
UC Irvine
ICS Technical Reports

Title
Analyzing software data bindings in large-scale systems

Permalink
https://escholarship.org/uc/item/7st0c6v0

Author
Selby, Richard W.

Publication Date
1988

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7st0c6v0
https://escholarship.org
http://www.cdlib.org/

Analyzing Software Data Bindings in
.-----~

LaJ;9.ge-Scale Systems

Richard W. §elb¥

Department of Information and Computer Science
University of California, Irvine, California 92717 1

UCI-TR-88-31

June 1988

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

1This work was supported in part by the National Science Foundation un­
der grant CCR-8704311 with cooperation from the Defense Advanced Research
Projects Agency (ARPA Order 6108, Program Code· 7T10), by the National Sci­
ence Foundation under grant DCR-8521398, and by IBM under the Shared Uni­
versity Research (S.U.R.) Program.

l~

11 r'), I

I

Abstract

One central feature of the structure of a software system is the coupling
among its components (e.g., subsystems, modules) and the cohesion within
them. The purpose of this study is to quantify ratios of coupling and cohesion
and use them in the generation of hierarchical system descriptions. The
ability of the hierarchical descriptions to localize errors by identifying error­
prone system structure is evaluated using actual error data. Measures of data
interaction, called data bindings, are used as the basis for calculating software
coupling and cohesion. A 135,000 source line system from a production
environment has been selected for empirical analysis. Software error data
was collected from high-level system design through system test and from
some field operation of the system. A set of five tools is applied to calculate
the data bindings automatically, and cluster analysis is used to determine a
hierarchical description of each of the system's 77 subsystems. An analysis
of variance model is used to characterize subsystems and individual routines
that had either many /few errors or high/low error correction effort.

I

1 Introduction

Several researchers have proposed methods for relating the structure of a
software system to its quality (e.g., [BE82] [HK81] [Eme84]). One pivotal
step in assessing the structure of a software system is characterizing its cou­
pling and cohesion. Intuitively, the cohesion in a software system is the
amount of interaction within pieces (e.g., subsystems, modules) of a system.
Correspondingly, coupling in a software system is the amount of interac­
tion across pieces of a system. Cohesion may sometimes be ref erred to as
"strength." Various interpretations for coupling and cohesion have been pro­
posed [SM C7 4]. In this paper, we present an empirical study that investigates
hierarchical software system descriptions that are based on measures of co­
hesion and coupling. The study evaluates the effectiveness of the hierarchical
descriptions in identifying error-prone system structure. Our measurement
of cohesion and coupling is based on intra-system interaction in terms of soft­
ware data bindings [BT75] [HB85]. Our measurement of error-proneness is
based on software error data collected from high-level system design through
system test; some error data from system operation are also included.

The research approach was based on the application of a data collection
and analysis methodology in a large, production software environment. The
use of the methodology incorporates definition of the required data, collection
of the data, and appropriate data analysis and interpretation. The research
project was conducted in three phases, and they roughly corresponded to the
activities of data definition, collection, and analysis and interpretation.

The paper is organized into several sections. Section 2 discusses the soft­
ware project selected. The data bindings software analysis and supporting
tools are described in Section 3. The data analysis appears in Section 4.
Section 5 presents the interpretations and conclusions.

2 Selected Software Project

The software project selected for study is the next release of an internal
software library tool. The previous system release contains approximately
100,000 source lines. The production of the next release requires the de­
velopment or modification of approximately 40,000 source lines .. Hence, the
total size of the next system release is approximately 135,000 source lines.

1

I

The system is written in four languages: a high-level programming language
similar to PL/I, a language for operating system executives, a user-interface
specification language, and an assembly language. The static source code
metrics discussed later, including the data bindings analysis, pertain to only
the system portion written in the high-level source language. This portion
constitutes approximately 70% of the lines in the. system and the vast ma­
jority of the system logic and intra-system interactions. Project duration,
including system and field. test, spanned approximately 16 months and max­
imum staffing included 23 persons.

