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Changing environmental conditions in dryland areas exacerbate land degradation and food insecurity in many
sub-Saharan African nations.Multi-purpose tree species such as Senegalia senegal (L.) Britton, are favored for refor-
estation and land reclamation as compared to single-use species. A great deal of research has also focused on this
tree species due to its ability to fix atmospheric nitrogen into ammonia, which is returned over time to the soil via
the recycling of N-rich plant tissue. We review the recent literature on how S. senegal contributes to soil fertility
and crop production especially in the context of sustainable and ecological agriculture.We also review the current
literature on this legume specieswith regard to itsmicrosymbionts,with the goal of furthermaximizing the poten-
tial of S. senegal for agriculture in sub-Saharan Africa. Senegalia senegal, which has the potential to restore degraded
soils and to be used for agroforestry, is both economically and ecologically important for the dry areas of sub-Sa-
haran Africa because it produces gum arabic, an important commodity crop for smallholder farmers; it succeeds
where other crops fail. This tree species also can correct soil fertility loss caused by continuous agriculture and
worsened by a reduced or non-existent fallow period. Senegalia senegal and its soil microbes are positively associ-
ated with this species' ability to survive in harsh conditions. This tree is an important candidate for restoring soil
fertility and providing commercial products especially in countries with arid environments.

© 2018 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Acacia (mimosoid clade; (LPWG, 2017)) shrubs and trees are com-
mon in the savannas and drylands of Africa, Australia, India, and South
and North America and are frequently planted in the Sahel region of
Africa (Dreyfus and Dommergues, 1981). The genus name Acacia was
recently changed for the African species because of their polyphyletic
nature. They are found not only in Africa, but also in Central and South
America, and Asia and comprise more than 60 species. Kyalangalilwa
et al. (2013) separated Acacia sensu lato into two new genera, namely
Senegalia and Vachellia. Senegalia senegal is now the accepted name of
what was formerly called Acacia senegal.

Senegalia senegal is a multipurpose agroforestry tree species
(Raddad and Luukkanen, 2007), and this small tree or shrub species
(Fig. 1) is one of the most commercially exploited (Fagg and Allison,
2004). This legume produces gumarabic,which is used for foods, bever-
ages, pharmaceuticals, and cosmetics, and other applications. Senegalia
senegal also supports dryland ecosystems in tropical Africa (Fagg and
Allison, 2004; Gray et al., 2013; Odee et al., 2011; Omondi et al., 2010;
Sprent et al., 2010). Agroforestry systems based on S. senegal and a vari-
ety of crops produce combined yields that are larger than when the
trees or agricultural crops are grown separately. It accumulates a large
biomass when given sufficient water (Gaafar et al., 2006). In Sudan, a
traditional rotation with agricultural crops and S. senegal was shown
to maintain soil fertility (Ballal et al., 2005; Barbier, 1992) and has a
low input production cycle (Raddad et al., 2006). Despite S. senegal's
commercial, industrial, agricultural, and ecological importance, this
tree still remains under-utilized in African drylands. This under-utiliza-
tion is attributed to a lack of knowledge of production systems and also
to the fact that there are relatively few seed sources (Omondi et al.,
2010). Nonetheless, S. senegal has been a successful crop in agroforestry
systems in the Sudan and several West African nations (Anderson,
1988).

Senegalia senegal is symbiotic with soil microorganisms, especially
rhizobia and Arbuscular Mycorrhizal Fungi (AMF). Rhizobia contribute
to the global nitrogen cycle (Sprent, 1994), and a number of different
rhizobial taxa and strains establish nitrogen-fixing nodules on S. senegal
roots (Bakhoum et al., 2014; de Lajudie et al., 1998; Fall et al., 2008; Nick
et al., 1999; Njiti and Galiana, 1996; Odee et al., 1995, 1997). AMF are
widespread and are critical to establishing a healthy soil microbiome.
They establish symbiotic phosphate (P)-acquiring mutualisms with
Fig. 1. Senegalia senegal trees growing in a plantation (Dahra sylvopastoral zone, Latitude,
15°21′N; Longitudinal 15°29′W).
their host plants that improve both water and nutrient uptake. They
also protect their hosts against plant pathogens (Smith and Read,
2008). Although S. senegal plays both economic and ecological roles
and is used for agroforestry, information regarding the species is
scattered and up to now, very little data integration has taken place.

