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Probabilistic Impact of Electricity Tariffs on Distribution Grids Considering
Adoption of Solar and Storage Technologies

Miguel Helenoa,˚, David Sehloffb, Antonio Coelhoc, Alan Valenzuelaa

aLawrence Berkeley National Laboratory, Berkeley, CA, USA
bUniversity of Wisconsin, Madison, WI, USA

cINESC TEC, Porto, Portugal

Abstract

This paper models the role of electricity tariffs on the long-term adoption of photovoltaic and storage tech-

nologies as well as the consequent impact on the distribution grid. An adoption model that captures the

economic rationality of tariff-driven investments and considers the stochastic nature of individual consumers’

decisions is proposed. This model is then combined with a probabilistic load flow to evaluate the long-term

impacts of the adoption on the voltage profiles of the distribution grid. To illustrate the methodology, differ-

ent components of the electricity tariffs, including solar compensation mechanisms and time differentiation of

Time-of-Use (ToU) rates, are evaluated, using a case study involving a section of a medium-voltage network

with 118 nodes.

Keywords: Rate Design, Distributed Energy Resources, Distribution Grid Planning, Probabilistic Load

Flow.

Nomenclature

Sets

Tyr Set of hourly time points over a year, indexed by t

N Set of nodes in the network, indexed by n

C Set of prototypical consumers, indexed by c

CR Subset of prototypical residential consumers

CS Subset of prototypical services consumers

U Set of actual consumers, indexed by u

It Set of consumers connected to utility at time t
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K Set of technology types (PV, Storage), indexed by k or by technology type {pv,s}

Parameters

ĞLCc,t Normalized prototypical load of consumer type c at time t

Ln,t Load of node n at time t (kW)

LCt Load of a prototypical consumer at time t (kW)

SRn Ratio between services and residential power at node n

Esr Admissible disaggregation error in services/residential load

PRc Reference power for prototypical consumer c

Epr Admissible disaggregation error in reference power for prototypical consumers

CFixk Fixed cost of technology k ($)

CV ark Variable cost of technology k ($/kW or $/kWh)

Annk Ann. interest rate for investments in tech. k

ECt Energy cost at time t ($)

FIt Feed-in remuneration at time t ($)

CEff Charging efficiency of the battery

DEff Discharging efficiency of the battery

PCr Battery maximum power/capacity ratio

ĚSGt Normalized solar gen. at t (kWh/kW installed)

MiSoc Minimum battery state-of-charge (r0, 1s)

M A sufficiently large number

ζn,c Number of consumers of type c in node n

Φc Optimal investment solution for consumer type c

Ψc Optimal investment costs for consumer type c

Ωc Optimal annual savings for consumer type c

γpur purchase factor used in solar compensation analysis
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γpk peak factor used in time differentiation of energy costs analysis

Decision Variables

xn,c Peak power of consumer type c in node n

uet Electricity export to utility at time t (kW)

α Charging/discharging aux. variable (binary)

βn,c Binary variable indicating the presence of consumer c in node n

capk Installed capacity of technology k (kW/kWh)

purk Investment decision for tech. k (binary)

pvt PV output at time t (kW)

cht Battery charge at time t (kW)

dcht Battery discharge at time t (kW)

soct Battery state of charge at time t (kWh)

uit Import from utility at time t (kW)

Random Variables

violavglimpIq Average magnitude of violations of system operating limit lim over all time points (kW).

violmax
lim pIq Largest magnitude of violations of system operating limit lim over all time points (kW).

violNlimpIq Number of violations of system operating limit lim over all time points, as a function of stochastic

investment decisions (kW).

Iu, I Investment decision by customer k, also as a vector of decisions for all u.

ut,upIuq Netload seen from the utility at time t from consumer u, as a function of a stochastic investment

decision (kW).

W rAs Indicator random variable which has value 1 if event A occurs and 0 otherwise.

1. Introduction

Electricity tariffs are a main economic driver for the adoption of Distributed Energy Resources (DERs),

namely photovoltaic (PV) and storage systems, by private consumers and microgrid owners. In fact, utility
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rate design decisions around different tariff components - volumetric rates, demand charges, feed-in compen-

sations, etc. - affect the economic viability of DER technologies, encouraging or discouraging behind-the-

meter investments [1, 2]. The last decades of DER policies have shown a significant increase of PV adoption

in residential buildings encouraged by a portfolio of tariffs comprising net-metering schemes [3, 4, 5] and PV

feed-in remuneration [6, 7]. In contrast, tariff mechanisms that impose restrictions to the PV injection, such

as net-billing schemes promoting self-consumption [8, 9], lead to a limited increase of PV adoption [10].

As storage costs continue to fall, an analogous behaviour can be expected in the behind-the-meter adop-

tion of these technologies. In fact, private storage adoption, when combined with PV, has the potential to

increase consumers’ self-sufficiency [11, 12] and decrease their energy bill. Additionally, new revenue streams

for storage appear when tariffs comprise a significant time differentiation of energy costs, e.g. time-of-use

(ToU) rates or real-time prices [13], or when batteries are used to decrease peak demand charges [14, 15].

