̃dx ≤ C1‖a− ã‖L∞(Ω) + C2‖f − f̃‖L1(∂Ω), (3.7)

where Ci = C(m,M, σ1,Ω, f, u) is a constant independent of ã and f̃ .

Proof. We have

∫
Ω
|J ||J̃ | − J · J̃dx =

∫
Ω
σ|J̃ ||Du| − σJ̃ ·Dudx

≤ σ1

∫
Ω
|J̃ ||Du| − J̃ ·Dudx

= σ1

(∫
Ω
|J̃ ||Du|dx−

∫
∂Ω
f [J̃ , νΩ]dx

)
= σ1

(∫
Ω
|J̃ ||Du|dx+

∫
∂Ω

(f̃ − f)[J̃ , νΩ]dx−
∫
∂Ω
f̃ [J̃ , νΩ]dx

)
≤ σ1

(∫
Ω
|J̃ ||Du| − J̃ ·Dũdx+ ‖[J̃ , νΩ]‖L∞(∂Ω)‖f − f̃‖L1(∂Ω)

)
≤ σ1

(∫
Ω
|J̃ ||Du| − |J̃ ||Dũ|dx+ ‖ã‖L∞(Ω)‖f − f̃‖L1(∂Ω)

)
≤ σ1

(∫
Ω
|J̃ ||Du| − |J̃ ||Dũ|dx+M‖f − f̃‖L1(∂Ω)

)

where we have used the integration by parts formula (2.9) to get the second inequality above.

On the other hand, it follows from Lemma 3.2.2 that

σ1

∫
Ω
|J̃ ||Du| − |J̃ ||Dũ|dx = σ1

∫
Ω
|J̃ ||Du| − |J ||Du|+ |J ||Du| − |J̃ ||Dũ|dx

= σ1

(∫
Ω

(a− ã)|Du|dx+

∫
Ω
a|Du| − ã|Dũ|dx

)
≤ σ1‖Du‖L1(Ω)‖a− ã‖L∞(Ω)

+ σ1C1‖a− ã‖L∞(Ω) + σ1C2‖f − f̃‖L1(∂Ω).
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Hence,

∫
Ω
|J ||J̃ | − J · J̃dx ≤ σ1

(
‖Du‖L1(Ω) + C1

)
‖a− ã‖L∞(Ω)

+ σ1 (M + C2) ‖f − f̃‖L1(∂Ω),

which yields the desired result. �

Roughly speaking, Lemma 3.2.3 implies that as a→ ã and f → f̃ , Du
|Du|(x) becomes parallel

to Dũ
|Dũ|(x) at points where the two gradients do not vanish. We are now ready to prove the

main result of this section.

Theorem 3.2.4. Let f, f̃ ∈ L1(∂Ω), and assume u and ũ are minimizers of (2.2) with the

weights a and ã and boundary data f and f̃ , respectively. Let J and J̃ be the divergence free

vector fields guaranteed by Theorem 2.2.1. Suppose 0 ≤ σ(x) ≤ σ1 in Ω for some constant

σ1 > 0, where σ is the Radon-Nikodym derivative of |J |dx with respect to |Du| . Then

‖J − J̃‖L1(Ω) ≤ C1‖a− ã‖
1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L1(∂Ω)
, (3.8)

where Ci = C(m,M, σ1,Ω, f, u) is a constant independent of ã and f̃ .
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Proof. The second line following from the argument outlined in the beginning of Theorem

2.5 in [19] we have:

‖J − J̃‖L1(Ω) =

∫
Ω

(
|J − J̃ |2

) 1
2
dx

≤
∫

Ω

∣∣∣|J | − |J̃ |∣∣∣ dx+

∫
Ω

(
2(|J ||J̃ | − J · J̃)

) 1
2
dx

=

∫
Ω
|a− ã|dx+

∫
Ω

(
2(|J ||J̃ | − J · J̃)

) 1
2
dx

≤ |Ω|‖a− ã‖L∞(Ω) + |Ω|
1
2

(∫
Ω

2(|J ||J̃ | − J · J̃)dx

) 1
2

≤ |Ω|‖a− ã‖L∞(Ω) + (2|Ω|)
1
2

[
C1‖a− ã‖L∞(Ω) + C2‖f − f̃‖L∞(∂Ω)

] 1
2

≤ |Ω|‖a− ã‖L∞(Ω)

+ (2|Ω|)
1
2

[
(C1‖a− ã‖L∞(Ω))

1
2 + (C2‖f − f̃‖L1(∂Ω))

1
2

]
≤
[
|Ω|(2M)

1
2 + (2C1|Ω|)

1
2

]
‖a− ã‖

1
2

L∞(Ω)

+ [2C2|Ω|]
1
2 ‖f − f̃‖

1
2

L1(∂Ω)
,

where we have used the Holder’s inequality and Lemma 3.2.3. �

Remark 3.2.5. In view of Theorem 2.2.1, Du
|Du| and Dũ

|Dũ| are parallel to J and J̃ , respectively.

So Theorem 3.2.4 implies that if ã is close to a and f̃ is close to f , then the structure of

level sets of ũ is close to that of u.

3.3 L1 stability of the minimizers

In this section, we establish stability of minimizers of the least gradient problem (2.2) in L1

with respect to our new initial conditions. Yet again, in order to prove any stability results

further assumptions on the weights a, ã as well as the corresponding minimizers are expected.

Similarly to the previous chapter, we will need to make use of the admissibility condition

(Definition 2.3.1) as well as the foliation condition outlined in (2.12) for dimension n = 2.
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Theorem 3.3.1. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = f , ũ|∂Ω = f̃ ,

and corresponding current density vector fields J and J̃ , respectively. If u satisfies (2.12),

then

‖u− ũ‖L1(Ω) ≤ C1‖|J | − |J̃ |‖
1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L∞(∂Ω), (3.9)

for some constants Ci(m,M, σ0, σ1, f, u, LM ) independent of ũ, σ̃, and f̃ .

