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ABSTRACT OF THE DISSERTATION

Inference for Partially Identified Economic Models

by

Hiroaki Kaido

Doctor of Philosophy in Economics

University of California, San Diego, 2010

Professor Halbert White, Chair

When a sample of data does not fully reveal the “true” data generating

structure (or parameter) but gives information that bounds the set of observation-

ally equivalent structures, an economic model is said to be partially identified. This

dissertation develops and applies estimation and inference methods for economic

models whose population features are only partially identified.

In Chapter 1 (co-authored with Halbert White), I apply econometric tech-

niques from the partial identification literature to address a fundamental problem

in asset pricing theory. Namely, that the market price of risk is only identified as a

set under incomplete markets. I construct a set estimator and confidence regions

for the set of market risk prices. I further show that it is possible to test hypotheses

of economic interest without fully identifying the market price of risk.

xiii



The econometric techniques used in Chapter 1 are developed by Chapter 2

(co-authored with Halbert White). When the dimension of the parameter space is

large, this is a particular challenge for set-valued estimators, as high dimensionality

can create computational difficulties and seriously hamper the interpretation of

estimation results. We study how the use of a natural two-stage extension of the

Chernozhukov, Hong, and Tamer’s (2007) (CHT) framework can exploit a priori

knowledge about the data generating process to mitigate the problems otherwise

associated with set estimation in high-dimensional parameter spaces.

Chapter 3 unifies two general approaches recently proposed in the litera-

ture, the criterion function approach and support function approach. CHT develop

a theory of set estimation and inference for the set ΘI of parameter values that

minimize a criterion function Q(θ). The support function approach provides an

alternative characterization of CHT’s level-set estimator by its supporting hyper-

planes. This results in an estimation and inference method that has the wide

applicability of the criterion function approach and the computational tractabil-

ity of the support function approach. By establishing the asymptotic distribution

of the properly normalized support function of the level set estimator, I provide

Wald-type inference tools to conduct tests regarding the identified set ΘI and a

point θ0 in the identified set.

xiv



Chapter 1

Inference on Risk-Neutral

Measures for Incomplete Markets

1
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1.1 Introduction

For a continuous time, continuous state model, Harrison and Kreps (1979)

have shown the equivalence between the absence of arbitrage and the existence of

Q, the risk neutral probability measure (henceforth RNP), which is absolutely con-

tinuous with respect to the data generating measure. Subsequently, Delbaen and

Schachermayer (1994) have shown that a condition called “no free lunch with van-

ishing risk” is equivalent to the existence of an RNP, which is mutually absolutely

continuous with respect to the data generating measure. This result is known as

the first fundamental theorem of financial economics (1st FTFE). In general, in the

absence of arbitrage, the price of a financial asset can be computed simply as the

expected value of its payoffs under the risk neutral probability, discounted by the

risk-free rate. By comparing the RNP Q to the actual data-generating probability

measure (DGP) P , one can recover agents’ attitude toward risk.

Another object closely related to the RNP is the stochastic discount factor

(SDF), also known as the pricing kernel. Harrison and Kreps (1979) and Harrison

and Pliska (1981) show that the existence of the SDF is also equivalent to the

absence of arbitrage. Further, they show that the uniqueness of the RNP (equiv-

alently SDF) is equivalent to market completeness. This is known as the second

fundamental theorem of financial economics (2nd FTFE).

There is a rich literature on the estimation of the SDF. The SDF depends

generally on the state variables driving asset prices. Financial economists and

macroeconomists have shown that a specific functional form for the SDF can be

derived from the equilibrium prices generated by rational economic agents for

assets with given payoff streams. Well known examples are the CAPM studied

by Sharpe (1964) and Lintner (1965) and the consumption CAPM studied by

Lucas (1978) and Breeden (1979). The state variables determining the SDF in

these examples are the tangent portfolio return and aggregate consumption. The

standard approach is to estimate parameters associated with this function and test

whether the estimated SDF can price assets correctly or not. One drawback of this

approach is the requirement of observable state variables. If the state variables are

measured only poorly, this directly affects the bias and precision of estimators and
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the level and power of tests. Further, the functional form implied by the economic

model need not be correctly specified; misspecification has similar adverse effects.

Recent studies (e.g., Aı̈t-Sahalia and Lo, 1998; Chernov and Ghysels, 2000;

and Rosenberg and Engle, 2002) show that one can estimate the RNP using only

asset prices. These are usually measured very precisely. Further, high frequency

data are often available. These rich data sets make possible the use of nonparamet-

ric techniques that can avoid the potential misspecification problem. So far, the

literature has focused on estimating on a single risk neutral probability measure

(or SDF) projected on price information. Aı̈t-Sahalia and Lo (1998) nonparamet-

rically estimate the RNP density. Chernov and Ghysels (2000) propose a method

to estimate parameters associated with the RNP and the actual DGP jointly, us-

ing a time series of asset returns and option prices. Rosenberg and Engle (2002)

estimate a unique RNP projected on the asset returns.

When markets are incomplete, there exists a set QI of RNPs identified by

the distribution of observed asset prices. QI is identified in the sense that any

of its elements generates the same distribution of observed asset prices. That is,

there are multiple observationally equivalent economic structures Q. In this case,

the economic structure is only partially identified by the observed data. The study

of partial identification was pioneered by Charles Manski; see, e.g., Manski (2003).

In this paper, we contribute to the finance literature by applying the techniques

of partial identification to develop methods of estimation and inference for the set

of RNPs QI identified by a given vector of asset prices without assuming market

completeness nor using projection methods.

Our specific focus here is on the vector of time t market prices of risk,

λt, a key element of the Girsanov transformation. In the absence of arbitrage,

λt exists but is not uniquely identified by the asset price process when markets

are incomplete. Instead, λt belongs to an identified set ΛI,t associated with QI .
By further imposing a bound on ‖λt‖ := (λ′tλt)

1/2, we obtain an identified set

denoted ΛM
I,t. We then show that ΛM

I,t can be represented in terms of a set of

minimizers of a certain criterion function. This enables us to apply the extremum

set-estimation approach of Chernozhukov, Hong, and Tamer (2007) (henceforth the
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CHT framework) to construct a set estimator and a confidence region for ΛM
I,t and

to conduct hypothesis tests. In this application, we first concentrate out diffusion

parameters and apply a two-stage procedure introduced by Kaido and White (2008)

that helps to reduce the dimension of the associated set-valued estimators. To the

best of our knowledge, this is the first application of such a procedure.

For concreteness, we pay particular attention to the case in which a standard

multivariate geometric Brownian motion determines the evolution of asset prices.

In this case, λt = λ0, a non-random and time-invariant vector. As our applications

show, there are cases where unspanned Brownian motions represent relevant risks

(e.g. international aggregate risk). When the researcher’s interest attaches to

how those risks could be potentially evaluated, the RNP (or SDF) projected on

asset prices does not provide enough information. In such cases, we need a tool to

conduct tests on hypothesis regarding unspanned risks. The multivariate Black-

Scholes setting is a simple starting point for illustrating the idea of this new tool.

If the projected RNP (or SDF) does not provide enough information. There

could be two ways to proceed. One could fully specify the agent’s preference and

the endowment process to uniquely determine the equilibrium RNP, but as we

will show, this is not strongly necessary for conducting statistical inference on

features of the RNPs. Our alternative approach has an advantage that we can still

test hypotheses of economic interest without fully specifying structural details of

the model and also without fully identifying the equilibrium RNP. For this, we

make use of statistical inference framework and associated subsampling algorithm

developed by Romano and Shaikh (2008).

The paper is organized as follows. Section 1.2 specifies the asset price data

generating process. In Section 1.3, we discuss the identification of the market

price of risk. Section 1.4 sets forth our econometric framework for estimation and

inference. In Section 1.5 , we apply our results to study international risk sharing

and risk premia associated with market capitalization range indexes. Section 1.6

discusses extensions of our framework to more general multivariate asset price

processes. Section 1.7 concludes with a summary and a discussion of directions for

future research.
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1.2 The Asset Price Process

For given positive finite T, let (Ω,F , {Ft}t∈[0,T ], P ) be a complete filtered

probability space. The filtration {Ft} = {Ft}t∈[0,T ] is assumed to satisfy the usual

properties (e.g., Protter, 2005). Unless otherwise noted, t ∈ [0, T ] throughout. As

is common, we take F = FT . Suppose that there are d ∈ N risky assets and that

the Rd− valued asset price process {St} solves the stochastic differential equation

dSt = µ0tdt+ σ0tdWt, t ∈ [0, T ],

where {Wt} is a vector of n ∈ N independent standard Brownian motions under

P adapted to the filtration {Ft}, {µ0t} is an Rd− valued adapted drift process,

and {σ0t} is an Rd×n− valued adapted diffusion coefficient process. We assume

without loss of generality that S0
t is the price of the risk-free bond with known rate

of return r. Let the discounted asset prices be S∗it = Sit/S
0
t , i = 1, ..., d.

Given an Rn− valued adapted process {λt} such that
∫ T

0
‖λt‖2dt < ∞,

a.s. − P , the Girsanov transformation defines a new adapted process {W̃t} by

adjusting the drift of the original Brownian motion:

W̃t = Wt +

∫ t

0

λsds.

The absence of arbitrage (equivalently, the existence of the risk neutral measure)

holds only for λt such that

σ0tλt = µ0t − rSt, t ∈ [0, T ], a.s.− P. (1.2.1)

Such a vector λt is called a market price of risk. Without further assumptions,

and specifically without assuming market completeness, the market prices of risk

form a set

ΛI,t := {λt : σ0tλt = µ0t − rSt}.

We let ΛI denote the set-valued process {ΛI,t, t ∈ [0, T ]}.
For our purposes here, it suffices to define market completeness in terms



6

of ΛI,t. We say that markets are complete at t when ΛI,t has a unique element;

otherwise, we say markets are incomplete at t.

Under a risk neutral measure Q, W̃t follows a standard Brownian motion.

After the change of measure from P to Q, the discounted asset return process can

be represented by linear combinations of Brownian motions under Q:

dS∗it
S∗it

= σi0t · dW̃t i = 1, ..., d,

where σi0t is the 1 × n ith row of σ0t. That is, under Q, any asset is expected to

earn a return equal to the risk-free rate. Using this result, the prices of redundant

securities can be computed by taking the expectation under Q. (See, for example,

Duffie, 2001, and Williams, 2006.)

In order to study identification in a simple but important special case in

what follows, we consider a running example in which µi0t = µi0S
i
t and σi0t = σi0S

i
t

for i = 1, ..., d. We call this specification a multivariate Black-Scholes economy.

We formalize this as follows.

Assumption 1.2.1 (Multivariate Black-Scholes): Let {Wt} be a vector of

n ∈ N independent standard Brownian motions under P adapted to the filtration

{Ft}. Let {St} be a vector of d ∈ N asset prices such that Si0 = 1 and solving the

stochastic differential equations

dSit = µi0S
i
tdt+ σi0S

i
tdWt, t ∈ [0, T ], i = 1, ..., d,

where µ0 ∈ Rd has elements µi0, i = 1, ..., d, and σ0 ∈ Rd×n has 1 × n rows σi0,

i = 1, ..., d. Further, {St} does not admit arbitrage.

For this process, the market prices of risk always lie in the non-random

time-invariant set

ΛI,0 = {λ : σ0λ = µ0 − rι},

where ι is a d-dimensional vector of ones. Any process {λt} such that λt ∈ ΛI,0,

t ∈ [0, T ], is an admissible market price of risk process in this economy. As we know

that the true Black-Scholes market price of risk is a constant, say λ0, we consider



7

only non-random, time-invariant processes {λt} such that for all t ∈ [0, T ], λt = λ

for some fixed λ ∈ ΛI,0.

1.3 Identifying the Market Price of Risk

1.3.1 The market price of risk and the RNP

Under the change of measure from the objective measure P to the risk

neutral measure Q, the risk adjustment is fully determined by the Radon-Nikodym

derivative1 dQ/dP . In the continuous-time setting, one can define a density process

of Radon-Nikodym derivatives ξ := {ξt} where ξt := Et[dQ/dP ], with Et(·) := E(·
|Ft). As dQ/dP is F = FT− measurable, we have ξT = dQ/dP. The history

λt := {λτ , τ ∈ [0, t]} uniquely indexes the density ξt and therefore characterizes

the risk adjustment. In general, given an adapted process {λt}, the corresponding

densities can be written

ξt = exp

(
−
∫ t

0

λs · dWs −
1

2

∫ t

0

‖λs‖2ds

)
t ∈ [0, T ]. (1.3.1)

Accordingly, ξ is also known as the stochastic exponential of {−λt}. In the multi-

variate Black-Scholes economy, ξt simplifies to

ξt = exp

(
−λ0 ·Wt −

1

2
‖λ0‖2t

)
, (1.3.2)

where λ0 is the true market price of risk in the Black-Scholes economy.

In general, there are multiple processes {λt} consistent with the no-arbitrage

requirement. This implies that there are multiple ways to change the measure

from P to Q. Therefore, even if P is identified by the observed data, Q cannot be

uniquely identified under incomplete markets.

The role of the Radon-Nikodym derivative is best understood in terms of

the pricing equation. Consider a ”European-type” asset paying zero for t < T

and ϕ(WT ) in period T , where ϕ is a Borel measurable real-valued function. Let

1The Radon-Nikodym derivative D is defined as an F-measurable strictly positive random
variable such that for any A ∈ F , Q(A) =

∫
A
DdP .
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ϕλ : Rn → R be a measurable function such that

ϕλ(W̃T ) = ϕλ

(
WT +

∫ T

0

λsds

)
= ϕ(WT ).

For example, a contingent claim that pays 1 monetary unit if WT is in a measurable

set A and zero otherwise has a payoff ϕ(WT ) = 1{WT∈A}, where 1{·} is the indicator

function taking the value 1 if the condition in brackets {·} is true and 0 otherwise.

Then the payoff function in terms of W̃T is ϕλ(W̃T ) = 1{W̃T∈Aλ}, where Aλ is a

translation of A by
∫ T

0
λsds.

Generally, there are two equivalent ways to compute the asset price p0 at

t = 0 for such an asset2. We have

p0 = EP [mT ϕ(WT )] = e−rTEQ[ϕλ(W̃T )].

The first equality uses the DGP P and the FT -measurable stochastic discount

factor (SDF) mT . The second equality uses the RNP Q and the risk-free rate to

price the payoff ϕλ(W̃T ). To represent the SDF, we write

EP [mT ϕ(WT )] = e−rTEQ[ϕλ(W̃T )] = e−rT
∫
ϕλ(W̃T )dQ

=

∫
e−rTϕ(WT )

dQ

dP
dP =

∫
e−rT ξT ϕ(WT )dP

= EP
[
e−rT ξT ϕ(WT )

]
.

Thus, mT = e−rT ξT , the discounted Radon-Nikodym derivative. The SDF dis-

counts the future payoff by e−rT and adjusts its risk by ξT . If λt = 0 for all t, then

ξT = 1 and no risk adjustment takes place. This is the case of risk neutrality. For

the multivariate Black-Scholes economy, ξT is a log-normal random variable with

mean 1 and variance e‖λ0‖2T −1; in this case, risk neutrality is equivalent to λ0 = 0.

The density process ξ of Radon-Nikodym derivatives is a stochastic pro-

cess defined by the stochastic integral in (1.3.1). For what follows, we will take

the variance of ξT to be finite. This condition is known as the L2-reducibility of

2See Aı̈t-Sahalia and Lo (2000) or chapter 6 of Duffie (2001), for example.
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{λt} (see, e.g., Duffie, 2001). Further, this finiteness assumption has a portfolio

interpretation and a link to the option pricing bound studied in Cochrane and

Saá-Requejo (2000). To ensure that ξT has finite variance in the Black-Scholes

economy, we simply bound3 λ0 :

Assumption 1.3.1 (Bounded Risk Price): For the Black-Scholes economy,

there exists 0 < M <∞ such that ‖λ0‖ ≤M.

For the Black-Scholes economy, the identified set for the market price of risk is

thus

ΛM
I,0 := {λ : σ0λ = µ0 − rι, ‖λ‖ ≤M} .

An illustration of the identified set ΛM
I,0 with d = 1 and n = 2 is given

by Figure 1.3.1. In this example, the risk exposure of the single traded asset is

determined by a vector σ0 ∈ R2 such that both elements of σ0 are non-zero; and

λ0 ∈ R2 is the true market price of risk. As there are two fundamental sources of

risk in this economy, the traded security does not reveal λ0. Instead it reveals all

λ’s that lie on the iso-risk premium line perpendicular to σ0, as λ0 is observationally

equivalent to any other λ on the iso-risk premium line. To see this, fix σ0, and let

N(σ0) be the null space of σ0. Consider λ := λ0 + bη, where b ∈ R and η ∈ N(σ0).

Then, λ0 and λ give the same value of the risk premium by construction. As

the joint distribution of the d = 1 discounted asset prices is fully characterized

by the drift (risk premium) and the variance-covariance structure, λ0 and λ are

observationally equivalent. Thus, one cannot identify λ0 by simply examining

the distribution of asset prices. Instead, this distribution only reveals the iso-risk

premium line. Together with L2-boundedness, the identified set becomes a finite

line segment. In more general cases, the identified set is a finite subset of an affine

subspace orthogonal to the row space of σ0.

3This boundedness also implies that the Radon-Nikodym derivative satisfies the Novikov
condition. See Duffie (2001) and Williams (2006). We discuss a more general condition in
Section 6.
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‖λ‖ ≤M

σ0

σ0λ = µ0 − r

ΛM
I,0

λ0

Figure 1.1: The identified set (d = 1 and n = 2)

1.3.2 A common factor structure

When σ0 satisfies m a priori restrictions ρ(σ0) = 0, these can facilitate

estimation of the market price of risk and may even suffice to identify σ0. A

leading case of such restrictions is that of common factors. For the Black-Scholes

case, we impose this formally as follows.

Assumption 1.3.2 (Common Factors): Each asset return depends on its

unique idiosyncratic risk and n− d common factors.

Assumption 1.3.2 implies that the returns are correlated with each other only

through common risk factors. The n − d common risk factors are represented by

n− d independent Brownian motions. An example with d = 3 and n = 4 is

σ0 =


σ11 0 0 σ14

0 σ22 0 σ24

0 0 σ33 σ34

 .
With common factors, each asset return depends only on (n− d+ 1) Brow-

nian motions. This reduces the number of nonzero parameters in σ0 from nd in

the general case to (n− d+ 1)d.
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In general, the d × d asset returns covariance matrix Σ0 := σ0σ
′
0 provides

d(d + 1)/2 restrictions on σ0. The zero restrictions of Assumption 1.3.2 impose

(d−1)d further restrictions. This reduces the dimension of the unidentified aspects

of σ0. Specifically, when n ≤ (3d − 1)/2, Assumption 1.3.2 ensures that one can

fully identify σ0 from elements of Σ0. Our examples in Section 1.5 take d = 3 and

n = 4, a case in which σ0 is fully identified.

We emphasize that this is inherently a structural restriction; that is, the

data are generated by a process obeying this condition. Although alternative

representations of the asset price process may exist that do not obey this restriction,

these have only a stochastic and not a structural interpretation. Assumption 1.3.2

thus specifies an economic interpretation for the vector of Brownian motions. We

interpret the first d elements as idiosyncratic risks and the last n− d elements as

common risks. As Section 1.5 illustrates, the meaning of Wt may vary depending

on the given application.

Above, we represented the restrictions on σ0 as ρ(σ0) = 0, an m × 1 zero

vector. The common factors assumption has a simple representation of this form.

For these cases, we have

ρ(σ0) = ρ0vec(σ0),

where vec(σ0) stacks the columns to yield an nd × 1 column vector, and ρ0 is an

m× nd matrix. The matrix ρ0 has rows whose elements are zero, except for a one

in the position that identifies an element of σ0 that is to take the value zero. For

the example above with n = 4 and d = 3, m = 6. Further, the third row of the

6×12 matrix ρ0 contains a one in the fourth position (corresponding to σ12, which

is set to zero), with the remaining row elements zero.

1.4 Econometric Framework

In this section, we propose estimation and hypothesis testing procedures for

the market price of risk in the Black-Scholes economy following the set-estimation

and hypothesis testing frameworks of Chernozhukov, Hong, and Tamer (2007).

These authors study extremum estimators where the criterion functions do not
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have a unique minimizer. For estimation, the basic idea is to use lower contour sets

of the sample criterion function as set-valued estimators or confidence regions. For

hypothesis testing, Romano and Shaikh (2006) propose a subsampling procedure.

In this section, we exploit these methods by showing that the identified set for the

Black-Scholes economy risk price, ΛM
I,0, can be characterized as a set of minimizers

of a specific criterion function.

1.4.1 Applying the CHT framework

In the multivariate Black-Scholes economy, the vector of returns of d securi-

ties over the time interval [s, t] obeys a multivariate normal distribution with mean

(t − s)(µ0 − (‖σ1
0‖2, · · · , ‖σd0‖2)′/2) and covariance matrix (t − s)Σ0. Eq. (1.2.1)

implies that the drift µ0 is determined, once we specify (σ0, λ0) and r. Therefore,

for any given constant r, the joint density of asset returns depends only on σ0 and

λ0.

Consider a partition π := {0 =: t0, t1, ..., tN−1, tN := T} of the interval

[0, T ]. Suppose we observe a series of asset prices {Stj}Nj=0 over this partition. Let

Rtj be the d× 1 vector of asset returns from period tj to tj+1: i.e., the ith element

of Rtj is Ri
tj

:= lnSitj − lnSitj−1
, i = 1, ..., d. Let f(Rt1 , ..., RtN ; θ) denote the

likelihood of a sample of asset returns at θ := (σ, λ) ∈ Θ := S × Λ ⊆ Rd×n × Rn,

where S is a non-empty subset of Rd×n. In the multivariate Black-Scholes economy,

returns are independent over time, so that

f(Rt1 , · · · , RtN ; θ) =
N∏
j=1

f(Rtj ; θ),

where f(Rtj ; θ) defines the likelihood for asset returns in tj; this is a d−variate

normal likelihood.

The coefficients θ0 := (σ0, λ0) ∈ Θ index the true DGP measure P. Let

the criterion function Q̄N : Θ→ R̄+ be the shifted expected negative average log
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likelihood defined by

Q̄N(θ) := EP

[
−N−1

N∑
j=1

ln f(Rtj ; θ)

]
− q0,N , (1.4.1)

where

q0,N := EP

[
−N−1

N∑
j=1

ln f(Rtj ; θ0)

]
.

The criterion function thus has minimum value 0 at θ0. This minimum is not

unique; letting ΘM
0 := {σ0} × ΛM

I,0, we also have

Q̄N(ΘM
0 ) = 0.

Further, the asset return covariances only reveal Σ0 = σ0σ
′
0, so σ0 can-

not be identified from observations of d asset returns without further restrictions.

Specifically, let

ΘM
I,0 := {(σ, λ) ∈ Θ : σσ′ = Σ0, σλ = µ0 − rι, ‖λ‖ ≤M}.

Then ΘM
0 ⊂ ΘM

I,0, and ΘM
I,0 contains all the minimizers of Q̄N . That is,

Q̄N(ΘM
I,0) = 0 and Q̄N(θ) > 0 for θ /∈ ΘM

I,0.

Working with Q̄N and ΘM
I,0 enables us to apply the CHT framework to our problem.

Accordingly, let QN : Ω×Θ→ R̄+ be the sample criterion function defined

by

QN(θ) = −N−1

N∑
j=1

ln f(Rtj ; θ)− qN , (1.4.2)

where qN = infΘ−N−1
∑N

j=1 ln f(Rtj ; θ). Following Chernozhukov, Hong, and

Tamer (2007), we define an ε-level set of the sample criterion function by

Θ̂N(ε) := {θ ∈ Θ : N ·QN(θ) ≤ ε} .
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When we choose ε properly, the random set Θ̂N(ε) is a consistent set estimator or

a confidence region for the identified set.

There are, however, several challenges to directly applying the CHT frame-

work to our problem. First, the identified set ΘM
I,0 has a high dimension, nd + n.

This leads to computational difficulties and can also hamper the interpretation of

results. Further, for any fixed value of σ such that σσ′ = Σ0, every element of the

set ΛM
I,0(σ) := {λ ∈ Λ : σλ = µ0 − rι, ‖λ‖ ≤ M} minimizes Q̄N . This suggests

that, as one changes the value of σ, the set ΛM
I,0(σ) rotates. Consequently, ΘM

I,0

may cover quite a large subset of Θ. Finally, ΘM
I,0 need not be convex. This may

cause additional technical difficulties.

These difficulties can be mitigated or avoided by applying a two-stage pro-

cedure proposed by Kaido and White (2008), described next.

1.4.2 A two-stage procedure

In this section, we describe a two-stage procedure proposed by Kaido and

White (2008) that reduces the dimension of the set estimator and the associated

confidence region. With sufficient restrictions, some elements of σ0 can even be

fully identified. In such cases, we can replace identified elements of σ0 in the sample

criterion function with their consistent estimators. Even if this is not possible,

restrictions on elements of σ0 can still simplify estimation substantially.

We summarize Kaido and White’s (2008) measurability and consistency

results for the two-stage set estimator as follows. Let m ∈ N be the number of

restrictions on σ0 and let ρ : Rd×n → Rm embody these restrictions as

ρ(σ0) = 0.

The identified (σ, λ) values that satisfy all our restrictions are the elements of

ΘM
I,0,ρ := {(σ, λ) ∈ Θ : σσ′ = Σ0, ρ(σ) = 0, σλ = µ0 − rι, ‖λ‖ ≤M}.

Let Σ̂N be a bounded consistent estimator of Σ0, and letK(S) be a collection

of closed subsets of S. Define a first-stage restricted set-estimator ŜN : Ω→ K(S)
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of σ0 by

ŜN(ω) = {σ ∈ S : σσ′ = Σ̂N(ω), ρ(σ) = 0}. (1.4.3)

This is a random set of diffusion coefficients that are consistent with the sample

covariance of the returns and that satisfy the restriction ρ(σ) = 0.

Using this first-stage set estimator, let the second-stage set-estimator for

ΘM
I,0,ρ be defined by

Θ̂N(ω) := {(σ, λ) ∈ Θ : NQN(ω, σ, λ) ≤ ε̂(ω), σ ∈ ŜN(ω)}, (1.4.4)

where ε̂ is now permitted to be random.

An important special case occurs when the restrictions suffice to identify

σ0. When σ̂N is a consistent estimator of σ0, the first-stage set estimator becomes

a singleton, i.e., ŜN = {σ̂N}. The second-stage set estimator is then Θ̂N = {σ̂N}×
Λ̂N , where

Λ̂N(ω) := {λ ∈ Λ : NQN(ω, σ̂N(ω)), λ) ≤ ε̂(ω)}. (1.4.5)

1.4.3 Effros-measurability

The first step in analyzing the two-stage set estimator is to establish its

measurability. A useful measurability concept for set-valued functions is Effros-

measurability. Effros-measurability ensures that many functionals of interest, such

as the distance between random sets, become random variables; it is also flexible,

handling as many random elements as one typically requires. See Molchanov (2005)

for details.

Definition 1.4.1 (Effros-Measurability): Let (Ω,F) be a measurable space.

Let l ∈ N, and let G be a topology on Rl. Let K(Rl) be a collection of closed subsets

of Rl. A map X : Ω → K(Rl) is Effros-measurable with respect to F if, for each

open set G ∈ G,

X−(G) := {ω : X(ω) ∩G 6= ∅} ∈ F .

The next result establishes Effros-measurability for general two-stage esti-

mators.
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Theorem 1.4.1: Let (Ω,F , P ) be a complete probability space, and let Θ =

S× Λ, where S and Λ are compact subsets of finite dimensional Euclidian spaces.

Let Q : Ω×Θ→ R̄+ be such that for each θ ∈ Θ, Q( · , θ) is measurable-F
and for F ∈ F with P (F ) = 1, Q(ω, · ) is continuous on Θ for each ω ∈ F.

Let Ŝ : Ω→ K(S) be Effros-measurable with respect to F .

Then for any measurable ε̂ : Ω → R+, the ε̂- level set Θ̂ε̂ : Ω → K(S × Λ),

defined by

Θ̂(ω, ε̂(ω)) = {(σ, λ) ∈ Θ : Q(ω, σ, λ) ≤ ε̂(ω), σ ∈ Ŝ(ω)},

is Effros-measurable with respect to F .

The proof of this and other formal results can be found in Kaido and White (2008).

For the special case where Ŝ is a singleton, e.g., when the diffusion coefficient

is point identified, we have the following result.

Corollary 1.4.1: Let the conditions of Theorem 1.4.1 hold, and suppose

Ŝ is a singleton such that Ŝ = {σ̂}, where σ̂ : Ω→ S is measurable-F . Then

(i) For each λ ∈ Λ, Q̃( · , λ) := Q( · , σ̂(·), λ) is a measurable function on

Ω and for F̃ ∈ F with P (F̃ ) = 1, Q̃(ω, · ) is continuous on Λ for each ω ∈ F̃ .
(ii) For any measurable ε̂ : Ω→ R+, the ε̂- level set Λ̂ε̂ : Ω→ K(Λ), defined

by

Λ̂(ω, ε̂(ω)) = {λ ∈ Λ : Q̃(ω, λ) ≤ ε̂(ω)},

is Effros-measurable with respect to F .

The following proposition establishes the Effros-measurability of our con-

strained first-stage estimator, enabling us to apply the above results.

Proposition 1.4.1: Let (Ω,F) be a measurable space, and let S be a com-

pact subset of Rd×n, where d and n are finite positive integers.

Let Ψ be a set of bounded symmetric positive semi-definite matrices. Let

Σ̂ : Ω→ Ψ be measurable-F , and let ρ : S→ Rm be continuous, where m is a finite

positive integer.
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Let Ŝ : Ω→ K(S) be defined by

Ŝ(ω) = {σ ∈ S : σσ′ = Σ̂(ω), ρ(σ) = 0}.

Then Ŝ is Effros-measurable with respect to F .

1.4.4 Consistent set estimation

Next we provide results ensuring the consistency of the two-stage set esti-

mator. Consistency is expressed in terms of the Hausdorff metric on the space of

closed sets.

Definition 1.4.2: Let Θ be a compact subset of a finite dimensional Eu-

clidean space. For any two closed subsets A and B of Θ, the Hausdorff metric

is

dH(A,B) = max

[
sup
a∈A

inf
b∈B
‖b− a‖, sup

b∈B
inf
a∈A
‖b− a‖

]
,

where ‖ · ‖ is the Euclidean norm, and dH(A,B) :=∞ if either A or B is empty.

The Effros-measurability of the two-stage set estimator implies the mea-

surability of the Hausdorff distance between the set estimator and the identified

set4. This makes it possible to discuss the consistency of this set estimator. Our

first result provides conditions under which the general two-stage set estimator is

consistent.

Theorem 1.4.2: Let (Ω,F , P ) and Θ = S × Λ satisfy the conditions of

Theorem 1.4.1, and suppose that for N = 1, 2, ..., QN and ŜN satisfy the conditions

on Q and Ŝ imposed in Theorem 1.4.1.

Suppose there exists Q̄N : Θ→ R̄+ such that supθ∈Θ |QN( · ,θ)− Q̄N(θ)| =
op(1). Let S ∈ K(S) and define

ΘI := arg min
(σ,λ)∈S×Λ

Q̄N(θ),

4This follows from Theorem 2.25 (vi) p.37 in Molchanov (2005).
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such that Q̄N(ΘI) = 0 for all N sufficiently large.

Let ε̂N be F-measurable such that ε̂N/N = op(1) and

lim
N→∞

P

[
ω : sup

θ∈ΘI

QN(ω, θ) ≤ ε̂N(ω)/N

]
= 1.

Suppose further that dH(ŜN , S) = op(1), and let

Θ̂N(ω) := {(σ, λ) ∈ Θ : QN(ω, σ, λ) ≤ ε̂N(ω)/N, σ ∈ ŜN(ω)}.

Then Θ̂N is Effros-measurable with respect to F , and dH(Θ̂N ,ΘI) = op(1).

The next result treats the important special case in which S is fully identi-

fied (i.e., S is a singleton). This shows that the natural second-stage set estimator

Λ̂N is a consistent estimator for the identified set ΛI .

Corollary 1.4.2: Let the conditions of Theorem 1.4.2 hold, and suppose

that S is a singleton, S = {σ0}. Let

ΛI := arg min
λ∈Λ

Q̄N(σ0, λ).

Let σ̂N : Ω→ S be measurable-F such that σ̂N = σ0 + op(1), and let

Λ̂N(ω) := {λ ∈ Λ : QN(ω, σ̂N(ω), λ) ≤ ε̂N(ω)/N}.

Then Λ̂N is Effros-measurable with respect to F , and dH(Λ̂N ,ΛI) = op(1).

Figure 1.4.4 illustrates. As the sample size N increases, the set estimator

Λ̂N represented by the shaded region in figure 1.4.4 shrinks down to the identified

set ΛI , which is a line segment here.

Note that CHT give an additional condition (condition C.3.) for achiev-

ing consistency and polynomial convergence rate of the Hausdorff metric without

setting ε̂N ≥ supΘI
NQn(θ). Due to the first-stage estimation of σ, this condi-

tion may not hold for our applications. Therefore, we need to choose a sequence

{ε̂N} that satisfies conditions in Theorem 1.4.2. Specifically, we choose a sequence
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ε̂N = qN + κN , where qN = infλ∈ΛQN(σ̂N , λ) and κN ∝ lnN .

‖λ‖ ≤M

Λ̂N

σ0

λ0
σ̂N

QN(σ̂N , λ) ≤ ε̂N
N

Figure 1.2: Set Estimator Λ̂N (d = 1 and n = 2)

1.4.5 Hypothesis testing

Set estimation is useful when interest attaches to the characteristics of the

identified set. If instead one wishes to test hypotheses regarding the identified set,

it is not necessary to estimate the identified set. Specifically, let R be a closed

subset of Θ (or Λ), where R is a set of parameters that satisfy the restrictions

of interest. For example, R may represent a set of market prices of risk that are

consistent with risk-neutrality or international risk sharing.

As the true coefficient value θ0 is in the identified set, if θ0 also satisfies the

restrictions, the identified set ΘI has a non-empty intersection with R. We thus

consider hypotheses

HΘ
o : ΘI ∩R 6= ∅ vs. HΘ

A : ΘI ∩R = ∅.

The null states that there is at least one element in the identified set satisfying

the restrictions. Rejection means that none of the parameters in the identified set

satisfies the restrictions, implying that θ0 does not satisfy the restrictions.
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In the Black-Scholes example, where interest attaches to λ0, we consider

hypotheses

HΛ
o : ΛI ∩R 6= ∅ vs. HΛ

A : ΛI ∩R = ∅.

BecauseR is a closed subset of the compact parameter space, the hypotheses

above are equivalent to

HΘ
o : inf

θ∈Θ∩R
Q̄N(θ) = 0 or HΛ

o : inf
λ∈R

Q̄N(σ0, λ) = 0.

Such hypotheses are considered in the partially identified case by Romano and

Shaikh (2008) for parametric inference and by Santos (2007) for nonparametric

inference.

To test these hypotheses in our two-stage framework, we replace Q̄N and Θ

with their sample analogs QN and ŜN × Λ, which leads to the test statistics

T̂N(Θ, R) = inf
θ∈(ŜN×Λ)∩R

aNQN(θ) and T̂N(Λ, R) = inf
λ∈R

aNQN(σ̂N , λ),

where aN is a normalizing constant such that supθ∈ΘI
QN(θ) = Op(1/aN) or

supλ∈ΛI
QN(σ0, λ) = Op(1/aN). In our problem, aN = N , so the test statistics

can be written

T̂N(Θ, R) = sup
θ∈ŜN×Λ

N∑
j=1

ln f(Rtj ; θ)− sup
θ∈(ŜN×Λ)∩R

N∑
j=1

ln f(Rtj ; θ).

T̂N(Λ, R) = sup
λ∈Λ

N∑
j=1

ln f(Rtj ; σ̂N , λ)− sup
λ∈R

N∑
j=1

ln f(Rtj ; σ̂N , λ).

These can be viewed as log-likelihood ratio statistics for partially identified models.

To maintain a tight focus for the discussion to follow, we now restrict atten-

tion to the Black-Scholes case that will be the subject of our empirical examples.

This is the case where Assumptions 1.2.1 and 1.3.1 hold, and the common factor

structure of Assumption 1.3.2 ensures that σ0 is point-identified. Thus, we restrict

attention to T̂N(Λ, R), where we take Λ = ΛM . (We leave the notation T̂N(Λ, R)

unchanged for simplicity.) To test HΛ
o , we require asymptotic critical values for



21

T̂N(Λ, R).

Obtaining these critical values presents interesting challenges. Space pre-

cludes a rigorous derivation here, as handling all the necessary formalities is fairly

involved. Nevertheless, the intuition behind our approach is straightforward, so

we offer the following heuristic discussion.

We start by noting that the presence of σ̂N in T̂N(Λ, R) may have an impact

on its limiting distribution. To accommodate this, we can proceed in a manner

analogous to the fully identified case. There, one can often exploit a two-term mean

value or Taylor-like expansion. The following straightforward high-level result

applies when θ0 is interior to Θ and the likelihood function is sufficiently smooth.

