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ABSTRACT OF THE DISSERTATION

Stability of Current Density Impedance Imaging and Uniqueness for the Inverse
Sturm-Liouville Problem

by
Robert Julius Lopez

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2021
Dr. Amir Moradifam, Chairperson

In a joint effort with my advisor, we study stability of reconstruction in current density
impedance imaging (CDII), that is, the inverse problem of recovering the conductivity of
a body from the measurement of the magnitude of the current density vector field in the
interior of the object. Our results show that CDII is stable with respect to errors in interior
measurements of the current density vector field, and confirm the stability of reconstruction
which was previously observed in numerical simulations, and was long believed to be the
case. Next, we show that CDII is stable with respect to errors in both measurement of the
magnitude of the current density vector field in the interior and the measurement of the
voltage potential on the boundary. This completes the authors study of the global stability of
Current Density Independence Imaging. These results are accomplished through analysis on
a related functional from the so-called least gradient problem as well as geometric arguments
on the level sets of the induced voltage potential function. These geometric arguments are
dependent upon some ad hoc conditions which are shown to be guaranteed by reasonable
sufficient conditions.

Additionally, we study the Inverse Sturm-Liouville problem which is the problem of
reconstructing the coefficient function ¢ from the second order elliptic differential operator

—V + q using the boundary spectral data. While there are several results in one dimension

vi



and higher dimensions using complete spectral data and even finitely many terms omitted,
none have explored results for a subsequence of spectral data. We aim to establish such results
in one dimension and higher dimensions by using the asymptotic behavior of eigenfunctions

on the boundary.
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Chapter 1

Introduction

The aim of this thesis is two study two distinct problems in the field of Inverse Problems.
This field is broadly concerned with determining the causes or conditions that led to certain
effects or results. In partial differential equations this often occurs in the form of determining
the coefficients of a differential operator from knowledge of the solution to a given equation
(likely in tandem with additional information). There are myriad applications using the
principles of inverse problems, many of which have important physical implications. Problems
that arise in medical imaging often take the form of an inverse problem. The process involves
some sort of external probing which results in a quantitative reading on the tissue in question.
The goal is to then interpret this reading to the point where the conditions that caused it
can be determined.

Another point of interest relating to inverse problems is stability. In other words, can
we guarantee the parameters we wish to solve for will be continuous with respect to the
observed quantities? Again, in terms of medical imaging this equates to determining the

effects of “noise” or some sort of disturbance in the data on the resulting image.



1.1 Electrical Impedance Tomography

The classical Electrical Impedance Tomography (EIT) aims to obtain quantitative information
on the electrical conductivity, o, of a conductive body from measurements of voltages
and corresponding currents at its boundary. Mathematics of EIT has been extensively
studied, and many interesting results have been obtained about uniqueness, stability and
reconstruction algorithms for this problem. See [4,5,6,9] for excellent reviews of the results.
It is well known that that EIT is severely ill-posed (with respect to initial conditions), and
provides images with very low resolution away from the boundary [13,21].

The method of EIT is based on the Calderén problem which can be stated in the
following way: Suppose o(x) is the electrical conductivity for each = € Q where Q@ C R" is a
bounded, open set with C* boundary. Imposing a voltage f € L'(92) on 9 then induces
a potential u on the interior of 2 which solves the conductivity equation with Dirichlet

boundary condition

V- (oVu) =0 in Q (1.1)

u=f on ONQ.

Solving this problem employs the so called Dirichlet to Neumann map defined in the following
way

ou
Aa(f) = U% 59

where v denotes the outer normal vector to 9€). This is also sometimes also referred to as
the voltage to current map (due to the scenario outlined previously).

In this problem, one assumes knowledge of the Dirichlet to Neumann map and, as a result,
is able to recover the conductivity, . However, knowledge of the Dirichlet to Neumann map
would require knowledge of the induced current for every possible voltage f imposed on 0f).

The following method offers an alternative approach to obtaining o.



1.2 Current Density Impedance Imaging

A more recent class of Inverse Problems seeks to provide images with high accuracy and by
using data obtained from the interior of the region. Such methods are referred to as Hybrid
Inverse Problems or Coupled-physics methods, as they usually involve the interaction of two
kinds of physical fields. An example of such a problem is the method of Current Density
Impedance Imaging (CDII). This is the inverse problem of recovering the conductivity of
a body from the measurement of the magnitude of the current density vector field in the
interior of the object. Interior measurements of current density is possible by Magnetic
Resonance Imaging (MRI) due to the work of M. Joy and his collaborators [16,17]. This
problem has been studied in [26,28,30,31,32]. See also [33] for a comprehensive review.

Much like EIT, CDII involves the equation (1.1) and the recovery of o. In contrast with
EIT, the method of CDII requires a single voltage f to be imposed on 9f2 and the magnitude
of the induced current (denoted by J) to be known in order to recover o. Thus, this method
simply requires the knowledge of the pair of measurements (f,|J|) as opposed to knowledge
of the Dirichlet to Neumann map.

While the uniqueness of the reconstruction in CDII is established and a robust recon-
struction algorithm is developed in [27], the global stability of CDII was an open problem
until [19]. In this paper, my advisor and I were able to show a detailed analysis on the
stability of this problem. The stability hinged on few assumptions which fit quite logically

into a physical setting (which will be outlined in chapter 2).

1.3 The Inverse Sturm-Liouville problem

The inverse Sturm-Liouville problem is concerned with recovering the potential function for
a second order equation based on knowledge of the eigenvalues and eigenfunctions of the
second order elliptic operator. The author in [18] outlines that this is indeed possible in the

one dimensional problem beginning with the following equation subject to Robin boundary



conditions:

y'+(A=Py=0

for z € [0, 7]. Subject to

y(0)cosa + ¢'(0) sina = 0, y(m)cos B+ y/'(m)sinB =0

y(0)cosa +¢/'(0)sina =0, y(m)cosy + 4/ (7)siny =0

In the multi-dimensional case the authors in [29] extend this result to a smooth bounded

domain 2 C R” for the problem

—Au+qu=pu in £

u=0 on Of.

The arguments in each of these papers do suggest that it may be possible to only consider
partial spectral data. In [14], the author shows that the multi-dimensional results still hold
when lacking finitely many terms from the spectrum of this operator. However, it is also
suggested that one could take this idea further to only consider a subsequence of the spectral

data. This will be further discussed in chapters 4 and 5.



Chapter 2

Stability of Current Density

Impedance Imaging (CDII)

2.1 Introduction

Let o be the isotropic conductivity of an object Q C R™, n > 2, where 2 is a bounded open
region in with connected boundary. Suppose J is the current density vector field generated
by imposing a given boundary voltage f on 9€). Then the corresponding voltage potential u

satisfies the second order elliptic equation

V- (oVu) =0, ulopq=f. (2.1)
By Ohm’s law J = —oVu, and u is the unique minimizer of the weighted least gradient
problem
I(w) = min /a|Vw\dx, (2.2)
weBV(Q) JO

where a = |J|, and BV§(Q) = {w € BV (), w|sn = f}, see [26,28,30,31,32].

Remark 2.1.1. In general, the least gradient problem (2.2) may not have a minimizer [7,35].

Throughout the paper we shall assume that (2.2) has a solution. For sufficient conditions



for the existence of minimizers of weighted least gradient problems we refer to [8,15,25].
Note also that any voltage potential u solving the equation (2.1) is also a minimizer of (2.2).
In particular, if 0 < a(x) € C(Q2) and O satisfies a Barrier condition (see Definition 3.1 in
[15]), then for every f € C(052) the least gradient problem (2.2) has a minimizer in BV} (Q).
In other words, the set of weights for which the least gradient problem (2.2) has a solution

is open in C(Q) if O satisfies a barrier condition.

Since any stability result trivially implies uniqueness, it is evident that one needs
additional assumptions to prove any stability result. Indeed stability analysis of CDII is a
challenging problem. The first stability result on CDII was proved by Montalto and Stefanov
in [23].

Theorem 2.1.2 ([23]). Let u solve equation (1) and let G solve equation (1) for & with
|Va| >0 in Q. For any 0 < a < 1, there exists s > 0 such that if ||o||gsq) < L for some

L > 0 then there is an € > 0 such that if
lo = allc2) <6 (2.3)

then
lo =62 < CllIJ| - \jIH%?(Q)

Later in [22], Montalto and Tamasan proved the following stability result.

Theorem 2.1.3 ([22]). Let o0 € C1%(Q), 0 < a < 1, be positive in Q. Let u solve equation
(1) with |Vu| > 0 in Q. There exists ¢ > 0 depending on Q and some C > 0 depending on €

such that if & € CH*(Q) with @ solving (1) for &, u =1 = f on O, 0 =& on IQ, and
o — 5”01«1@) <€

then

lo = 6ll12() < CIIV - Mvu(J = I3



where Iy, (J — J) is the projection of J — J onto Vu.

Note that both of the above results assume a priori that o and & are close, and a natural
question which remains open is that whether there exists two distant conductivities ¢ and &
which could induce the corresponding currents J and J with ||.J| — |.J|| arbitrarily small. ITn
this paper we address the this question and show that the answer is negative, and hence
show that CDII is actually stable. Under some natural assumption, we shall prove that in

dimensions n = 2,3 the following stability result holds

~ 1
lo =&l < NI = 111wy (2.4)

for some constant C' independent of & (see Theorems 2.4.6 and 2.4.7 for precise statements
of the results).

This chapter is organized as follows. In Section 2, under very weak assumptions, we will
prove that the structure of level sets of the least gradient problem (2.2) is stable. In Section
3, we will provide stability results for minimizers of (2.2) in L. In Section 4, we will prove
stability of minimizers of (2.2) in W1, and shall use them to prove Theorems 2.4.6 and

2.4.7 which are the main results of this paper.

2.2 Stability of level sets

In this section, we show that the structure of the level sets of minimizers of the least gradient

problem (2.2) is stable. Throughout the paper, we will assume that a,a € C(2) with
0<m<a(x),a(x) <M, Vre, (2.5)

for some positive constants m, M. The following theorem which was proved in [25] by the

second author, shall play a crucial role in the proof of the results in this section.