Proof. Since u is admissible,

|∇u(x)| = |J(x)|
σ(x)

≥ m

σ1
> 0, ∀x ∈ Ω.

Using the coarea formula we get

m

σ1

∫
Ω
|u− ũ|dx ≤

∫
Ω
|∇u||u− ũ|dx =

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt. (3.10)

Since |∇u| > 0 in Ω, it follows from the regularity result of De Giorgi (Theorem 4.11

in [8]) that all level sets of u are C1 curves. Now let Γt be a connected component of

{x ∈ Ω: u(x) = t} ⊂ Ω, and γ : [0, L]→ Γt to be a path parametrized by the arc length with

γ(0) ∈ ∂Ω. We will henceforth denote γ(0) by x0
t . Define

h(s) := u(γ(s))− ũ(γ(s)).

Since ∇u(γ(s)) · γ′(s) = 0 on Γt, we have

h′(s) = ∇u(γ(s)) · γ′(s)−∇ũ(γ(s)) · γ′(s)

=
(σ
σ̃

(γ(s))∇u(γ(s))−∇ũ(γ(s))
)
· γ′(s).

We can rewrite the above equality as

h′(s) =
J(γ(s))− J̃(γ(s))

σ̃(γ(s))
· γ′(s).
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Note that

h(0) = u(γ(0))− ũ(γ(0)) = f(x0
t )− f̃(x0

t ).

Consequently, we have that

h(s)− h(0) =

∫ s

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ

and, moreover,

h(s) =

∫ s

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ + f(x0

t )− f̃(x0
t ).

Now let x∗t be a point on Γt where the maximum distance between u and ũ along the

path γ occurs, i.e.

|u(x∗t )− ũ(x∗t )| = max
x∈Γt
|u(x)− ũ(x)|.

Then x∗t = γ(s0) for some s0 ∈ [0, L], and

|u(x∗t )− ũ(x∗t )| = |h(s0)| =

∣∣∣∣∣
∫ s0

0

J(γ(τ))− J̃(γ(τ))

σ̃(γ(τ))
· γ′(τ)dτ + f(x0

t )− f̃(x0
t )

∣∣∣∣∣
≤

∫ s0

0

1

σ̃(γ(τ))
|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0

t )− f̃(x0
t )|

≤ 1

σ0

∫ s0

0
|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0

t )− f̃(x0
t )|.

In particular, for every x ∈ Γt

|u(x)− ũ(x)| ≤ |u(x∗t )− ũ(x∗t )| ≤
1

σ0

∫ L

0
|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0

t )− f̃(x0
t )|,
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where L denotes the entire length of Γt. Hence

∫
Γt

|u(x)− ũ(x)|dl ≤ |u(x∗t )− ũ(x∗t )|
∫

Γt

1dl

≤ LM |u(x∗t )− ũ(x∗t )|

≤ LM
σ0

∫ L

0
|J(γ(τ))− J̃(γ(τ))|dτ + LM |f(x0

t )− f̃(x0
t )|

=
LM
σ0

∫
Γt

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|,

and therefore

∫
{u=t}∩Ω

|u− ũ|dl ≤ LM
σ0

∫
{u=t}∩Ω

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|. (3.11)

Since u ∈ C(Ω) solves (2.1), by maximum and minimum principles for solutions to elliptic

equations,

max
Ω

u = max
∂Ω

f := Cf

min
Ω
u = min

∂Ω
f := cf

and hence cf ≤ u ≤ Cf , with −M ≤ cf , Cf ≤M . Thus we have
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∫
R

∫
{u=t}∩Ω

|u− ũ|dldt =

∫ Cf

cf

∫
{u=t}∩Ω

|u− ũ|dldt

≤ LM
∫ Cf

cf

(∫
{u=t}∩Ω

1

σ0
|J − J̃ |dl + LM |f(x0

t )− f̃(x0
t )|

)
dt

≤ LM
σ0

∫ Cf

cf

∫
{u=t}∩Ω

|J − J̃ |dldt+ LM‖f − f̃‖L∞(∂Ω)

∫ Cf

cf

dt

=
LM
σ0

∫
Ω
|∇u||J − J̃ |dx+ LM (Cf − cf )‖f − f̃‖L∞(∂Ω)

≤ LM
σ0
‖∇u‖L∞(Ω)

∫
Ω
|J − J̃ |dx+ LM (Cf − cf )‖f − f̃‖L∞(∂Ω)

≤ LM
σ0
‖∇u‖L∞(Ω)

[
C1‖a− ã‖

1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L1(∂Ω)

]
+ LM (Cf − cf )‖f − f̃‖L∞(∂Ω)

≤ LMMC1

σ2
0

‖a− ã‖
1
2

L∞(Ω)

+

[
LMMC2

σ2
0

|∂Ω|
1
2 + LM (Cf − cf )(2M)

1
2

]
‖f − f̃‖

1
2

L∞(∂Ω),

where we have used (3.11) and Theorem 3.2.4. Hence, (3.9) follows.

Note that Ci(m,M, σ0, σ1, f, u, LM ) are independent of ũ, σ̃, and f̃ . �

Next we generalize Theorem 3.3.1 to dimension n = 3. In order to do this, we need the

additional assumptions on level sets of u that were outlined in the previous chapter (see

Definition 2.3.4 as well as Remark 2.3.5).

Theorem 3.3.2. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = f , ũ|∂Ω = f̃

and corresponding current density vector fields J and J̃ , respectively. Suppose the level sets

of u can be foliated to one-dimensional curves in the sense of Definition 2.3.4. Then

‖u− ũ‖L1(Ω) ≤ C1‖a− ã‖
1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L∞(∂Ω), (3.12)

where C(m,M, σ0, σ1, f, u, LM , cg, Cg, g) is independent of ũ, σ̃, and f̃ .
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Proof. The proof is similar to the proof of Theorem 3.3.1, and we provide the details for

the sake of the reader. Since u is admissible,

m

σ1

∫
Ω
|u− ũ|dx ≤

∫
Ω
|∇u||u− ũ|dx =

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt. (3.13)

The level sets of u can be foliated into one-dimensional curves by level sets of some

function g in the sense of Definition 2.3.4. Thus

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt =

∫
R

∫
{u=t}∩Ω

|∇gt|
|∇gt|

|u− ũ|dSdt

=

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

1

|∇gt|
|u− ũ|dldrdt

≤ 1

cg

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

|u− ũ|dldrdt.

