
UC Irvine
ICS Technical Reports

Title
A strategy for design space exploration

Permalink
https://escholarship.org/uc/item/7st866c9

Authors
Bakshi, Smita
Gajski, Daniel D.

Publication Date
1993-08-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7st866c9
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

A §__trategy for Design Space Exploratio~

Smita ,aakshi
Daniel D. Gaj;f}

Technical Report #93-10

August 12, 1993

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

(714) 856-7063

sbakshi@ics.uci.edu

gajski@uci.edu

Abstract
In this report, we present an architectural classification based on four design

features: customization, slicing direction, parallelism and pipelining. We also
propose a strategy for exploring the architectural space of a design by varying
these design features in a systematic way. We believe that design exploration
carried out in such a manner will not only save considerable designer time and
effort but also result in more cost-effective designs. In order to demonstrate
the effectiveness of our exploration strategy we give the results of applying it on
four examples: a timer system, an FIR filter, an FFT datapath, and a robot
kinematics system.

1

h l),

Contents

1 Introduction 4

2 Architecture classifications 5

3 Exploration strategy 7

4 Exam pie descriptions 8

5 Experimental results 10

5.1 N independent Modulo-m Timers 10

5.2 FIR Filter ... 14

5.3 FFT Datapath 20

5.4 Robot Kinematics 24

6 Conclusions 29

2

List of Figures

1

2

3

4

5

6

7

8

VHDL Description of Timer System

8 Parallel 16-bit Counters

Cost vs. Performance of Timer Circuits

FIR Communication Flow and Slicing Directions

Different Block Sizes of FIR Filter Computation

Horizontal and Vertical Slicing of FIR Filter

Main and Reverse Diagonal Slicing of FIR Filter

Cost vs. Delay of 8-order FIR Filter Implementations

9 Resources vs. Cost, Delay and # of Memory Accesses of 8-order FIR Filter

Implementations

10 64-point FFT ..

11 Cost vs. Performance of 64-point FFT Implementation

12 Resources vs. Cost, Delay and Utilization of FFT Implementations

13 A Block Diagram of the Jacobian Computation

14 Signal Flow Graph of Block 1 of Jacobian Computation

15 Signal Flow Graph of Block 3 of Jacobian Computation

16 Signal Flow Graph of Block 4 of Jacobian Computation

17 Datapath of Design #1

18 Design Exploration Methodology

List of Tables

1

2

3

4

Evaluation of Timer Implementations

Evaluation of FIR Filter Implementations

Evaluation of FFT Implementations . .

Evaluation of Jacobian Implementations

3

11

11

13

14

15

16

17

18

19

21

23

24

25

26

27

28

29

31

13

20

22

29

1 Introduction

In this report, we present a strategy for exploring the architectural space of a given design.

We first develop and justify an architectural classification by using several "well chosen"

examples. Next, we propose the exploration strategy and test its validity with the help of

our examples.

We classify architectures on the basis of four factors: the use of standard vs. custom

components, the computation' "slicing and blocking" direction, the level and degree of

parallelism, and the degree of pipelining. We believe that the architectural space can be

exhaustively searched by varying these four factors in a systematic way.

The input to the exploration strategy is a high level design description (such as, a VHDL

description or a mathematical expression), and, optionally, a set of design constraints (such

as throughput, cost, number of chips etc). The design description is first converted to a

data flow graph, and its input-output dependence is analyzed. This gives us an idea of how

to optimally "slice" the computation. Next, we obtain the most parallel design, and vary

the parallelism and pipelining till design constraints are just satisfied. We believe that this

strategy leads to a cost-effective implementation.

Current synthesis environments like HYPER, [2], [8], rely heavily on tasks such as

transformations (loop unrolling, software retiming etc), scheduling and allocation. The

transformations explore the design space but in a very limited fashion. For example, the

structure of a summation can be transformed from a serial implementation to a balanced

tree implementation using tree height reduction; however, transformations are not capable of

altering the "slicing direction" of the computation by studying its input-output dependence.

The result of the synthesis is, thus, largely dependent on the input description as well as the

order in which the transformations are applied. This is not a desirable feature since different

users typically write different descriptions and hence obtain different implementations, some

of which may be sub-optimal.

The architectural exploration methodology proposed in this report differs in that it

varies the four design factors in a predetermined order (or, in some cases, iteratively) so as

to perform a more thorough exploration of the design space. Hence, the final implementation

is independent of the specifics of the input description that the user may have given.

The report is organized in the following manner. Section 2 describes the architectural

classification and Section 3 gives an outline of the exploration strategy. A description of

the examples is given in Section 4 and our experimental results are presented in Section 5.

In the concluding section we propose a "general" methodology for architectural exploration

4

and discuss the automation of various tasks in the design process.

2 Architecture classifications

In this section, we describe the four design features on which our architectural classifica

tion is based.

l. Design Customization : A design can consist of a mix of standard and custom

components. We classify a standard design as one in which we have to mold or "tweak"

the input specification to fit an already existing architecture. Standard components

are not tuned to the problem unlike custom components which can be "optimally"

designed for a given set of requirements. Though standard components are relatively

inexpensive and are well documented, they are often not suited for performance critical

applications.

The extent of customization in a design is most often governed by constraints on the

performance or cost of the design. For example, using a standard microprocessor such

as the Intel 8086 would be a cheap alternative to customizing a given design if the

former can satisfy the performance constraints imposed on the design.

Thus designs may be classified, with respect to customization, as follows:

(a) Standard datapath and control

(b) Standard data path with custom control

(c) Custom datapath and control

(d) Custom datapath with standard control

2. Direction of Slicing and Blocking: The communication flow or the input-output

dependence of a design can belong to one of three categories:

(a) Point Flow: The input consists of totally independent sets of data without any

notion of causality or sequence. Here, the ith output depends only on the ith

input.