Analogous but more elaborate results hold even when θ0 is not interior to Θ.

Proposition 1.4.2: Let {aN} be a sequence of real numbers and for p ∈ N,
suppose that θ0 ∈ Rp and that {Q̂N : Ω → R}, {QN : Ω → R}, {θ̂N : Ω → Rp},
{gN : Ω→ Rp}, and {HN : Ω→ Rp×p} are sequences of measurable functions such

that

aNQ̂N = aNQN + aNg
′
N

(
θ̂N − θ0

)
+ aN

(
θ̂N − θ0

)′
HN

(
θ̂N − θ0

)
/2 + oP (1),

where, for random matrices Z0, Z1, Z2, Z3 of suitable dimension,

(aNQN , a
1/2
N

(
θ̂N − θ0

)′
, a

1/2
N g′N , (vec(HN))′)

d→ (Z0, Z
′
1, Z

′
2, (vec(Z3))′).

Then

aNQ̂N
d→ Z0 + Z ′2Z1 + Z ′1Z3Z1/2.

In our application, aN = N, p = dn, θ0 = vec(σ0), aNQ̂N = T̂N(Λ, R),

aNQN = TN(Λ, R;σ0), where

TN(Λ, R;σ) := sup
λ∈Λ

N∑
j=1

ln f(Rtj ;σ, λ)− sup
λ∈R

N∑
j=1

ln f(Rtj ;σ, λ),

θ̂N = vec(σ̂N), gN = N−1(∂/∂σ)TN(Λ, R;σ0), and HN = N−1(∂2/∂σ∂σ′)TN(Λ, R;

σ0). Under our assumptions, N1/2(σ̂N−σ0) and N−1/2(∂/∂σ)TN(Λ, R;σ0) will gen-
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erally jointly obey a central limit theorem, and N−1(∂2/∂σ∂σ′)TN(Λ, R;σ0) con-

verges in probability to a constant matrix. The desired limiting distribution follows

provided TN(Λ, R;σ0) also converges in distribution (jointly with the other random

variables).

For this, we can apply results of Liu and Shao (2003), whose theorem 3.1

provides general regularity conditions for the non-identified case ensuring that

lim
N→∞

2TN(Λ, R0;σ0) = sup
S∈FΛ

max(WS, 0)2,

where R0 := {λ0}, WS defines a centered Gaussian process {WS : S ∈ FΛ} with

uniformly continuous sample paths and covariance kernel

E(WS1WS2) = E(S1S2),

and FΛ is a specific Donsker class of functions, a set of limits of generalized score

functions S (see Liu and Shao, 2003, eq.(3.1)).

In our application, interest attaches to

TN(Λ, R;σ0) = TN(Λ, R0;σ0)− TN(R,R0;σ0),

so Liu and Shao’s theorem 3.1 implies that under HΛ
o ,

lim
N→∞

2TN(Λ, R;σ0) = sup
S∈FΛ

max(WS, 0)2 − sup
S∈FR

max(WS, 0)2.

Although this gives the asymptotic distribution only for TN(Λ, R;σ0), the extension

to the required joint convergence appears straightforward.

Proposition 1.4.2 then delivers the asymptotic distribution of T̂N(Λ, R).

As this appears to be a complicated distribution, we seek computationally sim-

ple methods for obtaining the desired critical values. One particularly appealing

approach is to use the method of subsampling, as the existence of the limiting dis-

tribution for T̂N(Λ, R) generally suffices to ensure that subsampling can generate

valid asymptotic critical values.
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Specifically, we obtain valid asymptotic critical values for T̂N(Λ, R) by ap-

plying a subsampling algorithm proposed by Romano and Shaikh (2008). Let

b := bN < N be a sequence of integers such that b → ∞ and b/N → 0. Let

BN be the number of randomly chosen subsamples of size b from a sample of size

N, and let T̂N,b,k be the subsampled test statistic for the kth subsample of size b,

specifically

T̂N,b,k := inf
λ∈R
−
∑
j∈Jk

ln f(Rtj ; σ̂N,b,k, λ)− inf
λ∈ΛM

(
−
∑
j∈Jk

ln f(Rtj ; σ̂N,b,k, λ)

)
,

where Jk is the b−element set of indexes for the kth subsample. Note that for

each k, T̂N,b,k is evaluated using a first stage estimate σ̂N,b,k, computed for that

subsample.

Next, let α ∈ (0, 1) be a prespecified significance level for the test, and

define

dN,1−α = inf

{
x : B−1

N

∑
1≤k≤BN

1{T̂N,b,k≤x} ≥ 1− α

}
.

This is a subsampling estimator for the asymptotic 1 − α quantile of T̂N(Λ, R).

Theorem 3.4 (i) of Romano and Shaikh (2008) then ensures that when HΛ
o holds,

lim inf
N→∞

P
(
T̂N(Λ, R) ≤ dN,1−α

)
≥ 1− α,

so that dN,1−α provides a valid asymptotic critical value for testing HΛ
o . When the

alternative HΛ
A holds, dN,1−α diverges, but at a sufficiently slow rate that the test

based on dN,1−α is nevertheless consistent, a consequence of b/N → 0.

1.4.6 Confidence regions

Confidence regions can be constructed using a subsampling procedure pro-

posed by Chernozhukov, Hong, and Tamer (2007) (CHT). For this it suffices that

sup
λ∈ΛMI,0

N QN(σ̂N , λ)
d→ Z,



24

where Z is a random variable.

Care is required in verifying this condition due to the presence of σ̂N . One

might consider using Proposition 8 to establish this. The natural choices for this

are aN = N, p = dn, θ0 = vec(σ0), aNQ̂N = supλ∈ΛMI,0
N QN(σ̂N , λ), aNQN =

supλ∈ΛMI,0
N QN(σ0, λ), θ̂N = vec(σ̂N), gN = (∂/∂σ) supλ∈ΛMI,0

QN(σ0, λ), and HN =

(∂2/∂σ∂σ′) supλ∈ΛMI,0
QN(σ0, λ). It then suffices to verify that supλ∈ΛMI,0

N QN(σ0, λ)

converges in distribution jointly with N1/2(σ̂N − σ0) and N1/2(∂/∂σ)

supλ∈ΛMI,0
QN(σ0, λ), and that (∂2/∂σ∂σ′) supλ∈ΛMI,0

QN(σ0, λ) converges in proba-

bility to a constant matrix. The first condition corresponds to the key primitive

condition assumed by CHT (the ”CHT condition”), and under mild conditions a

central limit theorem holds for N1/2(σ̂N − σ0) and (∂2/∂σ∂σ′) supλ∈ΛMI,0
QN(σ0, λ)

converges as required.

Nevertheless, it is not clear whether N1/2(∂/∂σ) supλ∈ΛMI,0
QN(σ0, λ) con-

verges in distribution; in particular, nothing appears to ensure that this quantity

has (limiting) mean zero, so the central limit theorem need not hold. Accordingly,

we seek an alternative approach.

A promising way to proceed is to recast our two-stage estimator as a single-

stage estimator; as we show, this yields a straightforward formulation of the CHT

condition. If this recasting is indeed possible, one might ask why this approach is

not used from the outset. The main reason is that our likelihood-based approach is

more robustly applicable to identifying the set of market risk prices of interest than

the method of moments-based single-stage approach described next. In general

settings, moment-based methods may introduce spurious zeros into the single-

stage objective function, thereby possibly altering the apparent identified set in

undesired ways. We describe how this can happen below. Using a two-stage

approach permits us to ensure that the identified set is that associated with the risk

prices of interest. The single-stage recasting can then be used with this identified

set to deliver conditions justifying the CHT subsampling procedure.

To recast our two-stage estimator as a single-stage method of moments
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estimator, let β := (µ′, vech(Σ)′, λ′)′ ∈ B, say, and define the functions

m0(Rtj ; β) = Rtj − (tj − tj−1)(µ− (Σ11, ...,Σdd)
′/2)

m1(Rtj ; β) = vech[m0(Rtj ; β)m0(Rtj ; β)′ − (tj − tj−1)Σ]

m2(Rtj ; β) = (∂/∂λ) ln f(Rtj ; ς(Σ), λ),

where Σ is a d× d symmetric positive semi-definite matrix with diagonal elements

Σii, i = 1, ..., d, and ς(Σ) is such that ς(Σ)ς(Σ)′ = Σ. The functions m0 and m1 yield

moment equations for estimating µ0 and Σ0. The function m2 is the log-likelihood

score with respect to λ.

Letm := (m′1,m
′
2,m

′
3)′, and define m̂N(β) := (m̂0,N(β)′, m̂1,N(β)′, m̂2,N(β)′)′,

where

m̂i,N(β) := N−1

N∑
j=1

mi(Rtj ; β), i = 0, 1, 2.

Then there generally exists a unique solution (µ̂N , Σ̂N) to the first two moment

equations satisfying

m̂0,N(µ̂N , vech(Σ̂N), λ) = 0 and m̂1,N(µ̂N , vech(Σ̂N), λ) = 0

for all λ, as m0 and m1 do not depend on λ. This delivers a first-stage estimator

Σ̂N that is generally N1/2−consistent for Σ0. From this we construct σ̂N = ς(Σ̂N).

Further, for all λ ∈ Λ̃N , say, where Λ̃N is the subset of Λ̂N containing the zeros of

QN(σ̂N , λ), we have

m̂2,N(µ̂N , vech(Σ̂N), λ) = 0.

That is, the zeros of m̂2,N correspond to (a subset of) our second stage set estima-

tor.

Collecting these facts, we have that for all β ∈ {µ̂N} × {vech(Σ̂N)} × Λ̃N ,

m̂N(β) = 0.

Although it is not a typical feature of the likelihood for the Black-Scholes economy,

in more general settings, there may be other zeros of m̂N(β), as the likelihood scores
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may have zeros corresponding to local minima, maxima, or inflection points of the

likelihood function. These are the ”spurious” zeros referred to above. Nevertheless,

because we will not rely on m̂N to define the identified set of interest, this will not

create difficulties.

By making two more identifications, we can state a version of the CHT

condition justifying subsampling in the present context. First, we define the single-

stage sample objective function

Q̃N(β) := m̂N(β)′m̂N(β).

Certain minimizers of this function correspond to our two-stage estimators. Note

that this is a standard method of moments objective function; because there are

no over-identifying moment conditions, this is also the generalized method of mo-

ments objective function (Hansen, 1982). We have Q̃N(β) ≥ 0, with the minimum

attained at zero because of the lack of over-identification. Finally, define the iden-

tified set

BM
I,0 := {µ0} × {vech(Σ0)} × ΛM

I,0.

The CHT condition justifying subsampling can now be stated as

sup
β∈BMI,0

N Q̃N(β)
d→ Z.

To implement the CHT method, we first construct a ”preliminary” consis-

tent set estimator, say Λ̂N,0, and let l = 1. Next, we randomly choose BN subsets

of size b, and compute ε̂l as the 1− α quantile of the statistics

ZN,b,k := sup
λ∈Λ̂N,l−1

bQN,b,k(σ̂N,b,k, λ), k = 1, ..., BN ,

where QN,b,k(σ̂N,b,k, λ) is the criterion function evaluated for the kth b−element

subset drawn from the full sample of N observations. We then use ε̂l to get a new

set estimator Λ̂N,l = {λ ∈ Λ : N QN(σ̂N , λ) ≤ ε̂l}.
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We may repeat this process for l = 2, ..., L. The final set estimator

Λ̂N = {λ ∈ Λ : NQN(σ̂N , λ) ≤ ε̂}

is a 1 − α confidence set for ΛM
I,0, taking ε̂ = ε̂L. That is, lim infN→∞ P (ΛM

I,0 ⊆
Λ̂N) ≥ 1− α.

Moreover, Λ̂N is a consistent set estimator when we choose ε̂ = min(ε̂L, qN +

κN) for any κN ∝ lnN , where qN := infλ∈ΛQN(σ̂N , λ).

1.5 Applications

In this section, we illustrate set estimation and hypothesis testing with two

examples. The first studies international risk sharing. The second studies risk

premia for market capitalization range index returns.

1.5.1 International risk sharing

A three-country asset price process

Consider three portfolios with prices S1
t , S

2
t , and S3

t , each of which is traded

in the domestic market of each country i = 1, 2, 3. We assume that investors can

potentially participate in all three markets. In addition, we assume there is an

international risk free asset with a known rate of return r. Let St = (S1
t , S

2
t , S

3
t )
′.

Suppose {St} is generated by a multivariate Black-Scholes process with d = 3 and

n = 4. Suppose further that Assumptions 1.3.1 and 1.3.2 hold. The identifying

restriction on the diffusion coefficient, therefore, is ρ(σ0) = ρ0vec(σ0) = 0, as

described in Section 1.3.2. We thus interpret the first three elements of dWt as

country-specific risks and the fourth element as international risk.

The true market price of risk λ0 is a 4×1 vector that satisfies σ0λ0 = µ0−rι
and the bound ‖λ0‖ ≤ M . The first three elements of λ0 represent risk premia

on the country specific risks, and the fourth element represents a risk premium

on the international risk. Because d = 3 and n = 4, λ0 is not point identified.

The identified set for the market price of risk, therefore, is ΛM
I,0 = {λ : σ0λ− µ0 −
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rι, ‖λ‖ ≤ M}. Using set estimation, we can estimate the set of market prices of

risk (and therefore risk neutral measures) that are compatible with the behavior

of portfolio returns.

In this example, Assumption 1.3.2 fully identifies σ0, so the identified set for

the diffusion coefficients is a singleton, S = {σ0}. Let Σ̂N be the standard sample

covariance estimator. This is a
√
N−consistent estimator of Σ0 under Assumption

1.2.1. Using the relationship σ0σ
′
0 = Σ0, we define a first stage estimator σ̂N to

be the (unique) estimator such that σ̂N σ̂
′
N = Σ̂N . This estimator σ̂N is then a

√
N−consistent estimator of σ0. Given the first-stage estimator σ̂N , we estimate

the identified set ΛM
I,0 using eq. (1.4.5). This gives a set of market prices of risk

compatible with the observed domestic portfolio returns across the three coun-

tries. Assumptions 1.2.1, 1.3.1, and 1.3.2 ensure that the regularity conditions of

Corollary 1.4.2 hold, so this is a consistent set estimator of ΛM
I,0.

We turn now to hypothesis testing. If there is an integrated international

financial market, country specific risks should be diversified away. This implies a

simple hypothesis that risk premia for the country-specific risks are zero, whereas

those who accept the international aggregate risk receive a nonzero risk premium as

a reward. According to Lewis (1995), complete markets and optimal risk-sharing

imply that the stochastic discount factor varies only with the common international

component and is independent of any country specific disturbances. She tests

this hypothesis by regressing consumption growth on a constant (the common

international component) and domestic output growth (a proxy for country-specific

risk), using cross-country data.

In our framework, the international risk sharing hypothesis can be tested

using panel data on portfolio returns rather than consumption data5. If asset

prices are determined in general equilibrium for the integrated world market as

described by Lewis (1995), the stochastic discount factor m(Wt) depends only

on the international risk. This implies that the elasticities of the pricing kernel

with respect to the country-specific risks are zero: i.e., −∂ lnm(Wt)/∂W
i
t = 0

for i = 1, 2, 3. Recall that m(Wt) = e−rtξt and that ξt is given by (1.3.2) in the

5An approach similar to ours was taken by Campbell and Hamao (1992). They used U.S. and
Japanese stock returns to investigate capital market integration based on a single factor model.
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multivariate Black-Scholes economy. Thus, the vector of elasticities equals λ. If

the country-specific risks are fully diversified away, the first three elements of λ

should be 0. We thus let R be the subset of Λ such that

R := {λ ∈ Λ : λ1 = λ2 = λ3 = 0}.

The null hypothesis is that there is at least one element λ in the identified set that

is consistent with full international risk sharing. This is equivalent to ΛM
I,0∩R 6= ∅.

We can test this hypothesis using the statistic T̂N(Λ, R) = infλ∈RNQN(σ̂N , λ) and

the subsampling procedure described in Section 1.4.5.

Empirical results

For our empirical study, we consider the financial markets of the U.S.,

Japan, and Europe. For these three regions, we use standard publicly available

data obtained from the Global Financial Database. For the U.S., we use the S&P

500 composite price index, a value weighted index that represents about 75% of

the market capitalization of the New York Stock Exchange. To ensure compara-

bility across countries, we use the Tokyo Stock Exchange Price Index (TOPIX) for

Japan and the Morgan Stanley Capital International (MSCI) Europe Price Index

for Europe. The TOPIX is a value weighted index of all securities traded on the

first section of the Tokyo Stock Exchange. The MSCI Europe Price Index is a

free-float-adjusted market capitalization-weighted index constructed from indices

in 16 developed markets: Austria, Belgium, Denmark, Finland, France, Germany,

Greece, Ireland, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzer-

land, and the United Kingdom.

We use the monthly 1-month T-Bill yield taken from the Center for Research

on Security Prices (CRSP) to construct the short term risk-free rate. Specifically,

we take the average yield over the whole sample period as our constant risk-free

rate r, which is 5.6232% per annum.

The first and last months for which we are able to obtain complete data for

all three portfolios and the T-Bill yield are January 1970 and December 2007, for



30

a total of 456 observations. We remove the top and bottom 2.5% of returns from

our sample to ensure that the results are not influenced by large outliers. This

reduces the sample size to 405. Panel A in Table 1.1 shows summary statistics for

the four variables over the full sample period. Panel B reports their variance and

correlation coefficients.

Table 1.2 reports the first stage estimate σ̂N for σ0 with standard errors

in parentheses, computed by the delta method. The estimates for the full sample

(70:1-07:12) used in the second stage estimation appear in the last column. To

assess the stability of the sample, we also report estimates for four sub-periods

(70:1-79:12, 80:1-89:12, 90:1-99:12, and 00:1-07:12) in columns 2-5. The estimated

coefficients are stable across sub-periods in most cases, although the diffusion co-

efficient of the MSCI index on its idiosyncratic risk is poorly estimated, especially

during the 1980’s and 1990’s.

To consistently estimate the identified set ΛM
I,0, we must choose ε̂ satis-

fying the conditions of Theorem 1.4.2. Any ε̂ that grows slower than N en-

sures the consistency of our estimator. We thus choose ε̂0 = qN + κN , where

qN = infλ∈ΛQN(σ̂N , λ) and κN ∝ lnN, and we form the consistent set estimator

Λ̂N,0 = {λ : NQN(σ̂N , λ) ≤ ε̂0}. In this example, ΛM
I,0 is a line segment in four-

dimensional Euclidean space. The set estimator, therefore, is a four-dimensional

cylinder that shrinks down to this line with probability approaching 1.

We project this cylinder to lower dimensional Euclidean spaces to under-

stand its shape. Figure 1.B.1 shows the convex hulls of boundary points of the

four-dimensional cylinder projected onto three-dimensional spaces. Note that the

surface of the original set is smooth, but the set is approximated by a polygon

because of the discretization of the grid. Figure 1.B.1 shows our second stage set

estimator projected onto two-dimensional subspaces.

We can construct a confidence region or another consistent set-estimator

using the CHT subsampling procedure described above, using Λ̂N,0 as our prelim-

inary estimator. The 95% confidence region is smaller than the preliminary set

estimator and contains the origin, as depicted in Figures 1.B.1 and 1.B.1.

Finally, we formally test the international risk sharing hypothesis. The
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statistic T̂N(Λ, R) is 9.12 in our sample. We estimate the critical value for T̂N(Λ, R)

by subsampling. Table 1.3 provides critical values for different choices of b and

BN . For all of these critical values, we reject the null hypothesis of international

risk sharing. Figure 1.B.1 shows the corresponding subsampling distribution with

b = 40 and BN = 5, 000.

As an experiment, we also computed subsampled critical values (not re-

ported here) always using the full sample first-stage estimator in the subsampling

exercise. The critical values for the different choices of b and BN are largely similar

to those in Table 1.3, suggesting that the first-stage estimation is not having much

impact on the asymptotic distribution of our test statistic.

The fact that this test rejects, whereas the 95% confidence interval con-

tains the origin provides mixed evidence for the risk-sharing hypothesis. Possibly,

the direct hypothesis testing approach is more powerful; but without further in-

vestigation, we cannot rule out the possibility that this mixed result is due to

variations associated with the method of subsampling that would be mitigated in

larger samples.

1.5.2 Risk Premia on Cap Range Index Returns

An asset price process for three cap range indexes

Our second illustration concerns risk premia for market capitalization range

(”cap range”) index returns. Since the seminal work of Fama and French (1993,

1996), many empirical studies have shown that there are sources of priced risk

beyond just that associated with movements in the market portfolio. One of these

risk factors is known to be related to firm size. Using cap range index returns,

we study risk premia on both size-specific risk factors and the market factor with-

out assuming the uniqueness of the risk price (or, equivalently, the risk neutral

measure).

For this, suppose Assumption 1.2.1 holds and that there are three portfo-

lios (”large cap,” ”mid cap,” and ”small cap”) whose returns are generated by a

multivariate Black-Scholes economy with d = 3 and n = 4. As above, we impose

Assumptions 1.3.1 and 1.3.2, so that the index return for each cap range is driven
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only by its idiosyncratic factor and the market factor. Because this structure is

exactly the same as in the previous example, we can use the same set-estimation

methods.

Previous studies have found that the small cap (j = 3) risk and the market

risk are priced in the market (see, e.g., Fama and French, 1993, 1996; and Liew

and Vassalou, 2000). If the other risks are diversified away, we expect λ1 = λ2 = 0.

We thus let R be the subset of ΛM such that

R := {λ ∈ ΛM : λ1 = λ2 = 0}.

Therefore, we consider the null hypothesis that there is at least one parameter

value in the identified set that is compatible with the irrelevance of the large cap

and mid cap risks: Ho : ΛM
I,0 ∩R 6= ∅. Again, we can test this hypothesis using the

framework in section 1.4.5.

Empirical results

For our empirical study, we consider three subclasses of firm sizes using the

S&P/Citigroup Global Cap Range Index Returns. There, stocks are classified on

the basis of their float-adjusted market capitalization. We examine daily returns

for the following three indexes: large cap (> $5 billion), mid cap ($1-$5 billion),

and small cap (< $1 billion). The first and last days for which we are able to

obtain complete data for all three index returns are August 1, 1989 and December

31, 2007, for a total of 4,805 observations. After removing the top and bottom

2.5% of returns, we obtain 4,420 observations. Once again, we use the monthly

1-month T-Bill yield from CRSP to construct the short term risk-free rate for the

same sample period. Our constant risk-free rate r is the average of these rates,

4.0633% per annum.

Table 1.4 reports summary statistics. Table 1.5 reports the first stage esti-

mate σ̂N , with standard errors computed using the delta method. The estimated

coefficients are stable across sub-periods.

The second-stage set estimator with M = 20 is depicted in Figures 1.B.2
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and 1.B.2. The 95% confidence region is depicted in Figures 1.B.2 and 1.B.2

We observe that a non-zero premium on the market risk and a zero premium on

the small cap risk is plausibly compatible with the returns distribution. For the

premia on the large cap and mid cap indexes, the upper left panels of Figures 1.B.2

and 1.B.2 show that the origin is in the set estimator and the confidence region,

implying that the irrelevance of the large cap and the mid cap risks is compatible

with the returns distribution.

Next, we formally test the irrelevance of large cap and mid cap risks. The

test statistic T̂N(Λ, R) is 0.12 in our sample. As before, we estimate the critical

value for T̂N(Λ, R) by subsampling. Table 1.6 provides critical values for different

choices of b and BN . For example, with b = 80 and BN = 1, 000 the critical value is

1.70. Figure 1.B.2 shows this subsampling distribution. For none of the tabulated

critical values do we reject the null hypothesis. Therefore, the irrelevance of the

large cap and mid cap risks is statistically compatible with the observed returns

distribution.

1.6 Modeling More General Asset Price Process-

es

Our discussion so far has focused mainly on the Black-Scholes case for clar-

ity and conciseness. To the extent that this case is overly simplistic, our empirical

results constitute only an illustrative first step in the study of risk pricing in in-

complete markets. Nevertheless, much of our analysis and discussion extends to

more general processes, providing the foundation for more sophisticated empirical

studies. In this section we discuss some aspects of this extension.

A more general data generating process whose special cases are often used

in applications is the following geometric process:

Assumption 1.6.1 (Multivariate Geometric Process): Let {Wt} be a vector

of n ∈ N independent standard Brownian motions under P adapted to the filtration

{Ft}. Let {St} be a vector of d ∈ N assets such that Si0 = 1 and solving the
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stochastic differential equations

dSit = µi0tS
i
tdt+ σi0tS

i
tdWt, t ∈ [0, T ], i = 1, ..., d,

where µ0t has elements µi0t : Ω→ R and σ0t has 1× n rows σi0t : Ω→ Rn, adapted

to Ft, i = 1, ..., d. Further, {St} does not admit arbitrage.

Under this assumption, {µ0t} and {σ0t} are general adapted processes. For exam-

ple, one may posit that a version of Assumption 1.3.2 holds, such that

σ0t =



θ1
0σ(S1

t )
v−1 0 0 · · · 0 θd+1

0σ (S1
t )
w−1

0 θ2
0σ(S2

t )
v−1 0 · · · 0 θd+2

0σ (S2
t )
w−1

...
. . . · · · ...

...
. . . · · · ...

0 · · · · · · 0 θd0σ(Sdt )v−1 θ2d
0σ(Sdt )w−1


,

where v, w ∈ [0, 1], and (Sit)
v−1 denotes the price of the ith security at t raised

to the power v − 1. Letting {λ0t} denote the true risk price process, suppose λ0t

has elements λi0t = θi0λ(S
i
t)

1−v for i = 1, ..., d and λn0t = θn0λ for n = d + 1. Then,

by the no arbitrage condition, the drift is determined by µi0t = θd+i
0σ θ

n
0λ(S

i
t)
w−1 +

(θi0σθ
i
0λ + r) for i = 1, ..., d. The process is indexed by the coefficient vector θ0 =

(θ1
0σ, · · · , θ2d

0σ, θ
1
0λ, · · · , θn0λ) ∈ R2d+n.

For the Black-Scholes economy, v = w = 1. The general case in which

v = w corresponds to a multivariate version of the constant elasticity of variance

(CEV) process often used to model stock prices, short rates, forward rates, and

stochastic volatilities. Various other cases of interest arise by varying v and w.

For instance, choosing v = 1/2 and w = 0 gives a process whose idiosyncratic

component follows a square root process, as in Cox, Ingersoll, and Ross (1985),

and whose aggregate component follows a Brownian motion.

Further, because the σ−field Gt := σ(Wτ , τ ∈ [0, t]) generated by the

t−history of the multivariate Brownian motion {Wt} may be a proper subset of

Ft, this assumption also covers certain more general stochastic volatility processes.

The analog of Assumption 1.3.2 becomes
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Assumption 1.6.2 (Envelope Process): There exists an adapted process

{Mt} such that 0 < Mt <∞ for t ∈ [0, T ], ||λ0t|| ≤Mt, and EP
[
exp

(∫ T
0
M2

t dt
)]

<

∞.

This condition ensures that var(ξT ) <∞, where

ξT = exp

(
−
∫ T

0

λ0s · dWs −
1

2

∫ T

0

‖λ0s‖2ds

)
.

Under these assumptions, the market prices of risk at time t belong to the

random set

ΛM
I,t := ΛI,t ∩ ΛMt ,

where

ΛI,t := {λ : σ0tλ = µ0t − rι} and ΛMt := {λ : ||λ|| ≤Mt}.

To apply maximum likelihood methods, we parameterize λ0t and σ0t as

follows:

Assumption 1.6.3 (Parametric Specification): Let Θ be a compact subset

of Rp, p ∈ N. (i) For t ∈ [0, T ], the functions `t : Ω×Θ→ Rn and st : Ω×Θ→ Rd×n

are such that for each θ ∈ Θ, `t(·, θ) and st(·, θ) are measurable−Ft, and for each

ω ∈ Ω, `t(ω, ·) and st(ω, ·) are continuous on Θ; (ii) for each θ ∈ Θ and t ∈ [0, T ],

||`t(·, θ)|| ≤Mt; (iii) there exists θ0 ∈ Θ such that for t ∈ [0, T ], σ0t = st(·, θ0) and

λ0t = `t(·, θ0).

Similar to our discussion above, Θ is the parameter space; for convenience, we

assume that it implicitly embodies any prior restrictions known to hold for θ0, such

as ρ(θ0) = 0. The first part of this assumption specifies the parametric functions

`t and st. In the second part, we require that the bound of Assumption 1.6.2 holds

for all θ in Θ. The third part ensures that this specification is correct, in that

there is a parameter value θ0 in Θ corresponding to the true arbitrage-free process

generating asset returns.

This assumption implies a parameterization for µ0t of the form mt(·, θ) =

st(·, θ)`t(·, θ) + rι. Alternatively, one may directly parameterize µ0t instead of λ0t;
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the no arbitrage condition then implies a parameterization for λ0t. For brevity, we

leave aside this possibility here.

Successive conditioning yields a likelihood function for returnsRtj := lnStj−
lnStj−1

defined by

fN(Rt1 , · · · , RtN ; θ) =
N∏
j=1

ftj(Rtj ; θ | Htj−1
),

where ftj(Rtj ; θ | Htj−1
) defines the likelihood for returns in tj given the infor-

mation Htj−1
, where σ(Rt1 , · · · , Rtj−1

) ⊆ Htj−1
. This likelihood function does not

necessarily have a closed form expression. In such cases, we may rely on an approx-

imation of the likelihood function. See Aı̈t-Sahalia (2002, 2008) and Kristensen

(2008), for example.

Analogous to the Black-Scholes case, the criterion function Q̄N : Θ → R̄+

is the shifted expected negative average log-likelihood defined by

Q̄N(θ) := EP

[
−N−1

N∑
j=1

ln ftj(Rtj ; θ | Htj−1
)

]
− q0,N ,

where

q0,N := EP

[
−N−1

N∑
j=1

ln ftj(Rtj ; θ0 | Htj−1
)

]
.

The identified set is again the set of zeros of Q̄N ,

ΘI := {θ ∈ Θ : Q̄N(θ) = 0}.

The identified market prices of risk at time t are then given by the Effros-measurable

set

λt(ΘI) := {λ : λ = `t(θ), θ ∈ ΘI} ⊂ ΛM
I,t.

It is not immediately obvious that λt(ΘI) = ΛM
I,t. Ensuring that this holds may re-

quire further conditions. Nevertheless, the correct specification assumption ensures

that λ0t ∈ λt(ΘI).
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The sample criterion function is given by QN : Ω×Θ→ R̄+, defined by

QN(θ) = −N−1

N∑
j=1

ln ftj(Rtj ; θ | Htj−1
)− qN ,

where qN = infΘ−N−1
∑N

j=1 ln ftj(Rtj ; θ | Htj−1
).

As when we apply the CHT approach above, we define an ε-level set for the

sample criterion function by

Θ̂N(ε) := {θ ∈ Θ : N ·QN(θ) ≤ ε} .

When we choose ε properly, the random set Θ̂N(ε) is Effros measurable and is a

consistent set estimator or confidence region for ΘI . The estimated prices of risk

at time t are given by λt(Θ̂N(ε)).

Hypothesis tests for the risk price process {λt(ΘI)} can be conducted by

inverting the confidence interval process {λt(Θ̂N(ε))} or using a likelihood ratio test

for θ ∈ ΘR, where ΘR ⊂ Θ expresses the restrictions specified by a null hypothesis

of interest, e.g.,

HΛ
o : λ0|T ∈ ΛR, t ∈ T ,

where T is a given subset of [0, T ], λ0|T denotes the process {λ0t} restricted to T ,

and ΛR is a given subset of ΛMT := {{ΛMt}, t ∈ T }.
As before, two-stage estimation can help in mitigating the challenges arising

in estimating θ0. Specifically, let θ0 := (θ01, θ02) ∈ Θ1 ×Θ2 =: Θ, and let Θ̂1N be a

first-stage set estimator for θ01.

Using this, let the second-stage set estimator for the identified set be defined

by

Θ̂N(ω) := {(θ1, θ2) ∈ Θ : NQN(ω, θ1, θ2) ≤ ε̂(ω), θ1 ∈ Θ̂1N(ω)},

where ε̂ may be random, as before.

When the available restrictions suffice to fully identify θ01, we have Θ̂1N =

{θ̂1N}, say. The second-stage set estimator is then Θ̂N = {θ̂1N} × Θ̂2N , where

Θ̂2N(ω) := {θ2 ∈ Θ2 : NQN(ω, θ̂1N(ω), θ2) ≤ ε̂(ω)}.
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Subsampling remains an appealing method for constructing confidence re-

gions here. To provide conditions ensuring its validity, in particular the CHT

condition, recasting a two-stage procedure as a single-stage procedure may again

prove convenient. Depending on the particular circumstances, it may be possible

to use a method of moments approach analogous to that discussed in Section 1.4.6.

In other cases, it may be helpful to exploit an exponentially tilted likelihood, along

the lines proposed by Kitamura and Stutzer (1997).

Formally ensuring consistency and convergence in distribution of these es-

timators will require careful specification of further regularity conditions appropri-

ate to the specific context of interest. Nevertheless, the framework sketched here

should prove helpful in pursuing these results.

1.7 Concluding remarks

In this paper, we study an econometric framework useful for estimating and

testing hypotheses about the price of risk in the absence of complete markets. We

state results ensuring the Effros-measurability and consistency of set estimators

for the vector of market risk prices, and we discuss the construction of hypothesis

tests and confidence sets using subsampling.

Our results build on the seminal work of Chernozhukhov, Hong, and Tamer

(2007) for estimation and testing in partially identified models. To handle the

challenges associated with jointly estimating all parameters of the model, we ap-

ply a two-stage method introduced by Kaido and White (2008). For the present

application, we estimate covariance parameters in the first stage and risk prices in

the second stage. For hypothesis testing, we make use of a subsampling procedure

proposed by Romano and Shaikh (2006, 2008). To illustrate, we apply our meth-

ods to estimate market risk prices and test hypotheses concerning international

risk sharing and market capitalization range indexes.

By providing new methods for inference on risk neutral measures in incom-

plete markets, our work thus complements that of Aı̈t-Sahalia and Lo (1998), Cher-

nov and Ghysels (2000), Clement, Gourieroux, and Monfort (2000), and Abadir
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and Rockinger (2003), among others.

An interesting direction for further research is to study investor risk prefer-

ences in the absence of the identification of market risk prices. This may create an

opportunity to extend the work of Aı̈t-Sahalia and Lo (2000), Jackwerth (2000),

and Rosenberg and Engle (2002).

One of the key assumptions in our framework is a bound, Mt, on the market

price of risk. Not only does this bound sharpen our set estimators, but it also

plays a key role when using the estimated risk neutral measure to price non-

redundant securities. Cochrane and Saá-Requejo (2000) show that this type of L2

bound on the Radon-Nikodym derivative (or SDF) delivers sharper upper and lower

bounds on the price of the non-redundant security. In related work, Bernardo and

Ledoit (2000) consider a L∞ bound on the Radon-Nikodym derivative. Further

investigation of the choice of Mt, particularly the use of empirical evidence to

choose Mt, is an interesting topic for further research.

Yet another interesting topic is the development of tests for market com-

pleteness per se. Such tests will require careful specification of the nature of the

alternative complete and incomplete market structures, together with a theory of

estimation and inference for parameters partially identified only under the alterna-

tive, possibly on the boundary of the parameter space. This will require extension

of work of Davies (1977, 1987) and Andrews (1999, 2001) to the context of partial

identification.