Similar to the two dimensional case, we parameterize every connected component Γt of

{u = t} ∩ {g = r} ∩ Ω by arc length, γ : [0, L] → Γt with γ(0) = x0
t ∈ ∂Ω, and let

h(s) = u(γ(s)) − ũ(γ(s)). Let x∗t be the point that maximizes |u − ũ| on Γt and suppose

γ(s0) = x∗t for some s0 ∈ (0, L), where L is the length of Γt. Then by an argument similar

to the one in the proof of Theorem 3.3.1 we get

|u(x∗t )− ũ(x∗t )| ≤
1

σ0

∫ L

0
|J(γ(τ))− J̃(γ(τ))|dτ + |f(x0

t )− f̃(x0
t )|,

and consequently

∫
Γt

|u(x)− ũ(x)|dl ≤ LM
σ0

∫
Γt

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|.

Hence,

∫
{u=t}∩{g=r}∩Ω

|u− ũ|dl ≤ LM
σ0

∫
{u=t}∩{g=r}∩Ω

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|. (3.14)
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Using this estimate and the coarea formula we have

m

σ1

∫
Ω
|u− ũ|dx ≤

∫
R

∫
{u=t}∩Ω

|u− ũ|dSdt

≤ 1

cg

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

|u− ũ|dldrdt

≤ 1

cg

∫
R

∫
R

(
LM
σ0

∫
{u=t}∩{g=r}∩Ω

|J − J̃ |dl + LM |f(x0
t )− f̃(x0

t )|

)
drdt

=
LM
cgσ0

∫
R

∫
R

∫
{u=t}∩{g=r}∩Ω

|J − J̃ |dldrdt

+
LM
cg

∫ max
∂Ω

f

min
∂Ω

f

∫ max
Ω

g

min
Ω

g
|f(x0

t )− f̃(x0
t )|drdt

≤ LMCg
cgσ0

∫
R

∫
{u=t}∩Ω

|∇gt||J − J̃ |dSdt

+
2MLM
cg

(2‖g‖L∞(Ω))‖f − f̃‖L∞(∂Ω)

=
LMCg
cgσ0

∫
Ω
|∇u||J − J̃ |dx+

4MLM‖g‖L∞(Ω)

cg
‖f − f̃‖L∞(∂Ω)

≤ LMCg
cgσ0

‖∇u‖L∞(Ω)

(
C1‖|J | − |J̃ |‖

1
2

L∞(Ω) + C2‖f − f̃‖
1
2

L∞(∂Ω)

)
+

4MLM‖g‖L∞(Ω)

cg
‖f − f̃‖L∞(∂Ω)

≤ LMCgMC1

cgσ2
0

‖|J | − |J̃ |‖
1
2

L∞(Ω)

+

[
LMCgC2

cgσ0
+

4MLM‖g‖L∞(Ω)

cg
(2M |Ω|)

1
2

]
‖f − f̃‖

1
2

L∞(∂Ω),

where we have applied Theorem 3.2.4. �

3.4 W 1,1 stability of the minimizers

In this section, we prove stability of minimizers of (2.2) in W 1,1. As mentioned in Section

previously, in general, (2.2) does not even have unique minimizers. Additionally, we have

introduced a new source of error in this chapter. Consequently, in order to prove stability

results in W 1,1, it is natural to expect stronger assumptions on the minimizers.
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Lemma 3.4.1. Let n = 2, 3, and suppose u and ũ are admissible with u|∂Ω = f, ũ|∂Ω = f̃

the respective traces of functions f, f̃ ∈ H3(Ω) and corresponding conductivities σ and σ̃,

and current density vector fields J and J̃ , respectively. Suppose σ, σ̃ ∈ C2(Ω̄) with

‖ σ ‖C2(Ω), ‖ σ̃ ‖C2(Ω)≤ σ2 (3.15)

for some σ2 ∈ R. Let

G(x) :=
J̃(x)− J(x)

σ̃(x)
, x ∈ Ω, (3.16)

with G = (G1, G2) for n = 2 and G = (G1, G2, G3) for n = 3. Then

‖∇Gi‖L1(Ω) ≤ C1‖J − J̃‖
1
2

L1(Ω)
, (3.17)

for some constant C1 which depends only on Ω, σ0, σ2 and ‖ f ‖L∞(Ω).

Proof. The proof is similar to that of Lemma 2.4.1 in Chapter 2 and we omit it. �

Next we prove that u and ũ are close in W 1,1(Ω) under these initial conditions. In order to

do so, we need additional assumptions on the structure of level sets of u. Namely, we will

invoke Definition 2.4.2 for the remainder of this section.

Theorem 3.4.2. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = f , ũ|∂Ω =

f̃ , corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (3.15). If u satisfies (2.12), and the level sets

of u are well-structured in the sense of Definition 2.4.2, then

‖∇ũ−∇u‖L1(Ω) ≤ C1‖a− ã‖
1
4

L∞(Ω) + C2‖f − f̃‖
1
4

W 1,∞(∂Ω)
, (3.18)

for some constant C(m,M, σ0, σ1, σ2, u, f, LM ) independent of ũ and σ̃.

43



Proof. Fix x ∈ Ω and h ∈ R2 with |h| = 1. Then

L(x, h) := (∇ũ(x)−∇u(x)) · h = lim
t→0

[ũ(x+ th)− u(x+ th)]− [ũ(x)− u(x)]

t
.

