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We present a search for an unstable sterile neutrino by looking for a resonant signal in eight years of
atmospheric νμ data collected from 2011 to 2019 at the IceCube Neutrino Observatory. Both the (stable)
three-neutrino and the 3þ 1 sterile neutrino models are disfavored relative to the unstable sterile neutrino
model, though with p values of 2.8% and 0.81%, respectively, we do not observe evidence for 3þ 1

neutrinos with neutrino decay. The best-fit parameters for the sterile neutrino with decay model from this
study are Δm2

41 ¼ 6.7þ3.9
−2.5 eV2, sin22θ24 ¼ 0.33þ0.20

−0.17 , and g2 ¼ 2.5π � 1.5π, where g is the decay-
mediating coupling. The preferred regions of the 3þ 1þ decay model from short-baseline oscillation
searches are excluded at 90% C.L.

DOI: 10.1103/PhysRevLett.129.151801

Long-standing anomalies in short-baseline (SBL) neu-
trino experiments [1,2] have been interpreted in the standard
oscillation framework of three known flavors and one or
more hypothetical sterile neutrinos, referred to as “3þ N”
models. The “3þ 1”model, which involves only one sterile
neutrino, has been extensively studied through global fits to
datasets sensitive to vacuum oscillations involving a dom-
inant mass splitting of∼1 eV2 [3–5]. These fits find a strong
preference for 3þ 1 over the three neutrino hypothesis [4].
However, the allowed regions from these fits suffer from
internal inconsistencies between datasets [4,6]. In particular,
no experiment has found evidence of νμ disappearance,
which is expected in a 3þ 1 model. This is one motivation
to consider alternative models to the 3þ 1; another is to
evade cosmological bounds on light sterile neutrinos [7–11]
and possibly resolve the Hubble tension [12–16].
Other explanations for the observed anomalies include

misestimation of standard model backgrounds in the experi-
ments with anomalies [2,17–20], alternative models that do
not involve light sterile neutrinos [21–32], and extensions to
the 3þ 1 model that address the internal tension [33–35].
In the latter case, models wherein the sterile neutrino is
unstable (“3þ 1þ decay”) reduce the tension compared to
the 3þ 1 model [4,35,36]. However, to be seen as a well-
motivated improvement, the 3þ 1þ decay model should
be tested through entirely different processes than vacuum
oscillations.

The IceCube Neutrino Observatory has the unique
capability of performing such a test. IceCube is a cubic-
kilometer neutrino detector buried 1.5–2.5 km beneath the
surface of the Antarctic glacier at the South Pole [37]. Muon
tracks from charged current (CC) muon (anti)neutrino
interactions are reconstructed based on observation of
emitted Cherenkov light that is collected by “digital optical
modules” (DOMs) [38] arranged in vertical strings on a
hexagonal lattice. Specifically, the track fitting [39] utilizes
signals from two detector arrays: (i) the main array of 78
strings spaced 125 m apart, each carrying 60 DOMs with
a vertical separation of 17 m between them; and (ii) the
DeepCore [40] eight-string array, with lateral spacing vary-
ing from 42 to 72 m, and vertical DOM separation of 7 m.
The existence of an eV-scale sterile neutrino can manifest

itself as a resonant, matter-enhanced flavor transition for
either muon antineutrinos or muon neutrinos traversing the
core of the Earth [41–46]. This causes a deficit of “up-going”
muon (anti)neutrinos at TeV-scale energies. IceCube cannot
distinguish between neutrinos and antineutrinos. Therefore,
the only signature is a deficit in the combined muon neutrino
and muon antineutrino (νμ þ ν̄μ) CC event distribution at
TeVenergies. A search in the framework of the 3þ 1 model
using eight years of IceCube data has recently been
published [47,48]. This dataset offers an excellent platform
to test the hypothesis that the 3þ 1þ decay model provides
a better description of the data than the 3þ 1 model without
relying upon the vacuum oscillation signature.
In the 3þ 1þ decay model, the three-neutrino mixing

matrix, UPNMS, which is parametrized by three mixing
angles and one CP-violating phase, δCP, is extended by one
row and column, adding one sterile flavor state, νs, and one
heavy mass state, ν4. This introduces three new mixing
angles, θ14, θ24, and θ34, two new CP-violating phases, δ14
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and δ24, and one additional mass splitting, Δm2
41. Lastly,

instability of the fourth mass state is introduced as in
Ref. [4], governed by the strength of a coupling constant g.
For nonzero values of g, ν4 can decay into invisible particles
beyond the standard model, while g ¼ 0 returns the 3þ 1
model. The relationship between this coupling, g, the ν4
mass, m4, and its lifetime, τ, is [49]