To maintain a sharp focus for our results, we have considered in detail the

multivariate Black-Scholes economy. Nevertheless, our framework applies more

broadly, and we sketch some features of its application to more general geomet-

ric processes. Extension to asset prices generated by Levy processes or subor-

dinated processes are other interesting possibilities deserving attention in future

work. Methods of estimation and inference for such potentially more realistic asset-

price generating processes will then make possible increasingly refined empirical

studies of risk pricing in incomplete markets.
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1.A Tables

1.A.1 Tables for International Risk Sharing

Table 1.1: Summary Statistics for Stock Index Returns and the T-Bill Yield

A: S&P500 TOPIX MSCI T-Bill
Mean 0.0061 0.0067 0.0069 0.0047
Std. Dev. 0.0343 0.0504 0.0378 0.0023
Min -0.0893 -0.1141 -0.1027 0.0007
Max 0.0829 0.1382 0.0926 0.0135
Skewness -0.0425 -0.0986 -0.0167 0.2800
Kurtosis -0.1081 -0.0484 0.1247 0.3700
Obs 405 405 405 405

B: S&P500 TOPIX MSCI
S&P500 0.00118
TOPIX 0.23588 0.00254
MSCI 0.50724 0.38051 0.00143

The sample period is 1970:1-2007:12 with 456 monthly observations. We remove ob-
servations corresponding to the top and bottom 2.5% of returns for each series. This
reduces the sample size to 405. We compute returns from the S&P500, TOPIX, and
MSCI Europe Price Indexes obtained from the Global Financial Database for stock in-
dex returns. For the risk-free rate, we average monthly 1-month T-Bill yields taken from
the CRSP database. We report robust measures of skewness and kurtosis. Skewness
is computed as SK = (Q3 + Q1 − 2Q2)/(Q3 − Q1), where Qi is the ith quartile of the
return. Kurtosis is computed as KR = (E7 − E5 + E3 − E1)/(E6 − E2) − 1.23, where
Ei is the ith octile. See Kim and White (2004) for details. Panel B reports variance
(diagonal) and correlation (off-diagonal) coefficients for the returns.
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Table 1.2: First-Stage Diffusion Coefficient Estimates

2 3 4 5 6
70:1-79:12 80:1-89:12 90:1-99:12 00:1-07:12 70:1-07:12

σ11 0.1106 0.1101 0.0925 0.0520 0.0982
(0.0292) (0.0324) (0.0336) (0.0616) (0.0337)

σ22 0.1327 0.1546 0.1833 0.1518 0.1580
(0.0531) (0.0410) (0.0428) (0.0450) (0.0441)

σ33 0.0915 0.0000 0.0460 0.0676 0.0572
(0.0514) (0.2288) (0.1348) (0.0618) (0.1188)

σ14 0.0554 0.0534 0.0748 0.1038 0.0698
(0.0472) (0.0433) (0.0458) (0.0401) (0.0447)

σ24 0.1029 0.0690 0.0731 0.0648 0.0769
(0.0733) (0.0602) (0.0595) (0.0494) (0.0607)

σ34 0.0945 0.1606 0.1176 0.1112 0.1198
(0.0575) (0.1057) (0.0593) (0.0472) (0.0632)

Number of Obs. 111 100 105 89 405

Columns 2-5 report the estimated diffusion coefficients (with standard errors in paren-
theses) for the following sample periods: 1970:1-1979:12, 1980:1-1989:12, 1990:1-1999:12,
and 2000:1-2007:12. The last column reports the estimation results for the full sample.

Table 1.3: Critical Values for Various Choices of b and BN

b BN dΛ
405,0.95

80 5000 6.36
80 1000 6.03
80 500 6.36
40 5000 4.63
40 1000 4.70
40 500 5.13
20 5000 3.81
20 1000 4.06
20 500 4.12

The third column reports 95% critical values of the test statistic. For each subsample,
we estimate the diffusion coefficient σ̂N,b,k and compute the statistic T̂N,b,k.
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1.A.2 Tables for Market Cap Index Returns

Table 1.4: Summary Statistics for Cap Range Index Returns and the T-Bill Yield

A: Large Cap Mid Cap Small Cap T-Bill
Mean 0.00042 0.00051 0.00052 0.00016
Std. Dev. 0.00732 0.00706 0.00761 0.00007
Min -0.02043 -0.02019 -0.02214 0.00003
Max 0.02021 0.01942 0.02117 0.00031
Skewness 0.03916 0.03459 -0.02127 -0.41912
Kurtosis 0.25411 0.22744 0.26137 0.04876
Obs 4,420 4,420 4,420 221

B:
Large Cap 0.000054
Mid Cap 0.860242 0.000050
Small Cap 0.731907 0.904943 0.000058

The sample period is 08/01/1989-12/31/2007 with 4,805 daily observations for the cap
range index returns. We remove observations corresponding to the top and bottom 2.5%
of returns for each series. This reduces the sample size to 4,420. We compute returns from
the S&P/Citigroup Global Cap Range Index data for: large cap (> $5 billion), mid cap
($1-$5 billion), and small cap (< $1 billion). For the risk-free rate, we average monthly
1-month T-Bill yields taken from the CRSP database for the same sample period (221
monthly observations). We report robust measures of skewness and kurtosis. Skewness
is computed as SK = (Q3 + Q1 − 2Q2)/(Q3 − Q1), where Qi is the ith quartile of the
return. Kurtosis is computed as KR = (E7 − E5 + E3 − E1)/(E6 − E2) − 1.23, where
Ei is the ith octile. See Kim and White (2004) for details. Panel B reports variance
(diagonal) and correlation (off-diagonal) coefficients for the returns.
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Table 1.5: First-Stage Diffusion Coefficient Estimates

2 3 4
1989-1999 2000-2007 1989-2007

σ11 0.0662 0.0622 0.0654
(0.0044) (0.0043) (0.0044)

σ22 0.0000 0.0000 0.0000
(0.0055) (0.0078) (0.0059)

σ33 0.0515 0.0618 0.0591
(0.0038) (0.0049) (0.0043)

σ14 0.0961 0.1044 0.0991
(0.0069) (0.0067) (0.0068)

σ24 0.1079 0.1302 0.1181
(0.0058) (0.0065) (0.0062)

σ34 0.0848 0.1383 0.1084
(0.0061) (0.0076) (0.0071)

Number of Obs. 2,603 1,817 4,420

Standard errors in parentheses.

Table 1.6: Critical Values for Various Choices of b and BN

b BN d4,420,0.95

320 1000 1.68
320 500 1.55
160 1000 1.54
160 500 1.74
80 1000 1.70
80 500 1.59
40 1000 1.66
40 500 1.62

The third column reports 95% critical values of the test statistic. For each subsample,
we estimate the diffusion coefficient σ̂N,b,k and compute the statistic T̂N,b,k.
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1.B Figures

1.B.1 Figures for International Risk Sharing
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Figure 1.3: Second-Stage Set Estimator (Convex Hulls of Projections to Three-
Dimensional Subspaces)
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Figure 1.5: 95% Confidence Region (Convex Hulls of Projections to Three-
Dimensional Subspaces)
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Figure 1.6: 95% Confidence Region (Projections of Boundary Points to Two-
Dimensional Subspaces)
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Figure 1.7: Subsampling Distribution of the LR Test Statistic (N = 405, b =
40, BN = 5, 000)
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1.B.2 Figures for Returns on Market Cap Index Returns
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Figure 1.9: Second-Stage Set Estimator (Projections of Boundary Points to Two-
Dimensional Subspaces)
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2.1 Introduction

Statistical inference for partially identified economic models, pioneered by

Manski (see Manski, 2003, and the references there), is a growing field in econo-

metrics. In this context, the economic structures of interest are characterized by

an identified set ΘI , rather than by a single point in the parameter space Θ. Re-

cent studies of partial identification have shown that consistent set estimators and

confidence regions can be constructed for the identified set as a whole or for its

elements. In particular, Chernozhukov, Hong, and Tamer (2007) (CHT) propose

a general framework based on the extremum estimation approach. Within their

framework, the identified set is defined as a set of minimizers of a criterion function.

A challenge for any estimator arises when the dimension of the parameter

space is large. This is a particular challenge for set-valued estimators, as high

dimensionality can create computational difficulties and seriously hamper the in-

terpretation of estimation results. If some a priori knowledge about the data

generating process is available, however, we can exploit this knowledge to reduce

the dimension and/or the volume of the set estimator. Indeed, we often encounter

cases in practice where some of the parameters can be identified and estimated

separately from the rest. Economic theory, e.g., in the form of optimization or

equilibrium conditions, may impose additional parameter restrictions. This paper

studies how a natural two-stage extension of the CHT framework can exploit such

knowledge to mitigate the problems otherwise associated with set estimation in

high-dimensional parameter spaces.

Specifically, we consider cases satisfying the following conditions: (i) the

parameter vector consists of two sub-vectors: a “first-stage” parameter vector

and a “second-stage” parameter vector; (ii) the identification of the first-stage

parameter depends on neither the identification nor the value of the second-stage

parameter; and (iii) the identified set for the second-stage parameter depends on

the first-stage parameter through a criterion function. These conditions are often

satisfied by models studied in the literature. For example, Bajari, Benkard, and

Levin (2007)’s estimation framework for dynamic imperfect competition models

has this structure. In financial econometrics, Kaido and White (2009) apply the
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two-stage procedure developed here to study the set of market risk prices under

incomplete markets.

An important feature here is that we do not necessarily require the model

to be correctly specified. The study of partially identified misspecified models

has begun very recently. Panomareva and Tamer (2009) and Bugni, Canay, and

Guggenberger (2010) study misspecified moment inequality models. Kline and

Santos (2010) study misspecified quantile models with missing data. In contrast

we study general extremum estimation with possible misspecification.

The paper is organized as follows. Section 2.2 summarizes CHT’s econo-

metric framework and formalizes the two-stage structure just described, without

requiring correct specification. Section 2.3 gives several illustrative examples. Sec-

tion 2.4 studies measurability and consistency of the two-stage set estimator. Sec-

tion 2.5 studies inference based on a quasi-likelihood ratio statistic, extending

results of Liu and Shao (2004), and Section 2.6 concludes. An appendix contains

formal proofs.

2.2 The Data Generating Process and the Model

2.2.1 CHT Framework and Two-Stage Structure

Our first assumption describes the data generating process, the parameter

space, and the estimation criterion function.

Assumption 2.2.1: Let d1, d2 ∈ N and d := d1 + d2. Let Θ1 ⊂ Rd1 and

Θ2 ⊂ Rd2 be nonempty compact sets. Let Θ := Θ1 × Θ2. (i) For n = 1, 2, ..., let

Q̄n : Θ→ R̄+ be a continuous function. (ii) Let (Ω,F, P 0) be a complete probability

space. For n = 1, 2, ..., let Qn : Ω × Rd → R̄+ be such that Qn(·, θ) is measurable

for each θ ∈ Rd and Qn(ω, ·) is continuous on Θ for each ω ∈ F ∈ F, P 0(F ) = 1,

and for all ω ∈ Ω and θ /∈ Θ, Qn(ω, θ) =∞.

Θ is the finite-dimensional parameter space. Compactness is a standard

assumption on Θ for extremum estimation. The parameter of interest θ ∈ Θ

consists of two sub-vectors, θ1 ∈ Θ1 and θ2 ∈ Θ2. Throughout, we will call θ1 a
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first-stage parameter and θ2 a second-stage parameter. The probability measure

P 0 embodies the data generating process (DGP) and thus governs the stochastic

properties of the data.

The function Qn acts as the sample criterion function for estimation; for

example,

Qn(ω, θ) = n−1

n∑
i=1

q(Xi(ω), θ)− inf
θ∈Θ

n−1

n∑
i=1

q(Xi(ω), θ), (2.2.1)

where {Xi : Ω → X} is a sequence of random vectors taking values in X ⊆
Rk, k ∈ N, and q is a suitable function, e.g., q(x, θ) = − ln f(x, θ), where f(·, θ) is

a probability density function for each θ. This example corresponds to the case of

quasi-maximum likelihood estimation. The second term ensures that Qn(ω, θ) ≥ 0.

As is common, we may write Qn(θ) as a shorthand for Qn( · , θ).
The function Q̄n is the population criterion function. Without loss of gen-

erality, we normalize the minimum value of Q̄n to 0, i.e. infΘ Q̄n(θ) = 0. For

example, when the expectations exist, the population analog for the above exam-

ple is

Q̄n(θ) = n−1

n∑
i=1

E[q(Xi(·), θ)]− inf
θ∈Θ

n−1

n∑
i=1

E[q(Xi(·), θ)].

Following CHT, we define the identified set as the set of minimizers of Q̄n:

Definition 2.2.1: The unrestricted identified set Θu
I,n is defined as

Θu
I,n := {θ ∈ Θ : Q̄n(θ) = 0}. (2.2.2)

Examples of studies in which the identified set is defined in this way are

those of Romano and Shaikh (2006), Ciliberto and Tamer (2006), Chernozhukov,

Hong, and Tamer (2007), Bugni (2008), Bajari, Benkard, and Levin (2008), and

Kaido and White (2009).

Observe that Θu
I,n has an n index, due to the n index of Q̄n. With station-

ary data, the n index is unneccesary; with asymptotically stationary data, if Q̄n

converges to a uniform limit, say Q̄, then the n index also becomes unnecessary. In
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what follows, we may suppress the n subscript for notational simplicity and simply

write Q̄ and Θu
I .

Under regularity conditions, Qn eventually reveals Θu
I . CHT’s approach is

to use the level sets of Qn to construct confidence sets and a set estimator for Θu
I .

A practical challenge occurs when the unrestricted identified set has a large

dimension. In many cases of interest, this challenge can be addressed by taking

advantage of the structure of the optimization problem. Here, we consider ”two-

stage” structures, defined as follows.

Definition 2.2.2: Q̄ has two-stage structure if there exists Θu
I,1 such that

Θu
I = {θ ∈ Θ : Q̄(θ1, θ2) = 0, θ1 ∈ Θu

I,1}. (2.2.3)

The literature contains many examples with this structure. Often, the first stage

is fully identified, so Θu
I,1 is simply {θ0

1}, say. We provide details for three examples

in the next section.

From now on, we mainly consider two-stage structures. Formally, we impose

Assumption 2.2.2: Q̄ has two-stage structure.

The challenge of large dimension can be further addressed by exploiting

prior knowledge about the underlying parameters. To describe this, we require

a notion of the ”true” or ”pseudo-true” parameter vector for which this prior

knowledge holds. To define these notions, we introduce the following assumption:

Assumption 2.2.3: There exist a set P of complete probability measures

on (Ω,F) such that P 0 ∈ P and a given surjective mapping T := (T ′1 , T ′2 )′ : P → Θ

such that θ0 := T (P 0) ∈ Θu
I .

With this assumption, the ”(pseudo-) true” parameter is θ0 := T (P 0), with θ0
1 :=

T1(P 0) and θ0
2 := T2(P 0). Consistent with White (1994), we call P the model. This

is the set of all probability measures that we view as possibly having generated the

data. Because of surjectivity, there is (at least) one element of the model for each

θ in Θ.



63

In the “correctly specified” case1, we view θ0 as the true parameter, with T
implementing the mapping from probability measures in P to the corresponding

elements of Θ. A typical case occurs with P := {Pθ : θ ∈ Θ}, where each Pθ is a

complete probability measure on (Ω,F). Then T is the projection mapping such

that θ = T (Pθ). In this case, P 0 = Pθ0 . Requirement (ii) automatically holds in

the correctly specified case.

When the model is misspecified, we view θ0 as the pseudo-true parameter

that would be identified from Q̄ in the presence of the information required to

resolve partial identification to full identification. In this case, T depends on Q̄, as

it implements the mapping from any P in P to the corresponding optimizer of Q̄.

(See White (1994, ch.3) for details.) Proper choice of T ensures that surjectivity

holds in the misspecified case.

When θ0
1 satisfies a priori restrictions, these can restrict the first-stage iden-

tified set. Such restrictions may take several forms. Our first example specifies

explicit restrictions.

Restriction 2.2.1: Let m1 ∈ N, and let ρ : Θ1 → Rm1 be a given mea-

surable function. θ0
1 satisfies ρ(θ0

1) = 0.

We also consider implicit restrictions.

Restriction 2.2.2: Let Ψ be a compact subset of a finite dimensional

Euclidean space. Let m2 ∈ N, and let s : Θ1 × Ψ → Rm2 be a given jointly

measurable function. θ0
1 satisfies s(θ0

1, ψ
0) = 0, where ψ0 ∈ Ψ is point identified.

Restrictions 2.2.1 and 2.2.2 are often useful for simplifying first-stage esti-

mation. They define a set Θr
1 of parameter values satisfying the restrictions. For

example, if both explicit and implicit restrictions hold, we have

Θr
1 = {θ1 ∈ Θ1 : ρ(θ1) = 0 and s(θ1, ψ

0) = 0}.

The set of identified parameter values that satisfy the restrictions is therefore

Θr
I,1 := Θu

I,1 ∩Θr
1. We call this set the restricted first-stage identified set.

1This case requires Q̄ to be suitably well behaved.
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Most of our results hold even without first-stage restrictions. Accordingly,

we state our results in terms of a generic identified set for the first-stage parameter,

denoted ΘI,1, whenever the results hold with or without the restrictions. We call

ΘI,1 the first-stage identified set.

Given ΘI,1, we define the two-stage identified set as follows:

Definition 2.2.3: The two-stage identified set is

ΘI :=
{
θ ∈ Θ : Q̄(θ) = 0 and θ1 ∈ ΘI,1

}
.

Given two-stage structure, ΘI and Θu
I coincide when ΘI,1 = Θu

I,1. They differ when

the first stage is restricted. As a special case, we may achieve full identification of

the first-stage parameter. In this case, we can define the second-stage identified

set.

Definition 2.2.4: Let ΘI,1 = {θ0
1}. The second-stage identified set is

ΘI,2 :=
{
θ2 ∈ Θ2 : Q̄(θ0

1, θ2) = 0
}
.

In this special case, the identified set for θ is simply ΘI = {θ0
1} ×ΘI,2.

A natural approach to conducting estimation and inference for ΘI (or ΘI,2

when θ0
1 is fully identified) is to replace ΘI,1 (or θ0

1) with its consistent estimator

Θ̂1n (or θ̂1n). We will discuss several ways to construct the first-stage estimator in

section 2.4.3. For now, we impose the presence of a possibly set-valued estimator

of the first-stage parameter as a high-level assumption. For this, let F(Θ1) be the

set of closed subsets of Θ1.

Assumption 2.2.4 (First-Stage Estimator): Θ̂1n : Ω → F(Θ1) is a mea-

surable mapping.

When θ0
1 is fully identified, we explicitly denote its estimator by θ̂1n : Ω→ Θ1. The

“measurability” imposed here is Effros-measurability. We discuss this in detail in

Section 2.4.

Given a first-stage estimator, we can construct a set estimator or a con-
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fidence region for the identified set ΘI (or ΘI,2) in the second stage, extending

the CHT framework. To motivate this, recall that the population criterion func-

tion Q̄ (eventually) achieves its minimum (zero) value on Θu
I and gives a strictly

positive value outside this set. Generally, the sample criterion function Qn well

approximates Q̄ as n tends to infinity. As CHT show, a level set of Qn with a level

decreasing to 0 at a proper rate is a good estimator for Θu
I . As our main focus is to

estimate ΘI , we additionally restrict θ1 to the estimator Θ̂1n of ΘI,1. We formally

define the two-stage set estimator as follows.

Definition 2.2.5 (Two-Stage Set Estimator): For each n ∈ N, let ε̂n : Ω→
R+ be measurable. Given a sequence {an} and Θ̂1n : Ω → F(Θ1), the two-stage

set estimator is

Θ̂n :=
{
θ : anQn(θ1, θ2) ≤ ε̂n, θ1 ∈ Θ̂1n

}
.

If ΘI,1 has only one element, then given θ̂1n : Ω → Θ1, the second-stage set

estimator is

Θ̂2n :=
{
θ2 : anQn(θ̂1n, θ2) ≤ ε̂n

}
.

2.3 Examples

In this section, we present three examples exhibiting the two-stage structure

described in the previous section. The first example is a linear regression model

with an interval-valued outcome variable subject to sample selection.

Example 2.3.1: [Interval Censored Outcome with Sample Selection] Sup-

pose a vector of explanatory variables (Xi, Zi, Di) ∈ Rd1×d2 × {0, 1} is observable

for i = 1, · · · , n. Suppose that for samples with Di = 1, we observe a pair (Y1i, Y2i)

that satisfies the conditional moment inequalities:

E[Y1i|Xi, Zi, Di = 1] ≤ E[Y ∗i |Xi, Zi, Di = 1] ≤ E[Y2i|Xi, Zi, Di = 1] a.s.,

where Y ∗i is a latent variable determined by Y ∗i = DiY
∗∗
i , and the conditional mean
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of Y ∗∗i is a linear function of Xi:

Y ∗∗i = X ′iβ0 + Ui, E[Ui|Xi] = 0, i = 1, · · · , n.

The coefficients β0 belong to a nonempty compact subset of Rd1. Suppose further

that the value of Di is determined by

Di = 1 {Z ′iγ0 + Vi ≥ 0} , i = 1, · · · , n,

where Vi is an unobservable random variable.

This is a more general version of the interval outcome regression models

studied in Manski and Tamer (2002), Romano and Shaikh (2006), Chernozhukov,

Hong, and Tamer (2007), and Beresteanu and Molinari (2008), extended to permit

sample selection on the dependent variable. When (Ui, Vi) are jointly normal, it is

well known that

E[Y ∗i |Xi, Zi, Di = 1] = X ′iβ0 + α0λ(Z ′iγ0)

for some α0 ∈ R, where λ is the inverse Mills ratio (Heckman, 1979)2. In this

example, the first-stage parameter and the second-stage parameter are γ and (α, β)

respectively. The true first-stage parameter γ0 can be identified up to scale by

observing Di and can be fully identified if we normalize the standard deviation

of Vi. Let Vi have standard deviation 1. Then the first-stage identified set is

ΘI,1 = {γ0}.
Let Wi ∈ RJ be a vector of positive-valued transformations of (Xi, Zi, Di).

For example, let Wi = {1{(Xi, Zi, Di) ∈ Xj}, j = 1, · · · , J} for a suitable collection

of sets Xj. The moment inequalities can be written

E[Y1iWi] ≤ β′0E[XiWi] + α0E[λ(Z ′iγ0)Wi] ≤ E[Y2iWi], i = 1, · · · , n.

The coefficients α0 and β0 are not identified because of the outcome variable in-

2It is possible to relax the joint normality assumption. In general, the conditional expectation
takes the form E[Y ∗i |Xi, Zi, Di = 1] = X ′iβ0 + h(Z ′iγ0), where h(Z ′iγ0) = E[Ui|Vi ≥ −Z ′iγ0].
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terval censoring. Following CHT’s notation, we let mi(α, β, γ) := ((Y1i − β′Xi −
αλ(Z ′iγ))Wi,−(Y2i − β′Xi − αλ(Z ′iγ))Wi)

′. Then the moment inequalities are

E[mi(α0, β0, γ0)] ≤ 0.

Given a symmetric positive-definite matrix S ∈ R2J×2J , the population

criterion function is

Q̄(α, β, γ) :=
∥∥E[mi(α, β, γ)]′S1/2

∥∥2

+
,

where ‖x‖+ = ‖max(x, 0)‖. Given γ0, the second-stage identified set is ΘI,2 :=

{(α, β) : Q̄n(α, β, γ0) = 0}. Now define the sample criterion function by replacing

P with an empirical measure Pn:

Qn(ω, α, β, γ) :=
∥∥∥Ên[mi(α, β, γ)]′S1/2

n

∥∥∥2

+
,

where Ên[mi(α, β, γ)] = n−1
∑n

i=1 mi(α, β, γ) and Sn is a symmetric positive defi-

nite matrix for each n. In this example, a consistent point estimate γ̂n of γ0 can be

obtained from a first-stage probit estimation. Then, for each n, the second-stage

set estimator is Θ̂2n = {(α, β) : nQn(ω, α, β, γ̂n) ≤ ε̂n} for some ε̂n properly chosen.

The second example is Bajari, Benkard, and Levin’s (2007; BBL) analysis

of dynamic models of imperfect competition.

Example 2.3.2: [Dynamic Models of Imperfect Competition] Let n, L,M ∈
N. Let i = 1, · · · , n be the player (firm) index. For each period t ∈ N, let st ∈ S ⊆
RL be a vector of commonly observed state variables. Each player observes st and

a private shock vit ∈ Vi ⊆ RM and decides their action ait ∈ Ai.
A pure Markov strategy for player i is a measurable function σi : S ×Vi →

Ai. Let at ∈ A = A1×· · ·×An. Given a common subjective discount factor β0 and

a payoff function πi : A× S × Vi → R, the pure-strategy Markov perfect equilibria

(MPE) is a profile σ = (σ1, · · · , σn) of Markov strategies such that

Vi(s;σ) ≥ Vi(s;σ
′
i, σ−i)
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for all players i, states s and Markov strategies σ′i, where Vi(s;σ) is the value

function defined recursively as

Vi(s;σ) := E

[
πi(σ(s, v;α0), s, vi; γ0) + β0

∫
Vi(s

′;σ)dP (s′|σ(s, v;α0), s;α0)

∣∣∣∣s] .
A parameterized version of the Markov process transition probability P (s′|

a, s;α0) is P (s′|a, s;α), α ∈ Rd1 . The strategy σ is also assumed to be parameter-

ized by α. The private shock vit is drawn independently across players and over

time from a player-specific distribution Gi(·|st; γ0), where γ0 ∈ Rd2 . The vector γ0

also enters the payoff function πi(a, s, vi; γ0), parameterized as πi(a, s, vi; γ). As-

suming that the subjective discount factor β0 is known, the true parameter vector

of interest is (α′0, γ
′
0)′.

Following BBL, let x := (i, s, σ′i). Let X denote the set of admissible x

values, and let

g(x, σ;α0, γ0) := Vi(s;σ
′
i, σ−i;α0, γ0)− Vi(s;σi, σ−i;α0, γ0).

Without specifying the equilibrium selection rule, the equilibria are characterized

by the set of inequalities g(x, σ;α0, γ0) ≤ 0 for x ∈ X . BBL show that α0 can

be fully identified in many cases; α0 is the first-stage parameter. The inequality

conditions, however, do not necessarily guarantee the full identification of the

second-stage parameter γ0. Therefore, they consider the case where the parameter

is partially identified. Let H be a distribution over X chosen by the researcher3.

Their population criterion function is defined by

Q̄(α, γ) :=

∫
X

(g(x, σ;α, γ))2
+ dH(x).

When α0 is fully identified, the first-stage identified set is ΘI,1 = {α0}, and the

second-stage identified set is ΘI,2 = {γ : Q̄(α0, γ) = 0}. The identified set for

(α, γ) is therefore {α0} ×ΘI,2.

3The distribution might be chosen in a variety of ways. BBL considers the possibility that σ′i
is distributed as a slight perturbation of the equilibrium policy σi and that σ′i differs from σi at
a single state.
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BBL show that α0 can be estimated from repeated observations on indi-

vidual actions and states {ait, st}. Let α̂n be the first-stage estimator of α0. This

gives the first stage estimate P̂ := P (s′|a, s, ; α̂n) and σ̂ := σ(s, v; α̂n) of the tran-

sition probability and the policy function. Now, let {x1, · · · , xJ} be the set of x

values chosen by the researcher4. For each x ∈ {x1, · · · , xJ} and γ ∈ Rd2 , one can

estimate the value function Vi by forward simulation (BBL, Section 3.3) given the

first stage estimators P̂ and σ̂. This gives an estimator V̂i(s, σ̂i, σ̂−i; α̂n, γ), of the

value function. Let ĝ(x, σ̂; α̂n, γ) := V̂i(s, σ
′
i, σ̂−i; α̂n, γ)− V̂i(s, σ̂i, σ̂−i; α̂n, γ). BBL

consider the sample criterion function for γ

Qn(α̂n, γ) :=
1

J

J∑
j=1

(ĝ(xj, σ̂; α̂n, γ))2
+ .

Using this criterion function and given a sequence {ε̂n}, the second-stage estimator

for ΘI,2 is Θ̂2n = {γ : nQn(α̂n, γ) ≤ ε̂n}.
BBL focus on how dynamic models of imperfect competition can be esti-

mated, allowing the possibility that the second stage parameter is only partially

identified. They implicitly assume measurability, prove the consistency of the

second-stage estimator using Manski and Tamer’s (2002) result, and describe the

construction of a confidence set based on Romano and Shaikh (2006). The con-

sequences of the first-stage estimation for second-stage inference, however, were

not explicitly considered. Our analysis will provide a rigorous way to explicitly

account for these consequences. Further, our analysis ensures the measurability of

BBL’s set estimator and extends the consistency of the two-stage set estimator to

cases where α is only partially identified.

The third example is Kaido and White’s (2009) study of the market price

of risk in incomplete markets. We present one of their main cases.

Example 2.3.3: [Market Price of Risk in Incomplete Markets] Let (Ω,F,

{Ft}, P ) be a filtered probability space. Suppose that there are d ∈ N risky assets

and that the Rd− valued asset price process {St} solves the stochastic differential

4BBL propose drawing the x-values independently from H.
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equation

dSjt = µj0S
j
t dt+ σj0S

j
t dWt, t ∈ [0, T ], j = 1, ..., d,

where {Wt} is a vector of N ∈ N independent standard Brownian motions under

P adapted to the filtration {Ft}, µ0 ∈ Rd has elements µj0, j = 1, ..., d, and σ0 ∈
Rd×N has 1×N rows σj0, j = 1, ..., d. Let S0

t denote the price of the risk-free bond

with known rate of return r.

Suppose (i) {St} does not admit arbitrage; and (ii) extremely good deals

(returns with high Sharpe ratios) are not available5. The first assumption ensures

the existence of a risk-neutral measure and an associated market price of risk λ

satisfing σ0λ = µ0 − rι, where ι is a vector of ones. The second ensures that the

true market price of risk λ0 has a finite upper bound M on its norm. Thus, they

define the parameter space Θ2 for λ to be Θ2 = {λ : ‖λ‖ ≤M}.
In this example, the diffusion coefficient σ0 can be (partially or fully) iden-

tified and estimated separately from the market price of risk λ0. The covariance

matrix Σ0 of asset returns satisfies Σ0 = σ0σ
′
0. This is an example of the implicit

restrictions described in Restriction 2.2.2. The restricted first-stage identified set

is

ΘI,1 = Θr
I,1 = {σ : s(σ,Σ0) = 0},

where s(x,A) = A−xx′ for x ∈ Rd×N and A ∈ Rd×d. A natural estimator for ΘI,1

is Θ̂1n := {σ : s(σ, Σ̂n) = 0}, where Σ̂n is the sample covariance matrix of asset

returns. Kaido and White (2009) use the population criterion function

Q̄n(σ, λ) := −E

[
1

n

n∑
i=1

ln f(Rti ;σ, λ)

]
− q̄n,

where for each ti in the partition {t0, t1, · · · , tn} with t0 = 0 and tn = T , Rti ∈ Rd

is the vector of returns over the interval [ti, ti−1], f is the the multivariate Gaussian

density with mean σλ−rι and covariance Σ, and q̄n := infσ,λ−E[n−1
∑n

i=1 ln f(Rti ;

5See Cochrane and Saá-Requejo (2000) for example.
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σ, λ)]. The identified set for (σ, λ) is defined by ΘI := {(σ, λ) : Q̄n(σ, λ) =

0, a.a.n, and σ ∈ ΘI,1}. The sample criterion function is defined by

Qn(σ, λ) = − 1

n

n∑
i=1

ln f(Rti ;σ, λ)− qn,

where qn := infσ,λ−n−1
∑n

i=1 ln f(Rti ;σ, λ). Given Θ̂1n and a sequence {ε̂n}, the

two-stage set estimator is defined by Θ̂n := {(σ, λ) : nQ̄n(σ, λ) ≤ ε̂n, σ ∈ Θ̂1n}.
Under additional assumptions, the diffusion coefficient can be fully identi-

fied. Kaido and White (2009) consider examples that satisfy additional explicit

restrictions of the type considered in Restriction 2.2.1. For example, assuming that

each asset is exposed to its own idiosyncratic risk and n− d common risk factors

implies that there exists a function ρ : Rd×N → Rm such that ρ(σ0) = 0 for some

m ∈ N. In this case, the first-stage identified set is

ΘI,1 = Θr
I,1 = {σ : ρ(σ) = 0 and s(σ,Σ0) = 0}.

Kaido and White (2009) show that these restrictions may fully identify σ0 in some

cases, enabling them to estimate σ0 using a point estimator σ̂n. If σ0 is fully

identified, the second-stage identified set for the market price of risk is simply

ΘI,2 = {λ : Q̄n(σ0, λ) = 0, a.a.n}. This set is shown to be a bounded subset of an

affine space. The second-stage set estimator is Θ̂2n = {λ : nQn(σ̂n, λ) ≤ ε̂n}.

2.4 Measurability and Consistency of the Two-

Stage Estimator

In this section, we establish the measurability and consistency of the two-

stage set estimator. We first show that the set estimator is a set-valued random

element that is measurable in an appropriate sense. The consistency result is a

straightforward extension of CHT.
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2.4.1 Effros-measurability

The measurability of set estimators is defined for mappings from Ω to the

space of closed subsets of a Euclidean space. We first briefly review useful concepts

and results in the theory of random sets. Details can be found in Molchanov (2005).

For A ⊂ Rd, let G be a topology on A. Let F(A) denote the collection of

all closed subsets of A. A useful measurability concept for set-valued functions is

Effros-measurability.

Definition 2.4.1 (Effros-measurability): A map X : Ω→ F(A) is Effros-

measurable with respect to F if for each open set G ∈ G

X−(G) := {ω : X(ω) ∩G 6= ∅} ∈ F.

Effros-measurability ensures that many functionals of interest, such as the

distance between random sets, become random variables; it is also flexible, handling

as many random elements as one typically requires6. To show the measurability

of the set estimators defined in Definition 2.2.5, we impose mild conditions on

the sample criterion function. For this, we require the criterion function to be a

proper normal integrand, defined below. Recall that a function ζ : Rd → R̄ is lower

semicontinuous (lsc) if lim infx→x̄ ζ(x) ≥ ζ(x̄) for every x̄ ∈ Rd.

Definition 2.4.2 (Epigraph and Proper Normal Integrand): If ζ : Rd → R̄
is lsc, then

epi ζ = {(x, α) ∈ Rd × R : ζ(x) ≤ α}

is called the epigraph of ζ.

A function ζ : Ω × Rd → R̄, is called a normal integrand if its epigraph

X(ω) = epi ζ(ω, ·) defines a closed set Effros-measurable with respect to F. A

normal integrand is said to be proper if it does not take the value −∞ and is not

6Effros-measurability is defined for maps with a more general domain F(E), where E is a Polish
space, but for our purposes, it suffices to take E = A ⊂ Rd. Accordingly, all the definitions and
propositions taken from Molchanov (2005) are restated for this case. Details on the measurability
of random sets are discussed in chapter 1 of Li, Ogura, and Kreinovich (2002) and chapter 1 of
Molchanov (2005).



73

identically equal to +∞.

The following are useful facts about normal integrands.

Fact 2.4.1 (By M, Proposition 3.6, p.340): Let ζ : Ω × Rd → R̄ be such

that ζ(ω, ·) is lsc on Rd for each ω ∈ Ω. If ζ is jointly measurable on Ω×Rd, then

ζ is a normal integrand.

Fact 2.4.2 (By M, Proposition 3.10 (i), p.342): If ζ is a normal integrand,

then for every random variable α̂ : Ω→ R̄, {ζ ≤ α̂} = {x ∈ Rd : ζ(·, x) ≤ α̂(·)} is

a random closed set, i.e. it is Effros-measurable.

Recall that when the first-stage parameter is fully identified, the second-

stage set estimator Θ̂2n is defined as a level set of a random continuous function.

Therefore, to ensure the measurability of the second-stage set estimator, it suffices

to require that the criterion function is jointly measurable in (ω, θ).

For the two-stage set estimator Θ̂n, however, we need a somewhat more

careful treatment. Θ̂n is a level set of a random criterion function whose first

argument is restricted to the first-stage set estimator Θ̂1n. As Θ̂1n is also a random

set, this introduces some complications.

As we show below, the measurability of Θ̂n is related to the Effros-measura-

bility of the first-stage set estimator and the measurability of the criterion function

over random sets. For this, we make use of the following results from Stinchcombe

and White (1992; SW).

Lemma 2.4.1 (Lemma 2.15 in SW): Let (Ω,F) be a measurable space and

(H, d) a separable metric space with its Borel σ-algebra H. If ζ is measurable on

Ω and continuous on H, that is, for every ω ∈ Ω, ζ(ω, ·) : H → R̄ is continuous

and for every h ∈ H, ζ(·, h) : Ω → R̄ is measurable, then ζ : Ω × H → R̄ is

F⊗H-measurable.

Lemma 2.4.2 (Theorem 2.17, a in SW): (i) Let (Ω,F) be a measurable

space; (ii) Let (H,H) be a Souslin measurable space, i.e. a space that is measurably

isomorphic to an analytic subset of a compact metric space. (iii) Suppose ζ :

Ω ×H → R̄ is F ⊗H-measurable; (iv) S : Ω ⇒ H is a correspondence from Ω to
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H with grS ∈ F⊗H, where grS is the graph of S7. Then the function ζ∗ : Ω→ R̄
defined by

ζ∗(ω) := sup
h∈S(ω)

ζ(ω, h)

is analytic.

Remark 2.4.1: The result of Lemma 2.4.2 is a bit more general than

strictly necessary for our purposes. If F is completed with respect to the probability

measure P , then the results above imply the measurability of ζ∗ with respect to the

completed σ-algebra. This is the result we exploit to establish Effros measurability.

A closely related result was established by Debreu (1967) for mappings S that are

non-empty and compact for all ω ∈ Ω and for functions ζ such that ζ(ω, ·) is lower

semicontinuous for all ω ∈ Ω. Therefore, if the first stage set estimator is almost

surely non-empty and if a criterion function Qn is jointly measurable, we can relax

the continuity assumption on Qn and allow Qn to be only lower semicontinuous.

We can now state a general result for Effros-measurability of two-stage set

estimators:

Theorem 2.4.1: (i) Let (Ω,F, P ) be a complete probability space, and let

Θ = Θ1×Θ2 where Θ1 and Θ2 are nonempty compact subsets of finite-dimensional

Euclidean space; (ii) Let ζ : Ω×Θ1×Θ2 → R̄+ be such that ζ(·, θ1, θ2) is measurable

for each (θ1, θ2) in Θ1 × Θ2 and ζ(ω, ·, ·) is continuous on Θ1 × Θ2 for each ω in

F ∈ F with P (F ) = 1; (iii) Let Θ̂1 : Ω→ F(Θ1) be Effros-measurable.