System Characterization There are 163 source code files in the system
containing a total of 451 source code routines. A routine is a main program,
procedure, or function. The number of routine~ per source code file varies
from 1 to 21. On the average, there are 2.8 routines per source code file.
There are 77 executable features in the system, referred to as subsystems
in the paper. These subsystems can be thought of as groups of routines
collected together to form functional features of the overall system. The
number of source files linked together· to form ~:subsystem varies from 1 to
82. On the average, 26.3 ·source files are linked ·together into. a subsystem.
The same source file is bound into 12.4 different subsystems on the average.
Subsystems averaged 19,000 source lines in size, including comments.

Data Collection The data collection and analysis methodology employed
the goal-question-metric paradigm [BW84] to result in a set of software prod­
uct and process metrics, a "metric vector," sensitive to the cost and quality
goals for the particular environment. The data was collected. and analyzed
at the same time the proj~ct took place. An important goal was to minimize
the impact of the data collection process on the developers. :See [SB] for a
description of the data definition, collection, and. analysis methodology, an
explanation of the metric vector concept, a description of the underlying data
collection forms, the data collection· process effectiveness, and some lessons
learned and recommendations based on the use of the data ·collection and
analysis methodology.

Figure 1: Example hierarchical cluster based on software data bindings. Pro­
cedures and functions are denoted by Pi, and clusters are denoted by circles.
The smaller clusters are relatively tighter (and form earlier), while the larger
clusters are relatively looser (and form later). The clusters define a system
hierarchy in the form of a tree: the smaller clusters at the leaf nodes and the
largest cluster at the root node.

3 Data Bindings Analysis

3.1 Clustering with Data Bindings

One primary goal for this study was to investigate the relationship of "soft­
ware data bindings" to software errors (HB85]. "Data bindings" are mea­
sures that capture the data interaction across portions of a software system.
The theoretical background for the measures is described in [HB85]. Earlier
studies have revealed insights about the usefulness of data bindings iri the
characterization of software systems and their errors [BT75] [HB85]. In or­
der to describe the data bindings analysis process applied, we first introduce
some terminology (see also [HB85]).

Potential Data Binding A potential data binding is defined as an ordered
triple (p,x,q) where p and q are procedures and x is a variable within
the static scope of both p and q. Potential data bindings reflect the
possibility of a data interaction between two components, based upon

3

I

the locations of p, q, and ·x. That is, there is a possibility that p and
q can communicate via the variable x without changing or moving the
definition of x. Whether x is actually mentioned inside of p or q is
irrelevant in the computation of poten~ial data bindings.

Used Data Binding A used data binding is a potential data binding where
p and q use x for either reference or assignment. The used data binding
requires more work to calculate than the potential data binding as it is
necessary to look inside the components p and q. It reflects a similarity
between p and q (they both use the variable x).

Actual Data Binding An actual data binding is defined as a used data
binding where p assi.gns a value to x and q references x. The actual data
binding is slightly more difficult to calculate as a distinction between
reference and assignment must be maintained. Thus more memory is
required but there is little difference in computation time. The actual
data binding only counts those used data bindings· where there may
be a flow of information from p to q via the variable x. The possible
orders of execution for p and q are not considered. That is, there may
be other factors (e.g., control flow conditions) which would prevent such
communication.

There are stronger levels of data bindings. However, in this study we
calculated actual data bindings. This level of data bindings seems to offer
adequate measure of similarity while not requiring complex data flow analysis
that stronger levels need. Essentially, we are erring in the direction of safety
(as done, for example, by code optimizers) by assuming that procedures may
influence one another unless we can show otherwise.

First, we calculated the actual data bindings in the system. Then, we
applied the statistical technique of clustering [Ev.e80] to the data bindings
information to produce a hierarchical description for the software system
(see Figure 1). The clustering takes· place in a bottom-up manner. The
process iteratively creates larger and larger clusters, until all the elements
have collapsed into a single cluster. The elements in the clusters are the
procedures and functions in the system. The elements with the greatest
interaction, in terms of actual data bindings, cluster together. The technique
of clustering ·has been applied previously to partition a large system into
subsystems in [BE82]. Hierarchical clusters have been formally defined in
[JS71].