(b) One-dimensional Flow: The input consists of a sequence of data values and

each output depends on a certain section or window of the input sequence. For

example, in a 4-order FIR filter the ith output depends on the (i-3)rd, (i-2)nd,

(i- l)st and the ith input.

5

(c) Two-dimensional Flow: As before, the input consists of a sequence of data

values but the outputs need not depend on a fixed section or window of the inputs.

In this system, data flows in more than one dimension (eg. right and down) and

hence it may not be possible to determine a direction of communication flow

along which the computation may be sliced (e.g. FFT datapath).

Computations with a point or two-dimensional flow do not benefit from slicing; how

ever, computations with a one-dimensional flow, can be sliced in one of four directions:

(a) Horizontal

(b) Vertical

(c) Main Diagonal

(d) Reverse Diagonal

The optimal direction of slicing for a design depends on its direction of data flow.

When we compute against the dataflow of the design the partial results that are

generated in one "computation block" 1 cannot be readily used by the next block of

computations and have to be stored back to the memory. On the other hand, when

we perform the computation in the direction of the dataflow, the partial results of

one block of computations can serve as inputs for the next block of computations.

We can thus store these partial results in registers instead of in the memory. Since

memory accesses are time consuming, slicing in the direction of the dataflow yields

more cost-effective designs.

In Sections 4 and 5 we introduce a one-dimensional flow example (FIR filter) and

demonstrate its optimal slicing direction.

3. Design Parallelism: Designs can have varying degrees of parallelism at different

levels. Consider a design that consists of N independent m-bit ADD operations.

Depending on the availability of resources, anywhere from 2 to N additions can be

done in parallel. We refer to this as the size of the computation block. For example,

the additions can be performed by eight iterations of a block of size N /8, four iterations

of a block of size N / 4, two iterations of a block of size N /2, and so on. Furthermore,

the adders in the block can range from 1 to m bits in length. Thus, parallelism can

exist at two levels, the bit level and the block level.

The degree of parallelism of a design is, thus, affected by the following three factors:

1 A computation block refers to a group of operations that can be executed as one ''indivisible" unit.

6

• the number of bits computed in parallel,

• the block size, and

• the number of blocks.

Design and resource constraints affect the choice of these factors. For example, the

block size may be limited by the number of available memory ports or the number of

IC pins. The bit parallelism may be limited by the availability of functional units, and

the number of blocks in the design may be affected by constraints on the performance

or cost of the design. The examples in Section 4 illustrate the variation of these

parameters across different implementations.

4. Design Pipelining: Pipelining a design increases the utilization of resources, and

hence the performance. The overhead in terms of the cost of pipelining registers is

usually a small price to pay for the significant gain in performance.

The pipelining in a design can vary in the range, non-pipelined to "maximally"

pipelined, where the "maximal" parallelism of a design is a limit imposed by technol

ogy (usually in terms of a minimum clock period).

It is to be noted that the four design parameters listed above are interdependent, and

varying one of them may limit the variation of the other. For example, if we fix the paral

lelism in the design, it will be essential to pipeline it enough so as to meet the performance

constraints. As another example, if standard components are used, the designer will have

no control over the extent of pipelining he can incorporate in the design.

3 Exploration strategy

This section outlines the design exploration strategy used to implement the four examples.

The timer example was described using VHDL code. This was sufficient since it consists of

independent sets of computations without any data flow. For the other three examples, our

starting point was a data flow graph, since the communication pattern of one-dimensional

and two-dimensional designs can be readily recognized using a data flow graph.

The result of our exploration is a set of implementations of the design and an estimate

of the cost and performance of the different implementations.

By first analyzing the description of the design, we determine its communication flow

pattern and classify the design as having a point, one-dimensional or two-dimensional flow.

We also determine its direction of flow (if one exists) and the data dependencies in the

7

design. From this analysis, we determine whether or not to slice the design as well as the

direction of blocking and slicing.

Next, we extract the maximum amount of parallelism from the design if no upper bounds

on the cost or the number of resource are specified. This is the starting point of the design

exploration. For example, the most parallel implementation of a design with say, 256

independent multiplications consists of 256 multipliers working in parallel. Note that the

most parallel design may be highly impractical. However, it serves as a good starting point

for breaking the design into a series of smaller computations.

If the designer specifies an upper bound (as in the robot kinematics example) on the

resources to be used (number of functional units, number of memory ports, etc.) then

the starting point of the design exploration consists of a datapath with the maximum

number of resources that still respect the resource constraints. We thus start from the most

parallel (and hence, most costly) end of the design spectrum and proceed towards less costly

designs. This is done by varying design parallelism and pipelining in a step-wise fashion.

As discussed in the previous section, design parallelism can be varied at the bit and block

levels, and parallelism and pipelining are closely related features that often cannot be varied

independently of each other.

Finally, using suitable assumptions of the area and delay of resources we estimate the

cost and performance of the designs. In all the examples the cost has been approximated

by a gate count of the datapath and the performance has been estimated by the total time

taken in ns for the entire computation.

It is also to be noted, that our design exploration is by no means complete since we have

focused on a small section of the design spectrum, namely designs with custom datapaths.

Also, in our examples we have mainly concentrated on varying design parallelism and, where

appropriate, the direction of slicing. Design customization and pipelining have not been

dealt with in any manner of completeness.

4 Example descriptions

In order to demonstrate the effectiveness of our classification scheme and exploration

strategy we used them to explore the design space of four examples. This section gives a

brief description of the examples and the next section gives the results of the exploration.

