UC Berkeley UC Berkeley Previously Published Works

Title

Clumped 13CH2D and 12CHD2 compositions of methyl groups from wood and synthetic monomers: Methods, experimental and theoretical calibrations, and initial results

Permalink https://escholarship.org/uc/item/7sr6c57v

Authors

Lloyd, Max K Eldridge, Daniel L Stolper, Daniel A

Publication Date

2021-03-01

DOI

10.1016/j.gca.2020.10.008

Peer reviewed

Clumped ¹³CH₂D and ¹²CHD₂ compositions of methyl groups from wood and synthetic monomers: methods, experimental and theoretical calibrations, and initial results 3

Max K. Lloyd¹*, Daniel L. Eldridge^{1,2}, and Daniel A. Stolper^{1,2}

¹Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
 ²Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,

- 8
- 9

10 * Corresponding author present address: Department of Geosciences, Pennsylvania State

11 University, University Park, PA 16802, USA; mlloyd@psu.edu

12 13

14 Abstract

USA

15 Methyl groups are found in numerous biogenic and synthetic materials including geologically preserved materials such as wood. The carbon and hydrogen isotope compositions of methyl 16 17 groups are used as tracers in biogeochemical cycles, as paleothermometers, and to determine the 18 hydrogen isotopic composition of ancient rain. Here we present analyses of resolved ¹³C–D 19 (¹³CH₂D) and D–D (¹²CHD₂) clumped isotope compositions of methyl groups as new variables 20 for the study of methyl groups in the present and past. We first present chemical methods to 21 extract, purify, and derivatize methyl groups from methoxyl (R–O–CH₃) groups as CH₃F and 22 CH₃Cl, and high-resolution mass spectrometric techniques to determine the clumped isotope 23 compositions of these species. We achieve precisions for ${}^{13}C-D$ clumping of ± 0.25 ‰ and D–D 24 clumping of ± 2.5 %. We anchor our clumped isotopic measurements to a thermodynamic 25 reference frame by first calculating the theoretical temperature dependences of ¹³C–D and D–D 26 clumping in CH₃Cl, then placing our measurements onto this reference frame through 27 experimental internal isotopic equilibration of CH₃Cl at 200 °C. Finally, we provide and analyze 28 an initial dataset of clumped ¹³C–D and D–D compositions of methyl groups from various 29 commercial/synthetic monomers and environmental woods. We observe ranges in clumped isotope compositions of ~11 ‰ in ¹³C–D and ~48 ‰ in D–D, and systematic differences within 30 31 these ranges between methyl groups from commercial monomers and wood. Specifically, 32 commercial clumped ¹³C–D compositions are between 0 and 3 ‰, which correspond to apparent 33 equilibrium temperatures between 170 °C and the infinite temperature limit. In contrast, the 34 clumped ¹³C–D compositions of wood methoxyl groups are distinctively high (9.50–11.25 ‰) 35 and 3-6 ‰ higher than would be expected if formed in internal isotopic equilibrium at Earth-36 surface temperatures. Commercial/synthetic methyl and wood methoxyl clumped D-D compositions are also distinct: -5 to +13 % in commercial monomers vs. -35 to -8 % in 37 38 wood—such negative values cannot result from formation in isotopic equilibrium and require 39 kinetic processes to have occurred. These results indicate that wood methoxyl groups are formed 40 out of isotopic equilibrium and that clumped isotope compositions of methyl groups may be useful tracers of methyl group sources and sinks in the environment. For instance, isotopic 41 42 clumping in methyl groups may be useful for understanding controls on isotopic clumping in 43 methane produced by methylotrophic methanogens. 44

45 **1. Introduction**

- 46 Methyl groups are found in a range of important biological and synthetic organic compounds.
- 47 Methylation reactions occur in the biosynthesis of major compound classes including lipids,
- 48 sugars, nucleotides, amino acids, as well as plant structural biopolymers such as lignin and pectin
- 49 (e.g., Robertson, 2005; Roje et al., 2006; Landgraf et al., 2016; Rahikainen et al., 2018).
- 50 Additionally, methylated compounds such as methanol (CH₃OH), methyl tert-butyl ether, and
- 51 various halomethanes (e.g., chloromethane (CH₃Cl) and fluoromethane (CH₃F)), have industrial
- 52 applications (e.g., Cheng et al., 1994, Ott et al., 2012, Ohligschläger et al., 2019) or, in the case
- of methylated mercury compounds, are significant environmental biotoxins (Selin, 2009).
- 54
- 55 The stable isotopic composition (i.e., ${}^{13}C/{}^{12}C$ and D/H ratios) of methyl groups are used as
- 56 tracers for their formational and removal pathways in environmental and industrial applications.
- 57 For example, methyl carbon isotopic compositions are used to identify atmospheric sources of
- 58 CH₃Cl (e.g., Keppler et al., 2008) and to distinguish natural and synthetic sources of vanillin
- 59 (Krueger and Krueger, 1983; Tenailleau et al., 2004; Greule et al., 2010). The hydrogen isotopic
- 60 composition of methyl groups bound to O atoms (termed methoxy or methoxyl groups) in wood
- 61 lignin are used as proxies for the isotopic composition of local waters (Keppler et al., 2007;
- 62 Feakins et al., 2013, Anhäuser et al., 2017) and for paleothermometery (Anhäuser et al., 2018).
- 63 Here we describe the methods, calibration and initial application of measurements of methyl
- 64 groups with two rare isotopes (i.e., clumped isotopes), specifically ${}^{13}CH_2D$ and ${}^{12}CHD_2$.
- 65
- 66 Clumped isotopes are of interest as their abundance relative to a random distribution of isotopes
- 67 for a system at internal isotopic equilibrium is controlled solely by temperature (e.g., Eiler 2007;
- 68 2013) and is independent of the bulk isotopic composition of the molecule. As such, clumped
- 69 isotopes in equilibrated systems can be used for paleothermometry. If clumped isotopic
- 70 compositions are instead controlled by non-equilibrium processes such as kinetic isotope effects
- or mixing relationships, differences in clumped isotope compositions can be used as tracers of
- 72 sources (e.g., Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Young et al., 2017;
- 73 Giunta et al., 2019; Douglas et al., 2020), or provide constraints on formation pathways (e.g.,
- 74 Tripati et al., 2015; Watkins and Hunt et al., 2015; Yeung et al., 2015; Loyd et al., 2016; Magyar
- 75 et al., 2016; Yeung et al., 2016; 2017; Gruen et al., 2018; Staudigel and Swart, 2018; Guo et al.,
- 2020) or destruction mechanisms (e.g., Wang et al., 2016; Clog et al., 2018; Yeung et al., 2019;
 Ash et al., 2020).
- 78

Here, we (*i*) describe chemical methods to extract, purify, and convert methoxyl methyl groups

- 80 to mass spectrometrically tractable analytes: CH₃F and CH₃Cl. (*ii*) We describe our mass
- 81 spectrometric approaches for measuring δD and $\delta^{13}C$ and resolved $^{13}C-D$ ($^{13}CH_2D$) and D–D
- 82 (¹²CHD₂) clumped-isotope abundances. (*iii*) We calibrate these measurements to a
- 83 thermodynamic reference frame using theory and experiments. (iv) Finally, we present clumped
- 84 isotope analyses on an initial dataset of commercial CH₃F, CH₃Cl, CH₃I, methanol, and
- 85 syringaldehyde samples as well as environmental woods and discuss first order trends. We note
- that the initial development and attempts to perform the measurements described here began as
- 87 part of a PhD thesis (Lloyd, 2017).
- 88
- 89 **2. Notation**

Carbon and hydrogen isotope compositions of methyl groups are reported using δ notation

- where:

$$\delta^{13} C = \left(\frac{{}^{13}R_{sa}}{{}^{13}R_{VPDB}} - 1\right) \times 1000$$
(1)

and

 $\delta D = \left(\frac{D_{R_{sa}}}{D_{R_{VSMOW}}} - 1\right) \times 1000,$ (2)

- Here, ${}^{13}R = [{}^{13}C]/[{}^{12}C]$, ${}^{D}R = [D]/[H]$, sa is the sample, VPDB is the carbon isotopic standard and VSMOW is the hydrogen isotopic standard.
- We report methyl ¹³CH₂D abundance relative to that expected for a random distribution of
- isotopes among all isotopologues using $\Delta_{^{13}CH_2D}$ notation (see Wang et al., 2004):

$$\Delta_{^{13}\text{CH}_2\text{D}} = \left(\frac{{}^{^{13}\text{CH}_2\text{D}}_{R_{\text{sa}}}}{{}^{^{13}\text{CH}_2\text{D}}_{R_{\text{sa}}^*}} - 1\right) \times 1000.$$
(3)

 ${}^{13}\text{CH}_2\text{D}R_{\text{sa}} = [{}^{13}\text{CH}_2\text{D}]/[{}^{12}\text{CH}_3]$ in the sample while ${}^{13}\text{CH}_2\text{D}R_{\text{sa}}^*$ is the ratio expected for a random distribution of isotopes in the sample: ${}^{^{13}\text{CH}_2\text{D}}R_{\text{sa}}^* = 3 \times {}^{^{13}}R_{\text{sa}} \times {}^{^{12}}R_{\text{sa}}$. Note that other definitions of Δ notation exist that are approximately equivalent (e.g., Wang et al., 2015).

Analogously, we report methyl ¹²CHD₂ abundances vs. a random distribution with

- $\Delta_{^{12}CHD_2}$ notation:

$$\Delta_{^{12}\text{CHD}_2} = \left(\frac{{}^{^{12}\text{CHD}_2}{R_{\text{sa}}}}{{}^{^{12}\text{CHD}_2}{R_{\text{sa}}^*}} - 1\right) \times 1000, \tag{4}$$

where ${}^{12}CHD_2R_{sa} = [{}^{12}CHD_2]/[{}^{12}CH_3]_{sa}$ in the sample and ${}^{12}CHD_2R_{sa}^*$ is the expected ratio for a random distribution: ${}^{^{12}\text{CHD}_2}R_{\text{sa}}^* = 3 \times {}^{^{D}}R_{\text{sa}} \times {}^{^{D}}R_{\text{sa}}$.

In the thermodynamic reference frame, Δ values of 0 ‰ equate to equilibrium at an infinite

- temperature and are independent of laboratory standardization (e.g., Dennis et al., 2011).
- However, we measure samples relative to a tank of working reference gas (wg) with a priori unknown $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$. We initially assume that the working reference gas has $\Delta_{^{13}CH_2D}$
- and $\Delta_{^{12}CHD_2}$ values of 0 ‰, and report the clumped isotope compositions of samples in a so-
- called 'working gas reference frame' (% vs. wg). Samples reported in the working gas reference
- frame are given as ' $\Delta_{13}_{CH_2D(wq)}$ ' and ' $\Delta_{12}_{CHD_2(wq)}$,' while the symbols ' $\Delta_{13}_{CH_2D}$ ' and ' $\Delta_{12}_{CHD_2}$ ',

as defined in Eqns. 3 and 4, indicate the thermodynamic reference frame.

3. Methods I: methoxyl group derivatization and sample purification

- 127 Here we summarize the methods for the conversion and purification of methoxyl groups first to
- iodomethane (CH₃I) and then to our mass spectrometric analytes, methyl fluoride (CH₃F) or
- 129 methyl chloride (CH₃Cl). We provide detailed protocols in Appendix A1, and a flowchart of the
- 130 methods in Fig. A1. Portions of the methods are based on Lloyd (2017) and Greule et al. (2019)
- 131 (Sections 3.1, 3.2), while others are new (Sections 3.3, 3.4).
- 132

3.1 Derivatization and purification of methoxyl groups

Methoxyl groups from starting materials such as wood or methanol are derivatized to CH₃I using
 the Zeisel (1885) reaction:

136 137

$$R-O-CH_3 + HI_{(aq)} \rightarrow R-OH + CH_3I$$
(5)

where *R* represents the rest of the molecule. We preform our derivatization reactions in a reflux

140 apparatus (Fig. A2) following Greule et al. (2019). For each derivatization, 8 mL of HI acid are

141 first heated to reflux (130 °C) in an He stream (25–60 mL/min) for 90 min, and cooled to room-

142 temperature (22 °C). Next, the sample is added, the acid is reheated to reflux and maintained at

reflux for 2 hr with He flowing and volatile reaction products (CH₃I, CO₂, H₂O) frozen in an

adjacent trap immersed in liquid N₂ (LN₂; see Section A1.1 for details). Previous experiments

145 demonstrated that no hydrogen isotope exchange between methyl groups and HI acid occurs

146 during HI reflux (Keppler et al., 2007; Greule et al., 2008).

147

148 Evolved CH₃I is then purified from other gases using a series of cryogenic and chemical steps

149 (see Fig. A3, Section A1.2 for details). Briefly, cryogenic steps are used to remove He, N₂, O₂,

150 H₂O, and CO₂. Next, CH₃I is chemically purified using Ascarite II® and CaCl₂ to remove

residual CO₂ and H₂O. Following purification, CH₃I yield is determined manometrically and the

152 CH₃I is either immediately converted to CH₃F or CH₃Cl (see below), or frozen and flame-sealed

- 153 into a Pyrex break-seal (for later use) and stored in the dark to prevent UV photodissociation.
- 154

155 **3.2** Conversion of CH₃I to CH₃F or CH₃Cl

156 We do not use CH₃I as our mass-spectrometric analyte because it is not sufficiently volatile for

- 157 stable delivery to the mass spectrometer source from a bellows. Instead, we derivatize the CH_3I
- 158 to fluoromethane (CH₃F) or chloromethane (CH₃Cl), which are room-temperature gases, for

159 mass-spectrometric analysis. Initial attempts to convert CH₃I to CH₃F were presented in a PhD

160 thesis (Lloyd, 2017), but faced issues associated with yield and degradation of the fluorinating

agent. The procedures described here mitigate these issues. The methods for the conversion of

- 162 CH₃I to CH₃Cl are new. As will be discussed, CH₃Cl is our preferred mass-spectrometric analyte
- 163 for future work.
- 164

165 **3.3 CH₃F derivatization and purification**

166 We perform fluorinations at room temperature such that C–I bonds are fluorinated but C–H

- 167 bonds are not. Our full fluorination protocols are provided in Appendix A1.3 and summarized
- 168 here.
- 169
- 170 The replacement of halogens (e.g., I, Br) by F in other organic molecules (e.g., $1-C_8H_{17}I$)
- 171 proceeds rapidly (<4 hr) and quantitatively at room temperature in the presence of a metal
- 172 fluoride salt (e.g., AgF or CoF₃) (e.g., San Filippo and Romano, 1975; Mann 1987). Initial

attempts to react CH_3I with AgF and XeF₂ (Lloyd, 2017) produced significant (~30 %) quantities of C₂ compounds and were not pursued further. We use CoF₃ for fluorinations via the following assumed reaction:

- 176
- 177

 $2CH_3I + 2CoF_3 \rightarrow 2CH_3F + 2CoF_2 + I_2 \tag{6}$

178 179

CoF₃ is routinely used to fluorinate H₂O for oxygen isotopic measurements (Baker et al., 2002).

CoF₃ reacts rapidly (order seconds) with moisture in air to form HF. HF fluorinates C–H bonds
at room temperature (e.g., Wilkinson, 1992) and, in the presence of silica (from the Pyrex

holding tube), generates SiF_4 and H_2O (e.g., Helms and Deal, 1992), which then makes more HF, promoting more reactions. These reactions were problematic for us as we found it difficult to

sperate SiF₄ from CH₃F. More problematic, the presence of HF results in the formation of CH_2F_2

and CHF₃, which results in low CH₃F yields and modified D/H, ${}^{13}C/{}^{12}C$, and (potentially)

186 clumped-isotope compositions of the residual methyl groups. Lloyd (2017) handled CoF₃ in air

187 and inevitably made some HF. To avoid this, we handle CoF_3 in an Ar atmosphere dried with

188 Drierite. Also, we fluorinate CH₃I in reusable vessels containing subequal amounts of CoF₃ and

189 sodium fluoride (NaF). The NaF converts any HF to NaHF₂ (e.g., Aigueperse et al., 2000).

190

191 Fluorinations are performed in either a reusable Pyrex (Fig. A4a) or nickel vessel (Fig. A4b).

192 Fluorination vessels are first heated (to 150 °C for the Pyrex vessel and 60 °C for the nickel

193 vessel) and evacuated to baseline. Next, CH_3I is frozen into the vessel using LN_2 and the vessel

sealed. Fluorinations proceed at room-temperature for 8–24 hr. Products are cryogenically and

195 chemically purified (Appendix A1.4). I_2 is removed cryogenically using LN₂ and HF is scrubbed 196 using an NaF column. CH₃F is further purified using a variable temperature cold-head trap (Janis

197 Research Co.) cooled using a He refrigeration unit (CTI Cryogenics model 8200): CH₃F is

198 frozen into the trap at 80 K and cycled 3× from 140 to 80 K with residual headspace evacuated

199 at 80 K each time. The trap is warmed to 110 K and CH₃F is distilled into an adjacent trap

immersed in LN₂. Yield is determined manometrically and the gas is then frozen and flame-

201 sealed into a Pyrex break-seal.

202

203 **3.4 CH₃Cl derivatization and purification**

205
$$CH_3I + AgCl \rightarrow CH_3Cl + AgI$$
 (7)

206 Our approach is based on chlorine stable isotopic analyses where CH₃Cl is also the mass-

207 spectrometric analyte. For chlorine isotopes, AgCl is quantitatively methylated using a $10 \times$

molar excess of CH₃I relative to AgCl at 80 °C for 48 hr (e.g., Eggenkamp, 2004). We instead

209 quantitatively chlorinate CH₃I using a 10–25× molar excess of powdered AgCl (99.999% purity,

210 Sigma Aldrich no. 204382) vs. CH₃I at 80 °C for 48 hr. To do this, we load a Pyrex break seal

with 175–500 mg of AgCl and evacuate the tube while heating the powder at 250 °C for at least

212 15 min. CH₃I frozen into the tube using LN₂ and the headspace is evacuated. The tube is flame-

213 sealed, wrapped in aluminum foil to prevent photodissociation, and held in a water bath at $80 \degree C$

214 for 48 hr.

²⁰⁴ CH₃I is converted to chloromethane (CH₃Cl) using excess silver chloride (AgCl):

- 215 Product gas is frozen into the cold-head trap at 120 K. Trace CO₂ is removed by warming the
- trap to 180 K, cooling it to 130 K, and evacuating the headspace at 130 K. The cold-head trap is
- warmed to 155 K and CH₃Cl transferred from the cold-head trap to a trap on a permanent
- 218 vacuum line immersed in LN_2 . Yield is determined monometrically. The sample is frozen into a
- 219 Pyrex tube using LN_2 and flame sealed.
- 220

4. Methods II: production of study materials

- We analyze four types of materials in this study: (*i*) commercial methyl-bearing compounds, likely synthetic in origin; (*ii*) environmental wood samples, contributed by S. Feakins, F. Keppler, and M. Greule, with published methoxyl δ^{13} C, δ D, and wt.% values; these were not processed further in order to allow direct comparison to published values (*iii*) isotopically labeled CH₃F and CH₃Cl gases, created in this study for the purposes of evaluating external
- 227 measurement precision; (*iv*) sub-aliquots of gases of type (*i*) and (*iii*), heated at 200 °C in the
- 228 presence of a catalyst in order to exchange C–H bonds (Section 5, below). Descriptions and
- sources of study materials are summarized in Table 1. One commercial CH₃F gas cylinder and
- 230 one commercial CH₃Cl gas cylinder were employed as primary working reference gases for
- dual-inlet mass spectrometric measurements (CIT-F-1 and CIT-Cl-2, category *i*, above). External
- 232 δ^{13} C and δ D values of these gases were determined by A. Schimmelmann at Indiana U. using
- standard offline combustion/reduction + dual-inlet IRMS techniques (c.f., Schimmelmann et al., 234 2016; see also Section A2.1 for details). We also determined the δ^{13} C of a commercial methanol
- (MeOH-std) at Caltech by conventional offline combustion + dual-inlet IRMS (Section A2.1).
- Because the gas supply of CIT-F-1 was limited, we employed an additional reference tank for
- 237 CH₃F (BIL-F-1, 99 % purity, Matheson) to serve as the actual working reference gas for the
- measurements described here. The secondary tank BIL-F-1 was calibrated against the primary
 tank CIT-F-1 by measuring them against each other 5× using the methods described in Section
- 240

6.