Theorem 2.2.1 ([25]). Let 2 C R™ be a bounded open set with Lipschitz boundary and

assume that a € C(Q) is a non-negative function, and f € L'(0)). Then there exists a



divergence free vector field J € (L*°(Q2))" with |J| < a a.e. in Q such that every minimizer

w of (2.2) satisfies
Dw

TDul =|J|=a, |Dw|—a.e. in Q, (2.6)

where |g—$| is the Radon-Nikodym derivative of Dw with respect to |Dw|.

Remark 2.2.2. Throughout chapters 2 and 3 we will assume that 0f2 is Lipschitz at the very

least (that is to say, the boundary is sufficiently regular).

Lemma 2.2.3. Let f € LY(0R), and assume u and @ are minimizers of (2.2) with the

weights a and a, respectively. Then

‘/ a|Dudm—/&]Dﬂ\dac
Q Q

for some constant C = C(m, M,Q, f) independent of u and .

< Clla = al[r(q). (2.7)

Proof. First note that in view of (2.5) we have

m/ \Diilda < / il Dilda < / d!Dw|dm§M/ Du|
Q Q Q Q

for any w € BVf(Q). Thus [, |[Du| < C, and similarly [, |Du| < C for some constant C

which depends only on m, M, and 2. Hence

max{/Q|D7fL\,/Q|Du|} <0, (2.8)

for some C(m, M) independent of 4 and u. Since u, 4 are the minimizers of (2.2) with the

weights a and a,

/a|Du|dm—/&|Du\dw§/a|Du|dm—/&Dﬂ|dw
Q Q Q Q

S/a|Dﬂ|dx—/dDﬂ|d:c.
Q Q



Thus
/(a—&)]Du|dw§/a\Du|d;n—/ Ez|Du|d:c§/(a—d)|Da|dm,
Q Q Q Q

and we get

Jla — all ey | Dl 1 S/Qa\Du|d:v—/Qd|Du]dx

< la = all poo (@) 1 Dl 1 ()

Hence (2.7) follows from (5.4). O

Let vq denote the outer unit normal vector to 9. Then for every T' € (L*°(£2))" with

V- T € L"(Q) there exists a unique function [T, vq] € L>(9N) such that
/ T, voludH™ 1 = / uV - Tdx + / T - Dudz, ueCYQ). (2.9)
o0 Q Q

Moreover, for v € BV(Q2) and T € (L*°(2))" with V- T € L™(), the linear functional
u > (T - Du) gives rise to a Radon measure on €2, and (2.9) holds for every u € BV (Q2) (see

[1,3] for a proof). We shall need the weak integration by parts formula (2.9).

Lemma 2.2.4. Let f € LY(09), and assume u and @ are minimizers of (2.2) with the
weights a and a, respectively. Let J and J be the divergence free vector fields quaranteed
by Theorem 2.2.1. Suppose 0 < o(x) < o1 in  for some constant o1 > 0, where o is the

Radon-Nikodym derivative of |J|dx with respect to |Du| . Then
/Q\J|J\ — J - Jdz < Clla — il = (q), (2.10)

where C' = C(m, M,01,Q, f,u) is a constant independent of a.



Proof. We have

/J||J~ J-jd:c:/a|j||Du|aj-Dudx
Q Q
§01/ |J||Du| — J - Dudz
Q
:01/ ]jHDu|dx—/ L, volda
Q o0
:01/ J|Du| - J - Dida
Q
— o1 [ 171Du] - 7| Dildz,
Q

where we have used (2.6) and the integration by parts formula (2.9). On the other hand it

follows from lemma 2.2.3 that

01/ IJHDUI—UHD@Idw:Ul/ | J|Du| — |J||Dul + ||| Dul| — ||| Dald
Q Q

=0 (/ (a — a)|Duldz + / a|Du| — &]Dﬁ\da;)
Q Q

< o1([[Dullprylle — allpe () + Clla = @l L)),

which yields the desired result. g

Du

Roughly speaking, Lemma 2.2.4 implies that as a — a, TDul

() becomes parallel to @g' ()
at points where the two gradients do not vanish. We are now ready to prove the main result

of this section.

Theorem 2.2.5. Let f € LY(09), and assume u and @ are minimizers of (2.2) with the
weights a and a, respectively. Let J and J be the divergence free vector fields guaranteed
by Theorem 2.2.1. Suppose 0 < o(x) < o1 in § for some constant o1 > 0, where o is the

Radon-Nikodym derivative of |J|dx with respect to |Du| . Then

~ 1
1 = @) < Clla = all 7w q (2.11)

)7

10



where C' = C(m, M,01,Q, f,u) is a constant independent of a.
Proof. We have

|J — J? 2 |J\2+|j]2—2J-J~%
(17=71)" = ( )

= ([l =171+ 201 - Jﬂ)é

1
< |1 = I| + (200191 = - ).
Hence,
1
~ ~ 12\ 2
1 = Iy = [ (1= 11[) ao
- B B 1
g/ ‘|J|—\J|‘dx+/ (2(|J||J|—J-J))2dx
Q Q
B N4
:/ |a—d|d:c—|—/ <2(|J||J|—J-J))2dx
Q Q
- 1 ~ -
< 9 = alleqoy + 1912 ([ 20151 - Dyic)
~ 1
< 19Q]la - @l ey + (2QN2 (Clla — dllpo(ay)?
1 1 1
= (100a =l gy + 212D} ) o=l o
where we have used the Holder’s inequality and Lemma 2.2.4. O

Remark 2.2.6. In view of Theorem 2.2.1, % and [Da D | are parallel to J and J, respectively.
So Theorem 5.1.3 implies that if @ is close to a, then the structure of level sets of @ is close
to that of u.

2.3 L! stability of the minimizers

In this section, we establish stability of minimizers of the least gradient problem (2.2) in L.

In general, (2.2) does not even have unique minimizers, so in order to prove any stability

11



results further assumptions on the weights a, @, and on the corresponding minimizers are

expected.

Definition 2.3.1. Fix the positive constants oo, 01 € R. We say that u € C1(Q) is admissible

if it solves the conductivity equation (2.1) for some o € C(Q2) with
0<og<o<Loy,

and m < |J| = |oVu| < M, where m and M are positive constants as in (2.5). We shall

denote the corresponding induced current by J = —oVu.

Remark 2.3.2. Let Q C R™ with n > 2 be a bounded Lipschitz domain and suppose 0f)
satisfies the barrier condition defined in Definition 3.1 in [15]). A. Zuniga proved in [36] that
if 0 < a € C%(Q), then for any boundary data f € C(92) the least gradient problem (2.2)

has a minimizer u € C(Q). If [Vu| > 0 in €, then

a

= Q

g

and by elliptic regularity « € C*(), and therefore (2.2) has an admissible minimizer. To
guarantee the condition |Vu| > 0 on Q, in dimension n = 2 it suffices to assume that the
boundary data f € 09 is two-to-one, i.e. f has only two critical points on 9 (see Theorem
1.1 in [2]). In higher dimensions, it is still an open problem to find sufficient conditions

under which [Vu| > 0 on €.

We will first prove our results in dimension n = 2 and then extend them to dimensions
n=23.

Let v € C'(Q) with |[Vu| > 0 in Q. Then it follows from the regularity result of De
Giorgi (see, e.g, Theorem 4.11 in [8]) that all level sets of u are C! curves. We will assume

that the length of level sets of u in € is uniformly bounded, i.e.

sup/ 1dl = Ly < oo. (2.12)
teR J{u=t}NQ

12



Theorem 2.3.3. Let n =2, and suppose u and 4 are admissible with u|go = ilgq = f, and

corresponding current density vector fields J and j, respectively. If u satisfies (2.12), then
~ - 1
lht = @l ey < C 111 = 191 12 gy (2.13)
for some constant C(m, M, 09,01, f,u, Lys) independent of 4 and &.

Proof. Since u is admissible,

Vau(z)| = > 0, Vzeq.
o1

Using the coarea formula we get

m/ |u—ﬂ\dw§/ ]Vu|]u—&|d:1::// i (2.14)
01 JQ Q R J{u=t}NQ

Since |Vu| > 0 in ©, it follows from the regularity result of De Giorgi (Theorem 4.11
in [8]) that all level sets of u are C' curves. Now let 'y be a connected component of
{z € Q:u(x) =t} C Q, and v: [0,L] — I'; to be a path parameterized by the arc length
with v(0) € 09Q. Define




Now let x} be a point on I'y where the maximum distance between u and @ along the path

¥ occurs, i.e.

Ju(er) — a(at)| = maxfu(z) — a(z)].

Then z} = 7(sp) for some sg € [0, L], and

u(ey) — a(zp)] = [h(so)] =

50 1 "
[ e - Jam
L6 - Fa ).

00 Jo

IN

In particular for every x € I'y

L
|u(e) — a(z)| < fu(ey) —alap)] < 1/0 [ J(y(7)) = T (v(7))ldr,

00

where L denotes the entire length of I';. Hence

u(z) — a(x)|dl lu(zy) —a(ep)| | 1dl
Iy Iy

IN

< Lylu(zy) — a(xy)|
Ly [F -
< — | () = J(v(r))ldr
g0 0
L -
= M [ 7= Jd,
(o)) T
and therefore
L -
/ lu—aldl < =M | — Jl|dl.
{u=t}NQ 00 J{u=t}nQ

Thus we have

14

(2.15)



L N
// \ua|dldt§M// |J — J|didt
R J{u=t}NQ 00 JR J{u=t}

L -
:M/ \Vul|lJ — J|dz
] Q
Ly ~
< |Vl [ 1 Jldo
0 Q

1
< CHG’ - a’”ioo(g)

C(m,M,0¢,01, f,u, Lyr) independent of @ and &, where we have used (2.15) and Theorem

5.1.3. 0

Next we generalize Theorem 2.3.3 to dimension n = 3. In order to do this, we need the

following additional assumption on level sets of u.