First we estimate the above limit. Since all level sets of u reach the boundary ∂Ω, there

exist z, zt ∈ ∂Ω such that

u(x) = u(z),

u(x+ th) = u(zt).

Thus

[ũ(x+ th)− u(x+ th)]− [ũ(x)− u(x)] = [ũ(x+ th)− u(zt)]− [ũ(x)− u(z)]

= [ũ(x+ th)− ũ(zt)]− [ũ(x)− ũ(z)] + [ũ(zt)− u(zt)]− [ũ(z)− u(z)]

Let γ and γt be the curves passing through x and x+ th, described in Definition 2.4.2

with γ(0) = z and γt(0) = zt. Suppose γ(s0) = x and reparamterize γt so that γt(s0) = x+th.

Then we have

[ũ(x+ th)− ũ(z)]− [ũ(x)− ũ(z)] = [ũ(γt(s0))− ũ(γt(0))]− [ũ(γ(s0))− ũ(γ(0))]

=

∫ s0

0
∇ũ(γt(s)) · γ′t(s)ds−

∫ s0

0
∇ũ(γ(s)) · γ′(s)ds.

Hence

L(x, h) = lim
t→0

1

t

(∫ s0

0
∇ũ(γt(s)) · γ′t(s)ds−

∫ s0

0
∇ũ(γ(s)) · γ′(s)ds

)
(3.19)

+ lim
t→0

1

t
([ũ(zt)− u(zt)]− [ũ(z)− u(z)]) (3.20)
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Now, we can focus on the last term here by noticing

[ũ(zt)− u(zt)]− [ũ(z)− u(z)] = [f̃(zt)− f(zt)]− [f̃(z)− f(z)].

Also, we denote the tangential direction along ∂Ω at z by θz and we get,

lim
t→0

[f̃(zt)− f(zt)]− [f̃(z)− f(z)]

t

= lim
t→0

(
[f̃(zt)− f(zt)]− [f̃(z)− f(z)]

|zt − z|

)
lim
t→0

|zt − z|
t

≤ |Fx,h(0)| lim
t→0

(
[f̃(zt)− f(zt)]− [f̃(z)− f(z)]

|zt − z|

)

= |Fx,h(0)| ∂
∂θz

(f̃ − f)

≤ ‖F‖L∞(Ω×Sn−1×[0,LM ])‖∇(f − f̃)‖L∞(∂Ω)

≤ ‖F‖L∞(Ω×Sn−1×[0,LM ])‖f − f̃‖W 1,∞(∂Ω). (3.21)

We can now shift our focus onto the first term (3.19). Substituting ∇ũ by J̃
σ̃ and using

the fact that J is perpendicular to γ′ and γ′t we get

lim
t→0

1

t

(∫ s0

0

J̃(γt(s))− J(γt(s))

σ̃(γt(s))
· γ′t(s)ds−

∫ s0

0

J̃(γ(s))− J(γ(s))

σ̃(γ(s))
· γ′(s)ds

)
.

Now define

G(x) :=
˜J(x)− J(x)

σ̃(x)
, x ∈ Ω.

Hence we get

lim
t→0

1

t

(∫ s0

0
G(γt(s)) · γ′t(s)ds−

∫ s0

0
G(γ(s)) · γ′(s)ds

)
.

This term can bounded in the same way as in the proof of Theorem 4.4 in [19], so we omit

the calculation as it is identical. Hence we have
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|∇ũ(x)−∇u(x)| ≤ sup
h∈Rn,|h|=1

L(x, h)

≤ K

σ0

∫ L

0
|J̃(γ(s))− J(γ(s))|dl

+ ‖ F ‖L∞
∫ L

0
|∇G1(γ(s))|+ |∇G2(γ(s))|dl

+ ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω).

Thus,

∫
Γ
|∇ũ(x)−∇u(x)|dl ≤ KLM

σ0

∫
Γ
|J̃(x)− J(x)|dl

+LM ‖ F ‖L∞
∫

Γ
|∇G1(x)|+ |∇G2(x)|dl

+LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω),

and consequently

∫
{u=τ}∩Ω

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
{u=τ}∩Ω

|J̃(x)− J(x)|dl (3.22)

+LM ‖ F ‖L∞
∫
{u=τ}∩Ω

|∇G1(x)|+ |∇G2(x)|dl

+LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω).
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Using (3.22) and the coarea formula we have

m

σ1
‖∇ũ−∇u‖L1(Ω) ≤

∫
Ω
|∇u||∇ũ−∇u|dx

=

∫
R

∫
{u=τ}∩Ω

|∇ũ−∇u|dldτ

≤ KLM
σ0

∫
R

∫
{u=τ}∩Ω

|J̃ − J |dldτ

+ LM ‖ F ‖L∞
∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|dldτ

+ LM ‖ F ‖L∞ (2M)‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMM

(σ0)2

∫
R

∫
{u=τ}∩Ω

|J̃ − J |
|∇u|

dldτ

+
LM ‖ F ‖L∞ M

σ0

∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|
|∇u|

dldτ

+ 2MLM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

=
KLMM

(σ0)2

∫
Ω
|J̃ − J |dx

+
LM ‖ F ‖L∞ M

σ0

∫
Ω
|∇G1|+ |∇G2|dx

+ 2MLM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMM

(σ0)2
‖ J − J̃ ‖L1(Ω)

+
2LMC1 ‖ F ‖L∞ M

σ0
‖ J − J̃ ‖

1
2

L1(Ω)

+ 2MLM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

where we have used Lemma 3.4.1 to obtain the last inequality. Applying Theorem 3.2.4,

and noting that

‖ J − J̃ ‖
1
2

L1(Ω)
≤ (2M |Ω|)

1
2 ,

where M is defined in (3.1), we arrive at (3.18). �

Now we prove three dimensional version of this theorem.