Our objectives in this review are to: (1) highlight the diversity
within S. senegal; (2) assess the chemical quality and factors influencing
gum arabic; (3) describe the microsymbionts associated with S. senegal
and the impact of their inoculation on the plant and the rhizosphere;
and (4) lastly, summarize the effects of S. senegal on soil fertility and rec-
lamation of soil damaged by salinity.
2. Diversity within S. senegal trees

Senegalia senegal can be divided into four different varieties based on
morphology: senegal, kerensis, rostrata, and leiorhachis (Fagg and
Allison, 2004). The variety senegal is established in West Africa and
also East Africa, as are the leiorhachis and kerensis varieties (Fig. 2).

Previously range-wide genetic studies of S. senegal revealed differ-
ences among varieties and provenances, especially betweenWest Africa
and eastern and southern Africa (Chevallier and Borgel, 1998; Odee et
al., 2012, 2015). For example, the variety senegal exhibits a different
population structure in Senegal (Chevallier et al., 1994). Isoenzyme
electrophoresis demonstrated low genetic variability in S. senegal var.
senegal populations, which indicated that the differences between prov-
enances were low although rare alleles were sometimes observed (Sall,
1997). In contrast, Omondi et al. (2010) observed a high genetic diver-
sity and low inter-population genetic differentiation in the kerensis
variety in Kenya. In a large S. senegal genetic diversity study that used
ITS and chloroplast DNA (cpDNA) analysis, Odee et al. (2012) observed
genetic variation based on geography, such that the eastern and south-
ern African populationswere separated fromwestern and central Africa
within the Sudano-Sahalian region.

Based on cytology, S. senegalwas reported to consist of diploids only
(Atchison, 1948; Bukhari, 1997a, 1997b; Oballa and Olng'otie, 1993).
However, Assoumane et al. (2013) observed tetraploids in three differ-
ent populations from the Sudano-Sahelian region. Recently, Odee et al.
(2015) reported that S. senegal is principally diploid, but other ploidy
levels were detected. Together, these authors have concluded that the
incidence of diploid–polyploid complexes in the northern range over-
laps with phylogenetic and phylogeographic parameters. They hypoth-
esized that the recent arrival and the expansion of S. senegal in this
region could be explained by polyploidy. Thus, polyploidy is expected
SENEGAL

SENEGAL UNCERTAIN

LEIORHACHIS

ROSTRATA

KERENSIS

*

*

Fig. 2.Map showing approximate distribution of Senegalia species and varieties. Redrawn
from an illustration in: Food and Agriculture Organization of the United Nations, [1983], [J.
P.M. Brenan], [FAO:Handbook on the Taxonomy of Acacia Species].
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to be encountered mainly in trees of the Sudano-Sahelian region and in
the native range.

3. Senegalia senegal gum production

Gum arabic is used in numerous industries and for a variety of pur-
poses worldwide (Fagg and Allison, 2004). The European Union is one
of the major consumers of gum arabic (200,000 tons, which is equiva-
lent to approximately US$432 million; MNS, 2008). Sixty per cent
(60%) of gum arabic product comes from Sudan, 24% from Chad, 6%
from Nigeria, and 8% from other countries (Couteaudier, 2007; Touré,
2009), including 1% from Senegal.

