
UC Irvine
ICS Technical Reports

Title
Building safe software

Permalink
https://escholarship.org/uc/item/7sr8n0jf

Author
Leveson, Nancy G.

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sr8n0jf
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Building Safe Software , 7

Nancy G. Leveson
University of Callfornia7-Irvine

Technical Report No. 86-14

February, 1986

BUILDING SAFE SOFTWARE

Na.Mr G. Levuorat

Information and Computer Science
University ol California, Irvine

Irvine, California 92717
(714) 856-5517

e-mail: nancyGiC1.uci.edu

A.BSTIUOT

Murphy is a set of techniques and tools
under investigation for their potential in
enhancing the safety of software. This paper
describes some of the work which has been done
and some which is planned.

Introduction
A system or subsystem may be described as safet11-

critical if a run-time failure can result in death, injury,
loss of equipment or property, or environmental harm.
Computers are not inherently unsafe, and, until rela­
tively recently, computers were not used to control com­
plex, safety-critical systems. Thus although computers
were used in such potentially unsafe systems as aircraft,
air traffic control, nuclear power, defense, and aerospace
systems, a natural reluctance to add unknown and com­
plex factors to these systems kept computers out of moat
safety-critical loops. But the potential advantages of
using computers is now outweighing apprehension, and
both computer scientists and system engineers are
finding themselves faced with some difficult and unsolved
problems.

In safety-critical systems, it is not ungsual to
9

have
reliability requirements in the range of 10- to 10- pro­
bability of failure over a short period of time. This
translates into requirements such as one failure per
thousand years. Unfortunately, current software
engineering technology does not guarantee that such· reli­
abilities can be achieved for software (or, for that
matter, even measured). In fact, available evidence indi­
cates that current software reliability figures are, at best,
orders of magnitude lesi than required [5]. Software
engineering techniques which attempt to prevent, elim­
inate, or tolerate software faults may increase the time
between failures, but do not provide assurance that
catastrophic failures will not occur.

TThia work baa been partially supported by NSF Grant DCR
114.06532 and by Micro Grants cofunded by the University of Califor­
nia, Hughes Aircraft Co., and TRW.

What can be done? One option is not to build
these systems or not to use computers to control them.
For the most part, however, this option is unrealistic -
there are too many good reasons why computers should
be used and too few alternatives. Another option is to
consider reliability in a less absolute sense. There are
many types of failures possible in any complex system,
with consequences varying from minor annoyance up to
death or injury. It seems reasonable to focus on the
failures that have the most drastic consequences. Even if
all failures cannot be prevented, it may be possible to
ensure that the failures that do occur are of minor conse­
quence or that even if a potentially serious failure does
occur, the system will "fail-safe" (in a manner which will
not have catastrophic or serious results).

This approach is useful under the following cir­
cumstances: (1) not all failures are of equal conse­
quences and (2) there are a relatively small number of
failures that can lead to catastrophic results. Under
these circumstances, it is possible to augment traditional
reliability techniques that attempt to eliminate all
failures with techniques that concentrate on the high­
cost failures. These new techniques often involve a
"backward" approach that starts with determining what
are the unacceptable or high-cost failures and then
ensures that these particular failures do not occur or at
least minimizes the probability of their occurrence.

It is important to stress that these are s11stem prob­
lems. When computers are used as component.a of larger
systems, considering the computer software in isolation
will be of limited usefulness. Many (if not most) serious
accidents are caused by complex unplanned (and unfor­
tunate) interactions between components of the system
and by multiple failures. That is, moat accidents ori­
ginate in subsystem interfaces [6,8]. Software failures
and software-induced system failures may be caused by
undetected hardware errors such as transient faults caus­
ing mutilation of data, security violations, human mis­
takes during operation and maintenance, errors in under­
lying or supporting software systems, or interfacing prob­
lems with other components of the system including tim­
ing errors. Therefore, techniques used to build software
for embedded systems, especially with respect to analysis
and verification, are going to have to consider the system
as a whole (especially the interactions between the com­
ponents of the system or subsystem) and not just the

software in isolation.
We have been considering these problems and

developing techniques ~hat might be useful in this new
approach to reliability. ln general, we are looking at the
following three areas:

• Software Hazard Anal11sis and Requirements
Specification: What kinda of system models and
analysis tools are most useful? How can software
requirements be derived from these system models?
How can the models and requirements be analyzed
to determine important reliability and safety pro­
perties?

• Verification and Validation: How can safety proper­
ties be identified, specified, and formally verified?
What techniques appear the most promising? How
can they be implemented so that they can be used
in industrial environments and not just in university
research labs?

• ABBeBBment of Safetv: How can the safety of
software be accurately measured and assessed? Is
this possible? Is this feasible? ·

• Software Design and Run-Time Environments:
What techniques and environments are most
appropriate for safety-critical software? How can
the software detect unsafe states during execution?
What types of self-monitoring, external monitoring,
fault-tolerance, fail-safe, and other software design
techniques can be used to aid in the design of the
software especially with regard to handling run-time
fault detection and recovery?

Our long-range goal is not to provide a set of tools
for industrial use, but to investigate what new tech­
niques and tools may be useful by developing theory and
building prototypes. The name of the experimental
methodology is Murphy. Murphy is, at this part, far
from a complete methodology. Since it is still in the for­
mative stages, much of the work has involved examining
alternative approaches. This paper describes what has
been accomplished so far and some of the projects under­
way or planned. A more general survey of the work in
the field can be found in Leveson [15].

It is important to note that although Murphy
currently focuses on design and verification, there are
other aspects of any software safety program which are
just as important. For example, the experiences of sys­
tem safety engineers has shown that the root causes of
accidents often relate to poor management [28]. Simi­
larly, the degree of safety achieved in a system depends
directly on management emphasis. Safety engineers
have carefully defined the requirements for management
of safety-critical programs such as setting policy and
defining goals, defining responsibility, granting authority,
fixing accountability, and documenting and tracking

hazards and their resolution (audit trails). These general
management principles need to applied to the manage­
ment of safety-critical software projects as well.

The work to be described can be divided into two
categories: software safety modeling and analysis tech­
niques and design techniques.