1. N independent modulo-m Timer System: The Timer System consists of N

independent counters where each counter has a separate load signal, enable signal,

m-bit limit signal and a time_out signal. (The output, thus, consists of the N time_out

8

signals). The ith output depends only on the ith input. The data fl.ow of such a system

can be classified as a point fl.ow.

2. Finite Impulse Response (FIR) Filter: The FIR filter response ([5]) is given by

the following equation: y[i] = 2:::~~0 1 x[i - k]b[k] where x[O .. N-1] is the input stream,

y[O .. N-1] is the output stream and b[O .. M-1] is the array of filter coefficients (M is

the order of the filter and N is the number of inputs). In this system, an output

signal, y[i], depends on M inputs, x[i], x[i-1], x[i-2], ,x[i-M+l]. The datafl.ow of this

system can be classified as having a one-dimensional fl.ow since an output depends on

a window of input values (in this case, M previous input values).

3. Fast Fourier Transform (FFT) Datapath: An N-point FFT consists of N inputs

labeled xo to XN-1' N outputs labeled Yo to YN-1 and lgN stages of computations.

Each stage of computation requires ~ butterflies where a butterfly consists of one

addition, one subtraction and one multiplication. Furthermore, two consecutive stages

are connected to each other via a shuffle network.

The data fl.ow in this system can be categorized as two-dimensional since an output

depends on all the inputs; thus, there is no direction of "communication fl.ow" as in

the example of the FIR filter.

4. Robot Kinematics: This example evaluates the Jacobian of an open kinematic

chain, whose representation is based on the product-of-exponentials (POE) formula.

Details of this representation can be found in [7].

Informally, the Jacobian of a robot is the linear transformation relating joint rates

to end-effector rates. The input to the algorithm consists of a set of n scalar joint

variables corresponding to the n joints of the robot and a set of n 4 x 4 matrices, A1

to An, characterizing the joints ([7]). The matrices are of a "special form" and they

can also be represented as 6-element vectors. The result of the Jacobian computation

is a set of n 4 x 4 matrices, Ji to Jn, which are similar in form to the Ai matrices and

can also be represented as 6-element vectors.

We now outline the steps of the algorithm for determining the Jacobian, J, of a

mechanism. Let G denote a 4 x 4 identity matrix. The first element of the set of

Jacobian matrices, Ji, is simply equal to the elements of Ai. The remaining n - 1

matrices, h to Jn, are evaluated as follows:

For (i = 2; i :s; n; i + +) do

9

G := G expA;-1x;_1;

Ii:= GAiG-1;

The matrix exponentials can be computed via a table lookup or directly from a closed

form expression for the exponential. We have computed the exponentials by a table

lookup.

This system can be categorized as one-dimensional since the direction of data flow

from the ith input to the ith output is restricted to one dimension.

5 Experimental results

In this section we describe the different implementations of the four examples given in the

previous section. We also give the estimated cost and performance of the implementations

and establish why some designs are more cost effective than others.

5.1 N independent Modulo-m Timers

The timer system consists of N inputs and N outputs where there is a one to one corre

spondence between the inputs and the outputs, that is, the ith output depends only on the

ith input and on no other input. The design essentially consists of N totally independent

sets of computations which can be performed in parallel or in series. Figure 1 gives a portion

of a VHDL sequential description of the timer system.

This example mainly illustrates the variation of the third parameter given in Section 2,

design parallelism. We also vary design customization, but in a limited manner. Further

more, we recognize that the timer system has a point flow and hence we cannot consider

the direction of slicing as a possible variant of the implementations.

We first find the most parallel implementation of the design and then we consider block

ing it into series of one or more computations (hybrid designs). The final implementation

computes the N operations completely serially (i.e. in N time steps). After varying the par

allelism at a block level, we vary the bit-level parallelism by considering bit-serial designs.

Next, we briefly describe various implementations of a system with 8 modulo-16 timers.

1. Design 1: This design (Figure 2) consists of 8 counters and 8 16-input NOR gates

which act as zero detectors. This is the most parallel implementation of the system.

2. Design 2: This design is identical to the first design except that we now reduce the

number of counters and zero detectors to 4 (instead of 8). Since there is more serialism

10

TIMER : process

begin

variable counter : array(7 downto 0) of integer;
variable i : integer;

Wait until CLOCK= '1' and not CLOCK'stable;
For i in 7 downto 0 loop

If LOAD(i) = '1' and LOAD(i)'active then
counter(i) := LIMIT(i);

elsif ENABLE(i) = '1' then

end if;
end for;

If counter(i) /= 0 then
counter(i) := counter(i) - 1;

else TIME_OUT(i) <= '1'; end if;

end process;

Figure 1: VHDL Descriptfon of Timer System

Timer 0 Timer 1

....-----.. Time_out------ Time_out

Count Count
Down L-__ .z-__ .._ _ __, Down L---~r----'----.
Load Load

Timer?

Enab':•:::::L_m.,.-b_1t_c_ou_ntT"e_r __J Enalili : .__m_-,....b-lt c_o_u...,nt.-er _ _. I I I I

Count
DownL-_.....-------,
Load.:r.:--mi-1 m-bit Counter

1 I I I Enall;,;.•--.~-..---...,,...-..J

m m m

Clock Limit Clock Limit Clock Limit

Figure 2: 8 Parallel 16-bit Counters

11

in this design and the number of resources is smaller than the size of the problem it

becomes necessary to introduce more storage elements so that the computations can

be done in blocks of 4 each. We thus introduce an 8 x 16 memory in this design. We

can generalize and say that serialism in a design necessitates the use of storage.

3. Design 3: Finally we have just one counter and zero detector in our design. This is a

completely serial design.

