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Abstract 

One central feature of the structure of a software system is the coupling 
among its components (e.g., subsystems, modules) and the cohesion within 
them. The purpose of this study is to quantify ratios of coupling and cohesion 
and use them in the generation of hierarchical system descriptions. The 
ability of the hierarchical descriptions to localize errors by identifying error­
prone system structure is evaluated using actual error data. Measures of data 
interaction, called data bindings, are used as the basis for calculating software 
coupling and cohesion. A 135,000 source line system from a production 
environment has been selected for empirical analysis. Software error data 
was collected from high-level system design through system test and from 
some field operation of the system. A set of five tools is applied to calculate 
the data bindings automatically, and cluster analysis is used to determine a 
hierarchical description of each of the system's 77 subsystems. An analysis 
of variance model is used to characterize subsystems and individual routines 
that had either many /few errors or high/low error correction effort. 
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1 Introduction 

Several researchers have proposed methods for relating the structure of a 
software system to its quality (e.g., [BE82] [HK81] [Eme84]). One pivotal 
step in assessing the structure of a software system is characterizing its cou­
pling and cohesion. Intuitively, the cohesion in a software system is the 
amount of interaction within pieces (e.g., subsystems, modules) of a system. 
Correspondingly, coupling in a software system is the amount of interac­
tion across pieces of a system. Cohesion may sometimes be ref erred to as 
"strength." Various interpretations for coupling and cohesion have been pro­
posed [SM C7 4]. In this paper, we present an empirical study that investigates 
hierarchical software system descriptions that are based on measures of co­
hesion and coupling. The study evaluates the effectiveness of the hierarchical 
descriptions in identifying error-prone system structure. Our measurement 
of cohesion and coupling is based on intra-system interaction in terms of soft­
ware data bindings [BT75] [HB85]. Our measurement of error-proneness is 
based on software error data collected from high-level system design through 
system test; some error data from system operation are also included. 

The research approach was based on the application of a data collection 
and analysis methodology in a large, production software environment. The 
use of the methodology incorporates definition of the required data, collection 
of the data, and appropriate data analysis and interpretation. The research 
project was conducted in three phases, and they roughly corresponded to the 
activities of data definition, collection, and analysis and interpretation. 

The paper is organized into several sections. Section 2 discusses the soft­
ware project selected. The data bindings software analysis and supporting 
tools are described in Section 3. The data analysis appears in Section 4. 
Section 5 presents the interpretations and conclusions. 

2 Selected Software Project 

The software project selected for study is the next release of an internal 
software library tool. The previous system release contains approximately 
100,000 source lines. The production of the next release requires the de­
velopment or modification of approximately 40,000 source lines .. Hence, the 
total size of the next system release is approximately 135,000 source lines. 
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The system is written in four languages: a high-level programming language 
similar to PL/I, a language for operating system executives, a user-interface 
specification language, and an assembly language. The static source code 
metrics discussed later, including the data bindings analysis, pertain to only 
the system portion written in the high-level source language. This portion 
constitutes approximately 70% of the lines in the. system and the vast ma­
jority of the system logic and intra-system interactions. Project duration, 
including system and field. test, spanned approximately 16 months and max­
imum staffing included 23 persons. 

System Characterization There are 163 source code files in the system 
containing a total of 451 source code routines. A routine is a main program, 
procedure, or function. The number of routine~ per source code file varies 
from 1 to 21. On the average, there are 2.8 routines per source code file. 
There are 77 executable features in the system, referred to as subsystems 
in the paper. These subsystems can be thought of as groups of routines 
collected together to form functional features of the overall system. The 
number of source files linked together· to form ~:subsystem varies from 1 to 
82. On the average, 26.3 ·source files are linked ·together into. a subsystem. 
The same source file is bound into 12.4 different subsystems on the average. 
Subsystems averaged 19,000 source lines in size, including comments. 

Data Collection The data collection and analysis methodology employed 
the goal-question-metric paradigm [BW84] to result in a set of software prod­
uct and process metrics, a "metric vector," sensitive to the cost and quality 
goals for the particular environment. The data was collected. and analyzed 
at the same time the proj~ct took place. An important goal was to minimize 
the impact of the data collection process on the developers. :See [SB] for a 
description of the data definition, collection, and. analysis methodology, an 
explanation of the metric vector concept, a description of the underlying data 
collection forms, the data collection· process effectiveness, and some lessons 
learned and recommendations based on the use of the data ·collection and 
analysis methodology. 