Modeling and Analysis
Software safety modeling and analysis techniques

identify software hazards and safety-critical single and
multiple failure sequences, determine software safety
requirements including timing requirements, and verify
and measure software for safety. Software safety
analysis and verification is beginning to be required by
contra.Ctors of safety-critical systems and by government
regulatory agencies. For example, at least three DoD
standards include related tasks. A general safety stan­
dard (MIL-STD-882B) includes tasks for Software
Hazard Analysis and verification of software safety. An
Air Force standard for missile and weapon systems
(MIL-STD-1574A) requires a Software Safety Analysis
and Integrated Software Safety Analysis (which includes
the analysis of the interfaces of the software to the rest
of the system, i.e. the assembled system). And the U.S.
Navy has a draft standard for nuclear weapon systems
(MIL-STD-SNS) that requires Software Nuclear Safety
Analysis. All of these analyses are not meant to substi­
tute for regular verification and validation, but instead
involve special analysis procedures to verify that the
software is safe. It is not clear, however, that the pro­
cedures yet exist that will satisfy these requirements.

Software Safety Requirements Analysis

Determining the requirements for software has
proved very difficult. However, in terms of safety (and
probably most other software qualities), this may be one
of the most important sources of problems. Many
mishaps can be traced back to a fundamental misunder­
standing about the desired operation of the so:tware.
After studying actual mishaps where computers were
involved, safety engineers have concluded that inade­
quate design foresight and specification errors are the
greatest cause of software safety problems [6,9]. These
problems arise from many possible causes including the
difficulty of the problem intrinsically, a lack of emphasis
on it in software engineering research (which has tended
to concentrate on avoiding or removing implementation
faults), and a certain cubbyhole attitude that has led
computer scientists to concentrate on the computer
aspects of the system and engineers to concentrate on
the physical and mechanical parts of the system with few
people dealing with the interaction between the two [6].

While functional requirements often focus on what
the system shall do, safety requirements must also
include what the system shall not do - including means
for eliminating and controlling system hazards and for
limiting damage in case of a mishap. An important part
of the safety requirements is the specification of the ways
in which the software and. the system can fail safely and

to what extent failure is tolerable. An important ques­
tion, of course, is how to identify the software safety
requirements.

Fault Tree Analysis (FT A) [33J is an analytical
technique used in the safety analysis of electromechanical
systems. An undesired system state is specified, and the
system is then analyzed in the context of its environment
and operation to find credible sequences of events that
can lead to the undesired state. The fault tree is a
graphic model of various parallel and sequential combi­
nations of faults (or system states) that will result in the
occurrence of the predefined undesired event. The faults
can be events that are associated with component
hardware failures, human errors, or any other pertinent
events that can lead to the undesired event. A fault tree
thus depicts the logical interrelationships of basic events
that lead to the hazardous event. One possible problem
with the technique is that it is highly dependent on the
ability of the person doing the analysis. The analyst
needs to thoroughly understand the system being
analyzed and its underlying scientific principles.

An advantage in using this technique is that all the
system components (including humans) can be con­
sidered. This is extremely important since, for example,
a particular software fault may cause a mishap only if
there is a simultaneous human and/or hardware failure.
Alternatively, the environmental failure may cause the
software fault to manifest itself. Many mishaps are the
result of a sequence of interrelated failures in different
parts of the system.

The analysis process starts with the categorized list
of system hazards that have been identified by the Prel­
iminary Hazard Analysis (PHA). A separate fault tree
must be constructed for each hazardous event. The
basic procedure is to assume that the hazard has
occurred and then to work backward to determine its set
of possible causes. The root of the fault tree is the
hazardous event to be analyzed called the loss event.
Necessary preconditions are described at the next level of
the tree with either an AND or an OR relationship.
Each subnode is expanded in a similar fashion until all'
leaves describe events of -calculable probability or are
unable to be analyzed for some reason. Figure 1 shows
part of a fault tree for a hospital patient monitoring sys­
tem.

Once the fault tree has been built down to the
software interface (as in figure 1), the high level require­
ments for software safety have been delineated in terms
of software faults and failures that could adversely affect
the safety of the system. Software control faults may
involve:

• failure to perform a required function, i.e., the func­
tion is never executed or no answer is produced

• performing a function not required, i.e., getting the
wrong answer or issuing the wrong control instruc­
tion or doing the right thing but under inappropri­
ate conditions (for example, activating an actuator
inadvertently, too early, too late, or failing to cease
an operation at a prescribed time).

• timing or sequencing problems, e.g., failing to ensure
that two things happen at the same time, at
different times, or in a particular order.

• failure to recognize a hazardous .condition requiring
corrective action

• producing the wrong response to a hazardous condi-
tion.

As the development of the software proceeds, fault tree
analysis can be performed on the design and finally the
actual code.

We are also investigating Time Petri net models for
their applicability to software hazard analysis. Petri
nets [29J allow mathematical modeling of discrete-event
systems. The system is modeled in terms of conditions
and events and the relationship between them. Analysis
and simulation procedures have been developed to deter­
mine desirable and undesirable properties of the design
especially with respect to concurrent or parallel events.
Leveson and Stolzy [21J have developed analysis pro­
cedures to determine software safety requirements .
(including timing requirements) directly from the system
design, to analyze a design for safety, recoverability, and
fault tolerance, and to guide in the use of failure detec­
tion and recovery procedures. For most cases, the
analysis procedures require construction of only a small
part of the reachability graph. Procedures are also being
developed to measure the risk of individual hazards.

Although creating the entire Petri net reachability
graph will show whether the system as designed can
reach any hazardous states, the reachability problem for
Petri nets has been shown to be exponential time- and
space-hard. Therefore, it may well be impractical to
generate the entire reachability graph. However, it is
possible to use the same type of backward analysis used
in fault trees, and we have developed an algorithm to do
this [21). The algorithm requires only a small part of the
graph to be generated in most cases.