Then, for any measurable ε̂ : Ω → R+, the ε̂-level set Θ̂ : Ω → F(Θ),

defined by

Θ̂(ω, ε̂(ω)) = {θ : ζ(ω, θ1, θ2) ≤ ε̂(ω), θ1 ∈ Θ̂1(ω)}.

is Effros-measurable with respect to F.

Suppose instead (iii′) θ̂1 : Ω→ Θ1 is measurable. Then

(a) For each θ2 ∈ Θ2, ζ̃(·, θ2) := ζ(·, θ̂1(·), θ2) is a measurable function on

Ω and for each ω ∈ F , ζ̃(ω, ·) is a continuous function on Θ2;

7This condition is equivalent to the Effros-measurability of S when the parameter space H is
a Polish space and the probability space is complete. See Theorem 1.2.3 in Molchanov (2005).
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(b) For any measurable ε̂ : Ω→ R+, the ε̂-level set Θ̂2 : Ω→ F(Θ2), defined

by

Θ̂2(ω, ε̂(ω)) = {θ2 : ζ(ω, θ̂1(ω), θ2) ≤ ε̂}

is Effros-measurable with respect to F.

These results yield Effros-measurability for our two- and second-stage esti-

mators.

Corollary 2.4.1: Suppose Assumptions 2.2.1 and 2.2.4 (Effros-measura-

bility of Θ̂1n) hold. Then for any measurable ε̂n : Ω→ R+, the two-stage estimator

Θ̂n and the second-stage estimator Θ̂2n of Definition 2.2.5 are Effros-measurable.

2.4.2 Consistency

In this section, we show that the two-stage set estimators of Definition

2.5 converge in probability to the identified set. The consistency is in terms of

Hausdorff metric on F(Θ2). For two closed sets A and B in F(Θ), the Hausdorff

metric is defined as

dH(A,B) = max

[
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

]
,

where d(b, A) := infa∈A ‖b− a‖ and dH(A,B) :=∞ if either A or B is empty. The

Hausdorff metric is standard in this context. The following theorem establishes

the consistency of two-stage set estimators generally.

Theorem 2.4.2: (i) Let (Ω,F, P ) and Θ = Θ1 × Θ2 satisfy the conditions

of Theorem 2.4.1, and suppose that for n = 1, 2, · · · , Qn and Θ̂1n satisfy the

conditions on ζ and Θ̂1 in Theorem 2.4.1; (ii) Suppose there exists Q̄ : Θ → R̄+

such that supΘ |Qn(θ)− Q̄(θ)| = op(1). Let ΘI,1 ∈ F(Θ1) and define

Θ̄I := arg min
ΘI,1×Θ2

Q̄(θ).

(iii) Let {an} be a sequence of normalizing constants such that an → ∞; (iv) Let
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ε̂n be such that ε̂n/an = op(1) and

lim
n→∞

P

(
ω : sup

θ∈Θ̄I

Qn(ω, θ) ≤ ε̂n(ω)/an

)
= 1.

(v) Suppose further that dH(Θ̂1n,ΘI,1) = op(1), and let

Θ̂n(ω) = {θ : anQn(ω, θ1, θ2) ≤ ε̂n(ω), θ1 ∈ Θ̂1n(ω)}.

Then Θ̂n is Effros measurable with respect to F, and dH(Θ̂n, Θ̄I) = op(1).

Note that the estimated set Θ̄I need not correspond to the identified set ΘI , as this

result does not assume two-stage structure for Q̄. Nevertheless, Θ̄I = ΘI when Q̄

does have two-stage structure. In the absence of two-stage structure, the result

above is useful for partial identification analysis of profile estimators, like the EM

algorithm (Dempster, Laird, and Rubin, 1977), which iterate between estimating

one subset of parameters and another.

When θ0
1 is point identified, the second-stage set estimator Θ̂2n is consistent

for the identified set ΘI,2:

Corollary 2.4.2: (i) Let the conditions of Theorem 2.4.2 hold, and sup-

pose that ΘI,1 is a singleton, ΘI,1 = {θ0
1}; (ii) Let

ΘI,2 := arg min
θ2∈Θ2

Q̄(θ0
1, θ2);

(iii) Let θ̂1n : Ω→ Θ1 be measurable-F such that θ̂1n − θ0
1 = op(1), and let

Θ̂2n :=
{
θ2 : anQn(ω, θ̂1n(ω), θ2) ≤ ε̂n(ω)

}
.

Then Θ̂2n is Effros measurable with respect to F, and dH(Θ̂2n,ΘI,2) = op(1).

To apply these results, we add a uniform convergence assumption.

Assumption 2.4.1: supΘ |Qn(θ)− Q̄(θ)| = op(1).

This assumption holds by any of a variety of uniform laws of large num-
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bers. We can now obtain the Hausdorff consistency of our two- and second-stage

estimators.

Corollary 2.4.3: Suppose Assumptions 2.2.1 (i) and 2.2.2 hold. Then

Θ̄I = ΘI . If Assumptions 2.2.1 (ii), 2.2.4, and 2.4.1 also hold and dH(Θ̂1n,ΘI,1) =

op(1), then for any measurable ε̂n : Ω → R+ such that ε̂n/an = op(1) and limn→∞

P (supΘI
Qn(θ) ≤ ε̂n/an) = 1, the two-stage estimator Θ̂n of Definition 2.2.5 is

consistent: dH(Θ̂n,ΘI) = op(1). If ΘI,1 = {θ0
1} and θ̂1n : Ω → Θ1 is measurable-F

such that θ̂1n− θ0
1 = op(1), then the second-stage estimator Θ̂2n of Definition 2.2.5

is consistent: dH(Θ̂2n,Θ2,I) = op(1).

2.4.3 First-Stage Set Estimation

In this section, we explicitly consider the estimation of ΘI,1. If ΘI,1 = Θu
I,1,

then one can estimate the first-stage identified set using existing set-estimation

techniques such as those of Chernozhukov, Hong, and Tamer (2007), Kaido (2009),

or Bereseteanu and Molinari (2008). It remains, however, to study set estimation

with the a priori restrictions considered in Section 2.2. We therefore take an esti-

mator Θ̂u
1n of Θu

I,1 as given and study how the restrictions affect the set estimation

in the first stage.

Case 1: Restriction 2.2.1

We first consider the simplest case, where Restriction 2.2.1 holds. We have

the following result.

Theorem 2.4.3: Suppose that (i) ρ : Θ1 → Rm1 is a continuous function;

(ii) Θr
1 = {θ1 ∈ Θ1 : ρ(θ1) = 0}; (iii) Θ̂u

1n is Effros measurable. Then

(i) Θ̂1n := Θ̂u
1n ∩Θr

1 is Effros measurable, i.e. Assumption 2.2.4 holds.

(ii) If Assumption 2.2.3 and Restriction 2.2.1 also hold, and dH(Θ̂u
1n,Θ

u
I,1) =

op(1), then dH(Θ̂1n,ΘI,1) = op(1).
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Case 2: Restrictions 2.2.1 and 2.2.2

Next, we consider cases where we impose both Restrictions 2.2.1 and 2.2.2.

A special case is that only condition 2.2.2 holds. Since condition 2.2.2 involves

another parameter that is fully identified, we need a more general treatment. The

next theorem establishes the Effros-measurability and consistency of the first-stage

set estimator.

Theorem 2.4.4: Suppose that (i) ρ : Θ1 → Rm1 is a continuous function;

(ii) s : Θ1 × Ψ → Rm2 is a continuous function; (iii) Θr
1 = {θ1 ∈ Θ1 : s(θ1, ψ0) =

0, ρ(θ1) = 0}; (iv) there is a point estimator ψ̂n : Ω→ Ψ that is F-measurable and

ψ̂n − ψ0 = op(1); (v) Θ̂r
1n = {θ1 ∈ Θ1 : s(θ1, ψ̂n) = 0, ρ(θ1) = 0} (vi) Θ̂u

1n is Effros

measurable. Then

(i) Θ̂1n := Θ̂u
1n ∩ Θ̂r

1n is Effros measurable, i.e. Assumption 2.2.4 holds.

(ii) If Assumption 2.2.3 and Restrictions 2.2.1 and 2.2.2 also hold, and

dH(Θ̂u
1n,Θ

u
I,1) = op(1), then dH(Θ̂1n,ΘI,1) = op(1).

2.5 Two-Stage Inference using the Likelihood-

Ratio Statistic

Set estimation is useful when interest focuses on the properties of the iden-

tified set. If instead one wishes to test hypotheses regarding the identified set, it

is not necessary to estimate it. Let R be a closed subset of Θ (or Θ2), where R is

a set of parameter values that satisfy the restrictions of interest.

As the (pseudo-) true parameter value θ0 is in the identified set, if θ0 satisfies

the given restrictions, the identified set has nonempty intersection with R. We can

thus consider the hypotheses

HΘ
0 : ΘI ∩R 6= ∅ versus ΘI ∩R = ∅

HΘ2
0 : ΘI,2 ∩R 6= ∅ versus ΘI,2 ∩R = ∅.

Because R is a closed subset of the compact parameter space, these null hypotheses
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are equivalent to

HΘ
0 : inf

θ∈Θ∩R
Q̄n(θ) = 0 or inf

θ2∈Θ2∩R
Q̄n(θ0

1, θ2) = 0.

Such hypotheses are considered in the partially identified case in the single stage

context by Romano and Shaikh (2008) for parametric inference and by Santos

(2007) for nonparametric inference.

To test these hypotheses in our two-stage framework, we replace Q̄n and Θ

with their sample analogs Qn and Θ̂1n ×Θ2, which leads to the test statistics

T̂n(Θ, R) = inf
θ∈(Θ̂1n×Θ2)∩R

anQn(θ) and T̂n(Θ2, R) = inf
θ2∈R

anQn(θ̂1n, θ2)

Below, we focus on the cases where Qn takes the quasi-maximum likelihood form

in Eq. (2.2.1). Let an = n, a typical case. Then the statistics can be written as

T̂n(Θ, R) = inf
θ∈(Θ̂1n×Θ2)∩R

n∑
i=1

q(Xi(ω), θ)− inf
θ∈(Θ̂1n×Θ2)

n∑
i=1

q(Xi(ω), θ)

T̂n(Θ2, R) = inf
θ2∈R

n∑
i=1

q(Xi(ω), θ̂1n, θ2)− inf
θ2∈Θ2

n∑
i=1

q(Xi(ω), θ̂1n, θ2) (2.5.1)

When q(x, θ) = − ln f(x, θ) , where f(·, θ) is a probability density function for each

θ, these statistics can be viewed as quasi-likelihood ratio statistics.

In general, the first stage estimation impacts the distribution of the statis-

tics. This impact is quite involved for T̂n(Θ, R). Thus, to gain insight and give

useful results, in what follows, we focus on the statistic T̂n(Θ2, R), where the first

stage parameter is fully identified. This includes Examples 2.3.1 and 2.3.2 and

important special cases of Example 2.3.3. We leave analysis of T̂n(Θ, R) to future

work, as that analysis requires much more space than available here.

When the first stage parameter is point identified, we can exploit a two-

term mean-value expansion. The following straightforward high-level result applies

when θ0
1 is interior to Θ1 and the function q(x, ·, θ2) is sufficiently smooth. Analo-

gous but more elaborate results hold even when θ0
1 is not interior to Θ1.
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Proposition 2.5.1: Let {an} be a sequence of real numbers and for p ∈ N,
suppose that θ0 ∈ Rp and that {Q̂n : Ω → R}, {Qn : Ω → R}, {θ̂n : Ω → Rp},
{gn : Ω→ Rp}, and {Hn : Ω→ Rp×p} are sequences of measurable functions such

that

anQ̂n = anQn + ang
′
n

(
θ̂n − θ0

)
+ an

(
θ̂n − θ0

)′
Hn

(
θ̂n − θ0

)
/2 + op(1), (2.5.2)

where, for random matrices Z0, Z1, Z2, Z3 of suitable dimension,

(anQn, a1/2
n

(
θ̂n − θ0

)′
, a1/2

n g′n, (vec(Hn))′)
d→ (Z0, Z

′
1, Z

′
2, (vec(Z3))′).

Then

anQ̂n
d→ Z0 + Z ′2Z1 + Z ′1Z3Z1/2.

In our application, an = n, p = d1, θ0 = θ1
0, anQ̂n = T̂n(Θ2, R), anQn =

Tn(Θ2, R; θ1
0), where

Tn(Θ2, R; θ0
1) := inf

θ2∈R

n∑
i=1

q(Xi, θ
0
1, θ2)− inf

θ2∈Θ2

n∑
i=1

q(Xi, θ
0
1, θ2),

θ̂n = θ̂1n, gn = n−1(∂/∂θ1)Tn(Θ2, R; θ0
1), and Hn = n−1(∂2/∂θ1∂θ

′
1)Tn(Θ2, R; θ0

1).

Therefore, to establish weak convergence of the statistic, it suffices to establish joint

convergence of (Tn(Θ2, R; θ0
1),
√
n(θ̂1n−θ0

1), n−1/2∂/∂θ1Tn(Θ2, R; θ0
1), n−1∂2/∂θ1∂θ

′
1

Tn(Θ2, R; θ0
1)). Assumption 2.5.1 below summarizes a high-level condition sufficient

for the desired result.

Before stating the assumption, we introduce additional notation. For any

sequence {Zi} of random vectors, let Gn(Zi) :=
√
n(Ên(Zi) − E(Zi)). The space

of bounded functions on a set D will be denoted l∞(D). We focus on a set D =

{φ : X → R}, which is a class of measurable functions such that

sup
φ∈D
|φ(x)− E(φ(X))| <∞, for all x. (2.5.3)
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We call Wn : Ω→ l∞(D) an empirical process on D if for every φ ∈ D,

πφWn = Gn(φ(Xi)) =
√
n(Ên(φ(Xi))− E(φ(Xi))),

where πφ : l∞(D) → R is the projection of the argument process at φ. For

simplicity, in what follows, we write Wn(φ) = πφWn; there will be no risk of

confusion. Following van der Vaart and Wellner (2000), we define the P 0-Donsker

property8.

Definition 2.5.1 (P 0-Donsker class): A class of measurable functions D =

{φ : X → R} satisfying (2.5.3) is said to be P 0-Donsker if the empirical process

Wn on D converges weakly to a tight measurable element W : Ω→ l∞(D).

Assumption 2.5.1: (i) There exist a P 0-Donsker class S := {φ : X → R :

supφ∈S |φ(x)− E(φ(X))| <∞,∀x ∈ X} and a continuous function g : l∞(S)→ R
such that Tn(Θ2, R; θ0

1) = g(Wn) + op(1); (ii) There exist measurable functions

ψj : X → Rd1 , j = 1, 2, 3 and ψk : X → Rd2
1 , k = 4, 5 such that

√
n(θ̂1n − θ0

1) =
1√
n

n∑
i=1

ψ1(Xi) + op(1) (2.5.4)

1√
n

∂

∂θ1

Tn(Θ2, R; θ0
1) =

1√
n

n∑
i=1

ψ2(Xi)−
1√
n

n∑
i=1

ψ3(Xi) + op(1) (2.5.5)

1

n
vec

(
∂2

∂θ1∂θ′1
Tn(Θ2, R; θ0

1)

)
=

1

n

n∑
i=1

ψ4(Xi)−
1

n

n∑
i=1

ψ5(Xi) + op(1), (2.5.6)

with E(ψj(Xi)) = 0, j = 1, 2, 3, E(ψj(Xi)) <∞, j = 4, 5, and E(ψj(Xi)
′ψj(Xi)) <

∞, j = 1, 2, 3; (iii) For any finite m, let Sl ∈ S, l = 1, · · · ,m, and suppose the

sequence of m+ 5-vectors

(Wn(S1), · · ·,Wn(Sm),

Gn(ψ1(Xi)),Gn(ψ2(Xi)),Gn(ψ3(Xi)), Ên(ψ4(Xi)), Ên(ψ5(Xi)))
′

jointly converges in distribution to (W(S1), · · · ,W(Sm),W1, · · · ,W3, H4, H5)′,

8For details on weak convergence and tightness, see van der Vaart and Wellner (2000).
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where (W(S1), · · · , W(Sm),W1,W2,W3) follows a mean zero multivariate Normal

distribution and H4 and H5 are constant vectors.

Assumption 2.5.1 (i) requires that Tn(Θ2, R; θ0
1) converges to a continuous

function of a Gaussian process W defined on some set S. For correctly speci-

fied models, Liu and Shao (2003) give primitive conditions that ensure this re-

quirement, which we will elaborate below, together with more primitive condi-

tions ensuring Assumption 2.5.1. Note that we need weak convergence of Yn :=

(Wn,Gn(ψ1(Xi)), · · · ,Gn(ψ3(Xi)), Ên(ψ4(Xi)), Ên(ψ5(Xi)))
′ in the product space

l∞(S)×Rd1×Rd1×Rd1×Rd2
1×Rd2

1 . For this, it is sufficient to have weak convergence

of Wn, of Gn(ψj(Xi)), j = 1, · · · , 3, and of Ên(ψk(Xi)), k = 4, 5 (i.e. convergence

in probability), and finite dimensional convergence of Wn, because joint tightness

follows from marginal tightness9. Generally, a central limit theorem and weak law

of large numbers ensure the finite-dimensional convergences. Assumption 2.5.1

(ii) requires that θ̂n has an asymptotic linear representation with influence func-

tion ψ1. Many estimators, including the maximum likelihood estimator (MLE),

satisfy this requirement. Similarly, an envelope theorem ensures the existence of

ψj, j = 2, · · · , 5, when q(x, ·, θ2) satisfies appropriate differentiability conditions.

Assumption 2.5.1 (iii) ensures that 1
n

∂2

∂θ1∂θ′1
Tn(Θ2, R; θ0

1) converges to a constant

matrix. We denote this matrix by H.

Now we can state the desired result.

Theorem 2.5.1: Suppose Assumption 2.2.1 holds with (2.2.1) defining Qn,

Assumption 2.2.2 and 2.2.4 hold with ΘI,1 = {θ0
1}, and that Assumption 2.5.1

holds. Suppose T̂n(Θ2, R) admits the expansion in Eq. (2.5.2) with an = n,

p = d1, θ0 = θ1
0, anQ̂n = T̂n(Θ2, R), anQn = Tn(Θ2, R; θ1

0), θ̂n = θ̂1n, gn =

n−1(∂/∂θ1)Tn(Θ2, R; θ0
1), and Hn = n−1(∂2/∂θ1∂θ

′
1)Tn(Θ2, R; θ0

1). Then

T̂n(Θ2, R)
d→ g(W) + (W2 −W3)′W1 +W ′

1HW1,

where W is a tight Gaussian process on S.

9See Hall and Loynes (1977) or Billingsley (1999), page 65, Problem 5.9.
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We now provide more primitive conditions that ensure Assumption 2.5.1.

These permit us to apply the framework of Liu and Shao (2003). For this, we

will impose correct model specification for the first time. We add the following

structure to the DGP and model:

Assumption 2.5.2 (Additional Assumptions 1): (i) Let {Xi : Ω→ X , i =

1, 2, · · · } be an IID sequence of random k-vectors on (Ω,F,P0). (ii) For each

i = 1, 2, · · · , P 0 (induced on X ) is absolutely continuous with respect to a σ-finite

measure µ. Let f 0 := dP 0/dµ be the (Radon-Nikodym) density. (iii) Let d ∈ N
and Θ ⊂ Rd, and for each θ ∈ Θ let Pθ be absolutely continuous with respect to µ

with f(·, θ) := dPθ/dµ. Define PΘ := {Pθ : θ ∈ Θ} and suppose P 0 ∈ PΘ. (iv) For

each θ ∈ Θ, let

Qn(θ) := n−1

n∑
i=1

− ln f(Xi; θ)− inf
Θ
n−1

n∑
i=1

− ln f(Xi; θ).

Assumption 2.5.2 (i) imposes IID structure. This is for convenience only.

It can be substantially relaxed. Assumption 2.5.2 (ii) ensures the existence of a

density function, and Assumption 2.5.2 (iii) enforces correct model specification.

Assumption 2.5.2 (iv) further specifies the functional form of the criterion function.

The statistic T̂n(Θ, R), therefore, takes the form in Eq. (2.5.1) with q(x, θ) =

− ln f(x; θ). For each (θ1, θ2) ∈ Θ and x ∈ X , let lθ1,θ2(x) := f(x; θ1, θ2)/f 0(x).

We rewrite the statistic as follows:

Tn(Θ2, R; θ0
1) = inf

θ2∈R

n∑
i=1

− ln f(Xi; θ
0
1, θ2)− inf

θ2∈Θ2

n∑
i=1

− ln f(Xi; θ
0
1, θ2),

= sup
θ2∈Θ2

n∑
i=1

ln lθ0
1 ,θ2

(Xi)− sup
θ2∈R

n∑
i=1

ln lθ0
1 ,θ2

(Xi). (2.5.7)

Our goal here is to show that
∑n

i=1 ln lθ0
1 ,θ2

(Xi) converges weakly to a well-defined

limit. To establish this, we follow Liu and Shao (2003) and use a (truncated)

quadratic expansion of the statistic with respect to the Hellinger metric between
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Pθ0
1 ,θ2

and P 0:

H(θ2) :=

(
E
(√

lθ0
1 ,θ2

(Xi)− 1
)2

/2

)1/2

.

Note that H(θ2) = 0 for all θ2 ∈ Θ2,I when we define the population criterion

function by Q̄(θ) := E[− ln f(Xi; θ)]−infθ∈ΘE[− ln f(Xi; θ)]. We use the Hellinger

metric to define neighborhoods of Θ2,I . For each ε > 0, let Θε
2I := {θ2 ∈ Θ2 : 0 <

H(θ2) ≤ ε} and Θε
2R := {θ2 ∈ R ∩ Θ2 : 0 < H(θ2) ≤ ε}. We call these ε-Hellinger

neighborhoods.

Let L2(P 0) be the set of all functions φ : X → R such that E(φ2(Xi)) <∞.

We equip L2(P 0) with the L2-norm ‖φ‖ := E(φ2(Xi))
1/2. For likelihood ratios

that are square integrable, let D(θ2) := (E(lθ0
1 ,θ2

(Xi) − 1)2)1/2 be the L2-metric

between Pθ0
1 ,θ2

and P 0.

Now for each θ2 ∈ Θ2, define Sθ2 := (lθ0
1 ,θ2
− 1)/D(θ2). We call Sθ2 the

generalized score function. This function has the properties that E(Sθ2(Xi)) = 0

for all θ2 ∈ Θ2,I and that E(S2
θ2

(Xi)) = 1 for all θ2 ∈ Θ2 if the second moment of

lθ0
1 ,θ2

(Xi) exists. Liu and Shao’s (2003) main idea is to approximate the likelihood-

ratio statistic by the supremum of a quadratic function of the generalized score on

an ε-Hellinger neighborhood. The following subsets of L2(P 0) play a central role

when we derive the asymptotic distribution of Tn(Θ, R; θ0
1). For each ε > 0, let

SεI := {Sθ2 ∈ L2(P 0) : Sθ2 = (lθ0
1 ,θ2
− 1)/D(θ2), θ2 ∈ Θε

2I}

SεR := {Sθ2 ∈ L2(P 0) : Sθ2 = (lθ0
1 ,θ2
− 1)/D(θ2), θ2 ∈ Θε

2R}

S̄εI :=

{
S ∈ L2(P 0) : ∃{θm2 } ⊂ Θε

2I such that,

lim
m→∞

‖(lθ0
1 ,θ

m
2

(Xi)− 1)/D(θm2 )− S‖ = 0, as D(θm2 )→ 0.

}
S̄εR :=

{
S ∈ L2(P 0) : ∃{θm2 } ⊂ Θε

2R such that,

lim
m→∞

‖(lθ0
1 ,θ

m
2

(Xi)− 1)/D(θm2 )− S‖ = 0, as D(θm2 )→ 0.

}
The set SεI is the collection of generalized score functions whose indexes θ2 belong
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to the ε-Hellinger neighborhood Θε
2I of Θ2,I . Similarly, SεR collects generalized score

functions whose indexess belong to the restricted ε-Hellinger neighborhood Θε
2R.

S̄εI and S̄εR are the L2-closures of SεI and SεR respectively.

We introduce two additional regularity conditions, Assumptions 2.5.3 and

2.5.4. To state these, we require some further definitions.

Definition 2.5.2: For given ε > 0, a set S of square integrable real-valued

functions is (ε-) complete if for any sequence {θm2 } ⊂ Θε
2 with H(θm2 )→ 0, there

exists a subsequence {θmk2 } of {θm2 } such that Sθmk2
converges to some S ∈ S in

L2(P 0). S admits (ε-) continuous paths if for all S ∈ S, there exists a path

{θ2(t, S) : 0 < t ≤ ε} ⊂ Θε
2 such that θ2(t, S) is continuous in t, H(θ2(t, S)) = t,

and limt→0 Sθ2(t,S) = S in L2(P 0). An envelope function Φ : X → R for a class D
is a function such that supφ∈D |φ(x)| ≤ Φ(x) for all x ∈ X .

The following assumption, together with Assumption 2.5.2, ensures that we

can apply Liu and Shao (2003)’s Theorem 3.1, which ensures Assumption 2.5.1 (i).

Assumption 2.5.3: (i) For any θ2 ∈ Θ2, lθ0
1 ,θ2
∈ L2(P 0). (ii) For some

ε > 0, SεI is a P 0-Donsker class with a square integrable envelope function. S̄εI and

S̄εR are complete and admit continuous paths.

Note that SεR is a subset of SεI . Therefore, under Assumption 2.5.3 (ii), SεR is

also a P 0-Donsker class. Given Assumption 2.5.3, we can show that Tn(Θ2, R; θ0
1) =

g(Wn), where Wn is an empirical process defined for each Sθ ∈ SεI by

Wn(Sθ) = Gn(Sθ(Xi)) (2.5.8)

=
√
nÊn((lθ0

1 ,θ2
(Xi)− 1)/D(θ2)),

and the continuous function g is given by g(Wn) = supS∈S̄εI max{Wn(S), 0}2 −
supS∈S̄εR max{Wn(S), 0}2.

Our remaining task is to ensure Assumption 2.5.1 (ii) and (iii). As many

estimators satisfy Eq. (2.5.4), we maintain the assumption that the first-stage

estimator is asymptotically linear with influence function ψ1. Now we consider

more primitive conditions that ensure the existence of ψj, j = 2, · · · , 5. Specifi-
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cally, we first give conditions under which ψ2(·) = −∂/∂θ1 ln(·; θ0
1, θ

R
2 ) and ψ3(·) =

−∂/∂θ1 ln f(·; θ0
1, θ

0
2), where θR2 ∈ Θ2,I ∩ R. Additional smoothness requirements

on f further ensure the existence of ψ4 and ψ5.

Note that if R and Θ2 are defined by convex inequality constraints, a classic

envelope theorem10 ensures the differentiability of the value functions infθ2∈R
∑n

i=1

− ln f(x; ·, θ2) and infθ2∈Θ2

∑n
i=1− ln f(x; ·, θ2) on Θ1. This therefore ensures the

existence of ψ2 and ψ3, but the requirement that the sets are defined by convex

inequality constraints may be too restrictive. For example, the set R could be given

by a nonconvex restriction R := {θ2 : g(θ2) = 0} such as g(x) = x1x2 − 1. Instead

of adding a convex structure to R and Θ2, we use results of Milgrom and Segal

(2002) who establish a more general envelope theorem applicable to cases where

R and Θ2 are arbitrary sets. Following them, we mildly extend their smoothness

concept11.

Definition 2.5.3 (Equidifferentiality): Let Θ be an arbitrary set, and let

B ⊆ R be an open set. The family of functions {φ(θ, ·) : B → R|θ ∈ Θ} is

equidifferentiable at y ∈ B if (φ(θ, y′)− φ(θ, y))/(y′ − y) converges uniformly over

Θ as y′ → y.

When A is an infinite set, equidifferentiability is stronger than the usual

differentiability. A simple sufficient condition for equidifferentiability is the con-

tinuous differentiability of φ(θ, ·) on B for each θ and the compactness of Θ.

For each x ∈ X , consider the family {f(x; ·, θ2) : θ2 ∈ Θ2}. To state

our equidifferentiability condition, for any θ1 ∈ Θ1, let θl,1 be its l−th compo-

nent. Consider the vector (θ1,1, · · · , θl−1,1, θl+1,1, · · · , θd1,1)′, obtained by removing

θl,1 from θ1. We denote this vector θ−l,1 and let Θ−l,1 := {θ−l,1 : ∃θl,1 such that

(θ1,1, · · · , θl−1,1, θl,1, θl+1,1, · · · , θd1,1)′ ∈ Θ1}. For each x ∈ X , θ−l,1 ∈ Θ−l,1, and

θ2 ∈ Θ2, let f̃l(x; θ−l,1, θ2, θl,1) denote the map θl,1 7→ f(x, (θ1,1, · · · , θl−1,1, θl,1, θl+1,1,

· · · , θd1,1)′, θ2). As we formally state below, our smoothness requirement for the

existence of ψ2 and ψ3 is that for each x, the family {ln f̃l(x; θ0
−l,1, θ2, ·) : θ2 ∈ Θ2}

10See for example, Mas-Colell, Whinston, and Green (1995).
11Milgrom and Segal (2002) define equidifferentiability for a scalar y ∈ (0, 1). Here, we extend

their definition to a vector taking values in a Euclidean space.
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is equidifferentiable at θ0
l,1 for l = 1, · · · , d1.

Similarly, for the existence of ψ4 and ψ5, we require an additional smooth-

ness condition. Let θ−l,−m,1 be the vector obtained by removing θl,1 and θm,1 from

θ1 and let

Θ−l,−m,1 := {θ−l,−m,1 : ∃(θl,1, θm,1) such that

(θ1,1, · · · , θl−1,1, θl,1, θl+1,1, · · · , θm−1,1, θm,1, θm+1,1, · · · , θd1,1)′ ∈ Θ1}.

For each x ∈ X , θ−l,−m,1 ∈ Θ−l,−m,1, and θ2 ∈ Θ2, let f̃l,m(x; θ−l,−m,1, θ2, θl,1, θm,1)

denote the map (θl,1, θm,1) 7→ f(x, (θ1,1, · · · , θl−1,1, θl,1, θl+1,1, · · · , θm−1,1, θm,1,

θm+1,1, · · · , θd1,1)′, θ2). Our smoothness requirement for the existence of ψ4 and ψ5

is that for each x, the family

{
∂/∂θl,1 ln f̃l,m(x; θ0

−l,−m,1, θ2, θ
0
l,1, ·) : θ2 ∈ Θ2

}
is equidifferentiable at θ0

m,1 for all l,m = 1, · · · , d1.

In order to apply Milgrom and Segal’s (2002) results, we must also en-

sure that the (possibly set-valued) solutions of infθ2∈R
∑n

i=1− ln f(xi; θ1, θ2) and

infθ2∈Θ2

∑n
i=1− ln f(xi; θ1, θ2) are well defined. For each xn = (x1, · · · , xn)′ ∈ X n

and θ1 ∈ Θ1, let

R∗(xn, θ1) := arg min
θ2∈R

n∑
i=1

− ln f(xi; θ1, θ2)

Θ∗2(xn, θ1) := arg min
θ2∈Θ2

n∑
i=1

− ln f(xi; θ1, θ2).

We define selections of these solutions as follows.

Definition 2.5.4 (Selection): Let p ∈ N and B ⊆ Rp. Let (A,A, λ) be

a measure space. A selection u : A → B of an Effros-measurable set-valued map

U : A→ F(B) is a measurable function such that u(a) ∈ U(a), λ− a.e.

The following assumption suffices to apply Milgrom and Segal (2002)’s The-

orem 3, which we use to establish the existence of ψj, j = 2, · · · , 5.
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Assumption 2.5.4: (i) For any xn ∈ X n and any θ1 ∈ Θ1, R∗(xn, θ1) 6= ∅
and Θ∗2(xn, θ1) 6= ∅;

(ii.a) For any x ∈ X , the family {ln f̃l(x; θ0
−l,1, θ2, ·) : θ2 ∈ Θ2} is equidifferentiable

at θ0
l,1 for all l = 1, · · · , d1;

(ii.b) For any x ∈ X , supθ2∈Θ2
|d/dθl,1 ln f̃l(x; θ0

−l,1, θ2, θ
0
l,1)| < ∞ for all l =

1, · · · , d1;

(ii.c) For any xn ∈ X n, selections θ∗2,R(xn, ·) ∈ R∗(xn, ·), θ∗2,Θ2
(xn, ·) ∈ Θ∗2(xn, ·),

and x ∈ X , the maps ∂/∂θ1 ln f(x; θ0
1, θ
∗
2,R(xn, ·)) and ∂/∂θ1 ln f(x; θ0

1, θ
∗
2,Θ2

(xn, ·)) are continuous at θ0
1;

(iii.a) For any x ∈ X , the family {∂/∂θl,1 ln f̃l,m(x; θ0
−l,−m,1, θ2, θ

0
l,1, ·) : θ2 ∈ Θ2}

is equidifferentiable at θ0
m,1 for all l,m = 1, · · · , d1;

(iii.b) For any x ∈ X , supθ2∈Θ2
|∂2/∂θl,1∂θm,1 ln f̃l,m(x; θ0

−l,−m,1, θ2, θ
0
l,1, θ

0
m,1)| <∞

for all l,m = 1, · · · , d1;

(iii.c) For any xn ∈ X n, selections θ∗2,R(xn, ·) ∈ R∗(xn, ·), θ∗2,Θ2
(xn, ·) ∈ Θ∗2(xn, ·),

and x ∈ X the maps ∂2/∂θ1∂θ
′
1 ln f(x; θ0

1, θ
∗
2,R(xn, ·)) and ∂2/∂θ1∂θ

′
1 ln f(x;

θ0
1, θ
∗
2,Θ2

(xn, ·)) are continuous at θ0
1;

It is straightforward to verify that given Assumption 2.5.4 (i) and (ii),

the conditions of Milgrom and Segal’s (2003) Theorem 3 are satisfied. For each

Xn = (X1, · · · , Xn) and x ∈ X , define

ψn2(x) := − ∂

∂θ1

ln f(x; θ0
1, θ
∗
2,R(Xn, θ0

1))

ψn3(x) := − ∂

∂θ1

ln f(x; θ0
1, θ
∗
2,Θ2

(Xn, θ0
1)).

Notice that ψn2(Xi) and ψn3(Xi) depend on the sample Xn through the selections

θ∗2,R(Xn, θ0
1) and θ∗2,Θ2

(Xn, θ0
1); but with probability approaching 1, Hausdorff con-

sistency ensures that these selections are restricted to Θ2,I∩R and Θ2,I respectively.
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For each x ∈ X , define

ψ2(x) := − ∂

∂θ1

ln f(x; θ0
1, θ

R
2 ) (2.5.9)

ψ3(x) := − ∂

∂θ1

ln f(x; θ0
1, θ

0
2), (2.5.10)

where θR2 ∈ Θ2,I ∩ R. If Ênψnj(Xi) − Ênψj(Xi) = op(n
−1/2), j = 2, 3, then the

representation in Eq. (2.5.5) holds with ψ2 and ψ3 defined above.

Similarly, for each x ∈ X , define

ψn4(x) = vec

(
− ∂2

∂θ1∂θ′1
ln f(x; θ0

1, θ
∗
2,R(Xn, θ0

1))

)
ψn5(x) = vec

(
− ∂2

∂θ1∂θ′1
ln f(x; θ0

1, θ
∗
2,Θ2

(Xn, θ0
1))

)
.

For each x ∈ X , define

ψ4(x) := vec

(
− ∂2

∂θ1∂θ′1
ln f(x; θ0

1, θ
R
2 )

)
(2.5.11)

ψ5(x) := vec

(
− ∂2

∂θ1∂θ′1
ln f(x; θ0

1, θ
0
2)

)
. (2.5.12)

It is straightforward to see that the representation in Eq. (2.5.6) holds if for

j = 4, 5, Ên(ψnj(Xi)) −Ên(ψnj(Xi)) = op(1).

The following theorem verifies Assumption 2.5.1.

Theorem 2.5.2: (i) Suppose that Assumptions 2.5.2 and 2.5.3 hold. Then,

Assumption 2.5.1 (i) holds with S = S̄εI and g(w) := supS∈S̄εI max{w(S), 0}2 −
supS∈S̄εR max{w(S), 0}2.

(ii) Suppose further that the first-stage estimator θ̂1n is asymptotically linear

with influence function ψ1, with E(ψ1(Xi)) = 0, and E|ψ1,h(Xi)|2 < ∞ for all

h = 1, · · · , d1. Suppose that Assumption 2.5.4 holds. Suppose also that

E

(
∂

∂θ1

ln f(Xi; θ
0
1, θ

0
2)

)
= 0, E

(
∂

∂θ1

ln f(Xi; θ
0
1, θ

R
2 )

)
= 0,
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and for any θ2 ∈ Θ2,

E

(
vec

(
− ∂2

∂θ1∂θ′1
ln f(Xi; θ

0
1, θ2)

))
<∞,

E

(
∂

∂θ1

ln f(Xi; θ
0
1, θ2)′

∂

∂θ1

ln f(Xi; θ
0
1, θ2)

)
<∞.