Gum production generally begins during the first tapping period,
when the tree is 4 or 5 years old. The quality of the gum depends on
the site of the population, the recorded rainfall, soil moisture, tempera-
ture, and the date onwhich tapping is practiced (Sall, 1997). The period
of production is also highly dependent on climatic conditions. Other
studies showed a correlation between the amount of water in the soil
and gum arabic production (Vassal and Dione, 1993; Wekesa et al.,
2009). Previous investigations demonstrated that gum arabic quality
is also affected by origin, soil type, and/or climatic factors (Chikamai
and Odera, 2002). Moreover, each variety, senegal, kerensis, rostrata,
and leiorhachis, differs in gum quality (Lelon et al., 2010). Lastly, it
takes between 8 and 13 years before sufficient gum arabic is produced
by a tree, and the amount of gum produced fluctuates greatly from
one tree to another and from one year to another, varying between
100 and 1000 g per tree. The annual average production per ha is
about 200 to 300 kg in Sudan and 240 kg in Senegal (Sall, 1997).

Gum arabic fractionated by hydrophobic affinity chromatography
detects a broad spectrumof arabinogalactans, arabinogalactan-proteins,
and/or glycoproteins (Osman et al., 1993; Renard et al., 2006). Diallo et
al. (2015) reported that provenances as well as certain families of poly-
ploids had a different nitrogen content in their gum arabic. However,
provenances, families, or plant ploidy levels appeared to have only a
minor effect on carbon content. On average, the nitrogen content ob-
tained in these studies was higher in diploids (0.39%) than in polyploids
(0.34%). Gashua et al. (2015), in comparing physicochemical character-
istics of S. senegal gum arabic samples from Nigeria and Sudan, found
similar characteristics, but interestingly, the Nigerian samples had
more protein. These authors concluded that the protein difference
could be attributed to genotypic differences or to the influence of
biotic/abiotic stress conditions, or a combination of the two. Thus, like
nitrogen content, protein quantity in S. senegal gum arabic changes
with environmental conditions, but it may also be affected by ploidy
level. Research by Diallo et al. (2015) showed that for both diploid
and polyploidy trees, plant growth and gum yield/quality differed
among ploidy levels, and in populations and progenies.

In Kenya, interest is developing in improving local S. senegal re-
sources to benefit the large silvopastoral dryland community (Omondi
et al., 2010). Kenya is also developing a new market for gum arabic va-
riety kerensis, which is widely distributed and also prized for its quality.
Gumproduction forms the foundation of an active international market
(Booth andWickens, 1988; Chretin et al., 2008; Fagg and Allison, 2004).

4. Microsymbionts associated with S. senegal

Rhizobia that establish nitrogen-fixing nodules on S. senegal are very
diverse. S. senegalwaspreviously believed to be nodulated by Rhizobium
strains exclusively (Dreyfus and Dommergues, 1981). Later, several au-
thors (Supplementary Table 1) reported that the legume-nodulating
bacteria that associate with S. senegal are members of genera belonging
to the Alphaproteobacteriaceae, mainly Bradyrhizobium, Mesorhizobium,
Rhizobium, and Ensifer (Ba et al., 2002; de Lajudie et al., 1994, 1998;
Dreyfus and Dommergues, 1981; Nick et al., 1999; Njiti and Galiana,
1996; Odee et al., 1995, 1997; Sarr et al., 2005a; Zhang et al., 1991).
Studies performed in Senegal have shown that even though S. sene-
gal is nodulated by the genus Rhizobium, its main symbionts are strains
phylogeneticaly related to Mesorhizobium plurifarium (Bakhoum et al.,
2014; Fall et al., 2008; Sarr et al., 2005b,a). However, some of the strains
that nodulate S. senegal and previously described as M. plurifarium
belong to a new species (Diouf et al., 2015). In contrast, Nick et al.
(1999) investigated rhizobia isolated from S. senegal in Sudan and
showed that all were Ensifer. The data suggested that the rhizobia that
associate with S. senegal are characterized by the soil from which they
were collected, and studies performed in Senegal support these conclu-
sions. Further support comes from investigations where the diversity of
nodulating bacteria associated with S. senegal was found to be high
when the soil physical and chemical parameters were favorable
(Bakhoum et al., 2014). These authors also reported that nodulating
bacteria for S. senegal appeared to be selected by seedprovenance. How-
ever, although 16S–23S rDNA data indicated diversity, the symbiotic
genes (nodA, nodC, and nifH) were identical in sequence to the compa-
rable genes of Mesorhizobium plurifarium (Bakhoum et al., 2015),
strongly suggesting horizontal gene transfer.