Figure 1: Example hierarchical cluster based on software data bindings. Pro­
cedures and functions are denoted by Pi, and clusters are denoted by circles. 
The smaller clusters are relatively tighter (and form earlier), while the larger 
clusters are relatively looser (and form later). The clusters define a system 
hierarchy in the form of a tree: the smaller clusters at the leaf nodes and the 
largest cluster at the root node. 

3 Data Bindings Analysis 

3.1 Clustering with Data Bindings 

One primary goal for this study was to investigate the relationship of "soft­
ware data bindings" to software errors (HB85]. "Data bindings" are mea­
sures that capture the data interaction across portions of a software system. 
The theoretical background for the measures is described in [HB85]. Earlier 
studies have revealed insights about the usefulness of data bindings iri the 
characterization of software systems and their errors [BT75] [HB85]. In or­
der to describe the data bindings analysis process applied, we first introduce 
some terminology (see also [HB85]). 

Potential Data Binding A potential data binding is defined as an ordered 
triple (p,x,q) where p and q are procedures and x is a variable within 
the static scope of both p and q. Potential data bindings reflect the 
possibility of a data interaction between two components, based upon 
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the locations of p, q, and ·x. That is, there is a possibility that p and 
q can communicate via the variable x without changing or moving the 
definition of x. Whether x is actually mentioned inside of p or q is 
irrelevant in the computation of poten~ial data bindings. 

Used Data Binding A used data binding is a potential data binding where 
p and q use x for either reference or assignment. The used data binding 
requires more work to calculate than the potential data binding as it is 
necessary to look inside the components p and q. It reflects a similarity 
between p and q (they both use the variable x). 

Actual Data Binding An actual data binding is defined as a used data 
binding where p assi.gns a value to x and q references x. The actual data 
binding is slightly more difficult to calculate as a distinction between 
reference and assignment must be maintained. Thus more memory is 
required but there is little difference in computation time. The actual 
data binding only counts those used data bindings· where there may 
be a flow of information from p to q via the variable x. The possible 
orders of execution for p and q are not considered. That is, there may 
be other factors (e.g., control flow conditions) which would prevent such 
communication. 

There are stronger levels of data bindings. However, in this study we 
calculated actual data bindings. This level of data bindings seems to offer 
adequate measure of similarity while not requiring complex data flow analysis 
that stronger levels need. Essentially, we are erring in the direction of safety 
(as done, for example, by code optimizers) by assuming that procedures may 
influence one another unless we can show otherwise. 

First, we calculated the actual data bindings in the system. Then, we 
applied the statistical technique of clustering [Ev.e80] to the data bindings 
information to produce a hierarchical description for the software system 
(see Figure 1). The clustering takes· place in a bottom-up manner. The 
process iteratively creates larger and larger clusters, until all the elements 
have collapsed into a single cluster. The elements in the clusters are the 
procedures and functions in the system. The elements with the greatest 
interaction, in terms of actual data bindings, cluster together. The technique 
of clustering ·has been applied previously to partition a large system into 
subsystems in [BE82]. Hierarchical clusters have been formally defined in 
[JS71]. 
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3.2 Data Bindings Analysis Software 

A set of five software tools was developed to calculate these hierarchical, data 
bindings clusters and applied to the 77 subsystems in the selected project. 
The source code is the only input required by the tools for automatic gen­
eration of a hierarchical system description. The tools determine the data 
bindings that occur among the routines in the source code and: then use them 
in cluster analysis as a measure of similarity. Four of the five tools are lan­
guage independent; the other tool - a major one - is language dependent. 
For a description of the tools, see [SB]. The trees of clusters (see Figure 1) 
output by the tools provide a form of system documentation - they give a 
hierarchical view of the subsystems with respect io data usage. 

4 Data Analysis 

The data collection and analysis methodology was successful in producing 
a wide range of statistically significant results. Several analysis techniques, 
including analysis of variance and cluster analysis, were employed in the 
study. 

4.1 Terminology 

Throughout the analysis and interpretation, we use the terms subsystems 
and routines as follows: 

• Routine - A routine is a main program, procedure, or function. There 
are a total of 451 source code routines in the system. 