Definition 2.3.4. Let u € C1(Q) be admissible. We say that level sets of u can be foliated
to one-dimensional curves if for almost every t € range(u), every conected component I'y
of {u =t} (equipped with the metric induced from the Euclidean metric in R3) there exists
a function gi(z) € CY(Ty) such that 0 < ¢y < |Vgi| < Cy, for some constants ¢y and Cy
independent of t. Moreover, every connected component of {u =1t} N{g =r} NN is a C*
curve reaching the boundary OS2 for almost every t € range(u) and all v € R. Similar to the
case n = 2, we assume that the length of connected components of {u =t} N{g =r}NQ

are uniformly bounded by some constant Lyy.

Remark 2.3.5. Tt follows from the regularity result of De Giorgi (see, e.g. Theorem 4.11 in
[8]) that for a function u € BV (Q), level sets {u = t} is a C'-hypersurface for almost all
t € range(u). Note also that every connected component of {u = t} reaches the boundary
0Q (see [26,28,30,31]), for almost every t. Now let I'; be a C! connected component of
{u = t}. If f has only two critical points (one minimum and one maximum points) on
0Q, then T is a simply-connected C' surface reaching the boundary 952, and hence there

exists a C! homeomorphism F; from B(0,1) C R? to the closure of I'; in © (see Theorem

15



3.7 and Theorem 2.9 in [11]). It is easy to see that the unit ball B(0, 1) can be foliated to
one dimensional curves by level sets of g : B(0,1) — R defined by g(z,y) = y. Consequently
I'; can be foliated into one dimensional curves reaching the boundary of 90 by level sets of
9:(X) = g(F, (X)), X € Ty. Note also that since g and F; * are both C', and since T is

compact, there exists constant c¢(t), C'(t) > 0 such that
0<ec(t)<|Vg| <C(t) on Iy (2.16)

Indeed the above argument shows that (2.16) holds for every connected components of
almost every level sets of a function u € BV (Q2), for some constant ¢(t), C(t) depending
on t. So in Definition 2.3.4 the only significant assumption is that the constants ¢(t) and
C(t) are uniformly bounded from below and above by two positive constant ¢, and Cy. In
particular, if u is a C! function with |[Vu| > 0 in Q and {z € 9Q : f(z) = t} has finitely
many connected components for all ¢, then it follows from the implicit function theorem that
every level set of u is a C! surface, and hence existence of ¢, and C; follows immediately
from compactness of range(u), and hence level sets of u can be foliated to one-dimensional

curves in the sense of Definition 2.3.4.

Definition 2.3.6. Let t € range(u) and suppose T't, i € I, are C' connected components of
{u = t}, where I is countable. In view of Remark 2.3.5, there exists functions gi : T — R
whose level sets foliate T into one dimensional curves in the sense of Definition 2.3.4. We

define g : {u =t} — R be the function with
gilri =g, i€l (2.17)

We shall use this notation throughout the paper.

Theorem 2.3.7. Let n = 3, and suppose u and 4 are admissible with u|sq = Uloq = f and

corresponding current density vector fields J and J, respectively. Suppose the level sets of u

16



can be foliated to one-dimensional curves in the sense of Definition 2.3.4. Then
~ 1
= illzs@y < I = 1112 (2.18)
where C(m, M, 09,01, f,u, Ly, cg, Cy) is independent of 4 and &.

Proof. The proof is similar to the proof of Theorem 2.3.3, and we provide the details for

the sake of the reader. Since u is admissible,

m/ |uﬂ|d1:§/ ]Vu||uzl|da::// | — @|dSat. (2.19)
o1 .Ja Q R J{u=t}nQ

The level sets of u can be foliated into one-dimensional curves by level sets of some

function g¢¢ in the sense of Definition 2.3.4. Thus

// |u — @i|dSdt = // V9l — Gjdsar
{u=t}nQ fu=t3n0 |Vai|
:/// L|u—ﬂ|dldrdt
R JR J{u=t3n{gi=rin |V 91|
gl/// |u — a|dldrdt.
Cqg JR JR J {u=t}n{gi=r}NQ

Similar to the two dimensional case, we parameterize every connected component I'y of

{u =1t} N {g = r}NQ by arc length, v: [0,L] — T'; with v(0) € 99, and let h(s) =
u(y(s)) — a(vy(s)). Let x} be the point that maximizes |u — | on I'; and suppose y(sg) = z}
for some sy € (0, L), where L is the length of I';. Then by an argument similar to the one in

the proof of Theorem 2.3.3 we get

L
|u(ay) — afzt)| < 1/0 [ J(v(7)) = T (v(7))ldr,

and consequently
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ju()

Tt
Hence,

/{u:t}r‘l{gt:r}ﬂﬁ

L ~
—a(z)|dl < M/ |J = J|dL.
o0 Jry

lu — @|dl < < Lm |J — J|dl. (2.20)

{u=t}N{ge=r}NQ

Using this estimate and the coarea formula we have

m/ yu—a|dg;g// |u — i|dSdt
01 Jq R J{u=t}NQ

<

| /\

1/// |u — a|dldrdt
{u=t}N{gt=r}NQ

/// \J — J|dldrdt
CQOO {u=t}N{gt=r}NQ

// Yl J — J|dSat
Cg00 {u=t}

gLMCg// |J — J|dSdt
€g00 {u=t}

L

MC /yvu||J J|dz

LMC ~ 1
19uleqoy (€111~ e

€g00

LMC M( ~ 1
Nl = 171112 )
go'o L*>(Q)

where we have applied Theorem 5.1.3. ]

2.4 Wl stability of the minimizers

In this section, we prove stability of minimizers of (2.2) in W!. As mentioned in previously,

in general (2.2) does not even have unique minimizers, so in order to prove stability results

in Wbl it is natural to expect stronger assumptions on on the minimizers.

Lemma 2.4.1. Let n = 2,3, and suppose u and 4 are admissible with u|spq = @log = f €

L>(09) and corrsponding conductivities o and &, and current density vector fields J and J,

18



respectively. Suppose o,5 € C?(Q) with

| o llc2@) 1 o oz < o2 (2.21)

for some o9 € R. Let )
G@y—J@g;mw,

with G = (G1,G2) for n =2 and G = (G1,G2,G3) forn =3. Then

z €, (2.22)

I9Gillza@) < CollT = 121 (2.23)
for some constant Cy which depends only on Q, 0o, o2 and || f || (q)-
Proof. Since u and @ satisfy (2.1), it follows from elliptic regularity that
| w [z | 8 3@y < Cr | f 2@ < ez | f | Lo ()5 (2.24)
for some constant Cy depending only on og, 09, and 2. Now note that
G@):va—gvu
Thus it follows from (2.21) and (2.24) that
| DG ||y < 1912 || DG [l2ey< €, 1<i<n, (2.25)

for some constant C' which only depends on g, 02, Q2 and || f [|zec(q). On the other hand it

follows from Gagliardo-Nirenberg interpolation inequality that

1 1
IVGilli) < C2llD*Gill }1 o IGill 71 g (2.26)
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for some Cy which only depends on Q2. Combining (2.25), (2.26), and

J—J
I Gilli@)< m, 1<i<n,
o0

we arrive at the inequality (2.23). O

Next we prove that u and % are close in W11(Q). In order to do so, we need additional

assumptions on the structure of level sets of w.

Definition 2.4.2. Suppose u is admissible, n = 2, and x € Q2. Pick h € R? with |h| =1, and
t € R small enough such that x +th € Q. Let I" and I'y be the level sets of u passing through
x and x +th, respectively. Parametrize I' and T'y by the arc length such that v(0),~v:(0) € 09,
and denote these parametrizations by v and ., respectively.

Similarly in dimension n = 3, let u be admissible and suppose level sets of u can be
foliated to one-dimensional curves in the sense of Definition 2.3.4. Pick x € Q and h € R3
with |h| = 1, and choose t small enough such that x +th € Q. Let I' and I';y be the unique

curves in

H{u=71}n{g-=r} 7,reR}

which pass through x and x + th, respectively, and let v and ~; be the parametrization of
these curves with respect to arc length with v(0),v:(0) € 9.

We say that level sets of u are well structured if the following conditions are satisfied

(a) There exists K > 0 such that

<K (2.27)

for every s € [0, L], t € R, x € Q and h € S"~. In particular,

vi(s) =~ (s) as t—0, (2.28)
where 7' (s) = dzl(ss) and ~;(s) = dvéés).
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(b) There exists a bounded function Fyp(s) = F(x,h;s) € L®(Q x S"~1 x [0, Ly]) such

that

iy Ye(8) = ()

lim T2 = 7 (s) (2.29)

for every s € [0, L], x € Q and h € S™ L.

Remark 2.4.3. Let x € Q, h € R? with |h| = 1, and ¢t € R be small enough such that
x4+ th € Q. Also, as in Definition 2.4.2, let 7, and ~; be the parametrization of the curves

passing through x and x + th. In view of Remark 2.3.5 we have

7(8) = 'Fu(z) (:Y(S)) and ’Vt(s) = ]:u(a:+th) ('715(8))7 (230)

where ¥(s) and 7,(s) are parametrization of two level sets of the function g(z,y) = y =
I, (F~Y(x)) and g(z,y) = y = I,(F(z + th)), respectively. Here I, is the projection
operator on y-axis, and F;) and Fy 44 are C! diffeomorphisms from B(0,1) to the
connected components of the level sets of u passing through = and x + th, respectively. It is
easy to see that ¥;(s) is continuously differentiable with respect to ¢, for each fixed s.

Now let I';, be the connected component of the level set of u that passes through x,
and assume that |Vu| > 0 on Q. Then in a neighborhood of 79 = u(zo) we can find C*
diffeomorphisms F;. so that F.(y) is continuously differentiable with respect to r, for each

fixed y. Indeed let y € B(0,1) and consider the gradient flow

Zy(q) = Vu(zy(q), 2(0) = Fo(y), (2.31)

which has a unique solution as long as z,(q) € . Let r € range(u) be and I, be a connected

component of {u =r}. Define F,. : B(0,1) — I'; by

FT’(y) = Fro (Zy(Q'r»a
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where ¢, € R is the unique point where z,(g,) € I',. Also observe that the set
R ={r €range(u) : F is well defined on {u =r}},

is both open and closed in range(u), and hence R = range(u) and therefore F, could be
defined globally as above for all r € range(u).