Suppose further that Ên(ψnj(Xi)) − Ên(ψj(Xi)) = op(n
−1/2), j = 2, 3 and that

Ên(ψnj(Xi)) − Ên(ψj(Xi)) = op(1), j = 4, 5. Then Assumption 2.5.1 (ii) holds

with ψj, j = 2 · · · , 5 given in Eqs. (2.5.10) and (2.5.12), and Assumption 2.5.1

(iii) holds.

An immediate corollary of this theorem is the following.

Corollary 2.5.1: Suppose Assumption 2.2.1 holds with (2.2.1) defining

Qn, and Assumption 2.2.2 and 2.2.4 hold with ΘI,1 = {θ0
1}. Suppose T̂n(Θ2, R)

admits the expansion in Eq. (2.5.2) with an = n, p = d1, θ0 = θ1
0, anQ̂n =

T̂n(Θ2, R), anQn = Tn(Θ2, R; θ1
0), θ̂n = θ̂1n, gn = n−1(∂/∂θ1)Tn(Θ2, R; θ0

1), and

Hn = n−1(∂2/∂θ1∂θ
′
1)Tn(Θ2, R; θ0

1). Suppose further that the conditions of Theorem

2.5.2 hold. Then

T̂n(Θ2, R)
d→ g(W) + (W2 −W3)′W1 +W ′

1HW1,

where W is a zero mean tight Gaussian process on S̄εI with covariance kernel

E[W(S1)W(S2)] = E[S1S2] for all S1, S2 ∈ S̄ε and g(w) := supS∈S̄εI max{w(S), 0}2

− supS∈S̄εR max{w(S), 0}2; (W(S1), · · · , W(Sm),W1,W2,W3) follows a mean zero

multivariate normal distribution with covariances

E[W(Smj)W(Smk)] = E[SmjSmk ], ∀mj,mk = 1, · · · ,m

E[W(Smj)Wk] = E[Smjψk(Xi)], ∀mj = 1, · · · ,m, k = 1, 2, 3

E[WjWk] = E[ψj(Xi)ψk(Xi)], ∀ k = 1, 2, 3;

and H is such that vec(H) = E[ψ4(Xi)]− E[ψ5(Xi)].
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2.6 Concluding Remarks

This paper studies an estimation and inference procedure for a parameter

that has a two-stage structure. This structure enable us to estimate a subvector

of the parameter or its identified set separately from the rest. As we illustrate,

various applied studies use this structure. Our procedure constructs a two-stage

set estimator by taking an appropriate level set of a criterion function, using a first-

stage estimator to impose restrictions on the parameter of interest. A special case

of this estimator where the first-stage parameter is fully identified was considered

in Bajari, Benkard, and Levin (2007), but its measurability and its applicability

to hypothesis testing have not been previously studied. We give conditions for the

measurability of the two-stage set estimator and establish consistency of the two-

stage estimator, extending results of Chernozhukov, Hong, and Tamer (2007). For

testing hypothesis about the second-stage parameter, we propose a test based on a

quasi-likelihood ratio type statistic and study its asymptotic distribution. We give

primitive conditions for an important special case based on results of Liu and Shao

(2004). This test is especially useful when the researcher is interested in testing a

hypothesis that involves only a subset of the whole parameter vector. A future task

is to extend this testing method to the general case where the first-stage parameter

is also partially identified.
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2.A Mathematical Appendix

Proof of Theorem 2.4.1. For any E ⊆ Θ, let Θ̂−(E) := {ω : Θ̂(ω, ε̂(ω)) ∩ E 6= ∅}.
We first note the following fact (Theorem 1.2.3 in Molchanov, 2005). As Θ is a

subset of a complete separable metric space, Θ̂(ω, ε̂(ω)) is Effros-measurabile if and

only if

Θ̂−(F ) ∈ F, ∀F ∈ F(Θ). (2.A.1)

For our purposes, it is more convenient to work with closed sets. We therefore

establish the Effros-measurability by showing (2.A.1).

Let F ∈ F(Θ). If F = ∅, then Θ̂(ω, ε̂(ω))−(F ) = ∅ ∈ F. Below, we

consider cases where F is nonempty. For any ω ∈ Ω,

Θ̂(ω, ε̂(ω)) ∩ F 6= ∅

⇔ (Θ̂1(ω)×Θ2) ∩ F 6= ∅

and ∃(θ1, θ2) ∈ (Θ̂1(ω)×Θ2) ∩ F such that ζ(ω, θ1, θ2) ≤ ε̂(ω)

⇔ (Θ̂1(ω)×Θ2) ∩ F 6= ∅ and inf
(Θ̂1(ω)×Θ2)∩F

ζ(ω, θ1, θ2) ≤ ε̂(ω),

where the second equivalence follows from the compactness of (Θ̂1 ×Θ2) ∩ F and

the continuity of ζ. For each ω ∈ Ω, let R(ω) := (Θ̂1(ω) × Θ2) and RF (ω) :=

(Θ̂1(ω)×Θ2) ∩ F . Then, we may write

{ω : Θ̂(ω, ε̂(ω)) ∩ F 6= ∅} = {ω : R(ω) ∩ F 6= ∅} ∩
{
ω : inf

RF (ω)
ζ(ω, θ1, θ2) ≤ ε̂(ω)

}
.

Therefore, it suffices to show that the random set R is Effros-measurable and

that the infimum of the random function ζ over the random closed set RF is also

measurable in usual sense. For the Effros-measurability of R, observe that

{ω : R(ω) ∩ F 6= ∅} = {ω : Θ̂1(ω) ∩ F1 6= ∅} ∈ F,

where F1 := {θ1 ∈ Θ1 : (θ1, θ2) ∈ F for some θ2 ∈ Θ2}. It is obvious that RF is
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also Effros-measurable.

For the measurability of infRF (ω) ζ(ω, θ1, θ2), we apply Lemma 2.4.2. Con-

ditions (i) and (ii) of Lemma 2.4.2 are satisfied by our hypothesis. Assumption

(ii) of Theorem 2.4.1 ensures that ζ is jointly measurable by Lemma 2.4.1, which

ensures condition (iii) of Lemma 2.4.2. Condition (iv) of Lemma 2.4.2 is equivalent

to Effros-measurability of S by Theorem 1.2.3 in Molchanov (2005). Thus, for any

F ∈ F(Θ), RF satisfies this condition. Lemma 2.4.2 then implies the measurability

of infRF (·) ζ(·, θ1, θ2).

For (a), this is immediate from Theorem 2.14 (i) in White (1996). Given

this result, we can apply Lemma 2.4.1 to establish the jointly measurability of ζ̃.

By Fact 2.4.1, ζ̃ is a normal integrand. This ensures the measurability of its level

sets.

Proof of Theorem 2.4.2. To show dH(Θ̂n, Θ̄I) = op(1), we need both (i) supθ∈Θ̄I

d(θ, Θ̂n) = op(1) and (ii) supθ∈Θ̂n
d(θ, Θ̄I) = op(1).

We first show (i). By condition (iv), for any δ > 0, there exists Nδ ≥ 0

such that P (En) ≥ 1− δ for all n ≥ Nδ, where En :=
{
ω : supθ∈Θ̄I

anQn(θ) ≤ ε̂n
}

.

Below, we take ω ∈ En. For any ε > 0, let Θ̂ε
n(ω) := {θ ∈ Θ : d(θ, Θ̂n(ω)) ≤ ε}

be the ε-expansion of Θ̂n. Then, supθ∈Θ̂εn(ω) Qn(ω, θ) > ε̂n as Θ̂n is the ε̂n-level set

and that Qn(ω, ·) is continuous. Therefore, we have

sup
θ∈Θ̄I

anQn(ω, θ) < sup
θ∈Θ̂εn(ω)

anQn(ω, θ)

This implies Θ̄I ⊂ Θ̂ε
n(ω). Therefore, supθ∈Θ̄I

d(θ, Θ̂n(ω)) ≤ ε. Since ε was arbi-

trary, supθ∈Θ̄I
d(θ, Θ̂n) = op(1).

For (ii), we need to show that for any ε > 0, supθ1∈Θ̂n
d(θ1, Θ̄I) ≤ ε with

probability approaching 1. This can be established by the uniform convergence of

Qn and the convergence of the first stage set estimator in Hausdorff metric. For

this, let

ζ̄(θ) := Q̄(θ) + d(θ1,ΘI,1),
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where the second term takes a positive value if the first stage restriction θ1 ∈ ΘI,1

is violated. Note that Θ̄I = arg min
θ∈Θ

ζ̄. Let

ζn(θ) := Qn(θ) + d(θ1, Θ̂1n).

Define the ε̂n-level set Θ̃n = {anζn ≤ ε̂n}. We first show that supΘ̃n
d(θ, Θ̄I) ≤ ε.

By the triangle inequality,

sup
θ∈Θ

∣∣ζ̄(θ)− ζn(θ)
∣∣ ≤ sup

θ∈Θ

∣∣Q̄(θ)−Qn(θ)
∣∣+ sup

θ1∈Θ1

∣∣∣d(θ1,ΘI,1)− d(θ1, Θ̂1n)
∣∣∣

= sup
θ∈Θ

∣∣Q̄(θ)−Qn(θ)
∣∣+ dH(ΘI,1, Θ̂1n) = op(1),

where the second equality holds since ΘI,1 and Θ̂1n are closed under our assumption

and by Proposition C.7 of Molchanov (2005).

Let δ > 0 and An := {ω : supθ∈Θ |ζ̄(θ) − ζn(θ)| < δ/2, and ε̂n/an < δ/2}.
Note that P (An) → 1 as n → ∞. Let ω ∈ An. Then, for any θ ∈ Θ, ζ̄(θ) <

ζn(ω, θ) + δ/2. Taking the supremum over Θ̃n(ω), we obtain

sup
θ∈Θ̃n(ω)

ζ̄(θ) < sup
θ∈Θ̃n(ω)

ζn(ω, θ) + δ/2

≤ ε̂n/an + δ/2

≤ δ.

Recall that ζ̄ > 0 outside Θ̄I . Therefore, for any ε > 0, there exists Nε such that

P

(
sup

Θ̃n(ω)

ζ̄(θ) < δ < inf
Θ\Θ̄εI

ζ̄(θ)

)
≥ 1− ε, ∀n ≥ Nε.

This implies Θ̃n∩ (Θ\ Θ̄ε
I) = ∅ with probability approaching 1. Therefore, for any

ε > 0, supθ1∈Θ̃n
d(θ1, Θ̄I) ≤ ε with probability approaching 1. Note that Θ̂n ⊆ Θ̃n

for any ω ∈ Ω. Therefore, supθ1∈Θ̂n
d(θ1, Θ̄I) ≤ ε with probability approaching 1.

Combining steps (i) and (ii), we conclude that d(Θ̂n, Θ̄I) = op(1).
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Proof of Theorem 2.4.3. Since Θr is a fixed closed set defined as a preimage of a

continuous function ρ, Effros-measurability and consistency trivially follow from

those of Θ̂ur,1n.

Proof of Theorem 2.4.4. Let g : Θ1 ×Ψ→ Rm1+m2 be a mapping such that

g(θ1, ψ) =

[
s(θ1, ψ)

ρ(θ1)

]
.

For (i), we again consider intersections with closed sets. Let F ∈ F(Θ1). Consider

the set

RF (ω) = {θ1 ∈ Θ1 : g(θ1, ψ̂n(ω)) = 0} ∩ F.

Let g̃ : Ω×Θ1 be a measurable map (ω, θ1) 7→ g(θ1, ψ̂n(ω)). By conditions (a), (b),

(d), and Lemma 2.4.1, g̃ is jointly meansurable, following the proof of Example

3.1 in Stinchcombe and White (1992), we can show grRF = g̃−1({0}) ∩ (Ω × F ).

Therefore, grRF ∈ F ⊗ BΘ1 for any F ∈ F(Θ1). This is equivalent to the Effros

measurability of Θ̂r,1n by fundamental measurability theorem. This implies the

Effros measurability of Θ̂1n.

For (ii), we use the fact that the convergence in Hausdorff metric is equiv-

alent to the general notion of set convergence called Painlevé-Kuratowski conver-

gence (PK-converngece) when the parameter space is bounded. See section 4.C

in Rockafellar and Wets (2005). For completeness we give the definition of PK-

convergence below.

Definition 2.A.1 (PK convergence): A sequence {Fn, n ≥ 1} of subsets

of E is said to converge to F in the Painlevé-Kuratowski sense if

lim inf
n→∞

Fn = lim sup
n→∞

Fn = F,
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where

lim inf
n→∞

Fn := {x ∈ E : ∃{xn}, xn → x and xn ∈ Fn,∀n}

lim sup
n→∞

Fn := {x ∈ E : ∃{xnk , Fnk}, xnk → x and xnk ∈ Fnk , ∀k}.

We write Fn
PK→ F or PK − limFn = F 12.

By assumption, Θ̂u
1n converges to Θu

I,1 in Hausdorff metric in probability.

Therefore, it has a subsequence Θ̂u
1nk

that converges in Painlevé-Kuratowski sense

with probability one. We use the following lemma.

Lemma 2.A.1 (Hit or miss criteria: Theorem 4.5 in RW): Let E be a locally

compact Hausdorff second countable space (LCHS). For Fn, F ⊆ E with F ∈ F(E),

one has

1. F ⊆ lim infn→∞ Fn iff for every open set G with F∩G 6= ∅, one has Fn∩G 6= ∅
for all sufficiently large n.

2. lim supn→∞ Fn ⊆ F iff for every compact set K with F ∩ K = ∅, one has

Fn ∩K = ∅ for all sufficiently large n.

Now let G be an open set such that (Θu
I,1 ∩ Θr

1) ∩ G 6= ∅. This implies

Θu
I,1 ∩ G 6= ∅ and Θr

1 ∩ G 6= ∅. Similarly, let K be a compact set such that

(Θu
I,1 ∩ Θr

1) ∩ K = ∅. Since Θu
I,1 ∩ Θr

1 6= ∅, we must have Θu
I,1 ∩ K = ∅ or

Θr
1 ∩K = ∅.

We first show that every subsequence of Θ̂1nk has a further subsequence

that satisfies Θ̂1nkj
∩G 6= ∅. By the hypothesis and Lemma 2.A.1 1, Θ̂u

1nk
∩G 6= ∅

for sufficiently large n almost surely. Now let θ∗1 ∈ Θr
I,1 ∩G. Since G is open and

s(θ∗1, ·) is continuous, for any ε > 0, there exists an open ball B(θ∗1, δ) with some

radius δ > 0 such that |s(θ1, ψ0)| < ε and |ρ(θ1)| < ε for all θ1 ∈ B(θ∗1, δ). Note

that Θ̂r
1n converges in Hausdorff metric in probability to Θr

1. Therefore, it has a

12Since we always have lim inf Fn ⊆ lim supFn, the condition for PK convergence can be
restated as, lim supn→∞ Fn ⊆ A ⊆ lim infn→∞ Fn
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subsequence such that for all nl large and for all θ1,nl ∈ Θ̂r
nl

, |s(θ1,nl , ψ0)| < ε and

ρ(θ1,nl) < ε almost surely. Take {nkj} := {nk} ∩ {nl}. Then, Θ̂1nkj
∩G 6= ∅.

We now show that every subsequence of Θ̂1n has a further subsequence that

satisfies Θ̂1nkj
∩K = ∅. By the hypothesis and Lemma 2.A.1 2, if Θu

I,1 ∩K = ∅,
Θ̂u

1nk
∩K 6= ∅ for sufficiently large nk almost surely. Therefore, further subsequences

also satisfy this condition. Now, if Θr
I,1∩K = ∅, take θ∗1 ∈ K. Then for some δ > 0,

s(θ∗, ψ0) ≥ δ and ρ(θ∗1) ≥ δ, but the Hausdorff consistency of Θ̂r
1n again implies it

has a subsequence such that for all nl large and for all θ1,nl ∈ Θ̂r
nl

, |s(θ1,nl , ψ0)| < δ

and ρ(θ1,nl) < δ almost surely. Therefore Θ̂r
1nl
∩K = ∅.

Now we have shown that every subsequence of Θ̂1n has a further subsequence

that satisfies the hit-or-miss criteria almost surely. Therefore dH(Θ̂1nkj
,Θr

I,1) =

oas(1), but this also implies dH(Θ̂1nkj
,Θr

I,1) = op(1). Therefore, the original se-

quence converges in probability, which is the conclusion of the theorem.

Proof of Theorem 2.5.1. As Assumption 2.2.1 holds with Qn given in (2.2.1), we

may write

Tn(Θ2, R; θ0
1) = inf

θ2∈R

n∑
i=1

q(Xi, θ
0
1, θ2)− inf

θ2∈Θ2

n∑
i=1

q(Xi, θ
0
1, θ2).

Assumption 2.2.2 ensures the two-stage structure, and Assumption 2.2.4 ensures

the existence of a first-stage estimator θ̂1n. By Assumption 2.5.1 (i), Wn ⇒ W ,

where W is tight. Assumption (ii) and (iii) imply that

(Gn(ψ1(Xi)),Gn(ψ2(Xi)),Gn(ψ3(Xi)),Ên(ψ4(Xi)), Ên(ψ5(Xi)))
′

d→ (W1,W2,W3, E(ψ4(Xi)), E(ψ5(Xi)))
′

and Yn
f.d.→ Y , where

Y := (W ,W1,W2,W3, E(ψ4(Xi)), E(ψ5(Xi)))
′,

As the joint tightness is implied by the marginal tightness, this ensures that Yn ⇒
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Y . By Assumption 2.5.1 and the continuous mapping theorem,(
Tn(Θ2, R; θ0

1),
√
n(θ̂1n − θ0

1),
1√
n

∂

∂θ1

Tn(Θ2, R; θ0
1),

1

n
vec

(
∂2

∂θ1∂θ′1
Tn(Θ2, R; θ0

1)

))′
d→ (g(W),W1,W2 −W3, H)′.

Now apply Proposition 2.5.1 with an = n, p = d1, θ0 = θ1
0, anQ̂n = T̂n(Θ2, R),

anQn = Tn(Θ2, R; θ1
0), θ̂n = θ̂1n, gn = n−1(∂/∂θ1)Tn(Θ2, R; θ0

1), and Hn = n−1

(∂2/∂θ1∂θ
′
1)Tn(Θ2, R; θ0

1). Then, the conclusion follows.

Proof of Theorem 2.5.2 . (i): First, Assumption 2.5.3 gives the required Donsker-

class. Given Assumption 2.5.2, we may write

Tn(Θ2, R; θ0
1) = sup

θ2∈Θ2

n∑
i=1

ln lθ0
1 ,θ2

(Xi)− sup
θ2∈R

n∑
i=1

ln lθ0
1 ,θ2

(Xi).

Given Assumptions 2.5.2 and 2.5.3, Theorem 3.1 in Liu and Shao (2003) ensures

that for each θ2 ∈ Θ2, there exist an ε > 0 and Sθ2 ∈ S̄εI such that

max{
n∑
i=1

ln lθ0
1 ,θ2

(Xi), 0} = max{
√
nD(θ2)Gn(Sθ2(Xi))− n/2D2(θ2), 0}+ op(1).

Given this representation,

sup
θ2∈Θ2

n∑
i=1

ln lθ0
1 ,θ2

(Xi) = sup
θ∈Θ2,

Pn
i=1 ln l

θ01 ,θ2
(Xi)>0

max{GnSθ2(Xi), 0}2 + op(1)

= sup
Sθ2∈S̄

ε
I

max{GnSθ2(Xi), 0}2 + op(1)

following the proof of Theorem 2.3 in Liu and Shao (2003). Similarly for supθ2∈R∑n
i=1 ln lθ0

1 ,θ2
(Xi), we have

sup
θ2∈R

n∑
i=1

ln lθ0
1 ,θ2

(Xi) = sup
Sθ2∈S̄

ε
R

max{GnSθ2 , 0}2 + op(1)

Combining these results gives the conclusion of (i).
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(ii): The asymptotic linearity of the first-stage estimator is given by the hy-

pothesis. Given Assumption 2.5.4 (i) and (ii), the conditions of Theorem 3 in Mil-

grom and Segal hold for infθ2∈R
∑n

i=1− ln f(x; ·, θ2) and infθ2∈Θ2

∑n
i=1− ln f(x; ·, θ2).

Then, we obtain

1√
n

∂

∂θ1

Tn(Θ2, R; θ0
1) =

1√
n

n∑
i=1

ψn2(Xi)−
1√
n

n∑
i=1

ψn3(Xi).

As Ênψnj(Xi)− Ênψj(Xi) = op(n
−1/2), j = 2, 3, we may write

1√
n

∂

∂θ1

Tn(Θ2, R; θ0
1) =

1√
n

n∑
i=1

ψ2(Xi)−
1√
n

n∑
i=1

ψ3(Xi) + op(1),

where ψ2 and ψ3 are of the form (2.5.10). This ensures the representation in (2.5.5).

For the representation (2.5.6), we apply Theorem 3 in Milgrom and Segal one more

time. This is possible under Assumption 2.5.4 (iii). Then, we obtain

1

n
vec

(
∂2

∂θ1∂θ′1
Tn(Θ2, R; θ0

1)

)
=

1

n

n∑
i=1

ψn4(Xi)−
1

n

n∑
i=1

ψn5(Xi).

As Ên(ψnj(Xi))− Ên(ψj(Xi)) = op(1), j = 4, 5, we may write

1

n
vec

(
∂2

∂θ1∂θ′1
Tn(Θ2, R; θ0

1)

)
=

1

n

n∑
i=1

ψ4(Xi)−
1

n

n∑
i=1

ψ5(Xi) + op(1),

where ψ4 and ψ5 are of the form in (2.5.12).

The hypothesis of the theorem implies that E(ψj(Xi)) = 0, j = 1, 2, 3 and

E(ψj(Xi)
′ψj(Xi)) <∞, j = 1, 2, 3. Furthermore, for any S ∈ S̄εI , E(S2(Xi)) <∞.

Therefore,

(Wn(S1), · · · ,Wn(Sm),Gn(ψ1(Xi)),Gn(ψ2(Xi)),Gn(ψ3(Xi)))
′

jointly obeys the multivariate central limit theorem for IID random variables. Note

further that E(ψj(Xi)) < ∞, j = 4, 5 by our hypothesis. The weak law of large

numbers then implies E(ψj(Xi))
p→ E(ψj(Xi)) =: Hj, j = 4, 5. By Slutsky’s
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lemma, Assumption 2.5.1 (iii) follows.

Proof of Corollary 2.5.1. The conclusion is immediate, invoking Theorem 2.5.1.
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3.1 Introduction

Statistical inference for partially identified economic models is a growing

field in econometrics. The field was pioneered by Charles Manski in the 1990’s

(see Manski, 2003, and the references there), and there have since been substantial

theoretical extensions and applications. In this literature, the economic structures

of interest are characterized by an identified set ΘI , rather than by a single point

in the parameter space Θ ⊂ Rd, d ∈ N. Elements of the identified set lead to

observationally equivalent data generating processes. A sample of data generated

by any of the parameter values in the identified set, therefore, gives us information

about the identified set, but not about the underlying “true” parameter value

generating the observed data.

Chernozhukov, Hong, and Tamer (2007) (CHT) study estimation and sta-

tistical inference on ΘI within a general extremum estimation framework. These

authors have shown that a level-set estimator based on a properly chosen sequence

of levels for the criterion function consistently estimates the identified set, defined

as a set of minimizers. They use a quasi-likelihood ratio (QLR) statistic to con-

struct a confidence set that asymptotically covers the identified set with at least a

prespecified probability. This criterion function approach is applicable to a broad

class of problems.

Another popular approach is to estimate the boundary of ΘI directly. This

estimate can then be used to conduct inference for ΘI . This is an attractive

alternative if the boundary of the identified set is easily estimable. Much of the

literature has studied the case where ΘI is a closed interval (e.g. Horowitz and

Manski, 1998, 2000, Manski, 2003, and Imbens and Manski, 2004). Recent studies

extend this approach to the case where ΘI is a multi-dimensional compact convex

set (Beresteanu and Molinari, 2008 (BM) and Bontemps, Magnac, and Maurin,

2008). When ΘI is compact and convex, its support function provides a tractable

representation by summarizing the location of the supporting hyperplanes of ΘI .

So far, the criterion function approach and the support function approach

have been viewed as distinct. Each has its advantages and challenges. The crite-

rion function approach is widely applicable, but constructing the level set can be
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computationally demanding. The support function approach, on the other hand, is

more direct and computationally tractable for some problems, but it has been ap-

plied to a limited class of models when parameters are multi-dimensional. A main

contribution of this paper is to unify these approaches within a general framework.

We do this by studying an inference method that exploits the wide applicabil-

ity of the criterion function approach and the tractability of the support function

approach. To the best of our knowledge, this is the first such attempt.

In this paper, we focus on econometric models with compact convex identi-

fied sets, which enables us to characterize the identified set by its support function1.

This class includes many econometric models studied recently, e.g., regression with

interval data (Manski and Tamer, 2004, Magnac and Maurin, 2008) and an asset

pricing model in incomplete markets (Kaido and White, 2009). Following CHT,

our estimator of ΘI is the level set Θ̂n = {θ : Qn(θ) ≤ tn} of a criterion function

Qn(·) for some sequence of levels {tn}. Collecting all the parameter values at which

Qn(θ) does not exceed the specified level can be computationally demanding. Our

alternative method stores the values maxQn(θ)≤tn〈p, θ〉 for different unit vectors

p. This yields the support function s(·, Θ̂n) of the set estimator. The required

computation is straightforward, and one can fully recover the set estimator from

its support function. This can result in computational savings that range from

modest to dramatic.

Another significant contribution here is a new automated step-up algorithm

for selecting the tuning parameter tn. As explained above, the criterion function

approach requires the researcher to choose the level tn of the criterion function to

construct the set estimator (CHT; Bugni, 2009). Our iterative algorithm removes

the arbitrariness in the choice of tn. We relate this to a multiple testing problem.

Our algorithm can be interpreted as the reduced form of a step-up procedure

that controls the familywise error rate (FWER) of hypotheses that are indexed by

compact convex sets. This understanding provides a link to Romano and Shaikh’s

(2009) recent work on a step-down procedure.

Our approach is particularly well suited to conducting hypothesis tests and

1Our analysis applies to the convex hull of the identified set if it is nonconvex.
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constructing confidence collections and confidence sets. For this, we first show

that the asymptotic distribution of the properly normalized (centered and scaled)

support function is that of a specific stochastic process on the unit sphere. The

normalized support function lets us measure the distance between sets using the

Hausdorff metric common in the literature. This enables us to test the hypothesis

that the identified set coincides with a given set, i.e., H0 : ΘI = Θ0. The test can

be inverted to construct a confidence collection that contains the identified set as

an element, with some prescribed confidence level. Inference methods for this type

of hypothesis are as yet unavailable within CHT’s framework.

The normalized support function also lets us test whether the identified set

includes a specific set or point. That is, for a given set Θ0 or point θ0, we can test

H0 : Θ0 ⊆ ΘI or H0 : θ0 ∈ ΘI . The former test can be inverted to construct another

confidence collection, containing each subset of the identified set as an element,

with at least some prescribed confidence level. Further, taking the union of the

elements of this collection yields a confidence set that covers the identified set. This

confidence set is comparable to CHT’s confidence sets, constructed by inverting

their QLR statistic. Similarly, the test for θ0 ∈ ΘI can be inverted to construct a

confidence set for each point in the identified set. This set is comparable to those

of Imbens and Manski (2004), CHT, Romano and Shaikh (2008), and Andrews

and Guggenberger (2009).

The construction of confidence collections and confidence sets by inverting

the normalized support function was first proposed by BM for the case where ΘI is

a linear transformation of the Aumann expectation of set-valued random variables.

Bontemps, Magnac, and Maurin (2007) consider a confidence set for a point in the

identified set, when ΘI is characterized by incomplete linear moment restrictions.

Our analysis further contributes by extending these results to the general case

where ΘI is the set of minimizers of a criterion function.

Closely related to our work here is that of BM, who develop an estimation

and inference framework based on their set-average estimator, a (Minkowski) aver-

age of independent and identically distributed (IID) set-valued random variables.

One of BM’s key ideas is to embed the space of compact convex sets into a sub-
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set of the space of continuous functions (Hörmander, 1955; Beer, 1993). In this

paper, we follow a similar approach to study the asymptotic behavior of our set

estimator. But instead of using a set-averaging approach, we analyze a version of

the sample criterion function using weak epiconvergence to derive the asymptotic

distribution of the normalized support function of the level-set estimator. Weak

epiconvergence is a relatively new concept that characterizes the limit of the infi-

mum of stochastic processes over compact sets and has proven useful for studying

the asymptotic behavior of extremum estimators with point identification (Knight,

1999; Chernozhukov and Hong, 2004; and Han and Phillips, 2006). Our analysis

shows that weak epiconvergence is ideally suited to study extremum estimators of

partially identified models2.

We apply our theory to econometric models characterized by finitely many

moment inequalities. This class has been extensively studied. Recent research in

this area includes Andrews, Berry, and Jia (2004), Pakes, Porter, Ho, and Ishii

(2005), CHT, Fan and Park (2007), Galichon and Henry (2007), BM, Guggen-

berger, Hahn, and Kim (2008), Rosen (2008), Andrews and Guggenberger (2009),

Andrews and Soares (2009), Bugni (2009), Canay (2009), Galichon and Henry

(2009), Hahn and Ridder (2009), Moon and Schorfheide (2009), and Yıldız (2009).

We contribute to this literature by establishing a new equivalence result within this

class. Our Wald-type statistic (squared directed Hausdorff distance) and CHT’s

QLR statistic converge in distribution to the same limit under some regularity

conditions. As a result, the Wald confidence set, i.e., the union of all elements

in the confidence collection constructed from the Wald statistic, is asymptotically

equivalent to CHT’s confidence set, a level set whose level is a specific quantile of

the QLR statistic.

A special case of this result is the equivalence result previously given by BM.

They show that the Wald statistic based on their set-average estimator is asymp-

totically equivalent to CHT’s QLR statistic within the class of (one-dimensional)

2To the best of our knowledge, Chernozhukov, Hong, and Tamer (2007) is the first article that
adapted the idea of weak epiconvergence to partially identified models. They used a modified
version, which is called “weak sup-convergence,” to study the asymptotic distribution of their
QLR statistic. Here we work directly with weak epiconvergence.
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interval-identified models. Our results show that this can be attributed to: (i) the

asymptotic equivalence of the Wald statistic and the QLR-statistic within a more

general class; and (ii) the fact that the set-average estimator coincides with the

level-set estimator when ΘI is a closed interval.

The paper is organized as follows. In section 3.2, we summarize CHT’s

econometric framework and introduce some useful background. We establish the

asymptotic distribution of the normalized support function and develop our infer-

ence methods in section 3.3. Section 3.4 studies moment inequality models and

presents the equivalence result. We present Monte Carlo simulation results in sec-

tion 3.5 and conclude in section 3.6. We collect together our mathematical proofs

in the mathematical appendix.

3.2 The CHT Framework and Some Useful Back-

ground

In this section, we briefly summarize the framework of CHT and introduce

basic notions in the theory of variational analysis and random sets.

3.2.1 Criterion Function Approach

Our first assumption describes the data generation process and the sample

and population criterion functions. For this we require the following definition,

where we let R+ := [0,∞) and R̄+ := R+ ∪ {∞}.

Definition 3.2.1: Let S ⊂ Rd, d ∈ N. The function f : S → R̄+ is proper

on S if f(x) < ∞ for at least one x ∈ S. If f is proper on S = Rd, we say f is

proper.

Assumption 3.2.1: Let d ∈ N and Q : Rd → R̄+ be a Borel measurable

function. Let Θ ⊂ Rd be compact and convex, with a nonempty interior. Let

(Ω,F, P ) be a complete probability space. For n = 1, 2, ..., let Qn : Ω×Rd → R̄+ be

jointly measurable such that Qn(ω, ·) is proper on Θ for all ω ∈ F ∈ F, P (F ) = 1,
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and for all ω ∈ Ω and θ /∈ Θ, Qn(ω, θ) =∞.

The set Θ is the parameter space, which we take here to be of finite dimension.

Compactness is a standard assumption on Θ for extremum estimation. Convexity

and nonempty interior help us to avoid the “parameters on the boundary problem”

for partially identified models3. The probability measure P governs the stochastic

properties of the data generating process (e.g., independence or dependence, sta-

tionarity or heterogeneity). When, as is assumed here, Qn(ω, ·) is proper on Θ for

all ω ∈ F ∈ F, P (F ) = 1, we say “Qn is proper on Θ a.s.” For convenience in what

follows, we define Qn(ω, ·) outside of Θ to take the value ∞.

The function Qn acts as our sample criterion function, for example,

Qn(ω, θ) = n−1

n∑
i=1

q(Xi(ω), θ)− inf
θ∈Θ

n−1

n∑
i=1

q(Xi(ω), θ),

where {Xi : Ω→ R} is a sequence of random variables and q is a suitable function,

e.g., q(x, θ) = (x−θ)2 for scalar x and θ. Observe that the second term ensures that

we always have Qn(ω, θ) ≥ 0. As is common, we may write Qn(θ) as a shorthand

for Qn( · , θ).
Another common choice for Qn is that associated with generalized method

of moments (GMM) estimation,

Qn(ω, θ) = [n−1

n∑
i=1

m(Xi(ω), θ)]′ V̂ −1
n (ω) [n−1

n∑
i=1

m(Xi(ω), θ)]

− inf
θ∈Θ

[n−1

n∑
i=1

m(Xi(ω), θ)]′ V̂ −1
n (ω) [n−1

n∑
i=1

m(Xi(ω), θ)],

where m is a suitable vector-valued function such that E[m(Xi, θ)] = 0 for one or

more values of θ, and V̂n is an estimator of V, a suitably chosen covariance matrix.

The function Q is the population criterion function. Under assumptions

given below, Qn converges to Q in a suitable sense. The population analog Q will

3This point is already mentioned by CHT, which we do not pursue in this paper. They
provided sufficient conditions to ensure the parameters in the interior case. Our assumption is
based on Lemma 4.1 of CHT.
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thus inherit certain properties (e.g., properness) from the sample criterion function

Qn. Without loss of generality, we normalize the minimum value of Q to 0, i.e.

infΘQ(θ) = 0. For example, when {Xi} is stationary and the expectations exist,

the population analog of the first example above is

Q(θ) = E[q(Xi(·), θ)]− inf
θ∈Θ

E[q(Xi(·), θ)].

Following Chernozhukov, Hong, and Tamer (2007), we define the identified

set as the set of minimizers of Q:

Definition 3.2.2 (Identified set): The identified set ΘI satisfies

ΘI := {θ ∈ Θ : Q(θ) = 0}. (3.2.1)

There are numerous examples where the identified set can be written as in (3.2.1).

See Manski and Tamer (2002), Bajari, Benkard, and Levin (2007), Chernozhukov,

Hong, and Tamer (2007), Romano and Shaikh (2008, 2009), Ciliberto and Tamer

(2009), and Kaido and White (2009). Leading examples are the cases where ΘI is

a closed interval in R or an ellipsoid in R2. ΘI is a primary object of interest here.

In particular, we are concerned with estimation and inference for ΘI .

We ensure next that ΘI is a compact convex set contained in the interior

of Θ, Θo := int(Θ).

Assumption 3.2.2: (i) ΘI is nonempty, closed, and convex; (ii) ΘI ⊂ Θo.

The compactness of Θ and Assumption 3.2.2 (i) imply the compactness of ΘI .

Assumption 3.2.2 (ii) removes the trivial case ΘI = Θ and the “parameters on the

boundary” case. The latter case is definitely of interest, but to keep a tight focus

here, we leave this for analysis elsewhere.

Let {an} be a sequence of positive constants, and define a stochastic process

ζn on Rd by

ζn(θ) := anQn(θ), θ ∈ Rd.

The constants an normalize the criterion function so that ζn converges in distribu-
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tion to a limit process in an appropriate mode, as we discuss further below. We

now define the set estimator of interest here as a level set of ζn:

Definition 3.2.3 (Set estimator): For sequences {tn ∈ R+} and {an ∈
R+}, the set estimator is

Θ̂n(tn) := {θ ∈ Θ : ζn(θ) ≤ tn} = {θ ∈ Θ : anQn(θ) ≤ tn}.

To discuss convergence of Θ̂n(tn) to ΘI , we require suitable distance mea-

sures. For this (here and throughout), let K be a collection of closed subsets in Rd,

and let ‖ · ‖ denote the Euclidean norm on Rd. We measure the distance between

sets in K using the following Hausdorff distances.

Definition 3.2.4 (Directed Hausdorff distance and Hausdorff metric): For

any A,B ∈ K, the directed Hausdorff distance is defined as

~dH(A,B) := sup
a∈A

d(a,B),

where d(a,B) := infb∈B ‖b−a‖ and ~dH(A,B) :=∞ if either A or B is empty. The

Hausdorff metric is defined as

dH(A,B) := max
[
~dH(A,B), ~dH(B,A)

]
= max

[
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

]
.