Briefly, the algorithm starts with the set of unsafe
conditions. For each member of this set, the immedi­
ately prior state or states are generated from the inverse
Petri net. Each of these "one-step-backward" states is
then examined to see if it is potentially a critical state (a
state from which there is both a path or paths from
which it is possible to reach unsafe and possibly also safe
states and a path or paths from which it is possible to
reach only low-risk states). Once critical states are
identified, paths to high-risk states can be eliminated
from the design. Note that we start not with complete
states but only with partial states. That is, some condi­
tions in the state are unimportant as far as safety is con­
cerned. Therefore, at the beginning of the analysis, the
complete composition of the reachable high-risk states .is
not known. The "don't-care" places in each state are
"filled in" with those. conditions which are possible in
the process of executing the algorithm. Note also that it
is necessary only to look forward one step from each
potentially critical state in order to label it as critical
(i.e. there exists a next-state which is safe). This is true

wrong treatment
administered

v1t signs
oneously reporte

aa exceedin limits

computer fails
to raise alarm

nurse does not
respond to alarm

uman error
(doctor sets

wron

echanica
failure

Figure l: Top Levels of Patient Monitoring System Fault Tree

because if this path also leads to a high-risk state, then
it will be eliminated by the algorithm in a later step.

The technique is conservative, i.e. in order to reduce
the large amount of computing to produce the complete
reachability graph, a larger number of critical states may
be identified than actually exist. But it does no harm to
eliminate the possibility of an accident which would not
have occurred. Also, eliminating a non-existent path
may have the effect of eliminating or lessening the possi­
bility of accidents caused by run-time faults and failures.

Hazards which have been determined by the
analysis to be plausible can be eliminated by appropri­
ately altering the design (using· interlocks, lockouts,
watchdog timers, etc.) to ensure that paths (sequences of
events) which will lead to the hazard are not taken.
Also, since the Petri net graph is executable, simulation
can be used for aspects of the problem for which analysis
procedures are infeasible.

Faults and failures can be incorporated into the
Petri net model to determine their effects on the system.
Backward analysis procedures can be used to determine
which failures and faults are potentially the most hazar­
dous and therefore which parts of the system need to be
augmented with fault-tolerance and fail-safe mechanisms.
Early in the design of the system, it is possible to treat
the software parts of the design at a very high level of
abstraction and consider only failures at the interfaces of
the software and non-software components. By working
backward to this software interface, it is possible to
determine the software safety requirements and identify
the most critical functions. Formal definitions of safety,
recoverability, and fault-tolerance have been determined
and appropriate analysis procedures delineated.

Timing can be added to Petri net models by putting
minimum and maximum time limits on transitions or by
putting times on conditions. Either way, it is possible to
determine worst case timing requirements so that, for
example, watchdog timers can be incorporated into the
design if necessary. Finally, when probabilities are
included in the model, minimal cut sets and other proba­
bilistic information is obtainable.

One possible drawback to this approach is that
building the Petri net model of the system is a nontrivial
exercise. Some of the effort may be justified by the use
of the model for other objectives, e.g., performance
analysis. Petri net safety analysis techniques have yet to
be tried on a realistic system so there is no information
available on the practicality of the approach.

The whole area of requirements analysis is one need­
ing more attention. System-wide techniques that allow
consideration of the controlled system rather than just
considering the software in isolation are in short supply.

Verification and Validation of Safety

A proof of safety involves a choice (or combination)
of the following:
1) showing that a fault cannot occur, i.e., that the

software cannot get into an unsafe state and cannot
direct the system into an unsafe state or
2) showing that if a software fault occurs, it is not

dangerous.
Boebert [3J has argued eloquently that verification

systems that prove the correspondence of source code to
concrete specifications are only fragments of verification
systems. They do not go high enough (to an inspectable
statement of system behavior), and they do not go low

enough (to the object code). The verification system
must also capture the semantics of the hardware.

One verification methodology for safety involves the
use of Software Fault Tree Analysis {SFTA) (18,24,32].
Once the detailed design or code is completed, software
fault tree analysis procedures can be used to work back­
ward from the critical control faults determined by the
top levels of the fault tree through the program to verify
whether the program can cause the top-level event or
mishap. The basic technique used is the same backward
reasoning (weakest precondition) approach that has been
used in formal axiomatic verification [4], hut applied
slightly differently than is common in "proofs of correct­
ness."

The set of states or results of a program can be
divided into two sets - correct and incorrect. Formal
proofs of correctness attempt to verify that given a
precondition that is true for the state before the program
begins to execute, then the program halts and a postcon­
dition (representing the desired result) is true. That is,
the program results in correct states. For continuous,
purposely non-halting (cyclic) programs, intermediate
states involving output may need to be considered. The
basic goal of safety verification is more limited. We will
assume that, by definition, the correct states are safe
(i.e., that the designers did not intend for the syst~~ to
have mishaps). The incorrect states can then be d1v1ded
into two sets - those that are considered safe and those
that are considered unsafe. Software Fault Tree
Analysis attempts to verify that the program will never
allow an unsafe state to be reached (although it says
nothing about incorrect but safe states).

Since the goal in safety verification is to prove that
something will not happen, it is useful to use proof by
contradiction. That is, it is assumed that the software
has produced an unsafe control action, and it is shown
that this could not happen since it leads to a logical con­
tradiction. Although a proof of correctness should
theoretically be able to show that software is safe, it is
often impractical to accomplish this because of the sheer
magnitude of the proof effort involved and because of the ·
difficulty of completely specifying correct behavior. In
the few SFT A proofs that have been performed, the
proof appears to involve much less work than a proof of
correctness (especially since the proof procedure can stop
as soon as a contradiction is reached on a software path).
Also, it is often easier to specify safety than complete
correctness, especially since the requirements may be
actually mandated by law or government authority as
with nuclear weapon safety requirements in the U.S.
Like correctness proofs, the analysis may be partially
automated, but highly skilled human help is required.

Software fault tree analysis starts at the software
interface of the system fault tree and works back
through the logic of the code. Constructs for some struc­
tured programming language statements are shown in
Figures 2 through 7. In each, it is assumed that the
statement caused the critical event. Then the tree is
constructed considering how this might occur. An exam-

(1) A := F(Y); (2) B := X - 5.0; (3) if A> B then Suhl;
· end if;

Figure J: Sample Assignment Statements

Suhl called

(1) and (2)
caused A> B

(1) caused
F(Y) > X-5.0

Figure 3: Fault Tree for Assignment Statements

pie of the procedure is shown in Figures 8 and 9. An
Ada program segment is shown which iteratively solves a
fixed point equation. One possible top-level (loss event)
for the segment is that no answer is produced in the
required time period (and the answer is critical. at this
point). This loss event corresponds to the while loop
executmg too long s own m gure as ax 1 era-· (h . fi 9 "M " 't
tions).