241

Isotopically labeled CH₃F and CH₃Cl gases (category *iii*, above) were made by derivatizing
 aliquots of isotopically labeled methanol (Cambridge Isotope Laboratories) following the

- methods outlined in Section 3, and diluting these labeled CH₃F and CH₃Cl gases in unlabeled
- commercial gases (category *i*, above; Section A2.2). Modifications of some procedures were done to avoid exposing systems that saw samples to isotopically labeled compounds (Section
- 246 done to 247 A2.2).
- 247 248

249 5. Methods III: equilibration of CH₃Cl on Pt/Al₂O₃ catalysts

- 250 As is generally the case when creating establishing new clumped-isotope measurements, there
- 251 are no standards available with independently known $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$. A common approach
- for clumped isotopic standardization is to equilibrate samples at known temperatures in order to
- 253 place Δ values in a thermodynamic reference frame (e.g., Ghosh et al., 2006; Dennis et al., 2011;
- 254 Yeung et al., 2012; Ono et al., 2014; Stolper et al., 2014a; Magyar et al., 2016; Young et al.,
- 255 2016; Yeung et al., 2017; Popa et al., 2018). We follow this approach and equilibrate
- isotopologues of CH₃Cl on a Pt catalyst (see Fig. A1b for workflow).
- 257
- 258 For each exchange experiment, 4 pellets (~200 mg) of Pt on alumina (Pt/Al₂O₃, 0.5 wt.%
- loading, Sigma Aldrich no. 206016) were added to a quartz break-seal. The Pt/Al₂O₃ catalyst
- 260 was pre-treated by heating at 550 °C for 4 hr in the presence of 200 mbar of O₂ (Aboul-Gheit and

- 261 Cosyns, 1976). O₂ was pumped away and the catalyst exposed to vacuum at 550 °C for an
- $262 \qquad additional 4 \ hr. \ Next, 200-600 \ \mu moles \ of \ CH_3Cl \ gas \ were \ frozen \ into \ the \ break-seal \ tube \ (using$
- LN₂) and the tube flame sealed. The tube was placed in the center position of a box furnace
- 264 (Lindberg/Blue M; ThermoFisher Scientific) and maintained at the target temperature for the
- duration of the experiment (up to 185 hr). At the end of each experiment, the tube was cooled to
- 266 room temperature in < 20 s with compressed air.
- 267
- 268 These equilibrations produced HCl, Cl_2 , and chloroethane (C_2H_5Cl) (e.g., Olah et al., 1985),
- which were removed using a purification procedure summarized here and detailed in Appendix
- A3 (Fig. A1b). Products were frozen into a Pyrex trap with LN_2 packed with KBr, sealed, and
- heated to $\sim 100 \text{ °C}$ for 10 min to scrub Cl₂ and release Br₂. Gases were passed across a dry-ice + ethanol trap to remove Br₂ and frozen onto the cold-head trap at 100 K. CH₃Cl was then purified
- 272 chanof trap to remove br₂ and nozen onto the cold-head trap at 100 K. efficient was then purification
 273 largely following the procedure in Section 3.4, but modified to include additional purification
- steps (Appendix A3.1). Products were frozen and flame-sealed into a Pyrex break-seal using
- 275 LN₂. To remove C_2H_5Cl , the gas mixture was heated at 500 °C for 15 or 20 min. At these
- 276 conditions, C₂H₅Cl decomposes but CH₃Cl does not (e.g., Maccoll, 1969; Weisman and Benson,
- 277 1984; Wu and Won, 2000). Following pyrolysis, samples are again purified via the above
- 278 chemical and cryogenic steps. This cycle of pyrolysis followed by chemical and cryogenic
- 279 purifications is repeated $3 \times$ (Appendix A3.1). We demonstrate later that these steps do not affect
- 280 final CH₃Cl isotopic compositions.
- 281

282 6. Methods IV: Mass spectrometry

- 283 Here we describe the mass spectrometric methods used to determine δD , $\delta^{13}C$, $\Delta_{13}_{CH_2D}$, and
- 284 $\Delta_{^{12}CHD_2}$ values of methyl fragment ions (CH₃⁺) of CH₃F and CH₃Cl. These follow methods for
- 285 methane clumped isotopic measurements (Eldridge et al., 2019), which were actually developed
- as part of the effort to make the methyl halogen measurements described here.
- 287

288 6.1 Instrument conditions

- 289 Isotopic measurements of CH₃F and CH₃Cl were made using a Thermo Scientific MAT 253
- 290 Ultra at UC Berkeley. For all measurements, sample or reference gas is expanded from either a
- 291 Pyrex break-seal or a reference tank into a sample bellows. Gases are homogenized by cycling
- 292 the bellows from ~40 to ~90 % expanded at least $5 \times$ over 3 min. Samples are measured against
- 293 working reference gases of known δD and $\delta^{13}C$ (BIL-F-1 for CH₃F measurements or CIT-Cl-2
- 294 for CH_3Cl measurements).
- 295
- For the both CH₃F and CH₃Cl, the target source pressure is 2.7×10^{-7} mbar, equivalent to ~80
- 297 mbar for CH₃F and ~60 mbar for CH₃Cl at 100% bellows expansion. We tune source conditions
- to maximize CH_3^+ intensity and minimize H-adduct production (e.g., ${}^{12}CH_4^+$), which occurs at low trap voltage (1–3 V) and low extraction (10–20 %). For CH_3F , ${}^{12}CH_3^+$ intensity is 3× larger
- low trap voltage (1–3 V) and low extraction (10–20 %). For CH₃F, 12 CH₃⁺ intensity is 3× larger than 12 CH₃F⁺ and 12 CH₂D⁺ is 1.7× larger than 12 CH₄⁺ (Fig. 1). For CH₃Cl, CH₃⁺ intensity is 2×
- and CH_2D is 1.7× larger than CH_4 (Fig. 1). For CH_3CI , CH_3 intensity is 2 301 larger than ${}^{12}CH_3{}^{35}Cl^+$, and ${}^{12}CH_2D^+$ is ~0.5× that of ${}^{12}CH_4{}^+$ (Fig. 2). At the same source
- 302 pressures, CH₃Cl yields $3 \times$ higher ¹²CH₃⁺ intensity vs. CH₃F (Table A1).
- 303

304 **6.2 Gas purity evaluation**

- 305 Prior to each measurement, we scan and compare the mass spectrum of the sample and reference
- 306 gases to evaluate sample purity (see Table A1, Figs. A6, A7 for details). For CH₃F, common

potential contaminants are CH₂F₂, CO₂, and SiF₄. CH₃F samples are not measured if the CH₂F₂ 307 content exceeds 0.2% (taken as $100 \times (i_{\text{CHF}_{2_{\text{sa}}}^+} - i_{\text{CHF}_{2_{\text{wg}}}^+})/(i_{\text{CH}_{3_{\text{sa}}}^+} + i_{\text{CH}_{3}\text{F}_{\text{sa}}^+})$, where *i* is 308 309 intensity of the measured beam). This is because pilot measurements indicated that δD accuracy 310 is compromised above this threshold (Fig. A9). We have yet to observe a sample with an excess 311 of CO₂ or SiF₄ that was not also rejected for other reasons (low yield or high CH₂F₂ abundance), 312 but we continue to monitor these peaks. 313 314 For CH₃Cl, the main potential contaminant is chloroethane (C₂H₅Cl; see Table A1 for all

315 monitored contaminants). Samples are not analyzed if C2H5Cl content exceeds 0.25 % (defined as $100 \times (i_{C_2H_5^+_{sa}} - i_{C_2H_5^+_{wg}})/(i_{CH_3^+_{sa}} + i_{CH_3Cl^+_{sa}}))$. Pilot measurements indicated that δD and 316 δ^{13} C accuracies were compromised above this threshold. We note that wood samples typically 317 yield C_2H_5Cl contents of 0.03 % and never higher than 0.1 %. 318

6.3 δ^{12} CH₂D measurement 320

D/H ratios of methyl fragments are determined from δ^{12} CH₂D values where: 321

322

323

319

$$\delta^{12} \text{CH}_2 \text{D} = \left(\frac{{}^{12}_{\text{CH}_2 \text{D}}{}_{R_{\text{wg}}}}{{}^{12}_{\text{CH}_2 \text{D}}{}_{R_{\text{wg}}}} - 1\right) \times 1000 .$$
(8)

324

Here, $^{^{12}\text{CH}_2\text{D}}R = [^{12}\text{CH}_2\text{D}^+]/[^{12}\text{CH}_3^+ + ^{12}\text{CHD}^+]$. $\delta^{12}\text{CH}_2\text{D}$ is defined such that the working 325 326 reference gas (wg) has a δ^{12} CH₂D value of 0 ‰. The denominator of this ratio includes a contribution from the twice-fragmented ion ¹²CHD⁺—likely generated by multiple fragmentation 327 328 reactions in the source. This is corrected for during data processing (Appendix A4) and changes 329 δD values by < 0.01 %. Detector settings, instrument configuration, and typical peak intensities 330 are given in Table A2. Briefly, ${}^{12}CH_{2}D^{+}$ is measured in Faraday cup H4 (40 µm exit slit, 10^{13} amplifier) and the flat shoulder of ${}^{12}CH_3^+ + {}^{12}CHD^+$ in Faraday cup L2 (10¹⁰ amplifier) (Figs. 1, 331 332 2). The standard aperture, medium resolution slit is used for CH₃F (mass resolving power of 22,000 M/ Δ M, 5–95 % definition) and the high resolution slit for CH₃Cl (mass resolving power 333 334 of 28,000). 335

336

 δ^{12} CH₂D are determined in measurement blocks that each consist of 10 sample/standard cycles 337 (i.e., 21 integrations/block). 5 blocks are measured for CH₃F and 4 for CH₃Cl. At the start each

338 block, sample and standard gases are automatically pressure balanced to intensities of 1.4×10^9

 $cps \pm 0.8$ % on ${}^{12}CH_3^+ + {}^{12}CHD^+$ (equiv. to 2240 mV). Typical ${}^{12}CHD^+$ intensities are 280,000 339

- 340 cps/450 mV for CH₃F, 320,000 cps/510 mV for CH₃Cl; higher mass 16 intensities at the same
- 341 mass 15 intensity are seen for CH₃Cl vs. for CH₃F because a smaller proportion of the mass 16
- 342 beam is excluded by the exit slit on the H4 cup in high resolution mode vs. in medium resolution
- mode. Each integration begins with an automatic peak center on ¹²CH₂D⁺ followed by 90 343
- 344 consecutive 0.524 s sub-integrations (47.16 s total integration time). At the end of all
- 345 measurement blocks, measurement backgrounds are determined with gas still flowing into the 346 source by jumping the magnet +0.1 Da and performing five 47.16 s integrations while cycling
- 347 between the sample and standard gases. Sample and standard backgrounds are always
- 348 indistinguishable (within 3 standard errors, hereafter s.e.). As such, we average them and subtract

349

- the average from the sample and standard mass 15 and 16 measurements. Completion of a
- 350 δ^{12} CH₂D measurement for both analytes takes 3–4 hours and yields typical internal measurement
- 351 precisions, given as ± 1 s.e., of 0.14 ‰ for CH₃F and 0.12 ‰ for CH₃Cl. Here and throughout
- 352 this paper, internal measurement precision is defined as the standard deviation of all
- 353 sample/standard comparisons divided by the square root of the number of comparisons.
- 354

6.4 Simultaneous δ^{13} CH₃ and δ^{13} CH₂D measurement 355

- Sample ¹³C/¹²C and ¹³CH₂D/¹²CH₃ ratios are determined from δ^{13} CH₃ and δ^{13} CH₂D where: 356 357
- 358

$$\delta^{13} \text{CH}_3 = \left(\frac{{}^{^{13}\text{CH}_3}{}_{R_{\text{sa}}}}{{}^{^{13}\text{CH}_3}{}_{R_{\text{wg}}}} - 1\right) \times 1000$$
(9)

359 and

360
$$\delta^{13} \text{CH}_2 \text{D} = \left(\frac{{}^{^{13}\text{CH}_2\text{D}}{}_{R_{\text{m,sg}}}}{{}^{^{13}\text{CH}_2\text{D}}{}_{R_{\text{m,wg}}}} - 1\right) \times 1000.$$
(10)

361

Here, ${}^{^{13}\text{CH}_3}R = [{}^{13}\text{CH}_3^+]/[{}^{12}\text{CH}_3^+ + {}^{12}\text{CHD}^+] \text{ and } {}^{^{13}\text{CH}_2\text{D}}R_m = [{}^{13}\text{CH}_2\text{D}^+]/[{}^{12}\text{CH}_3^+ + {}^{12}\text{CHD}^+].$ We 362 define the δ^{13} CH₃ and δ^{13} CH₂D values of the working reference gas to be 0 ‰. Note the 363 inclusion of the subscript 'm,' which stands for 'measured,' to distinguish this ratio from 364 ${}^{13}\text{CH}_2\text{D}R = [{}^{13}\text{CH}_2\text{D}]/[{}^{12}\text{CH}_3]$ (Eqn. 3), which does not include the ${}^{12}\text{CHD}^+$ fragment. The 365 contribution of the ¹²CHD⁺ fragment is corrected for during data processing (Appendix A4) and 366 367 changes δ^{13} CH₃ and δ^{13} CH₂D values by < 0.01 ‰. 368 The detector array is configured such that the high-mass shoulder of ${}^{12}CH_3^+ + {}^{12}CHD^+$ is in 369 Faraday cup L4 (10^{10} amplifier), the low-mass shoulder of ${}^{13}CH_3^+$ in Faraday cup L1 (10^{12} 370 amplifier for CH₃F and 10¹¹ amplifier for CH₃Cl), and ¹³CH₂D⁺ on the H4 compact discrete 371 dynode (CDD) detector (Figs. 1, 2, Table A2). Cups are not moved to make this measurement 372 373 following the δ^{12} CH₂D determination. We use the medium resolution slit and standard aperture 374 at a mass resolving power > 22,000 on H4 for both CH₃F and CH₃Cl (Figs. 1 and 2). 375 376 δ^{13} CH₃ and δ^{13} CH₂D values are determined in measurement blocks comprised of an automated 377 pressure balancing routine followed by 10 sample/standard integration cycles (total 21 378 integrations per block). Pressures are automatically balanced such that the ${}^{12}CH_3^+ + {}^{12}CHD^+$ 379 intensity is set to 1.4×10^9 cps (2240 mV) for CH₃F or 4.2×10^9 cps (6730 mV) for CH₃Cl (±0.7%). Corresponding ¹³CH₃⁺ and ¹³CH₂D⁺ intensities are 1.5×10^7 cps (2400 mV) and 2800 cps 380 for CH₃F, 4.4×10^7 cps (700 mV) and 8800 cps for CH₃Cl. Due to the ~2/3 lower intensity of 381 382 CH₃⁺ for CH₃F vs. CH₃Cl at the same source pressure, more measurement blocks are performed 383 for CH₃F (18–24 blocks, depending on the amount of sample gas remaining and daily scheduling 384 considerations) vs. CH₃Cl (7–12 blocks) in order to reach comparable precision.

385

386 Each integration begins with an automatic peak center on ¹³CH₂D⁺ followed by 60 consecutive 1.048 s sub-integrations of ${}^{12}CH_3^+ + {}^{12}CHD^+$, ${}^{13}CH_3^+$, and ${}^{13}CH_2D^+$ (62.88 s total integration 387

- 388 time). At the end of all measurement blocks, two background measurements are performed with
- 389 gas still flowing into the source. First, the background for the δ^{13} CH₃ determination is measured

- 390 0.007 Da below the ¹³CH₂D⁺ center for 3 sample/standard cycles, with each integration
- 391 consisting of 60 sub-integrations of 1.048 s each (Fig. 2). This background is used to correct for
- 392 the possible presence of ${}^{14}NH_2^+$ on ${}^{13}CH_3^+$. This is done as we observed that, in some CH₃F
- 393 measurements that were ultimately rejected for other reasons (low yield, high CH₂F₂ abundance),
- 394 the ${}^{14}NH_2$ background was resolvably higher in the sample gas vs. the standard. In all data
- 395 reported here, sample and standard ¹⁴NH₂⁺ backgrounds are always statistically identical (within
- 396 3 s.e.), and so are averaged and subtracted from both the sample and standard ${}^{13}CH_{3}^{+}$ measurements.
- 397
- 398
- 399 Second, with gas still flowing into the source, backgrounds for the ${}^{12}CH_3^+ + {}^{12}CHD^+$ and
- ¹³CH₂D⁺ measurements are performed +0.1 Da above the ¹³CH₂D⁺ center with 3 sample/standard 400
- cycles consisting of 60 consecutive 1.048 s sub-integrations. Sample and standard backgrounds 401
- 402 are always identical (within 3 s.e.). As such, we average them and subtract the average from the
- sample and standard mass 15 and 17 measurements. The δ^{13} CH₂D measurement does not require 403
- a tailing correction because ¹³CH₂D⁺ is resolved from ¹³CH₄⁺ in our measurements—tailing from 404 $^{13}CH_4^+$ contributes <0.7 cps to the center of the $^{13}CH_2D^+$ peak when measured as CH₃Cl (and a 405
- proportionally smaller amount as CH₃F). Under typical measurement conditions, this alters 406
- 407 δ^{13} CH₂D values by <0.1 ‰, i.e., 2.5× smaller than the measurement precision, which we
- 408 consider negligible (especially since this ¹³CH₄⁺ tailing will be of similar size in both gases).
- 409
- 410 This measurement takes 5 to 7 hours for CH_3Cl and 12 to 16 hours for CH_3F , depending on the
- number of measurement blocks performed. Internal measurement precisions (± 1 s.e.) are ~0.003 411
- % for δ^{13} CH₃ and 0.23–0.30 % for δ^{13} CH₂D. 412
- 413

414 6.5 δ^{12} CHD₂ measurement

- For CH₃Cl samples only, δ^{12} CHD₂ values are determined where: 415
- 416

417

$$\delta^{12} \text{CHD}_2 = \left(\frac{{}^{12}_{\text{CHD}_2}{}_{R_{\text{m,sa}}}}{{}^{12}_{\text{CHD}_2}{}_{R_{\text{m,wg}}}} - 1\right) \times 1000.$$
(11)

418

Here, $^{12}CHD_2R_m = [^{12}CHD_2^+]/[^{12}CH_3^+ + ^{12}CHD^+]$ and the $\delta^{12}CHD_2$ of the working reference gas 419 (wg) is defined to be 0 ‰. As above, the 'm' subscript distinguishes this ratio from $^{12}CHD_2R$ 420

421 (Eqn. 4), which does not contain the ${}^{12}CHD^+$ fragment in the denominator.

422

423 The detector array is configured so that the high-mass shoulder of ${}^{12}CH_3^+ + {}^{12}CHD^+$ is measured 424 on Faraday cup L4 (10^{10} amplifier) and the center of 12 CHD₂⁺ on the H4 CDD (Table A2; Fig. 2; 425 note that this requires moving the L4 cup from its previous alignment). The instrument is set to high resolution, standard aperture, and tuned to a mass resolving power of > 28,000 on H4 (Fig. 426 2).

427 428

429 Bellows pressures are manually adjusted to yield an intensity of 1.3×10^9 cps on cup L4 (2080)

- 430 mV) and mass spectrum scans of the methyl fragment isotopologues at cardinal mass 17 are
- 431 acquired on the H4 CDD for both the sample and working reference gases (Fig. 2). We then
- 432 perform a slow, precise mass spectrum scan (0.04 mDa step size, 4.194 s integration per step) of

433 the ¹⁶OH⁺ peak in the reference gas . These scans are used for a peak-tailing correction on the 434 12 CHD₂⁺ peak (described below and in Fig. A8).

435

436 The δ^{12} CHD₂ measurement routine consists 10–18 measurement blocks with 10 sample/standard 437 cycles. The number of blocks used depends on the amount of sample gas remaining following 438 the previous analyses. Measurement blocks begin with an automated pressure balancing of 439 sample and standard gases to within 0.8 % of 1.3×10^9 cps on cup L4. Typical ¹²CHD₂⁺ intensities are 20–40 cps. Each integration begins with an automated peak center on ¹³CH₄⁺ on the H4 440 441 CDD. Next, the measurement mass is increased by +0.00137 Da, which is the calculated center 442 of the ${}^{12}CHD_2^+$ peak. Peaks are integrated for 60 consecutive sub-integrations of 1.048 s each. 443 After all measurement blocks are completed, a background is determined with gas flowing into 444 the source by increasing the instrument mass +0.1 Da and integrating for 2 sample/standard 445 cycles of 62.88 s each. For mass 15, sample and standard backgrounds are averaged (as they are always within 3 s.e.) and subtracted from both the sample and standard ${}^{12}CH_3^+ + {}^{12}CHD^+$ 446

447 measurements.