4

3.2 Data Bindings Analysis Software

A set of five software tools was developed to calculate these hierarchical, data
bindings clusters and applied to the 77 subsystems in the selected project.
The source code is the only input required by the tools for automatic gen­
eration of a hierarchical system description. The tools determine the data
bindings that occur among the routines in the source code and: then use them
in cluster analysis as a measure of similarity. Four of the five tools are lan­
guage independent; the other tool - a major one - is language dependent.
For a description of the tools, see [SB]. The trees of clusters (see Figure 1)
output by the tools provide a form of system documentation - they give a
hierarchical view of the subsystems with respect io data usage.

4 Data Analysis

The data collection and analysis methodology was successful in producing
a wide range of statistically significant results. Several analysis techniques,
including analysis of variance and cluster analysis, were employed in the
study.

4.1 Terminology

Throughout the analysis and interpretation, we use the terms subsystems
and routines as follows:

• Routine - A routine is a main program, procedure, or function. There
are a total of 451 source code routines in the system.

• Subsystem - A subsystem is .a large set of routines that are linked
together to form an executable system feature. There are 77 executable
features in the system. They average 19,000 source lines in size.

A routine is linked into 12.4 subsystems on the average. Therefore, the total
size of the whole system is not 77 x 19,000 = 1,463,000 source lines; the
total size is approximately 135,000 source lines. See Section 2 for further
description of the subsystems and routines in the software system.

We used the analysis tools described in Section 3 to produce hierarchical
descriptions for each of the 77 subsystems (see Figure 1). The hierarchical

5

descriptions are rooted, connected trees that indicate the internal subsystem
structure. Each routine in a subsystem occurs as a leaf node in the tree ex­
actly once. Subtrees indicate groupings of routines that form natural cluster$
based on the data bindings criteria. There is a one-to-one correspondence
between subtrees and clusters. A cluster can contain either routines or other
clusters. In other words, the root node of a subtree can have· as its children
either leaf nodes (i.e., routines) or the root node of another subtree (i.e., a
subset of its ·own routines .that form a smaller cluster).

In the software system.being analyzed, a routine may be linked into more
than one subsystem. Each of the 77 subsystems has a separate hierarchical
description. Therefore, a routine appears in the hierarchical description of
each subsystem into which it is linked. A routine may cluster with different
sets of routines in different subsystems.

Associated with each cluster in a subsystem is a number ranging from 0
to 100. This number reflects the nature of the binding of the routines in the
cluster. This number is interpreted as. the following ratio:

the coupling of the cluster with other clusters in
the sub8ystem

the internal strength of the cluster

That is, the number captures the coupling/ strength ratio for a cluster of rou­
tines within a subsystem. The coupling/strength ratios range from 0 to 100
since they are calculated on a relative scale. The use of the word "relative"
here means relative to the coupling/strength ratios that could result from
the range of all possible occurrences of data bindings. In the data bindings
analysis process, the clusters are formed in a bottom-up manner. The clus­
ters with the lowest coupling/strength ratios form in the first iteration, the
clusters with the next lowest ratios form in the second iteration, and so forth.

The lower a cluster's coupling/ strength ratio is, the lower the relative
coupling with other clusters and the higher the relative strength of bind­
ing within the cluster. The higher a cluster's coupling/strength ratio is, the
higher the relative coupling with other clusters and the lower the relative
strength of binding within the cluster-. Software engineering principles gen­
erally suggest that it is .desirable to have low coupling and high strength,
which in this context means a low coupling/strength ratio [SMC74].

The data bindings analysis produced 77 trees corresponding to the sub­
systems which included a total of 4211 clusters containing 5045 routine o.c-

6

Figure 2: Distribution of errors and error correction effort by subsystem
coupling/ strength ratios.