In general, the software fault tree has one or both of
the following patterns:

1) A contradiction is found as shown in the left branch
of figure 9. The building of the software fault tree
(at least for this path) can stop at this point since
the logic of the software cannot cause the event.
This example does not deal with the problem of
failures in the underlying implementation of the
software, but this is possible. There is, of course, a
practical limit to how much analysis can and need
be done depending on individual factors associated
with each project. It is always possible to insert
assertions in the code to catch critical implementa­
tion errors at run-time. This is especially desirable
if run-time software-initiated or software-controlled
fail-safe procedures are possible. Note that the
software fault tree provides the information neces­
sary to determine which assertions and run-time
checks are the most critical and where they should
be placed. Since checks at run-time are expensive
in terms of time and other resources, this informa­
tion is extremely useful.

procedure call
caused the event

procedure failing
caused the event

Figure 4: Fault Tree for a Procedure Call
cond. true
prior to IF

event caused by
if-then-else

then-part
caused event

cond. false
prior to IF

else-part
caused event

Figure. 5: Fault Tree for an If-Then-Else Statement

event prior
to while

event caused by
while statement

statement
executed N times

cond. false
before while

cond. true
before while

Nth iteration
causes event

Figure Ii: Fault Tree for a Wh.ile Statement

cond. 1
true

clause 1
caused it

event caused by
case statement

cond. n
true

clause n
caused it

no cond.
true

Figure 7 : Fault Tree for a Case Statement

else
caused it

get (X, Epa);

Err:= Epa;
[:=0;

while Err ;::: Epa loop

NewX := F(X);
Err:= aba(X- NewX);
I:= I+ 1;
X := NewX;

end loop

Figure 8.: Example of Ada Code

I>Ma:r:
before loop

O 2:: Ma:r:

contradiction

2} The fault tree runs through the code and out to the
controlled system or its environment. In the exam­
ple of Figure 9, the fault tree shows one possible
path to the loss event, and changes are necessary to
eliminate the hazard. One appropriate action in
this case may be to use run-time assertions to detect
such conditions and to simply reject incorrect input
or to initiate recovery techniques. Another possibil­
ity is to add redundant hardware, e.g. sensors, to
eliminate incorrect input before it occurs.

Software fault tree procedures for analyzing con­
currency and synchronization have been described by
Leveson and Stolzy [20j. Introducing timing information
into the fault tree causes serious problems. Fault tree
analysis is essentially a static analysis technique while
timing analysis involves dynamic aspects of the program.
Taylor [32] has added timing information to fault trees
by making the assumption that information about the

no answer
within

allotted time

l=Ma:r:

while loop
caused I 2:: M a:r:

Cond False
before loop

Err 2:: Epa
l<Ma:r:

before loop

l=Ma:r:

Err=! F 1- 1(X) - F1(X) !

I FMa:&-l(X) - FMa"(X) !~ Epa

Err ~ Eps&I < M a:r:

j FM°"- 1(X) - FM0 "(X) \~ Eps

Epa 2:: Eps&O < M a:r:

Figure 9: Fault Tree for Code in Preceding Figure

minimum and maximum execution time for sectiollll of
code is known. Each node in the fault tree then haa an
added component of execution time for that node. In
view of the nondeterminism inherent in a multitasking
environment, it may not be practical to verify that tim­
ing pi'obleIIIB cannot-occur in all cases. However, infor­
mation gained from the fault tree can be used to insert
run-time checks including deadline mechanisms into the
application program and the scheduler [19].

Fault trees can also be applied at the assembly
language level to identify computer hardware fault
modes (such as erroneous bits in the program counter,
registers, or memory) that will cause the software to act
in an undesired manner. Mcintee [24] has used this pro­
cess to examine the effect of single bit failures on a
software fuze. The procedure identified credible
hardware failures that could result in the inadvertent
early arming of the weapon. Thia information was used
to redesign the software so that the failure could be
detected and a "DUD" (fail-safe} routine called.

Finally, fault trees may be applied to the software
design before the actual code is produced [17]. The pur­
pose is to enhance the safety of the design while reducing
the amount of formal safety verification that is needed.
Safe software design techniques are discussed in a later
section of this paper.

Experimental evidence of the practicality of SFT A
is lacking. Examples of two small systems (approxi­
mately 1000 lines of code) can be found in the literature
[18,24]. There is no information available on how large a
system can be analyzed with a realistic amount of effort
and time. But even if the software is so large that com­
plete generation of the software trees is not possible, par­
tial trees may still be useful. For example, partial
analysis may still find faults. Furthermore, partially
complete software fault trees may be used to identify
critical modules and critical functions which can then be
augmented with software fault tolerance procedures [50].
They may also be used to determine appropriate run­
time acceptance and safety tests [19].

In summary, software fault tree analysis can be used
to determine software safety requirements, to detect
software logic errors, to identify multiple failure
sequences involving different parts of the system
(hardware, human, and software) that can lead to
hazards, and to guide in the selection of critical run-time
checks. It can also be used to guide testing. The inter­
faces of the software parts of the fault tree can be exam­
ined to determine appropriate test input data and
appropriate simulation states and events.

Many open questions remain such as:

• For systems of what size and level of complexity are
these techniques practical and useful?

• How can they be extended to provide more informa­
tion?

• How can they most effectively be used in software
development projects?

• What other approaches to software hazard analysis
are possible?

Important work remains to be done in extending and
testing these proposed techniques and in developing new
ones.

Assessment of Safet11

It is possible that safety is not as amenable to quan­
titative treatment as reliability and availability [8]. As
noted several times, mishaps are almost without excep­
tion caused by multiple factors. Also, the probabilities
tend to be so small that assessment is extremely difficult.
For example, the frequency of mishaps for any particular
model of aircraft and cause or group of causes (such as
those that might be attributable to design or production
deficiencies} is probably not great enough to provide sta­
tistically precise assessments of whether or not the air­
craft has met a specified mishap rate [8]. But despite
this, attempts at measurement are being made.