448

449 For the ${}^{12}CHD_2^+$ integrations, we correct for both a scattered ion background (as determined by

450 measuring the background +0.1 Da above the 12 CHD₂⁺ peak; typically ~0.1 cps and always 451 indistinguishable in the sample and standard) and for tailing from the adjacent 13 CH₄⁺ and

 $^{12}CH_3D^+$ peaks. The tailing of these species contributes ~0.3–0.5 cps to ~20–40 cps of total

 12 CHD₂⁺ signal. Our procedure for determining these corrections is based on the methodology

454 for ${}^{12}CH_2D_2^+$ measurements of methane first presented by Xie et al. (2019) and described at UC

455 Berkeley for methane in Eldridge et al. (2019). We employ an equivalent approach for

456 corrections of δ^{12} CHD₂ as shown in Fig. A8.

457

458 The complete δ^{12} CHD₂ measurement routine takes 7–12 hours with achieved measurement 459 precisions of δ^{12} CHD₂ ranging from 1.5–3.0 ‰ (1 s.e.), depending on the number of

460 measurement blocks and the δ^{12} CHD₂ value of the sample.

461

462 **6.6 Calculation of \delta D,** $\delta^{13}C$, $\Delta_{13}_{CH_2D}$, and $\Delta_{12}_{CHD_2}$ values

463 Raw intensities in instrument output files from the Qtegra software (v.2.9) are converted to δ^{12} CH₂D, δ^{13} CH₃, δ^{13} CH₂D, and δ^{12} CHD₂ values (relative to the working reference gas) using 464 465 custom data processing scripts available with the online version of this article. During automated data processing, background corrections are first applied as described in the preceding sections. 466 467 Next, sub-integrations performed on the H4 Faraday cup or H4 CDD i.e., ¹²CH₂D⁺, ¹³CH₂D⁺, and 468 12 CHD₂⁺, are screened for outliers due to peak position drift. Measurements on the H4 Faraday cup and H4 CDD are sensitive to peak position drift because, due to the narrow exit slits on these 469 470 cups, peak widths approach the cup sizes and thus peak tops are not flat. Two data filtering 471 algorithms are used here for this purpose (see Appendix A5)-these are derived and discussed in 472 detail for methane in Eldridge et al. (2019); see Section SI.3 of that study. The effect of the 473 filters is small: 12 % and 3 % of sub-integrations for CH₃F and CH₃Cl δ^{12} CH₂D measurements, 474 respectively, are excluded and this changes mean δD values by typically < 0.05 ‰. The filters improve δD precisions by 0.01–0.1 ‰. For ¹³CH₂D⁺ and ¹²CHD₂⁺ measurements, less than 2 % 475

476 of sub-integrations are excluded by the filters, which change δ^{13} CH₃D and δ^{12} CHD₂ values by

477 typically < 0.1‰. Precisions on δ^{13} CH₃D and δ^{12} CHD₂ measurements are substantially improved

- 478 by these filters only in instances where a peak drifted a large amount (> 100 μ Da) during an
- 479 integration.
- 480
- 481 Background corrected and filtered δ^{12} CH₂D, δ^{13} CH₃, δ^{13} CH₂D, and δ^{12} CHD₂ values are
- 482 converted to δD , $\delta^{13}C$, $\Delta_{13}_{CH_2D(wg)}$, and $\Delta_{12}_{CHD_2(wg)}$ values based on equations provided (and
- 483 derived) in the Appendix (Sections A4.1–A4.3). These calculations yield δD values relative to
- 484 VSMOW, δ^{13} C values relative to VPDB, and $\Delta_{13}_{CH_2D(wg)}$ and $\Delta_{12}_{CHD_2(wg)}$ values relative to the
- 485 working reference gas. $\Delta_{13}_{CH_2D(wg)}$ and $\Delta_{12}_{CHD_2(wg)}$ values are then converted to the
- 486 thermodynamic reference frame ($\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$) based on the results of the equilibration
- 487 experiments reported below. These calculations correct for the inclusion of ¹²CHD⁺ in measured
 488 isotope ratios.
- 489
- 490 Finally, a Monte Carlo approach (10⁶ iterations) is used to calculate the uncertainty on δD , $\delta^{13}C$,

491 $\Delta_{^{13}CH_2D(wg)}$, and $\Delta_{^{12}CHD_2(wg)}$. It propagates errors from all relevant δ measurements into final 492 reported precisions.

492 reported precisi 493

494 **7. Methods V: Theoretical calculations of equilibrium Δ as a function of temperature**

495 Establishing a thermodynamic reference frame for $\Delta_{13}_{CH_2D}$, and $\Delta_{12}_{CHD_2}$ values requires

496 constraints on their equilibrium temperature dependencies. The equilibrium isotope exchange497 reactions for methyl clumped isotopes can be written as follows:

498 499

500

$$R - {}^{13}\text{CH}_3 + R - {}^{12}\text{CH}_2\text{D} \rightleftharpoons R - {}^{12}\text{CH}_3 + R - {}^{13}\text{CH}_2\text{D}$$
(12)

$$2\left(R - {}^{12}\mathrm{CH}_{2}\mathrm{D}\right) \rightleftharpoons R - {}^{12}\mathrm{CH}_{3} + R - {}^{12}\mathrm{CHD}_{2}$$

501 502

Here, we calculate the equilibrium constants for these reactions (which can be related to Δ values as described below) as a function of temperature using the approaches of Urey (1947) and Bigeleisen and Mayer (1947). Specifically, we calculate of so-called reduced partition functions (RPFRs; e.g., Bigeleisen-Mayer, 1947; Schauble, 2004) of isotopically substituted isotopologues relative to the unsubstituted isotopologue via the following equation:

508

509
$$\operatorname{RPFR} = e^{-(E_0^* - E_0)/k_{\mathrm{B}}T} \prod_{i=1}^{a} \frac{\omega_i^*}{\omega_i} \frac{1 - e^{-hc\omega_i/k_{\mathrm{B}}T}}{1 - e^{-hc\omega_i^*/k_{\mathrm{B}}T}}.$$
 (14)

510

511 In Eqn. 14, E_0 is the harmonic zero-point energy, ω_i is the harmonic frequency (given as wave 512 number) of the *i*th normal mode, *a* is the total number of vibrational modes (a = 3N - 5 for linear molecules, a = 3N - 6 for non-linear molecules), and * indicates the isotopically substituted 513 514 molecule. In this formulation, mass terms and symmetry numbers are normalized out of the 515 partition function ratios. This approach assumes the Born-Oppenheimer approximation, assumes 516 rotations are rigid, treats rotational and translational motions as classical, and assumes quantized vibrational energies can be approximated as harmonic oscillators. We calculate RPFRs for 517 isotopically substituted methyl groups (e.g., $R^{-13}CH_3$, $R^{-12}CH_2D$, $R^{-13}CH_2D$, $R^{-12}CHD_2$) vs. the 518 unsubstituted group (R^{-12} CH₃). RPFRs are given as $^{R-i}$ RPFR where *i* indicates the isotopically 519 520 substituted methyl group.

(13)

521

522 Calculated RPFRs can be related to Δ values and equilibrium constants with the following 523 equations:

524
$$\Delta_{R^{-13}\text{CH}_2\text{D}} \cong 1000 \times \ln\left(K_{R^{-13}\text{CH}_2\text{D}}\right) = 1000 \times \ln\left(\frac{R^{-13}\text{CH}_2\text{D}}{R^{-13}\text{CH}_2\text{D}}_{RPFR\times}^{R^{-13}\text{CH}_3}_{RPFR}\right)$$
(15)

525

526
$$\Delta_{R^{-12}CHD_2} \cong 1000 \times \ln\left(3K_{R^{-12}CHD_2}\right) = 1000 \times \ln\left(\frac{R^{-12}CHD_2}{\left(R^{-12}CH_2D_RPFR\right)^2}\right).$$
(16)

527 In Eqs. 15 and 16, $K_{R-1^{3}CH_{2}D}$ and $K_{R-1^{2}CHD_{2}}$ are the equilibrium constants for Eqs. 12 and 13

528 respectively. The factor of 3 in Eqn. 16 arises from the symmetry numbers for the included

529 isotopologues. The equations are approximate because we assume that the abundances of singly

substituted methyl groups (R-¹³CH₃ and R-¹²CH₂D) are randomly distributed. This is not strictly

531 true, but is a valid assumption at the level of precisions we attain (~0.25 % for $\Delta_{13}_{CH_2D}$, ~2.5 %

532 for $\Delta_{12}_{CHD_2}$) and for the range of δD and $\delta^{13}C$ values studied here. RPFRs are calculated for

533 gaseous chloromethane (CH₃Cl), fluoromethane (CH₃F), and methanol (CH₃OH). These

534 correspond to our analytes and what we consider to be the simplest methoxyl group (methanol).

535 We additionally provide calculations for Δ values in methane using the same approach for

- 536 comparison to methyl groups and previous work.
- 537

538 The harmonic frequencies used in the RPFRs are derived from potential energy surfaces

calculated using the *Gaussian09* software package (Frisch et al., 2013). CH₃Cl, CH₃F, MeOH,

- 540 and CH₄ calculations were performed at the B3LYP level of theory (Becke, 1993; Lee et al.,
- 541 1988) with the 6-31G+(d,p) basis set, and at the CCSD (Purvis and Bartlett, 1982) and MP2
- 542 (Møller and Plesset, 1934) levels of theory using the aug-cc-pVTZ basis set (Dunning, 1989;
- 543 Kendall et al., 1992).

544545 8. Results

546 Individual clumped isotopic values for all measurements are provided in spreadsheets in the

- 547 Electronic Annex. Mean values for replicate measurements are listed in Table 2. Below we 548 summarize key results.
- 549

550 8.1 Replicate analyses of internal gas standards

- 551 We created four gas standards (plusD-F-std, plusD-Cl-std, plus¹³C-Cl, and BI-Cl-1) with
- different δD , $\delta^{13}C$, $\Delta_{13}CH_2D(wa)$ and $\Delta_{12}CHD_2(wa)$ from our working gases (see Section 3.5) to be
- able to establish our long term mass-spectrometric precision. The CH₃Cl standards vary in δD ,
- 554 δ^{13} C, and $\Delta_{13}_{CH_2D(wq)}$ relative to our working gas by +65 to +147 ‰, -0.3 to +40 ‰, and -6 to
- +26%, respectively (Table 2). The CH₃F standard differs from the working gas by +118%,
- 556 +0.3 ‰, and +4 ‰, respectively. Two of the CH₃Cl standards have $\Delta_{12}_{CHD_2(wg)}$ values of ~+6
- and +87 %. The plusD-Cl-std is sufficiently enriched in ¹²CHD₂ that, rather than attempt to
- 558 measure it directly in the manner described in Section 6.5, we estimated its $\Delta_{12}_{CHD_2(wg)}$ value
- from the height of ${}^{12}CHD_2^+$ in mass scans of this gas vs. the standard. Based on this, we estimate

- 560 a δ^{12} CHD₂ of ~17,920 ‰ (vs. CIT-Cl-2), which corresponds to a $\Delta_{12}_{CHD_2(wg)}$ value of ~13,390
- 561 562

‰ (Table 2).

- 563 Replicate analyses of gas standards allow comparison between internal ± 1 s.e. and external $\pm 1\sigma$
- 564 reproducibility for determining the long-term measurement precision (Table 3; see also
- 565 Huntington et al., 2009). By internal precision we mean the standard error of all individual
- 566 sample vs. reference gas comparisons within a single measurement. External precision is the
- 567 standard deviation of multiple measurements and compares procedural replicates, including any
- 568 chemistry and gas handling involved. Internal ± 1 s.e. and external $\pm 1\sigma$ should therefore agree 1:1
- if the measurement is stable and sample handling procedures are non-fractionating (Huntingtonet al., 2009).
- 571

572 Mean internal ±1 s.e. for δD , $\delta^{13}C$, and $\Delta_{^{13}CH_2D(wq)}$ on CH₃F are 0.14, 0.01, and 0.29 ‰ while

- 573 the external $\pm 1\sigma$ values of the gas standard are 0.11, 0.03, and 0.21 ‰ (n = 6; Table 2). For
- 574 CH₃Cl, ± 1 s.e. measurement precisions are 0.12, 0.01, and 0.22 ‰ and external $\pm 1\sigma$ precisions
- of all gas standards are 0.17, 0.02, and 0.22 % (n = 15; Table 3). These values aggregate the
- 576 replicate measurements of all three CH₃Cl gas standards. BI-Cl-1 was analyzed 4 times for
- 577 $\Delta_{^{12}CHD_2(wg)}$, yielding internal 1 s.e. and external 1σ errors of 2.28 and 2.42 ‰ (Table 3). Thus,
- 578 in all cases, external $\pm 1\sigma$ precisions are effectively the same as internal ± 1 s.e. for gas standards. 579

580 8.2 Measurements of CH₃I standard

- 581 We report isotopic data from 4 replicate fluorinations and 13 replicate chlorinations of the CH₃I 582 standard; individual measurements are given in the Electronic Annex Tables EA2 and EA3, and
- 583 mean values in Table 2.
- 584

585 Fluorinations reactions were carried out in both the Pyrex and nickel vessels (Section 3.2). For 586 the fluorinations, we observed a dependence of δ^{13} C and δ D values on yield and CH₂F₂ content

- the fluorinations, we observed a dependence of δ^{13} C and δ D values on yield and CH₂F₂ content (Fig. A9; Table EA2). Based on these dependencies, we exclude data from fluorinations with <
- 587 (Fig. A9, Table EA2). Based on these dependencies, we exclude data from indomations with 588 95 % yield and > 0.2 % CH₂F₂. This results in the exclusion of 9 of the 13 CH₃I standard
- fluorination attempts. Yield and purity were independent of reaction time (4–24 hr). Mean values
- 590 and $\pm 1\sigma$ (i.e., the external precision) of the four remaining replicates (three Pyrex and one nickel
- fluorination) are: $\delta D = -98.13 \pm 1.58$ % (vs. VSMOW), $\delta^{13}C = -52.74 \pm 0.56$ % (vs. VPDB),
- 592 and $\Delta_{^{13}\text{CH}_2\text{D}(wa)} = -2.71 \pm 0.09 \text{ (vs. wg)}$ (Table 2).
- 593
- 594 For chlorinations of the CH₃I standard, yields are 97.4 to 101.3 %, and always within error of
- 595 100 % given the uncertainties of our manometry (\pm 1.5–3 % depending on sample size).
- 596 Chlorination yields are independent of reaction time (between 22 and 70 hours) and AgCl excess
- 597 (5–31× molar excess vs. CH₃I) (Table EA3). Mean and $\pm 1\sigma$ values (external precisions) for the
- 598 13 replicate chlorinations are: $\delta D = -101.39 \pm 1.99$ ‰, $\delta^{13}C = -52.79 \pm 0.21$ ‰, and
- 599 $\Delta_{13}_{CH_2D(wg)} = -2.20 \pm 0.27 \%$ (vs. wg) (Table 2). The four analyses that included $\Delta_{12}_{CHD_2(wg)}$
- 600 determinations yield a mean value of $-10.12 \pm 2.57 \text{ }$ % ($\pm 1\sigma$). δD and $\delta^{13}C$ values of the CH₃I
- 601 std thus agree within 1σ when measured as CH₃F vs. CH₃Cl. The offset in $\Delta_{13}_{CH_2D(wg)}$ values is
- 602 further described in Section 8.6.
- 603

- 604 Compared to the gas standards, these external 1σ reproducibilities of the CH₃I liquid standard are
- 605 order 10× worse for δD and $\delta^{13}C$, but the external 1σ precision for $\Delta_{13}_{CH_2D(wg)}$ values from
- 606 replicate derivatizations of the CH₃I standard to CH₃F and CH₃Cl are indistinguishable from
- 607 internal 1 s.e. measurement precision: 0.29‰ internal vs. 0.09 ‰ external for CH₃F and 0.24
- 608 internal vs. 0.27 ‰ external for CH₃Cl (Table 2). Four replicate $\Delta_{12}_{CHD_2(wg)}$ analyses of the
- 609 CH₃I standard derivatized to CH₃Cl also match internal measured precision: 2.62 vs. 2.57 ‰
- 610 (internal 1 s.e. vs. external 1σ).
- 611

612 8.3 Methanol, wood, and syringaldehyde samples

- 613 We analyzed one methanol, one syringaldehyde, and five wood samples as either CH₃F, CH₃Cl,
- 614 or both. Isotopic compositions for individual measurements are given in in Electronic Annex
- Table EA4 and mean values, separated by analyte gas, in Table 2.
- 616
- 617 The methanol standard was analyzed five times as CH₃Cl and yielded $\pm 1\sigma$ external
- 618 reproducibilities for δD , $\delta^{13}C$, and $\Delta_{^{13}CH_2D(wg)}$ of 0.94, 0.99, 0.39 ‰ (Table 3). The methanol
- 619 standard was only measured once as CH₃F and thus cannot be used to asses external
- 620 reproducibility. Replication of wood samples yielded external $\pm 1\sigma$ reproducibilities as CH₃F (n =
- 621 3) of 1.20, 2.12, and 0.32 % and as CH₃Cl (n = 4) of 0.46, 0.74, and 0.24 % (Table 3). Thus, as
- 622 was the case with measurements of CH_3I (which is a part of this procedure), conversion of
- 623 methoxyl groups from wood or methanol to CH₃Cl or CH₃F decreases external precision of δD
- 624 and δ^{13} C values by ~0.5 to 1 ‰ relative to internal precision, while $\Delta_{13}_{CH_2D(wg)}$ yields external
- 625 reproducibilities equivalent to those for internal measurement precision (0.25‰).
- 626

627 8.4 Methoxyl yields

- 628 In our reactions, it is important that we quantitatively extract and recover methoxyl groups as
- 629 CH₃F or CH₃Cl to avoid isotopic fractionations due to poor yield. To evaluate this, we measured
- 630 samples of wood and syringaldehyde with published methoxyl contents (Greule et al., 2019; Lee
- 631 et al., 2019). Our yields are determined by manometry (Section 3.4) while the published values
- 632 for woods were measured via gas chromatography (Li et al., 2012; Lee et al., 2019). The
- 633 syringaldehyde material has a methoxyl content known based on stoichiometry.
- 634
- 635 For the syringaldehyde standard, our determined methoxyl content was 34.03 wt.% vs. a value of
- 636 34.1 wt.% theoretical. For the wood samples, our measured values largely agree with previously
- 637 measured values (Fig. 4). However, there is scatter of up to 1 wt.% and, other than one wood
- sample with close agreement (HUBG4: wt.% 5.12 vs 5.09, this study vs. Greule et al., 2019), our
- 639 methoxyl concentrations are higher than external values by 0.2-1.0 wt.% (Fig. 4).
- 640

641 8.5 Accuracy of methoxyl δD and $\delta^{13}C$ measurements

- 642 We examine the accuracy of our δD and $\delta^{13}C$ measurements in two ways. First, we compare δD
- 643 and δ^{13} C values of five materials analyzed as both CH₃F and CH₃Cl (Table 2). δ D values of
- 644 CH₃F vs. CH₃Cl analyses of the CH₃I std, the MeOH std, and three woods are in 1:1 agreement
- 645 over a range of 200 ‰ (mean difference = 0.65 ± 1.80 ‰; 1 s.e.; Fig. 5a). δ^{13} C values of the
- 646 same materials are also in 1:1 agreement over a range of 30 ‰ (mean difference = 1.24 ± 0.72 ‰ 647 1 s.e.; Fig. 6a).
- 648

- 649 Second, we compare δD and $\delta^{13}C$ measurements of six wood or syringaldehyde standards
- 650 presented here vs. published values (Lee al., 2019; Greule et al. 2019) or, for the methanol,
- 651 measured for δ^{13} C at Caltech via conventional methods (Section 4). Published δ^{13} C values range
- from -26.8 to -40.9 ‰ (Table 1). Measured values made here are offset from external
- 653 measurements by up to 2.15 % in either direction and the slope is indistinguishable from 1 (Fig.
- 654 6b). As our external 1σ precision for wood methoxyl δ^{13} C values is ± 1.6 ‰, these deviations are 655 within ± 2 s.e.
- 656
- 657 Published δD values range from -315 to -171‰ (Table 1). Our methoxyl δD values correlate
- 1:1 with external published values (Fig. 5b). All samples agree within 25 ‰ with an average
- disagreement of $12 \pm 8 \% (1\sigma)$. Our measurements agree within ± 2 s.e. of those reported in Lee
- 660 et al. (2019) (USC laboratory) but show systematically lower values (by 18 ± 6 ‰; 1σ) from
- those reported in Greule et al. (2019) (HU laboratory). Normalizing measured δD values relative
- to the highest values measured in each laboratory (Fig. 5c), values measured here vs. in other
- 663 labs agree (except for one outlier) within ± 10 ‰ of a 1:1 line. Relative differences in measured
- δD values of the various laboratories are thus comparable, but there are potential interlaboratory
- offsets in δD scaling relative to VSMOW of ~20‰, which are discussed below.
- 667