The directed Hausdorff distance takes the value 0 when A ⊆ B and a positive

value otherwise4. This is useful in checking the coverage of the set estimator. For

convenience, we refer to either of these as “Hausdorff distance measures.”

CHT give a set of conditions (C.1 and C.2 in their paper) sufficient for the

consistency of Θ̂n(tn) for ΘI in the Hausdorff metric and for deriving its conver-

gence rate. Those conditions are general enough to be satisfied by many examples

involving moment inequalities and equalities. Following CHT’s conditions C.1 and

4The directed Hausdorff distance is formally the lower Hausdorff hemimetric. A hemimetric
d defined on a set E is a mapping E × E → R such that for any x, y, z ∈ E, (i) d(x, y) ≥ 0,
(ii) d(x, z) ≤ d(x, y) + d(y, z), and (iii) d(x, x) = 0. In other words, a hemimetric satisfies some
properties of a metric, but fails to satisfy symmetry (d(x, y) = d(y, x)) and identity (d(x, y) = 0 if
and only if x = y). There is also an upper Hausdorff hemimetric, which corresponds to ~dH(B,A).
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C.2, we assume the following.

Assumption 3.2.3: (i) supθ∈Θ{Q(θ)−Qn(θ)}+ = op(1). (ii) supθ∈ΘI
Qn(θ)

= Op(1/an). (iii) There exist positive constants (δ, κ, γ) such that for any ε ∈ (0, 1),

there are (κε, nε) such that for all n ≥ nε

Qn(θ) ≥ κmin{d(θ,ΘI), δ}γ,

uniformly on {θ ∈ Θ : d(θ,ΘI) ≥ (κε/an)1/γ} with probability at least 1− ε.

Under this assumption, the level-set estimator Θ̂n(tn) is consistent in the

Hausdorff metric and has a convergence rate rn = (an/max{1, κn})1/γ, when tn

satisfies tn ≥ supΘI
anQn(θ) with probability tending to 1. Such a sequence {tn}

of levels can be constructed by setting tn = tκn, where t > 0 and κn is a slowly di-

verging sequence, e.g., κn = log log n. Theorem 3.B.1 in the Appendix summarizes

CHT’s consistency and rate of convergence results for interested readers.

The following condition, CHT’s degeneracy condition (C.3), often holds for

econometric models that involve finitely many moment inequalities.

Assumption 3.2.4 (Degeneracy): (i) There is a sequence of subsets Θn of

Θ, which could be data dependent (i.e., Effros-measurable functions on Ω), such

that Qn vanishes on these subsets, that is, Qn(θ) = 0 for each θ ∈ Θn, for each n,

and these sets can approximate the identified set arbitrarily well in the Hausdorff

metric, that is, dH(Θn,ΘI) ≤ εn for some εn = op(1). (ii) εn = Op(1/a
1/γ
n ).

Under this additional condition, CHT show that it is possible to achieve

consistency and an exact polynomial rate of convergence by choosing a constant

level tn = t ∈ R+. For later use, we summarize the results below.

Theorem 3.2.1: Suppose Assumptions 3.2.1, 3.2.2, 3.2.3 (i), (ii), and

3.2.4 (i) hold. Then, dH(Θ̂n(t),ΘI) = op(1). Suppose, in addition, Assumption

3.2.3 (iii) and 3.2.4 (ii) hold. Then, a
1/γ
n dH(Θ̂n(t),ΘI) = Op(1).

For models with finitely many moment inequalities, the sample criterion

function often vanishes on the set Θn = {θ ∈ Θ : n−1
∑n

j=1mj,θ ≤ 0}, i.e., the
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set of parameter values at which sample moment inequalities are satisfied. When

ΘI has nonempty interior, the set of points satisfying the moment inequalities

approximate ΘI at
√
n rate. In this case, Assumption 3.2.4 holds with an = n,

γ = 2, and κn = 1. Section 3.4 studies this class of econometric models.

To keep a tight focus on the goal of unifying the criterion function and sup-

port function approaches, we maintain Assumption 3.2.4 in the following sections.

3.2.2 Support Function Approach

We begin by defining notions useful for characterizing compact convex sets:

support function, supporting plane, and support set. For this, let 〈x, y〉 denote the

(Euclidean) inner product of two vectors x, y ∈ Rd. We write ‖p‖ = 〈p, p〉1/2.

Definition 3.2.5 (Support function, supporting plane, and support set):

Let F ∈ K and Sd−1 := {p ∈ Rd : ‖p‖ = 1} be the unit sphere in Rd. The support

function s of F at p ∈ Sd−1 is defined by

s(p, F ) = sup
x∈F
〈p, x〉.

The supporting (hyper)plane H(p, F ) of F at p ∈ Sd−1 is

H(p, F ) = {x ∈ Rd : 〈p, x〉 = s(p, F )}.

The support set H(p, F ) of F at p ∈ Sd−1is

H(p, F ) = H(p, F ) ∩ F.

The value of the support function s(p, F ) measures the signed distance from

the origin of the supporting plane H(p, F ) of the set F with a normal vector p.

Figure 3.2.2 illustrates this. When the set is strictly convex, its support set H(p, F )

for each p ∈ Sd−1 is a singleton.

A maximization problem associated with the support function can be uti-

lized to compute the level-set estimator Θ̂n(t). Consider the following problem for
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s(q, F ) < 0
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Figure 3.1: Support function, supporting plane, and support set
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a given p ∈ Sd−1 and t ∈ R+:

s(p, Θ̂n(t)) := sup
θ∈Θ

〈p, θ〉 (3.2.2)

s.t. anQn(θ) ≤ t.

WhenQn is convex in a neighborhood of ΘI , this is a convex programming problem,

which is straightforward to solve numerically using standard algorithms. Often,

such algorithms find a point θ̂n(p, t) in the support set H(p, Θ̂n(t)) as a solution of

the problem (3.2.2). Therefore, a straightforward algorithm to compute the level

set estimator is the following.

Algorithm 3.2.1: Choose L ∈ N.

Step 1 : Generate a grid of points {p1, · · · , pL} on the unit sphere Sd−1.

Step 2 : Solve the problem (3.2.2) for p = pl, l = 1, · · · , L. Store the solutions

{θ̂n(pl, t), l = 1, · · · , L}.

When the grid is fine enough, the solutions {θ̂n(pl, t), l = 1, · · · , L} provide

a good approximation to the boundary of Θ̂n(t).

In addition to providing a straightforward algorithm to compute the level

set estimator, the support function itself contains useful information. Let Kc be

a collection of compact convex subsets of Rd. Every nonempty compact convex

set is the intersection of its supporting half spaces. Thus, each element of Kc is

uniquely determined by its support function. This suggests that properties of the

metric space (Kc, dH) may translate nicely to properties of a space of functions.

Let C(Sd−1) be the space of bounded continuous functions on Sd−1. Let ‖ · ‖C(Sd−1)

be the uniform norm on Sd−1: i.e., ‖f‖C(Sd−1) = supx∈Sd−1 |f(x)|. Let dC(Sd−1) be

the metric induced by this norm. Let ⊕ denote the Minkowski addition operator,

such that F1 ⊕ F2 = cl{f1 + f2 : f1 ∈ F1, f2 ∈ F2}. The Hörmander embedding

theorem is

Theorem 3.2.2 (Hörmander’s isometric embedding theorem): The map-

ping F 7→ s(·, F ) is an isometric embedding of (Kc, dH) into a closed convex cone
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in (C(Sd−1), dC(Sd−1)) that preserves Minkowski addition and non-negative multipli-

cation; i.e. for any F1 and F2 ∈ Kc,

dH(F1, F2) = ‖s(·, F1)− s(·, F2)‖C(Sd−1) = sup
p∈Sd−1

|s(p, F1)− s(p, F2)|

s(p, F1 ⊕ F2) = s(p, F1) + s(p, F2),

and for any λ ∈ R+,

s(p, λF1) = λs(p, F1).

Details for this theorem are in Beer (1993) and Li, Ogura, and Kreinovich (2002)5.

For our purposes, the fact that the mapping defined by the support function

is an isometry is important. Consider the process:

Zn(p, t) := a1/γ
n

(
s(p, Θ̂n(t))− s(p,ΘI)

)
.

This process is useful for conducting inference. Theorem 3.2.2 ensures that when

Θ̂n(t),ΘI ∈ Kc, the distance a
1/γ
n dH(Θ̂n(t),ΘI) equals supp∈Sd−1 |Zn(p, t)|, a func-

tional of Zn(·, t).
For the directed Hausdorff distance, we have the following result.

Theorem 3.2.3: Given any two compact convex sets F1, F2 ∈ Kc, the di-

rected Hausdorff distance satisfies

~dH(F1, F2) = sup
p∈Bd
{s(p, F1)− s(p, F2)} = sup

p∈Sd−1

{s(p, F1)− s(p, F2)}+ ,

where Bd := {p ∈ Rd : ‖p‖ ≤ 1}.

For the proof, see BM Lemma A.1.

From this result, together with Assumptions 3.2.1 and 3.2.2 (i), we have

5Hörmander’s embedding theorem holds in a more general environment. If the underlying
space E is separable, then we can isometrically embed (Kc(E), dH) into a closed convex cone
in C(S∗), where S∗ is the unit sphere in the dual space E∗. We can use metrics that metrize
either the strong norm topology or the weak* topology. This permits extending our framework
to handle nonparametric estimation, one of our future tasks.
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that for given t ∈ R+

a1/γ
n
~dH(ΘI , Θ̂n(t)) = sup

p∈Sd−1

{−Zn(p, t)}+

a1/γ
n
~dH(Θ̂n(t),ΘI) = sup

p∈Sd−1

{Zn(p, t)}+.

If for given t we can find a stochastic process Z(·, t) such that Zn(·, t)
converges suitably in distribution to Z(·, t), then the desired limiting distributions

of our Hausdorff distance measures follow from the continuous mapping theorem,

as these distance measures are continuous functions of Zn(·, t). Thus, we focus on

deriving the asymptotic distribution of Zn(·, t).
As we show, this distribution is a stochastic process on Sd−1. In lead-

ing cases, this is a Gaussian process. Moreover, its dependence on t is typically

straightforward. Specifically, t often affects only the mean of the limiting process

and in a manner known a priori. Thus, there exists a known function µ such that

for all t ∈ R+, Z∗(·) := Z(·, t)− µ(t) is a mean zero process on Sd−1, where Z(·, t)
is the desired weak limit of Zn(·, t).

3.2.3 Convergence Concepts

To define the required convergence concepts, consider a sequence of stochas-

tic processes {ξn} defined on a complete separable metric space (E, d), so that for

n = 1, 2, ..., ξn : Ω× E→ R̄ is jointly measurable, where R̄ := R ∪ {−∞,∞}. For

simplicity, we often suppress the dependence of ξn on ω ∈ Ω, but this should be

understood implicitly. In specific contexts, we also view ξn as a mapping from the

sample space Ω to a space of functions on E.

The simplest convergence in distribution concept for stochastic processes is

weak convergence in finite dimensions, defined next. We use the notation
d→ to

denote the usual convergence in distribution (weak convergence) for a vector of

finite dimension (as in, e.g., White, 2001, p.65).

Definition 3.2.6 (Finite dimensional weak convergence): Let (E, d) be a

complete separable metric space. A sequence of stochastic processes {ξn, n ≥ 1} on
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E is said to weakly converge in finite dimension to a limit ξ, denoted ξn
f.d.→ ξ, if

for any finite m-tuple (x1, ..., xm), where xj ∈ E for each j = 1, ...,m,

(ξn(x1), ..., ξn(xm))
d→ (ξ(x1), ..., ξ(xm)).

It is well known that the finite dimensional weak convergence is equivalent

to weak convergence in the uniform metric when the sequence {ξn} is tight in

l∞(E), where l∞(E) is the space of uniformly bounded functions on E; see, e.g.,

van der Vaart and Wellner (2000). We denote ξn
u.d.→ ξ when ξn weakly converges

to a stochastic process ξ in the uniform metric.

Here, a main goal is to find Z(·, t) such that Zn(·, t) u.d.→ Z(·, t) for Zn(·, t)
defined above. In order to achieve this goal, we make use of the notion of weak

epiconvergence given next.

Definition 3.2.7 (Weak epiconvergence): A sequence of stochastic pro-

cesses {ξn, n ≥ 1} on E is said to weakly epiconverge to a limit ξ, denoted ξn
e.d.→ ξ,

if for any compact subsets6 R1, ..., Rk of E with open interiors Ro
1, ..., R

o
m and any

finite m-tuple of real numbers τ1, ..., τm,

P

(
inf
x∈R1

ξ(x) > τ1, ..., inf
x∈Rm

ξ(x) > τm

)
≤ lim inf

n→∞
P

(
inf
x∈R1

ξn(x) > τ1, ..., inf
x∈Rm

ξn(x) > τm

)
(3.2.3)

≤ lim sup
n→∞

P

(
inf
x∈Ro1

ξn(x) ≥ τ1, ..., inf
x∈Rom

ξn(x) ≥ τm

)
≤ P

(
inf
x∈Ro1

ξ(x) ≥ τ1, ..., inf
x∈Rom

ξ(x) ≥ τm

)
. (3.2.4)

We call the condition given by (3.2.3) the lower epilimit condition. Similarly, we

call that given by (3.2.4) the upper epilimit condition7.

6In this definition, the sets R1, ..., Rk can instead be taken from a class of relatively compact
sets V such that (i) V is closed under finite union and intersection; (ii) each compact set K in E
is representable as the intersection of a decreasing sequence in V; and (iii) each open set G in E
is representable as the union of an increasing sequence in V. A typical example for such a V is a
class of closed rectangles. See Pflug (1992) for details.

7These names are motivated by Proposition 7.29 in Rockafellar and Wets (2005).
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Weak epiconvergence is generally useful for studying the limiting distribu-

tion of extremum estimators, especially when the criterion function assumes the

value infinity, which often occurs in constrained optimization problems8. This

concept is weaker than weak convergence (on compact sets) in the uniform metric

(Pflug, 1995, Proposition 1) and is equivalent to finite dimensional weak conver-

gence when the sequence {ξn} satisfies a condition called “stochastic equi-lower-

semicontinuity” (Knight, 1999, Theorem 2).

For our purposes, weak epiconvergence of a version of the criterion function

ζn helps ensure the finite dimensional weak convergence of Zn(·, t). The desired

results then follow by establishing tightness of {Zn(·, t)}.

3.3 Inference Using the Normalized Support Fu-

nction

In this section, we present our first main results. We begin by establish-

ing the duality that relates the finite dimensional distribution of the normalized

support function Zn(·, t) to that of the infimum of a localized criterion function

ζ̃n = anQn(θ + λ/a
1/γ
n ) over a class of compact sets. We further show that Zn(·, t)

converges weakly in the uniform metric to a stochastic process on Sd−1 under ap-

propriate regularity conditions on ζ̃n. We then present our inference methods using

functionals of Zn(·, t).

3.3.1 Asymptotic Distribution of the Normalized Support

Function

We first add a mild regularity condition on the criterion function. For this,

we use the following definition.

8Details on weak epiconvergence can be found in Pflug (1992), Geyer (1994), Pflug (1995),
Knight (1999), Geyer (2003), and Molchanov (2005), among others. Recent applications of weak
epiconvergence in econometrics include Chernozhukov and Hong (2004), Chernozhukov (2005),
and Han and Philips (2006).
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Definition 3.3.1 (Lower semicontinuity): The function f : Rd → R̄ is

lower semicontinuous (lsc) if lim infx→x̄ f(x) ≥ f(x̄) for every x̄ ∈ Rd.

If a function f : Ω×Rd → R̄ is such that f(ω, ·) is lsc for all ω ∈ F ∈ F, P (F ) = 1,

then we say f is lower semicontinuous almost surely (lsc a.s.). A subtle problem

for inference here is that Θ̂n(t) may be empty with positive probability in finite

samples. To handle this, we use the following convention. We set s(p, Θ̂n(t)) =

s(p, Θ̂n(tn)) if Θ̂n(t) = ∅, where tn := infΘ anQn(θ). This convention ensures that

Zn(·, t) ∈ C(Sd−1) a.s. Note that P (Θ̂n(t) = ∅) → 0 under the conditions of

Theorem 3.2.1, so this adjustment becomes less and less likely as n→∞.

The following lemma establishes the duality between the minimization of

the criterion function and the maximization of the corresponding inner product.

This lemma provides a way to relate the stochastic behavior of the support function

s(·, Θ̂n(t)) to that of the original criterion function ζn(·) = anQn(·).

Lemma 3.3.1 (Duality 1): Suppose that Assumption 3.2.1 holds. Let n ∈ N
and t ∈ R+ be given. Suppose ζn is lsc a.s. Then, for any u ∈ R and p ∈ Sd−1

s(p, Θ̂n(t)) < u ⇔ inf
θ∈Ku,p∩Θ

ζn(θ) > t,

with probability 1, where Ku,p is the half space

Ku,p := {θ ∈ Rd : 〈p, θ〉 ≥ u}.

By this lemma, we can relate the support function of the level set estima-

tor to the criterion function9. Our goal is then to relate the normalized support

function Zn(p, t) to a localized version of the criterion function.

We define a process ζ̃n whose behavior captures that of ζn for local devia-

tions from the boundary points of ΘI . For this, let ∂ΘI be the boundary of ΘI ; this

coincides with the collection of support points of ΘI : i.e., ∂ΘI := {θ : θ ∈ H(p,ΘI),

9Note that if Θ̂n(t) = ∅, we take s(p, Θ̂n(t)) = supθ∈∅〈p, θ〉 = −∞.
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p ∈ Sd−1}. Define a stochastic process ζ̃n on ∂ΘI × Rd by

ζ̃n(θ, λ) := ζn(θ + λ/a1/γ
n ), θ ∈ ∂ΘI , λ ∈ Rd.

The quantity θ + λ/a
1/γ
n represents a deviation of order a

−1/γ
n in the direction λ

from θ.

To apply the previous lemma, we first note that

{ω : Zn(p, t) < u} =
{
ω : s(p, Θ̂n(t)) < s(p,ΘI) + u/a1/γ

n

}
.

Applying Lemma 3.3.1 to s(p, Θ̂n(t)) < s(p,ΘI) + u/a
1/γ
n yields

{ω : Zn(p, t) < u} =

ω : inf
θ̃∈K

s(p,ΘI )+u/a
1/γ
n ,p

∩Θ
ζn(θ̃) > t

 . (3.3.1)

Next, for each θ̃ ∈ K
s(p,ΘI)+u/a

1/γ
n ,p
∩Θ, we decompose θ̃ by letting θ̃ = θ + (θ̃− θ)

where θ ∈ H(p,ΘI)
10. We define λ := a

1/γ
n (θ̃ − θ). We can therefore write

θ̃ = θ + λ/a1/γ
n .

The motivation for rescaling λ by 1/a
1/γ
n is that u/a

1/γ
n appears in the

subscript of K in eq. (3.3.1). By this decomposition, θ represents the part of θ̃

that gives the inner product value s(p,ΘI), and λ/a
1/γ
n represents the part of θ̃ that

gives an inner product value greater than or equal to u/a
1/γ
n . This decomposition

is illustrated in figure 3.2.

It is easy to show that λ satisfies 〈p, λ〉 ≥ u, so λ ∈ Ku,p. In addition, since

λ = a
1/γ
n (θ̃ − θ) with θ̃ ∈ Θ, λ belongs to a shifted and rescaled space a

1/γ
n (Θ− θ)

:= {λ ∈ Rd : λ = a
1/γ
n (θ̃ − θ), θ̃ ∈ Θ}. Thus, λ ∈ Ku,p ∩ a1/γ

n (Θ − θ). Using this

10Note that θ here is not necessarily unique; however, this has no impact on the arguments to
follow.
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0 θ1

θ2

ΘI

θ λ

a
1/γ
n

θ̃

K
s(p,ΘI)+u/a

1/γ
n

〈p, θ〉 = s(p,ΘI) + u/a
1/γ
n

Θ

Figure 3.2: Decomposition of θ̃

decomposition, we can rewrite the event in eq. (3.3.1) as

{ω : Zn(p, t) < u} =

{
ω : inf

θ∈H(p,ΘI)
inf

λ∈Ku,p∩[a
1/γ
n (Θ−θ)]

ζ̃n(θ, λ) > t

}
.

Let rn,u,p be the correspondence defined on H(p,ΘI) by

rn,u,p(θ) := Ku,p ∩ [a1/γ
n (Θ− θ)], n = 1, 2, ... .

For each θ ∈ H(p,ΘI), the set Ku,p ∩ [a
1/γ
n (Θ− θ)] is an image of rn,u,p(θ). Figures

3 and 4 in Appendix B illustrate how this image changes when θ moves along

H(p,ΘI) for a fixed n11. The graph of this correspondence is

Rn,u,p := {(θ, λ) : λ ∈ rn,u,p(θ), θ ∈ H(p,ΘI)},
11Appendix B is available from http://econ.ucsd.edu/~hkaido/pdf/supmat.pdf.

http://econ.ucsd.edu/~hkaido/pdf/supmat.pdf
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which is illustrated in figure 5. Thus,

{ω : Zn(p, t) < u} =

{
ω : inf

(θ,λ)∈Rn,u,p
ζ̃n(θ, λ) > t

}
.

To analyze this event, it is important to understand the behavior of Rn,u,p as n

increases.

For this, let ∂Θ = Θ \ Θo denote the boundary of Θ. We call elements of

ΘI ∩ ∂Θ identified parameters on the boundary (of Θ). The remaining elements

of ΘI are identified parameters in the interior (of Θ). How Rn,u,p behaves in the

limit depends on whether or not there is an identified parameter on the boundary

of Θ.

Specifically, if, as Assumptions 3.2.1 and 3.2.2 (ii) ensure, there are no

identified parameters on the boundary, then a
1/γ
n (Θ−θ) converges to Rd in the sense

of Painlevé-Kuratowski (PK)12. Thus, for any (u, p), we have the PK convergences

Ku,p ∩ a1/γ
n (Θ− θ)→ Ku,p and

Rn,u,p → Ru,p := H(p,ΘI)×Ku,p.

This case is depicted in figure 6.

On the other hand, if there is an identified parameter on the boundary of

Θ, the limit of the sequence of graphs {Rn,u,p}∞n=1 has a form that depends on

the structure of Θ. In this case, the local parameter space may be approximated

by a cone, following the ideas of Geyer (1994) and Andrews (1999). This case

is definitely of interest, but in order to keep a tight focus here, we leave this for

analysis elsewhere.

Our next result provides conditions ensuring that Rn,u,p behaves in such a

way that the infimum of the stochastic process ζ̃n over Rn,u,p is close to the infimum

over Ru,p in a stochastic sense when n is sufficiently large.

12For a sequence {Cn}n∈N of subsets of Rd, the inner limit is the set lim infn→∞ Cn := {x :
∃{xn}n∈N such that xn → x and xn ∈ Cn,∀n} while the outer limit is the set lim supn→∞ Cn :=
{x : ∃{xnk

}k∈N such that xnk
→ x and xnk

∈ Cnk
,∀k}. The limit of the sequence exists if

inner and outer limit sets are equal: limn→∞ Cn = lim infn→∞ Cn = lim supn→∞ Cn. When
limn→∞ Cn exists and equal to a set C, the sequence {Cn}n∈N is said to converge to C in the
Painlevé-Kuratowski sense. See Rockafellar and Wets (2005, ch.4) for details.
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Lemma 3.3.2: Suppose Assumptions 3.2.1 and 3.2.2 hold. Suppose that ζ̃n

is lsc a.s. and that there exists ε̄ > 0 such that for any 0 < ε < ε̄,

lim inf
n→∞

{
(θ, λ) ∈ Ru,p : ζ̃n(θ, λ) < inf

Ru,p
ζ̃n(θ, λ) + ε

}
6= ∅, (3.3.2)

almost surely. Then for any 0 < ε < ε̄ there exists a finite integer Nε such that for

all (u, p) ∈ R× Sd−1

P

(∣∣∣∣ inf
(θ,λ)∈Rn,u,p

ζ̃n(θ, λ)− inf
(θ,λ)∈Ru,p

ζ̃n(θ, λ)

∣∣∣∣ ≥ ε

)
≤ ε, ∀n ≥ Nε.

Since the function ζn = anQn is defined for all θ ∈ Rd, the infima above are well

defined. When condition (3.3.2) holds, we say that {ζ̃n} obeys the nonempty limit

ε-argmin condition. This requires that the sequence {ζ̃n} stabilizes in such a way

that its ε-argmin set does not keep moving around. Properness ensures that the

difference of the infima in the conclusion is not of the form∞−∞. This conclusion

is an analog of Condition S.1 assumed by CHT, motivated by results of Chernoff

(1954) and Andrews (1999).

In order to apply weak epiconvergence to ζ̃n, we need to control the limiting

behavior of the finite-dimensional distributions of the infima of ζ̃n over a family of

compact sets. As Ru,p is a closed but unbounded set, we need to replace it with

a compact set. As Salinetti and Wets (1986) and Molchanov (2005) show, this

can be done under a regularity condition known as equi-inf-compactness, defined

as follows.

Definition 3.3.2 (Equi-inf-compactness): The sequence of stochastic pro-

cesses {ξn} is equi-inf-compact if for every α ∈ R there exists a compact set Lα

such that {x : ξn(x) ≤ α} ⊂ Lα a.s. for all n ≥ 1.

If this condition holds for {ζ̃n}, we can approximate the limit of the infima of {ζ̃n}
over the closed unbounded set Ru,p by the infimum over a compact set R̃u,p :=

Ru,p ∩Lu,p with Lu,p properly chosen. Then we can apply weak epiconvergence by

checking the limiting behavior of the infima of ζ̃n over compact sets {R̃uj ,pj , j =

1, 2, ...,m}.
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We now state a second duality result, relating Zn and ζ̃n.

Lemma 3.3.3 (Duality 2): Suppose that Assumptions 3.2.1 and 3.2.2 hold.

Let t ∈ R+ be given. Suppose that {ζ̃n} obeys the nonempty limit ε-argmin con-

dition, that {ζ̃n} is equi-inf-compact, and that ζ̃n is lsc a.s. for all n sufficiently

large. Then, for any finite m-tuple {(uj, pj) ∈ R × Sd−1}mj=1, there exist compact

sets Luj ,pj , j = 1, ...,m, such that, with R̃u,p := Ru,p ∩ Lu,p,

lim inf
n→∞

P (Zn(p1, t) < u1, ...,Zn(pm, t) < um)

≥ lim inf
n→∞

P

(
inf

(θ,λ)∈R̃u1,p1

ζ̃n(θ, λ) > t, ..., inf
(θ,λ)∈R̃um,pm

ζ̃n(θ, λ) > t

)
.

This lemma ensures that, to study the (finite-dimensional) asymptotic be-

havior of Zn(·, t), it suffices to study the asymptotic behavior of the infima of ζ̃n

over compact sets. The right hand side of this inequality can be controlled if ζ̃n

weakly epiconverges to a known limiting process ζ̃. If so, we can seek a process Z
such that

P (Z(p1, t) < u1, ...,Z(pm, t) < um)

= P

(
inf

(θ,λ)∈R̃u1,p1

ζ̃(θ, λ) > t, ..., inf
(θ,λ)∈R̃um,pm

ζ̃(θ, λ) > t

)
.

The portmanteu theorem then implies Zn(·, t) f.d.→ Z(·, t).
The next theorem establishes this; it further gives the asymptotic distribu-

tions of the Hausdorff distances. For this, we formally impose sufficient regularity

on {ζ̃n}.

Assumption 3.3.1 (Local Process Regularity): (i) For all n sufficiently

large, ζ̃n is, almost surely, lsc, and Qn is convex in a neighborhood of ΘI . (ii) The

sequence {ζ̃n} obeys the nonempty limit ε-argmin condition, is equi-inf-compact,

and weakly epiconverges to a stochastic process ζ̃.

Assumption 3.3.1 (ii) is stronger than strictly necessary. It appears that weak

epiconvergence can be replaced by the lower epilimit condition without affecting
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our conclusions.

Theorem 3.3.1: Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4, and

3.3.1 hold. For each t ∈ R+ and θ ∈ ∂ΘI , let Λ̂(t, θ) be a random level set of the

map λ 7→ ζ̃(θ, λ) defined by

Λ̂(t, θ) = {λ : ζ̃(θ, λ) ≤ t}.

Suppose that the limiting process ζ̃ is such that Λ̂(t, θ) is nonempty a.s. for each

t ∈ R+ and θ ∈ ∂ΘI .

Then for each t ∈ R+,

(i) Zn(·, t) f.d.→ Z(·, t), where Z(·, t) is a stochastic process on Sd−1, which

has the representation

Z(p, t) = sup
θ∈H(p,ΘI)

s
(
p, Λ̂(t, θ)

)
; (3.3.3)

(ii) letting m be a finite integer and {(uj, pj) ∈ R × Sd−1}mj=1 an m-tuple,

the finite dimensional distributions of Z(·, t) satisfy

P (Z(p1, t) < u1, ...,Z(pm, t) < um)

= P

(
inf

(θ,λ)∈R̃u1,p1

ζ̃(θ, λ) > t, ..., inf
(θ,λ)∈R̃um,pm

ζ̃(θ, λ) > t

)
;

(iii) Zn(·, t) u.d.→ Z(·, t), ensuring that

a1/γ
n dH(Θ̂n(t),ΘI)

d→ ‖Z(·, t)‖C(Sd−1)

a1/γ
n
~dH(ΘI , Θ̂n(t))

d→ sup
p∈Sd−1

{−Z(p, t)}+ and

a1/γ
n
~dH(Θ̂n(t),ΘI)

d→ sup
p∈Sd−1

{Z(p, t)}+ .

3.3.2 Inference for the Identified Set

Using the asymptotic distribution results of the previous section, we now

study hypothesis testing on ΘI , together with confidence collections and confidence
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sets constructed by inverting the Wald statistics. To the best of our knowledge,

Beresteanu and Molinari (2008) is the first article discussing statistical inference

and confidence collections based on the Hausdorff distance measures. Our results

below are mostly parallel to the results presented in sections 2.2 and 2.3 of their

paper.

We first study hypothesis testing, confidence collections, and confidence sets

based on the Hausdorff metric. Let Θ0 ∈ Kc be a given compact convex set, and

consider testing

H0 : ΘI = Θ0, vs. H1 : ΘI 6= Θ0. (3.3.4)

Recall that dH(ΘI ,Θ0) = 0 if and only if ΘI = Θ0. A natural statistic for the test,

therefore, is the scaled Hausdorff metric Tn(t) = a
1/γ
n dH(Θ̂n(t),Θ0). Under the null

hypothesis, the statistic has the limiting distribution ‖Z(·, t)‖C(Sd−1) by Theorem

3.3.1; under the alternative, it diverges to ∞ with probability approaching one

because the statistic is not properly centered. Let α ∈ (0, 1) be a significance level.

We obtain a test of asymptotic level α by rejecting the null hypothesis when Tn(t)

exceeds the asymptotic critical value

c1−α(t) := inf
{
x : P

(
‖Z(·, t)‖C(Sd−1) ≤ x

)
≥ 1− α

}
,

where Z(·, t) is the stochastic process given in Theorem 3.3.1.

It is often difficult to compute this critical value directly, as the required

asymptotic distribution differs from case to case. Specifically, the properties of

Z(·, t) depend on the weak epilimit ζ̃ and therefore on the functional form of the

criterion function. Also, the distribution of Z(·, t) depends on the characteristics of

the true identified set ΘI . For some special cases, it might be possible to simulate

the asymptotic distribution of the relevant process to obtain the critical value, but

this approach is not generally applicable.

As a practical alternative, we now propose a straightforward subsampling

procedure that yields generally valid asymptotic critical values under the high-

level assumptions provided above and mild regularity conditions on the rate at

which the subsample size grows. For concreteness, we present a procedure for the
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important class of cases in which the sample criterion function Qn is constructed

from a sample {Xi : Ω→ Rk}ni=1 of IID random vectors.

Assumption 3.3.2: Let Assumption 3.2.1 hold with Qn(ω, θ) = Q̃n(X1(ω),

· · · , Xn(ω), θ) where Q̃n :
∏n

i=1 Rk × Rd → R̄+ is jointly measurable, n = 1, 2, · · · ,
and {Xi} is an IID sequence of random k-vectors, k ∈ N.

It is straightforward to extend our results to a sample of stationary and

strong mixing time series. See Politis, Romano, and Wolf (1999, Ch 3) for details.

Algorithm 3.3.1 (Subsampling for level-set estimators): Let t > 0 and

0 < α < 1 be given. Let b := bn < n be a positive integer. Let Nn,b =
(
n
b

)
denote

the number of subsamples of size b from a sample of size n.

Step 1. For k = 1, · · · , Nn,b, construct Θ̂n,b,k(t), the set estimator for the k-

th subsample, computed as a t-level set of the criterion function ζn,b,k(Xk1,

· · · , Xkb , θ) = abQ̃n,b,k(Xk1 , · · · , Xkb , θ), with the obvious notation.

Step 2. For k = 1, · · · , Nn,b, compute

T̂n,b,k(t) = a
1/γ
b dH

(
Θ̂n,b,k(t), Θ̂n(t)

)
.

Step 3. Compute the 100×(1−α)% quantile of the subsampling distribution, given

by

ĉn,b,1−α(t) = inf
{
x : F̂n,b(x, t) ≥ 1− α

}
,

where

F̂n,b(x, t) := N−1
n,b

∑
1≤k≤Nn,b

1{T̂n,b,k(t)≤x}.

For any t, let F (x, t) := P [‖Z(·, t)‖C(Sd−1) ≤ x] define the cumulative distri-

bution function (CDF) of ‖Z(·, t)‖C(Sd−1). The next theorem is a basic result for

subsampling the Hausdorff metric of level set estimators.

Theorem 3.3.2: Suppose the conditions of Theorem 3.3.1 and Assumption

3.3.2 hold. Suppose that b → ∞ and b/n → 0 as n → ∞. Let F̂n,b(·, t) and
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ĉn,b,1−α(t) be computed by Algorithm 3.3.1.

(i) If x is a continuity point of F (·, t), then F̂n,b(x, t)→ F (x, t) in probabil-

ity;

(ii) If F (·, t) is continuous, then supx |F̂n,b(x, t)−F (x, t)| → 0 in probability;

(iii) If F (·, t) is continuous at c1−α(t), then

lim
n→∞

P
(
a1/γ
n dH(Θ̂n(t),ΘI) ≤ ĉn,b,1−α(t)

)
= 1− α.

As a corollary of this result, we can show that the test has the correct level

and is consistent against any fixed alternative hypothesis.

Corollary 3.3.1: Suppose the conditions of Theorem 3.3.2 hold. Let Θ0

be a nonempty compact convex subset of Θo.

(i) If Θ0 = ΘI and F (·, t) is continuous and strictly increasing at c1−α(t),

then ĉn,b,1−α(t) = c1−α(t) + op(1), and the test has asymptotic rejection probability

α:

lim
n→∞

P (Tn(t) > ĉn,b,1−α(t)) = α.

(ii) If Θ0 6= ΘI , then the test is consistent:

lim
n→∞

P (Tn(t) > ĉn,b,1−α(t)) = 1.

When Nn,b is large, we can instead employ a stochastic approximation to

F̂n,b(·, t) by randomly drawing subsamples, with or without replacement. See Poli-

tis, Romano, and Wolf (1999, Sec. 2.4) for details.

The confidence collection is the collection of compact convex sets such that

our test does not reject the null hypothesis in (3.3.4) when any set in the collection

is taken to be Θ0. This collection can be obtained by inverting our test statistic:

X̂n,b,1−α(t) =
{

Ψ ∈ Kc : a1/γ
n dH

(
Θ̂n(t),Ψ

)
≤ ĉn,b,1−α(t)

}
.

We show next that, by the duality of the test, this collection includes ΘI with

probability 1− α asymptotically.
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To construct a confidence set, consider the union of the elements of X̂n,b,1−α(t),

Ψ̂n,b,1−α(t) :=
⋃
{Ψ : Ψ ∈ X̂n,b,1−α(t)}.

We show that this can be easily computed by expanding our level set estimator by

an amount ε̂n,b,1−α(t) := ĉn,b,1−α(t)/a
1/γ
n . This yields a confidence set whose precise

level is difficult to determine but which is bounded below by 1 − α and is thus

conservative.

Theorem 3.3.3: Suppose the conditions of Theorem 3.3.2 hold. Suppose

F (·, t) is continuous at c1−α(t). Then

(i) limn→∞ P
(

ΘI ∈ X̂n,b,1−α(t)
)

= 1− α;

(ii) Ψ̂n,b,1−α(t) = Θ̂
ε̂n,b,1−α
n (t), where Θ̂

ε̂n,b,1−α
n (t) is a closed ε̂n,b,1−α(t)-envelope

of Θ̂n(t) given by

Θ̂
ε̂n,b,1−α
n (t) := {θ : dH(θ, Θ̂n(t)) ≤ ε̂n,b,1−α(t)};

(iii) Further,

lim
n→∞

P
(

ΘI ⊆ Θ̂
ε̂n,b,1−α(t)
n (t)

)
≥ 1− α.