Since u, F,, and z, are all C?, it is easy to see that F}(y) is continuously differentiable
with respect to r, for each fixed y € B(0,1). Now notice that the level sets of the function
g(z,y) : B(0,1) — R defined by g(z,y) = y are well structured in the sense of Definition 2.4.2.
In view of the above arguments, it follows from the chain rule that v:(s) = F(3:(s)), where
#4(s) is a parametrization of the level set g(x, ) = y passing through F~1(x+th), and F; and
4+ are both continuously differentiable with respect to ¢. Therefore, since (2.27), (2.28), (2.29)
hold for any parametrization of level sets of g(z,y) = y, an application of the chain rule
implies that (2.27), (2.28), (2.29) also hold under the assumptions of Definition (2.4.2). In
particular, if v is a C! function with |[Vu| > 0 in Q and {z € 9Q : f(x) = t} has finitely
many connected components for all ¢, then level sets of u are well structured in the sense of

Definition 2.4.2.

Theorem 2.4.4. Let n = 2, and suppose u and 4 are admissible with u|pq = Ulgg =
f, corresponding conductivities 0,6 € C*(), and current density vector fields J and J,
respectively. Suppose 0,5 € C?(Q) and satisfy (2.21). If u satisfies (2.12), and the level sets
of u are well-structured in the sense of Definition 2.4.2, then

~ 1
IV =Vl o) < C I =[] |7 () (2.32)

for some constant C(m, M, 09, 01,092,u, f, Lrs) independent of 4 and &.
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Proof. Fix x € Q and h € R? with |h| = 1. Then

L(z,h) = (Vi(r) — Vu(z))-h = lim [ + th) — u(z +tth)] — i) - u(x)].

First we estimate the above limit. Since all level sets of u reach the boundary 0f2, there

exist z, z; € 02 such that

u(x 4+ th) = u(z) = u(z).

Thus,
[@(x 4+ th) — u(z + th)] — [a(x) — u(x)] = [a(z + th) — a(z)] — [a(z) — a(2)].

Let v and 4 be the curves passing through x and x 4 th, described in Definition 2.4.2
with 7(0) = z and (0) = 2. Suppose y(sp) = x and reparamterize y; so that v(so) = x+th.

Then we have
[i(z + th) — u(2)] — [a(x) — @(z)] = [@(7e(s0)) — @(12(0))] — [@(v(s0)) — @(v(0))]

N /80 Via(ve(s)) - vi(s)ds — /SO Via(y(s)) -+ (s)ds.
0 0

Hence
ey =t 1 ([7 Vi) fteids - [ Vi) (0)as)

t—0

Qi

Substituting Va by % and using the fact that J is perpendicular to 7/ and v, we get

a%m:hml(/ij@»—JW@DJmﬁﬁ_/%jﬁﬁﬁ—ﬂﬂ$fywwg'
0 0

t—0 ¢t

Now define
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Hence
1
t

ety =t ([ 66uts) ity - [ GtV (s)as).

t—0

The expression in the right hand side can be rewritten as

1
t

It follows from the assumption (a) in Definition 2.4.2 that

Yi(s) = (s)

<K,
t

and hence

[ 60 bt - olas

Now we turn our attention to the first term in (2.33). Let G = (G, G2). Since

t—0

for i = 1,2 we have

Gi(n(s)) — Gi(v(s))

+ [ 1660) — G s + 1 [ 606 bils) o (s)ds.
0 0

L
<K / T (4(5)) — T (4(5))lds.
ago Jo

Gi(y(s) +F(s)) — Gi(v(s))

lim = lim
t—0 t t—0

= VGi(y(s)) - F(s)-

24
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Thus the first term of (2.33) can be rewritten as

i 030 GOn(s)) — Gy(s)] - Ai(s)dl

- /Oso(VGl(v(s)) L F(s),VGa(y(s)) - F(s)) -+ (s)dl
<| F ||z~ /Oso IVG1((s))| + [VGa(y(s))|dl

L
<|l FIILoo/O IVG1(7(s)| + [VGa(y(s))ldl, (2.35)

where we have used the assumption (b) in Definition 2.4.2. Combining (2.34) and (2.35) we

obtain
|[Vu(z) — Vu(z)] < sup  L(z,h)
heR?2,|h|=1
< & [ae) - sl
+ || F e /O IVG1(7(s))| + |[VGa(v(s))|dl.
Thus,

IN

/\vu (z)|dl KLM/|J z)|dl

SLyt | F = / VG ()| + [V Gala)dl,
T

and consequently

/ \Vi(z) — Vu(z)|d < Klum |J(z) — J(z)|dl (2.36)
{u=7}NQ 00 {u=7}N0
Ly HFHLDO/ VG (2)| + [VGa(a)|dl.
{u=7}NQ
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Using (2.36) and the coarea formula we have

EHVﬂfVuHU(Q) < /|Vu|\V@Vu|dm
a1 Q

= // Vi — Vu|dldr
R J{u=7}nQ
< KLM// \J — J|dldr
g0 R J{u=7}NQ
+ Ly \FIILoo// IVG1| + |VGa|dldT
{u=7}N0
< KLMM// = iy
{u=7}N0 ’vu|
v Lol Pl M /] VGl +IVGal )
{u=7}NQ2

[Vl
KL M
= M /\J J|dx

L F |l M
+ =4 H U”L /\VGl\JrVGg\dx
KLy M
< o0 I =T e
0)?
2L\ C H F ||Loo M ~ L
+ H J—=J Hzl(Q)

00

where we have used (2.4.1) to obtain the last inequality. Applying Theorem 5.1.3, and noting
that

L1
| =T 120 < 2M,
where M is defined in (2.5), we arrive at (2.32). O

Now we prove three dimensional version of this theorem.

Theorem 2.4.5. Let n = 3, and suppose u and @ are admissible with ulgg = Ulsn =
f, corresponding conductivities 0,6 € C*(), and current density vector fields J and J,
respectively. Suppose 0,5 € C?(Q) and satisfy (2.21). In addition suppose u satisfies (2.12),
the level sets of u can be foliated to one-dimensional curves in the sense of Definition 3.4,

and the level sets of u are well-structured in the sense of Definition 4.2. Then
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IV — V1) < C||a—a||Loo @ (2.37)

for some constant C(m, M, 09, 01,02,u, f, Ly, cg, Cy) is independent of @ and &.

Proof. With an argument similar to the one used in the proof of Theorem 2.4.4 we get

/ Vi(z) - Vu@)dl < [ G@) - @) (2.38)
T,r g0 UT,T
+Lym || F ||L°°/ IVG1(z)| + [VGi(2)| + [VG3(z)ldL,
Unr,r

where Uy, :={u =7} N{gr =r} NQ and G = (G1, G2, G3) is defined in (3.16).

It follows follows from (2.38) and the coarea formula that

Vi -Vl < /|Vu||VﬂVu|d:c
01 Q

= // Vi — Vul|dSdr
{u=7}NQ

- // V- 1V = Vuldsdr
{u=7}NQ |v.g7'

= — |V — Vuldldrdr

~/R/]R/T,r ‘VQTH |
KLM/// \J — J|dldrdt
00Cg JRJRJU;r

Log || F ||z
N MHHL/// VG| + [VGy| + |VGs]didrdt

KLMMC' /// ’J J|
—————dldrdt
TT’VUHVgT

L M F o
g0¢yg . Vul[Vgy|

IN

IN
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_ KLMMC // =T o
{u=ryna |Vl

L oo
n MM ||FHL g// \VG1\+’VG2’+WG3’det
{u=7}N02 ‘Vu’

00Cqg
KLyMC,
= M/\J J|dx
LM || F ||z
L LuMF 9/\val\+yv021+yvc3ydx
O'OCg Q
KLyMC,
< =S J=T e
(00)2¢cq
3LM01M | F || ) Cg "
+ 00¢q H J—=J HLl(Q)

where we have used (2.4.1) to obtain the last inequality. Applying Theorem 5.1.3, and noting
that

L1
we obtain the inequality (2.32). O

Now, we are ready to prove our main stability results.

Theorem 2.4.6. Let n = 2, and suppose u and @ are admissible with ulgg = U|pn =
f, corresponding conductivities 0,6 € C?(Q), and current density vector fields J and J,
respectively. Suppose 0,5 € C?(Q) and satisfy (2.21). If u satisfies (2.12) and level sets of

u are well-structured in the sense of Definition 2.4.2, then
.1
lo =l < C I =] | Zx )

for some constant C(m, M, 00, 01,092,0, f, Lyr) independent of &.
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Proof. Using Theorem 2.4.4 we have

JI(val —[Vul) | |J]~|J|

o—oldr = / — — dx
flo =2 ol IVulva vl
|| _ / 1 =
< | = vul - |Vl dz + ~J—J)dac
e 1V~ Vallde & | oo [171- 17
< /"”|vu—va|dx+/l}|J\—|J|]dm
— Jo V||Vl o |Vl
Mo2C - 01]9] -
< BTN = 1 ey + 21T = 1] e
Mo2C 01\Q|(2M)% -k
[ m?2 + m H ‘J’_’J| HLOO(Q)'

O

Theorem 2.4.7. Let n = 3, and suppose uw and @ are admissible with ulpg = Ulsn =
f, corresponding conductivities 0,6 € C*(), and current density vector fields J and J,
respectively. Suppose 0,6 € C?*(Q) and satisfy (2.21). If u satisfies (2.12), the level sets of
u can be foliated to one-dimensional curves in the sense of Definition 2.3.4, and the level

sets of u are well-structured in the sense of Definition 2.4.2, then

~ 1
lo = &ll210y < CNIL = 111wy (2.39)

for some constant C(m, M, 0q,01,092,0, f, Ly, ¢g,Cy) independent of &.