Compared to rhizobia, fewer studies have been performed on AMF
associations with S. senegal, even though these fungi are critical compo-
nents of soil microbiomes, both engineered and natural (Finlay, 2008).
Plant community diversity as well as productivity are mediated by
AMF species richness and diversity (Van Der Heijden et al., 1998).
Ndoye et al. (2012b) used the large subunit region of the nuclear
rDNA to study AMF diversity in the rhizosphere of S. senegal in planta-
tions and natural populations. They showed that the AMFmorphotypes
present were most closest related to the genera Rhizophagus and
Funneliformis (see: www.speciesfungorum.org for genus name changes
from earlier published literature).

5. Inoculation of S. senegal with rhizobia

Previous studies demonstrated that inoculating S. senegal seedlings
with efficient rhizobial strains stimulated their growth both in vitro
and in the greenhouse (Badji et al., 1988; Bakhoum et al., 2012;
Colonna et al., 1991; Ndoye et al., 2012a; Räsänen et al., 2001). In Sene-
gal, Fall et al. (2012) found that S. senegal positively influenced
rhizospheric microbial biomass and inorganic N content (Supplemen-
tary Table 2), two markers of soil fertility (Adrover et al., 2011). Using
a mixture of four different Ensifer strains (CIRADF 300, CIRADF 301,
CIRADF 302, and CIRADF 303), Fall et al. (2007) and Faye et al. (2006)
reported that gum arabic production of 10- and 13-year-old S. senegal
trees growing under natural conditions was enhanced. It will be inter-
esting to expand this experiment to environmentally contrasting sites.
However, after using the same combination of Ensifer strains to inocu-
latemature S. senegal trees, Herrmann et al. (2012) determined that rhi-
zobial inoculation increased gum arabic production in Niger, but not in
Burkina Faso, suggesting that other factors are likely involved (Supple-
mentary Table 2). Later, Fall et al. (2016a) showed that gum arabic pro-
duction positively correlated to soilmicrobial biomass, mineral nitrogen
content, and rainfall. Thus, if conditions for tree growth are optimal, rhi-
zobial inoculation becomes the deciding factor for improving not only
plant growth and soil fertility, but also for enhancing gum production.

Research performed in Senegal, Niger, and Burkina Faso revealed an
interaction among rhizobial strains, soil types, and S. senegal genotypes
with respect to competitiveness, nodulation, and symbiotic nitrogen
fixation under both greenhouse (Bakhoumet al., 2012) and natural con-
ditions (Herrmann et al., 2012). It will be crucial in future studies to
identify the best strains and plant provenances/species with regard to
soil type. Although Ensifer inoculation increased gum arabic production,
Herrmann et al. (2012) found no correlation between microbial bio-
mass, inorganic N content, and gum arabic yield following the inocula-
tion of mature trees. Fall et al. (2016a) demonstrated that rhizobial
inoculation significantly increased soil microbial biomass, soil microbial
activity, and acid phosphatase activities in the rhizosphere of mature

http://www.speciesfungorum.org
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trees, but they observed no major effect on either C mineralization or
mineral N content. In addition, experiments that target microbial com-
munities critical for the N, P, and K cycles need to be pursued in the fu-
ture to help us understand the tangible effects of rhizobial inoculation
on S. senegal mature trees in terms of gum production and microbial
community interactions.