Next, we consider hypothesis testing, confidence collections, and confidence

sets based on the directed Hausdorff distance. Again, let Θ0 ∈ Kc be a given

compact convex set. We consider testing

H0 : Θ0 ⊆ ΘI vs. H1 : Θ0 * ΘI . (3.3.5)

Recall that ~dH(Θ0,ΘI) = 0 if and only if Θ0 ⊆ ΘI . We therefore test this hypoth-

esis using the scaled directed Hausdorff distance T→n (t) := a
1/γ
n
~dH(Θ0, Θ̂n(t)). By

focusing on the inclusion relationship above, we can directly compare our results

to those of BM. We can also test the reverse inclusion using a
1/γ
n
~dH(Θ̂n(t),Θ0) (the

scaled upper Hausdorff hemimetric) as described below.

Following BM, we use the triangle inequality
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~dH(Θ0, Θ̂n(t)) ≤ ~dH(Θ0,ΘI) + ~dH(ΘI , Θ̂n(t)). (3.3.6)

The first term on the right vanishes under the null. Under the assumptions of

Theorem 3.1, the second term has a well-defined limiting distribution when scaled

by a
1/γ
n . We now specify a subsampling algorithm similar to Algorithm 3.3.1 to

approximate this distribution.

Algorithm 3.3.2: Implement Algorithm 3.3.1 but with ~dH(Θ̂n(t), Θ̂n,b,k(t))

replacing dH(Θ̂n,b,k(t), Θ̂n(t)).

The analogs of T̂n,b,k(t), Fn(x, t), ĉn,b,1−α(t), and F̂n,b(t) are denoted T̂→n,b,k(t),

F→n (x, t), ĉ→n,b,1−α(t) , and F̂→n,b(t). Similarly, let F→(x, t) := P (supp∈Sd−1 {−Z(p, t)

}+ ≤ x) define the CDF of supp∈Sd−1{−Z(p, t)}+. Also, let c→1−α(t) := inf{x :

P ( supp∈Sd−1{−Z(p, t)}+ ≤ x) ≥ 1 − α} define the asymptotic critical value for

level α ∈ (0, 1). The next theorem establishes the validity of subsampling for the

directed Hausdorff distance.

Theorem 3.3.4: Suppose the conditions of Theorem 3.3.1 and Assumption

3.3.2 hold. Suppose that b → ∞ and b/n → 0 as n → ∞. Let F̂→n,b(·, t) and

ĉ→n,b,1−α(t) be computed by Algorithm 3.3.2.

(i) If x is a continuity point of F→(·, t), then F̂→n,b(x, t) → F→(x, t) in

probability;

(ii) If F→(·, t) is continuous except at x = 0, then for any ε > 0, sup|x|≥ε

|F̂→n,b(x, t)− F→(x, t)| → 0 in probability;

(iii) If F→(·, t) is continuous at c→1−α(t), then

lim
n→∞

P
(
a1/γ
n
~dH(ΘI , Θ̂n(t)) ≤ ĉ→n,b,1−α(t)

)
= 1− α.

The directed Hausdorff distance has a discontinuity at x = 0. The consis-

tency result (ii) is, therefore, weaker than the uniform convergence of subsampling

CDFs over the whole real line. It establishes the uniform convergence of the sub-

sampling CDF on compact sets excluding 0. As Bugni (2008) discusses, this weaker

consistency result is sufficient for the purpose of hypothesis testing and construct-
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ing confidence sets as we are often interested in approximating the 90, 95, and 99

percentiles. As we will discuss in Section 3.3.3, it is possible to choose t so that

the discontinuity does not occur at the quantiles of interest.

Results for the rejection probability and the consistency against fixed al-

ternatives now follow as before.

Corollary 3.3.2: Suppose the conditions of Theorem 3.3.4 hold. Let Θ0

be a nonempty compact convex subset of Θo.

(i) If Θ0 ⊆ ΘI and F→(·, t) is continuous and strictly increasing at c→1−α(t),

then ĉ→n,b,1−α(t) = c→1−α(t) + op(1), and the test has asymptotic rejection probability

bounded above by α:

lim
n→∞

P
(
T→n (t) > ĉ→n,b,1−α(t)

)
≤ α;

(ii) If Θ0 6⊆ ΘI , then the test is consistent:

lim
n→∞

P
(
T→n (t) > ĉ→n,b,1−α(t)

)
= 1.

To construct a confidence collection, invert the test statistic to obtain

X̂→n,b,1−α(t) =
{

Ψ ∈ Kc : a1/γ
n
~dH

(
Ψ, Θ̂n(t)

)
≤ ĉ→n,b,1−α(t)

}
.

As we show, this gives a conservative confidence collection. To construct a confi-

dence set, consider the union of the elements of X̂→n,b,1−α(t),

Ψ̂→n,b,1−α(t) :=
⋃
{Ψ : Ψ ∈ X̂→n,b,1−α(t)}.

Analogous to our previous result, we show that this can be easily computed by

expanding our level set estimator by an amount ε̂→n,b,1−α(t) := ĉ→n,b,1−α(t)/a
1/γ
n . In

contrast to our previous result, this confidence set has asymptotic level 1 − α.

This is a Wald-type confidence set that is directly comparable to the QLR-type

confidence set studied by CHT.

Theorem 3.3.5: Suppose the conditions of Theorem 3.3.4 hold. Suppose
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F→(·, t) is continuous at c→1−α(t). Then

(i) For each Θ0 ⊆ ΘI , limn→∞ P
(

Θ0 ∈ X̂→n,b,1−α(t)
)
≥ 1 − α with equality

when Θ0 = ΘI ;

(ii) Ψ̂→n,b,1−α(t) = Θ̂
ε̂→n,b,1−α
n (t), where Θ̂

ε̂→n,b,1−α
n (t) is a closed ε̂→n,b,1−α(t)-envelope

of Θ̂n(t) given by

Θ̂
ε̂→n,b,1−α
n (t) :=

{
θ : d(θ, Θ̂n(t)) ≤ ε̂→n,b,1−α(t)

}
;

(iii) Furthermore, for t small enough,

lim
n→∞

P
(

ΘI ⊆ Θ̂
ε̂→n,b,1−α
n (t)

)
= 1− α.

Note that for the confidence set to achieve the coverage probability 1− α,

we must set t small enough. We will discuss how to choose t in the next subsection.

Results for testing the reverse inclusion

H0 : ΘI ⊆ Θ0 vs. H1 : ΘI * Θ0. (3.3.7)

follow similarly, based on the statistic T←n (t) := a
1/γ
n
~dH(Θ̂n(t),Θ0). A subsampling

algorithm that can be used to approximate the relevant limiting distribution is

Algorithm 3.3.3: Implement Algorithm 3.3.1 but with ~dH(Θ̂n,b,k(t), Θ̂n(t), )

replacing dH(Θ̂n,b,k(t), Θ̂n(t)).

The analogs of T̂n,b,k(t), Fn(x, t), ĉn,b,1−α(t), and F̂n,b(t) are denoted T̂←n,b,k(t),

F←n (x, t), ĉ←n,b,1−α(t), and F̂←n,b(t). Similarly, let F←(x, t) := P (supp∈Sd−1{Z(p, t)}+ ≤
x) define the CDF of supp∈Sd−1{Z(p, t)}+; and let c←1−α(t) := inf{x : P (supp∈Sd−1

{Z(p, t)}+ ≤ x) ≥ 1 − α} define the asymptotic critical value for level α ∈ (0, 1).

Results analogous to Theorem 3.3.4, Corollary 3.3.2, and Theorem 3.3.5 now follow

analogously.
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3.3.3 Choice of Level

As we will see in section 3.4, we can often properly weight the criterion

function so that the level t only affects the mean of the limiting process Z(p, t).

In this case, we can re-center the process Zn(p, t) by a known function µ(t) or

a consistent estimator µ̂n(t), so that the choice of level becomes asymptotically

irrelevant for inference.

Even if we do not have a known form for µ(t) nor a consistent estimator,

it is possible to remove the arbitrariness in the choice of t. In this section, we

show that, at least asymptotically, the choice of t does not matter for constructing

confidence sets for ΘI . The construction of the confidence set is based on Theorem

3.3.5.

For each α ∈ (0, 1), let t∗1−α be the smallest t such that c→1−α(t) = 0. That

is,

t∗1−α := inf{t ∈ R+ : c→1−α(t) = 0}.

We will show that, for any 0 ≤ t < t∗1−α, confidence sets constructed in the manner

of Theorem 3.3.5 are asymptotically equivalent to each other, in the sense that

their difference (in the Hausdorff metric) is of stochastic order smaller than a
1/γ
n .

In this sense, the initial choice of t does not matter for constructing the confidence

set, given t < t∗1−α.

We start with the following lemma that shows c→1−α is non-increasing on

[0, t∗1−α].

Lemma 3.3.4: Suppose the conditions of Theorem 3.3.5 are satisfied. Then,

for any 0 ≤ t < t′ ≤ t∗1−α,

0 = c→1−α(t∗1−α) ≤ c→1−α(t′) ≤ c→1−α(t) ≤ c→1−α(0).

Recall that a confidence set Θ̂
ε̂→n,b,1−α(t)
n (t) is an expansion of the level set

Θ̂n(t) by the amount ε̂→n,b,1−α(t) = ĉ→n,b,1−α(t)/a
1/γ
n . Lemma 3.3.4 suggests that if we

start with a large t, the amount we need to expand will be smaller, and at t = t∗1−α,
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we do not need to expand the set at all. The following theorem shows that, when

the limiting process takes the form Z(p, t) = µ(t) + Z∗(p), this change in the

amount of expansion makes all the confidence sets asymptotically equivalent, so

that the initial choice of t is not essential as long as t < t∗1−α
13.

Theorem 3.3.6: Suppose the conditions of Theorem 3.3.5 hold. Suppose

that the limiting process takes the form Z(p, t) = µ(t) + Z∗(p) for each (p, t) ∈
Sd−1×R+ and Zn(p, t)−Zn(p, t′) = µ(t)−µ(t′)+op(1) uniformly, where µ : R+ → R
is an unknown function. Then for each α ∈ (0, 1) and 0 ≤ t < t∗1−α,

dH

(
Θ̂
ε̂→n,b,1−α(t)
n (t), Θ̂n(t∗1−α)

)
= op(a

−1/γ
n ).

An immediate corollary is the following.

Corollary 3.3.3: Suppose that the conditions of Theorem 3.3.6 hold.

Then for each α ∈ (0, 1) and for any 0 ≤ t ≤ t′∗1−α,

dH

(
Θ̂
ε̂→n,b,1−α(t)
n (t), Θ̂

ε̂→n,b,1−α(t′)
n (t′))

)
= op(a

−1/γ
n ).

Theorem 3.3.6 raises an interesting research question. CHT construct a

confidence set Θ̂n(τ̂n,b,1−α) such that limn→∞ P (ΘI ⊆ Θ̂n(τ̂n,b,1−α)) = 1− α, where

τ̂n,b,1−α is a subsampling estimate of the 1− α quantile τ ∗1−α of the limiting distri-

bution of their QLR-statistic supΘI
anQn(θ). If t∗1−α = τ ∗1−α holds, the confidence

sets based on the QLR-approach and our approach are asymptotically equivalent.

The question is under what conditions the asymptotic equivalence holds. In sec-

tion 3.4, we give a partial answer to this question. For models that involve finitely

many moment inequalities, we will provide conditions on the criterion function and

weighting matrix that ensure t∗1−α = τ ∗1−α.

Based on these results, we propose a generic algorithm to construct the

confidence set.

Algorithm 3.3.4: (Iterative Algorithm) Set κ > 0 small. Initialize l = 1,

13The reason we cannot allow the equality t = t∗1−α is because the subsampling fails to estimate
the quantile at which the distribution is discontinuous.
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and choose tl small enough.

Step 1. Construct the set estimator Θ̂n(tl). Estimate the asymptotic 1−α quan-

tile c→1−α(tl) of the scaled directed Hausdorff distance a
1/γ
n
~dH(ΘI , Θ̂n(tl)) by

Algorithm 3.3.2, obtainning ĉ→n,b,1−α(t1). Using ĉ→n,b,1−α(tl), expand Θ̂n(tl) by

ε̂→n,b,1−α(tl) = ĉ→n,b,1−α(tl)/a
1/γ
n to obtain Θ̂

ε̂→n,b,1−α(tl)
n (tl).

Step 2. Update the level by setting tl+1 := sup
θ∈Θ̂

ε̂→
n,b,1−α(tl)

n (tl)
anQn(θ).

Step 3. Repeat steps 1-2 until |tl+1 − tl| < κ.

The iterative algorithm can be proved to yield an increasing sequence {tl, l =

1, 2, · · · } that tends to t∗1−α. As Theorem 3.3.6 shows, if the limiting process takes

the form Z(p, t) = µ(t) + Z∗(p), one can stop at Step 1, as the iteration does not

provide any first-order asymptotic improvement, although it may provide higher

order refinements.

The iterative algorithm can be related to a multiple testing problem14.

Romano and Shaikh (2009) is the first article that considered a step-wise procedure

to construct a confidence set for ΘI using CHT’s QLR statistic. As we will show

below, Algorithm 3.3.4 can be interpreted as a reduced form of a step-up procedure

that controls the family-wise error rate of a multiple testing problem.

Consider the following family of hypotheses:

HΘ0 : Θ0 ⊆ ΘI , Θ0 ∈ Kc. (3.3.8)

Each hypothesis in the family is indexed by a compact convex set Θ0. For this

multiple testing problem, we aim to control the following family-wise error rate

(FWER):

FWER := P (reject at least 1 hypothesis HΘ0 s.t. Θ0 ⊆ ΘI) .

Below, we consider subcollections of Kc. It is convenient to match each subcollec-

tion with a real number t. For this, we introduce a mapping Ln. For any t ≥ 0,

14Details on the multiple testing problems can be found, for example, in Westfall and Young
(1993) and Lehmann and Romano (2005, Ch.8).
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consider a mapping Ln that assigns a subcollection, Ln(t) = {Θ0 : Θ0 ⊆ Θ̂n(t)}.
Given a subcollection S ⊆ Kc, it is also possible to define a pseudo inverse mapping

Mn by t = Mn(S) := inf{t′ : Θ0 ⊆ Θ̂n(t′),∀Θ0 ∈ S}15.

We consider the following step-up procedure. The procedure starts with an

initial subcollection S1 ⊆ Kc of hypotheses. In the first step, we look at hypotheses

in Sc1, the collection of sets that are not in S1. We then find the hypothesis that

gives the least significant statistic value and compare this value with a common

critical value. If the least significant statistic’s value exceeds the common critical

value, we reject all hypotheses in Sc1 and stop. Otherwise, we accept the hypotheses

that give values below the common critical value and add them to S1. We call this

new collection S2. In the next step, we test all hypotheses in Sc2, which are not

accepted in the first step. If the hypothesis with the least significant statistic is

rejected, then we reject all the hypotheses in Sc2 and stop. Otherwise, we proceed

to test the hypotheses that are not accepted in the first and second step. We repeat

this until we stop.

Formally, the step-up procedure can be summarized as follows.

Algorithm 3.3.5: (Step-up Procedure) Initialize l = 1 and tl. Set Sl =

Ln(tl).

Step 1. Construct the set estimator Θ̂n(tl). If for all Θ0 ∈ Scl , a
1/γ
n
~dH(Θ0, Θ̂n(tl)) >

ĉ→n,b,1−α(tl), then reject all hypotheses in Scl and stop.

Step 2. Otherwise, set Sl+1 = {Θ0 ∈ Kc : a
1/γ
n
~dH(Θ0, Θ̂n(tl)) ≤ ĉ→n,b,1−α(tl)}, set

tl+1 = Mn(Sl+1), and proceed.

Step 3. Repeat Steps 1-2 until the procedure stops.

For each l, Scl represents the family of hypotheses that are not previously

accepted. In each step, the procedure compares the least significant test statistic

infΘ0∈Scl a
1/γ
n
~dH(Θ0, Θ̂n(tl)) and a common critical value ĉ→n,b,1−α(tl). In each step,

if the procedure does not reject all remaining hypotheses, it creates a random

collection of compact convex sets Sl. The procedure continues until it rejects all

15Note that Mn(Ln(t)) = t if Qn is continuous, but in general Ln(Mn(S)) ⊇ S.
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hypotheses that have not been previously accepted. If the procedure stops after

the L-th iteration, we can use SL as a confidence collection. Further, the union of

all sets in this collection is a confidence set for ΘI by Theorem 3.3.5 (ii).

If Qn(θ) is continuous, the updating rule in Step 2 of Algorithm 3.3.5 can

be written as

tl+1 = Mn(Sl+1)

= inf{t : Θ0 ⊆ Θ̂n(t), ∀Θ0 ∈ Sl+1}

= inf

{
t : supS

Θ0∈Sl+1
Θ0

anQn(θ) ≤ t

}
= sup

Θ̂
ĉn,b,1−α(tl)/a

1/γ
n

n (tl)

anQn(θ).

Thus, the step-up procedure yields the same sequence {tl, l = 1, 2, · · · } as Algo-

rithm 3.3.4. We can view the updating rule of Algorithm 3.3.4 as a reduced form

of the step-up procedure.

We now establish that this procedure asymptotically controls the FWER.

Theorem 3.3.7 (Control of FWER): Suppose the conditions of Theorem

3.3.6 hold. Then the step-up procedure asymptotically controls the FWER in the

strong sense, i.e.,

lim
n→∞

FWER ≤ α,

for all possible constellations of true and false hypotheses.

Our treatment of the multiple testing problem defined in eq. (3.3.8) en-

ables us to use random collections of sets as building blocks. Alternatively, one

may consider the family {Hθ0 : θ0 ∈ ΘI} indexed by θ0 ∈ Θ. In this case, one may

construct an analogous step-up procedure that starts with a initial set S̃1 ⊂ Θ and

steps up using the scaled directed Hausdorff distance statistic a
1/γ
n
~dH({θ0}, Θ̂n(tl)).

It can be shown that for any l = 1, 2, · · · , S̃l equals
⋃
Sl

Θ0; this alternative pro-

cedure thus yields the same confidence set as before. This alternative approach

is more analogous to Romano and Shaikh (2009)’s step-down procedure, as the
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hypotheses are indexed by θ0 ∈ Θ. Both the step-up and step-down procedures

control the family-wise error rate. Comparing the power of the two procedures is

an interesting topic for future work.

3.3.4 Inference for Points in the Identified Set

As Imbens and Manski (2004) discuss, it is often of interest to test hy-

potheses regarding the true parameter value that generates the data16. As the

true parameter value cannot be distinguished from any other element of ΘI , a

relevant question would be whether or not a given parameter value θ0 is obser-

vationally equivalent to the data generating parameter value, i.e. θ0 ∈ ΘI . The

scaled directed Hausdorff distance can be used to test this hypothesis. The test

can then be inverted to yield a confidence set that asymptotically covers each point

in ΘI with at least a prespecified probability.

Bontemps, Magnac, and Maurin (2007) extend Imbens and Manskis’ (2004)

results to set-identified linear models. Our results in this section extend them

further to the class of problems that can be studied in the extremum estimation

framework.

Let θ0 ∈ Θ, and consider testing

H0 : θ0 ∈ ΘI vs. H1 : θ0 /∈ ΘI . (3.3.9)

This can be equivalently stated as H0 : 〈p, θ0〉 ≤ s(p,ΘI),∀p ∈ Sd−1 vs. H1 :

〈p, θ0〉 > s(p,ΘI),∃p ∈ Sd−1. Suppose for the moment that θ0 ∈ ∂ΘI . In this

case, there exists p0 ∈ Sd−1 such that 〈p0, θ0〉 = s(p0,ΘI). Below, we restrict our

attention to the cases where p0 is the unique maximizer of 〈p, θ0〉 − s(p,ΘI).

For each n ∈ N, let p̂n ∈ Sd−1 be a vector that maximizes 〈p, θ0〉−s(p, Θ̂n(t)).

We use the directed Hausdorff distance statistic to test the hypothesis. Given θ0,

16See also Woutersen (2006), Fan and Park (2007), and Stoye (2009) for extensions of Imbens
and Manski’s (2004) analysis.
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we define the statistic

T→n,θ0(t) := a1/γ
n
~dH({θ0}, Θ̂n(t))

= sup
p∈Sd−1

a1/γ
n

{
〈p, θ0〉 − s(p, Θ̂n(t))

}
+

= a1/γ
n {〈p̂n, θ0〉 − s(p̂n, Θ̂n(t))}+.

Lemmas in the Mathematical Appendix show T→n,θ0(t)
d→ {−Z(p0, t)} under appro-

priate regularity conditions.

For each α ∈ (0, 1) and t ∈ R+, let

c→1−α(p, t) := inf {x : P ({−Z(p, t)}+ ≤ x) ≥ 1− α} .

Similar to the inference for ΘI , we estimate c→1−α(p, t) by subsampling. An aspect

specific to pointwise inference is that we use the quantile c→1−α(p0, t) evaluated at

p0.

Algorithm 3.3.6: Let t > 0 and 0 < α < 1 be given. Let b := bn < n be a

positive integer. Let Nn,b =
(
n
b

)
denote the number of subsamples of size b from a

sample of size n.

Step 1. For k = 1, · · · , Nn,b, construct Θ̂n,b,k(t), the set estimator for the k-

th subsample, computed as a t-level set of the criterion function ζn,b,k(Xk1,

· · · , Xkb , θ) = abQ̃n,b,k(Xk1 , · · · , Xkb , θ), with the obvious notation.

Step 2. For k = 1, · · · , Nn,b, and for each p ∈ Sd−1, compute {−Zn,b,k(p, t)}+,

where

Zn,b,k(p, t) = a
1/γ
b [s(p, Θ̂n,b,k(t))− s(p, Θ̂n(t))].

Step 3. For each p ∈ Sd−1, compute the 100×(1−α)% quantile of the subsampling

distribution, given by

ĉ→n,b,1−α(p, t) = inf
{
x : F̂→n,b(x, p, t) ≥ 1− α

}
,
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where

F̂→n,b(x, p, t) := N−1
n,b

∑
1≤k≤Nn,b

1{{−Zn,b,k(p,t)}+≤x}.

For each p ∈ Sd−1 and t ∈ R+, let F→(x, p, t) := P ({−Z(p, t)}+ ≤ x) define

the CDF of {−Z(p, t)}+. The next theorem establishes the validity of subsampling.

Theorem 3.3.8: Suppose the conditions of Theorem 3.1 and Assumption

3.2 hold. Suppose that b → ∞ and b/n → 0 as n → ∞. Let F̂→n,b(·, p, t) and

ĉ→n,b,1−α(p, t) be computed by Algorithm 3.3.6. Then for given t ∈ R+, α ∈ (0, 1),

and each p ∈ Sd−1,

(i) If x is a continuity point of F→(·, p, t), then F̂→n,b(x, p, t) → F→(x, p, t)

in probability;

(ii) If F→(·, p, t) is continuous except at x = 0, then for any ε > 0,

sup|x|≥ε |F̂→n,b(x, p, t)− F→(x, p, t)| → 0 in probability;

(iii) If F→(·, p, t) is continuous at c→1−α(p, t), then

lim
n→∞

P
(
{−Zn(p, t)}+ ≤ ĉ→n,b,1−α(p, t)

)
= 1− α.

As a corollary of this result, we can show that the test has exact size for

some θ0 ∈ ΘI and is consistent against any fixed alternative hypothesis.

Corollary 3.3.4: Suppose the conditions of Theorem 3.3.8 hold. Suppose

the conditions of Lemma 3.B.7 also hold.

(i) If θ0 ∈ ΘI and if for given t ∈ R+ and α ∈ (0, 1), F→(·, p0, t) is

continuous and strictly increasing at c→1−α(p0, t), then ĉ→n,b,1−α(p̂n, t) = c→1−α(p0, t) +

op(1), and the test has asymptotic rejection probability α :

lim
n→∞

sup
θ0∈ΘI

P
(
T→n,θ0(t) > ĉ→n,b,1−α(p̂n, t)

)
= α.

(ii) If θ0 /∈ ΘI , then for any t ∈ R+ and α ∈ (0, 1), the test is consistent:

lim
n→∞

P
(
T→n,θ0(t) > ĉ→n,b,1−α(p̂n, t)

)
= 1.
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The confidence set for θ0 is obtained by inverting the test. Define

Θ̌n,b,1−α(t) := {θ0 ∈ Θ : T→n,θ0(t) ≤ ĉ→n,b,1−α(p̂n, t)}.

Note that ĉ→n,b,1−α depends on θ0 through p̂n. This dependence of the critical

value on θ0 reflects how precisely each boundary point of ΘI can be estimated.

The following theorem shows that this confidence set has the correct coverage

probability.

Theorem 3.3.9: Suppose the conditions of Theorem 3.3.8 hold. Then for

a given α ∈ (0, 1)

limn→∞ infθ0∈ΘI P
(
θ0 ∈ Θ̌n,b,1−α(t)

)
= 1− α;

Note the difference between this confidence set and that for the identified

set. To construct Θ̌n,b,1−α(t), we use ĉ→n,b,1−α(p̂n, t) as a critical value, instead of

ĉ→n,b,1−α(t). Intuitively, the former takes into account how precisely the support set

of ΘI for the specific normal vector p0 is estimated. On the other hand, the latter

takes into account how precisely the whole boundary of ΘI is estimated.

Bontemps, Magnac, Maurin (2007) study a confidence set whose coverage

is asymptotically valid uniformly over possible values of a nuisance parameter

∆ = supp∈Sd−1 s(p,ΘI) − s(−p,ΘI), the maximum length of the identified set.

Developing an extension of Theorem 3.3.9 in this direction is an interesting topic

for future work.

Power against Local Alternatives

So far, our discussion has been based on the fixed probability measure

P = Pθ0,ΘI , where θ0 is the parameter associated with the true DGP and ΘI the

identified set. In this section, we consider the power of the test against a sequence

of alternatives {Pθn,ΘI} indexed by parameter values {θn} while fixing the identified

set.

If θ0 is in the interior of ΘI , it can be shown that the test has no power

against alternatives in the neighborhood of θ0. In the following, we therefore study

the case where θ0 ∈ ∂ΘI .
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Let πn,b,t : Θ→ [0, 1] be the power function defined by

πn,b,t(θ) := Pθ,ΘI

(
T→n,θ(t) > c→n,b,1−α(p̂n, t)

)
.

Let h > 0. Consider the sequence of alternatives {θn} that satisfies θn := θ0 +

λ/a
1/γ
n , where θ0 ∈ ∂ΘI , and λ ∈ Rd satisfies 〈p0, λ〉 = h. In terms of the support

function, the local parameter has the property that 〈p0, θn〉 = s(p0,ΘI) + h/a
1/γ
n .

Therefore, for this sequence, the local deviation from the null hypothesis is mea-

sured by a distance in terms of the support function, and its magnitude is controlled

by the parameter h.

The power of the test has the following properties.

Theorem 3.3.10: Suppose the conditions of Theorem 3.3.8 hold. Then (i)

The test is asymptotically locally unbiased: lim infn→∞ πn,b,t(θn) ≥ α for any h > 0;

(ii) The limiting power function satisfies

lim inf
n→∞

πn,b,t(θn) ≥ lim inf
n→∞

Pθn,ΘI

(
inf

R̃h−c→1−α(p0,t),p0

ζ̃n(θ, λ) > t

)

≥ Pθ0,ΘI

(
inf

R̃h−c→1−α(p0,t),p0

ζ̃(θ, λ) > t

)
,

where

R̃h−c→1−α(p0,t),p0 = H(p,ΘI)× (Kh−c→1−α(p0,t),p0 ∩ L)

=
{

(θ, λ) : 〈p0, θ〉 = s(p0,ΘI), 〈p0, λ〉 ≥ h− c→1−α(p0, t), λ ∈ L
}
,

for some compact set L.

The power depends on the event

inf
R̃h−c→1−α(p0,t),p0

ζ̃n(θ, λ) > t. (3.3.10)

This representation gives several insights. First, as a natural consequence of the

construction of the local alternatives, the asymptotic power of the test is fully
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determined by p0 and h, given t. Note that the infimum on the left hand side is

essentially determined by the set

Kh−c→1−α(p0,t),p0 = {λ : 〈p0, λ〉 ≥ h− c→1−α(p0, t)}.

From this, one can see the test has the same power against two distinct alternatives

θn and θ′n that are on the same hyperplane with the normal vector p0, which has

the distance h/a
1/γ
n to θ0. This is because we reject the hypothesis if and only if

the constraint set Kh−c→1−α(p0,t),p0 ∩ L is separated from the level-t set of ζ̃n(θ0, ·).
One can show that the probability of the event above is asymptotically α when

h = 0. As h increases, the constraint set Kh−c→1−α(p0,t),p0 ∩L escapes to the horizon,

and the infimum over this set becomes arbitrarily large, which drives πn,b,t(θn) to

one as h→∞.

Second, for a given t ∈ R+ and p0 ∈ Sd−1, the slope of the power function

as a function of h is determined by the shape of the criterion function. If the

econometrician wishes to achieve a rapid increase in power against alternatives that

are away from the null with a specific direction p0, she should choose a criterion

function Qn to force ζ̃n(θ0, ·) to grow more rapidly in the direction p0. This makes

it more likely for the left hand side of eq. (3.3.10) to exceed t.

Third, for a given h ≥ 0 and t ≥ 0, the power differs with p0 ∈ Sd−1

depending on the precision with which each support set is estimated. This explains

why we use different critical values for different directions when we constructed

Θ̌n,b,1−α(t).

An Extension of Pointwise Inference

A simple extension of pointwise inference yields a conservative test for a

hypothesis that ΘI has a nonempty intersection with a known set Θ0. When

Θ0 is a set of parameter values that satisfy some restrictions, this test can be

used to assess the validity of such restrictions. This type of hypothesis has been

studied in Romano and Shaikh (2008) for parametric models and Santos (2007)

for nonparametric models.
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Now let Θ0 ∈ K be a nonempty closed subset of Θ. Consider testing

H0 : Θ0 ∩ΘI 6= ∅ vs. H1 : Θ0 ∩ΘI = ∅. (3.3.11)

Here, Θ0 collects parameter values that satisfy the restrictions of interest. The

null states that there is at least one element in the identified set satisfying the

restrictions. Rejection means that none of the parameters in the identified set

satisfy the restrictions, implying that the data generating parameter value does

not satisfy the restrictions.

The null hypothesis can be equivalently stated as H0 : ∃θ0 ∈ Θ0 such that

{θ0} ⊆ ΘI . Note that infθ0∈Θ0
~dH({θ0},ΘI) = 0 under the null hypothesis, and

infθ0∈Θ0
~dH({θ0},ΘI) > 0 under the alternative hypothesis. Therefore, a natu-

ral test statistic is infθ0∈Θ0 T
→
n,θ0

(t) = infθ0∈Θ0 a
1/γ
n
~dH({θ0}, Θ̂n(t)). The triangle

inequality (3.3.6) implies

inf
θ0∈Θ0

~dH({θ0}, Θ̂n(t)) ≤ inf
θ0∈Θ0

~dH({θ0},ΘI) + ~dH(ΘI , Θ̂n(t)).

Under the null hypothesis, the first term on the right vanishes. Therefore, we can

use the asymptotic conservative critical value c→n,b,1−α(t) computed by Algorithm

3.3.2 to test the hypothesis. As a corollary to Theorem 3.3.4, results for the

rejection probability and the consistency against fixed alternatives follow as before.

Corollary 3.3.5: Suppose the conditions of Theorem 3.3.4 hold. Let Θ0

be a nonempty closed subset of Θo.

(i) If Θ0 ∩ ΘI 6= ∅ and F→(·, t) is continuous and strictly increasing at

c→1−α(t), then ĉ→n,b,1−α(t) = c→1−α(t) + op(1) and the test has asymptotic rejection

probability bounded above by α :

lim
n→∞

P

(
inf
θ0∈Θ0

T→n,θ0(t) > ĉ→n,b,1−α(t)

)
≤ α;

(ii) If Θ0 ∩ΘI = ∅, then the test is consistent:

lim
n→∞

P

(
inf
θ0∈Θ0

T→n,θ0(t) > ĉ→n,b,1−α(t)

)
= 1.
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One may envisage other extensions of pointwise inference. One such possi-

bility is inference on linear functionals of θ0. This extension is straightforward in

our framework, as any linear functional of θ0 can be represented as 〈p, θ0〉 for some

p ∈ Rd. This may also be extended to nonlinear functionals, but to keep a tight

focus here, we leave that analysis to elsewhere.

3.4 Moment Inequality Models

In this section, we pay special attention to a class of economic models with

an identified set defined by finitely many moment inequalities. This class has

been extensively studied recently17. Leading examples in this class of models are a

regression model with censored outcome variables (Manski and Tamer, 2002), entry

game models (Ciliberto and Tamer, 2009), and dynamic game models (Bajari,

Benkard, and Levin, 2007). We first show that this class can be studied within

the framework developed above. We provide a set of conditions for this class that

ensure the high level assumptions presented in sections 3.2 and 3.3. In section

3.4.2, we provide additional results that can be obtained by using CHT’s quadratic

criterion function. In particular, we establish the asymptotic equivalence of the

squared directed Hausdorff distance statistic and CHT’s QLR statistic.

3.4.1 General Results for Moment Inequality Models

In the following, we use E and Ên to denote the expectation operators with

respect to the data generating probability measure and the empirical measure,

respectively. We consider functions mj : Rk × Rd → R̄, j = 1, · · · , J, that define

the following moment inequality restrictions.

E(mj(X; θ)) ≤ 0, j = 1, · · · , J.
17Recent research in this area includes Andrews, Berry, and Jia (2004), Pakes, Porter, Ho,

and Ishii (2005), Rosen (2008), CHT, Fan and Park (2007), Galichon and Henry (2007), BM,
Andrews and Guggenberger (2009), Andrews and Soares (2009), Bugni (2009), Canay (2009),
Galichon and Henry (2009), Hahn and Ridder (2009), Moon and Schorfheide (2009), and Yıldız
(2009).
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Interest attaches to the identified set, which comprises the values at which the

moment inequalities are satisfied: i.e., ΘI := {θ ∈ Θ : E (mj(X; θ)) ≤ 0, j =

1, · · · , J}.
Let mθ be a J×1 vector whose j-th component is mj,θ := mj(X; θ). Let PJ

be the space of symmetric positive definite real-valued J×J matrices, and let P̄J be

the space of symmetric positive definite extended real-valued J × J matrices. For

any θ ∈ Rd, let W (θ) ∈ P̄J be a weighting matrix, and let {Ŵn : Ω×Rd → P̄J} be

a sequence of (possibly random) positive definite weighting matrices. For brevity,

we write Ŵn(θ). We consider population and sample criterion functions of the

form:

Q(θ) = ϕ (E(mθ),W (θ))

Qn(θ) = ϕ
(
Ên(mθ), Ŵn(θ)

)
,

where ϕ : R̄J × P̄J → R̄+ is a non-negative continuous function of the moment

condition and the weighting matrix. For example, CHT and Romano and Shaikh

(2008, 2009) consider the following functional form for Qn:

Qn(θ) =
J∑
j=1

(Ŵ
1/2
jn (θ)Ên(mj,θ))

2
+,

where Ŵjn(θ) is the j-th diagonal element of Ŵn(θ). Manski and Tamer (2002)

and Rosen (2008) use the form:

Qn(θ) = inf
µ∈RJ−

(Ên(mθ)− µ)′Ŵn(θ)(Ên(mθ)− µ),

where RJ
− = {x ∈ RJ : xj ≤ 0, j = 1, · · · , J}. We focus on a class of criterion

functions that includes the examples above as special cases18. We assume the

following regularity conditions on the parameter space, the moment conditions,

and the “index function” ϕ.

18It would be interesting to extend our analysis here to a more general class within which we
can also study moment equality models. Such a general class was considered in Andrews and
Guggenberger (2009) and Andrews and Soares (2009).
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Assumption 3.4.1: Let J ∈ N. ϕ : R̄J × P̄J → R̄+ is a non-negative

continuous function such that for any w ∈ PJ , ϕ(y, w) = 0 if and only if y ≤ 0,

i.e. yj ≤ 0 for j = 1, · · · , J , and ϕ(y, w) = ∞ if y or w contains an infinite

element. Let Θ ⊂ Rd, d ∈ N, be compact and convex with nonempty interior.

Let W : Rd → P̄J be a measurable mapping, and suppose that W is finite and

continous on Θ and that if θ /∈ Θ then det(W (θ)) = ∞. Let k ∈ N; for each

j = 1, · · · , J , mj : Rk × Rd → R̄ is jointly measurable, and for each x ∈ Rk,

if θ /∈ Θ then mj(x, θ) = ∞. Let (Ω,F, P ) be a complete probability space. Let

{Xi : Ω→ Rk} be a sequence of identically distributed random vectors such that for

each θ ∈ Θ and j = 1, · · · , J , E(mj(Xi, θ)) <∞. Let Ŵn : Ω×Rd → P̄J be jointly

measurable, and suppose that for each ω ∈ Ω, Ŵn(ω, ·) is finite and continuous on

Θ, uniformly in n, and for each ω ∈ Ω, if θ /∈ Θ then det Ŵn(ω, θ) = ∞. Define

Q(θ) := ϕ (E(mθ),W (θ)) and Qn(θ) := ϕ(Ên(mθ), Ŵn(θ)).