Proof. The proof follows from Theorem 2.4.5 and a calculation similar to that of the proof

of Theorem 2.4.6. [J
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Chapter 3

Stability of CDII with Boundary

Errors

3.1 Introduction

A natural question which remains open is how the presence of errors in measurements of
the boundary voltage f together with errors in measurements of |J| affect reconstruction of
the conductivity ¢ in the interior? That is to say, if we consider the pair of interior and
boundary measurements (f,|.J|) and (f,].J]) will the resulting o and & be close in some
sense? In this Chapter, I will discuss the extension of the CDII problem outlined in the
previous chapter to the inclusion of boundary errors, which is covered in the work done in
[20]. The original setup will largely be the same, however we generalize our approach in [19]

to prove that in dimensions n = 2,3 the following stability result holds

~ 1 ~ 1
lo =&l < Ol = 1 ey + Collf = Flsme

for some constants Cp,Cy independent of & (see Theorems 3.4.4 and 3.4.5 for precise

statements of the results). The proofs are generalizations of the arguments developed in [19].
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This chapter is organized similarly to the previous. First, under very weak assumptions,
we will prove that the structure of level sets of the least gradient problem (2.2) is stable
under these new initial conditions. Next, we will provide stability results for minimizers
of (2.2) in L'. Finally, we will prove stability of minimizers of (2.2) in W' and shall use

them to prove Theorems 3.4.4 and 3.4.5 which are the main results of this chapter.

3.2 Stability of level sets

In this section, we show that the structure of the level sets of minimizers of the least gradient
problem (2.2) is stable. Throughout the chapter, we will assume that a,a € C(Q2) and
f, f € L*°(d0) with

0<m<a(z),alz) <M VeeQ and |f)||f(y) <M VyedQ (3.1)

for some positive constants m, M.

Lemma 3.2.1. Let f, f € L'(8Q). Suppose u solves (2.1) for u|aq = f, and @ solves (2.1)

for iiloq = f. Then there exists C(m, M,Q, f) > 0 such that

max{/ﬂwa\,/gmm} <C. (3.2)

Proof. Fix w € BV¢(2) and let w € BV3(£2). Then in view of (3.1) we have

m/ \Dillds < /d|Da|dx§/d|Dw|dx§M/ D
Q Q Q Q

< M/\Dw|+M/|D(w—zZ))|
Q Q

< M [ 1Dl + MCIf = Fllorony

< M/ |Dw| + M2Cy|Q| =: C(m.M,$, f),
Q
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where we have used Theorem 2.16 in [8] to get the fifth inequality above. Similarly we can
establish an analogous estimate for u and show that [, [Du| < C, where C' is the constant

appearing in the above estimates. Hence

max{/ |Dﬂ\,/ |Du|} <C,
Q Q

for some C(m, M, <, f) independent of i, u, and f. O

Lemma 3.2.2. Let f, f € LY(09), and assume u and @ are the corresponding minimizers

of (2.2) with the weights a and a, respectively. Then

’/ a]Du\dx—/&]Dﬁ\dx
Q Q

for some constants C; = C'(m, M, f) independent of u, 4, and f.

< Cilla —allp (o) + Collf = Fllrion) (3.3)

Proof. Let w € BV (Q) such that w|gg = f — f. Suppose u, @ are the minimizers of (2.2)

with the weights a and @ and boundary data f and f, respectively. Note:
u—w € BVF((), & +w € BVy(Q)
We have
/ a|Duldz — / a|Du|dz = / (a —a)(|Du| + |Du|)dx —l—/ a|Du| — a|Du|dx (3.4)
Q Q Q Q

Hence,

/Qa\Du|d:U—/Q&|Dﬂ]d:L‘< (1Du 1 ey + Dl 11 ) ||a—ELHLoo(Q)—I—/Q&|Du|—a|D&\dx

<2C|la — allpee () —|—/ a|Du| — a|Du|dx
Q
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Where we have applied Lemma 3.2.2 to the first term. Focusing on the second term, we have

/ a|Du| — a|Duldx = / a|Du| — a|D(u + w) — Dw|dx
Q Q
< / a|Du| — a|D(t + w)| + a|Dw|dx
Q
< / a|Du| — a|Du| + a|Dw|dz
Q

< |\ Dull eyl — @l gy + M /Q Duldz

This comes from the triangle inequality and the fact that w is a minimizer for (2.2) on

BV;(2). Now, by invoking the extension Theorem 2.16 in [8] we get:
IDwll @) < C'IIf = fllz on) (3.5)
and subsequently
[ alulde = [ aipilds < 2Ca dll @ + MO =~ Fliony  39)
Similarly, we can prove
/Qd]Dde - /Qa|Du|dx < 2C||a — al| poo(a) + MC||f = fllr (o0
and hence (3.3) follows. O

For the following, we will again need the weak integration by parts formula (2.9) (as outlined

in Chapter 2).

Lemma 3.2.3. Let f, f € LY(0Q), and assume u and @ are minimizers of (2.2) with the
weights a and a, respectively. Let J and J be the divergence free vector fields guaranteed

by Theorem 2.2.1. Suppose 0 < o(x) < o1 in § for some constant o1 > 0, where o is the
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Radon-Nikodym derivative of |J|dx with respect to |Du| . Then

L 19131~ Jaz < e = all ey + Calls = Flosony (3.7
where C; = C(m, M, 01,0, f,u) is a constant independent of a and f.
Proof. We have

/yJij—J.jda;:/a|j\|pu\—aj.pudx
Q Q

Sal/ Dl - J - Dudz
Q

— o (/ \J| Dulda — /mf[j, ug]d:n>

|J\|Duydx+ /{m(f— N, valdz — ” fJ, Vg]dx>

g1

IN

o ( / Dl — J - Dada + |1, vl o | f — f|!u<ag>
(/ D] — 17| Ditlde + ]l eI — f||m)

<o ( [Vl - 11Dk + 2] - f||L1(am)

where we have used the integration by parts formula (2.9) to get the second inequality above.

On the other hand, it follows from Lemma 3.2.2 that

o1 / \F1Du] — ||| Dildz = o / \J1Du| — ||| Dul + |J||Dul — 7| Dilde
Q Q

. (/ (a — @) Duldz + / o Du| — &\Daydg;>
Q Q

< 01| Dul| Ly lla — all Lo )

+01C1|la — dl| () + 01Callf = fllzo0)-
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Hence,

/Q ) = 7 Fde < o1 (| Dull ey + C) la — all (o

+ o1 (M +Co) |If = Fllrion),

which yields the desired result. O

Roughly speaking, Lemma 3.2.3 implies that as a — @ and f — f, |g—“u‘(x) becomes parallel

to @Zl (x) at points where the two gradients do not vanish. We are now ready to prove the

main result of this section.

Theorem 3.2.4. Let f, f € L'(3Q), and assume u and @ are minimizers of (2.2) with the
weights a and a and boundary data f and f, respectively. Let J and J be the divergence free
vector fields guaranteed by Theorem 2.2.1. Suppose 0 < o(x) < o1 in Q for some constant

o1 > 0, where o is the Radon-Nikodym derivative of |J|dz with respect to |Du| . Then

~ 1 ~ 1
1T = Tz @) < Cilla = allfo ) + Callf = fllF1 00y (3.8)

where C; = C(m, M, 01,%, f,u) is a constant independent of a and f.
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Proof. The second line following from the argument outlined in the beginning of Theorem

2.5 in [19] we have:

1
J—Jl| :/ J—J?)? dx
1= Tl = | (17~ )
1
S/‘|J|—|j|‘dx+/ (2(|J|]j|—J-j))2dx
Q Q
1
:/ ya—aydx+/ (2(]J]\J]—J~j)>2da:
Q Q

i ' . . \?
< 1lla = @ ey + 1 </Q2(!JHJ! - J~J>dw)

1
2

< |l = @ll <o) + (21QDF [Culla = ll (o) + Callf = Fllz(on)]
< Qlla — al| g~ (0

+ 10N [(Cilla = @llpe@)F + (Callf = fllzron)?]
< [l21@a)} + @cui)? ] fla — i
+ RGNS ~ FIlZ: oy

where we have used the Holder’s inequality and Lemma 3.2.3. O
Remark 3.2.5. In view of Theorem 2.2.1, % and % are parallel to J and J, respectively.

So Theorem 3.2.4 implies that if & is close to a and f is close to f, then the structure of

level sets of 4 is close to that of w.

3.3 L! stability of the minimizers

In this section, we establish stability of minimizers of the least gradient problem (2.2) in L*
with respect to our new initial conditions. Yet again, in order to prove any stability results
further assumptions on the weights a, a as well as the corresponding minimizers are expected.
Similarly to the previous chapter, we will need to make use of the admissibility condition

(Definition 2.3.1) as well as the foliation condition outlined in (2.12) for dimension n = 2.
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Theorem 3.3.1. Let n =2, and suppose u and 4 are admissible with u|pq = f, ilgg = 1,
and corresponding current density vector fields J and J, respectively. If u satisfies (2.12),

then

~ 1 ~ 1
il sy < CilllT] = 1701w gy + Callf = Fll e o (3.9)

for some constants C;(m, M, 0,01, f,u, Lyr) independent of 4, &, and f

Proof. Since u is admissible,

[Vu(z)| =

Using the coarea formula we get

m/ |u—ﬂ\dm§/ ]Vu|]u—ﬁ|da;:// |u — u|dSdt. (3.10)
o1 Ja Q R J{u=t}nQ

Since |Vu| > 0 in €, it follows from the regularity result of De Giorgi (Theorem 4.11
in [8]) that all level sets of u are C! curves. Now let I'; be a connected component of
{r € Q:u(z) =t} CQ,and 7: [0,L] — I'; to be a path parametrized by the arc length with
7(0) € 9. We will henceforth denote v(0) by z¥. Define

h(s) := u(y(s)) — a(v(s)).

Since Vu(y(s)) -+'(s) = 0 on I't, we have

W(s) = Vu(y(s))-~'(s) = Va(y(s)) -7 (s)




Note that

and, moreover,

Now let x} be a point on I'y where the maximum distance between v and @ along the
path ~ occurs, i.e.

u(e;) — ()] = maxfu(z) — a(z)].

Then z; = 7(sp) for some sy € [0, L], and

u(@y) — alz)| = [h(so)| =

8071 ) — J(y(r T 20) — f(a?
< [ 5o o) = T + 156 - faf)

In particular, for every x € I'y
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where L denotes the entire length of I';. Hence

u(z) —a(x)ld < |u(zy) —a(zy)| [ 1d
Tt Ty

< Larfue}) - (a?)
L L - .