6. Inoculation of S. senegal with mycorrhiza

Colonna et al. (1991) and Ndiaye et al. (2011) associated the growth
of S. senegal trees in nutrient-poor soilwith their ability to establish AMF
symbioses in soils deficient in P. Ndiaye et al. (2011) found that S. sene-
gal seedlings that were cultivated in sterilized soils showed improved
growth after inoculation with Rhizophagus irregularis, R. fasciculatum,
and Funneliformus mosseae. In one example, 45% better growth was
achieved when inoculated with R. manihotis. However, the response
varied with soil origin and environmental conditions (Ndoye et al.,
2013). The authors concluded that similar to rhizobia,mycorrhiza, espe-
cially native AM fungi, accelerated the recovery of degraded soil, which
then enabled the planting of crops. Prior work also studied the effects of
singly inoculated S. senegalwith either rhizobia or AMF alone versus co-
inoculating with both symbionts. Ndoye et al. (2015) found that single
inoculation with either AMF or rhizobia improved S. senegal seedling
growth in non-sterilized soil. However, more studies need to be per-
formed to develop optimal combinations of microsymbionts, which
consist of compatible strains that reliably enhance plant growth in nu-
trient-deficient soils.

Inoculation of S. senegal trees with selected symbiotic microorgan-
isms was shown to increase gum arabic production per tree (Table 1).
Except for the 2010–2011 field trial of Dahra plantation 2 (inoculated
with rhizobial strains ORS 3574, ORS 3593, ORS 3607, and CiradF 300),
the annual production of gum arabic was higher in treatments inocu-
lated with both rhizobia and mycorrhizal fungi in all plantations and
field trials, and for both sites (Table 1). Also, the percentage of trees pro-
ducing gum arabic was proportional to gum production per tree and
was generally higher in inoculated treatments.

7. Effect of S. senegal on soil fertility

Soil fertility has been in decline in many arid and semi-arid zones of
Africa (Turenne et al., 1991). African drylands suffer from severe land
degradation brought about by several factors: deforestation,
overgrazing, unsustainable agriculture, and climate change. These soils
can be transformed by planting nitrogen-fixing trees. In Africa, low
and irregular rainfall (b100–600 mm per annum), poor soil water and
nutrient availability, and also elevated temperatures limit crop produc-
tivity (Wickens et al., 1995). This combination of factors has severe
Table 1
Annual gum arabic production per tree and percentage of trees producing in 2009–2010 and 2

Site Plantation Years Results

Dahra⁎ 1 2009–2010 Gum arabic (g tree
% producing trees

Dahra⁎⁎ 2 2010–2011 Gum arabic (g tree
% producing trees

Goudiry⁎ 1 2009–2010 Gum arabic (g tree
% producing trees

Goudiry⁎⁎⁎ 2 2010–2011 Gum arabic (g tree
% producing trees

In each site, two different plantationswere inoculated. For each year, values followed by the sam
ND: not determined data. R: rhizobia, M: mycorrhiza.
⁎ Rhizobial inoculum, Sarret al. (2005b) (genus Ensifer: CiradF 300, CiradF 301, CiradF 302 an

mosseae (Fm) et F. vericulosum (Fv)).
⁎⁎ Rhizobial inoculum, Bakhoumet al. (2012) (genusMesorhizobium: ORS 3574, ORS 3593,ORS
(Ff), F. mosseae (Fm) et F. vericulosum (Fv)).
⁎⁎⁎ Rhizobial inoculum, Bakhoum et al. (2012) (genusMesorhizobium: ORS 3588, ORS 3593, O
mosseae (Fm) et F. vericulosum (Fv)).
negative effects on perennial multi-purpose tree species that normally
maximize their agricultural potential when grown under less stressful
conditions (Fagg and Allison, 2004). Besides promoting soil stability
and fixing N2, another advantage of these trees is that they transfer
fixed N to other crops (Kang et al., 1985), and in addition, acacias play
an especially important role in rehabilitating sandy or clay soils. By fix-
ing N2, S. senegal improves the soil, which permits crop growth in re-
stored gum arabic agroforestry systems of sub-Saharan Africa (Raddad
and Luukkanen, 2006). Moreover, S. senegal has also been used for en-
hancing soil fertility in sorghum fields in Sudan (Blue Nile region) and
in rotational bush-fallow systems (El Houri, 1986). Thus, these trees
have significant potential for restoring soil fertility in several African
countries.