Thus, these time-dependent characteristics of the electricity tariffs can be another driver for the adoption of

behind-the-meter storage installations and influence the dispatch of these assets. These temporal character-

istics of tariffs are considered in many storage scheduling [16] and sizing [17] methods as well as in prosumer

and microgrid DER adoption models [18, 19].

The potential of rate design to drive long-term behind-the-meter adoption of PV and storage technologies

has been explored by several authors in the literature, for example to understand the effectiveness of financial

subsidies in promoting DER technologies [20], to discuss grid cost recovery in scenarios of massive penetration

of PV and storage [21, 22, 23] and to quantify the relationship between rate design and ancillary services

costs at the distribution grid level [24]. However, most of the contributions in this domain are made from a

pure economic perspective, neglecting some of the well known physical impacts of the presence of DERs (PV

in particular) on the distribution network operation, such as overvoltages or voltage unbalances [25, 26].

On the other hand, the security aspects of the distribution grid associated with the massive adoption

of PV have been treated in a more technical perspective, for example through different probabilistic load

flow (PLF) methods, applied to utility grid planning [27, 28] and operations [29, 30] in order to quantify

the impact of prosumers’ DER adoption and new PV connections into the distribution grid. Some of these

PLF methods, e.g. [31], capture the intermittence and short-term uncertainty of the PV production and the

consequent impact on voltages and line flows of the distribution network. However, in a longer time scale,

these models neglect the economic dynamics of the PV and storage adoption and the role of electricity tariffs

in driving the behind-the-meter installations of these DERs with significant impacts to the grid operation.

In short, the literature on DER policy and economics claims that electricity tariffs are a main driver of

the behind-the-meter adoption of PV and storage, with the ability to influence dispatch of these technologies

and dramatically change the netload in different nodes of the distribution network. At the same time, a

comprehensive literature on power distribution studies has pointed out that an uncontrolled adoption of

these resources (especially PV) can introduce new security and power quality challenges in the steady-state

conditions of the distribution grid, which requires new system planning methods [32]. From these two
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perspectives, it is clear that rate design decisions now have the potential to impact the grid in the future,

if the economic dynamics of DER adoption are taken into account. However, as these two lines of research

have evolved separately, only a reduced number of studies have focused on this impact [21, 22, 23, 33, 34].In

particular, a methodology to quantify the grid security and reliability impacts of tariff driven adoption of

solar technologies was presented in [33, 34] and [35], respectively. In these papers, the authors used an

optimization-based approach, from the prosumer perspective, to calculate the post-adoption netload and

the consequent impact on the grid. Although [33, 34] have the merit of being the first attempt to measure

this phenomenon, this approach fails to capture the uncertainty of DER adoption decisions, which may

result in an unrealistic evaluation of the grid impacts, especially in systems with a large number of potential

prosumers. Thus, to address this problem in a realistic manner, this paper contributes to the literature

on the field by presenting a methodology to quantify the impact of the electricity tariffs on the long-term

steady state security conditions of the distribution grid. To achieve this, this paper proposes a new hybrid

stochastic adoption model that fit the specific objectives of this work and facilities integration with a PLF

evaluation. The contributions of this paper are threefold:

• First, to propose an extension to the analysis of [33, 34] by capturing the uncertainty of DER adoption

when calculating the effect of electricity tariffs on the netload profiles of the potential prosumers;

• Second, to translate this uncertainty at the different nodes into a probabilistic impact analysis of the

grid security conditions, using a PLF algorithm to calculate voltage and line flow distributions. The

end result is a full probabilistic model that captures the long-term economic impact of rate design on

the steady state adequacy of the distribution grid.

• Finally, to perform a sensitivity analysis to the different components of the rate design and evaluate

their probabilistic impact on the grid voltages. To do that, a case study involving a set of prototypical

consumers in California and a MV distribution network with 118 nodes is presented.

The rest of the paper is organized as follows: Section 2 presents an overview of the methodology of this

paper and discusses its underlying assumptions; Section 3 proposes a stochastic adoption model for PV and

storage technologies with the purpose of evaluating the impact of tariffs offered by the utility; Section 4

describes the PLF analysis based on the Monte Carlo method; Section 5 provides a case study and presents

the results to illustrate the methodology proposed; finally, Section 6 presents the main conclusions of the

paper.

2. Methodology Overview

Capturing the effect of electricity tariffs and DER technology costs on the long-term security of the

distribution network requires an integration of DER adoption models (representing the prosumers’ side) with

load flow calculations that are able to estimate the steady-state conditions of the distribution grid on the
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Figure 1: Overview of the Methodology

long run. The methodology proposed in this paper extends the work presented in [33, 34] by considering the

uncertainty of DER adoption decisions made by individual consumers and integrating it with an stochastic

evaluation of the grid security. Therefore, two types of inputs are taken to perform this analysis: 1) the

distribution network circuit model to be evaluated by the grid planners; 2) a set of electricity tariffs, including

different tariff components (e.g. time-of-use rates, peak demand costs, PV compensation rates) as well as

other economic parameters such as technology costs. The main output of this analysis is the long-term

probability distribution of voltage and line flows and the consequent risk of violation of standard security

limits.