668 **8.6 Comparison and cross-calibration of** Δ_{13</sup>_{CH₂D} measurements made as CH₃Cl and CH₃F}

- 669 We compare differences in $\Delta_{13}_{CH_2D(wg)}$ values when samples were analyzed as both CH₃Cl and
- 670 CH₃F in Fig. 7 and Table 2. $\Delta_{13}_{CH_2D(wq)}$ values range by 11‰ for both analytes. A York
- 671 regression of these data (i.e., a least squares regression with error on both x and y; York, 1968)
- yields a slope of 0.981 ± 0.023 and intercept of 0.458 ± 0.118 (both ± 1 s.e.; Fig. 7). A linear
- 673 regression without error yields essentially the same slope and intercept: 0.982 ± 0.020 and 0.466
- 674 ± 0.126 (both ± 1 s.e.), respectively.
- 675
- 676 Although the slope observed between measured $\Delta_{^{13}CH_2D(wg)}$ values on CH₃Cl vs. CH₃F is within
- error of 1, there exists a statistically significant offset between the two as evidenced by the non-
- 2678 zero y-intercept of 0.458 ± 0.118 (1 s.e.). Thus, the 'true' Δ_{13</sup>_{CH₂D} values of the CH₃F (BIL-F-1)}
- and CH₃Cl (CIT-Cl-2) working reference gases differ by ~0.5‰. Based on this, we correct
- 680 $\Delta_{13}_{CH_2D(wg)}$ values measured as CH₃F to CH₃Cl or (vice versa) with a constant correction term.
- 681 We determine this correction as follows: (*i*) as the slope is within ± 1 s.e. error of a 1:1 line, we
- assume relative measured differences of samples as CH₃F or CH₃Cl are indeed 1:1. (*ii*) We find
- 683 the constant correction term based on the error-weighted mean of measured differences between
- all samples, which yields a value of $0.479 \pm 0.096 \%$ (1 s.e.), which is within ± 1 s.e. of the y-
- 685 intercept from the York regression and within ± 1 s.e. of the unweighted mean of 0.396 ‰. This
- term can then be used to translate values measured relative to the CH₃F working gas to those
- 687 measured relative to the CH₃Cl working gas or vice versa (see A1.5 for exact equation).
- 688

689 8.7 CH₃Cl exchange experiments

- 690 We report five experiments in which CH₃Cl gases were heated in the presence of the Pt/Alumina
- 691 catalyst (Table 4). The experiments were performed at a fixed temperature of 200 °C for 90 to
- 185 hr. In all experiments, >70 % of the initial CH₃Cl is consumed in reactions that produce

- 693 chloroethane, methane, and other byproducts. The fraction of CH₃Cl remaining decreases with
- 694 increasing time (Table 4). In longer experiments than those showed here, CH₃Cl was fully
- 695 destroyed. With increasing extent of CH₃Cl destruction, the δ D and δ^{13} C values of the residual
- 696 CH₃Cl increase relative to their starting values by as much as 150 ‰ in δ D and 19 ‰ in δ^{13} C 697 (Table 4).
- 698
- Unlike δD and $\delta^{13}C$ values, which always increase with increasing extent of CH₃Cl destruction, the direction of change in $\Delta_{^{13}CH_2D(wg)}$ depends on the initial value of the gas used, and samples cease changing as reaction time increases (Fig. 8; Table 4). For experiments using the plusD-Cl standard, $\Delta_{^{13}CH_2D(wg)}$ values first increase from -5.44 ‰ ± 0.08 ‰ to 0.42 ± 0.19 ‰ (1 s.e.) after 106 hr of heating and then in a separate experiment remain unchanged (at the ±1 s.e. level)
- after 185 hours with a value of 0.49 ± 0.19 %. For the plus¹³C-Cl standard, $\Delta_{13}_{CH_2D(wg)}$ values
- first *decrease* from an initial value of 26.39 ± 0.17 ‰ to 0.59 ± 0.23 ‰ at 90 hr and then in a separate experiment remain unchanged (at the ±1 s.e. level) at 0.34 ± 0.21 ‰ after 120 hr.
- Finally, in the single experiment using the BI-Cl-1 standard, the mean $\Delta_{^{13}CH_2D}$ value changes
- from 0.01 ± 0.12 ‰ to 0.44 ± 0.17 ‰ after heating for 104 hr. This change is within ± 2 s.e. of
- 709 the starting value. In summary, final mean values regardless of initial value or heating duration
- are 0.458 ± 0.093 (1 σ ; n = 5) (Fig. 8). Given our typical external reproducibility of ~0.25 ‰
- 711 (1 σ), these values are statistically indistinguishable. As such final $\Delta_{^{13}CH_2D(wg)}$ values are
- 712 bracketed from two directions and measured values are time invariant. As will be discussed
- below (Section 9.1), this indicates internal isotopic equilibrium was reached in all experiments.
- 714
- 715 With the PlusD-Cl-std, $\Delta_{12}_{CHD_2(wg)}$ values decrease from an initial value of 13,382 ‰ to 44.68 ±
- 716 2.23 ‰ after 106 hours of heating and in a separate experiment to -4.48 ± 2.46 ‰ after 185 hr of
- heating (Fig. 9). For the plus¹³C-Cl-std experiment the $\Delta_{12}_{CHD_2(wg)}$ value decrease from 87.19 ±
- 718 2.79 ‰ to 0.14 ± 2.10 ‰ (1 s.e.) after 120 hr of heating. Finally, for the BI-Cl-1 standard, the
- 719 $\Delta_{12}_{CHD_2(wg)}$ value decreases from 6.06 ± 1.21 ‰ to -2.20 ± 1.81 ‰ (1 s.e.) after 104 hr of
- heating. Three of these four experiments have a mean value of -2.18 ± 2.31 ‰ (1 σ). Given our
- typical external precision (± 2.25 ‰), these values are statistically indistinguishable. We propose
- and proceed with the assumption that these three experiments reached internal $\Delta_{12}_{CHD_2}$
- 723 equilibrium as they show time invariance despite starting from different values (even though
- they are not a true bracket). That equilibrium $\Delta_{^{13}CH_2D(wg)}$ values were reached in the same
- experiments supports this proposal. This assumption, and the explanation for why the shorter
- PlusD-Cl-std experiment did not fully equilibrate in $\Delta_{^{12}CHD_2(wa)}$, are discussed in Section 9.1.
- 727
- For completeness, we note that we attempted equilibrations on other catalysts and at different
- temperatures that ultimately failed due to lack of exchange or destruction of the analyte. For both
- 730 CH₃Cl and CH₃F, catalysts tried included γ -Al₂O₃, Ni, Pd, and K₂PtCl₄ at temperatures from 25-
- 731 350 °C (chosen based on previous work showing these activate C–H bonds and lead to isotopic
- equilibrium; e.g., Goldshleger et al., 1969; Horibe and Craig, 1995; Sattler, 2018). We also
- attempted to equilibrate CH₃Cl at higher temperatures (750–1000 $^{\circ}$ C) with no catalyst.
- Figure 734 Equilibration of CH₃Cl on Pt/Al₂O₃ at 150 °C was attempted, but exchange rates were too
- sluggish, while at 250 °C and 350 °C we found breakdown outpaced equilibration.

736

737 8.8 Theoretical calculations of Δ values as a function of temperature

- 738 Here we provide the results from our theoretical estimates of the equilibrium temperature
- 739 dependence of Δ values for methyl groups and methane. Calculated bond lengths and harmonic
- 740 vibrational frequencies are given in Electronic Annex Table EA5. For CH₃Cl, CH₃F, and CH₄,
- 741 all C-H bond lengths are the same in a given molecule and thus all Hs are equivalent. For
- 742 methanol, one of the three C–H bonds is calculated to be shorter than the other two (Table EA5), 743 and thus there are two different types of C-H bonds within methanol with different tendencies to
- concentrate D vs. H or ¹³C vs. ¹²C. Differences in Δ values for these different C–H methanol 744
- bonds are smaller than measurement precision: $\Delta_{^{13}CH_2D}$ values for each type of bond differ by \leq 745
- 0.2‰ at all temperatures \geq 0 °C; $\Delta_{12}_{CHD_2}$ values for the shorter C–H bond cannot be computed 746
- since the methanol methyl group has only one of these, but the $\Delta_{^{12}CHD_2}$ value of just the longer 747
- 748 two C–H bonds is within 0.4 ‰ of the $\Delta_{12}_{CHD_2}$ value computed using the geometric mean of all
- 749 three. Nonetheless, we incorporate these differences into the computed $\Delta_{^{13}CH_2D}$ and
- $\Delta_{^{12}CHD_2}$ values for methanol by geometrically averaging the RPFR value across all three C–H 750
- bonds (Table EA6). Using the arithmetic mean of these RPFRs produces indistinguishable 751

752 results in Δ values.

- 753 754 Δ values are calculated with Eqns. 15 and 16 over a temperature range of 0 to 10,000 °C and fit 755 to sixth-order polynomials. Fits to all molecules computed using the various theoretical level and 756 basis set combinations are provided in Table EA7. Polynomial fits match theoretical values 757 within ± 0.01 ‰. The polynomial fit to the equilibrium $\Delta_{^{13}CH_2D} - T$ relationship for CH₃Cl at the highest level of theory/basis set used (CCSD/aug-cc-pVTZ) is: 758
- 759

760
$$\Delta_{^{13}\text{CH}_2\text{D}} = \frac{-1.43373 \times 10^{16}}{T^6} + \frac{1.75779 \times 10^{14}}{T^5} + \frac{-8.13239 \times 10^{11}}{T^4} + \frac{1.63133 \times 10^9}{T^3} + \frac{-6.36732 \times 10^5}{T^2} + \frac{70.7370}{T} + 3.07841 \times 10^{-3}$$

- 761
- 762

where T is in kelvin. This equation is the basis for our thermodynamic reference frame for 763 $\Delta_{^{13}CH_2D}$ values, reported below. 764

- The polynomial fit to the equilibrium $\Delta_{12}_{CHD_2}$ -T relationship for CH₃Cl at the highest level of 766 767 theory/basis set used (CCSD/aug-cc-pVTZ) is:
- 768

765

769
$$\Delta_{^{13}\text{CH}_2\text{D}} = \frac{1.13211 \times 10^{16}}{T^6} + \frac{-8.86159 \times 10^{13}}{T^5} + \frac{1.68048 \times 10^{10}}{T^4} + \frac{1.28883 \times 10^9}{T^3} + \frac{-1.15627 \times 10^6}{T^2} + \frac{4.24630 \times 10^2}{T} - 4.54342 \times 10^{-2}$$
770 (18)

771

where T is in kelvin. As above, this equation is the basis for our thermodynamic reference frame 772 773 for $\Delta_{12}_{CHD_2}$ values, reported below.

774

(17)

- Figure 275 Equilibrium $\Delta_{1^{3}CH_{2}D}$ and $\Delta_{1^{2}CHD_{2}}$ values calculated using different levels of theory and basis set
- differ by < 0.3 % and < 3.0 %, respectively, over the entire relevant T range 0–10,000 °C (Figs.
- 10, A10, A11). This is in spite of large differences in individual RPFRs among the different
- methods and basis sets (Table EA6). For example, calculated RPFRs among all three
- combinations of theory levels and basis sets are as large as ~5‰ for $^{R^{-13}CH_3}$ RPFR and ~60 ‰ for $^{R^{-12}CH_2D}$ RPFR.
- 781
- Equilibrium values of $\Delta_{13}_{CH_2D}$ for CH₃Cl, CH₃F, and CH₃OH are similar to each other and, in turn, similar to analogous $\Delta_{13}_{CH_3D}$ values for methane. For example, for calculations preformed using the highest level of theory and basis set (CCSD/aug-cc-pVTZ), $\Delta_{13}_{CH_2D}$ values of the
- values of the using the highest level of theory and basis set (CCSD/aug-cc-pVTZ), $\Delta_{^{13}CH_2D}$ values of the different methyl groups agree within 0.1 ‰ at a given temperature and are within 0.2 ‰ of the
- analogous $\Delta_{^{13}CH_2D}$ values for methane (Fig. 10c). For the same molecule computed at different
- 787 levels of theory, $\Delta_{^{13}CH_2D}$ values are within 0.2 ‰ (Fig. A10). Within this range, discrepancies in
- 788 $\Delta_{^{13}CH_2D}$ values among different levels of theory are systematic across molecules: $\Delta_{^{13}CH_2D}$ values
- calculated at the MP2 level of theory are always higher than the CCSD values, which are always
- higher than the B3LYP values (Fig. A10). Differences are highest at low temperatures and
- 791 decrease as temperatures increase (Figs. 10, A10).
- 792
- 793 Calculated equilibrium $\Delta_{12}_{CHD_2}$ values for CH₃Cl, CH₃F, and MeOH are always within 0.5 ‰ of
- reach other at the same level of theory from 0 to 10,000 °C (Fig. 10b,d). At a given temperature,
- 795 $\Delta_{12}_{CHD_2}$ is systematically lower than $\Delta_{12}_{CH_2D_2}$ in methane by about 2–3 ‰ for T < 100 °C and
- for calculations done at the same level theory (Fig. 10d). For a specific molecule, differences
- between theoretical $\Delta_{12}_{CHD_2}$ values calculated using the CCSD and MP2 levels of theory (both
- with the aug-cc-pVTZ basis set) are small (<0.1 ‰; Fig. A11). The corresponding B3LYP
- curves are systematically lower than the other two by up to 1 % at $0 \degree$ C.
- 800
- 801 The above calculations were performed using the most abundant (or only, for fluorine) stable
- isotope of the heteroatom attached to the methyl group (i.e., ³⁵Cl, ¹⁹F, and ¹⁶OH). We
- 803 investigated the effect of a ³⁷Cl isotope substitution on the equilibrium composition of the methyl
- group given its relatively high natural abundance (~25%). Temperature dependencies of $\Delta_{13}_{CH_2D}$
- and $\Delta_{12}_{CHD_2}$ for CH₃³⁵Cl vs. CH₃³⁷Cl are within ± 0.01 ‰, and thus choice of the chlorine
- 806 isotope is unimportant for our calculations.
- 807

808 8.9 A thermodynamic reference frame for $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ measurements

- 809 Here we place our Δ values in a thermodynamic reference frame, where 0 % is equivalent to an
- 810 infinite temperature and positive Δ values can be used to calculate apparent clumped-isotope-
- 811 based temperatures. To do this, we assume our 200 °C experiments reached internal isotopic
- equilibrium. These experiments yielded error-weighted mean $\Delta_{13}_{CH_2D(wg)}$ and $\Delta_{12}_{CHD_2(wg)}$
- values of 0.452 ± 0.042 and -1.98 ± 1.33 ‰ relative the working reference gas (±1 s.e.) (Section
- 814 8.7). As per Eqns. 17, 18 (Section 8.8), theoretical equilibrium $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values at

- 815 200 °C are 2.618 ‰ and 5.46 ‰. The $\Delta_{13}_{CH_2D,wg}$ and $\Delta_{12}_{CHD_2,wg}$ values of our CH₃Cl working
- gas (CIT-Cl-2) in the thermodynamic reference frame are thus 2.164 ± 0.042 and 7.46 ± 1.33 ‰.
- 817 With these values, we are able to convert all sample $\Delta_{13}_{CH_2D(wg)}$ and $\Delta_{12}_{CHD_2(wg)}$ values
- 818 measured relative to the working gas to the thermodynamic reference frame (Sections A1.3, A1.4 $\frac{1}{2}$
- 819 and Eqns. A21, A26).
- 820
- 821 In doing these conversions, we do not propagate the uncertainties on the $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$
- 822 values of the working gas into equivalent sample values. These uncertainties are systematic and
- 823 ultimately will not affect relative differences in $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ values among samples
- 824 measured using the same working gas (as is the case here).
- 825

826 8.10 Clumped isotope compositions of synthetic and wood methyl groups

- 827 We compare $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values of various commercially purchased compounds and
- 828 environmental wood samples in Fig. 11. Commercially purchased samples include CH₃F and
- 829 CH₃Cl gases, CH₃I and methanol liquids, and a syringaldehyde powder. The five wood samples
- are from birch, poplar, bamboo, beech, and tineo trees. All samples are placed into the CH₃Cl
 thermodynamic reference frame as reported above. Additionally, samples measured as CH₃F are
- converted to equivalent $\Delta_{^{13}CH_2D}$ values for CH₃Cl based on an offset of 0.479 ‰ as reported
- 833 above.
- 834
- 835 Across all commercial and environmental wood samples, we observe a range in $\Delta_{13}_{CH_2D}$ of ~11
- 836 % (0 to 11 %), and in $\Delta_{12}_{CHD_2}$ of ~50 % (-36 to 13 %) (Fig. 11, Table 5). These ranges are ~50
- and 20× typical measurement precision, respectively. An immediate observation is that wood
- 838 methoxyl groups are distinctly different in their $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ values compared to methyl
- 839 groups from commercial sources (Fig. 11, Table 5). Specifically, wood methoxyl groups are
- relatively high in $\Delta_{^{13}CH_2D}$ (9.5 to 11.25 ‰ vs. random) and low in $\Delta_{^{12}CHD_2}$ (-8 to -35 ‰ vs.
- random) compared to the studied commercial compounds, which are relatively low in $\Delta_{13}_{CH_2D}$ (0
- 842 to 3‰) and high in $\Delta_{12}_{CHD_2}$ (-5 to 13 ‰).
- 843
- B44 Differences are also observed between the various commercial compounds (Table 5). CH₃Cl and B45 CH₃F gases have a tight range in Δ_{13} _{CH₂D} values of 2–3 ‰ (*n* =4), despite originating from three
- 846 different suppliers and having 28 and 64 % ranges in δ^{13} C and δ D respectively. The commercial
- 847 liquids and solids have lower $\Delta_{13}_{CH_2D}$ values than the gases, between 0 and 1.76 ‰ (n = 3). The
- 848 three commercial liquids also have lower $\Delta_{12}_{CHD_2}$ values than the two CH₃Cl gases (-5 to 2 ‰
- 849 vs. 7.5 and 13 ‰).
- 850
- 851 Assuming that the thermodynamic reference frame for CH₃Cl is a reasonable approximation for
- 852 non-CH₃Cl compounds (discussed below), $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values can be converted into
- ⁸⁵³ 'apparent' equilibrium temperatures using Eqns. 17 and 18. Formation of methyl groups in
- 854 internal clumped isotopic equilibrium requires that both $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ yield the same
- 855 (within error) temperature (e.g., Yeung 2012; Young et al., 2017). Such a line of mutual

- 856 equilibrium is given in Figure 12. Alternatively, kinetic isotope effects associated with methyl
- 857 group formation or breakdown, or mixing of different methyl-group sources can yield non-
- 858 equilibrium Δ values (e.g., Stolper et al., 2015; Wang et al., 2015; Yeung et al., 2015; 2017;
- 859 Young et al., 2017), including negative values. Negative Δ values cannot occur in isotopically
- 860 equilibrated systems and necessarily reflect non-equilibrium processes.
- 861
- The apparent equilibrium $\Delta_{^{13}CH_2D}$ temperatures of commercial synthetic gases are all between 862
- 863 175 and 250 °C: 178 and 194 °C for CH₃F and 244, and 247 °C for CH₃Cl (errors of ± 10 to 25
- °C, 1 s.e.; Table 5). The apparent $\Delta_{^{13}CH_2D}$ temperatures of our commercial syringealdehyde, 864
- methanol, and iodomethane samples are ~300, ~450, and >1000 °C, respectively (Table 5). Of 865
- 866 five commercial compounds also measured for $\Delta_{12}_{CHD_2}$, only the methanol data point intersects
- (within 2 s.e.) the line of mutual equilibrium (Fig. 12). Specifically, the methanol has apparent 867 equilibrium temperatures of 448 ⁺⁴³/₋₃₆ °C for $\Delta_{13}_{CH_2D}$ and 353 ^{+inf}/₋₁₆₃ °C for $\Delta_{12}_{CHD_2}$ (±1 s.e.). 868
- 869
- In contrast, the two CH₃Cl gases have apparent equilibrium $\Delta_{12}_{CHD_2}$ temperatures that are colder
- 870 than their $\Delta_{^{13}CH_2D}$ temperatures: 150 $^{+31}/_{-25}$ °C and 67 $^{+14}/_{-13}$ °C for $\Delta_{^{12}CHD_2}$ vs. ~245 ± ~12 °C
- for $\Delta_{^{13}CH_2D}$. $\Delta_{^{12}CHD_2}$ values of the syringaldehyde and CH₃I stds are both < 0 ‰ and thus cannot 871
- 872 yield apparent temperatures.
- 873
- 874 Measured $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values of wood methoxyl groups reflect non-equilibrium isotopic
- compositions (Figs. 11, 12). Specifically, the wood methoxyl $\Delta_{12}_{CHD_2}$ values from the three 875
- examined specimens are < 0 ‰ and as low as -35 ‰, which cannot occur in an equilibrated 876
- 877 system. The expected equilibrium $\Delta_{13}_{CH_2D}$ values for typical earth surface temperatures (0–30
- 878 °C) are 5.75 to 6.75 ‰, whereas the wood methoxyl $\Delta_{^{13}CH_2D}$ values from the five examined
- 879 specimens are between 9.5 ‰ and 11.25 ‰ (n = 5 samples, n = 12 total replicates). These values
- 880 correspond to apparent equilibrium temperatures of -55 to -80 °C, also indicating non-
- equilibrium clumped isotopic compositions (note these temperatures were calculated using 881
- 882 RPFRs—eqns. 14 and 15—not by extrapolating the polynomial fit in eqn. 17). As above, this
- comparison assumes that the equilibrium $\Delta_{^{13}CH_2D}$ T relationship in CH₃Cl is equivalent to that 883
- of the molecular form in which these methoxyl groups are originally synthesized in trees. This 884
- 885 assumption is discussed below.