Subsystem Errors Error correction hours
coupling/ per KLOC Total per KLOC Total
strength Mean Std :Mean Std Mean Std Mean Std

High 1.54 3.95 0.44 0.99 2.80 7.53 0.88 2.69
Low 0.31 1.16 0.15 0.52 0.91 4.51 0.42 2.39

Overall 1.28 3.58 0.38 0.92 2.39 7.03 0.78 2.63

currences. Recall that there were a total of 451 routines in the system -
each routine was bound into 12.4 subsystems on the average (see Section 2).
We calculated three different measures based on the clusters resulting from
the data bindings analysis. For each routine occurrence, we calculated:

• Routine coupling/ strength ratio - The coupling/ strength ratio of the
first cluster to form that included the routine as a member. This metric
is intended to capture the relationship of a routine to other routines in
a subsystem in terms of coupling and strength.

• Routine location in subsystem's data binding tree - The depth in the
tree of the first subtree (i.e., cluster) to form that included the routine
as a member. More precisely, it is the depth in the tree of the root of
that subtree. This metric is intended to characterize the location of a
routine in a data binding tree. This location information is useful to
know when data binding trees are used as an alternate form .of system
documentation.

For each subsystem, we calculated:

• Subsystem coupling/ strength ratio - The median of the coupling/ strength
ratios for the clusters within the subsystem. We use a non-parametric
statistic here, i.e., a median, because the coupling/ strength ratios are
relative measures. This ·metric is intended to characterize the overall
coupling and strength within a subsystem.

7

I

Figure 3: Distribution of errors and error correction effort by subsystem size.

Subsystem Errors Error correction hours
size per KLOC Total per KLOC Total

Mean Std Mean Std Mean Std Mean Std

Large 1.52 3.94 0.43 0.98 2.77 7.44 0.86 2.61
Small 0.35 1.22 0.17 0.58 0.98 4.96 0.49 2.71

Overall 1.28 3.58 0.38 0.92 2.39 7.03 0.78 2.63

Figure 4: Distribution of errors and error correction effort across subsystem
coupling/ strength ratios and subsystem size.

Subsystem Subsystem Errors Error correction hours
coupling/ size per KLOC Total per KLOC Total
strength Mean Std Mean Std Mean Std Mean

High Large 1.66 4.12 0.46 : 1.02 2.99 7.71 0.92
Small 0.45 1.41 0.21 0.66 1.11 5.31 0.56

Low Large 0.36 1.27 0.15 . 0.52 0.91 4.11 0.39
Small 0.28 L09 0.15 0.52 0.90 4.75 0.44

Overall 1.28 3·.58 0.38 0.92 2.39 7.03 0.78

4.2 Data Analysis Method

An analysis of variance model was used to characterize subsystems and rou­
tines that had either many /few errors or high/low development effort spent
in error correction.

4.2.1 Independent Variables

The analysis of variance model [Sch59] considered numerous factors simulta­
neously: subsystem size (above/below median); subsystem coupling/ strength
ratio (above/below median); individual subsystem's attributes (77 levels);
routine size .(above/below median); routine coupling/strength ratio (split

·8

Std

2.66
2.93
2.07
2.57
2.63

I

into four quartiles); routine location in subsystem's data binding tree (split
into four quartiles); and two-way interactions. When defining the levels for
some of the factors, non-parametric statistics (e.g., medians, quartiles) were
used since the coupling/ strength ratios are relative measures and the data
bindings trees have different overall depths. Subsystem size and routine size
are included as factors in the analysis because earlier analyses have indicated
a. relationship between size and software effort and error data (e.g., (Boe81]
[BSP83]). For a more complete description of the factors and their levels, see
[SB].

4.2.2 Dependent Variables

There were four dependent variables examined with the analysis of variance
model.

1. Total errors - The total number of inspection, Trouble Report (TR),
System Trouble Report (STR), and Error Summary Worksheet (ESW)
errors in a rou tine1

2. Total errors per KLOC - The total number of inspection, TR, STR,
and ESW errors in a routine per 1000 lines of source code

3. Error correction effort - The total amount of effort (in hours) spent
correcting TR and ESW errors in a routine

4. Error correction effort per KLOC - The total amount of effort (in
hours) spent correcting TR and ESW errors in a routine per 1000 lines
of source code

In general, the discussion will focus on the errors per KLOC and the
error correction effort per KLOC measures of the routines as opposed to the
absolute numbers. This factors out possible underlying correlations between
source lines and number of errors or amount of error correction effort. The
statistics for all four measures are reported, however. The discussion will tend
to highlight results that demonstrated a statistically significant difference, as
opposed to those where there was no statistical difference.