Fig. 1 presents an overview of the methodology. As shown in the figure, the first step consists of disag-

gregating the different nodes of the distribution grid into representative consumer types that are typically

categorized by the utility in the rate design process. Second, the economic scenarios of technology costs and

electricity tariffs are used to build an adoption model for each type of consumer in order to identify the
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optimal level of PV and storage investments for each group. Then, these representative results are taken

as a reference to model the stochastic decisions of each individual consumer and, later, to characterize the

uncertainty of the DER capacities at each node of the distribution network. Finally, a PLF algorithm is run

to obtain long-term voltage and line flow probability distributions from these netload nodal uncertainties.

It is important to note that the PLF evaluation employed in this work implies a different time-scale and

a different uncertainty characterization when compared with other probabilistic analysis in the context of

DER deployment in distribution grids. In fact, most of the PLF algorithms in this domain [29, 27, 30, 28,

31] are focused on shorter term aspects of decentralized PV and load uncertainty (related with intra-day

consumption variations, radiation intermittence, etc.), which are relevant for operations and operational

planning problems and widely used to support decisions made hours/minutes ahead of the uncertainty

realization. In contrast, the proposed methodology is designed to capture long-term uncertainties associated

with tariff driven adoption of DERs in a planning horizon, i.e. projecting netload scenarios to support

economic and infrastructural strategic decisions made several years ahead of the uncertainty realization.

Hence, for the purposes of this paper, the intra-day uncertainty of the PV generation is ignored, and only

its hourly expected values of PV production are considered to build the design days for grid planning.

The objective of this simplification is to keep the focus on the uncertainty that matters in the context of

infrastructural planning, economic assessment and rate design. Nonetheless, it is important to emphasize

that the methodology proposed is agnostic to this simplification, as the Monte Carlo based PLF presented

below can be expanded to accommodate a full scenario tree with intra-day realizations of solar generation.

3. Prosumer Adoption Model

In the literature, two types of approaches exist to estimate future adoption of DER technologies. The first

is assuming economic rationality in long-term consumers’ decisions related to the acquisition and utilization

of DER assets. These models are very popular for designing and predicting investments in DER infrastructure

in buildings and microgrids, e.g. [18, 19], and are widely used to estimate future adoption and netload when

the number of consumers in a particular node is relatively low [33, 34, 35]. This economic rationality is

typically represented as an optimization model, simulating optimal decisions from the perspective of the

prosumers, including the size and dispatch of the DER assets in ways that minimize prosumers’ overall

energy bill. Thus, by running these behind-the-meter optimizations for a set of potential electricity tariffs

offered by the utility, it is possible to understand how the rate design process triggers economic responses

from the prosumers’ side, which translates into new DER investments and consequently into netload changes

in the nodes of the distribution grid. However, the assumption behind these models, i.e. the economic

rationality, is not always representative of the consumers decisions. In other words, evidence has shown that

consumers do not adopt DERs just because it is rational to do so [36], and therefore assuming a deterministic

projection based on ideal adoption may lead to significant errors in the prediction of these assets.

The alternative approach is to consider socioeconomic models that describe adoption and diffusion of
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DER technologies by correlating short-term social and geographical aspects of consumers’ decisions. These

models are typically data-driven and rely on historical information about prosumers’ decisions, capturing the

interplay between multiple socioeconomic factors and generating spatio-explicit patterns of future adoption

[37] [38]. For example, in the case of PV diffusion, inputs of these models can include the feed-in tariffs

offered by the utility [36], allowing the establishment of an empirical relationship between the rate design

process and the DER adoption. Nonetheless, these models require a significant amount of information that is

not always available to utilities, such as geographical characterization of specific regions or the socioeconomic

factors that motivated the adoption decisions. Additionally, these data-driven methods may be inaccurate to

predict DER penetration in situations where conditions of adoption change dramatically and past data is no

longer valid to project the future. This is the case of the application studied in this paper, where adoption

models are used to test the impact of innovative electricity rate design strategies, that may comprise radical

changes in the tariff components and, consequently, in the consumers’ economics.

In summary, socioeconomic data models have the advantage of capturing the uncertainty associated with

the subjectivity of the prosumers’ decisions, but they are limited solutions when the economic conditions of

adoption change dramatically. In contrast, approaches based on economic rationality can be more adequate

for those cases, but they fail to model uncertainty in a realistic manner. Therefore, this section presents a

hybrid model for PV and storage adoption developed for the purpose of the long-term rate design and grid

planning analysis presented in this paper. This adoption model combines proprieties of both economic ratio-

nality and socioeconomic diffusion models with the objective of representing consumers’ rational responses

to electricity tariffs in the long run while considering the uncertainty in investment decisions. As shown in

Fig. 1, this model consists of three stages:

1. The load at the nodes of the distribution grid is disaggregated into prototypical consumers;

2. An economic optimization is run for each consumer with the objective of determining the rational

adoption as well as the corresponding investment costs and savings;

3. The potential investment costs and the savings of the ideal solution are used to build a probabilistic

model for the adoption.