There are pros and cons in using any assessment
techniques. Quantitative risk assessment can provide
insight and understanding and allow comparison of alter­
natives. The necessity to calculate very low probability
numbers forces a discipline on the analyst that requires
studying the system in great detail. But there is also the
danger of placing implicit belief in the accuracy of a cal­
culated number. It is easy to place too much emphasis
on the models and forget the many assumptions that are
implied. Recent events have poignantly demonstrated
the fallibility and inaccuracy of such models. And since
these approaches can never capture all the factors, such
as quality of life, that are important in a problem, they
should not become a substitute for careful human .
judgment [25,26].

Another example of the problems associated with
formal safety assessment is the "Titanic Effect". The
Titanic was thought to be so safe that some normal
safety procedures were neglected, resulting in many more
lives being lost than might have been necessary. Unfor­
tunately, certain assumptions were made in the analysis
that did not hold in practice. For example, the ship was
built to stay afloat if four or less of the sixteen water­
tight compartments (spaces below the waterline) were
flooded. Previously, there had never been an incident
where more than four compartments of a ship were dam­
aged so this assumption was considered reasonable.
Unfortunately, the iceberg ruptured five spaces. It can
be argued that the assumptions were the best possible
given the state of knowledge at that time. The mistake
was in placing too much faith in the assumptions and
the models and in not taking measures in case they were
incorrect. Much effort is frequently diverted to proving
theoretically that a system meets a stipulated level of
risk when the effort could much more profitably be
applied to eliminating, minimizing, and controlling
hazards [10]. This seems especially true when the system
contains software. Considering the inaccuracy of our
present models for assessing software reliability, some of

the resources applied to assessment might be more
effectively utilized if applied to sophisticated software
engineering and software safety techniques. Models &re
important, but care and-judgment must be exercised in
their use.

Probabilities of complex fault sequences are often
analyzed by using fault trees. Probabilities can be
attached to the nodes of the tree, and the probability of
system and minimal cut set failures can be calculated.
Minimal cut sets are composed of all the unique combi­
nations of component events that can cause the top level
event. To determine the minimal cut sets of a fault tree,
the tree is first translated to its Boolean equations, and
then Boolean algebra is used to simplify the expressions
and to remove redundancies. This does not seem to be
appropriate for software however.

The question of how to assess software safety is still
very much an unsolved problem. High software reliabil­
ity figures do not necessarily mean that the software is
acceptable from the safety standpoint. Friedman [7] has
recently completed a dissertation showing how penalty

cost (or severity) can be added to standard software reli­
ability growth models. "Penalty cost" is a quantification
of the undesired consequences of a failure, sometimes
called a "severity rating." Mathematically, the model is
developed as a compound stochastic process with failure
frequency and severity components. The main purpose
of the technique is to probabilistically characterize the
aggregate penalty cost to be incurred over a future time
interval.

This is an area of research that has many interest­
ing questions including when and how safety assessment
should be used and how it can be accomplished. There
also needs to be some way of combining software and
hardware assessments to provide system measurements.

Design for Safety
Once the hazardous system states have been

identified and the software safety requirements deter­
mined, the system must be built to minimize risk and to
satisfy these requirements. It is not possible to ensure
the safety of a system by analysis and verification alone
because these techniques are so complex as to be error­
prone themselves, the cost may be prohibitive, and elimi­
nation of all hazards may require too severe a perfor­
mance penalty. Therefore, hazards will need to be con­
trolled during the operation of the software, and this has
important implications for design.

System safety has an accepted order of precedence
for applying safety design techniques. At the highest
level, a system is intrinaicall11 safe if it is incapable of
generating or releasing sufficient energy or causing harm­
ful exposures under normal or abnormal conditions
(including outside forces and environmental failures) to
cause a hazardous occurrence, given the equipment and
personnel in their most vulnerable condition [23].

If an intrinsically safe design is not possible or prac­
tical, then the next step in design is to prevent or

minimize the occurrence of hazards. This can be accom­
plished in hardware through such techniques as monitor­
ing and automatic control (e.g., automatic pressure relief
valves, speed governors, limit-level sensing controls)
lockouts, lockins, and interlocks [10]. A lockout devic~
prevents an event from occurring or prevents someone
from entering a dangerous zone. A lockin is provided to
maintain an event or condition. Finally, an interlock
ensures that a sequence of operations occurs in the
correct order. Th11:t is, it is provided to ensure that
event A does not occur (1) inadvertently (e.g., a prelim­
inary, intentional action B is required before A can
occur), (2) while condition C exists (e.g., an access door
is placed on high voltage equipment so that when the
door is opened, then the circuit is opened), and (3)
before event D (e.g., the tank will fill only if the vent
valve has been opened first).

The next lower level of precedence is to design to
control the hazard if it occurs using automatic safety
devices. This includes detection of hazards and fail-safe
designs as well as damage control, containment, and iso­
lation of hazards.

The lowest level of precedence is to provide warning
devices, procedures, and training to help personnel react
to the hazard.

Many of these system safety design principles are
applicable to software. Note that software safety is not
an afterthought to software design - it needs to be
designed in from the beginning. There are two general
design principles: (1) the design should provide leverage
for the certification effort by minimizing the amount of
verification required and simplifying the certification pro­
cedure, and (2) any design features to increase safety
must be carefully evaluated in terms of any complexity
that might be added. An increase in complexity may
have a harmful effect on safety (as well as reliability). In
fact, simplicity may be the most important design
feature in increasing safety and reliability.

A safe software design includes not only standard
software engineering techniques to enhance reliability,
but also special safety features. The emphasis here will
be to survey those design features that are directly
related to safety. Risk can be reduced by reducing
hazard likelihood or severity or both. Hazards can be
prevented, or they can be detected and treated. Preven­
tion of hazards tends to involve reducing functionality or
design freedom, but detection is difficult and unreliable.

Preventing Hazards Through Software Design

Preventing hazards through design involves design­
ing the software so that faults and failures cannot cause
hazards. That is, the software design is made intrinsi­
cally safe or the number of software hazards is minim­
ized.

Software can cause problems through acts of' omis­
sion (failing to do something required) or commission
(doing something that should not be done or doing some­
thing at the wrong time or in the wrong sequence).

Software is usually extensively tested to try to ensure
that it does what it is specified to do. But due to its
complexity, it may be- able to do a lot more than the
software designers specified (or intended). Design
features can be used to limit the actions of the software.