4. Design 4: The previous 3 designs were bit parallel designs and now we consider bit

serial designs. Design 4 consists of 8 independent "computation units" of a shift

register, a 1-bit adder and a zero detector. This design can be classified as a word

parallel, bit serial design.

5. Design 5: This design is similar to Design 4 except that it contains 4 instead of 8

"computation units" and a memory unit.

6. Design 6: In this design we reduce the number of computation units to one. Hence,

the design is a bit serial, word serial design.

7. Design 7: This design consists of 8 computation units where each computation unit

contains a 216 shift register, a 16 x 216 decoder, 216 AND gates and a 216 bit zero

detector. The design uses unary encoding and thus requires a 216 bit register to encode

all possible states of a 16-bit counter.

8. Design 8: This design is similar to Design 7 except that it contains 4 instead of 8

"computation units" and a memory unit.

9. Design 9: In this design we reduce the number of unary encoded computation units

to one.

10. Design 10: So far we have considered designs with custom datapaths. We now evaluate

designs with standard datapaths. Design 10 consists of the Intel 8086 micro-processor

connected to a memory and an I/O interface via a data and address bus. This design

is also serial at the word level.

11. Design 11: In this design the computations are done using 4, 4-bit AL Us (AMD 2901).

This design is also word serial and requires a 8 x 16 memory and a control unit.

12. Design 12: In this design we utilize two 8086 Intel micro processor chips with a dual

ported memory. This design can be classified as a hybrid design.

12

Design#

1
2
3
4
5
6

Resources in Design Total Cost
in gates

8 counters, 8 zero detectors 3064
4 counters, 4 zero detectors 1344
1 counters, 1 zero detectors 695

8 shift reg, 8 zero detectors, 8 one-bit adder 1512
4 shift reg, 4 zero detectors, 4 one-bit adders 1068
1 shift reg, 1 zero detectors, 1 one-bit adder 501

Table 1: Evaluation of Timer Implementations

Timer System Implementations
Cost vs. Delay

Total Time for
one operation (ns)

60
520
880
470
1340
4100

5000.0 ,--------.,.-------.----~---.------------,

0#6

• 4000.0

3000.0

2000.0

1000.0
0#3

•

0#5

•

0#20#4

• •
0#1

0.0 '--------~--~---~--~---~·~-~---~
a.a 1 aaa.a 2aaa.a 300a.a 4000.a

Cost (# of gates)

Figure 3: Cost vs. Performance of Timer Circuits

13

We evaluated the cost (in # of gates) and the performance (in terms of ns required to

compute the loop in Figure 1) of some of the designs enumerated above (Table 1). We de

termined that though word parallelism increases the cost it also brings about a considerable

increase in the performance. Furthermore, we realized that bit serialism reduces the cost

but also brings about a more than proportionate increase in the total computation time.

Table 1 lists some of the design evaluations and Figure 3 gives the cost vs. delay of the

designs. From the graph we conclude that Design #1 is nearly twice the cost of Design #2

but its speed is about eight times greater than Design # 2. This is because in Design #1

we have as many counters as there are timers and hence, there is no need for a memory. In

Design #2 we reduce the number of components by half and we introduce a memory unit.

Due to extra memory accesses, the computation time now increases by about eight times.

It is to be noted that Design #3 has the lowest cost-performance product.

Furthermore, we see that Design #4 is about half the cost of Design #1 and about six

times as slow. This is because it computes the bits of the timer serially using a one-bit

adder rather than in parallel using a counter. For the timer system we can conclude that

bit parallel designs are more cost effective than bit serial designs, where the term "cost

effective" can be defined as the percentage increase in performance due to a unit increase

in the cost (in our case, the gate count) of the design.

5.2 FIR Filter

Communication Flow
of FIR Filter

Output Direction 1~- _____________________ ..,...

' ' ~~-~,-- ------------------~
' ' ' ' "C~ - """":::- -'-,:-

', ', ',
~--~,-~,--~-- -----------~ ', ', ', ', 4>,,,

' ' ' ' 'IVf,,,. " - - , - - ""- - ... , - - ,- - -"¥a.- - - -~
', ' ', ' ', ~6:

... ' ' ' ' "t· ... --~,- -',- --',- -'""'- --~ -- -~~
' ' ' ' ' ' ~-'•---',--~'---'..rw--~~--~ ... -- -~
,, '' ''' -~ -~ --~ -~ -~- -'~ --~ -

Possible Slicing
Directions

Figure 4: FIR Communication Flow and Slicing Directions

We explain the implementations of the FIR filter by taking a specific example of an 8-

order, 16-input FIR filter. It consists of 16 inputs labeled x0 to x15 , 16 outputs labeled

yoto y15 and 8 filter coefficients labeled b0 to b1. Each output consists of a sum-of-products

14

involving the 8 coefficients and eight previous input values. Figure 4 shows that commu

nication follows a horizontal path from the input to the output and that input values flow

along the main diagonal.

XO

X1 =
X2 =
X3

X4

XS

X6 =
X7

xa

X9

X10 =
X11 =
X12 = I
X13 =I

I

X14 =:
X1S =:

X16= :
I

---,
XO BO

X1 BO + XO B1 :

:X2 BO + X1 B1 :+
:X3 BO + X2 B1 :+

.. t:
~:
~I

:Xo BO

~~.~~ : .. ~?.~~ ~: :x4·sa··+··xs·a1":+ ;;c2·132··+··)ff93'; r· :XO'a.if :
. .