The following subsections describe in detail each of these steps.

3.1. Disaggregation

The classification of consumers into different types is a common practice in rate design, allowing utilities to

construct baseline load profiles for different classes of residential, commercial, industrial and public buildings

consumers (for example, a database of load profiles for different prototypical consumers in the US is available

in [39]). However, the way these consumers are distributed throughout the nodes of the distribution feeders

might be unknown or at least difficult to estimate for some utilities. In that case, based on the observation

of the real load profile, a simple disaggregation method can be applied.
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For a distribution grid with a set of nodes N , considering a set of prototypical consumers C, each with

a normalized load profile described by ĞLCc,t, the power of each consumer type in each node xn,c is given by

the optimization model presented in (1)-(5). The objective function minimizes the disaggregation error in

relation to the preexisting network load Ln,t. Constraints (2) and (3) impose a ratio in each node between

the peak load of residential and services buildings. In practical applications, this ratio can be obtained

based on the installed power information of residential and commercial consumers connected to each node.

Constraints (4) and (5) guarantee a minimum reference average power for each consumer type PRc, in case

the consumer exists in node n.

min
ÿ

nPN

ÿ

tPTyr

´

ÿ

cPC

ĞLCc,t ¨ xn,c ´ Ln,t

¯2

(1)

ÿ

cPCR

xn,c ď
ÿ

cPCS

xn,c ¨ SRn ¨ p1` Esrq (2)

ÿ

cPCR

xn,c ě
ÿ

cPCS

xn,c ¨ SRn ¨ p1´ Esrq (3)

xn,c ě PRc ¨ βn,c ¨ p1` Eprq (4)

xn,c ď βn,c ¨M (5)

With this disaggregation, the total number of consumers of type c in node n, ζn,c, can be approximated

by:

ζn,c “
xn,c
PRc

(6)

3.2. Economic Rational Adoption

Prototypical consumers have different load shapes and magnitude of demand, which creates different

conditions for adoption of PV and storage technologies. Hence, it is expected that some types of consumers

tend to adopt more of these technologies than others, just due to the characteristics of their load profiles and

the nature of the consumption (for example, in some cases commercial and industrial consumers are eligible

to more favourable solar compensation rates than residential consumers). As discussed above, this is the

rational component of adoption that is captured in this step of the model, by creating a reference solution for

adoption of PV and storage technologies for each consumer type. This reference allows an understanding of

how different classes of consumers may respond with investments to specific variations in the tariffs offered

by the utility. Later, this reference of economic rational adoption will be used to build a probabilistic model

describing the decisions of individual consumers within each class.

To capture the economic rationality of the adoption we use the optimization framework derived from

the Distributed Energy Resources Customer Adoption Model (DER-CAM) proposed in [18, 19] and used

in the context of multi consumer adoption in [33, 34]. Thus, for each consumer type c, the ideal capacity

of technology k to adopt, capk, can be obtained by solving the optimization model (7)-(15). The objective
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function (7) minimizes the fixed variable costs for investments in DERs, considering an equivalent annual

cost (EAC) model, where asset investments are annualized based on the coefficient Annk. The cost function

also takes into account the annual costs of energy and the remuneration paid by the utility for the energy

injected into the grid.

min
ÿ

kPts,pvu

´

CFixk ¨ purk ` CV ark ¨ capk

¯

Annk

`
ÿ

tPTyr

puit ¨ ECt ´ uet ¨ FItq
(7)

Constraints of the problem include the fixed cost condition of the investments (8). Hourly operation of

the battery is constrained by the well known reservoir model (9), the storage capacity (10) limits and the

power limits (11) associated with the maximum battery discharge rate PCr, as well as inequalities precluding

simultaneous charging and discharging (12)-(13). PV generation is limited by the installed capacity and the

solar radiation (14). Equation (15) imposes the energy balance of the system.

capk ď purk ¨M (8)

soct “ soct´1 ` cht ¨ CEff ´
dcht
DEff

(9)

MiSoc ¨ caps ď soct ď caps (10)

cht, dcht ď caps ¨ PCr (11)

cht ď α ¨M (12)

dcht ď p1´ αq ¨M (13)

pvt ď cappv ¨ ĚSGt (14)

LCt “ uit ´ uet ` pvt ` dcht ´ cht. (15)

After solving the model (7)-(15) for each consumer type c connected to the utility network, it is possible

to obtain the ideal investment solutions Φc as well as the optimal investment costs Ψc and the annual savings

Ωc that serve as a reference for each consumer class:

Φc “ tcapc,k, purc,ku @k P K (16)

Ψc “
ÿ

kPts,pvu

CFixk ¨ purc,k ` CV ark ¨ capk,c (17)

Ωc “
ÿ

tPTyr

ECt ¨ LCt ´ uit ¨ ECt ` uet ¨ FIt (18)

3.3. Probabilistic Adoption of Individual Consumers

Having established the reference of economic rational adoption, the next step of the model aims at

representing each consumer’s uncertain decision with a probabilistic model. After calculating the reference
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for each consumer class, the DER investments of a particular consumer, u, are described as a random variable

following a Bernoulli distribution with probability determined by the costs and savings associated with the

DER, shown in (19). We define Iu as the adoption random variable for consumer u, so that adoption is

realized as iu “ 1 when the DER is adopted and iu “ 0 when it is not. The probability of a specific consumer

u in class c to adopt the DER reference solution of the class, Φc, is given by pc.