1 Inspections were held during the high-level and low-level design phases and after the
completion of unit testing. Error Summary Worksheet (ESW) errors were recorded during
the coding, unit testing, and integration testing phases. System Trouble Report (STR)
errors were recorded during system testing. Trouble Report (TR) errors were reported
against working, released code during and after field testing.

9

4.3 Characterization of High-Error and Low-Error Sub-
systems

In the source code portions of the system (see Section 2), there was a total
of 299 distinct errors recorded from inspections, error summary worksheets
(ESW's), system trouble reports (STR's), and trouble reports. (TR's). Data
on the :effort required for error correction were available for 204 distinct errors
recorded on ESW's and TR's. In the subsequent figures, all inspection, ESW,
STR, and TR errors are ·counted equally.

In the following sections we ·analyze the number of errors. and the error
correction effort in the subsystems. The characterization of the subsystems is
based on subsystem coupling/ strength ratio, subsystem size, and interactions
across these two factors. 'The results are summarized in a following section.
Graphical plots of the data are presented in [SB].

4.3.1 Subsystem Coupling/Strength Ratio

Figure 2 presents the errors and error correction effort in the routines in sub­
systems .with different co~pling/ strength ratios. This figure and the following
analogous figures give the means and standard deviations for (:i) the number
of errors per 1000 lines of source code (KLOC), (ii) the number of errors,
(iii) the -error correction effort per KLOC, and (iv) the error correction effort
in the. routines. Subsystem coupling/ strength ratio was not a statistically
significant factor with respect to either errors per KLOC or error correction
effort per KLOC (a-> .05)2

•

4.3.2 Subsystem Size

Figure 3 presents the errors and error correction effort in the routines in sub­
systems. with different sizes. The subsystems of large size had routines that
averaged 1.52 errors per KLOC, which was greater than the small subsystem
average of 0.35 errors per KLOC (a < .05).

2The F-test significance levels reported in this ·and later sections are based on the use
of Type IV partial sums. of sq.uares(S:ch59]. Any statistical difference discussed will at least
be significant at .the a < .05 level, unless otherwise noted.:

10

I

j

4.3.3 Interactions Across· Subsystem Coupling/ Strength Ratio
and Size

Figure 4 presents the errors and error correction effort in the routines in sub­
systems with different coupling/strength ratios and different sizes. Combin­
ing different subsystem coupling/ strength ratios and different sizes resulted
in a statistically significant interaction for errors per KLOC (a < .011).
Large subsystems with high coupling/ strength ratios had routines that av­
eraged 1.66 errors per KLOC, which was substantially more than the other
subsystems - their combined average was 0.36 errors per KLOC. In addi­
tion, combining subsystem coupling/ strength ratio and size resulted in an
interaction that was almost statistically significant for error correction effort
per KLOC (a < .066). Large subsystems with high coupling/strength ra­
tios had routines that averaged 2.99 error correction hours per KLOC - the
other subsystems had a combined average of 0.97 error correction hours per
KLOC.

Figure 5: Distribution of errors and error correction effort by routine cou­
pling/ strength ratios.

Routine Errors Error correction hours
coupling/ per KLOC Total per KLOC Total
strength Mean Std Mean Std Mean Std Mean Std

4-1Iighest 2.27 4.58 0.59 1.04 5.86 10.98 1.94 4.20
3-1Iigher 1.15 3.13 0.34 0.74 2.19 6.84 0.72 2.54
2.Lower 1.45 4.19 0.44 1.18 1.57 4.27 0.49 1.61
1.Lowest 0.28 1.11 0.15 0.49 0.21 1.09 0.06 0.29
Overall 1.28 3.58 0.38 0.92 2.39 7.03 0.78 2.63

4.3.4 Summary of Results

1. Large subsystems with high coupling/ strength ratios had routines with
the most errors per KLOC.

2. Large subsystems with high coupling/ strength ratios had routines with
six times as many errors per KLOC than did small subsystems with

11

I

I

Figure 6: Distribution of errors and error correction effort by routine size.