• Subsystem - A subsystem is .a large set of routines that are linked 
together to form an executable system feature. There are 77 executable 
features in the system. They average 19,000 source lines in size. 

A routine is linked into 12.4 subsystems on the average. Therefore, the total 
size of the whole system is not 77 x 19,000 = 1,463,000 source lines; the 
total size is approximately 135,000 source lines. See Section 2 for further 
description of the subsystems and routines in the software system. 

We used the analysis tools described in Section 3 to produce hierarchical 
descriptions for each of the 77 subsystems (see Figure 1). The hierarchical 
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descriptions are rooted, connected trees that indicate the internal subsystem 
structure. Each routine in a subsystem occurs as a leaf node in the tree ex­
actly once. Subtrees indicate groupings of routines that form natural cluster$ 
based on the data bindings criteria. There is a one-to-one correspondence 
between subtrees and clusters. A cluster can contain either routines or other 
clusters. In other words, the root node of a subtree can have· as its children 
either leaf nodes (i.e., routines) or the root node of another subtree (i.e., a 
subset of its ·own routines .that form a smaller cluster). 

In the software system.being analyzed, a routine may be linked into more 
than one subsystem. Each of the 77 subsystems has a separate hierarchical 
description. Therefore, a routine appears in the hierarchical description of 
each subsystem into which it is linked. A routine may cluster with different 
sets of routines in different subsystems. 

Associated with each cluster in a subsystem is a number ranging from 0 
to 100. This number reflects the nature of the binding of the routines in the 
cluster. This number is interpreted as. the following ratio: 

the coupling of the cluster with other clusters in 
the sub8ystem 

the internal strength of the cluster 

That is, the number captures the coupling/ strength ratio for a cluster of rou­
tines within a subsystem. The coupling/strength ratios range from 0 to 100 
since they are calculated on a relative scale. The use of the word "relative" 
here means relative to the coupling/strength ratios that could result from 
the range of all possible occurrences of data bindings. In the data bindings 
analysis process, the clusters are formed in a bottom-up manner. The clus­
ters with the lowest coupling/strength ratios form in the first iteration, the 
clusters with the next lowest ratios form in the second iteration, and so forth. 

The lower a cluster's coupling/ strength ratio is, the lower the relative 
coupling with other clusters and the higher the relative strength of bind­
ing within the cluster. The higher a cluster's coupling/strength ratio is, the 
higher the relative coupling with other clusters and the lower the relative 
strength of binding within the cluster-. Software engineering principles gen­
erally suggest that it is .desirable to have low coupling and high strength, 
which in this context means a low coupling/strength ratio [SMC74]. 

The data bindings analysis produced 77 trees corresponding to the sub­
systems which included a total of 4211 clusters containing 5045 routine o.c-
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Figure 2: Distribution of errors and error correction effort by subsystem 
coupling/ strength ratios. 

Subsystem Errors Error correction hours 
coupling/ per KLOC Total per KLOC Total 
strength Mean Std :Mean Std Mean Std Mean Std 

High 1.54 3.95 0.44 0.99 2.80 7.53 0.88 2.69 
Low 0.31 1.16 0.15 0.52 0.91 4.51 0.42 2.39 

Overall 1.28 3.58 0.38 0.92 2.39 7.03 0.78 2.63 

currences. Recall that there were a total of 451 routines in the system -
each routine was bound into 12.4 subsystems on the average (see Section 2). 
We calculated three different measures based on the clusters resulting from 
the data bindings analysis. For each routine occurrence, we calculated: 

• Routine coupling/ strength ratio - The coupling/ strength ratio of the 
first cluster to form that included the routine as a member. This metric 
is intended to capture the relationship of a routine to other routines in 
a subsystem in terms of coupling and strength. 

• Routine location in subsystem's data binding tree - The depth in the 
tree of the first subtree (i.e., cluster) to form that included the routine 
as a member. More precisely, it is the depth in the tree of the root of 
that subtree. This metric is intended to characterize the location of a 
routine in a data binding tree. This location information is useful to 
know when data binding trees are used as an alternate form .of system 
documentation. 

For each subsystem, we calculated: 

• Subsystem coupling/ strength ratio - The median of the coupling/ strength 
ratios for the clusters within the subsystem. We use a non-parametric 
statistic here, i.e., a median, because the coupling/ strength ratios are 
relative measures. This ·metric is intended to characterize the overall 
coupling and strength within a subsystem. 
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Figure 3: Distribution of errors and error correction effort by subsystem size. 