Iu „ Bernoullippcq, @u P c (19)

To estimate the probability of adoption of an individual consumer, we take into account the reference

costs and savings of the prototypical class, c, where the consumer is included. This cost-savings model

describes the potential benefit to be realized from adoption, ϕc, as a function of the capital cost Ψc, annual

avoided cost of energy, Ωc, and a customer-specific fixed effect FEc, according to (20).

ϕc “ β1 ln Ψc ` β2 ln Ψ2
c ` β3 ln Ωc ` FEc (20)

As seen in the model, the terms β1, β2, β3 can be obtained based on the statistical observations of past

adoption of PV and storage technologies in each consumer class. In the context of energy conservation

adoption, Anderson and Newell [40] parameterized a similar model (also based on a Bernoulli distribution)

using a dataset with more than 70,000 energy conservation measures recommended by energy audits in

small and medium-sized industrial firms in the United States from 1981 to 2000 and whether or not each was

adopted. Obviously, in the domain of PV and storage investments by private consumers the parameterization

will be different, as it depends on other socio-economic factors. However the process is similar and in

both cases the stochastic model is built around a reference of economic rationality and parameterized with

statistical observations. The fundamental difference is that, in the proposed model, the rationality of adoption

of Anderson and Newell [40] (the recommended audits) is replaced by the optimal PV and storage adoption

of each prosumer class (here determined via an optimization model).

After defining the benefit of adoption of each class, ϕc, a logit model is used to obtain the probability of

adoption as shown in (21).

pc “
exppϕcq

1` exppϕcq
(21)

It is important to note that the fixed effect FEc can be used to shift the model for a specific firm or

situation to match a known adoption probability, µ, at a particular savings B0 and cost C0, as shown in

(22).

FEc “ ln

ˆ

µ

1´ µ

˙

´ β1 lnC0 ´ β2 lnC2
0 ´ β3 lnB0. (22)
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4. Probabilistic Load Flow

When the long-term netload profiles of consumers are probabilistic, subject to the uncertain adoption

of PV and storage technologies, appropriate system planning requires means to translate these probabilistic

profiles at the consumer nodes into probability distributions of variables in the system. In particular, it is

important to obtain distributions of certain system performance metrics, such as the frequency and severity

of violations of system operating limits. These distributions are given by PLF methods based on advanced

sampling [41] and non-sampling [42] approaches. To simplify the explanation of the PLF methods within

the scope of this work, this chapter presents a simple Monte Carlo simulation that solves the AC power flow

equations in each trial, considering as an input the probabilistic adoption model presented in the previous

chapter.

4.1. Monte Carlo Simulation

A Monte Carlo simulation is developed to obtain probabilistic information about the effects of the adop-

tion of DERs under this probabilistic model. Each customer with an investment option presents one random

variable, iu. As discussed above, neglecting uncertainty in load and operations of PV and storage, the cus-

tomer’s netload seen from the utility grid takes one of two profiles, depending on the investment decision,

as in (23).

ut,upIuq “

$

’

&

’

%

ubaset,u , Iu “ 0

uadoptt,u , Iu “ 1

(23)

where the term ut,u represents the total netload of the consumption derived from the model (7)-(15)

applied to the class c, in which the consumer is included, as defined in (24).

ut “ uit ´ uet (24)

At any point in time, the probability that the customer’s import takes a certain value depends only on

the probability of adoption, shown in (25).

P
´

ut,upIuq “ uadoptt,u

¯

“ pc, @t P Tyr, @u P c (25)

The dependence between the input random variables across time points must be taken into account when

finding the output probability densities, in order to allow for risk metrics that incorporate multi-temporal

behavior, including the storage dispatch. Maintaining this dependence, each input and output profile is a

random vector of |Tyr| elements.

We denote the vector of the adoption variables for each customer as I. In each Monte Carlo trial, j,

and construct a realization ij of this vector by sampling from a standard uniform distribution independently
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for each consumer and comparing to the customer’s adoption probability, pk. Using the load profiles corre-

sponding to this realization, an AC power flow is solved for each time t in the set of all time points Tyr to

obtain profiles of the system variables for the full period.

These trials are repeated with a different realization each of n times until the variance of the estimators

of interest decreases sufficiently. Each trial result is used to construct estimators for distributions described

in the following section.