Theorem 3.4.3. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = f , ũ|∂Ω =

f̃ corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,
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respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (3.15). In addition suppose u satisfies (2.12),

the level sets of u can be foliated to one-dimensional curves in the sense of Definition 2.3.4,

and the level sets of u are well-structured in the sense of Definition 2.4.2. Then

‖∇ũ−∇u‖L1(Ω) ≤ C1‖a− ã‖
1
4

L∞(Ω) + C2‖f − f̃‖
1
4

W 1,∞(∂Ω)
, (3.23)

for some constant Ci(m,M, σ0, σ1, σ2, u, f, LM , cg, Cg) is independent of ũ and σ̃.

Proof. With an argument similar to the one used in the proof of Theorem 3.4.2 we get

∫
Uτ,r

|∇ũ(x)−∇u(x)|dl ≤ KLM
σ0

∫
Uτ,r

|J̃(x)− J(x)|dl (3.24)

+LM ‖ F ‖L∞
∫
Uτ,r

|∇G1(x)|+ |∇G1(x)|+ |∇G3(x)|dl

+LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

where Uτ,r := {u = τ} ∩ {gτ = r} ∩ Ω and G = (G1, G2, G3) is defined in (3.16).

It follows from (3.24) and the coarea formula that

m

σ1
‖∇ũ−∇u‖L1(Ω) ≤

∫
Ω
|∇u||∇ũ−∇u|dx

=

∫
R

∫
{u=τ}∩Ω

|∇ũ−∇u|dSdτ

=

∫
R

∫
{u=τ}∩Ω

|∇gτ |
|∇gτ |

|∇ũ−∇u|dSdτ

=

∫
R

∫
R

∫
Uτ,r

1

|∇gτ |
|∇ũ−∇u|dldrdτ

≤ KLM
σ0cg

∫
R

∫
R

∫
Uτ,r

|J̃ − J |dldrdt

+
LM ‖ F ‖L∞

cg

∫
R

∫
R

∫
Uτ,r

|∇G1|+ |∇G2|+ |∇G3|dldrdt
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+ 2‖g‖L∞(Ω)LM ‖ F ‖L∞ (2M)‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMMCg
(σ0)2cg

∫
R

∫
R

∫
Uτ,r

|J̃ − J |
|∇u||∇gτ |

dldrdt

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
R

∫
R

∫
Uτ,r

|∇G1|+ |∇G2|+ |∇G3|
|∇u||∇gt|

dldrdt

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

=
KLMMCg

(σ0)2cg

∫
R

∫
{u=τ}∩Ω

|J̃ − J |
|∇u|

dSdt

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
R

∫
{u=τ}∩Ω

|∇G1|+ |∇G2|+ |∇G3|
|∇u|

dSdt

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

=
KLMMCg

(σ0)2cg

∫
Ω
|J̃ − J |dx

+
LMM ‖ F ‖L∞ Cg

σ0cg

∫
Ω
|∇G1|+ |∇G2|+ |∇G3|dx

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω)

≤ KLMMCg
(σ0)2cg

‖ J − J̃ ‖L1(Ω)

+
3LMC1M ‖ F ‖L∞(Ω) Cg

σ0cg
‖ J − J̃ ‖

1
2

L1(Ω)

+ 4M‖g‖L∞(Ω)LM ‖ F ‖L∞ ‖f̃ − f‖W 1,∞(∂Ω),

where we have used (3.17) to obtain the last inequality. Applying Theorem 3.2.4, and noting

that

‖ J − J̃ ‖
1
2

L1(Ω)
≤ (2M |Ω|)

1
2 ,

we obtain the inequality (3.18). �

Now, we are ready to prove our main stability results.

Theorem 3.4.4. Let n = 2, and suppose u and ũ are admissible with u|∂Ω = f , ũ|∂Ω =

f̃ corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (2.21). If u satisfies (2.12) and level sets of
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u are well-structured in the sense of Definition 2.4.2, then

‖σ − σ̃‖L1(Ω) ≤ C1 ‖ a− ã ‖
1
4

L∞(Ω) +C2 ‖ f − f̃ ‖
1
4

W 1,∞(∂Ω)
,

for some constants Ci(m,M, σ0, σ1, σ2, σ, f, LM ) independent of σ̃.

Proof. Using Theorem 3.4.2 we have

∫
Ω
|σ − σ̃|dx =

∫
Ω

∣∣∣∣∣ |J |(|∇ũ| − |∇u|)|∇u||∇ũ|
+
|J | − |J̃ |
|∇ũ|

∣∣∣∣∣ dx
≤

∫
Ω

|J |
|∇u||∇ũ|

||∇u| − |∇ũ|| dx+

∫
Ω

1

|∇ũ|

∣∣∣|J | − |J̃ |∣∣∣ dx
≤

∫
Ω

|J |
|∇u||∇ũ|

|∇u−∇ũ|dx+

∫
Ω

1

|∇ũ|

∣∣∣|J | − |J̃ |∣∣∣ dx
≤ Mσ2

1

m2

(
C1 ‖ a− ã ‖

1
4

L∞(Ω) +C2 ‖ f − f̃ ‖
1
4

W 1,∞(∂Ω)

)
+

σ1|Ω|
m
‖ a− ã ‖L∞(Ω)

≤

[
Mσ2

1C1

m2
+
σ1|Ω|(2M)

3
4

m

]
‖ a− ã ‖

1
4

L∞(Ω)

+
Mσ2

1C2

m2
‖ f − f̃ ‖

1
4

W 1,∞(∂Ω)

�

Theorem 3.4.5. Let n = 3, and suppose u and ũ are admissible with u|∂Ω = f , ũ|∂Ω =

f̃ corresponding conductivities σ, σ̃ ∈ C2(Ω), and current density vector fields J and J̃ ,

respectively. Suppose σ, σ̃ ∈ C2(Ω̄) and satisfy (2.21). If u satisfies (2.12), the level sets of

u can be foliated to one-dimensional curves in the sense of Definition 2.3.4, and the level

sets of u are well-structured in the sense of Definition 2.4.2, then

‖σ − σ̃‖L1(Ω) ≤ C1 ‖ |J | − |J̃ | ‖
1
4

L∞(Ω) +C2 ‖ f − f̃ ‖
1
4

W 1,∞(∂Ω)
,

for some constants Ci(m,M, σ0, σ1, σ2, σ, f, LM , g) independent of σ̃.
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Proof. The proof follows from Theorem 3.4.3 and a calculation similar to that of the proof

of Theorem 3.4.4. �
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Chapter 4