< o | @) = TG)ldr + Ll f (@) - T
L - N

= [+ Ll a?) - S,
oo Jr,

and therefore
L - _
[ s =l Ll f D) - faQ) (3.1
{u=t}NQ 00 J{u=t}nQ

Since u € C(Q) solves (2.1), by maximum and minimum principles for solutions to elliptic
equations,

maxu =max [ :=C

Q o0 f f

minu =min f :=¢
Q o0 f f

and hence ¢y <u < Cy, with —M < ¢y, Cy < M. Thus we have
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Cy
// lu — aldidt :/ / lu — @l didt
R J{u=t}NQ cr {u=t}NQ

Cy 1 - .
SLM/Cf </{ IJ—JIdl+LM|f(fv?)—f(fU?)\> di

u=t}NQ 90

L Cy - _ Cy
M
< / / |7 — J|dldt + L f — f\|Lw(aQ)/ dt
00 Jey {u=t}NQ cr
L - _
=2 [ 19ullg = Thdo + Lar(Cy = el = Fllany

L ~ -
< XVl [ 17 = Tlda + Lar(Cs = ep)lf = Flion

LM - % ~ %
< 2Vl (@) |Calla = ll e + Collf = Fls oy
+ L (Cp = cp)llf = Fll=on)
Ly MCy .1
< U(% Ha_a’HzOO(Q)
LMMC 1 1 ~ 1
+ |: 0.2 2|aQ|2 +LM(Cf Cf)(ZM)2:| ”fi f||[2,oo(8Q)a
0

where we have used (3.11) and Theorem 3.2.4. Hence, (3.9) follows.

Note that C;(m, M, oo, 01, f,u, Lyr) are independent of 4, &, and f. O

Next we generalize Theorem 3.3.1 to dimension n = 3. In order to do this, we need the
additional assumptions on level sets of u that were outlined in the previous chapter (see

Definition 2.3.4 as well as Remark 2.3.5).

Theorem 3.3.2. Let n = 3, and suppose u and 4 are admissible with u|pg = f, Ulgn = f
and corresponding current density vector fields J and J, respectively. Suppose the level sets

of u can be foliated to one-dimensional curves in the sense of Definition 2.3.4. Then
~ 1 ~ 1
lu = @l 1) < Cilla =@l 2 + Collf = Fll2e (3.12)

where C(m, M, 09,01, f,u, Ly, cg,Cy, g) is independent of @, &, and f.
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Proof. The proof is similar to the proof of Theorem 3.3.1, and we provide the details for

the sake of the reader. Since u is admissible,

m/ |u—ﬂ\dw§/ ]Vu|]u—&|d:1::// u — |dSdt. (3.13)
01.Ja Q R J{u=t}nQ

The level sets of u can be foliated into one-dimensional curves by level sets of some

function g in the sense of Definition 2.3.4. Thus

// lu — ldSdt = // ’Vgt’| — a|dSdt
{u=t}nNQ {u=t}NQ Vgl
= u — u|dldrdt
///{u H{g=r}nQ !Vgt“ |
/// |u — a|dldrdt.
Cg JR JR J{u=t}n{g=r}nQ

Similar to the two dimensional case, we parameterize every connected component I'y of

IN

{u =t}N{g = r} NQ by arc length, v: [0,L] — I'; with v(0) = 2 € 99, and let
h(s) = u(y(s)) —u(y(s)). Let x} be the point that maximizes |u — @| on I'; and suppose
v(s9) =z} for some sy € (0, L), where L is the length of I';. Then by an argument similar

to the one in the proof of Theorem 3.3.1 we get

1 [k . .
lu(zy) —a(zy)] < /0 |J(v(7)) = J(y(7)ldr + | f (=) — f(=D)],

a0
and consequently

fu(z) — a(0)|dl < L”/|J—ﬂm+LMu@%—f@%L
s oo Jry

Hence,

/ il < 2 = Jldl+ Lagl £ = F@D) (3.14)
{u=t}Nn{g=r}nQ {u=t}n{g=r}nQ
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Using this estimate and the coarea formula we have

m/ mamg// |u — @i|dSdt
o1 Jo R J {u=t}nQ
§1/// |u — a|dldrdt

Cg JR JR J{u=t}n{g=r}nQ

/ / ( / J—J|dz+LMrf<a:?>—f<x?>|) drdt
{u=t}n{g=r}nQ
- /// \J — Jldidrdt
CgUO {u=t}n{g=r}NQ

| /\

maxf maxg
/ (:Ut)]drdt
mmf mmg
Ly C ~
< L // VaullJ — Jldsdt
€900 JR J{u=t}nQ
2M Ly -
+ Cllgllze@)ILf = fllzea0)
9
Ly C o aMLulgllieey . -
= 2% | (Gull - Jldo + D)1~ flloegoy
CgO'O Q Cg
LyC
< 0T ul ey (Gl = ey + Coll = Ty
g0
4MLM”9”L°° 0 .
+ ( )||f_fHL°°(BQ)
9
LMC MC, ~o L
< =L ——|||J| - |J||I}
L[l
LyCyCoy  AM L9l poo () 1 .
2M |0 — flI?
AR TR MO 1 = Tl oy
where we have applied Theorem 3.2.4. ]

3.4 WUl stability of the minimizers

In this section, we prove stability of minimizers of (2.2) in W1, As mentioned in Section
previously, in general, (2.2) does not even have unique minimizers. Additionally, we have
introduced a new source of error in this chapter. Consequently, in order to prove stability

results in W1, it is natural to expect stronger assumptions on the minimizers.
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Lemma 3.4.1. Let n = 2,3, and suppose u and 4 are admissible with u|pq = f,0loq = f
the respective traces of functions f, f € H3(Q) and corresponding conductivities o and &,

and current density vector fields J and J, respectively. Suppose a,5 € C%(Q) with

| o llcz), 1l & llcz@)< o2 (3.15)

for some o9 € R. Let )
G(x) := J(m)&(—x;](x)

with G = (G1,G2) for n =2 and G = (G1,G2,G3) for n =3. Then

, x €, (3.16)

L1
I9Gillzr@) < Culd = T, g, (3.17)
for some constant Cy which depends only on Q, 0o, o2 and || f || (q)-
Proof. The proof is similar to that of Lemma 2.4.1 in Chapter 2 and we omit it. g

Next we prove that u and @ are close in W!(Q) under these initial conditions. In order to
do so, we need additional assumptions on the structure of level sets of u. Namely, we will

invoke Definition 2.4.2 for the remainder of this section.

Theorem 3.4.2. Let n = 2, and suppose u and @ are admissible with ulgpg = f, Ulsgq =
f, corresponding conductivities 0,6 € C%(Q), and current density vector fields J and J,
respectively. Suppose 0,5 € C?(Q) and satisfy (3.15). If u satisfies (2.12), and the level sets
of u are well-structured in the sense of Definition 2.4.2, then

1 ~ 1
193 — Vallaay < Cilla — all gy + Collf = Fllipsm oy, (3.18)

for some constant C(m, M, 09, 01,02,u, f, Lrs) independent of 4 and &.

43



Proof. Fix x € Q and h € R? with |h| = 1. Then

L(z,h) = (Vi(r) — Vu(z))-h = lim [ + th) — u(z +tth)] — i) - u(x)].

First we estimate the above limit. Since all level sets of u reach the boundary 0f2, there

exist z, z; € 02 such that

Thus
[a(z +th) — u(x + th)] — [a(z) — u(x)] = [a(z + th) — u(z)] — [@(z) — u(z)]

= [a(z +th) —u(z)] — [a(x) — a(2)] + [a(z) — u(z)] = [a(z) — u(z)]

Let v and 4 be the curves passing through x and x 4 th, described in Definition 2.4.2
with 7(0) = z and (0) = 2. Suppose y(sp) = = and reparamterize y; so that v(so) = x+th.

Then we have

[a(z + th) — a(2)] — [a(z) — a(z)] = [a(ve(s0)) — u(7:(0))] — [@(v(s0)) — u(~(0))]

= [Vt s~ [ Vi) /(o)
0 0

Hence

—%1_13(1) (/ Va(y(s)) - v (s ds—/ Va(y ) (3.19)

+hmt([ u(z) — u(z)] = [a(z) — u(2)]) (3.20)
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Now, we can focus on the last term here by noticing

[@(ze) = ulz)] = [a(z) — u(z)] = [f(z) = f(20)] = [f(2) = f(2)]-

Also, we denote the tangential direction along 0f) at z by 6, and we get,

[f(z) = F(20)] = [f(2) = f(2)]

i :
:nm<ﬁ@0—ﬂw%ﬁﬂ@—ﬂwghmurw|
0 |2t — 2| t50  t
~ 1Ol (F = )

<N Fll oo @xsn-1xfo,a IV (f = Pl 00

< 1Pl pooxsn-rxpo, a1 = Fllwre(an)- (3.21)

Qi

We can now shift our focus onto the first term (3.19). Substituting V@ by % and using

the fact that J is perpendicular to 4/ and v; we get

(T~ Ts) [ IGe) ~ TG
E£t<A ) | 5(+(5)) ”<)d>‘

Now define

Hence we get

t—0 ¢

iy 7 ([ Guton fteias = [T ) s)as).