:xs BO + X4 B1 :+ :X3 B2 + X2 B3;

l(6 BO + XS B 1 :+ :X4 B2 + X3 B3 ~ -tj

k.?. ~Q .. :I:.):<~ .~J .. ~
i)<B BO + X7 B1 l+ : 6

X9BO + xa B1 :+ ~x1 B3

.. ~ ·. ";, ";, ... : ·. · ·. · ... ·. ";, ·.:. ·. ''..":.:. :·····················.

:X1 B4 + XO BS~
+ X1 BS .j. io'66""'"""'""'"~

+ XOB7

-t ~2 B6 + X1 B7

+ X4 BS .t ~3 B6 + X2 B8

..

.
:····················.

: : : : : :
. 1R6Q .. t .. X1P.6.n :X14B3 + X13B3 ~XJ.~.~~.t .. XJ.1.~R~+:x10B6 + X9Bi: ---..;..;.;.;~-..----....~~~~~-....:

'------------------------•L------------------------
Figure 5: Different Block Sizes of FIR Filter Computation

In -this example, we mainly demonstrate the variation of the slicing direction and, to

an extent, design parallelism. The other two design parameters have not been varied: all

implementations are fully customized and non-pipelined.

The FIR filter has a one-dimensional flow; this makes it possible to slice the compu

tation in different directions. We considered four slicing directions: horizontal, vertical,

main diagonal and reverse diagonal (Figure 4). For each of the slicing directions we first

implemented the most parallel design and then blocked the computation in different sizes

and different directions. This is indicated in Figures 5, 6,and 7. Thus the variable factors

in the implementations are: the direction of slicing, the block size and the number of blocks

working concurrently. We also varied the direction of blocking in some implementations.

Table 2 gives the resources and an estimate of the cost and performance of a number of

implementations for an 8-order FIR filter. Given a number of resources, we can implement

a design to perform the computation in either of the four directions. We found that designs

15

I

~
I
\

\

I
I

\

\

\
I

\

~I
\ I

t

><!OJ
><!OJ

.. y(OJ
y(OJ

><!1J

~ .. y(1J y(1J I

I ><!2J

I

• .. y(2J y(2J

><!3J x(3J 3J

I
I

.. y(3J I y(3J I

I ><!4J
xt4J

I
I

I
.. y(4J .. y(4J

I
I

I
,/

><!15J ><!15]

~
I I

I
I

.. y(15J y(15J

(a) (b)

Figure 6: Horizontal and Vertical Slicing of FIR Filter

16

with horizontal slicing had the fewest number of memory accesses, and consequently these

designs gave the highest performance. The reverse diagonal implementations, on the other

hand, were the least cost effective.

><{OJ

r\"
.. y(O]

x(1J

.. y(1J

x(2]

.. y(2]

><{3]

.. y(3J

xj4J

y(4J

\ I I
\ (. I

\ "" ' \"'
\ \

\ \
\ \

\ ;'

"'
xj15]

y[15]

(a) (b)

Figure 7: Main and Reverse Diagonal Slicing of FIR Filter

In Figure 8 we show the cost vs. delay of a number of the implementations for four

different slicing directions. For all the implementations we see that horizontal slicing gives

the best performance, reverse diagonal slicing gives consistently bad results and vertical

and main diagonal slicing yield intermediate (and similar) results. Figure 9 gives the effect

of increasing resources on the cost, delay and number of memory accesses required. (Since

vertical and main-diagonal slicing techniques are very similar we have shown the results of

only one of them.)

From this we conclude that slicing a computation in the direction of its flow results in a

more cost effective implementation since in one "block" a fewer number of memory accesses

17

:[

8-order FIR Filter
Delay vs. Cost

60000.0 ~-----~-----~-----~-----~

50000.0

40000.0

...-.Horizontal

.._•Vertical

._ ->A. Main Diagonai
+···+Reverse Diagonal

~ 30000.0

~

20000.0

10000.0

0.0 ~--~--~--~--~--~--~--~--~
5000.0 10000.0 15000.0

Cost(# of gates)
20000.0 25000.0

Figure 8: Cost vs. Delay of 8-order FIR Filter Implementations

18

mem
ns gatesacc.

8-order FIR Filter
Resources vs. Cost, Delay,# of Memory Accesses

60,000 60,000 600 ~----~----~----~-----~----~----~

50,000 50,000 500

40,000 40,000 400

30,000 30,000 300

20,000 20,000 200

10,000 10,000 100

1 M/1 A 2 M/2 A

+----+ Hor. (Cost)
+- -+Main Diag. (Cost)
+···-···+ Rev. Diag. (Cost)
---- Hor. (Delay)
11- - • Main Diag. (Delay)
•········• Rev. Diag (Delay)
A----------.oa. Hor. (Memory Accesses)
&- - • Main Diag. (Memory Accesses)
•···· ····• Rev. Diag. (Memory Accesses)

/
/,

/

" "

-+ --/

" -"-.---

4M/4A SMnA 8 M/SA
Resources (#of Multipliers/# of Adders)

Figure 9: Resources vs. Cost, Delay and # of Memory Accesses of 8-order FIR Filter
Implementations

19

Slicing #of #of #of #of #of memory Total Cost Total Computation
Direction Mult. Adders Reg Memory Ports accesses #of gates Time (ns)
Horizontal 1 1 3 1 200 8395 34200
Horizontal 2 2 4 1 148 9918 25200
Horizontal 2 2 3 2 200 11114 19700
Horizontal 4 4 8 1 76 13220 14600
Horizontal 8 7 14 1 40 19153 8000
Horizontal 8 8 14 2 80 20892 8800

Vertical 1 1 2 1 292 8267 44800
Vertical 2 2 4 2 292 11242 22400
Vertical 4 4 7 1 84 13604 16800
Vertical 8 7 8 1 60 20945 8400