4.2. Monte Carlo Estimators

The Monte Carlo simulation gives estimators for the output random variables of interest. Here we consider

several which can be useful in multi-temporal risk metrics. Each of the following variables apply to a single

operating limit of one system quantity, such as the lower limit on voltage magnitude at a single bus or upper

limit on the power flow on a single branch.

In the following, we denote the variable Z and the limit value zlim, and we use notation of upper limits

for all variables, so that Z ´ zlim ą 0 always means a threshold violation. If zlim is a lower limit, both Z

and zlim are multiplied by ´1 before the following equations are applied.

Finally, the generic random variable, W , indicates the limit violations. Thus, the variable W rZt ą zlims

has value 1 if Zt violates zlim and 0 otherwise.

4.2.1. Number of Violations

The number of violations over all time periods of variable Z with limit zlim, given the state of adoption

of all customers, I, is denoted by violNlimpIq. Equation (26) gives this value.

violNlimpIq “
ÿ

tPTyr

W rZtpIq ą zlims (26)

The estimates of the probability density function (pdf) and cumulative distribution function (cdf) are

constructed by the Monte Carlo estimator for the number of violations. The indicator variable W rviolNlim “

ms indicates whether the number of violations has a certain nonnegative integer value m. The pdf of the

number of violations is given by equation (27) and the estimated pdf after n Monte Carlo trials by f̂ in (28).

fNviol
pmq “ P pviolNlim “ vq “ E

”

W
”

violNlimpijq “ m
ıı

(27)

f̂violNlimpmq “
1

n

n
ÿ

j“1

W
”

violNlimpijq “ m
ı

(28)

4.2.2. Average Violation

The average violation is denoted by violavglimpIq. This is a random variable representing the average of all

the violations over the entire period, only considering the time points at which violations occur. Equation

(29) gives this value.

violavglimpIq “
1

violNlimpIq

ÿ

tPTyr

maxpZtpIq ´ zlim, 0q (29)
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The estimates of the probability density function (pdf) and cumulative distribution function (cdf) are

similarly constructed by the Monte Carlo estimator for the average violations, with the difference that the

random variable is not restricted to integers but can take any nonnegative real values. The indicator variable

W rviolavglim “ vs indicates whether the average violation has a certain magnitude v, shown in (30), the pdf of

the average violation. The estimate for this after n Monte Carlo trials is given by (31).

fviolavglim
pvq “ P pviolavglim “ vq “ E rW rviolavglimpijq “ vss (30)

f̂violavglim
pvq “

1

n

n
ÿ

j“1

W rviolavglimpijq “ vs (31)

4.2.3. Maximum Violation

Similarly, we denote the largest violation over all time periods by violmax
lim pIq, given by (32).

violmax
lim pIq “ max

tPTyr

pmax pZtpIq ´ zlim, 0qq (32)

The pdf is given by (33) and estimated from the n Monte Carlo trials as shown in (34).

fviolmax
lim
pvq “ P pviolmax

lim “ vq “ E rW rviolmax
lim pijq “ vss (33)

f̂violmax
lim
pvq “

1

n

n
ÿ

j“1

W rviolmax
lim pijq “ vs (34)

5. Case Study

5.1. Case Study Description

This section presents a case study to evaluate the probabilistic impact of different components of the

electricity tariffs on the voltage profiles of the distribution grid, considering stochastic long-term adoption

of PV and storage technologies by private consumers.

The network described in Fig. 2, taken from [43], is used for the analysis presented in this section. The

original load at each node of the distribution network was considered to disaggregate the nodal consumption

into different prototypical consumer profiles using the method presented in section 3.1. 5 different classes

of buildings were obtained in this disaggregation process, using the load profiles from the US Department

of Energy Reference buildings database, assuming the climate zone of San Francisco [39]. These buildings

were divided into two residential (”ResidHigh”, ”ResidLow”) and services (”hospital”, ”Secondary School”,

”Small Office”) categories. The disaggregation results for each node can be seen in Fig. 3. Finally, the annual

PV radiation data was obtained from Typical Meteorological Year dataset for the same San Francisco area

[44].
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Figure 2: Medium voltage distribution network with 118 buses
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Figure 3: Disaggregation of buildings per bus

The time-of-use (ToU) rates applied to residential (”ResidHigh”, ”ResidLow”) and services (”hospital”,

”Secondary School”, ”Small Office”) building are presented in table 1. These rates are divided into Summer

and Winter periods. Summer rates (from May to October) have a three segment tariff structure, divided

into peak, mid-peak and off-peak rates, while Winter rates (from November to April) only have two tariff
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Table 1: Base tariff rates and periods for different classes of consumers

Type Weekdays Weekends Summer Winter

($/kWh) ($/kWh)

Residential Tariff May-Oct Nov-April

Peak 1:00pm - 6:00pm — 0.39096 —

Mid-peak
10:00am - 1:00pm

— 0.27253 0.21847
7:00pm - 9:00pm

Off-peak All other times All times 0.197307 0.20164

Small Commercial Tariff May-Oct Nov-April

Peak noon - 6:00pm — 0.28560 —

Mid-peak
8:00am - noon

— 0.26195 00.24134
6:00pm - 9:00pm

Off-peak All other times All times 0.23459 0.22043

Medium Commercial Tariff May-Oct Nov-April

Peak noon - 6:00 pm — 0.23427 —

Mid-peak
8:00am - noon

— 0.17914 0.14974
6:00pm - 9:00pm

Off-peak All other times All times 0.15107 0.13268

segments, the mid-peak and off-peak. The peak time for commercial services is from 12 a.m. to 6 p.m. and

for residential services is from 1 p.m. to 7 p.m.