886 887 9. Discussion

888 9.1 Precision and accuracy of methyl group isotopic measurements

- Here we discuss the precision and accuracy of our isotopic measurements of methoxyl groups. 889
- 890 The critical observation for our purposes is that observed external precisions on replicate
- analyses for $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ are similar to internal measurement precision regardless of the 891
- analyte type: CH₃F and CH₃Cl gases, CH₃I, and methoxyl-containing compounds all have 1σ 892
- external precisions on replicates of 0.09–0.39 ‰ vs. mean internal s.e. of 0.25 ‰ for $\Delta_{13}_{CH_2D}$; 893
- 2.50 ‰ external vs. 2.45 ‰ internal for $\Delta_{12}_{CHD_2}$. Although external precision for δD and $\delta^{13}C$ 894
- 895 measurements is similar to internal precision for CH₃F and CH₃Cl standards (~0.14 and 0.01 ‰,
- 896 respectively), external δD and $\delta^{13}C$ precision on replicates decreases for samples that require
- 897 derivatization steps, to ~0.5 to 2 ‰. The decrease in precision is likely due incomplete recovery

- 898 during the chemical reactions or fractionations associated with gas handling or purification. We
- 899 interpret this to indicate that the processes that decrease precision for δD and $\delta^{13}C$
- 900 determinations are mass-dependent such that they largely cancel when Δ values are determined.
- 901 Such is also the case for clumped isotope (e.g., Huntington et al., 2009) as well as triple oxygen
- 902 isotope (e.g., Miller et al., 2002) and quadruple sulfur isotope (e.g., Ono et al., 2006)
- 903 measurements.
- 904

905 The CH₃F analyses were acquired over the course of 6 months and CH₃Cl analyses over 9

- 906 months. Over this time frame we observe no trends vs. time for any δ or Δ measurements of gas
- standards (e.g., Fig. 3). These time frames span instances of instrument maintenance (e.g.,
 filament and high-resolution slit replacement). Additionally, between analytical sessions,
- 909 methane was analyzed on the same instrument with a different set of bellows. This demonstrates
- 910 that Δ values are stable and precise at the reported level of measurement uncertainty on
- 911 timeframes of at least many months.
- 912

913 Comparisons of δ^{13} C values on standards with published isotopic compositions indicate that our 914 measurements are accurate to within the precision indicated by replicate analyses (Fig 6). For

- δD , although relative differences are recovered between labs (Fig. 5c), there is a systematic
- 916 offset in δD of $-18 \pm 6 \% (1\sigma; n = 3)$ between our values and those reported in Greule et al.
- 917 (2019) (Fig. 5b). One source of this offset could be isotopic fractionation of our CH₃F and CH₃Cl
- 918 reference gases during offline combustion + reduction at Indiana U. Specifically, following the
- 919 measurement of our reference gases at Indiana U., it was found that off-line δD determinations 920 of organohalogen compounds can differ from those measured using continuous flow systems
- 920 of organonalogen compounds can drifer from those measured using continuous now systems 921 with chromium reactors added to achieve high (> 96 %) yields (Gehre et al., 2017). This was
- especially problematic for chlorinated hydrocarbons with high molar Cl/H ratios (≥ 1) and low
- H_2 yields (78–82 %) (Gehre et a., 2017). However, CH₃Cl has a molar Cl/H ratio of 0.33 and H₂
- 924 yields from its reductions were 95–96 %. For compounds with similar Cl/H ratios and δ D values
- 925 as our CH₃Cl reference gas, δD offsets between off-line vs on-line continuous flow values were
- 1 to 8 ‰ (Gehre et al., 2017), which are similar in magnitude to differences observed between
- 927 the same laboratories and methods for non-halogenated organic standards (± 1 to 9 ‰; 928 Solving algorithm of a 2010) Non-the lagorithm of a 10.000 https://www.commonweight.com/solving/solvi
- 928 Schimmelmann et al., 2016). Nonetheless, some disagreement (order 10 ‰) between our δD
- 929 measurements and those of Greule et al. (2019) may be associated with our use of an off-line 930 conversion vs. their use of the specialized on-line chromium reduction system for calibration.
- γ_{30} conversion vs. then use of the spectralized on-line chromium reduction system for calibration 931 Likewise, the better agreement between our δD measurements and those of Lee et al. (2019)
- could be because both labs are anchored to standards measured at Indiana U.
- 932 933
- 934Regardless of the exact source of these disagreements, the critical points for our purposes are: (i)935any inaccuracy in the δD composition of our working gases has no effect on our $\Delta_{^{13}CH_2D}$ and
- 936 $\Delta_{1^2 \text{CHD}_2}$ determinations. For example, changing the working gas δD composition by 20 ‰
- 937 changes calculated $\Delta_{13}_{CH_2D(wg)}$ and $\Delta_{12}_{CHD_2(wg)}$ values by < 0.0001 ‰ and < 0.002 ‰,
- 938 respectively. And, (*ii*) the derivatization methods developed here, though extensive, do not
- 939 detectably fractionate δD nor $\delta^{13}C$ values. However, these results do indicate that direct
- 940 comparison of methoxyl δD values made by different methods in different laboratories may be
- 941 problematic.
- 942

943	Assessing the accuracy of A_{12} and A_{12} values in a thermodynamic reference frame
	Assessing the accuracy of $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ values in a thermodynamic reference frame
944 945	requires (<i>i</i>) determining the Δ value of the working gas in the thermodynamic reference frame and (<i>ii</i>) demonstrating that actual vs. measured differences in Δ values are equal (i.e.,
945 946	measurement linearity is 1.0). The usual way to demonstrate both is to equilibrate samples at a
947	range of temperatures and verify that measured differences between Δ values are equal to
948	expected differences based on theory, or perform a correction based on the observed offsets
949	(Dennis et al., 2011; Stolper et al., 2014b; Yeung et al., 2016; Young et al., 2017; Popa et al.,
950	2018; Eldridge et al., 2019). We were able to equilibrate various CH ₃ Cl gases at 200 °C, as
951	shown by attaining time-invariant coalescence in Δ values despite different starting values and,
952	in the case of $\Delta_{1^{3}CH_{2}D}$, bracketing. However we were unable to equilibrate CH ₃ Cl at multiple
953	temperatures and so we cannot conduct this test to show measurement accuracy.
954	
955	Nonetheless, we propose that measured vs. actual differences in $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ values
956	between samples are equivalent for the following reasons: (i) Eldridge et al. (2019) demonstrated
957	that samples of methane equilibrated from 1 to 500 °C and measured on the same instrument
958	with the same detectors used here agree 1:1 with theoretical predictions. This indicates that the
959	instrument and detectors used here for a similar ion $(CH_4^+ \text{ vs } CH_3^+)$ exhibit a linearity of 1.0. (<i>ii</i>)
960	A linearity different from 1.0 can cause Δ values of samples equilibrated at the same temperature
961	to vary as a function of bulk isotopic composition (Huntington et al., 2009; Dennis et al., 2011).
962	The samples we equilibrated at 200 °C yield the same $\Delta_{^{13}CH_2D(wg)}$ and $\Delta_{^{12}CHD_2(wg)}$ values
963	despite ranges in δD and $\delta^{13}C$ of 140 and 45 ‰ (Fig. 8b, 9b). As Δ values are derived from
964	differences between measured δ^{13} CH ₂ D or δ^{12} CHD ₂ values vs. δ^{13} CH ₃ and δ^{12} CH ₂ D values, the
965 066	lack of a dependence of Δ vs. δ D or δ^{13} C indicates a measurement linearity of 1.0. (<i>iii</i>)
966 967	Differences between samples measured as either CH ₃ F or CH ₃ Cl are 1:1 over an 11 $\%$ range in Λ_{12} and a range in Λ_{13} CH ₂ D of 250 $\%$. This demonstrates that our measurements of
	$\Delta_{^{13}CH_2D}$, and a range in $\delta^{^{13}CH_2D}$ of ~250 ‰. This demonstrates that our measurements of
968	relative differences in $\Delta_{^{13}CH_2D}$ values from methyl fragments are insensitive to chlorination vs.
969	fluorination of CH ₃ I and subsequent mass spectrometric measurement conditions such as
970	differences in source chemistry, source pressures, tuning conditions, fragmentation and
971 972	adduction rates, ion beam intensities, etc. (<i>iv</i>) Finally, we analyzed the plusD-Cl standard at 40
972 973	% of typical source pressure, resulting in 40 % of typical methyl fragment ion intensities. Despite this change in instrument conditions, measured values are indistinguishable (within ± 1
974	s.e.) in δD , $\delta^{13}C$, and $\Delta_{^{13}CH_2D}$ from the long-term mean values acquired under normal
975	measurement conditions (Table EA1). Based on the above tests, we conclude that measured vs.
975 976	actual differences in Δ values are indistinguishable, and thus that our Δ measurements are
977	actual differences in Δ values are indistinguishable, and thus that our Δ measurements are accurate.
978	
979	The elevated $\Delta_{12}_{CHD_2(wg)}$ of the 106 hour experiment (44.68 ‰) relative to values obtained over
980	similar time frames in other experiments (0.14 to -4.48 ‰) is likely the result of this sample
981	starting with an exceptionally enriched $\Delta_{12}_{CHD_2(wg)}$ value (13,382 %). Assuming -2.18 % is the
982	equilibrium value at 200 °C, a measured value of 44.68 ‰ indicates this experiment was 99.7 %
982 983	equilibrated. Such small deviations from equilibrium (<0.3 % deviation) would not be detectable
984	for other samples given their starting $\Delta_{12}_{CHD_2}(wg)$ values and our typical precision (± 2–3 ‰).
985	$\Gamma \rightarrow B^{-1} \rightarrow \cdots \rightarrow B^{1} \rightarrow \cdots \rightarrow \oplus \rightarrow \oplus \rightarrow \rightarrow$
105	

- 986 One complexity with these experiments we now discuss is potential issues associated with our
- 987 removal of chloroethane (C₂H₅Cl). During equilibrations of CH₃Cl on Pt/Al₂O₃, chloroethane
- 988 (C_2H_5C) was generated. It was removed via pyrolysis at 500 °C (not in the presence of the
- 989 catalyst). Due to the high temperatures and potentially reactive decomposition products involved,
- 990 we consider whether this procedure could affect measured $CH_3Cl \Delta$ values. We examined this
- 991 issue as follows: First, we heated pure CH₃Cl from the plusD-Cl-std at 500 °C for 15 min and
- 992 purified it identically as the pyrolysis experiments. Recovery was 100 ± 2 %. δ^{13} C, δ D, and 993
- $\Delta_{^{13}CH_2D(wa)}$ values changed by <0.1, 0.02, and 0.1 % respectively. The $\Delta_{^{12}CHD_2(wa)}$ value
- 994 (determined by measuring peak heights due to the enrichments) before and after heating were
- 995 13,382 ‰ and 13,508‰, which we consider indistinguishable. This shows that heating pure
- 996 CH₃Cl at 500 °C for tens of minutes does not result in either breakdown or changes in isotopic 997 composition.
- 998
- 999 Second, although pure CH₃Cl is resistant to isotopic alteration at 500 °C for tens of minutes,
- 1000 hydrogen exchange reactions with either C₂H₅Cl or its decomposition products could occur that
- 1001 partially or wholly internally isotopically equilibrate CH₃Cl at 500 °C. However, complete or
- 1002 partial equilibration at 500 °C is inconsistent with the experiments performed on plusD-Cl-std
- with initial $\Delta_{12}_{CHD_2(wg)}$ values of 13,382 ‰. As reported above, samples equilibrated at 200 °C 1003
- for 106 vs 185 hours yield a difference in $\Delta_{12}_{CHD_2(w,g)}$ of 49.16 ‰, despite being heated at 500 1004
- 1005 °C for identical lengths of time. If significant exchange of CH₃Cl with C₂H₅Cl or its
- 1006 decomposition products occurred at 500 °C, we would not expect this difference to be preserved. 1007
- 1008 Based on these tests and observations, we have proposed and proceeded with the assumption that
- 1009 pyrolysis of C₂H₅Cl at 500 °C did not affect Δ values of CH₃Cl and that internal isotopic 1010 equilibrium at 200 °C was achieved.
- 1011

1012 9.2 Choice of CH₃F vs. CH₃Cl, and application to other methyl-bearing compounds

- Above we demonstrated that external precisions for δD , $\delta^{13}C$, and $\Delta_{^{13}CH_2D}$ are equivalent for 1013
- CH₃F and CH₃Cl and that relative differences in δD , $\delta^{13}C$, and $\Delta_{^{13}CH_2D}$ values between samples 1014
- 1015 measured as CH₃F vs. CH₃Cl are 1:1. As such, both are viable analytes for methoxyl clumped-
- 1016 isotope measurements. For ongoing work, we have elected to use CH₃Cl exclusively because: (i)
- For equivalent sample sizes, CH₃Cl yields $4 \times$ higher sensitivity allowing $\Delta_{^{13}CH_2D(wa)}$ to be 1017
- measured at the same precision in half the time as CH₃Cl vs. as CH₃F. (*ii*) CH₃Cl provides 1018
- sufficient sensitivity to allow measurement of $\Delta_{12}_{CHD_2}$. (iii) The chlorination chemistry yields 1019
- fewer contaminants (e.g., NH2⁺, SiF4 and CH2F2 during fluorination), is safer and, in our 1020 1021 experience, easier to perform.
- 1022
- 1023 We note that because our mass spectrometric procedure only uses isotope ratios of methyl
- 1024 fragment ions, it is agnostic of the source of these ions. I.e., the analytical methods for measuring
- δD , $\delta^{13}C$, and $\Delta_{13}_{CH_2D}$ values of methyl groups in CH₃Cl and CH₃F differ only in the source 1025
- 1026 tuning conditions (used to maximize methyl fragment ion production in each analyte) and the
- absolute intensities of methyl ion beams. As we have shown that relative differences in $\Delta_{^{13}CH_2D}$ 1027
- 1028 values for measurements using these two analytes are indistinguishable, this suggests that our
- 1029 mass spectrometric measurement could be similarly applicable to other sources of methyl

- 1030 fragment ions beyond CH₃Cl and CH₃F. Thus, the analytical procedures described here could be
- 1031 adopted with minimal modification to determine the position-specific δD and $\delta^{13}C$, and clumped
- ¹⁰³² ¹³C–D and D–D compositions of methyl groups from other methyl-containing molecules of
- 1033 geochemical interest, such as methyl amines, methyl sulfides, and simple *n*-alkanes.
- 1034

1035 **9.3 On the use of a uniform thermodynamic reference frame**

- 1036 We have placed all our measurements in a thermodynamic reference frame based on the
- 1037 equilibrium clumped isotopic composition of CH₃Cl. This approach assumes that it is
- appropriate to compare measurements of methanol, CH₃F, CH₃I, syringaldehyde, or wood in a
- 1039 thermodynamic reference frame based on CH_3Cl . This assumption is supported by the
- 1040 observation that theoretical calculations of $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ values in CH₃F, CH₃Cl, and
- 1041 CH₃OH agree within 0.2 and 0.5 % (respectively) over a range of 0 to 10,000 °C (Fig. 10),
- 1042 regardless of theoretical level and basis set size. That Δ values are largely independent of
- 1043 theoretical level used is consistent with previous observations that errors in RPFR determinations
- are nearly perfectly canceled when Δ values are calculated (Webb and Miller, 2013; Eldridge et
- 1045 al., 2019). The present work indicates that for methyl groups, $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values are
- also largely independent of the bonding partner and all methyl groups can be considered
- 1047 together. This was also found in previous calculations of equilibrium $\Delta_{^{13}CH_2D}$ clumping in
- 1048 methanol, methanethiol (CH₃SH) and acetate (CH₃COOH) at 25 °C , which agreed within 0.3‰
- 1049 (Wang et al., 2015). Our predictions at 25 °C are systematically lower than theirs by 0.2–0.5 ‰.
- 1050 Nonetheless, this suggests that methyl group clumping in the gas phase is insensitive to the
- bonding partner at the level of our measurement precision ($\sim 0.25\%$), and that the CH₃Cl-based
- reference frame is a reasonable approximation for that of biologic methyl groups such as
- 1053 methoxyl groups in wood. However, future theoretical work on more complex molecules (such
- 1054 as lignin precursors) will be needed to evaluate this assumption.
- 1055

9.4 Sources and implications of isotopic clumping in commercial and environmental methyl groups

- 1058 Based on this initial data set, $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values appear to differ systematically between
- 1059 commercial compounds and environmental woods (Fig. 11). These differences probably arise
- 1060 due to isotope effects associated with differing methyl group synthesis pathways. For example,
- 1061 methyl groups in many commercial compounds are derived from methanol, which is primarily
- 1062 synthesized at industrial scales from H_2 , CO, and CO₂ on metal catalysts at elevated temperatures
- 1063 (>200 °C) (e.g., Ott et al., 2012). In contrast, methyl groups in wood lignin are formed by a 1064 series of enzyme-catalyzed biosynthetic steps (e.g., Schmidt et al., 2015). Regardless of the
- 1065 cause, this limited data set indicates promise for forensic applications of $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$
- 1066 measurements for the identification of natural vs. commercial (and likely synthetic) methyl
- 1067 group sources.
- 1068

1069 9.4.1 Sources of $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ values in methyl groups in commercial materials

- 1070 Commercial materials yield apparent $\Delta_{1^{3}CH_{2}D}$ -based temperatures between 175 °C and infinity.
- 1071 For commercial materials with positive $\Delta_{12}_{CHD_2}$ values, apparent $\Delta_{12}_{CHD_2}$ -based temperatures
- 1072 range from 70 °C to ~350 °C. However, some commercial samples have negative $\Delta_{12}_{CHD_2}$ values
- 1073 that do not correspond to any temperature. We now speculate on the cause of these isotopic

- 1074 variations. To do this, we first consider the conditions in which these methyl groups were likely
- 1075 formed. Methanol is the principal source of methyl groups for the synthesis of methyl halogens 1076 and organic monomers (Cheng, 1994; Ott et al., 2012; Siegemund et al., 2016; Ohligschläger et
- 1077 al., 2019). Since the 1960s, industrial methanol has been produced by the reaction of H₂, CO₂,
- 1078 and CO on Cu–ZnO–Al₂O₃ catalysts at temperatures between 200 and 300 °C. These catalyzed
- 1079 reactions proceed to chemical equilibrium (Cheng et al., 1994; Ott et al., 2012) and thus could
- 1080 result in isotopic equilibrium if sufficient exchange reactions occur on the catalyst. However,
- 1081 during industrial methanol production, high conversion yields (>80 %) are obtained by extracting
- 1082 the produced methanol and recycling residual gases back through the reactor (Ott et al., 2012).
- 1083 Thus, clumped-isotope effects associated with mixing may also play a role. Finally, isotope 1084 effects associated with the transfer of the methyl group to F, Cl, I or another substrate must also
- 1085 be considered if this transfer is not quantitative or if C-H isotope exchange reactions occur along 1086 with the transfer.
- 1087