Main Diag. 1 1 3 1 280 8395 44050
Main Diag. 2 2 4 1 148 9918 26700
Main Diag. 4 4 11 1 76 13604 16000
Main Diag. 8 7 24 1 40 20433 9700
Main Diag. 8 8 20 2 85 21660 10900
Rev. Diag. 1 1 3 1 400 8395 55000
Rev. Diag. 2 2 4 2 400 11242 27800
Rev. Diag. 4 4 8 4 400 15204 14500

Table 2: Evaluation of FIR Filter Implementations

are required. On the other hand, if we slice the computation against its natural flow (along

the reverse diagonal for example) a lot of the partial results that are generated in each block

of computation have to be stored back to the memory rather than be combined to yield

an output or a fewer number of larger partial products. This consequently, reduces the

performance of the design. Figure 9 also shows that there is a direct relationship between

the number of memory accesses in the design and the total computation time. Thus, the

larger the number of memory accesses the larger will be the total execution time.

5.3 FFT Datapath

We explain the implementations of the FFT datapath by taking the example of a 64-

point FFT. This is shown in Figure 10. As we mentioned previously, an output of the FFT

depends on all the inputs and the communication fl.ow is two dimensional rather than one

dimensional. Hence, we cannot slice the computation in different directions as we could for

the FIR filter. Also, there is a lot of data dependence between two consecutive stages of

computations. (We define node j in the dataflow graph to be dependent on node i if the

result of node i is used as an input for node j. Thus node j can be computed only after

node i has been computed). In the FFT, the results of one stage of butterflies are required

by the next stage. Hence, we do not have a lot of flexibility in the direction or order of

20

1
2

• j __ ,-~('-
• : ... I' ~ 61 j __ , __

62: 1 '

63 j -- ,_,..,....."'-_,,.
64 L

Figure 10: 64-point FFT

21

c:
0 :u
Q)
c:
c:
0
()
Q)

= :::I
..c: en

Block #of #of #of # of #of memory #of Total Computation Utilization of
Size Blocks Memory Ports Multipliers Adders accesses Gates Time FFT Chip (3)

4 1 1 4 8 384 27200 6720
4 1 4 4 8 96 42200 3840
4 4 4 16 32 96 63800 1600
4 4 16 16 32 24 108800 960
4 8 16 32 64 24 137600 840
8 1 1 12 24 256 41600 4000
8 1 4 12 24 64 56000 2080
8 1 8 12 24 32 81600 1760
8 2 8 24 48 32 103200 960
8 2 16 24 48 16 123200 880
8 4 16 48 96 16 166400 480
16 1 4 32 64 160 92600 4000
16 1 16 32 64 40 137600 2800

16/4 1/1 4 36 72 64 99800 2080
16/4 1/4 16 48 96 16 166400 880

16 2 16 64 128 40 195200 1500
32 1 4 80 160 544 179000 10000
32 1 16 80 160 136 224000 5820
64 1 16 192 384 8 368000 260
64 1 64 192 384 2 448000 200

Table 3: Evaluation of FFT Implementations

evaluation of the butterflies.

In the implementations of the FFT given below we have only varied the design par

allelism. As in the example of the FIR filter, we have not varied the extent of design

customization or the pipelining.

The parallelism factors that vary across different implementations are:

1. the block size (i.e the number of butterflies that can be evaluated by one chip),

2. the number of such blocks (or chips), and

3. the number of memory modules or memory ports in the design.

For the 64-pt FFT the most parallel implementation is obtained by doing the compu

tation in one block of size 64. This requires the least number of memory accesses to store

intermediate results, and depending on the number of ports on the memory, the input and

output data can be loaded in one or more batches.

Next, we serialize the design by using block sizes of 32, 16, 8 and 4. We also vary the

number of blocks and, to a limited extent, the number of memory ports. For each of these

implementations we estimate the cost, performance and the utilization of the blocks. This

is given in Table 3 and illustrated in Figure 12.

22

100
100
100
100
100
100
100
100
100
100
100
30
30
46
54
30
7
7

100
100

64-pt FFT
Cost vs. Delay

12000.0 ~------------------------------

10000.0

8000.0

6000.0

4000.0

2000.0

•(4x 1, 1)

•(32 x 1, 16)

(8X1, 1)

• •(16x1,4)

•(4x1,4)

•(16x 1, 16)

(6x 1,4)
• • (16x1,4x1,4)

•
(4x4,4)•

(Bx 1, 8)

(4XS,16) -..
(4x4,4)

•
•

.(16X2, 16)

(6x4, 16)

(Block size x #of blocks,# of memory ports)

(64x 1, 16)

•
(64x 1, 64)

•
0.0 ~--~---'-----'-----'---~----'---~--....L--~---

0.0 100000.0 200000.0 300000.0
Cost (number of gates)

400000.0 500000.0

Figure 11: Cost vs. Performance of 64-point FFT Implementation

23

Figure 11 gives the estimated cost vs. delay of the different implementations. The

designs in which the block size is 16 or 32 have a low utilization compared to designs with

block sizes of 4, 8 or 64. This consequently increases the total computation time of such

designs. The reason for the low performance is that the 64-point FFT does not map well to

blocks of size 16 or 32 and a lot of redundant butterflies are required in order to complete

the FFT using these blocks. For example, when we use a chip of size 32, the first 5 stages

of the butterflies are computed without any redundant computations but evaluation of the

sixth stage results in about 90% extra butterflies. This reduces the effective utilization of

the chip and consequently its performance. (In general, an N-point FFT can be computed

with an M-point FFT chip without any redundant butterflies (100% utilization) provided

lg N is a multiple oflg M.)