As an example, it may be possible to use modulari­
zation and data access limitation to separate non-critical
functions from critical functions and to ensure that
failures of non-critical modules cannot put the system
into a hazardous state, e.g., cannot impede the operation
of the safety-critical functions. The basic idea is to
reduce the amount of software that affects safety (and
thus to reduce the verification effort involved) and to
change as many potentially critical faults into non­
critical faults as possible. The separation of critical and
non-critical functions may be difficult, however. In any
certification arguments that are based on this approach,
it will be necessary to provide supporting analyses that
prove that there is no way that the safety of the system
can be compromised by faults in the non-critical
software.

Often in safety-critical software there are a few
modules and/or data items that must be carefully pro­
tected because their execution (or in the case of data,
their destruction or change) at the wrong time can be
catastrophic, e.g., the insulin pump administers insulin
when the blood sugar is low or the missile launch routine
is inadvertently activated. It has been suggested [13]
that security techniques involving authority limitation
may be useful in protecting safety-critical functions and
data. Security techniques devised to protect against mal­
icious actions can be used sometimes to protect against
inadvertent but dangerous actions. In this approach, the
safety-critical parts of the software are separated using
the above techniques, and an attempt is made to limit
the authority of the rest of the software to do anything
safety-critical. The safety-critical routines can then be
carefully protected. For example, the ability of the
software to arm and detonate a weapon might be
severely limited and carefully controlled with multiple
confirmations required. Note that this is another exam- ·
pie of safety possibly conflicting with reliability. To
maximize reliability, it is desirable that faults be unable
to disrupt the operation of the weapon. However, for
safety, faults should lead to non-operation. That is, for
reliability the goal is a multi-point failure mode while
safety is enhanced in this case by a single-point failure
mode.

Authority limitation with regard to inadvertent
activation can also be implemented by retaining a person
in the loop. That is, a positive input by a human con­
troller may be required prior to execution of certain com­
mands. Obviously, the human will require some
independent source of information on which to base the
decision besides the information provided by the com­
puter.

In some systems, it is impossible to always avoid
hazardous states. In fact, they may be required for the
system to accomplish its function. A general software

design goal is to minimize the amount of time a poten­
tially hazardous state exists. One simple way this can be
accomplished is to start out in a safe state and require a
change to a higher risk state. Also, critical flags and con­
ditions should be set or checked as close to the code that
they protect as possible. Finally, critical conditions
should not be complementary (e.g., absence of the arm
condition should not mean safe).

Often the sequence of events is critical. For exam­
ple, a valve may need to be opened prior to filling a tank
in order to relieve pressure. In electromechanical sys­
tems, an interlock is used to ensure sequencing or to iso­
late two events in time. An example is a guard gate at a
railroad crossing that keeps people from crossing the
track until the train has passed. Equivalent design
features often need to be included in software. Program­
ming language concurrency and synchronization features
are used to order events, but do not necessarily protect
against inadvertent branches caused either by a software
fault (in fact, they are often so complex as to be error­
prone themselves) or by a hardware fault (a serious
problem, for example, in aerospace systems where
hardware is subject to unusual environmental stress such
as cosmic ray bombardment). Some protection can be
afforded by the use of batons (a variable that is checked
before the function is executed to ensure that the previ­
ously required routines have entered their signature) and
handshaking. Another example of designing to protect
against hardware failure is to ensure that bit patterns
used to satisfy a conditional branch to a safety-critical
function do not use common failure patterns (i.e., all
zeros).

Finally, Neumann [27] has suggested the application
of hierarchical design to simultaneously attain a variety
of important requirements such as reliability, availabil­
ity, security, privacy, integrity, timely responsiveness,
long-term evolvability, and safety. By accommodating
all of these requirements within a unified hierarchy, he
claims that a sensible ordering of degrees of criticality
can be achieved that is directly and naturally related to
the design structure.

Detection and Treatment at Run-Time

Along with attempts to prevent hazards, it may be
necessary to attempt to detect and treat them during
execution. It is helpful to divide the latter techniques
into those concerned with detection of unsafe states and
those that involve response to unsafe states once they
have been detected.

Ad hoc tests for unsafe conditions can be pro­
grammed into any software, but some general mechan­
isms have been proposed and implemented including
assertions, exception-handling, external monitors, and
watchdog timers. Monitors or checks may be in-line or
external, and they may be at the same or a higher level
of hierarchy. In general, it is important (1) to detect
unsafe states as quickly as possible in order to minimize
exposure time, (2) to have monitors that are indepen­
dent from the application software so that faults in one

cannot disable the other, and (3) to have the monitor
add aa little complexity to the system as possible. A
general design for a saft!tY monitor facility is proposed in
Leveson, Shimeall, Stolzy, Thomas [22J.

Although many mechanisms have been proposed to
help implement fault detection, little assistance is pro­
vided for the more difficult problem of formulating the
content of the checks. We have suggested that the
information contained in the software safety analysis can
be used to guide the content and placement of run-time
checks [19J.

Recovery routines are needed (from a safety stand­
point) when an unsafe state is detected externally, when
it is determined that the software cannot provide a
required output within a prescribed time limit, or when
continuation of a regular routine would lead to a
catastrophic system state if there is no intercession.
Recovery techniques can, in general, be divided into two
types - backward and forward.

Backward recovery techniques basically involve
returning the system to a prior state (hopefully one that
precedes the fault) and then going forward again with an
alternate piece of code. There is no attempt to diagnose
the particular fault that caused the error nor to assess
the extent of any other damage the fault may have
caused [lJ. Note the assumption that the alternate code
will work better than the original code. To try to ensure
this, different algorithms may be used (e.g., algorithms
that were not chosen originally for efficiency or other
reasons). There is, of course, still a possibility that the
alternate algorithms also will produce undesired results
[12J. This is especially likely if the error originated from
flawed specifications and misunderstandings about the
required operation of the software.