1088 The methanol standard is the only sample examined that yields apparent equilibrium

- 1089 temperatures for $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ within error of each other (448 +43/-36 °C and 353 +inf/-162
- 1090 °C respectively). However, the $\Delta_{13}_{CH_2D}$ -based temperature, which has the smaller error, is at least
- 1091 150 °C higher than would be expected given its likely synthesis conditions (200–300 °C). This
- 1092 may indicate that isotopic equilibrium is not reached during methanol generation over catalysts.
- If correct, then the clumped isotopic composition of the methanol signature could represent a
 process of partial equilibration. Alternatively, isotope effects associated with transport, storage,
 or nonlinear mixing could also cause disequilibrium signatures.
- 1096
- 1097 The tight range of $\Delta_{^{13}CH_2D}$ -derived temperatures from the CH₃Cl and CH₃F gases (175-250 °C),
- 1098 despite ~65 ‰ and 30 ‰ ranges in δ D and δ^{13} C, could be consistent with these methyl groups
- 1099 having attained clumped isotope equilibrium during formation at 200–300 °C during methanol
- synthesis. Formation in complete internal isotopic equilibrium, however, is inconsistent with
- 1101 measured $\Delta_{12}_{CHD_2}$ values, which are 3 and 10 % higher than the mutual equilibrium line. Post-
- 1102 formation processes such as non-linear mixing could explain this discrepancy, since these are 1103 expected to affect $\Delta_{12}_{CHD_2}$ values more strongly than $\Delta_{13}_{CH_2D}$ (Eiler, 2013; Taenzer et al., 2020).
- 1104 In any case, the lack of mutual equilibrium, plus the single observation that methanol (i.e., the
- 1105 proposed methyl group precursor) has a different apparent equilibrium temperature, suggests a
- 1106 formation pathway more complicated than a single, batch equilibration for these synthetic methyl 1107 groups.
- 1108
- 1109 The CH₃I std has a $\Delta_{1_{3}CH_{2}D}$ value indistinguishable from the random distribution (which occurs
- 1110 at infinite temperature) and a negative $\Delta_{12}_{CHD_2}$ value, and thus its isotopic composition also
- 1111 cannot reflect formation in internal isotopic equilibrium. Similarly, although the syringaldehyde
- 1112 $\Delta_{^{13}CH_2D}$ temperature is compatible with the model for equilibrium methanol synthesis between
- 1113 200 and 300 °C (295 $^{+50}/_{-41}$ °C), the $\Delta_{12}_{CHD_2}$ value is negative.
- 1114
- 1115 Based on this limited examination, it appears that commercial standards are generally out of
- 1116 mutual $\Delta_{1_{3}}_{CH_{2}D}$ and $\Delta_{1_{2}}_{CHD_{2}}$ equilibrium. This disequilibrium may arise partly during methanol

- 1117 synthesis and partly during transfer to later products (although more synthetic methanol samples
- 1118 must be analyzed to verify this).
- 1119

$1120 \qquad \textbf{9.4.2 Implications of the } \Delta \text{ values of synthetic methyl groups for clumped-isotope}$

1121 compositions of biogenic methane

- 1122 Regardless of the cause, an important implication of the above observations is that methanol and
- 1123 other commercial methyl-bearing species carry with them distinct clumped isotopic signatures
- 1124 that are lower in $\Delta_{1^{3}CH_{2}D}$ than environmental methyl groups in wood, and often lower than what
- 1125 their likely formation temperatures would predict. This matters as previous studies of the
- 1126 methane clumped isotope compositions of methylotrophic methanogens have used commercially
- 1127 purchased methanol and acetate as substrates in pure cultures and observed that the generated
- 1128 methane is (*i*) generally lower in $\Delta_{13}_{CH_3D}$ and $\Delta_{12}_{CH_2D_2}$ values than methane from
- 1129 hydrogenotrophic methanogens $(H_2 + CO_2)$, and *(ii)* always lower than expected for equilibrium
- 1130 (Stolper et al., 2015; Wang et al., 2015; Douglas et al., 2016; Young et al., 2017; Gruen et al.,
- 1131 2018; Giunta et al., 2019; Douglas et al., 2020). The possibility that differences in these results is
- due in part to inheritance of clumped isotopic signatures from the methyl substrate has been
- discussed (Wang et al., 2015; Douglas et al., 2016; Gruen et al., 2018; Giunta et al., 2019), but
- has been difficult to assess. The methanol measured here, which is the same methanol used in
- 1135 some previous methanogen cultures with measured methane clumped-isotope compositions
- 1136 (Douglas et al., 2016; 2020), is low in Δ values relative to low-temperature equilibrium (1 vs. 6
- 1137 % in $\Delta_{^{13}CH_2D}$; 3.5 vs. 20 % in $\Delta_{^{12}CHD_2}$). If other commercial methyl substrates are similarly low,
- 1138 this could be an important contribution to the low $\Delta_{^{13}CH_3D}$ and $\Delta_{^{12}CH_2D_2}$ values (vs. equilibrium)
- 1139 observed in methylotrophic methanogen culture experiments. Regardless, measurement of
- 1140 clumped isotope compositions of methyl precursors used in methanogen clumped-isotope
- experiments has the potential to aid in interpreting what processes the clumped isotopes of
- 1142 microbial methane reflect.
- 1143

1144 9.4.3 Sources of clumped isotope compositions of wood methoxyl groups

- 1145 $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ values of wood methoxyl groups are out of internal isotopic equilibrium,
- but in different directions. Non-equilibrium Δ values in biological systems have been observed for methane, O₂, N₂O, and N₂, and are thus a common feature of biological systems. These non-
- 1148 equilibrium compositions are commonly ascribed to kinetic isotope effects associated with
- 1149 enzymatic reactions (Stolper et al., 2015; Wang et al., 2015; Yeung et al., 2015; Douglas et al.,
- 1150 2016; 2017; Wang et al., 2016; Magyar, 2017, Young et al., 2017; Gruen et al. 2018; Yeung et
- al., 2019; Ash et al., 2020). It is thus possible and perhaps likely that the observed depletions in
- 1152 12CHD₂ and enrichments in 13 CH₂D result from a combination of multiple enzymatic kinetic
- 1153 isotope effects associated with the synthesis of methyl groups in lignin precursors, reservoir
- effects associated with use of methyl group components for different biosynthetic processes, and commitment of different precursor sources to lignin methoxyl groups. Despite these potential
- 1156 complexities, the $\Delta_{^{13}CH_2D}$ values in wood are relatively uniform. This suggests that the process
- 1157 (or processes) imparting these isotope effects is shared by trees spanning a range of species (e.g.,
- bamboo to birch) and growing conditions (subtropical to boreal), and thus reflects a basal
- 1159 metabolic process. This being said, within this population of high wood methoxyl $\Delta_{^{13}CH_2D}$
- 1160 values, the variation in specific organisms is $\sim 7 \times$ greater than measurement uncertainty. This

- 1161 suggests that although a shared process results in $\Delta_{13}_{CH_2D}$ values uniformly higher than
- equilibrium, there are differences in the details of this process among different trees that are
- 1163 reflected in the differences in $\Delta_{^{13}CH_2D}$ values in wood. Understanding the controls on these
- differences will require future studies both in controlled experimental settings such as
- 1165 greenhouses and surveys of environmental samples from different species and environments.
- 1166
- 1167 Compared to $\Delta_{1^{3}CH_{2}D}$ values, $\Delta_{1^{2}CHD_{2}}$ values are all negative and more highly variable, at least
- 1168 10× greater than measurement uncertainty. These observations may reflect the increased
- sensitivity of clumped isotope variables involving multiple deuterium substitutions to alteration
- via avenues such as nonlinear mixing (e.g., Eiler, 2013), combinatorial effects (Yeung et al.,
 2015), and kinetic isotope effects involving the formation and breakage of C–H bonds (e.g.,
- 1172 Young et al., 2017). Considering what is known of the formation pathway of lignin methoxyl
- groups (e.g., Keppler et al., 2007; Schmidt et al., 2015), all three of these factors may influence
- 1174 the sign and variability of $\Delta_{12}_{CHD_2}$ values in wood.
- 1175

1176 **10. Summary and conclusions**

1177 We presented measurements of the clumped isotopic compositions of methyl groups derived

1178 from a variety of commercial and environmental samples and calculations of equilibrium methyl

1179 clumping as a function of temperature. The summary and conclusions of this study are:

- 1180
 - •We present methods for the measurement of δD , $\delta^{13}C$, $\Delta_{13}_{CH_2D}$, of CH₃F and δD , $\delta^{13}C$,
- 1182 $\Delta_{13}_{CH_2D}$, and $\Delta_{12}_{CHD_2}$ of CH₃Cl on methyl fragments via isotope-ratio mass spectrometry.
- 1183 Long-term (1.5 yr total) external precisions of gas standards are < 0.2 and $0.03 \% (1\sigma)$ for
- 1184 δD and $\delta^{13}C$ measurements and 0.25 and 2.5 ‰ (1 σ) for $\Delta_{13}_{CH_2D}$ and $\Delta_{12}_{CHD_2}$ measurements.

1185Differences between clumped isotope compositions of samples measured as CH₃F or CH₃Cl1186follow a slope of 1, indicating measurements are relatively accurate and independent of the1187specific analyte.

- 1188
- •We propose that our mass spectrometric techniques are generally applicable to the measurement of the singly substituted and clumped isotopic compositions of methyl groups from other gaseous analytes. These could include low molecular weight *n*-alkanes such as ethane and propane and other methyl-bearing volatile organic compounds such as dimethyl
- sulfide and methanethiol.
- 1194
- •We present methods to extract and derivatize methoxyl groups from synthetic monomers and 1196 woods as either CH₃F or CH₃Cl. Reproducibility of δ D and δ^{13} C for these extractions are ± 1197 2.0 and 1.5 ‰ or better (1 σ). Based on comparisons to standards, δ D and δ^{13} C measurements 1198 are accurate. External reproducibility for $\Delta_{13}_{CH_2D}$ values on these materials match internal 1199 measurement precisions of ~0.25 ‰ (1 σ). Based on replicate conversions of a CH₃I standard, 1200 external reproducibility of $\Delta_{12}_{CHD_2}$ values also matches internal measurement precision (~2.5 1201 ‰).
- 1202

- •We equilibrated the clumped isotopic composition of CH₃Cl using a Pt catalyst at 200 °C.
 These experiments are used to place our measurements of both Δ<sub>13</sup>_{CH₂D} and Δ<sub>12</sup>_{CHD₂} onto a
 thermodynamic reference frame that is independent of the clumped isotopic composition of
 our laboratory's working reference gases.
 </sub></sub>
- 1207

• We provide theoretical computations for the equilibrium temperature dependence of $\Delta_{^{13}CH_2D}$ 1208 and $\Delta_{^{12}CHD_2}$ for chloromethane, fluoromethane, and methanol. Differences in calculated 1209 1210 clumped isotope compositions of these various molecules at a given temperature vary by less than 0.2 ‰ for $\Delta_{^{13}CH_2D}$ and 0.5 ‰ for $\Delta_{^{12}CHD_2}$ (temperature range of 0 to 10,000 °C). 1211 1212 Because these differences are smaller than measurement precision, we propose that our 1213 measurements of Cl-, F-, and O-bound methyl groups can be compared using the same 1214 thermodynamic reference frame. Here we use the reference frame defined by equilibrium 1215 clumping in CH₃Cl as this is the compound used in our equilibration experiments. 1216

- 1217• Systematic differences exist between the clumped isotope compositions of methyl groups from1218an initial survey of commercial compounds vs. woods. This suggests that $\Delta_{13}_{CH_2D}$ and1219 $\Delta_{12}_{CHD_2}$ values can be used to distinguish methyl group origins even among samples that
- 1220 overlap in δD and $\delta^{13}C$. It also suggests that inheritance of isotopic clumping in commercial 1221 methyl group substrates could influence the isotopic clumping of methane from 1222 methylotrophic methanogen culture experiments.
- 1223

1224 $\cdot \Delta_{1_{3}CH_{2}D}$ values from commercial compounds are restricted to a range at or within ~2 ‰ of 1225 apparent equilibrium of their likely formation temperatures. $\Delta_{1_{2}CHD_{2}}$ values from the same

samples are more scattered, mostly lying 5-10 % above or below the line of mutual

equilibrium. These discrepancies likely result from non-equilibrium processes associated

1228 with mixing and kinetic isotope effects during industrial-scale synthesis of methyl groups; 1229 $\Delta_{12}_{CHD_2}$ values are expected to be more sensitive to such processes.

1230

•The clumped isotope compositions of wood methoxyl groups are distinctively elevated in 1232 •The clumped isotope compositions of wood methoxyl groups are distinctively elevated in 1232 $\Delta_{^{13}CH_2D}$ and depleted in $\Delta_{^{12}CHD_2}$ relative to equilibrium. Wood methoxyl groups are thus out 1233 of equilibrium with respect to both parameters but in opposite directions. The relative 1234 uniformity of these $\Delta_{^{13}CH_2D}$ and (to a lesser extent) $\Delta_{^{12}CHD_2}$ compositions suggests a shared 1235 process by which methoxyl groups are formed in all the trees we measured. The variance

- within these populations suggests that differences in the details of this process are expressedin the clumped isotope compositions of wood methoxyl groups.
- 12381239 11. Acknowledgements

1240 This project began during MKL's PhD thesis under the intellectual direction of John Eiler and 1241 Alex Sessions (Caltech) and we thank them for their support and encouragement. We are grateful

1241 Alex Sessions (Caltech) and we thank them for their support and encouragement. We are gratering 1242 to Arndt Schimmelmann (Indiana U.) for calibrating our fluoromethane and chloromethane

reference tanks, and to James Farquhar (U. Maryland) for support. We acknowledge advice and

1244 input from Todd Dawson and Seth Finnegan (UC Berkeley). We thank Frank Keppler and

1245 Marcus Greule (Heidelberg U.), and Sarah Feakins (USC) for providing wood standards and

- 1246 helpful suggestions during the development of this technique. We additionally thank Gareth Izon
- 1247 (MIT), Hyejung Lee (USC), Ben Passey (U. Mich), Camilo Ponton (WWU), Don Tilley (UC
- 1248 Berkeley), David Wang (ExxonMobil), and Hao Xie (Caltech) for helpful discussions and
- 1249 methodological suggestions. We thank Associate Editor Shuhei Ono, Laurence Yeung and two
- 1250 other anonymous reviewers for constructive feedback that substantially improved the
- 1251 manuscript. MKL acknowledges support from the Agouron Institute Geobiology Postdoctoral
- 1252 Fellowship. DAS and DLE acknowledge support from the Laboratory Directed Research and
- 1253 Development Program of Lawrence Berkeley National Laboratory under U.S. Department of
- 1254 Energy Contract No. DE-AC02-05CH11231. The 253 Ultra Mass Spectrometer was funded by
- 1255 the Heising-Simons Foundation and the University of California, Berkeley.

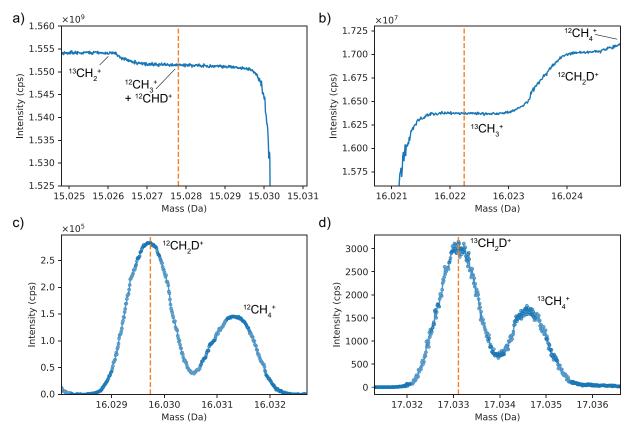
1256 **12. References**

- Aboul-Gheit, A.K., Cosyns, J., 1976. Activation of platinum-alumina catalysts for the
 hydrogenation of aromatic hydrocarbons. J. Appl. Chem. Biotechnol. 26, 15–22.
 https://doi.org/10.1002/jctb.5020260104
- Aigueperse, J., Mollard, P., Devilliers, D., Chemla, M., Faron, R., Romano, R., Cuer, J.P., 2000.
 Fluorine Compounds, Inorganic, in: *Ullmann's Encyclopedia of Industrial Chemistry*.
 American Cancer Society. https://doi.org/10.1002/14356007.a11_307
- Anhäuser, T., Greule, M., Polag, D., Bowen, G.J., Keppler, F., 2017. Mean annual temperatures
 of mid-latitude regions derived from δ²H values of wood lignin methoxyl groups and its
 implications for paleoclimate studies. *Sci. Total Environ.* **574**, 1276–1282.
 https://doi.org/10.1016/j.scitotenv.2016.07.189
- Ash, J.L., Hu, H., Yeung, L.Y., 2020. What Fractionates Oxygen Isotopes during Respiration?
 Insights from Multiple Isotopologue Measurements and Theory. ACS Earth Space Chem.
 4, 50–66. <u>https://doi.org/10.1021/acsearthspacechem.9b00230</u>
- Baker, L., Franchi, I.A., Maynard, J., Wright, I.P., Pillinger, C.T., 2002. A technique for the
 determination of ¹⁸O/¹⁶O and ¹⁷O/¹⁶O isotopic ratios in water from small liquid and solid
 samples. *Anal. Chem.* 74, 1665–1673.
- Becke, A.D., 1993. Density-functional thermochemistry. III. The role of exact exchange. J.
 Chem. Phys. 98, 5648–5652. https://doi.org/10.1063/1.464913
- Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N.,
 Bourne, P.E., 2000. The Protein Data Bank. *Nucleic Acids Res.* 28, 235–242.
 https://doi.org/10.1093/nar/28.1.235
- Bigeleisen, J., Mayer, M.G., 1947. Calculation of Equilibrium Constants for Isotopic Exchange
 Reactions. J. Chem. Phys. 15, 261. https://doi.org/10.1063/1.1746492
- 1280 Cheng, W.-H., 1994. Methanol Production and Use. CRC Press.
- Clog, M., Lawson, M., Peterson, B., Ferreira, A.A., Neto, E.V.S., Eiler, J.M., 2018. A
 reconnaissance study of ¹³C-¹³C clumping in ethane from natural gas. *Geochim. Cosmochim. Acta* 223, 229–244. https://doi.org/10.1016/j.gca.2017.12.004
- 1284 Comas-Vives, A., Schwarzwälder, M., Copéret, C., Sautet, P., 2015. Carbon–Carbon Bond
 1285 Formation by Activation of CH₃F on Alumina. J. Phys. Chem. C 119, 7156–7163.
 1286 https://doi.org/10.1021/jp512598p
- Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P., Eiler, J.M., 2011. Defining an absolute
 reference frame for 'clumped' isotope studies of CO2. *Geochim. Cosmochim. Acta* 75,
 7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
- Douglas, P.M.J., Moguel, R.G., Anthony, K.M.W., Wik, M., Crill, P.M., Dawson, K.S., Smith,
 D.A., Yanay, E., Lloyd, M.K., Stolper, D.A., Eiler, J.M., Sessions, A.L., 2020. Clumped
 Isotopes Link Older Carbon Substrates with Slower Rates of Methanogenesis in Northern
 Lakes. *Geophys. Res. Lett.* 47, e2019GL086756. https://doi.org/10.1029/2019GL086756
- Douglas, P.M.J., Stolper, D.A., Eiler, J.M., Sessions, A.L., Lawson, M., Shuai, Y., Bishop, A.,
 Podlaha, O.G., Ferreira, A.A., Neto, E.V.S., Niemann, M., Steen, A.S., Huang, L.,
 Chimiak, L., Valentine, D.L., Fiebig, J., Luhmann, A.J., Seyfried Jr, W.E., Etiope, G.,
 Schoell, M., Inskeep, W.P., Moran, J.J., Kitchen, N., 2017. Methane clumped isotopes:
 Progress and potential for a new isotopic tracer. *Org. Geochem.* 113, 262–282.
- 1299 https://doi.org/10.1016/j.orggeochem.2017.07.016
- Douglas, P.M.J., Stolper, D.A., Smith, D.A., Walter Anthony, K.M., Paull, C.K., Dallimore, S.,
 Wik, M., Crill, P.M., Winterdahl, M., Eiler, J.M., Sessions, A.L., 2016. Diverse origins of