Subsystem Errors Error correction hours 
size per KLOC Total per KLOC Total 

Mean Std Mean Std Mean Std Mean Std 

Large 1.52 3.94 0.43 0.98 2.77 7.44 0.86 2.61 
Small 0.35 1.22 0.17 0.58 0.98 4.96 0.49 2.71 

Overall 1.28 3.58 0.38 0.92 2.39 7.03 0.78 2.63 

Figure 4: Distribution of errors and error correction effort across subsystem 
coupling/ strength ratios and subsystem size. 

Subsystem Subsystem Errors Error correction hours 
coupling/ size per KLOC Total per KLOC Total 
strength Mean Std Mean Std Mean Std Mean 

High Large 1.66 4.12 0.46 : 1.02 2.99 7.71 0.92 
Small 0.45 1.41 0.21 0.66 1.11 5.31 0.56 

Low Large 0.36 1.27 0.15 . 0.52 0.91 4.11 0.39 
Small 0.28 L09 0.15 0.52 0.90 4.75 0.44 

Overall 1.28 3·.58 0.38 0.92 2.39 7.03 0.78 

4.2 Data Analysis Method 

An analysis of variance model was used to characterize subsystems and rou­
tines that had either many /few errors or high/low development effort spent 
in error correction. 

4.2.1 Independent Variables 

The analysis of variance model [Sch59] considered numerous factors simulta­
neously: subsystem size (above/below median); subsystem coupling/ strength 
ratio (above/below median); individual subsystem's attributes (77 levels); 
routine size .(above/below median); routine coupling/strength ratio (split 
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2.66 
2.93 
2.07 
2.57 
2.63 
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into four quartiles); routine location in subsystem's data binding tree (split 
into four quartiles); and two-way interactions. When defining the levels for 
some of the factors, non-parametric statistics (e.g., medians, quartiles) were 
used since the coupling/ strength ratios are relative measures and the data 
bindings trees have different overall depths. Subsystem size and routine size 
are included as factors in the analysis because earlier analyses have indicated 
a. relationship between size and software effort and error data (e.g., (Boe81] 
[BSP83]). For a more complete description of the factors and their levels, see 
[SB]. 

4.2.2 Dependent Variables 

There were four dependent variables examined with the analysis of variance 
model. 

1. Total errors - The total number of inspection, Trouble Report (TR), 
System Trouble Report (STR), and Error Summary Worksheet (ESW) 
errors in a rou tine1 

2. Total errors per KLOC - The total number of inspection, TR, STR, 
and ESW errors in a routine per 1000 lines of source code 

3. Error correction effort - The total amount of effort (in hours) spent 
correcting TR and ESW errors in a routine 

4. Error correction effort per KLOC - The total amount of effort (in 
hours) spent correcting TR and ESW errors in a routine per 1000 lines 
of source code 

In general, the discussion will focus on the errors per KLOC and the 
error correction effort per KLOC measures of the routines as opposed to the 
absolute numbers. This factors out possible underlying correlations between 
source lines and number of errors or amount of error correction effort. The 
statistics for all four measures are reported, however. The discussion will tend 
to highlight results that demonstrated a statistically significant difference, as 
opposed to those where there was no statistical difference. 

1 Inspections were held during the high-level and low-level design phases and after the 
completion of unit testing. Error Summary Worksheet (ESW) errors were recorded during 
the coding, unit testing, and integration testing phases. System Trouble Report (STR) 
errors were recorded during system testing. Trouble Report (TR) errors were reported 
against working, released code during and after field testing. 
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4.3 Characterization of High-Error and Low-Error Sub-
systems 

In the source code portions of the system (see Section 2), there was a total 
of 299 distinct errors recorded from inspections, error summary worksheets 
(ESW's ), system trouble reports (STR's ), and trouble reports. (TR's ). Data 
on the :effort required for error correction were available for 204 distinct errors 
recorded on ESW's and TR's. In the subsequent figures, all inspection, ESW, 
STR, and TR errors are ·counted equally. 

In the following sections we ·analyze the number of errors. and the error 
correction effort in the subsystems. The characterization of the subsystems is 
based on subsystem coupling/ strength ratio, subsystem size, and interactions 
across these two factors. 'The results are summarized in a following section. 
Graphical plots of the data are presented in [SB]. 