In African drylands, S. senegal is recognized as being critical for in-
creasing and diversifying agricultural production systems and also for
stabilizing and restoring damaged agroecosystems. Njiti and Galiana
(1996) concluded that S. senegal has an important role in restoring
these eroded fields because of the tree's ability to associate with N2-fix-
ing bacteria that improve the nutrient-depleted soil. Senegalia senegal
trees are responsible for the accumulation of large amounts of N, espe-
cially in the first few years after their establishment. Much of that N,
which is generated from turnover of underground plant tissues, is
taken up by the roots of nearby non-N2-fixing trees or crops (Khanna,
1998). At a density of 400 trees ha−1, S. senegal biomass accumulates
to a total of 18.0, 1.21, 7.8, and 972 kg ha−1 of N, P, K, and organic car-
bon, respectively (Raddad and Luukkanen 2006). Dean (1999) reported
an increase in both N and K (24 and 4 kg ha−1 year−1, respectively)
under 3 to 18 year-old S. senegal trees. However, P was not shown to in-
crease in the topsoil. Interestingly, Ndoye et al. (1995) reported that a
significant unevenness exists among acacia species for their ability to
fix N2 and the total amount of N fixed. In their study, Vachelia seyal (pre-
viously Acacia seyal) was identified as having a higher N2-fixing ability
than S. senegal, Acacia raddiana, and Faidherbia albida acacia species.

The carbon (C) stocks of African drylands also have declined because
of land degradation and loss of soil fertility/water retention. Planting
acacia trees in these areas could increase soil organic carbon (SOC)
stocks considerably. The SOC in drylands was estimated to be 16–25%
of global terrestrial SOC storage (MEA, 2005; Lal, 2004) with a surface
cover of 41–47% of the Earth's land (Wessels, 2006). Abaker et al.
(2016) showed that S. senegal trees planted in drylands increased SOC
stocks, especially in the upper soil. Plantation SOC stocks varied from
846 to 1250 g m−2, and those values rose with age and reached 867–
950 g m−2 in open grassland. The optimum of SOC stock piling occurs
within one to two decades after planting acacia trees. These authors
also reported that SOC stock accumulation originated not only fromaca-
cia trees, but also from ground level vegetation. Thus, planting N2-fixing
trees not only promotes ground vegetation growth in semi-arid
010–2011 in Senegalese (Dahra and Goudiry) plantations.

Control R M R + M

−1) 42.44a 70.65ab 99.40ab 112.58b

14.06 20.48 25.64 33.8
−1) 48.72a 46.97a 65.22a 52.16a

75.62 70.89 81.54 79.95
−1) ND ND ND ND

ND ND ND ND
−1) 34.07a 57.99ab 51.96ab 72.03b

62.82 61.11 68.33 80.15

e letters are not significantly different according to Student–Newman–Keuls (P b .0.05) test;

d CiradF 303), mycorrhizal inoculum (Funneliformis intraradices (Fi), F. faciculatum (Ff), F.

3607 andCiradF300),mycorrhizal inoculum (Funneliformis intraradices (Fi), F. faciculatum

RS 3604 and ORS 3607), mycorrhizal (Funneliformis intraradices (Fi), F. faciculatum (Ff), F.
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areas, but these trees also support much of the plant growth in these
areas.

The S. senegal rhizosphere has a positive effect on soil microbial bio-
mass as reported previously (Fall et al., 2012). Recently, these authors
showed that rhizobial inoculation also enhanced total microbial and
acid phosphatase activities significantly, but no meaningful effect was
observed with regard to C mineralization and mineral N content (Fall
et al., 2016a). The establishment of S. senegal in degraded lands could
positively impact soil enzymatic processes and vegetation establish-
ment. In so doing, S. senegal benefits crops in agroforestry systems in
N-limited soils of the Sahelian zone.