τ ¼ 16π

g2m4

: ð1Þ

Most of the parameters involved in three-neutrino mixing
are well known; these include the light, active neutrino mass
splittings and the PMNS matrix elements [50]. However,
this Letter is insensitive to these parameters as well as to the
neutrino mass ordering and δCP because, for the relevant
neutrino energies (Eν > 100 GeV) and baselines (order the
diameter of the Earth or smaller), oscillation probabilities
between the three active flavors are insignificant. For the
present study, the normal mass ordering is assumed and δCP
is assumed to be zero. Furthermore θ14, δ14, and δ24 are set
to zero since they have subleading effects [51]; θ34 is set to
zero as this yields conservative results [51,52] and m1 is set
to zero since only mass differences are relevant. This leaves
three free parameters in the model to be tested: Δm2

41,
sin2 2θ24, and g2. It is assumed that θ24 < π=4, which
causes the resonance to appear in the antineutrino flux;
larger values of θ24 are heavily constrained [4] and since
there are more atmospheric neutrinos than antineutrinos
[53], this choice is also conservative.
At IceCube, the νμ and ν̄μ disappearance probabilities

vary as a function of energy and zenith angle (θz), where
cos θz ¼ 0 corresponds to neutrinos arriving from the
horizon and cos θz ¼ −1 corresponds to neutrinos arriving
from the direction of the North Pole. This study uses a
dataset collected over a live time of 2786 days and an event
selection that has been described in detail in Refs. [48,54].
The predicted resonance occurs at TeV scales, hence the
analysis focuses on muons from CC neutrino interactions
with energies between 500 GeV and 10 TeV. Relevant
neutrino interactions occur below or within IceCube.
Because the signature of the analysis relies on matter effects
in the Earth, this analysis requires muon tracks to have up-
going zenith angle (−1.0 < cos θz < 0.0). The angular
resolution of the tracks, σcos θz , lies between 0.005 and
0.015, and the track energy resolution, σlog10ðEμ=GeVÞ, is ∼0.5
[39]. The selected sample comprises 305 735 CC νμ and ν̄μ
events.
The expected neutrino flux is primarily atmospheric

neutrinos, with approximately a 3% overall contribution
from astrophysical neutrinos, determined by extrapolating
from measurements at higher energies [55–61]. The
atmospheric flux arises predominantly from the decays
of kaons and pions, and to a much lesser extent, muons, in
cosmic-ray air showers [62]. The decays of heavier mesons
contribute minimally to the atmospheric flux in the energy

range relevant to this analysis [63–69]. The atmospheric
and astrophysical fluxes fall steeply with energy, with
spectral indices of approximately −3.7 and −2.5, respec-
tively [61,70].
The physics under study affects the flavors of the neutrinos

as they propagate through the Earth. This is described using
the nuSQuIDS neutrino evolution code [71,72] which
accounts for both coherent and noncoherent interactions
[73–78], as well as tau neutrino regeneration [79,80]. This
analysis uses nuSQUIDSDecay, which incorporates the
effect of ν4 decay [34]. The Earth density profile is para-
metrized by the spherically symmetric PREM model [81].
The CSMS [82] neutrino-nucleon cross section is used to
describe the CC interactions below and within the detector.
This analysis builds on the 3þ 1 analysis in Ref. [48].

The data are binned in reconstructed muon energy and
cos θz, and a modified Poisson likelihood that accounts for
finite simulation statistics is used to evaluate the data
given sterile neutrino parameters [83]. Eighteen system-
atic effects related to the atmospheric and astrophysical
flux, detector, and cross section uncertainties are incorpo-
rated into the likelihood function as nuisance parameters;
these are described further in Ref. [48]. The treatment of
most systematic uncertainties is unchanged. The dominant
category of uncertainties had been identified as those
associated with the atmospheric neutrino flux.
Two improvements were made over the 3þ 1 analysis:

(i) the uncertainty in the atmospheric neutrino flux corre-
sponding to the uncertainty in the production of charged
mesons in atmospheric showers is calculated using atmos-
pheric data from the NASA Atmospheric InfraRed Sounder
satellite [84], rather than the atmospheric model from
Ref. [85]; and (ii) the astrophysical and prompt neutrino
fluxes are calculated using a corrected depth setting of the
glacial ice, compared to Ref. [48], which had little impact on
the current or previous results. Combined, these changes
increase the likelihood of the data for the three-neutrino
model and best-fit 3þ 1 model by, respectively, 0.09 and
0.18 log-likelihood (LLH) units.
Both a frequentist parameter estimation and a pointwise

Bayesian model comparison [86] are performed, following
the same procedure as in Ref. [48]. The likelihood function
and Bayes factor [87] are evaluated over a grid scan of the
three physics parameters—Δm2

41, sin
2 2θ24, and g2—where

Δm2
41 and sin2 2θ24 are sampled log uniformly with ten

samples per decade in the ranges 0.01–47 eV2 and 0.01–
1.0, respectively, and the parameter g2 is sampled in steps
of ðπ=2Þ in the range 0 − 4π.
The best-fit parameters are found to be Δm2

41 ¼
6.7þ3.9

−2.5 eV2, sin22θ24 ¼ 0.33þ0.20
−0.17 , and g2 ¼ 2.5π � 1.5π.

The ν̄μ disappearance probabilities are given in Fig. 1 for the
parameters Δm2

41 ¼ 6.7 eV2 and sin2 2θ24 ¼ 0.33, and for
two values of g2; the top panel shows the situation for
g2 ¼ 0, which corresponds to the 3þ 1 model, while the
bottom panel is for the case g2 ¼ 2.5π. The bottom panel

PHYSICAL REVIEW LETTERS 129, 151801 (2022)

151801-4



represents the best-fit point of the frequentist analysis. Muon
neutrino disappearance probabilities do not feature the
resonant deficit and make subleading contributions to the
sterile signature, so they are not shown.
The best-fit signal expectation and data are both com-

pared to the three-neutrino model expectation in Fig. 2.
In these plots, both the signal expectation and the three-
neutrino model expectation include systematic uncertainties
estimated adopting the respective physics parameters. Both
the data and the best-fit signal shapes have a deficit of events
for through-going neutrinos at the highest energies and a
relative excess for horizon-skimming events at the highest
energies. The fit values of all systematic uncertainties are
within 1σ of their prior centers, with the exception of the
cosmic-ray spectral index. The fit value of this systematic
uncertainty deviates by 2.4σ, which is similar to both the
result from the 3þ 1 search [47,48], as well as the fit value
assuming no sterile neutrino.
The frequentist confidence regions sliced at the best-fit

value of g2 are shown in Fig. 3. The contours are drawn

assuming Wilks’ theorem and three degrees of freedom
(DOF). Fits to simulated datasets for several points in the
parameter space showed the effective DOF was consistent
with three or fewer. The slices of the confidence regions
for the other values of g2 are approximately the same in the
2D space of [Δm2

41, sin
2 2θ24], with two deviations: the

90% C.L. (confidence level) region for g2 ¼ 0 excludes any
point with sin2 2θ24 ≳ 0.2, and above Δm2

41 ∼ 7 eV2, the
confidence regions extend to higher Δm2

41 values for larger
values of g2. This is shown in the Supplemental Material
[88]. The effective DOF at the null hypothesis (only three
neutrinos) was determined to be 2.86� 0.14, obtained
by fitting 300 simulated datasets generated assuming this
hypothesis. The null hypothesis is disfavored in favor of the
3þ 1þ decay model with−2ΔLLH ¼ 9.1 and a p value of
2.8%. This p value was obtained using Wilks’ theorem and
three DOF, which is conservative and consistent with the
DOF assumed for the contours.
The Bayesian analysis finds the best model to have

the parameters Δm2
41 ¼ 6.7 eV2, sin2 θ24 ¼ 0.33, and

g2 ¼ 1.5π; this model has a Bayes factor (BF) with respect
to the three-neutrino model of 0.025. The Bayes factor of

FIG. 1. Muon antineutrino disappearance probabilities for the
sterile parameters Δm2

41 ¼ 6.7 eV2, sin22θ24 ¼ 0.33, and two
values of g2. Top: g2 ¼ 0, which corresponds to infinite ν4
lifetime, i.e., the 3þ 1 model. Bottom: g2 ¼ 2.5π; this is the
best-fit point.