Routine : Errors Error correction hours
size per KLOC Total per KLOC Total

Mean Std Mean Std Mean Std Mean Std

Large 1.19 2.54 0.47 . 0.99 3.22: 8.72 1.20 3.42
Small 1.39 4.55 0.26 : 0.80 1.36. 3.81 0.26 0.71

Overall 1.28 3.58 0.38 . 0.92 2.39 7.03 0.78 2.63

Figure 7: Distribution of errors and error correction effort by routine location
in data binding tree.

Routine · Errors Error correction hours
tree per KLOC Total per KLOC Total

location · Mean Std Mean Std Mean Std Mean Std

4.-Root 0.88 2.82 0.30 0.77 1.30 4.82 0.37 1.59
3..Shallower 1.78 :4.44 0.51 1.12 3.55 8.88 1.19 3.36

2.J)eeper 0.96 :2.48 0.27 0.63 2.51 7.39 0.83 2.82
1.J)eepest· 1.28 . 3.73 0.38 0.96 1.76 5.08 0.57 1.95

Overall 1.28 '3.58 0.38 0.92 2.39 7.03 0.78 2.63

low coupling/ strength ratios.

3. Large subsystems with high coupling/strength ratios had routines with
ten times as many unit and integration test (ESW3

) errors per KLOC
than did small subsystems with low coupling/strength ratios.

4. Large subsystems with high coupling/ strength ratios had routines with
eight times as much error correction effort per KLOC from unit and
integration test (ESW) errors than did small subsystems with low cou­
pling/ strength ratios.

3 Errors during the coding and unit and integration testing phases were reported on
error summary worksheets (ESW's).

.12

4.4 Characterization of High-Error and Low-Error Rou­
tines

In the following sections we analyze the number of errors and the error cor­
rection effort in the routines. The characterization of the routines is based
on routine coupling/strength ratio, routine size, routine location in the. data
binding tree, and interactions across these three factors. The results are
summarized in a following section. Various graphical plots of the data are
presented in [SB]. As mentioned in Section 4.3 there were 299 distinct errors,
counting all inspection, ESW, STR, and TR errors equally; 204 of them had
data on error correction effort.

4.4.1 Routine Coupling/Strength Ratio

Figure 5 presents the errors and error correction effort in the routines with
different coupling/strength ratios. As before, this figure and the following
analogous figures give the means and standard deviations for (i) the number
of errors per 1000 lines of source code (KLOC)., (ii) the number of errors,
(iii) the error correction effort per KLOC, and (iv) the error correction effort
in the routines.

The routine coupling/ strength ratio statistically effected both the number
of errors per KLOC and the error correction effort per KLOC in the routines
(a < .0008 and a < .002, respectively). The routines in coupling/strength
region 4-1UGHEST had the most errors per KLOC (an average of 2.27) and
the highest error correction effort per KLOC (an average .of 5.86 hours).
The routines with coupling/strength ratios in either region 3.JIIGHER or
2-10WER had the second most errors per KLOC and the second most error
correction effort per KLOC. The 3..HIGHER and 2-10WER regions were
not statistically different in either errors per KLOC or error correction effort
per KLOC. Those 'routines in region 1-10WEST had the fewest errors per
KLOC (an average of 0.28) and the least error correction effort per KLOC
(an average of 0.21 hours).4 These results empirically support the software
engineering principle of desiring low coupling and high strength.

4 All multiple comparison results, such as the one in the previous four sentences, were
conducted with Tukey's multiple comparison statistic (Sah59] [Ins82]. All of the pairwise
statistical comparisons of these four categories are statistically significant at the a < .05
level simultaneously.

13

4.4.2 Routine Size

Figure 6 presents the errors and error correction effort in the routines with
different sizes. The routine size statistically effected the error correction
effort per KLOC for the routines (a< '.0001). Routines of large size had an
average of 3.22 hours error correction effort per KLOC, which was more than
did those of small size (an average of 1.36 hours error correction effort per
KLOC). Although small routines had slightly more errors per KLOC than
did large routines, the difference was not statistically significant (~ > .05).
A separate study has indicated, however, that smaller routines may be more
error-prone than larger routines [BP84].