4.3.1 Subsystem Coupling/Strength Ratio 

Figure 2 presents the errors and error correction effort in the routines in sub­
systems .with different co~pling/ strength ratios. This figure and the following 
analogous figures give the means and standard deviations for (:i) the number 
of errors per 1000 lines of source code (KLOC), (ii) the number of errors, 
(iii) the -error correction effort per KLOC, and (iv) the error correction effort 
in the. routines. Subsystem coupling/ strength ratio was not a statistically 
significant factor with respect to either errors per KLOC or error correction 
effort per KLOC (a-> .05)2

• 

4.3.2 Subsystem Size 

Figure 3 presents the errors and error correction effort in the routines in sub­
systems. with different sizes. The subsystems of large size had routines that 
averaged 1.52 errors per KLOC, which was greater than the small subsystem 
average of 0.35 errors per KLOC (a < .05). 

2The F-test significance levels reported in this ·and later sections are based on the use 
of Type IV partial sums. of sq.uares(S:ch59]. Any statistical difference discussed will at least 
be significant at .the a < .05 level, unless otherwise noted.: 
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4.3.3 Interactions Across· Subsystem Coupling/ Strength Ratio 
and Size 

Figure 4 presents the errors and error correction effort in the routines in sub­
systems with different coupling/strength ratios and different sizes. Combin­
ing different subsystem coupling/ strength ratios and different sizes resulted 
in a statistically significant interaction for errors per KLOC (a < .011). 
Large subsystems with high coupling/ strength ratios had routines that av­
eraged 1.66 errors per KLOC, which was substantially more than the other 
subsystems - their combined average was 0.36 errors per KLOC. In addi­
tion, combining subsystem coupling/ strength ratio and size resulted in an 
interaction that was almost statistically significant for error correction effort 
per KLOC (a < .066). Large subsystems with high coupling/strength ra­
tios had routines that averaged 2.99 error correction hours per KLOC - the 
other subsystems had a combined average of 0.97 error correction hours per 
KLOC. 

Figure 5: Distribution of errors and error correction effort by routine cou­
pling/ strength ratios. 

Routine Errors Error correction hours 
coupling/ per KLOC Total per KLOC Total 
strength Mean Std Mean Std Mean Std Mean Std 

4-1Iighest 2.27 4.58 0.59 1.04 5.86 10.98 1.94 4.20 
3-1Iigher 1.15 3.13 0.34 0.74 2.19 6.84 0.72 2.54 
2.Lower 1.45 4.19 0.44 1.18 1.57 4.27 0.49 1.61 
1.Lowest 0.28 1.11 0.15 0.49 0.21 1.09 0.06 0.29 
Overall 1.28 3.58 0.38 0.92 2.39 7.03 0.78 2.63 

4.3.4 Summary of Results 

1. Large subsystems with high coupling/ strength ratios had routines with 
the most errors per KLOC. 

2. Large subsystems with high coupling/ strength ratios had routines with 
six times as many errors per KLOC than did small subsystems with 
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Figure 6: Distribution of errors and error correction effort by routine size. 

Routine : Errors Error correction hours 
size per KLOC Total per KLOC Total 

Mean Std Mean Std Mean Std Mean Std 

Large 1.19 2.54 0.47 . 0.99 3.22: 8.72 1.20 3.42 
Small 1.39 4.55 0.26 : 0.80 1.36. 3.81 0.26 0.71 

Overall 1.28 3.58 0.38 . 0.92 2.39 7.03 0.78 2.63 

Figure 7: Distribution of errors and error correction effort by routine location 
in data binding tree. 

Routine · Errors Error correction hours 
tree per KLOC Total per KLOC Total 

location · Mean Std Mean Std Mean Std Mean Std 

4.-Root 0.88 2.82 0.30 0.77 1.30 4.82 0.37 1.59 
3..Shallower 1.78 :4.44 0.51 1.12 3.55 8.88 1.19 3.36 

2.J)eeper 0.96 :2.48 0.27 0.63 2.51 7.39 0.83 2.82 
1.J)eepest· 1.28 . 3.73 0.38 0.96 1.76 5.08 0.57 1.95 

Overall 1.28 '3.58 0.38 0.92 2.39 7.03 0.78 2.63 

low coupling/ strength ratios. 