Backward recovery is adequate if it can be
guaranteed that software faults will be detected and suc­
cessful recovery completed before the faults affect the
external state. However, this usually cannot be
guaranteed. Fault tolerance facilities may fail or it may
be determined that a correct output cannot be produced
within prescribed time limits. Control actions that
depend upon the incremental state of the system such as
torquing a gyro or use of a stepping motor cannot be
recovered by checkpoint and rollback [30]. A software
error may not necessarily be readily or immediately
apparent. A small error may require hours to build up
to a value that exceeds a prescribed safety tolerance
limit. And even if backward application software
recovery is attempted, it may be necessary to take some
concurrent action in parallel with the recovery pro­
cedures. For example, it may be necessary to ensure
containment of any possible radiation or chemical leak­
age while attempting software recovery. Therefore, for­
ward recovery to repair any damage or minimize hazards
will be required [14J.

Forward recovery includes techniques that attempt
to repair the faulty state. This may involve an internal
state of the computer or the state of the controlled pro­
cess. Forward recovery techniques may return the sys-

tem to a correct state or, if that is not possible, contain
or minimize the effects of the failure. Examples of for­
ward recovery techniques include using robust data
structures [31], dynamically altering the flow of control,
ignoring single cycle errors that will be corrected on the
next iteration, and changing to a reduced function or
fail-safe mode.

Most safety-critical systems are designed to have a
safe-side, that is, a state that is reachable from any
other state and that is always safe. Often this safe side
has penalties from a performance standpoint; for exam­
ple, the system may be shut-down or switched to a sub­
system that can provide fewer services. Besides shutting
down, it may be necessary to take some action to avoid
harm, such as blowing up a rocket in mid-air. Note that
these types of safety systems may themselves cause harm
as shown by an emergency software destruct facility that
accidentally blew up 72 French weather balloons [2].

In more complex designs, there may be intermediate
safe states with limited functionality, especially in those
systems for which a shutdown would be hazardous itself.
For example, a failure of a traffic light often results in
the light being switched to a state with the light blinking
red in all directions. The X-29 is an experimental,
unstable aircraft that cannot be flown safely by human
control alone. If the digital computers fail, control is
switched to an analog device that provides less func­
tionality than the digital computers but allows the plane
to land safely. The new U.S. Air Traffic Control system
has a requirement to provide for several levels of service
including Full Service, Reduced Capability, and Emer­
gency Mode. Keeping a person in the loop is another
simple design for a backup system.

In general, the non-normal control modes for a
process-control system might include:

• Partial Shutdown: the system has partial or
degraded functionality

•

•

•

•

Hold: no functionality is provided, but steps are
taken to maintain safety or to limit the amount of
damage

Emergency Shutdown: the system is shutdown
completely

Manual or Externally Controlled: the system con­
tinues to function, but control is switched to a
source external to the computer - the computer
may be responsible for a smooth transition

Restart: the system is in a transitional state from
non-normal to normal.

Reconfiguration or dynamically altering the flow of
control is a form of partial shutdown. In real-time sys­
tems it is often the case that the criticality of tasks may
change during processing and may depend upon run-ti~e
environmental conditions. If peak system overload 1s
increasing the response time above some critical value,
run-time reconfiguration of the system may be achieved
by delaying or temporarily eliminating non-critical func­
tions. Note that system overload may be caused or

increased by internal conditions such as excessive
attempts to perform backward recovery.

It may be helpful fo· see how these ideas can be put
together into a realistic system. Higgs [11] describes the
design of the software to control a turbine-generator.
This design provides an example of the use of several of
the techniques described above including a very simple
hierarchy, self-test, and reduction of complexity. The
safety requirements for the system include the require­
ments that (1) the governor should always be able to
close the steam valves within a few hundred milliseconds
if overstressing or even catastrophic destruction of the
turbine is to be avoided, and (2) under no circumstances
can the steam valves open spuriously, whatever the
nature of the internal or external fault.

The software is designed as a two-level structure
with the top-level responsible for the less important
governing functions and for the supervisory, co­
ordination, and management functions. Loss of the
upper level cannot endanger the turbine and does not
cause the turbine to shutdown. The upper control level
uses conventional hardware and software and resides on
a separate processor from the base level software.

The base level is a secure software core that can
detect significant failures of the hardware that surrounds
it. It includes self-checks to decide whether incoming
signals are sensible and whether the processor itself is
functioning correctly. A failure of a self-check leads to
the output reverting to a safe state through the action of
fail-safe hardware. There are two potential software
safety problems: (1) the code responsible for self­
checking, validating incoming and outgoing signals, and
for promoting the fail-safe shutdown must be effectively
error-free, and (2) spurious corruption of this vital code
must not cause a dangerous condition or allow a dor­
mant fault to be manifested.

Base level software is held as firmware and written
in assembler for speed. No interrupts are used in this
code other than the one, nonmaskable interrupt used to
stop the processor in event of a fatal store fault. The.
avoidance of interrupts means that the timing and
sequencing of operation of the processor can be defined
for any particular state at any time. This allows the
opportunity for more rigorous and exhaustive testing.
The avoidance of interrupts means that polling must be
used. A simple design in which all messages are uni­
directional and there are no contention or recovery pro­
tocols required is also aimed at ensuring a higher level of
predictability in the operation of the base software.

The organization of the base level functional tasks is
under the control of a comprehensive state table that, in
addition to defining the scheduling of tasks, also deter-

. mines the various self-check criteria that are appropriate
under particular conditions. The ability to accurately
predict the scheduling of the processes means that very
precise timing criteria can be applied to the execution
time of certain sections of the most important code such
as the self-check and watchdog routines. Finally, the
store is continuously checked for faults.

We are attempting to put these ideas together into
a design methodology for safety-critical software. Before
this is possible, however, it is necessary to.sort out which
proposed techniques are practical and effective. A series
of experiments is planned to provide some of this infor­
mation. The results will be used to ·design more effective
procedures.

Conclusions

This paper has attempted to present some basic
software safety ideas and to describe some of the work
completed, underway, and planned at UCI. There is still
a long way to go before Murphy is a fully integrated
methodology instead of the current set of isolated tools
and techniques. Some preliminary ideas have been pro­
posed about how all of these ideas might be put together
and integrated into a software development program
[16]. But many questions need to be answered including:

• What drawbacks do the current techniques have
which. might be improved and how· can this be.
accomplished? What other techniques appear
promising besides those currently being investi­
gated?

• Are the techniques which have been developed use­
ful and practical for real systems (and not just toy
examples in research papers)? For systems of what
size and complexity are they useful? How can they
be extended to provide more information? How can
they most effectively be used in software develop­
ment projects?