Regarding costs of behind-the-meter technologies, a fixed installation cost of 2000 $ and a variable cost

of 2500 $/kWh were assumed for PV systems with a lifetime of 20 years. Storage variable cost was assumed

to be 250 $/kWh, considering a lifetime of 10 years, a charging/discharging efficiency of 90%, a maximum

discharge rate of 0.3kW per kWh installed, and a minimum state of charge of 20%. The parameterization of

the stochastic model, representing the adoption probability as a function of the solution costs, is presented

in equation (35), considering that the fixed effect is set to zero. The probability of adoption is then found

given the capital cost, Ccap,k, and annual avoided cost of energy, Aann,k as shown in Fig. 4.

β1 “ ´0.25

β2 “ ´0.11

β3 “ 0.6

(35)
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Figure 4: Probability of adoption of resources, given the annual savings and investment costs

In the remaining part of this section, the effect of different tariff components is analyzed, namely the

cost differentiation of the ToU tariff and the solar compensation rate. The probability distribution results

are presented in form of a box plot representing the different quartiles of the distribution.

5.2. Impact of solar compensation rates

This results subsection starts by analyzing the long-term impact of the solar compensation rate policy

on the voltage profiles of the distribution grid. Mathematically, we define this compensation based on the

electricity volumetric cost as follows: FIt “ γpur.ECt, @t P r0, T s, where γpur is the utility solar purchase

factor. In other words, when the factor is 1 the solar compensation is equal to the energy costs (net-metering

scheme), and when this factor is 0.5 it means that the solar injection is remunerated at 50% of the electricity

cost of the tariff. Thus, we assume a variation of γpur between 0 and 1, with steps of 0.25. Then, we

evaluate the impact on the adoption distributions of PV and storage technologies by private consumers and

the consequent impact on the distribution grid. For this purpose, 2 scenarios are explored: 1) when only PV

investments are considered; 2) when prosumers invest in both PV and storage technologies.

Fig. 5 presents the distributions of total investments in behind-the-meter PV and storage technologies

that result from the different solar compensation policies as the PV purchase factor increases. It is possible

to observe that if no solar compensation exists, the PV investments are higher when storage technologies

are also considered. In other words, when no remuneration is due to the consumers for the PV injected into

the grid, a natural incentive for self-consumption is created, which increases the value of storage assets. In

fact, when compensation for solar generation is low, behind-the-meter batteries play an important role in

shifting the PV generation surplus to cover electricity demand later in the day when electricity costs are
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higher, leveraging both the PV and storage investments. This explains the fact that storage investments are

higher when no solar compensation is due to prosumers.

In contrast, when solar compensation increases, investments in PV become more attractive and storage

technologies lose their value. When the purchase factor reaches 0.5 and PV is remunerated at 50% of the

energy costs, storage technologies are no longer cost-effective and only PV investments can be expected from

the consumers. Also, it is important to note that the uncertainty of PV investments increases (and the

uncertainty of storage decreases) with the solar compensation policies.

Figure 5: Distribution of PV and storage investments for different purchase factors

As expected, the different scenarios of PV and storage adoption driven by the changes in solar compen-

sation policies have an impact on the voltage profiles of the distribution grid. When mapping this adoption

across different nodes of the distribution network, it is possible to observe steady-state overvoltage violations

due to the PV penetration, considering the limit of 5% of the nominal voltage. These violations start to

appear when the utility purchase factor reaches 0.75, i.e. when the solar compensation represents 75% of

the electricity costs. Section 4.2 presented the Monte Carlo estimators to quantify this impact considering

different DER adoption realizations. In particular, we look at the average and frequency of these voltage

violations (number of hours where overvoltages occur), as well as maximum violations encountered across

the different nodes of the grid. Fig. 6 presents the distributions (first, second and third quartiles) of these

three indices for the high values of solar compensation. It is possible to see a significant difference between

the magnitude and duration of the voltage violations with just 25% variation (between 0.75 and 1) of the

utility purchase factor. In fact, while these violations are relatively small for a purchase factor of 0.75, they

significantly increase in number and magnitude if PV injection is remunerated at the energy price. As shown

in the right-hand side plot, there is a significant probability of finding maximum violations over 1% of the

nominal voltage.
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Figure 6: Distribution of number, average magnitude and maximum voltage violations for different purchase factors

Thus, by applying the methodology presented in this paper, it is possible to clearly quantify the relevant

grid impacts caused by a change in the solar compensation policy adopted by the utility. In particu-

lar the probability distributions of voltage violations associated with a change in the PV purchase factor

are obtained, allowing utilities to make quantitative and risk-oriented decisions around solar compensation

strategies for different types of consumers.