4.4.3 Routine Location in Data Binding Tree

Figure 7 presents the errors and error correction effort in the routines with
different data binding tree locations. The routine location in_the data binding
tree statistically effected the number of errors per KLOC in the routines (a
< .0001). Routines in tree location region 3..SHALLOWER had an average
of 1. 78 errors per KLOC, which was more than any of the other three tree
location regions. 5

The routine location in the data binding tree also statistically effected the
error correction effort per KLOC for the routines (a< .0001). The routines in
tree location region 3_SHALLOWER had the most error correction effort per
KLOC (an average of 3.55 hours), those in tree location region 2.J)EEPER
had the second most, and those in regions 4..ROOT and LDEEPEST had
the fewest and were not statistically different (they had a combined average
of 1.53 hours). One interpretation for there being less error correction effort
per KLOC in regions 4..ROOT and 1.J)EEPEST may be the following: The
structure of the system at the highest level (i.e., initial stages of problem de­
composition) and the lowest level (e.g., formulation of abstract data types)
may be better understood than the intermediate levels of system develop­
ment. The effect of the less understood intermediate levels is compounded
in larger subsystems, as was seen in Sections 4.3.2 and 4.3.3.

5 Also, note that region 1..DEEPEST had more errors per KLOC than did region
4-ROOT.

14

4.4.4 Interactions Across Routine Coupling/ Strength Ratio, Size,
and Location in Data Binding Tree

In [SB], the errors and error correction effort are given for the routines with
different coupling/ strength ratios and different data binding tree locations.
There was a significant interaction between the routine coupling/strength
ratio and data binding tree location for the number of errors per KLOC in
the routines (a< ·.0001). All of the three two-way interactions (routine cou­
pling/ strength ratio with routine size, routine coupling/ strength ratio with
routine tree location, routine size with routine tree location) statistically ef­
fected the error correction effort per KLOC for the routines (all at a < .0001).
Routines with the highest coupling/strength ratios (4.JIIGHEST) and a lo­
cation in the "central portion" of the data binding tree (3..SHALLOWER
or 2_DEEPER) had the most error correction effort per KLOC (a combined
average of 6.46 hours).

4.4.5 Summary of Results

1. The routines with the highest coupling/strength ratios had the most
errors per KLOC and the most error correction effort per KLOC.

2. The routines with the lowest coupling/strength ratios had the fewest
errors per KLOC and the least error correction effort per KLOC.

3. The routines with the highest coupling/strength ratios had over.eight
times as many errors per KLOC than did routines with the lowest
coupling/ strength ratios.

4. The routines with the highest coupling/strength ratios had over 27
times as much error correction effort per KLOC than did routines with
the lowest coupling/strength ratios.

5. Routines in data binding tree location region 3_SHALLOWER had
more errors per KLOC and more error correction effort per KLOC
than did routines in the other tree regions.

6. Small routines had more unit and integration test (ESW) errors per
KLOC than did large routines.

7. Large routines had more error correction effort per KLOC than did
small routines when either all errors or just unit and integration test
(ESW) errors were considered.

15

8. Large routines tended to have a higher average amount of correction
effort per error for unit and integration test (ESW) errors than did
small routines.

4.5 Data Bindings for System Documentation and
Evaluation

The following observations resulted· from dialogue with project personnel
regarding the data binding trees generated.

1. The data binding clusterings were able to detect major system data
structures.

2. The data binding clusterings seemed to provide a different view of the
system than that provided by the system documentation, which in-·
eluded textual documents and a calling hierarchy.

3. Analyzing the clusters of data .bindings provided insights to the devel­
opment and maintenance team.

5 Interpretations an:d Conclusions

In this study, we have merged two goals:

• To collect and analyze data from an ongoing software project without
negatively impacting the software developers; and

• To investigate hierarchical system descriptions based on the software
engineering principles of coupling and strength (or cohesion) and their
relationship to software errors and error correction effort.

This study highlights and empirically supports several software engineering
principles. The interpretations span several areas: coupling/ strength, system
structure, and size.