1302 Arctic and Subarctic methane point source emissions identified with multiply-substituted 1303 isotopologues. Geochim. Cosmochim. Acta 188, 163-188. 1304 https://doi.org/10.1016/j.gca.2016.05.031 1305 Dunning, T.H., 1989. Gaussian basis sets for use in correlated molecular calculations. I. The 1306 atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023. 1307 https://doi.org/10.1063/1.456153 1308 Eggenkamp, H.G.M., 2004. Summary of Methods for Determining the Stable Isotope 1309 Composition of Chlorine and Bromine in Natural Materials, in: Handbook of Stable 1310 Isotope Analytical Techniques. Elsevier, pp. 604–622. https://doi.org/10.1016/B978-1311 044451114-0/50030-2 1312 Eiler, J.M., 2013. The Isotopic Anatomies of Molecules and Minerals. Annu. Rev. Earth Planet. 1313 Sci. 41, 411–441. https://doi.org/10.1146/annurev-earth-042711-105348 1314 Eiler, J.M., 2007. "Clumped-isotope" geochemistry-The study of naturally-occurring, multiply-1315 substituted isotopologues. Earth Planet. Sci. Lett. 262, 309-327. 1316 https://doi.org/10.1016/j.epsl.2007.08.020 Eiler, J.M., Clog, M., Magyar, P., Piasecki, A., Sessions, A., Stolper, D., Deerberg, M., 1317 1318 Schlueter, H.-J., Schwieters, J., 2012. A high-resolution gas-source isotope ratio mass 1319 spectrometer. Int. J. Mass Spectrom. Eiler, J.M., Schauble, E., 2004. ¹⁸O¹³C¹⁶O in Earth's atmosphere. Geochim. Cosmochim. Acta 1320 1321 **68**, 4767–4777. 1322 Eldridge, D.L., Korol, R., Lloyd, M.K., Turner, A.C., Webb, M.A., Miller, T.F., Stolper, D.A., 1323 2019. Comparison of Experimental vs Theoretical Abundances of ¹³CH₃D and ¹²CH₂D₂ 1324 for Isotopically Equilibrated Systems from 1 to 500 °C. ACS Earth Space Chem. 3, 2747-1325 2764. https://doi.org/10.1021/acsearthspacechem.9b00244 1326 Feakins, S.J., Ellsworth, P.V., Sternberg, L. da S.L., 2013. Lignin methoxyl hydrogen isotope 1327 ratios in a coastal ecosystem. Geochim. Cosmochim. Acta 121, 54-66. https://doi.org/10.1016/j.gca.2013.07.012 1328 1329 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. 1330 Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. 1331 P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, 1332 K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. 1333 Nakai, T. Vreven, J. A. Montgomery, Jr., E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, 1334 E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. 1335 Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. 1336 M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. 1337 Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. 1338 Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. 1339 Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. 1340 Cioslowski, and D. J. Fox, 2013. Gaussian 09, Revision E.01, Gaussian, Inc., 1341 Wallingford CT 1342 Gehre, M., Renpenning, J., Geilmann, H., Qi, H., Coplen, T.B., Kümmel, S., Ivdra, N., Brand, 1343 W.A., Schimmelmann, A., 2017. Optimization of on-line hydrogen stable isotope ratio 1344 measurements of halogen- and sulfur-bearing organic compounds using elemental 1345 analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-1346 Cr/HTC-IRMS). Rapid Comm. Mass. Spectrom. 31, 475-484.

- Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D., Eiler, J.M.,
 2006. ¹³C-¹⁸O bonds in carbonate minerals: A new kind of paleothermometer. *Geochimica et Cosmochimica Acta* 70, 1439–1456.
- 1350 https://doi.org/10.1016/j.gca.2005.11.014
- Giunta, T., Young, E.D., Warr, O., Kohl, I., Ash, J.L., Martini, A., Mundle, S.O.C., Rumble, D.,
 Pérez-Rodríguez, I., Wasley, M., LaRowe, D.E., Gilbert, A., Sherwood Lollar, B., 2019.
 Methane sources and sinks in continental sedimentary systems: New insights from paired
 clumped isotopologues ¹³CH₃D and ¹²CH₂D₂. *Geochim. Cosmochim. Acta* 245, 327–351.
 https://doi.org/10.1016/j.gca.2018.10.030
- Goldshleger, N.F., Tyabin, M.B., Shilov, A.E., Shteinman, A.A., 1969. Activation of Saturated
 Hydrocarbons. Deuterium-hydrogen exchange in solutions of transition metal complexes.
 Russ. J. Phys. Chem. 43, 1222-+.
- Greule, M., Moossen, H., Lloyd, M. K., Geilmann, H., Brand, W.A., Eiler, J.M., Qi, H., Keppler,
 F., 2019. Three wood isotopic reference materials for δ²H and δ¹³C measuremnts of plant
 methoxy groups. *Chemical Geology* 533. 10.1016/j.chemgeo.2019.119428
- 1362Greule, M., Tumino, L.D., Kronewald, T., Hener, U., Schleucher, J., Mosandl, A., Keppler, F.,13632010. Improved rapid authentication of vanillin using $\delta^{13}C$ and $\delta^{2}H$ values. *Eur. Food*1364*Res. Technol.* 231, 933–941. https://doi.org/10.1007/s00217-010-1346-z
- Gruen, D.S., Wang, D.T., Könneke, M., Topçuoğlu, B.D., Stewart, L.C., Goldhammer, T.,
 Holden, J.F., Hinrichs, K.-U., Ono, S., 2018. Experimental investigation on the controls
 of clumped isotopologue and hydrogen isotope ratios in microbial methane. *Geochim. Cosmochim. Acta* 237, 339–356. https://doi.org/10.1016/j.gca.2018.06.029
- Guo, W., 2020. Kinetic clumped isotope fractionation in the DIC-H₂O-CO₂ system: Patterns,
 controls, and implications. *Geochim. Cosmochim. Acta* 268, 230–257.
 https://doi.org/10.1016/j.gca.2019.07.055
- Helms, C.R., Deal, B.E., 1992. Mechanisms of the HF/H 2 O vapor phase etching of SiO 2. J.
 Vac. Sci. Technol. Vac. Surf. Films 10, 806–811. https://doi.org/10.1116/1.577676
- Horibe, Y., Craig, H., 1995. DH fractionation in the system methane-hydrogen-water. *Geochim. Cosmochim. Acta* 59, 5209–5217. https://doi.org/10.1016/0016-7037(95)00391-6
- Huntington, K.W., Eiler, J.M., Affek, H.P., Guo, W., Bonifacie, M., Yeung, L.Y., Thiagarajan,
 N., Passey, B., Tripati, A., Daëron, M., Came, R., 2009. Methods and limitations of
 'clumped' CO₂ isotope (Δ₄₇) analysis by gas-source isotope ratio mass spectrometry. J.
 Mass Spectrom. 44, 1318–1329. https://doi.org/10.1002/jms.1614
- Kendall, R.A., Dunning, T.H., Harrison, R.J., 1992. Electron affinities of the first-row atoms
 revisited. Systematic basis sets and wave functions. *J. Chem. Phys.* 96, 6796-6806.
 10.1063/1.462569
- Keppler, F., Hamilton, J.T.G., McRoberts, W.C., Vigano, I., Braß, M., Röckmann, T., 2008.
 Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. *New Phytol.* **178**, 808–814. https://doi.org/10.1111/j.1469-8137.2008.02411.x
- Keppler, F., Harper, D.B., Kalin, R.M., Meier-Augenstein, W., Farmer, N., Davis, S., Schmidt,
 H.-L., Brown, D.M., Hamilton, J.T.G., 2007. Stable hydrogen isotope ratios of lignin
 methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of
 wood. *New Phytol.* **176**, 600–609. https://doi.org/10.1111/j.1469-8137.2007.02213.x

- 1391 Krueger, D.A., Krueger, H.W., 1983. Carbon isotopes in vanillin and the detection of falsified
 1392 natural vanillin. J. Agric. Food Chem. 31, 1265–1268.
 1393 https://doi.org/10.1021/jf00120a030
- Landgraf, B.J., McCarthy, E.L., Booker, S.J., 2016. Radical S-Adenosylmethionine Enzymes in
 Human Health and Disease. *Annu. Rev. Biochem.* 85, 485–514.
 https://doi.org/10.1146/annurev-biochem-060713-035504
- Lee, C., Yang, W., Parr, R.G., 1988. Development of the Colle-Salvetti correlation-energy
 formula into a functional of the electron density. *Phys. Rev. B* 37, 785–789.
 10.1103/PhysRevB.37.785
- Lee, H., Feng, X., Mastalerz, M., Feakins, S.J., 2019. Characterizing lignin: Combining lignin phenol, methoxyl quantification, and dual stable carbon and hydrogen isotopic techniques. *Org. Geochem.* 136, 103894.
- 1403 https://doi.org/10.1016/j.orggeochem.2019.07.003
- Levin, N.E., Raub, T.D., Dauphas, N., Eiler, J.M., 2014. Triple oxygen isotope variations in
 sedimentary rocks. *Geochim. Cosmochim. Acta* 139, 173–189.
 https://doi.org/10.1016/j.gca.2014.04.034
- Lloyd, M.K., 2017. Clumped and intramolecular isotopic perspectives on the behavior of organic
 and inorganic carbon in the shallow crust and deep biosphere. PhD thesis, California
 Institute of Technology.
- Loyd, S.J., Sample, J., Tripati, R.E., Defliese, W.F., Brooks, K., Hovland, M., Torres, M.,
 Marlow, J., Hancock, L.G., Martin, R., Lyons, T., Tripati, A.E., 2016. Methane seep
 carbonates yield clumped isotopesignatures out of equilibrium with formation
 temperatures. *Nat. Commun.* 7, 1–12. https://doi.org/10.1038/ncomms12274
- Maccoll, A., 1969. Heterolysis and the Pyrolysis of Alkyl Halides in the Gas Phase. *Chem. Rev.*69, 33–60. https://doi.org/10.1021/cr60257a002
- Magyar, P.M., 2017. Insights into pathways of nitrous oxide generation from novel isotopologue
 measurements. PhD thesis, California Institute of Technology.
- Magyar, P.M., Orphan, V.J., Eiler, J.M., 2016. Measurement of rare isotopologues of nitrous
 oxide by high-resolution multi-collector. *Rapid Commun. Mass Spectrom.* 30, 1923–
 1420 1940. https://doi.org/10.1002/rcm.7671
- Mann, J., 1987. Modern methods for the introduction of fluorine into organic molecules: an
 approach to compounds with altered chemical and biological activities. *Chem. Soc. Rev.*1423 16, 381–436. https://doi.org/10.1039/CS9871600381
- Møller, Chr., Plesset, M.S., 1934. Note on an Approximation Treatment for Many-Electron
 Systems. *Phys. Rev.* 46, 618–622. https://doi.org/10.1103/PhysRev.46.618
- Morrison, J.A., Nakayama, K., 1963. Reaction of single crystals of potassium bromide with
 chlorine gas. *Trans. Faraday Soc.* 59, 2560. https://doi.org/10.1039/tf9635902560
- Ohligschläger, A., Menzel, K., Kate, A.T., Martinez, J.R., Frömbgen, C., Arts, J., McCulloch,
 A., Rossberg, M., Lendle, W., Pfleiderer, G., Tögel, A., Torkelson, T.R., Beutel, K.K.,
 2019. Chloromethanes, in: *Ullmann's Encyclopedia of Industrial Chemistry*, pp. 1–31.
 https://doi.org/10.1002/14356007.a06_233.pub4
- Olah, G.A., Gupta, B., Felberg, J.D., Ip, W.M., Husain, A., Karpeles, R., Lammertsma, K.,
 Melhotra, A.K., Trivedi, N.J., 1985. Electrophilic reactions at single bonds. 20. Selective monohalogenation of methane over supported acidic or platinum metal catalysts and
 hydrolysis of methyl halides over .gamma.-alumina-supported metal oxide/hydroxide
- 1436 catalysts. A feasible path for the oxidative conversion of methane into methyl


1437 alcohol/dimethyl ether. J. Am. Chem. Soc. 107, 7097-7105. 1438 https://doi.org/10.1021/ja00310a057 Ono, S., Wang, D.T., Gruen, D.S., Sherwood Lollar, B., Zahniser, M.S., McManus, B.J., Nelson, 1439 1440 D.D., 2014. Measurement of a doubly substituted methane isotopologue, ¹³CH₃D, by 1441 tunable infrared laser direct absorption spectroscopy. Anal. Chem. 86, 6487-6494. 1442 https://doi.org/10.1021/ac5010579 1443 Ono, S., Wing, B., Johnston, D., Farquhar, J., Rumble, D., 2006. Mass-dependent fractionation 1444 of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. 1445 Geochim. Cosmochim. Acta 70, 2238–2252. https://doi.org/10.1016/j.gca.2006.01.022 1446 Ott, J., Gronemann, V., Pontzen, F., Fiedler, E., Grossmann, G., Kersebohm, D.B., Weiss, G., 1447 Witte, C., 2012. Methanol, in: Ullmann's Encyclopedia of Industrial Chemistry. American Cancer Society. https://doi.org/10.1002/14356007.a16_465.pub3 1448 Popa, M.E., Paul, D., Janssen, C., Röckmann, T., 2018. H₂ clumped isotope measurements at 1449 1450 natural isotopic abundances. Rapid Comm. Mass. Spectrom. 33, 239-251. 1451 Purvis, G.D., Bartlett, R.J., 1982. A full coupled-cluster singles and doubles model: The 1452 inclusion of disconnected triples. J. Chem. Phys. 76, 1910-1918. 1453 https://doi.org/10.1063/1.443164 1454 Rahikainen, M., Alegre, S., Trotta, A., Pascual, J., Kangasjärvi, S., 2018. Trans-methylation 1455 reactions in plants: focus on the activated methyl cycle. *Physiol. Plant.* 162, 162–176. 1456 https://doi.org/10.1111/ppl.12619 1457 Robertson, K.D., 2005. DNA methylation and human disease. Nat. Rev. Genet. 6, 597-610. 1458 https://doi.org/10.1038/nrg1655 1459 Roje, S., 2006. S-Adenosyl-1-methionine: Beyond the universal methyl group donor. Rod 1460 Croteau Spec. Issue Part 1 67, 1686–1698. 1461 https://doi.org/10.1016/j.phytochem.2006.04.019 1462 San Filippo, J., Romano, L.J., 1975. Mechanism of the reaction of alkyl bromides and iodides with mercury(II) and silver(I) fluorides. J. Org. Chem. 40, 782-787. 1463 1464 https://doi.org/10.1021/jo00894a022 1465 Schimmelmann, A., Qi, H., Coplen, T.B., Brand, W.A., Fong, J., Meier-Augenstein, W., Kemp, 1466 H.F., Toman, B., Ackermann, A., Assonov, S., Aerts-Bijma, A.T., Brejcha, R., 1467 Chikaraishi, Y., Darwish, T., Elsner, M., Gehre, M., Geilmann, H., Gröning, M., Hélie, 1468 J.-F., Herrero-Martín, S., Meijer, H.A.J., Sauer, P.E., Sessions, A.L., Werner, R.A., 2016. 1469 Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio 1470 Measurements: Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, l-Valines, 1471 Polyethylenes, and Oils. Anal. Chem. 88, 4294–4302. 1472 https://doi.org/10.1021/acs.analchem.5b04392 Schmidt, H.-L, Robins, R.J., Werner, R.A., 2015. Multi-factorial in vivo stable isotope 1473 1474 fractionation: causes, correlations, consequences and applications. *Isotopes in Environ*. 1475 and Heal. Stud. 51. 155–199. https://doi.org/10.1080/10256016.2015.1014355 1476 Selin, N., 2009. Global biogeochemical cycling of mercury: A review. Annu. Rev. Environ. 1477 *Resour.* **34**, 43–63. 1478 Siegemund, G., Schwertfeger, W., Feiring, A., Smart, B., Behr, F., Vogel, H., McKusick, B., 1479 Kirsch, P., 2016. Fluorine Compounds, Organic, in: Ullmann's Encyclopedia of 1480 Industrial Chemistry. American Cancer Society, pp. 1–56. 1481 https://doi.org/10.1002/14356007.a11 349.pub2

- Stolper, D.A., Sessions, A.L., Ferreira, A.A., Neto, E.V.S., Schimmelmann, A., Shusta, S.S.,
 Valentine, D.L., Eiler, J.M., 2014a. Combined ¹³C–D and D–D clumping in methane:
 Methods and preliminary results. *Geochimica et Cosmochimica Acta* 126, 169–191.
 https://doi.org/10.1016/j.gca.2013.10.045
- Stolper, D.A., Lawson, M., Davis, C.L., Ferreira, A.A., Neto, E.V.S., Ellis, G.S., Lewan, M.D.,
 Martini, A.M., Tang, Y., Schoell, M., Sessions, A.L., Eiler, J.M., 2014b. Formation
 temperatures of thermogenic and biogenic methane. *Science* 344, 1500–1503.
 https://doi.org/10.1126/science.1254509
- Stolper, D.A., Martini, A.M., Clog, M., Douglas, P.M., Shusta, S.S., Valentine, D.L., Sessions,
 A.L., Eiler, J.M., 2015. Distinguishing and understanding thermogenic and biogenic
 sources of methane using multiply substituted isotopologues. *Geochim. Cosmochim. Acta*161, 219–247.
- 1494Taenzer, L., Labidi, J., Masterson, A.L., Feng, X., Rumble, D., Young, E.D., Leavitt, W.D.,1495**2020.** Low $\Delta^{12}CH_2D_2$ values in microbialgenic methane result from combinatorial isotope1496effects. Geochim. Cosmochim. Acta 285, 225–236. 10.1016/j.gca.2020.06.026
- Tenailleau, E.J., Lancelin, P., Robins, R.J. and, Akoka, S., 2004. Authentication of the Origin of
 Vanillin Using Quantitative Natural Abundance ¹³C NMR. J. Agric. Food Chem. 52,
 7782–7787. https://doi.org/10.1021/jf048847s
- Tripati, A.K., Hill, P.S., Eagle, R.A., Mosenfelder, J.L., Tang, J., Schauble, E.A., Eiler, J.M.,
 Zeebe, R.E., Uchikawa, J., Coplen, T.B., Ries, J.B., Henry, D., 2015. Beyond
 temperature: Clumped isotope signatures in dissolved inorganic carbon species and the
 influence of solution chemistry on carbonate mineral composition. *Geochim. Cosmochim. Acta* https://doi.org/10.1016/j.gca.2015.06.021
- Urey, H.C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. Resumed562–581.
- Wang, D.T., Gruen, D.S., Lollar, B.S., Hinrichs, K.-U., Stewart, L.C., Holden, J.F., Hristov,
 A.N., Pohlman, J.W., Morrill, P.L., Könneke, M., Delwiche, K.B., Reeves, E.P.,
 Sutcliffe, C.N., Ritter, D.J., Seewald, J.S., McIntosh, J.C., Hemond, H.F., Kubo, M.D.,
 Cardace, D., Hoehler, T.M., Ono, S., 2015. Nonequilibrium clumped isotope signals in
 microbial methane. *Science* 348, 428. https://doi.org/10.1126/science.aaa4326
- Wang, D.T., Welander, P.V., Ono, S., 2016. Fractionation of the methane isotopologues 13CH4,
 ¹²CH₃D, and ¹³CH₃D during aerobic oxidation of methane by Methylococcus capsulatus
 (Bath). *Geochim. Cosmochim. Acta* 192, 186–202.
- 1515 https://doi.org/10.1016/j.gca.2016.07.031
- Wang, Z., Schauble, E.A., Eiler, J.M., 2004. Equilibrium thermodynamics of multiply
 substituted isotopologues of molecular gases. *Geochim. Cosmochim. Acta* 68, 4779–
 4797. https://doi.org/10.1016/j.gca.2004.05.039
- Watkins, J.M., Hunt, J.D., 2015. A process-based model for non-equilibrium clumped isotope
 effects in carbonates. *Earth Planet. Sci. Lett.* 432, 152–165.
 https://doi.org/10.1016/j.epsl.2015.09.042
- Webb, M.A., Miller, T.F., 2013. Position-specific and Clumped Stable Isotope Studies:
 Comparison of the Urey and Path-Integral Approaches for Carbon Dioxide, Nitrous
 Oxide, Methane, and Propane. J. Phys. Chem. A 131227163831000.
 https://doi.org/10.1021/jp411134v