3. Large subsystems with high coupling/strength ratios had routines with 
ten times as many unit and integration test (ESW3

) errors per KLOC 
than did small subsystems with low coupling/strength ratios. 

4. Large subsystems with high coupling/ strength ratios had routines with 
eight times as much error correction effort per KLOC from unit and 
integration test (ESW) errors than did small subsystems with low cou­
pling/ strength ratios. 

3 Errors during the coding and unit and integration testing phases were reported on 
error summary worksheets (ESW's). 
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4.4 Characterization of High-Error and Low-Error Rou­
tines 

In the following sections we analyze the number of errors and the error cor­
rection effort in the routines. The characterization of the routines is based 
on routine coupling/strength ratio, routine size, routine location in the. data 
binding tree, and interactions across these three factors. The results are 
summarized in a following section. Various graphical plots of the data are 
presented in [SB]. As mentioned in Section 4.3 there were 299 distinct errors, 
counting all inspection, ESW, STR, and TR errors equally; 204 of them had 
data on error correction effort. 

4.4.1 Routine Coupling/Strength Ratio 

Figure 5 presents the errors and error correction effort in the routines with 
different coupling/strength ratios. As before, this figure and the following 
analogous figures give the means and standard deviations for (i) the number 
of errors per 1000 lines of source code (KLOC)., (ii) the number of errors, 
(iii) the error correction effort per KLOC, and (iv) the error correction effort 
in the routines. 

The routine coupling/ strength ratio statistically effected both the number 
of errors per KLOC and the error correction effort per KLOC in the routines 
(a < .0008 and a < .002, respectively). The routines in coupling/strength 
region 4-1UGHEST had the most errors per KLOC (an average of 2.27) and 
the highest error correction effort per KLOC (an average .of 5.86 hours). 
The routines with coupling/strength ratios in either region 3.JIIGHER or 
2-10WER had the second most errors per KLOC and the second most error 
correction effort per KLOC. The 3..HIGHER and 2-10WER regions were 
not statistically different in either errors per KLOC or error correction effort 
per KLOC. Those 'routines in region 1-10WEST had the fewest errors per 
KLOC (an average of 0.28) and the least error correction effort per KLOC 
(an average of 0.21 hours).4 These results empirically support the software 
engineering principle of desiring low coupling and high strength. 

4 All multiple comparison results, such as the one in the previous four sentences, were 
conducted with Tukey's multiple comparison statistic (Sah59] [Ins82]. All of the pairwise 
statistical comparisons of these four categories are statistically significant at the a < .05 
level simultaneously. 
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4.4.2 Routine Size 

Figure 6 presents the errors and error correction effort in the routines with 
different sizes. The routine size statistically effected the error correction 
effort per KLOC for the routines (a< '.0001). Routines of large size had an 
average of 3.22 hours error correction effort per KLOC, which was more than 
did those of small size (an average of 1.36 hours error correction effort per 
KLOC). Although small routines had slightly more errors per KLOC than 
did large routines, the difference was not statistically significant (~ > .05). 
A separate study has indicated, however, that smaller routines may be more 
error-prone than larger routines [BP84]. 

4.4.3 Routine Location in Data Binding Tree 

Figure 7 presents the errors and error correction effort in the routines with 
different data binding tree locations. The routine location in_the data binding 
tree statistically effected the number of errors per KLOC in the routines (a 
< .0001). Routines in tree location region 3..SHALLOWER had an average 
of 1. 78 errors per KLOC, which was more than any of the other three tree 
location regions. 5 

The routine location in the data binding tree also statistically effected the 
error correction effort per KLOC for the routines (a< .0001). The routines in 
tree location region 3_SHALLOWER had the most error correction effort per 
KLOC (an average of 3.55 hours), those in tree location region 2.J)EEPER 
had the second most, and those in regions 4..ROOT and LDEEPEST had 
the fewest and were not statistically different (they had a combined average 
of 1.53 hours). One interpretation for there being less error correction effort 
per KLOC in regions 4..ROOT and 1.J)EEPEST may be the following: The 
structure of the system at the highest level (i.e., initial stages of problem de­
composition) and the lowest level (e.g., formulation of abstract data types) 
may be better understood than the intermediate levels of system develop­
ment. The effect of the less understood intermediate levels is compounded 
in larger subsystems, as was seen in Sections 4.3.2 and 4.3.3. 