5.3. Impact of time differentiation of energy prices

This section analyses the grid impacts caused by a modification of the time differentiation component of

the electricity tariffs. ToU rates are composed by off-peak and peak rates, as seen in Table 1, which aim

at providing an incentive for load shifting behaviors from the consumer side. In this analysis, the difference

between these two components is modified by increasing the peak tariff in relation to the nominal values

presented in table 1. Thus, we introduce a peak factor, γpk, applied to the nominal peak rate ECt and

obtain new peak scenarios as follows: ECt “ γpk.ECt, @t P Tpk. The values of γpk vary between 1 and

2.5 with incremental steps of 0.5, while the mid-peak and off-peak tariffs remain the same. At the same

time, 2 scenarios of solar compensation are defined, based on the analysis presented above (setting the

utility PV purchase factor (γpur) to 0.5 and 1). It is important to stress that by increasing γpk, a double

effect on the electricity costs is introduced: 1) the overall electricity costs increase at peak hours, which also

implies an increase of the PV remuneration proportional to γpur; 2) the difference between peak and off-peak

remuneration increases, imposing a temporal differentiation of the energy costs.

Fig. 7 presents the distribution of the behind-the-meter PV and storage capacity expected in the system

for each scenario of γpk and γpur, taking into account the stochastic adoption described in Fig. 4. As

shown in the figure, behind-the-meter PV installations are expected to grow as the electricity costs increase

during the peak hours for both scenarios of γpur. However, this effect is more perceptible in the adoption

of storage technologies that become cost-effective when γpk is equal to 1.5 and increases exponentially for

peak factors higher than this value. This means that the temporal differentiation of energy prices creates

a natural incentive for energy shifting, which introduces a new value stream for storage and increases the

19



Figure 7: Capacity investments in PV and storage systems for different peak factors

probability of these technologies to be adopted by consumers.

Additionally, it is interesting to observe that the adoption of storage technologies is more evident when

solar is remunerated at higher rates. This result seems counterintuitive after the analysis conducted in the

previous section, where the storage value decreased with the solar compensation. This can be explained by

the type of installation assumed in the model (1)-(5), which does not allow for a distinction between power

injections from the battery and from the PV panel. Therefore, when a single metering point is assumed

for PV and storage installation, a tariff with high solar compensation creates an additional incentive for

energy arbitrage, allowing the battery to store energy during the off-peak hours and sell it during peak

periods at the solar price. In fact, a simultaneous combination of high solar compensations with high

temporal differentiation in the tariff leads to the perverse effect illustrated in Fig. 8, which compares the

hourly netload for different scenarios of γpur. As shown in the right-hand side panel of the figure, this

combination of factors not only increases the power injection during the solar hours but also creates an

additional consumption in the beginning and at the end of off-peak period.

The impact of the time differentiation of energy prices on the maximum voltage violations observed in

the network is depicted in Fig. 9. As expected, the voltage violations increase with the time differentiation

between peak and off-peak times. Moreover, when the solar compensation is higher, violations of the mini-

mum voltage limit are also observed due to the additional consumption that results from the energy arbitrage

behaviors. Therefore, when looking at the distribution of the voltage violations (for the case γpur=1 and

γpk=2.5) in Fig. 10, one can notice extreme upper limit violations during solar hours combined with lower

limit violations at the beginning and at the end of the off-peak period.
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Figure 8: Average daily netload for different purchase and peak factors.

Figure 9: Distribution of maximum and minimum voltage violations for different peak and purchase factors.

Figure 10: Distribution of the maximum and minimum voltages violation per hour with γpur “ 1 and γpk “ 2.5.
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6. Conclusion

This paper presented a methodology to calculate the long-term effect of the rate design process on the

voltages profiles of the distribution grid, considering the adoption of PV and storage technologies by private

consumers. This methodology extends the existing approaches of the literature to model the stochastic

nature of the individual consumers’ decisions together with the economic rationality of DER investments in

response to electricity tariffs. Additionally, this innovative adoption model is integrated with a probabilistic

load flow evaluation to capture the grid impacts.

An analysis of behind-the-meter solar compensation mechanisms was presented, as well as the time

differentiation component of ToU tariffs. It is possible to conclude that a higher solar compensation decreases

the value of storage and increases the PV adoption (both the expected value and the uncertainty), leading

to high probability scenarios of voltage violations. On the other hand, the time differentiation of the ToU

component of the tariff increases the adoption of storage and leads to aggressive dispatch policies that can

cause voltage violations of both upper and lower technical limits. In both cases, the probability distribution

of voltage violations was calculated, demonstrating the relevance of the methodology in providing risk-

assessment information to the utility rate design process. Thus, future works will focus on the decision-

support methods that enable these applications.
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