This term can bounded in the same way as in the proof of Theorem 4.4 in [19], so we omit

the calculation as it is identical. Hence we have
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|Vi(z) — Vu(z)] <

IN

Thus,

/ Vii(z) — Vu(z)|dl

and consequently

/ |Va(z) — Vu(x)|dl
{u=7}NQ

sup  L(z,h)
heR™,[h|=1

1(/ 7y (7(s)|dl

+HFMWA!W%W@N+W%W@Mﬂ

I F llzee I1f = fllwoea0)-

KL
< M / |J(z 2)|dl

+LM\1?mﬁ1/\VGmxw+wv0xxnﬂ
N

+Lo || F e I = fllwrosan)

KL ~
< M |J(z) — J(z)|dl (3.22)
70 {u=7}N0
D | Fllom [ [VGi(@)]+[VGa(a)
{u=7}NN

+L || F e 1 = Fllwrosaa)-
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Using (3.22) and the coarea formula we have

EHVﬂfVuHU(Q) < /|Vu|\V@Vu|dm
a1 Q

- // Vi — Vu|dldr
R J{u=7}nQ

< KLM// \J — J|dldr
00 R J{u=7}NQ

+ Ly \FIILoo// IVG1| + |VGa|dldT
{u=7}N0

+ La || Fllzee @M)|If = fllwroc(an)

. KLMM// =l
(u=ryna |Vl

n Ly || Fl|pee M // VG| + WGQ‘dldT
o0 {u=1}NQ |Vl

+ 2MLy || F o |If = Fllwres a0
KL M
_ M / |J — J|dx

L Fllree M
. Lu H Iz / VG| + |V Galda
(s} Q
+ 2MLy || F e [|f = fllwreean)
KLy M
< 1T =T o
(00)?
2Ly Cy || F Lo M 712
+ 1T =T 17

g0

+ 2MLy || F ||pe~ |If - Fllwre a0

where we have used Lemma 3.4.1 to obtain the last inequality. Applying Theorem 3.2.4,
and noting that
-1 1
H J—J Hil(g)g (QM‘QD2>

where M is defined in (3.1), we arrive at (3.18). O

Now we prove three dimensional version of this theorem.

Theorem 3.4.3. Let n = 3, and suppose u and @ are admissible with u|pq = f, Ulgg =

f corresponding conductivities 0,6 € C?(Q), and current density vector fields J and J,
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respectively. Suppose 0,6 € C?(Q) and satisfy (3.15). In addition suppose u satisfies (2.12),
the level sets of u can be foliated to one-dimensional curves in the sense of Definition 2.5.4,

and the level sets of u are well-structured in the sense of Definition 2.4.2. Then

19— Vull oy < Crlla = all gy + Collf ~ Fllism oy (3.23)

for some constant C;(m, M, 09, 01,02, u, f, L, cg, Cg) is independent of 4 and &.

Proof. With an argument similar to the one used in the proof of Theorem 3.4.2 we get

KLy

/ Vi) - Vu@dl < <[ @) - @) (3.24)
Lo || P e /U VG1(2)| + VG (2)| + [VGs(@)|dl

Ly || F o I = fllwresan)

where U, :={u=7}N{g =r}NQ and G = (G1, G2, G3) is defined in (3.16).

It follows from (3.24) and the coarea formula that

" \Vi - Yl < /|Vu||Vﬂ—Vu|d:U
01 Q

= / / |V — VuldSdr
{u=7}N0
- // V-] V= Vuldsdr
{u=7}nQ |VQT
= Vu — Vu|dldrdr
/R/R /T,T Vg | |
KL -
M / / / \J — J|dldrdt
90¢g JRJR JU;,

L F | peo
N M”‘L/// IVGy| + |VGal + |V Gsldldrdt
RJRJU: -

IN
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+ 2lgllze@) Lt | Fllze @M)If — fllwie (o)

KLMMC /// |J = J|
17— didrdt
- VUl V]

o [Vul[ Vg

00Cq

IN

+ Mgl Iar | F o 17 = fllwreon

_ KLMMC // |J J|det
{u=7}NQ |vu|

n LMM HFllLoo g// |VG1|+|VG2|+|VG3|det
00Cqg {u=7}NQ [Vl

+ AM||gllpoo@yLas | F o I = fllwresan)

KLyM ~
MQOQ/ \J — J|dz
(00)%¢cq Q

LyM || F |~ C
g LM F g/ VG| + VG| + [VGCi|da
00Cqg Q
+  AM||gllzee Laa | F Lo [1f = Fllwreo(an)
KLyMC
< /5 J-J e
(00)%c Cg
3Ly CLM || F |1 (0) Cy -1
+ o0Cq || J—=J HLI(Q)

+ AM||gllpeo@yLas | F oo If = fllwroan),

where we have used (3.17) to obtain the last inequality. Applying Theorem 3.2.4, and noting
that

L1 1
17— T 11} = M),
we obtain the inequality (3.18). O

Now, we are ready to prove our main stability results.

Theorem 3.4.4. Let n = 2, and suppose u and @ are admissible with ulgg = f, Ulsq =
f corresponding conductivities 0,6 € C%(Y), and current density vector fields J and J,

respectively. Suppose o,6 € C*(Q) and satisfy (2.21). If u satisfies (2.12) and level sets of
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u are well-structured in the sense of Definition 2.4.2, then

l ~ l
lo = Gllzie) < Cvla—allfaigy +C2 Il £ = F i1 any

for some constants C;(m, M, 0¢,01,09,0, f, Lpr) independent of 6.

Proof. Using Theorem 3.4.2 we have

/ lo — &ldx
Q

IN

IN

[I(Val = [Vul) [J| 1]

= — dzx
/n V||Vl [V
Bl _ / 1 =
—— ||Vu| — |Vul| dz + —~‘J—J’d$
[ e Vel = Vallde+ [ e[l -1
] _ / 1 =
————|Vu — Valdz + ~‘J—J‘dm
| o M1V
Mo?

1 ~ 1
o (= alegy +Ca 1= F limgony
o1/
m

la—a ||L°°(Q)
Mﬁq+mmmMﬁ
m? m

MO'ICQ

1
] | a—a Hzoo(Q)

If=F IIWloo 29)

Theorem 3.4.5. Let n = 3, and suppose u and @ are admissible with u|pg =

O

[ dloa =

f corresponding conductivities 0,6 € C%(Y), and current density vector fields J and J,

respectively. Suppose o,6 € C?(Q) and satisfy (2.21). If u satisfies (2.12), the level sets of

u can be foliated to one-dimensional curves in the sense of Definition 2.3.4, and the level

sets of u are well-structured in the sense of Definition 2.4.2, then

HU—UHLl

< O = 1 gy +C2 | £ = F e oy

for some constants C;(m, M, 0g,01,02,0, f, Lrr, g) independent of 6.
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Proof. The proof follows from Theorem 3.4.3 and a calculation similar to that of the proof

of Theorem 3.4.4. OJ
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Chapter 4

The Inverse Sturm-Liouville
Problem with Partial Spectral

Data

4.1 One Dimensional Results

Consider the problem as outlined by the author in [18]:
v +(A=Ply=0 (4.1)
for x € [0, 7]. Subject to the boundary conditions
y(0)cosa +¢'(0)sina =0, y(r)cosB+¢/'(m)sinf =0 (4.2)

y(0)cosa+ ¢'(0)sina =0, y(m)cosy+ ¢ (m)siny =0 (4.3)
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Now, let y = u(x, \) be the solution to (4.1) subject to (4.2) at + = 0, and y = v(z, A) be

the solution to (4.1) subject to (4.2) at = w. Hence, u and v satisfy
u(0,\) =sina, u'(0,\) = —cosa (4.4)

v(m,A) =sinB, (7, \) = —cosp3 (4.5)

In order for our solution u to satisfy the condition at z = 7 from (4.2), we must also require
that

u(m, \) cos B + ' (w, \) sin 8 = 0.

This leads us to define the following function
w(A\) = —u(m, \) cos 8 — v/ (7, \) sin B (4.6)

whose zeros are the eigenvalues of (4.1) subject to (4.2). It then follows from Lemma 2.0 in
[18] that w is an entire function of order %, and thus, by Hadamard’s factorization theorem

has the form

I(-5) 7

m=1
This leads us to prove the following which is an analogous result to the main one in [18]

with slightly weakened assumptions.

Theorem 4.1.1. If a subsequence of the spectral data for (4.1) is given for the boundary
conditions (4.2), the entire spectrum of (4.3) is known and if sin(y — ) # O then P is

uniquely determined.

Proof. Suppose we have the problem (4.1) with coefficient functions P; and P; respectively.
Thus, we have functions uy,v; and ug, vy corresponding to the condition (4.2) respectively.
Let us denote the eigenvalues of the problem subject to (4.2) corresponding to Py by {fu1,m}

and those corresponding to Pa by {u2m} for 0 < m < oco. It is well outlined in [18] that we
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have the following:

ur(x, p1,m) = Crv1 (@, pi1,m)

u2(x, p2,m) = Crv2(, th2,m)

where C,,, # 0 is shown to be uniquely determined by the spectrum of (4.3). Referring back
to the previous argument leading up to (4.7), we have two resultant functions w; and wy

having the form for j = 1,2

=TI (1 )

m=1 Hjsm
Since we have assumed knowledge of only a subsequence of the spectral data (i.e. the spectra

corresponding to P; and P» for (4.2) agree on a subsequence), let us consider

w,(\) = ﬁ (1_ A;) (4.8)

mp=1

where f11,m, = p2,m;, = Am,- Note w, has zeros only on the given subsequence of eigenvalues

for (4.2). Similarly to [18], we will define for any f € CZ(]0,7]) the function

1

H(:C,A):w*(/\)

wle) [ ", € F(€)de

and we consider

/F H{(z, \)d\

where I' is a sufficiently large circle in the A plane centered at the origin. Since the estimates
proved in Lemma 2.0 of [18] all hold for any solution to the boundary value problem (4.1),

this allows us to conclude yet again that

/ H(xz,\)d\ —mif(x) =0 (4.9)
r
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as the radius of I' becomes arbitrarily large. By residue theorem
N
/ H(w,\)d\ =2mi Y Res(H;Am,)
r
mi=1

where A, are the zeros of w, lying inside of I'. Combining this with (4.9) and using the

fact that the entire argument is identical regardless of using any of w1, us, v1, v we arrive at

o0

f(z) = m; Wum M) /0 "1 (€ Amy) () (4.10)
=3 ) JAREIE RO
me=1 kaw*()\mk) g 0 §
and we have that
[ee] 1 s
0= 3 G e ) /0 111 (6, Ay ) — 1026, A )| F(E)

uniformly on closed intervals. Now, by the orthogonality of eigenfunctions, multiplying

uz(z, A1) to the above equation and integrating gives

/gﬂ[m(f’ A1) — u2(§ A)]f(€)dE =0

for any f € C3([0,7]). Which gives u1(&, A1) = u2(&, A1), and consequently P; = P, almost

everywhere. [

Remark 4.1.2. As we can see by this argument, the spectrum of (4.3) was only necessary in
establishing that the normalizing constants Cy,, were the same for both P; and P. In [29]
the authors assume that these normalizing constants coincide for each of P; and P in the
statements of both Theorem 1.1 and Corollary 1.2. This suggests they can be reproved for a
subsequence of the spectrum with minimal adjustment to the methods they have used. The

following are the results by the authors in [29] (setting o = 7, 8 =0 in (4.2)):
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Theorem 4.1.3. Suppose Py, P, € L*°(0, ), their spectra subject to (4.2) agree

Him = H2m = Ams

and that the normalizing constants agree, i.e. 1, = Cc2.m, where

o :/o W (@, Am)de = || (- M)l 20,y J = 1,2

for uj(-, A\p,) the eigenfunctions corresponding to Pj, Ay, and 0 < m < oo, j =1,2. Then

P =5

Remark 4.1.4. Note that the normalizing constants satisy c¢;,, = % where this relation

comes from the Sturm-Liouville expansion seen in [18].