The Inverse Sturm-Liouville

Problem with Partial Spectral

Data

4.1 One Dimensional Results

Consider the problem as outlined by the author in [18]:

y′′ + (λ− P )y = 0 (4.1)

for x ∈ [0, π]. Subject to the boundary conditions

y(0) cosα+ y′(0) sinα = 0, y(π) cosβ + y′(π) sinβ = 0 (4.2)

y(0) cosα+ y′(0) sinα = 0, y(π) cos γ + y′(π) sin γ = 0 (4.3)
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Now, let y = u(x, λ) be the solution to (4.1) subject to (4.2) at x = 0, and y = v(x, λ) be

the solution to (4.1) subject to (4.2) at x = π. Hence, u and v satisfy

u(0, λ) = sinα, u′(0, λ) = − cosα (4.4)

v(π, λ) = sinβ, v′(π, λ) = − cosβ (4.5)

In order for our solution u to satisfy the condition at x = π from (4.2), we must also require

that

u(π, λ) cosβ + u′(π, λ) sinβ = 0.

This leads us to define the following function

w(λ) = −u(π, λ) cosβ − u′(π, λ) sinβ (4.6)

whose zeros are the eigenvalues of (4.1) subject to (4.2). It then follows from Lemma 2.0 in

[18] that w is an entire function of order 1
2 , and thus, by Hadamard’s factorization theorem

has the form
∞∏
m=1

(
1− λ

λm

)
. (4.7)

This leads us to prove the following which is an analogous result to the main one in [18]

with slightly weakened assumptions.

Theorem 4.1.1. If a subsequence of the spectral data for (4.1) is given for the boundary

conditions (4.2), the entire spectrum of (4.3) is known and if sin(γ − β) 6= 0 then P is

uniquely determined.

Proof. Suppose we have the problem (4.1) with coefficient functions P1 and P2 respectively.

Thus, we have functions u1, v1 and u2, v2 corresponding to the condition (4.2) respectively.

Let us denote the eigenvalues of the problem subject to (4.2) corresponding to P1 by {µ1,m}

and those corresponding to P2 by {µ2,m} for 0 ≤ m <∞. It is well outlined in [18] that we
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have the following:

u1(x, µ1,m) = Cmv1(x, µ1,m)

u2(x, µ2,m) = Cmv2(x, µ2,m)

where Cm 6= 0 is shown to be uniquely determined by the spectrum of (4.3). Referring back

to the previous argument leading up to (4.7), we have two resultant functions w1 and w2

having the form for j = 1, 2

wj(λ) =

∞∏
m=1

(
1− λ

µj,m

)
.

Since we have assumed knowledge of only a subsequence of the spectral data (i.e. the spectra

corresponding to P1 and P2 for (4.2) agree on a subsequence), let us consider

w∗(λ) =

∞∏
mk=1

(
1− λ

λmk

)
(4.8)

where µ1,mk = µ2,mk = λmk . Note w∗ has zeros only on the given subsequence of eigenvalues

for (4.2). Similarly to [18], we will define for any f ∈ C1
0 ([0, π]) the function

H(x, λ) =
1

w∗(λ)
v2(x, λ)

∫ x

0
u1(x, ξ)f(ξ)dξ

and we consider ∫
Γ
H(x, λ)dλ

where Γ is a sufficiently large circle in the λ plane centered at the origin. Since the estimates

proved in Lemma 2.0 of [18] all hold for any solution to the boundary value problem (4.1),

this allows us to conclude yet again that

∫
Γ
H(x, λ)dλ− πif(x)→ 0 (4.9)
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as the radius of Γ becomes arbitrarily large. By residue theorem

∫
Γ
H(x, λ)dλ = 2πi

N∑
mk=1

Res(H;λmk)

where λmk are the zeros of w∗ lying inside of Γ. Combining this with (4.9) and using the

fact that the entire argument is identical regardless of using any of u1, u2, v1, v2 we arrive at

f(x) =

∞∑
mk=1

1

Cmkw
′
∗(λmk)

u2(x, λmk)

∫ π

0
u1(ξ, λmk)f(ξ)dξ (4.10)

f(x) =

∞∑
mk=1

1

Cmkw
′
∗(λmk)

u2(x, λmk)

∫ π

0
u2(ξ, λmk)f(ξ)dξ

and we have that

0 =

∞∑
mk=1

1

Cmkw
′
∗(λmk)

u2(x, λmk)

∫ π

0
[u1(ξ, λmk)− u2(ξ, λmk)]f(ξ)dξ

uniformly on closed intervals. Now, by the orthogonality of eigenfunctions, multiplying

u2(x, λ1) to the above equation and integrating gives

∫ π

0
[u1(ξ, λ1)− u2(ξ, λ1)]f(ξ)dξ = 0

for any f ∈ C1
0 ([0, π]). Which gives u1(ξ, λ1) = u2(ξ, λ1), and consequently P1 = P2 almost

everywhere. �

Remark 4.1.2. As we can see by this argument, the spectrum of (4.3) was only necessary in

establishing that the normalizing constants Cmk were the same for both P1 and P2. In [29]

the authors assume that these normalizing constants coincide for each of P1 and P2 in the

statements of both Theorem 1.1 and Corollary 1.2. This suggests they can be reproved for a

subsequence of the spectrum with minimal adjustment to the methods they have used. The

following are the results by the authors in [29] (setting α = π, β = 0 in (4.2)):
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Theorem 4.1.3. Suppose P1, P2 ∈ L∞(0, π), their spectra subject to (4.2) agree

µ1,m = µ2,m = λm,

and that the normalizing constants agree, i.e. c1,m = c2,m, where

cj,m =

∫ π

0
u2
j (x, λm)dx = ‖uj(·, λm)‖2L2(0,π) j = 1, 2

for uj(·, λm) the eigenfunctions corresponding to Pj , λm and 0 ≤ m < ∞, j = 1, 2. Then

P1 = P2.