8. Use of S. senegal to address soil affected by salinity

Accumulation of salts in soil, often from the overuse of fertilizers, is
an emerging environmental problemworldwide. Salinity is amajor lim-
iting factor for plant growth especially in drylands (Zahran, 1999). Nat-
ural environments are also threatened by salt-affected soils. A large
portion of the world's surface (8%) has become saline (estimated to be
over 953 million ha) (Singh, 2009). Arable areas are threatened, and
one solution for reclaiming saline soils is the planting of halophytic
plants, which absorb or tolerate salt (De Lacerda et al., 2005; Singh,
2009). In the salt-affected soils of Senegal, legume species (species of
acacia, Prosopis, and Sesbania) with moderate salt tolerance are able to
grow. These species persist in nutrient-poor and degraded soils most
likely because of their associations with N2-fixing rhizobia and AMF,
both of which occur naturally in the rhizosphere (Dommergues,
1995). Symbioses with microorganisms are known to be critical for
plant adaptation to adverse environmental conditions, such as drought
and salinity stress (Zahran, 1999). Inoculation with rhizobia that toler-
ate salinity helps acacia trees grow in saline soils (Diouf et al., 2005;
Lal and Khanna, 1994).

AMF are also major contributors to plant growth promotion in
stressful environments worldwide (Aliasgharzadeh et al., 2001;
Becerra et al., 2014; Ho, 1987). Mycorrhization facilitates the adaptation
to saline conditions by helping plants procure soil nutrients, particularly
magnesium, during the growth cycle (Giri and Mukerji, 2004). Never-
theless, the ability of an AMF strain to enhance plant growth and devel-
opment is not directly correlated to whether or not it originates from a
saline area (Cantrell and Linderman, 2001;Manga et al., 2017). Thus, the
fact that plant growth promotion occurs suggests that this trait is a char-
acteristic of the individual isolate's ecotype, and is not directly related to
salt. Moreover, different AMF have varied responses to NaCl levels.
These authors suggested that the variability of responses that occur in
response to abiotic stress should be more carefully considered in
plant–fungus interactions research.

Earlier studies also did not consider S. senegal to be a salt-tolerant
acacia, but recently Fall et al. (2016b) showed that S. senegal maintains
a good germination rate and a high level of growth in 257 mMNaCl. In
summary, S. senegal is similar to Vachellia seyal and Prosopis juliflora in
being able to grow in salty soils. Thus, S. senegal, in addition to P. juliflora,
which was previously described as a salt-tolerant acacia, should also be
employed for restoring saline soils.

9. Conclusion

The relationship of S. senegal with soil microorganism is positively
associated with this tree species' ability to survive in harsh conditions.
Moreover, inoculationwith rhizobial strains increases plant growth,mi-
crobial biomass and diversity, and soil health in the plant rhizosphere.
Under natural conditions, inoculation of even mature trees of S. senegal
with selected rhizobia significantly increased total microbial activities,
acid phosphatase activity, and also gum arabic production, but it
had no effect on soil microbial CO2 respiration and N content. This defi-
ciency might be overcome by selecting effective combinations of
microorganisms × provenances relative to the soil and the overall envi-
ronment and climate where the trees are to be planted.

Because of their tolerance to adverse soil and climate conditions,
S. senegal trees are an excellent biological means for rehabilitating
degraded soils. In drylands overall, S. senegal trees increase SOC stocks,
especially in the upper soil, and thus may help restore soil fertility spe-
cifically in arid environments. Moreover, like P. juliflora, S. senegal
should be considered as a salt-tolerant species.

[http://www.fao.org/docrep/006/Q2934E/Q2934E00.HTM].
Reproduced with permission.
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