- Weissman, M., Benson, S.W., 1984. Pyrolysis of methyl chloride, a pathway in the chlorinecatalyzed polymerization of methane. *Int. J. Chem. Kinet.* 16, 307–333.
 https://doi.org/10.1002/kin.550160403
- Wilkinson, J.A., 1992. Recent advances in the selective formation of the carbon-fluorine bond.
 Chem. Rev. 92, 505–519. https://doi.org/10.1021/cr00012a002
- 1531 Wu, Y.-P., Won, Y.-S., 2000. Pyrolysis of chloromethanes. *Combust. Flame* 122, 312–326.
 1532 https://doi.org/10.1016/S0010-2180(00)00116-4
- Xie, H., Ponton, C., Formolo, M.J., Lawson, M., Peterson, B.K., Lloyd, M.K., Sessions, A.L.,
 Eiler, J.M., 2018. Position-specific hydrogen isotope equilibrium in propane. *Geochim. Cosmochim. Acta* 238, 193–207. <u>https://doi.org/10.1016/j.gca.2018.06.025</u>
- 1536 Xie, H., Dong, G., Thiagaranjan, N., Shuai, Y., Mangenot, X., Formolo, M.J., Eiler, J.M., 2019.
 1537 Methane clumped isotopologues with high-resolution gas source isotope ratio mass
 1538 spectrometry. AGU Fall Meeting, December 2019.
 1539 http://adsabs.harvard.edu/abs/2019AGUFM.V14B..05X.
- Yeung, L.Y., 2016. Combinatorial effects on clumped isotopes and their significance in
 biogeochemistry. *Geochim. Cosmochim. Acta* 172, 22–38.
- Yeung, L.Y., Ash, J.L., Young, E.D., 2015. Biological signatures in clumped isotopes of O₂.
 Science 348, 431–434. https://doi.org/10.1126/science.aaa6284
- Yeung, L.Y., Haslun, J.A., Ostrom, N.E., Sun, T., Young, E.D., van Kessel, M.A.H.J., Lücker,
 S., Jetten, M.S.M., 2019. In Situ Quantification of Biological N₂ Production Using
 Naturally Occurring ¹⁵N¹⁵N. *Environ. Sci. Technol.* 53, 5168–5175.
 https://doi.org/10.1021/acs.est.9b00812
- Yeung, L.Y., Li, S., Kohl, I.E., Haslun, J.A., Ostrom, N.E., Hu, H., Fischer, T.P., Schauble, E.A.,
 Young, E.D., 2017. Extreme enrichment in atmospheric ¹⁵N¹⁵N. *Sci. Adv.* 3, eaao6741.
 https://doi.org/10.1126/sciadv.aao6741
- Yeung, L.Y., Murray, L.T., Ash, J.L., Young, E.D., 2016. Isotopic ordering in atmospheric O₂ as
 a tracer of ozone photochemistry and the tropical atmosphere. *J. Geophys. Res. Atmos.*,
 121. <u>https://doi.org/10.1002/(ISSN)2169-8996</u>
- Yeung, L.Y., Young, E.D., Schuable, E.A., 2012. Measurements of ¹⁸O¹⁸O and ¹⁷O¹⁸O in the atmosphere and the role of isotope-exchange reactions. *J. Geophys. Res. Atmos.* 117. https://doi.org/10.1029/2012JD017992
- Young, E.D., Kohl, I.E., Lollar, B.S., Etiope, G., Rumble III, D., Li 李姝宁, S., Haghnegahdar,
 M.A., Schauble, E.A., McCain, K.A., Foustoukos, D.I., Sutclife, C., Warr, O., Ballentine,
 C.J., Onstott, T.C., Hosgormez, H., Neubeck, A., Marques, J.M., Pérez-Rodríguez, I.,
 Rowe, A.R., LaRowe, D.E., Magnabosco, C., Yeung, L.Y., Ash, J.L., Bryndzia, L.T.,
- 1561
 1562
 1563
 2017. The relative abundances of resolved ¹²CH₂D₂ and ¹³CH₃D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases. *Geochim.* 1563
- Young, E.D., Rumble, D., Freedman, P., Mills, M., 2016. A large-radius high-mass-resolution
 multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of
 O2, N2, CH4, and other gases. *Int. Jour. Mass. Spec.* 401, 1-10.
- Zeisel, S., 1885. Über ein Verfahren zum quantitativen Nachweise von Methoxyl. *Monatshefte Für Chem.* 6, 989–997. <u>https://doi.org/10.1007/BF01554683</u>

1570 **Figures and Figure Captions**

1572 1573 Figure 1: Mass scans of isotopologues of methyl fragments of CH₃F used to determine δD (a + c), $\delta^{13}C$ (a + b), and $\delta^{13}CH_2D$ (a + d). Scans were made under typical measurement conditions. 1574 1575 Orange dashed lines indicate measurement locations. Mass 15 Da scan in a) has been corrected for signal decay due to pressure bleed-out. ¹²CHD⁺ is not resolved and is corrected for in post-1576 measurement processing (see Appendix A1). b) Resolution of ¹³CH₃⁺ from ¹²CH₂D⁺. Typical 1577 mass resolving power (MRP, 5–95% definition) is 16,000. ¹³CH₃⁺ integrations are corrected for 1578 1579 possible background ¹⁴NH₂⁺ contamination by integrating the background at the location shown in Fig. 2b. c) Measurement of ¹²CH₂D⁺ resolved from ¹²CH₄⁺. Typical MRP is 22,000. d) 1580 Measurement of ${}^{13}CH_2D^+$ resolved from ${}^{13}CH_4^+$. Typical MRP is 22,000. 1581 1582

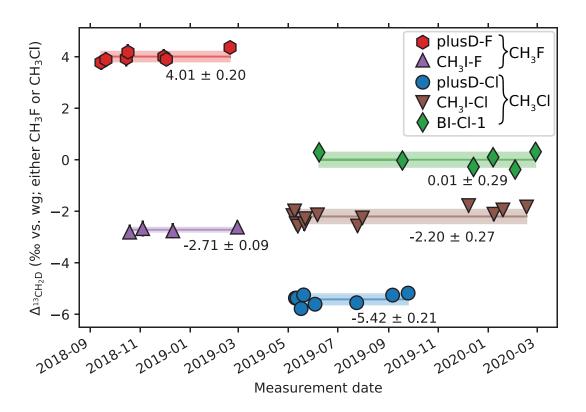
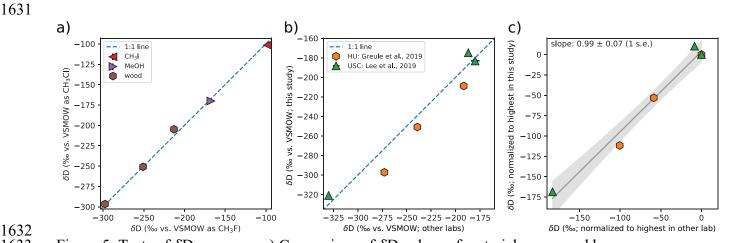



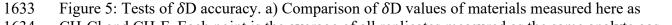
Figure 2: Mass spectrum scans of CH₃Cl methyl fragments used for δD (a + c), $\delta^{13}C$ (a + b), 1584 δ^{13} CH₂D (e + a), and δ^{12} CHD₂ (f + a) determinations. Scans were made under typical 1585 1586 measurement conditions. Orange dashed lines indicate mass spectrum locations where integrations are made. a) Mass 15 flat shoulder where ${}^{12}CH_3^+$ is resolved from ${}^{13}CH_2^+$. ${}^{12}CHD^+$ is 1587 1588 not resolved and is corrected for in post-measurement processing. The scan has been corrected for signal loss due to pressure bleed-out. Mass resolving power (MRP: 5-95% definition) varies 1589 depending on measurement; see Table A2 for details). b) Resolution of ${}^{13}CH_3^+$ from ${}^{16}O^+$ and 1590 12 CH₂D⁺. Green dashed line indicates location of background integrations for each δ^{13} C 1591 measurement. Typical MRP for δ^{13} C measurement is 16,000. c) Measurement of 12 CH₂D⁺ on the 1592 H4 cup with separation from the ¹²CH₄⁺ H-adduct. ¹³CH₃ is at a lower mass and fully resolved. 1593 1594 Typical MRP for δD measurement on H4 cup is 28,000. d) Zoomed-in view of singly substituted methyl fragments from showing flat ${}^{13}CH_3^+$ shoulder. e) Measurement of ${}^{13}CH_2D^+$ where 1595 resolved from ¹³CH₄⁺. Typical MRP is 22,000. f) Measurement of ¹²CHD₂⁺ is largely resolved 1596 from the ¹³CH₄⁺ and ¹³CH₃D⁺ adducts, but a tailing correction is applied. Procedures for this 1597 tailing correction are detailed in the Appendix Fig. A8. Typical MRP is 28,000. 1598 1599 1600


1602 Figure 3: Reproducibility of $\Delta_{13}_{CH_2D}$ measurements of CH₃F and CH₃Cl standards vs.

1603 measurement date. $\Delta_{^{13}CH_2D}$ values are reported in ∞ relative to the corresponding working

1604 reference gas, either BIL-F-1 (for CH₃F measurements) or CIT-Cl-2 (for CH₃Cl measurements).


1605 Error bars on data points are ± 1 s.e. (internal measurement errors). Mean values and $\pm 1\sigma$ for each 1606 standard are shown in solid lines and shaded boxes. Multi-week time gaps between


1607 measurements indicate intervals where methane was analyzed on the same instrument, or1608 maintenance periods.

1623wt.% methoxyl (other labs)wt.% methoxyl (other labs)1624Figure 4: a): Measured abundance of methoxyl groups (in weight percent O-CH3) vs. external1625values. External value of the syringaldehyde standard is the theoretical abundance based on its

1626 molecular formula (Lee et al., 2019). b) Zoomed-in view of a) on the methoxyl contents of 1627 woods. Error bars are $\pm 1\sigma$ of replicates; for samples that were measured once, error bars are the 1628 mean 1σ of all samples that were replicated (specifically, 0.09 %). Error bars on external values 1629 are from the original publications.

1634 CH₃Cl and CH₃F. Each point is the average of all replicates measured as the same analyte gas.

1635 We provide a 1:1 line is given for comparison. B) δD values from this study vs. external values 1636 of wood and syringaldehyde standards measured by other laboratories. The 1:1 line is given for

1050 of wood and symgaticity de standards measured by other habitatories. The 1.1 line is given for

1637 comparison. c) Relative differences in δD values normalized to the highest value reported in 1638 each laboratory. Grey line is a linear regression to the normalized data in this space. Grey

1639 envelope is the 95% confidence interval. In all panels, error bars on our measurements are ± 1 s.e.

1640 of replicates; for samples that were measured only once, error bars are the mean 1σ of all 1641 samples that were replicated (specifically, 2.03 %). Error bars on external values are from the

1642 original publications. When not shown, error bars are smaller than symbols.

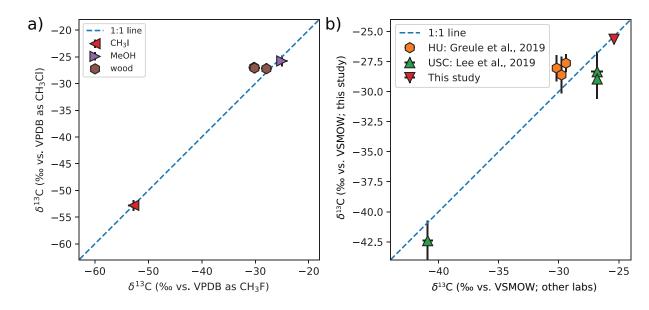


Figure 6: Tests of δ^{13} C accuracy. a) Comparison of internal δ^{13} C values of samples measured as CH₃Cl and CH₃F. Each point is the average of all replicates measured as the same analyte gas. 1:1 line also shown for comparison. b) δ^{13} C values from this study (internal) vs. external values of wood and syringaldehyde standards or the methanol standard measured in this study by conventional methods. A 1:1 line shown for comparison. In both panels, error bars on our measurements are ± 1 s.e. of replicates; for samples that were measured once, error bars are the mean 1σ of all samples that were replicated (specifically, 1.59 ‰). Error bars on external values are from the original publications.

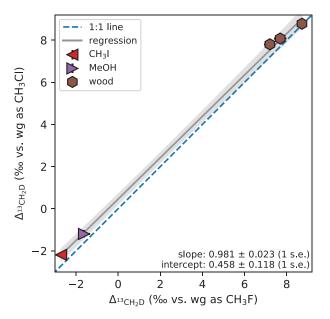
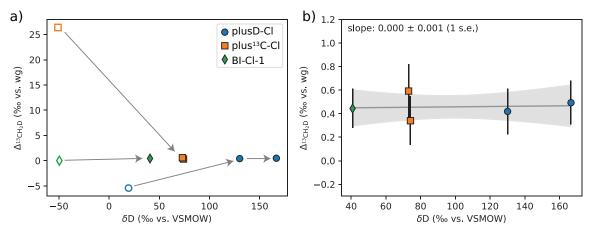
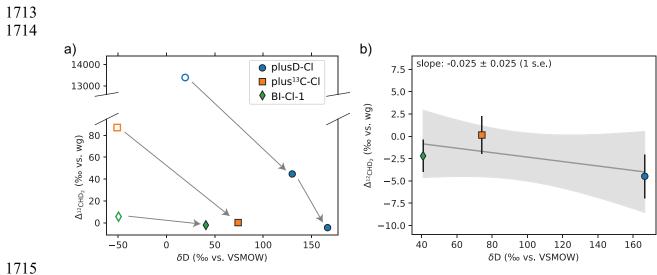



Figure 7: Comparison of $\Delta_{^{13}CH_2D}$ values of materials measured as CH₃Cl vs. as CH₃F. Error bars on points are ±1 s.e. of the mean. Error-weighted York regression ± 95% confidence interval are shown in grey (York, 1968). Blue dashed line is the 1:1 line. The slope of the regression is indistinguishable from 1 (see bottom right corner) indicating relative accuracy of measurements regardless of analyte. The intercept of the regression indicates the offset between the $\Delta_{^{13}CH_2D}$ values of the CH₃F and CH₃Cl working reference tanks in the thermodynamic reference frame.

1703 Figure 8: $\Delta_{13}_{CH_2D}$ values from CH₃Cl isotope-exchange experiments catalyzed on Pt/Al₂O₃ at

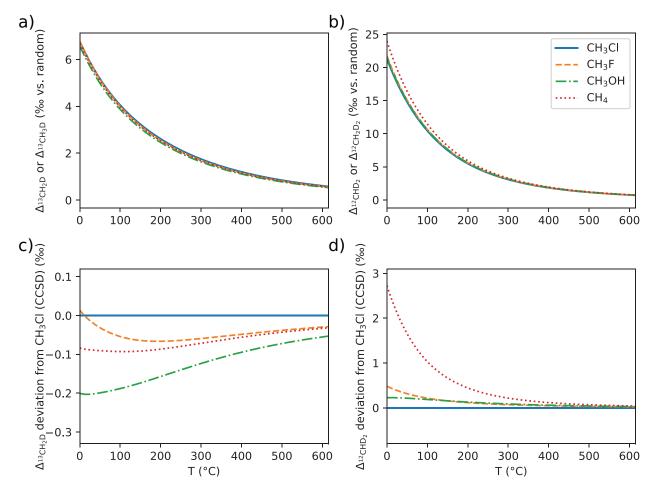
1704 200 °C. Outlined symbols indicate mean values of starting gas compositions. Filled symbols


indicate samples exposed to the catalyst at 200 °C for 90–185 hours. Arrows indicate direction of
 increased reaction time, but note that all points are separate experiments. b) is zoom-in of a) on

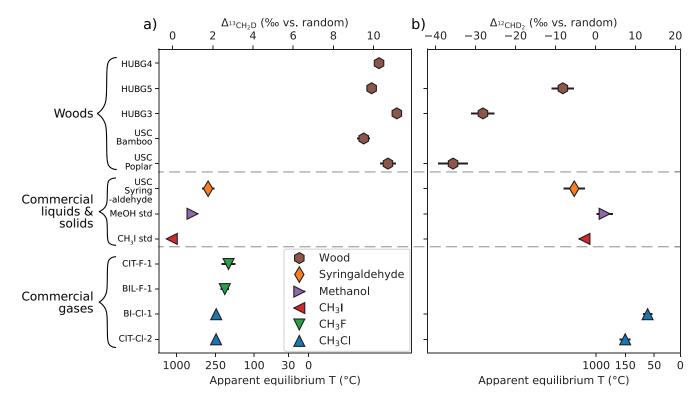
samples we interpret to have equilibrated. Error bars in a) are smaller than the symbol size. Error

1708 bars in b) are ± 1 s.e. Also shown in b) is the linear regression of $\Delta_{13}_{CH_2D}$ vs. δD among the

equilibrated samples. Gray shading is the 95% confidence interval of the regression. The slope of


1710 the regression is within error of 0, indicating a lack of dependence of equilibrated $\Delta_{13}_{CH_2D}$ values 1711 on bulk isotopic composition.

1717 Figure 9: $\Delta_{12}_{CHD_2}$ values from CH₃Cl exchange experiments on Pt/Al₂O₃ at 200 °C. Symbols,


1718arrows, and error bars are as in Figure 8. Arrows indicate direction of increased reaction time,1719but note that all points are separate experiments. Note broken axis indicating that the starting1720 $\Delta_{12}_{CHD_2}$ value of the plusD-Cl standard is ~13,390 ‰. b) is a zoom in of a) on samples we1721interpret to have equilibrated. The slope of the regression is within error of 0, indicating a lack of1722dependence of $\Delta_{12}_{CHD_2}$ on bulk isotopic composition at equilibrium.

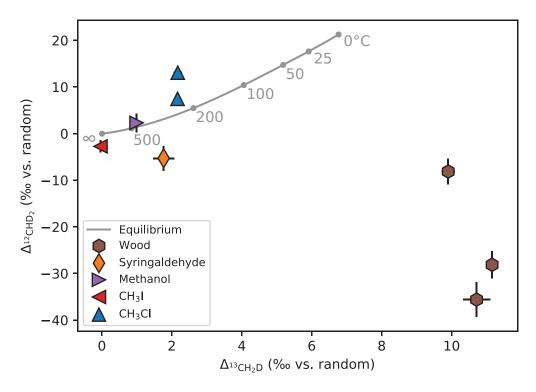

1726 1727

Figure 10: Theoretical predictions for the equilibrium dependencies of $\Delta_{^{13}CH_2D}$ and $\Delta_{^{12}CHD_2}$ 1728 values on temperature for simple methyl-containing molecules and for $\Delta_{^{13}CH_3D}$ and $\Delta_{^{12}CH_2D_2}$ in 1729 1730 methane. All calculations performed with the aug-cc-pVTZ basis set at the CCSD level of theory (the highest levels explored for basis set size and theoretical level). a) $\Delta_{13}_{CH_2D}$ (and $\Delta_{13}_{CH_3D}$) 1731 predictions for the temperature range of 0–600 °C. b) $\Delta_{^{12}CHD_2}$ (and $\Delta_{^{12}CH_2D_2}$) predictions for the 1732 temperature range of 0–600 °C. c) $\Delta_{^{13}CH_2D}$ difference for each molecule from the $\Delta_{^{13}CH_2D}$ 1733 1734 prediction for CH₃Cl. d) $\Delta_{12}_{CHD_2}$ difference for each molecule from the $\Delta_{12}_{CHD_2}$ prediction for 1735 CH₃Cl. Comparisons to other basis sets and levels of theory are shown in Appendix Figs. A6 and 1736 A7.

1744Figure 11: The clumped-isotope compositions commercial methyl and wood methoxyl groups.1745a): $\Delta_{13}_{CH_2D}$ values, b): $\Delta_{12}_{CHD_2}$ values. Samples are organized by material type. Bottom axis1746denotes apparent equilibrium temperatures in the thermodynamic CH₃Cl reference frame (Eqns.174717, 18). Error bars are ±1 s.e., see Table 5 for details.

1750 Figure 12: $\Delta_{12}_{CHD_2}$ values vs. $\Delta_{13}_{CH_2D}$ values of commercial compounds and woods. Grey curve 1751 is the line segment denoting mutual equilibrium: the theoretical relationship for CH₃Cl from 0 °C

1751 Is the line segment denoting initial equilibrium: the theoretical relationship for CH₃CI from 0 \times 1752 to ∞ (computed at the CCSD level of theory, aug-cc-pVTZ basis set; see Fig. 10, Eqns. 17, 18),

1753 where the equilibrium temperatures corresponding to $\Delta_{1^3CH_2D}$ and $\Delta_{1^2CHD_2}$ values are in

1754 agreement. Error bars are ± 1 s.e., see Table 5 for details.