Coupling/Strength

Low coupling/strength ratios are desirable (e.g., high strength and low cou­
pling).

16

• Routines with the lowest coupling/strength ratios had 8.1 times fewer
errors per KLOC than routines with the highest coupling/strength ra­
tios and errors were 27.9 times less costly to fix.

• Large subsystems with high coupling/strength ratios had routines with
4.6 times more errors per KLOC than did the other categories of sub­
systems.

System Structure Hierarchy: Data Bindings View

The structure of the system at the highest level, i.e., initial stages of problem
decomposition, and lowest level, e.g., formulation of abstract data types,
appear to be better understood than the intermediate levels of abstraction
and specification.

• The errors were 50% less costly to fix in routines at the shallowest
and deepest levels of the data bindings view of the system structure
hierarchy than at the middle levels, and there were 21 % fewer errors
per KLOC.

Size

Subsystem size seems to be at least as important, if not more important,
than routine size. Hence, maybe the software community has been worrying
about the wrong issue.

• Smaller subsystems had routines with 4.3 times fewer errors per KLOC
than did larger subsystems.

• Smaller routines had a slightly higher average of errors per KLOC than
did larger routines, although the difference was not statistically signif­
icant. When just unit and integration test errors are considered, how­
ever, smaller routines had significantly more errors per KLOC than did
larger routines. Overall, errors in smaller routines were 2.4 times less
expensive to fix.

17

6 Acknowledgement

The author is very grateful to several persons on the selected software project
for their assistance and support in this research. Their names cannot be
mentioned because of a non-disclosure agreement. The author appreciates
the assistance of D. Hutchens in developing the data bindings analysis tools,
S. Wilkin in collecting the data, and V. Basili in originating the project.

References

[BE82] L.A. Belady and C.J. Evangelisti. System partitioning and its mea­
sure. Journal of Systems and Software, 2(1):23-29, February 1982.

[Boe81] B. W. Boehm. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

(BP84] V. R. Basili and B. T .. Perricone. Software errors and complexity:
An empirical investigation. Communications of the A CM, 27(1):42-
52, Jan. 1984.

(BSP83] V. R. Basili, R. W. Selby~ and T. Y. Phillips. Metric analysis
and data validation across fortran projects. IEEE Transactions on
Software Engineering, SE-9(6):652-663, Nov. 1983.

(BT75] V. R. Basili and A. J. Turner. Iterative enhancement: a practical
technique for software development. IEEE Transactions on Soft­
ware Engineering, SE-1(4), Dec. 1975.

(BW84] V. R. Basili and D. M. Weiss. A methodology for collecting valid
software engineering data. IEEE Transactions on Softwar.e Engi­
neering, SE-10(6):728-738, Nov. 1984.

(Eme84] T. Emerson. A discriminant metric for module cohesion. In Proc.
Seventh Intl. Conj. Software Engr., pages 294-303, Orlando, FL,
1984.

(Eve80] B. S. Everitt. Cluster Analysis, 2nd ed. Heineman Educational
Books Ltd., London, 1980.

18

[HB85] D. H. Hutchens and V. R. Basili. System structure analysis: Clus­
tering with data bindings. IEEE Trans. Soft. Engr., SE-11(8), Aug.
1985.

[HK81] S. Henry and D. Kafura. Software quality metrics based on in­
terconnectivity. J ourna/ of Systems and Software, 2(2) :121-131,
1981.

[Ins82] SAS Institute. Statistical analysis system (sas) user's guide. Tech­
nical report, SAS Institute Inc., Box 8000, Cary, NC, 27511, 1982.

[JS71] N. Jardine and R. Sibson. Mathematica/ Taxonomy. John Wiley
and Sons, New York, 1971.

[SB] Richard W. Selby and Victor R. Basili. Analyzing error-prone sys­
tem coupling and cohesion. Technical report, Dept. of Computer
Science, University of California, Irvine. (in preparation).

[Sch59] H. 'Scheffe. The Analysis of Variance. John Wiley & Sons, New
York, 1959.

(SMC74] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structural
design. IBM Systems Journal, 13(2):115-139, 1974.

19