Corollary 4.1.5. Suppose that P, Py € L*°(0,7), their spectra subject to (4.2) agree. That

18 to say:

Him = U2m = Am,

ull (777 )\m) = ’LL,2(7I', )\m)

then P1 = PQ.

4.2 n-Dimensional Results

We hope to continue working with this problem to establish similar results in n-dimensions.
The authors in [29] proved several results using the entire spectral data. The author in [14]
was able to extend the main multidimensional result to the case where finite boundary data
is lacking. However, the author does remark that many of the arguments used are depending
only on the asymptotic behavior of eigenfunctions. This leads us to believe similar results

should hold in higher dimensions when only considering a subsequence of spectral data.
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Chapter 5

Conclusion

5.1 Future Directions for CDII

After showing global stability for (CDII) with respect to both interior and boundary data,
there are several directions in which the problem could be extended. Another important
direction for this problem would be to develop a similar method to provide stability for
anisotropic conductivities (such as that of the heart) from minimal interior measurements.
In contrast with an isotropic conductivity which is represented as a scalar function on §2,
an anisotropic conductivity is directionally dependent and is represented as a Riemannian
metric (or n X n matrix). It would certainly be a challenging problem worth investigation
considering that the question of unique reconstruction is relatively unexplored. My advisor
along with collaborators have taken the first step in [12]. Once unique reconstruction is
more fully developed, one could then ask the question of stability which is likely to require

stricter hypotheses.
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Stability on a more complex Least Gradient Problem

Additionally, we may be able to prove similar stability results for solutions to the following

equation related to mean curvature:

Vu+ F
Vlae—— | =H = f. 5.1
(o) = on = o0
Where we can let J = —a IgZIII::I , and w is the unique minimizer of the weighted least gradient
problem
I(w) = min / a|lVw + F|+ Hw dx, (5.2)
weBV;(Q) Jq

where a = |J|, and BV;(Q) = {w € BV (Q),w|on = f}.
One would could start by proving similar stability results for J and extending these results
in a similar fashion to L' and Wh! stability for minimizers of I(w).

Indeed we have taken some initial steps in this direction:

Lemma 5.1.1. Let f € LY(0R), and assume u and @ are minimizers of (5.2) with the

weights a and a, respectively. Then

/ ol Du + F| + Hudz — / QD+ F| + Hidz| < Cla— e, (5.3)
Q Q
for some constant C' = C(m, M, <, f) independent of u and 4.

Proof. First note that in view of (2.5) (bounds on a,a) we have
m/ |Dﬂ—|—F\dm§/EL|D€L—|—F|d:E§/EL|Dw+F|d:L’§M/ |Dw + F|dx
Q Q Q Q

for any w € BV¢(Q). Thus [,|Du+ F| < C, and similarly [, |Du+ F| < C for some

constant C' which depends only on m, M, and 2. Hence

max{/ |Dﬂ+F\,/]Du+F\}§C, (5.4)
Q Q
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for some C(m, M) independent of 4 and u. Since u, 4 are the minimizers of (5.2) with the

weights a and a,

/a|Du+F!+Hud:c—/d\Du+F|+Huda:
Q Q
S/a\Du+F\+Hudm—/&]Dﬂ—i—F]—i—Hﬂdac
Q Q

§/a|Dﬂ+F|+H&dfv—/&|Dﬂ+F!—|—Hﬂdw.
Q Q
Thus

/(a—d)|Du+F]dx§/a|Du+F+Huda:—/d|Dﬂ+F!+Hﬂd:c
Q Q Q

< /(a —a)|Du + F|dx,
Q
and we get

—Ha—ELHLoo(Q)||Du+FHL1(Q)§/Qa|Du—|—F|—I—Hud:z—/QZL]Dﬂ—i—F|+Hﬂdm

<lla = all Lo ()| DT + F|l 11()-

Hence (5.3) follows from (5.4). O

Lemma 5.1.2. Let f € LY(0R), and assume u and @ are minimizers of (5.2) with the

weights a and &, respectively. Let J and J be the divergence free vector fields guaranteed by

Theorem 2.2.1. Suppose 0 < o(x) = |Da1£i)p| <o1= HQHL%(Q) in Q for some constant §, such

that |Du+ F| > 6 > 0, where o is the Radon-Nikodym derivative of |J| dx with respect to
|Du+ F|. Then

| 19131~ 7 Fdz < Clla =0 (5.5)

where C' = C(m, M, 01,Q, f,u) is a constant independent of a.
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Proof. We have

~ ~ a ~ a ~
JINJ|-J - Jde = | ——|D Fl|J| — —=———= (D F)-Jd
L1911 dae = || St Du Pl e (Dut F) -

=0 </ |Du+F||j|dx—/F-jd:U— f[j,VQ]d.%'—i-/Hud.l‘)
o0
/]Du+F||J|dx—/(Du+F)dx J+/Hu—u)d:c>

<””L5°°<Q>/ |Du+ Fl|J| = (Du+F) - Jdo
Q

=01

o </ \Du+ FI|.J| - \Du+F|]J]da:+/Hu—u)da:>
< a]Du+F\—dDﬂ+F|dx+/H(u—ﬁ)dm
Q
—|—/a|Du—|—F|—a|Du—|—F!dm)
Q

< o1 + o1

/a\Du+F|+Hudm—/d|Dﬂ+F+Hﬂd:c
Q Q

/(d—a)\Du+F|dw ,
Q

where we have used (2.6) and the integration by parts formula (2.9). Finally, the inequality

below follows from Lemma 5.1.1,
<01 (Clla = all (o) + 1Du + FllLiqylla — all L= (o)) ,

which yields the desired result. O

Theorem 5.1.3. Let f € LY(0R), and assume u and @ are minimizers of (5.2) with the

weights a and &, respectively. Let J and J be the divergence free vector fields guaranteed by

Theorem 2.2.1. Suppose 0 < o(x) = |Da7£i)p| <o1= HGHL%(Q) in Q for some constant §, such
that |Du+ F| > 6 > 0, where o is the Radon-Nikodym derivative of |J|dz with respect to
|Du+ F| . Then

1T = Tllpr <0Ha—a||Loo (5.6)

«)

where C' = C(m, M, 01,Q, f,u) is a constant independent of a.
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Note that the proof of this theorem is equivalent to that of Theorem 2.5 in [19]. The only
difference being that we use our Lemma 5.1.2 to justify one of the inequalities in the proof.
One could now try to expand upon these results and use them in a similar way to
chapters 2 and 3 in order to prove stability results on the minimizers themselves. However,

this may be much more difficult in this setting.

5.2 Future directions for the Inverse Sturm-Liouville Prob-

lem

In view of Corollary 4.1.5, we will furthermore consider the n-dimensional analog of the one
dimensional problem. Let 2 € R™ be bounded domain with smooth boundary and ¢ be a

real valued scalar function on §2. Consider the problem

—Au+qu=pu in (5.7)

vu=0 on Of.

Denote the eigenvalues of (5.7) by {pm }5°_; with corresponding eigenfunctions {@,, }>°_;.

We then hope to extend the following results from [29]:

Theorem 5.2.1. [29] Let q1,q2 € C*°(Q) be the coefficient functions in (5.7), and suppose

the respective spectra corresponding to each agree for all k

M1k = U2 K,

and that the outward normal derivatives of eigenfunctions agree on the boundary

Op1r  Opa
ov v on 00

then q1 = qo in .
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As detailed in [29] this result requires the use of the Dirichlet to Neumann map defined

in the following way: let u be a solution to

—Au+qu=0 in (5.8)

u=jf on Of.
We define the Dirichlet to Neumann map
Af = . (5.9)

The proof of 5.2.1 hinges upon the following

Theorem 5.2.2. ([29]) Let q1,q2 € L*°(Q2) and suppose that, as meromorphic functions of
reC

AQ1—>\ = AQQ—)\
then q1 = qs.

The proof of this theorem is unchanged by considering only partial spectral data. What
remains to be shown is the connection between Theorem (5.2.2) and the hypotheses in
Theorem (5.2.1). In other words, we must show that partial spectral data in the form of
a subsequence can still give equality of the Dirichlet to Neumann maps. This would be

achieved by establishing results similar to the following:

Lemma 5.2.3. ([29]) For m sufficiently large and f € C*°(0%),

(dfi)’" (har(£) = [ _alen)f)ds)

where g is continuous in 0 x Q given by

. 1 dpi O

=1
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Lemma 5.2.4. ([29]) For f € C*°(0); q1,q2 € C*®(); and 0 < t < 3 we have

lim [(Ag—x = Ago-2)(H)l e 00) = 0

A——00
In [14], the author has this main result for partial spectral data:

Theorem 5.2.5. ([14]) Let q1,q2 € C®(Q) be real valued. Suppose there exists an N > 0

such that

Mg = Hok, k=N
Wik =Wak, k=N.
Then q1 = qo.

Where W; ;. denotes the eigenspace corresponding to p; . This result depends on proving

the following:

Lemma 5.2.6. ([14]) Under the assumptions of the previous theorem, there exists a constant

C > 0 such that

C
[Ag -2 — Age—allB(L2(002)) < o

for large [A| where || - || (r2(a0)) denotes the operator norm for an operator on L%(092).

If we can prove similar results to this for a subsequence of spectral data, then we would

have the main result as a consequence.
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