• How can the tools and techniques we are developing
be used together to augment the usefulness of each?
For example, how can the results of Petri net
analysis be used to guide and optimize software
fault tree analysis? How can the results of each be
used to help design the software to handle run-time
fault detection and recovery?

• How should the Murphy methodology be experimen­
tally validated? Is it useful? Is it practical? For
systems of what size and complexity? Does it solve
real problems?

Unfortunately, there are more questions than answers
with respect to software safety. Until some of these
questions are answered, the best that builders of safety­
critical software can do is (1) to select a suite of tech­
niques and tools spanning the entire software develop­
ment process that appear to be coherent and useful, and
(2) to apply them in a conscientious and thorough
manner. Dependence on any one technique is unwise at
this stage of knowledge. The tools must then be
integrated into the software development program and
be accompanied by a management commitment to an
effective safety effort.

Reference•

[1] Anderson, T. and.Lee, P.A. Fault Tolerance: Prin­
ciples and Practice, New York: Prentice Hall, 1981.

[2] Anonymous, "Blown Balloons," Aviation Week and
Space Techno/og11, p. 17, Sept. 20, 1971.

[3] Boebert, W.E. "Formal verification of embedded
software," ACM Software Engineering Notes, vol. 5,
no. 3, July 1980, pp. 41-42.

[4] Dijkstra, E. A Discipline of Programming, New
York: Prentice Hall, 1976.

[5] Dunham, J.R. and J.C. Knight (editors). "Produc­
tion of reliable flight-crucial software," Proc. of
Validation Methods Research for Fault-Tolerant
Avionics and Control Systems Sub- Working-Group
Meeting, Research Triangle Park, North Carolina,
Nov. 2-4, 1981, NASA Conference Publication 2222.

[6] Ericson, C.A. "Software and system safety," Proc.
5th Int. System Safety Con/., Denver, 1981, vol. 1,
part 1, pp. III-B-1 to III-B-11.

[7] Friedman, M. Modeling the Penalty Costs of
Software Failure, Ph.D. Dissertation, Dept. of Infor­
mation and Computer Science, University of Cali­
fornia, Irvine, March 1986.

[8] Frola, F.R. and Miller, C.O. System Safety in Air­
craft Management, Logistics Management Institute,
Washington D.C., January 1984.

[9] Griggs, J.G. "A method of software safety
analysis," Proc. 5th Int. System Safety Con/., vol.
1, part 1, Denver, 1981, pp. III-D-1 to III-D-18.

[10] Hammer, W. Handbook of System and Product
Safety, Prentice-Hall, 1972.

[11] Higgs, J.C. "A high integrity software based tur­
bine governing system," SAFECOMP '89, pp. 207-
218.

[12] Knight, J.C. and Leveson, N.G. "An experimental
evaluation of the assumption of independence in
multi-version programming," Trans. on Software
Engineering, vol. SE-12, no. 1, January 1986, pp.
96-109.

[13] Landwehr, C. "Software safety is redundance,"
Compean '8.l, Washington D.C., Sept. 1984, p. 195.

[14] Leveson, N.G. "Software fault tolerance: The case
for forward recovery," Proc. AIAA ·Conference on
Computers in Aerospace, Hartford, October 1983.

[15] Leveson, N.G. "Software Safety: Why, What, and
How," Technical Report 86-04, !CS Dept., Univer­
sity of California, Irvine, 1986 (submitted for publi­
cation).

[16] Leveson, N.G. "An Outline of a Program to
Enhance Software Safety," Proc. Safecomp '86,
October 1986.

[17] Leveson, N.G. "The Use of Fault Trees in Software
Development," in preparation.

[18] Leveson, N.G. and Harvey, P.R. "Analyzing
software safety," IEEE Trans. on Software
Engineering, SE-9, no. 5, Sept. 1983, pp. 569-579.

[19] Leveson, N.G. and Shimeall, T. "Safety assertions
for process control systems," Proc. 19th Int. Confer­
ence on Fault Tolerant Computing, Milan, Italy,
1983.

[20] Leveson, N.G. and Stolzy, J.L. "Safety analysis of
Ada programs using fault trees," IEEE Trans. on
Reliability, vol. R-32, no. 5, December 1983, pp.
479-484.

[21] Leveson, N.G. and Stolzy, J.L. "Safety analysis
using Petri nets," IEEE Trans. on Software
Engineering, in press.

[22] Leveson, N.G. Shimeall, T.J., Stolzy, J.L., and Tho­
mas, J. "Design for safe software," AIAA Space
Sciences Meeting, Reno, January 1983.

[23] Malasky, S.W. System Safety Technology and Appli­
cation, New York: Garland STPM Press, 1982.

[24] Mcintee, J. W. Fault Tree Technique as Applied to
Software (SOFT TREE), BMO/AWS, Norton Air
Force Base, CA. 92409.

[25] Morgan, M.G.. "Probing the question of
technology-induced risk," IEEE Spectrum, Nov.
1981, pp. 58-64.

[26] Morgan, M.G. "Choosing and managing
technology-induced risk," IEEE Spectrum, Dec.
1981, pp. 53-60.

[27] Neumann, P.G. "On hierarchical designs of com­
puter systems for critical applications," IEEE
Trans. on Software Engineering, to appear.

'
[28] Petersen, D. Techniques of SafetJJ Management,

New York: McGraw-Hill Book Company, 1971.

[29] Peterson, J.L. Petri Net TheorJJ and the Modeling of
SJJstems, New York: Prentice Hall, 1981.

[30] Rose, C.W. "The contribution of operating systems
to reliability and safety in real-time systems,"
SAFECOMP 'Be.

[31] Taylor, D.J., Morgan, D.E., and Black, J.P.
"Redundancy in data structures: Improving
software fault tolerance," IEEE Trans. on Software
Engineering,
vol. SE-6, no. 6, November 1980, pp. 585-594.

[32] Taylor, J.R. Fault Tree and Cause Consequence
Analysis for Control Software Validation. RISO­
M-2326, Riso National Laboratory, DK-4000
Roskilde, Denmark, January 1982.

[33) Vesely, W.E., F.F. Goldberg, N.H. Roberts, and
D.F. Haas!. Fault Tree Handbook, NUREG-0492,
U.S. Nuclear Regulatory Commission, Jan. 1981.