Remark 4.1.4. Note that the normalizing constants satisy cj,m = Cm
w′(λm) where this relation

comes from the Sturm-Liouville expansion seen in [18].

Corollary 4.1.5. Suppose that P1, P2 ∈ L∞(0, π), their spectra subject to (4.2) agree. That

is to say:

µ1,m = µ2,m = λm,

u
′
1(π, λm) = u

′
2(π, λm)

then P1 = P2.

4.2 n-Dimensional Results

We hope to continue working with this problem to establish similar results in n-dimensions.

The authors in [29] proved several results using the entire spectral data. The author in [14]

was able to extend the main multidimensional result to the case where finite boundary data

is lacking. However, the author does remark that many of the arguments used are depending

only on the asymptotic behavior of eigenfunctions. This leads us to believe similar results

should hold in higher dimensions when only considering a subsequence of spectral data.
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Chapter 5

Conclusion

5.1 Future Directions for CDII

After showing global stability for (CDII) with respect to both interior and boundary data,

there are several directions in which the problem could be extended. Another important

direction for this problem would be to develop a similar method to provide stability for

anisotropic conductivities (such as that of the heart) from minimal interior measurements.

In contrast with an isotropic conductivity which is represented as a scalar function on Ω,

an anisotropic conductivity is directionally dependent and is represented as a Riemannian

metric (or n× n matrix). It would certainly be a challenging problem worth investigation

considering that the question of unique reconstruction is relatively unexplored. My advisor

along with collaborators have taken the first step in [12]. Once unique reconstruction is

more fully developed, one could then ask the question of stability which is likely to require

stricter hypotheses.
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Stability on a more complex Least Gradient Problem

Additionally, we may be able to prove similar stability results for solutions to the following

equation related to mean curvature:

∇ ·
(
a
∇u+ F

|∇u+ F |

)
= H, u|∂Ω = f. (5.1)

Where we can let J = −a ∇u+F
|∇u+F | , and u is the unique minimizer of the weighted least gradient

problem

I(w) = min
w∈BVf (Ω)

∫
Ω
a|∇w + F |+Hwdx, (5.2)

where a = |J |, and BVf (Ω) = {w ∈ BV (Ω), w|∂Ω = f}.

One would could start by proving similar stability results for J and extending these results

in a similar fashion to L1 and W 1,1 stability for minimizers of I(w).

Indeed we have taken some initial steps in this direction:

Lemma 5.1.1. Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (5.2) with the

weights a and ã, respectively. Then

∣∣∣∣∫
Ω
a|Du+ F |+Hudx−

∫
Ω
ã|Dũ+ F |+Hũ dx

∣∣∣∣ ≤ C‖a− ã‖L∞(Ω), (5.3)

for some constant C = C(m,M,Ω, f) independent of u and ũ.

Proof. First note that in view of (2.5) (bounds on a, ã) we have

m

∫
Ω
|Dũ+ F | dx ≤

∫
Ω
ã|Dũ+ F | dx ≤

∫
Ω
ã|Dw + F | dx ≤M

∫
Ω
|Dw + F | dx

for any w ∈ BVf (Ω). Thus
∫

Ω |Dũ + F | ≤ C, and similarly
∫

Ω |Du + F | ≤ C for some

constant C which depends only on m,M, and Ω. Hence

max

{∫
Ω
|Dũ+ F |,

∫
Ω
|Du+ F |

}
≤ C, (5.4)
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for some C(m,M) independent of ũ and u. Since u, ũ are the minimizers of (5.2) with the

weights a and ã,

∫
Ω
a|Du+ F |+Hudx−

∫
Ω
ã|Du+ F |+Hudx

≤
∫

Ω
a|Du+ F |+Hudx−

∫
Ω
ã|Dũ+ F |+Hũ dx

≤
∫

Ω
a|Dũ+ F |+Hũ dx−

∫
Ω
ã|Dũ+ F |+Hũ dx.

Thus

∫
Ω

(a− ã)|Du+ F |dx ≤
∫

Ω
a|Du+ F |+Hudx −

∫
Ω
ã|Dũ+ F |+Hũ dx

≤
∫

Ω
(a− ã)|Dũ+ F |dx,

and we get

−‖a− ã‖L∞(Ω)‖Du+ F‖L1(Ω) ≤
∫

Ω
a|Du+ F |+Hudx−

∫
Ω
ã|Dũ+ F |+Hũ dx

≤ ‖a− ã‖L∞(Ω)‖Dũ+ F‖L1(Ω).

Hence (5.3) follows from (5.4). �

Lemma 5.1.2. Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (5.2) with the

weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed by

Theorem 2.2.1. Suppose 0 ≤ σ(x) = a(x)
|Du+F | ≤ σ1 =

‖a‖L∞(Ω)

δ in Ω for some constant δ, such

that |Du+ F | > δ > 0, where σ is the Radon-Nikodym derivative of |J | dx with respect to

|Du+ F |. Then ∫
Ω
|J ||J̃ | − J · J̃ dx ≤ C‖a− ã‖L∞(Ω), (5.5)

where C = C(m,M, σ1,Ω, f, u) is a constant independent of ã.
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Proof. We have

∫
Ω
|J ||J̃ | − J · J̃dx =

∫
Ω

a

|Du+ F |
|Du+ F ||J̃ | − a

|Du+ F |
(Du+ F ) · J̃dx

≤
‖a‖L∞(Ω)