5 Also, note that region 1..DEEPEST had more errors per KLOC than did region 
4-ROOT. 
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4.4.4 Interactions Across Routine Coupling/ Strength Ratio, Size, 
and Location in Data Binding Tree 

In [SB], the errors and error correction effort are given for the routines with 
different coupling/ strength ratios and different data binding tree locations. 
There was a significant interaction between the routine coupling/strength 
ratio and data binding tree location for the number of errors per KLOC in 
the routines (a< ·.0001). All of the three two-way interactions (routine cou­
pling/ strength ratio with routine size, routine coupling/ strength ratio with 
routine tree location, routine size with routine tree location) statistically ef­
fected the error correction effort per KLOC for the routines (all at a < .0001). 
Routines with the highest coupling/strength ratios ( 4.JIIGHEST) and a lo­
cation in the "central portion" of the data binding tree (3..SHALLOWER 
or 2_DEEPER) had the most error correction effort per KLOC (a combined 
average of 6.46 hours). 

4.4.5 Summary of Results 

1. The routines with the highest coupling/strength ratios had the most 
errors per KLOC and the most error correction effort per KLOC. 

2. The routines with the lowest coupling/strength ratios had the fewest 
errors per KLOC and the least error correction effort per KLOC. 

3. The routines with the highest coupling/strength ratios had over.eight 
times as many errors per KLOC than did routines with the lowest 
coupling/ strength ratios. 

4. The routines with the highest coupling/strength ratios had over 27 
times as much error correction effort per KLOC than did routines with 
the lowest coupling/strength ratios. 

5. Routines in data binding tree location region 3_SHALLOWER had 
more errors per KLOC and more error correction effort per KLOC 
than did routines in the other tree regions. 

6. Small routines had more unit and integration test (ESW) errors per 
KLOC than did large routines. 

7. Large routines had more error correction effort per KLOC than did 
small routines when either all errors or just unit and integration test 
(ESW) errors were considered. 
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8. Large routines tended to have a higher average amount of correction 
effort per error for unit and integration test (ESW) errors than did 
small routines. 

4.5 Data Bindings for System Documentation and 
Evaluation 

The following observations resulted· from dialogue with project personnel 
regarding the data binding trees generated. 

1. The data binding clusterings were able to detect major system data 
structures. 

2. The data binding clusterings seemed to provide a different view of the 
system than that provided by the system documentation, which in-· 
eluded textual documents and a calling hierarchy. 

3. Analyzing the clusters of data .bindings provided insights to the devel­
opment and maintenance team. 

5 Interpretations an:d Conclusions 

In this study, we have merged two goals: 

• To collect and analyze data from an ongoing software project without 
negatively impacting the software developers; and 

• To investigate hierarchical system descriptions based on the software 
engineering principles of coupling and strength (or cohesion) and their 
relationship to software errors and error correction effort. 

This study highlights and empirically supports several software engineering 
principles. The interpretations span several areas: coupling/ strength, system 
structure, and size. 

Coupling/Strength 

Low coupling/strength ratios are desirable (e.g., high strength and low cou­
pling). 
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• Routines with the lowest coupling/strength ratios had 8.1 times fewer 
errors per KLOC than routines with the highest coupling/strength ra­
tios and errors were 27.9 times less costly to fix. 

• Large subsystems with high coupling/strength ratios had routines with 
4.6 times more errors per KLOC than did the other categories of sub­
systems. 

System Structure Hierarchy: Data Bindings View 

The structure of the system at the highest level, i.e., initial stages of problem 
decomposition, and lowest level, e.g., formulation of abstract data types, 
appear to be better understood than the intermediate levels of abstraction 
and specification. 

• The errors were 50% less costly to fix in routines at the shallowest 
and deepest levels of the data bindings view of the system structure 
hierarchy than at the middle levels, and there were 21 % fewer errors 
per KLOC. 

Size 

Subsystem size seems to be at least as important, if not more important, 
than routine size. Hence, maybe the software community has been worrying 
about the wrong issue. 

• Smaller subsystems had routines with 4.3 times fewer errors per KLOC 
than did larger subsystems. 

• Smaller routines had a slightly higher average of errors per KLOC than 
did larger routines, although the difference was not statistically signif­
icant. When just unit and integration test errors are considered, how­
ever, smaller routines had significantly more errors per KLOC than did 
larger routines. Overall, errors in smaller routines were 2.4 times less 
expensive to fix. 
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