% ns. gates

100 10000 500000

80 8000 400000

60 6000 300000

40 4000 200000

20 2000 100000

64 ·point FFT
Cost, Delay, Utilization vs. Resources

+···+···+····+···+-···+···+···+--··t

------ Cost (t of galas)
.lk- -.t.O.lay (ns)
+-----+ Ullzatton (%)

~
I
I
I
I
I
I
I

\
\
I
I

l
I
I

\ __ .._ I
-.i.

t i I'\ !
\ \ i It----

/
I

i
1'
1'
I I
I I
I I
I I
I I
I I
I I

I \
I + i

,_ I I; _/\ I .
-f I 1i

I i
; I)

0 i\
j i\
f\ i \
i\ ! I

, l \ I \
\ I _ ; I
'i. ~---~ I

L..,
41811 1212411 1212.418 16132/18 24148118 3216.il/16 ABllMJ/16 80/180/A Hil2/38.U18

Resources(# of Multipliers, t of Adders, i of Memory Ports)

Figure 12: Resources vs. Cost, Delay and Utilization of FFT Implementations

5.4 Robot Kinematics

We implemented the datapath for the computation of the Jacobian of a robot with 8

joints. A block diagram of the entire computation is shown in Figure 13. It is to be noted

that all computations involve floating point numbers. Block 1 consists of the multiplication

of a 6-element vector (Ai matrix) with a scalar (xi)· Block 2 is a table lookup and Block 3

24

Block 1 Block2 Block3 Block 4

x[J[11 11---+ A[1]*x[1] exp(A[1]*x[1]) - Product of two Product of three
...... matrices - matrices i----.

1

x[2 J[21 1--- A[2]*x[2] . exp(A[2]*x[2])
Product of two Product of three

"' r-.. matrices
,.. matrices

x[3 J[31 1--- A[3]*x[3] exp(A[3]*x[3]) -- Product of two . Product of three
...... r-.. --. matrices matrices

x[4 J[41 1--- A[4]*x[4] - exp(A[4]*x[4]) - Product of two Product of three
...... - i---. matrices matrices

x[51 [51 ---- A[S]*x[S] exp(A[S]*x[S]) -- Product of two - Product of three
--. i-.J --. matrices matrices

•
x[61 [61 ---+ A[6]*x[6] exp(A[6]*x[6]) - Product of two Product of three

...... - i-.J matrices matrices

~

x[7] [7] ---+ A[7]*x[7] exp(A[7]*x[7]) . Product of two Product of three i-.J ,..
matrices matrices

81 x[81 ---+ A[8]*x[8] - exp(A[8]*x[8]) Product of two Product of three - i-.J[matrices matrices

Figure 13: A Block Diagram of the Jacobian Computation

25

Direction of Flow

A,.[1)

A 1.[1) 'x[i]
A 1.[2)

A 1.[2]*x[i]

A1·[3]

Xi A ,.[3] *x[i]

A,.[4]

A 1.[4]*x[i]

A1·[5]

A ,.[5] *x[i]

A 1.[6]

A 1.(6] *x[i]

Figure 14: Signal Flow Graph of Block 1 of Jacobian Computation

consists of the multiplication of two 4 x 4 matrices. Block 4 is similar to Block 3, except that

it has a fewer number of computations (because of the special structure of the matrices). It

is easy to see that the critical path lies through the Block 3 computations since the output

of the ith computation serves as an input for the (i + 1)th computation.

Figures 14, 15 and 16 depict the signal flow graph of Blocks 1, 3 and 4 respectively. In

Figure 15, R11, R12 etc. represent elements of the matrix obtained from the table lookup

in Block 2. (The signal flow graphs were derived manually from a high-level description (in

C-language) of the Jacobian computation.)

The table of exponentials for Block 2 is estimated to have approximately n X 106 16-bit

entries. For a robot with 8 joints this amounts to approximately 20 Mbits of ROM. In our

designs we have assumed that the ROM is off-chip and thus, Block 2 requires 12 off-chip

memory accesses.

In this example, we demonstrate how constraints on the cost of a design can limit its

exploration. We assumed that the datapath was to be implemented on a single chip using

gate array technology [9] and thus, we had an upper bound on the total gate count of the

implementations.

We first determined the direction of dataflow in Blocks 1, 3 and 4. This is indicated

26

Direction of Flow

P1
R13
R12
R11

OulR11

kiputs ~om P"•vious slice.

R13
R12
R11

Oul.R12

Inputs from previous sliw

R13

~
R12
R11

OUlR13 ..
P2
R23
R22
R21

OULR21

kipuls ~om P"•vious slice

R32----R33----~
R31x + + x -

OutR33 ..

•
•

Figure 15: Signal Flow Graph of Block 3 of Jacobian Computation

27

Figure 16: Signal Flow Graph of Block 4 of Jacobian Computation

28

Design# # Multipliers #Adders # Memory Ports Total# Total Computation
of gates Time (µsec)

1 3 3 3 36,000 21.6
2 2 2 1 25,000 27.3
3 1 1 1 16,000 32.0

Table 4: Evaluation of Jacobian Implementations

in the figures. We then partitioned (or blocked) each of the signal fl.ow graphs to obtain

the "largest" block size without violating the resource constraints. (This corresponds to

obtaining the "most parallel" implementation for each of the blocks). With this information

we obtained a datapath for each of the blocks. As can be seen from Figures 14, 15 and

16, all the blocks have similar computations and thus, the datapaths for each of them are

very similar. Next, we merged the datapaths to obtain a single datapath for the entire

computation. The datapath was optimized for Block 3 since, in addition to being the most

computation-intensive block, it also lies on the critical path of the computation.