δ

∫
Ω
|Du+ F ||J̃ | − (Du+ F ) · J̃dx

= σ1

(∫
Ω
|Du+ F ||J̃ |dx−

∫
Ω
F · J̃dx−

∫
∂Ω
f [J̃ , νΩ]dx+

∫
Ω
Hudx

)
= σ1

(∫
Ω
|Du+ F ||J̃ |dx−

∫
Ω

(Dũ+ F )dx · J̃ +

∫
Ω
H(u− ũ)dx

)
= σ1

(∫
Ω
|Du+ F ||J̃ | − |Dũ+ F ||J̃ |dx+

∫
Ω
H(u− ũ)dx

)
= σ1

(∫
Ω
ã|Du+ F | − ã|Dũ+ F |dx+

∫
Ω
H(u− ũ)dx

+

∫
Ω
a|Du+ F | − a|Du+ F |dx

)
≤ σ1

∣∣∣∣∫
Ω
a|Du+ F |+Hudx−

∫
Ω
ã|Dũ+ F |+Hũ dx

∣∣∣∣+ σ1

∣∣∣∣∫
Ω

(ã− a)|Du+ F |dx
∣∣∣∣ ,

where we have used (2.6) and the integration by parts formula (2.9). Finally, the inequality

below follows from Lemma 5.1.1,

≤ σ1

(
C‖a− ã‖L∞(Ω) + ‖Du+ F‖L1(Ω)‖a− ã‖L∞(Ω)

)
,

which yields the desired result. �

Theorem 5.1.3. Let f ∈ L1(∂Ω), and assume u and ũ are minimizers of (5.2) with the

weights a and ã, respectively. Let J and J̃ be the divergence free vector fields guaranteed by

Theorem 2.2.1. Suppose 0 ≤ σ(x) = a(x)
|Du+F | ≤ σ1 =

‖a‖L∞(Ω)

δ in Ω for some constant δ, such

that |Du+ F | > δ > 0, where σ is the Radon-Nikodym derivative of |J |dx with respect to

|Du+ F | . Then

‖J − J̃‖L1(Ω) ≤ C‖a− ã‖
1
2

L∞(Ω), (5.6)

where C = C(m,M, σ1,Ω, f, u) is a constant independent of ã.
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Note that the proof of this theorem is equivalent to that of Theorem 2.5 in [19]. The only

difference being that we use our Lemma 5.1.2 to justify one of the inequalities in the proof.

One could now try to expand upon these results and use them in a similar way to

chapters 2 and 3 in order to prove stability results on the minimizers themselves. However,

this may be much more difficult in this setting.

5.2 Future directions for the Inverse Sturm-Liouville Prob-

lem

In view of Corollary 4.1.5, we will furthermore consider the n-dimensional analog of the one

dimensional problem. Let Ω ∈ Rn be bounded domain with smooth boundary and q be a

real valued scalar function on Ω. Consider the problem

−∆u+ qu = µu in Ω (5.7)

u = 0 on ∂Ω.

Denote the eigenvalues of (5.7) by {µm}∞m=1 with corresponding eigenfunctions {ϕm}∞m=1.

We then hope to extend the following results from [29]:

Theorem 5.2.1. [29] Let q1, q2 ∈ C∞(Ω) be the coefficient functions in (5.7), and suppose

the respective spectra corresponding to each agree for all k

µ1,k = µ2,k,

and that the outward normal derivatives of eigenfunctions agree on the boundary

∂ϕ1,k

∂ν
=
∂ϕ2,k

∂ν
on ∂Ω

then q1 = q2 in Ω.
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As detailed in [29] this result requires the use of the Dirichlet to Neumann map defined

in the following way: let u be a solution to

−∆u+ qu = 0 in Ω (5.8)

u = f on ∂Ω.

We define the Dirichlet to Neumann map

Λqf =
∂u

∂ν
. (5.9)

The proof of 5.2.1 hinges upon the following

Theorem 5.2.2. ([29]) Let q1, q2 ∈ L∞(Ω) and suppose that, as meromorphic functions of

λ ∈ C

Λq1−λ = Λq2−λ

then q1 = q2.

The proof of this theorem is unchanged by considering only partial spectral data. What

remains to be shown is the connection between Theorem (5.2.2) and the hypotheses in

Theorem (5.2.1). In other words, we must show that partial spectral data in the form of

a subsequence can still give equality of the Dirichlet to Neumann maps. This would be

achieved by establishing results similar to the following:

Lemma 5.2.3. ([29]) For m sufficiently large and f ∈ C∞(∂Ω),

(
d

dλ

)m
(Λq−λ(f)) =

∫
∂Ω
g(x, y)f(y)dS(y)

where g is continuous in Ω× Ω given by

g(x, y) =

∞∑
i=1

[
1

(µi − λ)m+1

]
∂ϕi
∂ν

(x)
∂ϕi
∂ν

(y)m!
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Lemma 5.2.4. ([29]) For f ∈ C∞(∂Ω); q1, q2 ∈ C∞(Ω); and 0 ≤ t < 1
2 we have

lim
λ→−∞

‖(Λq1−λ − Λq2−λ)(f)‖Ht(∂Ω) = 0

In [14], the author has this main result for partial spectral data:

Theorem 5.2.5. ([14]) Let q1, q2 ∈ C∞(Ω) be real valued. Suppose there exists an N > 0

such that

µ1,k = µ2,k, k ≥ N

W1,k = W2,k, k ≥ N.

Then q1 = q2.

Where Wj,k denotes the eigenspace corresponding to µj,k. This result depends on proving

the following:

Lemma 5.2.6. ([14]) Under the assumptions of the previous theorem, there exists a constant

C > 0 such that

‖Λq1−λ − Λq2−λ‖B(L2(∂Ω)) ≤
C

|λ|

for large |λ| where ‖ · ‖B(L2(∂Ω)) denotes the operator norm for an operator on L2(∂Ω).

If we can prove similar results to this for a subsequence of spectral data, then we would

have the main result as a consequence.
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