FIG. 2. Top: Comparison of best-fit signal expectation to the
three-neutrino fit. Bottom: Comparison of the binned data to the
three-neutrino fit. Distributions are binned in reconstructed muon
energy (EProxy

μ ) and cosine zenith angle.
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the frequentist best-fit point is 0.027. The Bayesian result
for g2 ¼ 2.5π is shown in Fig. 4. As with the frequentist
confidence regions, Bayesian preferred regions sliced at the
varying values of g2 are very similar, with a few exceptions.
For g2 ¼ 0, the region log10ðBFÞ ≤ −0.5 excludes points
with sin2 2θ24 ≳ 0.2. The regions with log10ðBFÞ ¼ −1.5
only occur for 1.5π ≤ g2 ≤ 2.5π. This is shown in the
Supplemental Material [88].
The frequentist and Bayesian results profiled over the

parameters Δm2
41 and sin2 2θ24 are shown in Fig. 5. Both

analyses find some preference for nonzero g2. In the
frequentist analysis, g2 ¼ 0 is disfavored in favor of non-
zero g2 with −2ΔLLH ¼ 3.9 and a p value of 0.81%. This
p value was obtained using Wilks’ theorem and 0.26
effective DOF. The effective DOF was determined by
fitting 500 simulated datasets generated assuming the
best-fit 3þ 1 parameters, i.e., fixing g2 ¼ 0. The uncer-
tainty of the value of the effective DOF is 0.02.
The 95% C.L. allowed region found in this Letter

overlaps that of the SBL fits, as seen in Fig. 3. This overlap
occurs to some extent for all nonzero values of g2, but is
larger for g2 values above π. This overlap remains fixed in
Δm2

41 and sin2 2θ24 for varying g2. At and above g2 ¼ π,
there is some overlap between the 95% C.L. region of this
Letter and the 90% C.L. allowed region from the SBL fits.

In conclusion, we have found no substantive evidence
for the 3þ 1þ decay model. The null hypothesis of only
three neutrinos is disfavored with a p value of 2.8%, and
the 3þ 1 model disfavored with a p value of 0.81%. The

FIG. 3. The result of the frequentist analysis for g2 ¼ 2.5π. The
90%, 95%, and 99% C.L. contours are shown as blue dotted,
dashed, and solid curves, respectively. The best-fit point is
marked with a blue star. The median sensitivity at 99% C.L.,
determined from 300 simulated datasets, is shown as a red curve.
The medium and light pink bands indicate the 1σ and 2σ regions
for the sensitivity. The 2D projection of the SBL fit results from
[4] for the range 2.25π ≤ g2 ≤ 2.75π at 90% C.L., 95% C.L., and
99% C.L. are shown as the solid yellow, green, and purple islands
around Δm2

41 ¼ 1.3 eV2.

FIG. 4. The result of the Bayesian analysis for g2 ¼ 2.5π. The
color indicates the logarithm of the Bayes factor with respect to
the three-neutrino model; magenta regions have strong preference
for the three-neutrino model, while green regions have preference
for the sterile neutrino model. The dotted, dashed, and solid black
contours correspond to log10ðBFÞ equaling �0.5, �1.0, and
�1.5, respectively.

FIG. 5. The frequentist and Bayesian results profiled over two
of the sterile parameters, Δm2

41 and sin2 2θ24. The frequentist test
statistic, −2ΔLLH is shown in black and is plotted on the left y
axis. The logarithm of the Bayes factor is shown in red and is
plotted on the right y axis. The diamond markers joined by the
thick lines show the results for the sterile model as a function of
the third sterile parameter, g2. The results for the null hypothesis
—that there are only three neutrino species—are shown in the
dashed horizontal lines at the top of the plot.
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best-fit parameters are Δm2
41 ¼ 6.7þ3.9

−2.5 eV2, sin2 2θ24 ¼
0.33þ0.20

−0.17 , and g2 ¼ 2.5π � 1.5π. While we have reported
valuable new input to global studies, further work, both
within and beyond IceCube, is needed to clarify the
picture [89]. In particular, in IceCube, the track energy
reconstruction can be improved by using machine learning
algorithms [90] and the dataset can be expanded to use a
new event morphology [91,92].
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