64x 16
RAM

(3-ported)

Figure 17: Datapath of Design #1

The largest datapath that we could afford with the constraint of using a single chip

consists (Figure 17) of 3 16-bit floating point multipliers, 3 32-bit floating point adders and

a 64 x 16 3-ported RAM. This appears as Design#l in Table 4. Table 4 also lists the cost

(total # of gates), and the performance (time taken for evaluating the Jacobian for one

set of inputs, x1 to xs) for two additional designs, Design #2 and #3. These designs were

obtained by reducing the block size to contain a fewer number of functional units.

6 Conclusions

In this report we have presented an architectural classification scheme and a strategy for

design space exploration. In order to validate the feasibility of our exploration strategy we

29

have investigated the architectural space of four examples: a timer system, an FIR filter,

an FFT datapath, and a robot kinematics system. It is to be noted that we have only dealt

with custom datapath and control architectures.

vVe now extend the methodology to include standard designs and we describe several

design tasks in the methodology. Figure 18 gives an overview of the proposed methodology.

1. The designer input consists of a high level description of the design (in VHDL, C,

etc.) and, optionally, a set of constraints (cost of design, power dissipation, number

of memory modules, expected performance, etc.). The high level description is parsed

into a hierarchical data flow graph which serves as an intermediate representation.

Alternatively, for small designs, the user can input his description directly in this

format.

2. Next, the hierarchical flow graph is analyzed in order to determine

(a) the direction of communication flow,

(b) the critical path, and

(c) the data dependencies.

The results of this analysis are used, in later steps, to slice and block the computation.

3. The design can be implemented using a standard or a custom datapath. This decision

can be made by a designer, or alternatively, a tool can be employed to make a decision

based on designer constraints. If the designer opts to use a standard datapath, the

next task in the design process consists of selecting a processor from the component

library and compiling the input description into the assembly code of the chosen

processor. A software estimator ([4]) can then be used to verify that performance

constraints are met. If constraints are not met, the designer (or the tool) can choose

an alternative target processor or datapath and repeat the estimation.

The tasks of processor selection, compiling, and software estimation can be automated

to facilitate rapid exploration of design alternatives.

4. If the designer opts to customize the datapath, the next task involves pipelining the

dataflow graph. This is done by inserting pipelining stages so as to divide all paths

of the computation into stages of equal "time steps". Once again, this task can be

automated.

30

Standard Datapath

High Level Specification
VHDL, Mathematical formula etc.

Develop Flow Graph
(maybe hierarchical)

Determine Critical Path
and Direction of Slicing

Choose Standard Processor/Datapath a ..
from library and generate assembly

code for it

Estimate Perfonnance and Cost

No

Yes

.....
M

:

E
s
T :
I
M
A
T
I : 0
N ..

: :

~ ~
0 " ~ ,Q
0 :J
()

High Level, Logic, Layout
Synthesis

Custom Datapath

Pipelining '

Serialization/Parallelization

Blocking

No

(Across hierarchy levels)

Yes

Figure 18: Design Exploration Methodology

31

.S. Next, based on given constraints, the library of available components, the direction

of slicing and the critical path, a computation block is selected. This is equivalent to

partitioning the data flow graph given a set of constraints and a preferred direction of

partitioning (or slicing). A hardware estimator is then employed to estimate quality

metrics such as the cost and performance of the design. If design constraints are

violated, the computation is repartitioned by varying design parameters such as the

size of the block, the extent of parallelism etc.

The process of choosing an "optimal" block is an iterative one as described rn the

previous sections and estimation is an important step in this process.

6. After determining the computation block, the final design can be obtained by a series

of well known tasks such as scheduling, binding, ([3]) control synthesis and finally,

layout syn thesis ([6]).

The exploration methodology described above allows a designer to rapidly evaluate a

large spectrum of implementations. We not only believe that considerable designer effort

and time can be saved by automating and integrating these design tasks, but also that the

resulting design will be more cost-effective since it would be selected only after an exhaus

tive search of the design space.

Acknowledgements

This work was partially supported by the Semiconducter Research Corporation grant

#92-DJ-316, and we gratefully acknowledge their support. We also extend our gratitude

to Hsiao-Ping Juan for her help in developing and evaluating several implementations of

the FIR filter and the FFT example. Finally, we would like to thank Frank C. Park for

providing the example of the robot kinematics system.

References

[1] E.Bidet, C. Joanblanq, and P.Senn, GENRIF: An Integrated FIR Filter Compiler, Proceedings of
EDAC, 1993.

[2] C.M. Chu, M. Potkonjak, M. Thaler and J. Rabaey, HYPER: An Interactive Synthesis Environment for
High Performance Real Time Applications, Proceedings of the International Conference on Computer
Design, pp. 432-435, 1989.

[3] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers, 1992.

32

l.

[4] J. Gong, D. Gajski, and S. Narayan, "Software estimation from executable specifications", UC Irvine,
Dept. of ICS, Technical Report 93-5, 1993.

[5] A. Oppenheim, A. Willsky and I. Young, Signals and Systems, Prentice Hall Inc.,1983

[6] B. Preas and M Lorenzetti, Physical Design Automation of VLSI Systems, Benjamin/Cummings, 1988.

[7] F.C. Park and A.P. Murray, Computational and Modeling Aspects of the Product-of-Exponentials For
mula for Robot Kinematics, to appear in IEEE Transactions on Automatic Control, 1993.

[8] A Tutorial on Implementation and Synthesis of VLSI Signal Processing, presented by Keshab K. Parhi
and Jan Rabaey, and produced by IEEE Educational Activities Board in cooperation with the IEEE
Signal Processing Society.

[9] Toshiba, TC140G/14L Series Megacell Megafunction ASIC Gate Array Library, 1990

33