Assumption 3.4.1 ensures that Assumption 3.2.1 holds for moment inequal-

ity models. The assumed continuity of W on Θ and its behavior outside of Θ

ensures that its minimum eigenvalue is bounded from below by a positive constant

over Rd. The almost sure properness of the sample criterion function Qn is ensured

by the requirements that ϕ is a nonnegative function and that E(mj,θ) and W (θ)

are finite on Θ. Using the criterion function Q, the identified set can be defined

as ΘI = {θ : Q(θ) = 0}.
The following condition ensures Assumption 3.2.2.

Assumption 3.4.2: (i) There exists θ ∈ Θ such that E(mj,θ) ≤ 0 for

j = 1, · · · , J . The map θ 7→ ϕ(E(mθ),W (θ)) is continuous and convex on Θ; (ii)

{θ ∈ Θ : ϕ(E(mθ),W (θ)) = 0} ⊂ Θo.

Assumption 3.4.2 (i) ensures nonemptiness, closedness, and convexity of the

identified set. Assumption 3.4.2 (ii) ensures that the identified set is in the interior

of Θ.

Conditions required for the consistency of the set estimator Θ̂n(t) are stan-

dard.19 In particular, we must ensure the uniform convergence of Qn. The rate of

19Strictly speaking, one needs to establish the measurability of dH(Θ̂n(t),ΘI) to discuss con-
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convergence depends on the choice of the index function ϕ. Here, we give primi-

tive conditions on the moment conditions and the index function based on CHT’s

condition M.2. For this, we introduce the ε-contraction of ΘI , which is defined by

Θ−εI := {θ ∈ ΘI : d(θ,Θ \ΘI) ≥ ε} for ε > 0.

Assumption 3.4.3: (i-a) There exist 0 < L1 < ∞ and a continuous in-

creasing function h1 : R̄+ → R̄+ such that for any w ∈ PJ and x, x∗ ∈ RJ ,

|ϕ(x,w)− ϕ(x∗, w)| ≤ L1h1(‖x− x∗‖), and there exist 0 < L2 <∞ and a contin-

uous increasing function h2 : R̄+ → R̄+ such that for any x ∈ RJ and w,w∗ ∈ PJ ,

|ϕ(x,w)− ϕ(x,w∗)| ≤ L2h2(maxi,j |wij −w∗ij|); (i-b) {mθ : θ ∈ Θ} is a P -Donsker

class, and Ŵn(θ)−W (θ) = op(1) uniformly over Θ; (ii-a) supΘI
Qn(θ) = Op(1/an);

(ii-b) There exist positive constants (C1, δ) such that for any θ ∈ Θ, ‖E(mθ)‖+ ≥
C1 min{d(θ,ΘI), δ}; (ii-c) There exist positive constants (C2, γ) such that for any

ω ∈ PJ and x ∈ RJ , ϕ(x,w) ≥ C2‖x‖γ+; (ii-d) There exist positive constants

(C3, C4, ε̄) such that for any 0 ≤ ε ≤ ε̄ and θ ∈ Θ−εI , max1≤j≤J E(mj,θ) ≤ −C3ε,

and dH(Θ−εI ,ΘI) ≤ C4ε.

Assumptions 3.4.3 (i-a,b) are sufficient for the uniform convergence of Qn

on Θ20. Assumption 3.4.3 (ii) collects conditions necessary for the convergence

rate result. Condition (ii-a) requires the sample criterion function Qn to vanish

over the identified set at a rate of 1/an. Assumption 3.4.3 (ii-b) requires the norm

of E(mθ) to be bounded from below by the distance from the identified set when

θ is outside ΘI . Together with Assumption 3.4.3 (ii-c), this ensures the existence

of a polynomial minorant, which is required in Assumption 3.2.3 (ii). Assumption

3.4.3 (ii-d) requires the moment conditions to take strictly negative values on the

contracted identified set. This enables us to approximate the identified set by

its contraction Θ−εI , on which the sample criterion function anQn(θ) vanishes. As

CHT illustrate, Assumption 3.4.3 (ii-d) holds in many applications. This condition

implies Assumption 3.2.4, which suffices to attain the exact rate of convergence

sistency. It is known that the measurability of Θ̂n(t) as a random closed set is sufficient for this
purpose. For details about the measurability of level set estimators, see Kaido and White (2008).

20If we further assume that θ 7→ ϕ(Ênmθ, Ŵn(θ)) is globally convex on Θ, a weaker assumption
that Ên(θ) and Wn(θ) converge in probability pointwise is sufficient as in Andersen and Gill
(1982) Corollary II.2 and Newey and McFadden (1992) Theorem 2.7.
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a
1/γ
n without setting t ≥ supΘ anQn(θ).

The next step is to show that ζ̃n(θ, λ) = nQn(θ+ λ/a
1/γ
n ) satisfies the local

process regularity conditions given in Assumption 3.3.1. Most importantly, we

need to ensure that ζ̃n weakly epiconverges to a well-defined limit. To illustrate

the key ideas, we take a slightly generalized version of CHT’s criterion function as

an example.

Let x ◦ y denote the entrywise (Hadamard) product of x, y ∈ RJ . Let s :

RJ → {1, 0}J be a vector-valued mapping whose j-th component is sj = 1{xj > 0}.
Let the index function be defined by ϕ(x,w) :=

∥∥w1/2x
∥∥2

+
:= ‖w1/2(x ◦ s)‖2. The

sample criterion function is then Qn(θ) = ‖Ŵ 1/2
n (θ)Ên(mθ)‖2

+. As the weighting

matrix need not be diagonal, this is a slightly generalized version of the criterion

function used by CHT.

With this choice of index function, we can take an = n and γ = 2. That

is, nQn(θ) has nondegenerate asymptotics, and
√
ndH(Θ̂n(t),ΘI) = Op(1), given

Assumptions 3.4.1, 3.4.2, and 3.4.3. Suppose that mθ allows a first-order expansion

mθ∗ = mθ +∇′mθ(θ
∗ − θ) + o(|θ∗ − θ|) on Θo, where ∇mθ is a d-by-J matrix and

o(|θ∗ − θ|) represents a small order term. Under these assumptions, we can write

ζ̃n(θ, λ) =
∥∥∥√nÊn(mθ+λ/

√
n)Ŵ 1/2

n (θ + λ/
√
n)
∥∥∥2

+

=
∥∥∥[
√
nÊn(mθ) + Ên(∇′mθ)λ]Ŵ 1/2

n (θ + λ/
√
n)
∥∥∥2

+
+ op(1)

=
∥∥∥[Gnmθ + Ên(∇′mθ)λ+

√
nEmθ]Ŵ

1/2
n (θ + λ/

√
n)
∥∥∥2

+
+ op(1)

=
∥∥∥Mn(θ, λ)Ŵ 1/2

n (θ + λ/
√
n)
∥∥∥2

+
+ op(1),

where we define Gn :=
√
n(Ên − E) and Mn(θ, λ) = Gnmθ + Ên(∇′mθ)λ +

√
nE(mθ).

By the P -Donsker property of the moment functions, Gnmθ
u.d.→ G(θ) in

l∞(Θ), where G is a J × 1 zero-mean Gaussian process with almost surely contin-

uous paths, and V ar(Gj(θ)) > 0 for each θ ∈ Θ and j = 1, · · · , J . Together with

the P -Donsker property, a set of general assumptions is often available to ensure

that, for each (θ, λ) ∈ Θo × Rd, Mn(θ, λ)
f.d.→ M(θ, λ) := G(θ) + Π(θ)λ+ ς(θ) and
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Ŵn(θ + λ/
√
n)

p→ W (θ), where ς(θ)’s j-th component satisfies

ςj(θ) =


−∞ if E(mj,θ) < 0

0 if E(mj,θ) = 0

∞ if E(mj,θ) > 0

(3.4.1)

for j = 1, 2, · · · , J . The components of ς(θ) are unbounded if the corresponding

population moment inequalities are not binding, but the truncation operator (·)+

makes the criterion function always bounded from below by 0, which ensures the

properness of the limiting process.

Similarly, for general choice of ϕ, one can often show ζ̃n(θ, λ) = ϕ(Mn(θ, λ),

Ŵn(θ + λ/a
1/γ
n )) + op(1) for each θ and λ. Then the continuous mapping theorem

implies

ζ̃n(θ, λ)
f.d.→ ϕ (M(θ, λ),W (θ))

Recall that, to apply Theorem 3.3.1, we need to establish the weak epiconver-

gence of ζ̃n instead of the weak finite-dimensional convergence. Provided that the

weak finite-dimensional limit exists, Knight (1999) shows that the weak finite-

dimensional limit is also the weak epi-limit if and only if the sequence ζ̃n(θ, λ) is

equi-lower-semicontinuous21. A general sufficient condition that ensures the de-

sired weak epiconvergence and other local process regularities is the following.

Assumption 3.4.4: (i-a) For each j = 1, · · · , J , and x ∈ Rk,mj(x, ·)
is continuously differentiable with respect to θ on Θo with a continuous gradient

∇mθ(x, ·) ∈ Rd×J , and for some continuous mapping Π : Θo 7→ RJ×d and each θ

in Θo, Ên(∇′mθ) = Π(θ) + op(1); (i-b)
√
nE(mθ) = ς(θ) + op(1) for each θ in Θ,

where ς is defined by Eq. (3.4.1); (ii) The map θ 7→ ϕ(Ên(mθ), Ŵn(θ)) is convex

in a neighborhood of ΘI ; (iii) The map (θ, λ) 7→ ϕ(Mn(θ, λ), Ŵn(θ + λ/a
1/γ
n )) is

equi-lower-semicontinuous on Θo × Rd.

The conditions in Assumption 3.4.4 are plausibly general. In addition to

21The mathematical appendix summarizes Knight (1999)’s results. When ζ̃n(θ, λ) is also glob-
ally convex, it suffices to check that the limiting function is finite on some open set. See Geyer
(2003) for details.
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the P -Donskerness of {mθ : θ ∈ Θ}, we only require the finite-dimensional point-

wise convergence of other terms in Mn(θ, λ). A standard LLN will ensure this

requirement.

Next, the following theorem establishes Assumptions 3.2.1-3.2.4, and the

local process regularity (Assumption 3.3.1), including weak epiconvergence.

Theorem 3.4.1: Suppose Assumptions 3.4.1, 3.4.2 3.4.3, and 3.4.4 hold.

Then Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.3.1 are satisfied with

weak epilimit ζ̃(θ, λ) := ϕ (M(θ, λ),W (θ)).

Theorem 3.3.1 now applies. An important corollary is the following.

Corollary 3.4.1: Suppose Assumptions 3.4.1, 3.4.2 3.4.3, and 3.4.4 hold.

Then
√
ndH(Θ̂n(t),ΘI)

d→ ‖Z(·, t)‖C(Sd−1), and
√
n~dH(Θ̂n(t),ΘI)

d→ supp∈Sd−1 {−Z
(·, t)}+, where Z(·, t) can be represented as

Z(p, t) = sup
θ∈H(p,ΘI)

sup
λ∈{λ:ϕ(M(θ,λ),W (θ))≤t}

〈p, λ〉. (3.4.2)

The representation above specifies how the limiting process Z(·, t) depends

on the weak epilimit ϕ(M(θ, λ),W (θ)). Note that the asymptotic distribution of

Z(·, t) depends non-trivially on the identified set ΘI .

3.4.2 A Closed Form for the Limiting Process and the

Equivalence of Wald and QLR Statistics

In the previous section, we provided general conditions for moment inequal-

ity models that ensure the high level assumptions in section 3. In this section, we

develop further results that rely on the properties of CHT’s quadratic criterion

function.

The goal of this section is to show that (i) a closed form for the limiting

process Z(·, t) can be derived; (ii) for each p, the limiting process Z(p, t) depends

only on the active moment inequalities at θ ∈ H(p,ΘI); (iii) a certain choice

of weighting matrix W (θ) makes the limiting process take the form Z(p, t) =
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µ(t) + Z∗(p); and (iv) The Wald statistic (squared directed Hausdorff distance)

and CHT’s QLR statistic are asymptotically equivalent, under this choice of the

weighting matrix and some additional assumptions.

We introduce some further notation to denote active and slack moment in-

equalities. For each θ ∈ ∂ΘI , let J (θ) ⊆ {1, · · · , J} be the set of indices associated

with active moment inequalities, i.e., E(mj,θ) = 0 for all j ∈ J (θ). We denote

by J(θ) the number of elements in J (θ). Similarly, let J c(θ) ⊆ {1, · · · , J} collect

indices associated with slack moment inequalities at θ ∈ ∂ΘI , i.e., E(mj,θ) < 0 for

all J c(θ).

Let ΠJ (θ)(θ) denote the J(θ) × d matrix that stacks rows of Π(θ) whose

indices belong to J (θ). Similarly, let GJ (θ) denote the J(θ)× 1 vector of Gaussian

processes that stacks components of G whose indices belong to J (θ). Let WJ (θ)

denote the J(θ)× J(θ) matrix that collects (i, j) elements of W (θ) for i, j ∈ J (θ).

We consider the following problem, which is a part of the optimization

problem that defines Z(·, t) in Eq. (3.4.2), while fixing p ∈ Sd−1, θ ∈ H(p,ΘI),

and t ∈ R+.

sup
λ
〈p, λ〉 (3.4.3)

s.t. ‖W 1/2
J (θ)(θ)[GJ (θ)(θ) + ΠJ (θ)(θ)λ]‖2

+ ≤ t.

Note that the constraint involves only selected rows of M(θ, λ) whose indices are

in J (θ). This is because ςj(θ) = −∞ if E(mj,θ) < 0, and the index function ϕ

truncates such components. The rows ofM(θ, λ) with indices belonging to J c(θ),

therefore, do not marginally affect the constraint. Note also that the ςj(θ)’s no

longer appear in the constraint because ςj(θ) = 0 for j ∈ J (θ).

To obtain a closed form for Z(·, t), we assume the following further condi-

tions.

Assumption 3.4.5: (i) For each θ ∈ ∂ΘI , rank(ΠJ (θ)) = J(θ), i.e. the

rows of the Jacobian matrices are linearly independent; (ii) For each θ ∈ ∂ΘI and

p ∈ Sd−1, there exists a vector η ∈ RJ(θ)
+ \ {0} such that p = Π′J (θ)η.
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Assumption 3.4.5 (i) is a linear independence constraint qualification con-

dition. This ensures the solution to the problem in eq (3.4.3) satisfies the Karush-

Kuhn-Tucker (KKT) conditions given in the mathematical appendix. Assumption

3.4.5 (ii) is not restrictive, as it usually holds as a necessary condition for the

following auxiliary optimization problem, which can be used to characterize the

boundary points of the identified set:

sup 〈p, θ〉

s.t. E(mj,θ) ≤ 0, for j = 1, · · · , J.

Using these additional assumptions, we can explicitly solve the optimization

problem in Eq. (3.4.3) to obtain the following result.

Corollary 3.4.2: Suppose the conditions of Theorem 3.4.1 and Assump-

tion 3.4.5 hold. Suppose ϕ(x,w) = ‖w1/2x‖2
+. Then the process Z(·, t) in Corollary

3.4.1 can be represented as

Z(p, t) = sup
θ∈H(p,ΘI)

{
‖R(p, θ)‖ t1/2 −

〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)

〉}
, (3.4.4)

where

R(p, θ) := W
−1/2
J (θ)

(
ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1
ΠJ (θ)(θ)p.

Furthermore, suppose W (θ) satisfies WJ (θ)(θ) = [ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1 for

any θ ∈ ∂ΘI . Then the limiting process takes the form Z(p, t) = µ(t) +Z∗(p) with

µ(t) = t1/2 and Z∗(p) = supθ∈H(p,ΘI)−〈[ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1ΠJ (θ)(θ)p,GJ (θ)(θ)〉.

Equation 3.4.4 shows the limiting process Z(·, t) depends on the multivari-

ate Gaussian process G, but again we note that the only selected components of G
are relevant. Therefore, for each p ∈ Sd−1, the asymptotic distribution of the nor-

malized support function depends only on the active moment inequalities at each

boundary point of the identified set. This is a common feature of the statistics

studied in the literature (e.g. Rosen, 2008, Andrews and Soares, 2009).

If the weighting matrix satisfies WJ (θ)(θ) := [ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1 at each
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boundary point, then straightforward algebra shows ‖R(p, θ)‖ = 1, which makes

the first term in Eq. (3.4.4) independent of θ. With this choice of weighting matrix,

the limiting process takes the form Z(p, t) := t1/2 + Z∗(p)22.

We now make use of the representation result above to compare the weak

limit of the Wald statistic with that of CHT’s QLR statistic: supΘI
anQn(θ). The

QLR statistic can be written as

sup
θ∈ΘI

anQn(θ) = max

{
sup
θ∈∂ΘI

anQn(θ), sup
θ∈ΘoI

anQn(θ)

}
.

As the second term on the right hand side asymptotically vanishes by Assumption

3.4.3 (ii-d), it suffices to study the first term. Using the local process ζ̃n, define

Ln(p, u) := sup
θ∈H(p,ΘI)

sup
λ∈K−u,p

ζ̃n(θ, λ),

where K−u,p := {λ ∈ Rd : 〈p, λ〉 ≤ u}. Note that supp∈Sd−1 Ln(p, 0) = supθ∈∂ΘI
an

Qn(θ). We therefore study the asymptotic behavior of the process Ln(·, u) to study

that of the QLR statistic. The following theorem establishes the weak convergence

of Ln(·, u). The regularity conditions for this theorem are given in the mathemat-

ical appendix.

Theorem 3.4.2: Suppose the conditions of Corollary 3.4.2 hold. Suppose

Assumption 3.B.1 holds. Then Ln(·, u)
u.d.→ L(·, u) for each u, and the process L

can be represented as

L(p, u) = sup
θ∈H(p,ΘI)

‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)2

+
.

Based on this theorem, the following corollary establishes two equivalence

results. The first result is the equivalence of the distributional limits of the Wald

and the QLR statistics. The second result is the equality of the levels of the

22In sample, one may use a sample analog Ŵn,Jn(θ)(θ) := (Ên,Jn(θ)[∇mθ]Ên,Jn(θ)[∇mθ]′)−1 to
construct Qn. Here, for each n, Jn(θ) is a mapping from Θ to a subset of {1, · · · , J} that selects
(approximately) binding sample moment conditions at θ. Such moment selection mechanisms
are studied in Andrews and Soares (2009).
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criterion function used by the Wald approach and the QLR approach to construct

confidence sets. Recall that t∗1−α := inf{t : P (supp∈Sd−1{−Z(p, t)} ≤ 0) ≥ 1− α},
and τ ∗1−α is the asymptotic 1− α quantile of the QLR statistic.

Corollary 3.4.3 (Asymptotic Equivalence for Moment Inequalities): Sup-

pose the conditions of Theorem 3.4.2 hold. Suppose W (θ) satisfies WJ (θ)(θ) =

[ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1 for each θ ∈ ∂ΘI . Suppose ΘI is strictly convex. For each

p ∈ Sd−1, let θI(p) ∈ ∂ΘI be the boundary point of ΘI such that H(p,ΘI) = {θI(p)}.
Then, (i)

sup
p∈Sd−1

{−Zn(p, t) + t1/2}2
+

d→ Z and sup
ΘI

nQn(θ)
d→ Z,

where

Z := sup
p∈Sd−1

〈(
ΠJ (θI(p))(θI(p))ΠJ (θI(p))(θI(p))

′)−1
ΠJ (θI(p))(θI(p))p,GJ (θI(p))(θI(p))

〉2

+
.

(ii) t∗1−α = τ ∗1−α.

Corollary 3.4.3 shows that our Wald statistic (squared directed Hausdorff

distance) and CHT’s QLR statistic are asymptotically equivalent in the sense that

they converge in distribution to the same limit, the supremum of a truncated and

squared Gaussian process. The second result also has important consequeces. It

implies the asymptotic equivalence of the Wald and QLR confidence sets for ΘI .

This is due to Theorem 3.3.6. When t∗1−α = τ ∗1−α, Theorem 3.3.6 implies

dH

(
Θ̂
ε̂→n,b,1−α(t)
n (t), Θ̂n(τ ∗1−α)

)
= op(a

−1/γ
n ),

for any 0 ≤ t ≤ τ ∗1−α. The first argument of dH on the left hand side is the Wald

confidence set, which is an expansion of the set estimator. The second argument

is the QLR confidence set, which is a level set that uses an asymptotic quantile

of the QLR statistic as a level. Despite the fundamental difference in ways these

confidence sets are constructed, they are asymptotically equivalent in terms of the

Hausdorff metric. These are fundamental results that establish the relationship
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between the Wald and QLR approaches.

3.5 Examples, Monte Carlo Experiments, and

Applications

3.5.1 Examples

In this section, we analyze two examples studied in the literature using our

inference method. The first model has an identified set that is a closed interval.

Using this example, we illustrate our equivalence results in more detail and give a

new interpretation to the results established by BM.

Example 3.5.1 (Interval Identified Model): Let X be an unobserved ran-

dom variable with mean θ = E(X). Let X1 and X2 be observable random variables

that satisfy the moment inequalities E(X1) ≤ θ ≤ E(X2).

Let θ1 = E(X1i) and θ2 = E(X2i). The identified set for θ is a closed interval

ΘI = [θ1, θ2]. Following the analysis in section 3.4, ΘI can be characterized as a

set of minimizers of the criterion function

Q(θ) = ‖W (θ)1/2E(mθ)‖2
+,

where mθ = (X1 − θ, θ −X2)′. Define the sample criterion function by

Qn(θ) = ‖Ŵn(θ)1/2Ên(mθ)‖2
+.

For simplicity, we set W (θ) and Ŵn(θ) to the identity matrix.

It is straightforward to show that these population and sample criterion

functions satisfy Assumptions 3.4.1, 3.4.2, 3.4.3, and 3.4.4. The following results

follow immediately from Corollaries 3.4.1 and 3.4.2,
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Corollary 3.5.1: Let ι be a 2-by-1 vector of ones. Let t ∈ R+. Suppose

(
√
n(Ên(X1i)− θ1),

√
n(Ên(X2i)− θ2))′

d→ N(0,Ω)

and −∞ < θ1 < θ2 <∞.

Then
√
ndH(Θ̂n(t),ΘI)

d→ max{|Z(−1, t)|, |Z(1, t)|} and
√
n~dH(ΘI , Θ̂n(t))

d→ max{−Z(−1, t)+,−Z(1, t)+}, where Z(p, t) is a Gaus-

sian process on S0 = {−1, 1} with mean t1/2ι and covariance kernel E[Z(−1, t)

Z(−1, t)] = Ω11, E[Z(1, t)Z(1, t)] = Ω22, and E[Z(−1, t) Z(1, t)] = −Ω12.

This result is closely related to that presented by BM (Theorem 3.1), which

shows that the normalized support function of their set average estimator weakly

converges to a zero-mean Gaussian process that has the same covariance kernel

as Z(·, t). In fact, if we set t = 0, the level set estimator is analytically identical

to their set-average estimator for this class of problems. An additional interesting

result is that, under this choice of the weighting matrix, the squared directed Haus-

dorff distance is asymptotically equivalent to CHT’s QLR-statistic. We summarize

these equivalence results as follows:

Theorem 3.5.1: Let the assumptions of Theorem 3.5.1 hold. Let Wn :=
√
n~dH(ΘI , Θ̂n(0)). Let QLRn := supθ∈ΘI

nQn(θ) be CHT’s QLR statistic. Let

W̃n :=
√
n~dH(ΘI , Θ̃n) be BM’s Wald statistic, where Θ̃n = n−1

⊕n
i=1 Fi and Fi =

[X1i, X2i] for i = 1, · · · , n. Let Z be the process given in Corollary 3.5.1. Then

W2
n

d→ max{(−Z(−1, 0))2
+, (−Z(1, 0))2

+} (3.5.1)

QLRn
d→ max{(−Z(−1, 0))2

+, (−Z(1, 0))2
+} (3.5.2)

W̃2
n

d→ max{(−Z(−1, 0))2
+, (−Z(1, 0))2

+}. (3.5.3)

The asymptotic equivalence of CHT’s QLR statistic and BM’s Wald statis-

tic in equations (3.5.2) and (3.5.3) is due to BM’s Theorem 3.1. Here, Theorem

3.5.1 adds eq. (3.5.1).

As we have seen in the previous section, the squared directed Hausdorff dis-

tance becomes asymptotically equivalent to CHT’s QLR statistic when the weight-
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ing matrix satisfies the conditions of Corollary 3.4.3. As the identity matrix satisfies

these, the asymptotic equivalence of W2
n and QLRn follows23. Further, for this

example, the set-average estimator is a set of minimizers of the truncated squared

loss function; this therefore becomes a level-set estimator with t = 0. Thus, the

“exact” equivalence of W2
n and W̃2

n holds. In sum, the asymptotic equivalence

result formerly presented by BM can be understood as a combination of (i) the

asymptotic equivalence of the Wald statistic and the QLR statistic for the class of

moment inequality models and (ii) the equivalence of the level-set estimator and

the set-average estimator under the specific choice of criterion function.

In this example, we may interpret BM’s set-average estimator as a set-

valued quasi maximum likelihood estimator (QMLE) of ΘI , where the quasi-log

likelihood function is the truncated squared loss used by CHT. This is analogous to

the point identified case, where the sample average is the QMLE for the location

parameter, under the specification that the data are randomly sampled from a

normal distribution, which gives a squared error loss function. It is of interest to

extend this notion to a more general class of problems.

The second example studies a regression model with interval-valued out-

come variables. Our Monte Carlo experiments will be based on this example.

Example 3.5.2 (Regression with Interval-Censored Outcome): Let θ ∈
Θ ⊂ Rd. Consider the DGP:

Yi = X ′iθ + εi, i = 1, 2, · · · , n,

where E[εi|Xi] = 0 for all i = 1, · · · , n. The outcome variable Yi is not observed

but the outcome interval [Y1i, Y2i] is observed for each i = 1, · · · , n. The outcome

interval satisfies the following moment inequalities

E[Y1i|Xi] ≤ X ′iθ ≤ E[Y2i|Xi], a.s.

23Here, we use W (θ) = I2, the identity matrix. Since the two constraints don’t bind at the same
time, the weighting matrix for the equivalence should satisfy W1(θ1) = (Π1(θ1)Π1(θ1)′)−1 = 1
and W2(θ1) = (Π2(θ2)Π2(θ2)′)−1 = 1. Obviously, the identity matrix satisfies this condition.



160

The identified set can be defined as the set of minimizers of the following

criterion function:

Q(θ) :=

∫
(E(Y1i|Xi = x)− x′θ)2

+ + (x′θ − E(Y2i|Xi = x))2
+dP (x).

Following Chernozhukov, Hong, and Tamer (2004), we use the following minimum-

distance type sample criterion function

Qn(θ) :=
1

n

n∑
i=1

(Ên(Y1|Xi)−X ′iθ)2
+ + (X ′iθ − Ên(Y2|Xi))

2
+,

where Ên(Y1|Xi) and Ên(Y2|Xi) are estimators of E(Y1i|Xi) and E(Y2i|Xi), respec-

tively.

In our Monte Carlo experiments, we study the cases where Xi is a vector of

discrete random variables supported on {x1, · · · , xJ}, J ∈ N. For these cases, we

use Ên(Y1|Xi = xj) = n−1
j

∑
i:Xi=xj

Y1i and Ên(Y2|Xi = xj) = n−1
j

∑
i:Xi=xj

Y2i as

estimators, where nj =
∑

i 1{Xi = xj}.
The sample criterion function can be alternatively written as

Qn(θ) = ‖Ŵ 1/2
n (θ)Ên(mθ)‖2

+,

where mθ is a 2J-dimensional vector whose components are

mj,θ :=


n
nj

(Y1i −X ′iθ)1{Xi=xj} for j = 1, · · · , J
n
nj

(X ′iθ − Y2i)1{Xi=xj} for j = J + 1, · · · , 2J.

The weighting matrix Ŵn(θ) is a 2J×2J diagonal matrix whose j-th diagonal ele-

ment is nj/n. Therefore, the example above can be studied within the framework

presented in section 3.4. It can be shown that this model also satisfies the condi-

tions of Theorem 3.4.1. We use this example to evaluate our inference method.
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3.5.2 Monte Carlo Experiments

We conduct a Monte Carlo experiment using Example 3.5.2 to examine the

performance of our inference methods. In both designs, the regressor Xi = (1, X2i)

consists of a constant and a real random variable X2i.

We use the same data as Chernozhukov, Hong, and Tamer (2004). The orig-

inal data is taken from March 2000 wave of the Current Population Survey (CPS)

with 13,290 observations on income and education24. Chernozhukov, Hong, and

Tamer (2004) bracketed each individual’s log-income into 15 different categories.

We let Y1i (Y2i) be the lower (upper) bound of the bracketed log-income of each

individual. Chernozhukov, Hong, and Tamer (2004, sec 4) provide further details

of the construction of the data. We randomly draw samples of size n = 1, 000 or

2, 000 from this CPS population and check the coverage probabilities of the Wald

confidence set under different values of the subsample size b.

For this exercise, we use a grid of points {pl = (cos(wl), sin(wl))
′, l =

1, · · · , L} with L = 100, where each wl is taken from an equally spaced grid

of points on the interval [0, 2π]. We use Algorithm 3.2.1 to compute the support

function of the set estimator. This algorithm is quite fast. For samples of size

n = 1, 000 and 2, 000, it takes only 0.051 and 0.054 seconds respectively to com-

pute the support function and approximate boundary {θ̂n(pl, t), l = 1, · · · , L} of

the set estimator Θ̂n(t)25.

The initial choice of the level t is made in a similar manner to Chernozhukov,

Hong, and Tamer (2004). First, we consider an auxiliary point-identified model,

where the lower and upper bounds for the individual log-income are Ỹ1i = Ỹ2i =

(Y1i + Y2i)/2 for any i. We use the criterion function Qn applied to the data

{(Ỹ1i, Ỹ2i), i = 1, · · · , n} and compute quantiles of the statistic n(Qn(θa0)−Qn(θ̂an)),

where θa0 is the minimizer of the population criterion function and θ̂an its estimator.

Let t̂a0 be the 100×a0% quantile of the statistic. Chernozhukov, Hong, and Tamer

24We use the dataset that is distributed with a Matlab package by Beresteanu, Molinari, and
Wang (2009).

25The reported values are the average elapsed time to compute the support function and
approximated boundary of the set estimator from simulated samples of size n = 1, 000 or 2,000
drawn for S = 2, 000 times. Computation was implemented by a code written in R (and partly
in C) on a computer with Intel Core 2 Quad CPU 2.5 Ghz and 6GB memory.
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(2004) recommends using ta0 with properly chosen a0 as an initial level. If t̂a0 is

too large, the resulting set estimator may not be expanded because its coverage

probability is likely to exceed 1− α. Therefore, it is desirable to set a0 to a value

less than the nominal level 1− α.

Table 3.1 reports the coverage probabilities of the Wald confidence set under

different values of b and a0. We also include the coverage probabilities of the QLR

confidence set reported by Chernozhukov, Hong, and Tamer (2004) for comparison.

The nominal level is 1 − α = 0.95. The QLR benchmark is reported in the third

row. We first set a0 = 0.5 (median) for choosing the initial level. Overall, the Wald

confidence set’s coverage probabilities are close to those of the QLR confidence set,

which supports our theoretical results. We also report the coverage probabilities

for the case a0 = 0.75. Under this initial choice of level, the Wald confidence sets’

coverage probabilities are closer to the nominal level in every case.

We note that the QLR confidence sets’ coverage probabilities improve as

we move from n = 1,000 to n = 2,000. This behavior is not so apparent for the

Wald confidence sets.

3.6 Conclusion

In this paper, we introduce an inference framework for partially identified

econometric models that unifies two general approaches recently proposed in the

literature: the criterion function approach and the support function approach.

This yields inference tools that have the wide applicability of the criterion function

approach and the computational tractability of the support function approach.

We consider the general case where the identified set ΘI is the set of min-

imizers of a criterion function, estimated as an appropriate level set of a sample

criterion function, following CHT, and represented as a support function, as in

BM. This yields Wald-type inference methods, significantly extending recent work

of BM and Bontemps, Magnac, and Maurin (2007), each of which studied special

classes of econometric models. Specifically, given a compact convex set Θ0 or a

point θ0, we present tests for set equality H0 : ΘI = Θ0, set inclusion H0 : Θ0 ⊆ ΘI ,
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and point inclusion H0 : θ0 ∈ ΘI .

The test for set equality can be inverted to construct a confidence collection

that contains the identified set as an element, with a specified confidence level. This

type of inference is as yet unavailable within CHT’s framework. The test for set

inclusion can be inverted to construct another confidence collection, containing

each subset of the identified set as an element. Taking the union of the elements of

this collection yields a confidence set that covers the identified set, comparable to

CHT’s confidence set. We provide a new, practical step-up algorithm for selecting

the level t used to construct this confidence set. This removes the arbitrariness

in the choice of t characterizing previous methods. The test for point inclusion

can be inverted to construct a confidence set for each point in the identified set,

comparable to methods of Imbens and Manski (2004), CHT, Romano and Shaikh

(2008), and Andrews and Guggenberger (2009).

We also contribute to the literature on moment inequality models by estab-

lishing the asymptotic equivalence of our Wald statistic and CHT’s QLR statistic.

We show that this implies the asymptotic equivalence of the Wald confidence set

and CHT’s confidence set. This equivalence suggests that further investigation

into the general relationship between these two approaches, beyond the moment

inequality framework, is an interesting topic for future research.

Another interesting direction for further research is the development of

Lagrange Multiplier (LM)-type analogs of the Wald-type statistics analyzed here.

One may expect that under suitable conditions, LM- and Wald-type statistics

may also be asymptotically equivalent in partially identified models, and that

under further conditions, these may be asymptotically equivalent to QLR-type

statistics. Obtaining these equivalence conditions is an interesting direction for

future research.

For testing hypotheses and constructing confidence collections and confi-

dence sets, we propose a general subsampling procedure. This procedure is valid

pointwise, as we derive our results under a fixed probability measure. As Romano

and Shaikh (2008, 2009) and Andrews and Guggenberger (2009) point out, how-

ever, establishing the uniform asymptotic validity of subsampling is important for
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partially identified models and is one of our future tasks.
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3.A Tables

Table 3.1: Coverage Probabilities (1−α=.95) of Wald and QLR Confidence Sets

Subsample Size

n=1,000
b = 50 b = 80 b = 120 b = 200 b = 300

Wald (a0 = 0.5) 0.878 0.887 0.886 0.889 0.909
Wald (a0 = 0.75) 0.957 0.962 0.953 0.956 0.956
QLR 0.851 0.880 0.872 0.931 0.912

n=2,000
b = 200 b = 300 b = 400 b = 500 b = 600

Wald (a0 = 0.5) 0.874 0.873 0.874 0.880 0.888
Wald (a0 = 0.75) 0.937 0.925 0.925 0.930 0.928
QLR 0.861 0.882 0.905 0.950 0.933

Note: Empirical coverage probabilities of the Wald and QLR confidence sets under
different values of subsample size b. The coverage probabilities of the QLR confidence
set are taken from Chernozhukov, Hong, and Tamer (2004). Monte Carlo simulations
m = 2, 000, subsample replications B = 2, 000, significance level α = 0.05.

3.B Mathematical Appendix

3.B.1 Consistency and Rate of Convergence of the Level

Set Estimator

We summarize below CHT’s consistency and the rate of convergence result.

Assumption 3.2.3 (i) requires one-sided uniform convergence of Qn to its popula-

tion counterpart, which is slightly more general than usual uniform convergence

supθ∈Θ |Q(θ) − Qn(θ)| = op(1). Assumption 3.2.3 (ii) is one of the key condi-

tions utilized by CHT, requiring the sample criterion function to approximate the

population counterpart at 1/an rate over ΘI . This condition ensures that their

QLR-statistic supθ∈ΘI
anQn(θ) is nondegenerate. Assumption 3.2.3 (iii) requires
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the existence of a polynomial function in the distance from ΘI , which stochastically

minorizes (bounds from below) the sample criterion function in a neighborhood of

the identified set. It is then immediate from CHT’s Theorem 3.1 that the following

results hold.

Theorem 3.B.1 (Consistency and Convergence rate): Let t be a positive

finite constant. Let tn = tκn where κn is a positive slowly increasing sequence such

that κn → ∞ and κn/an = op(1). Suppose Assumptions 3.2.1, 3.2.2, and 3.2.3

(i), (ii) hold. Then, with probability approaching 1, Θ̂n(t) ⊆ ΘI and ΘI ⊆ Θ̂n(tn).

Furthermore, dH(Θ̂n(tn),ΘI) = op(1). Suppose, in addition, Assumption 3.2.3 (iii)

holds. Then, rndH(Θ̂n(tn),ΘI) = Op(1) with rn = (an/max{1, κn})1/γ.

For the proof, see CHT’s Theorem 3.1.

3.B.2 Proof of Lemma 3.3.1, 3.3.2 , and Lemma 3.3.3

Definition 3.B.1 (Level boundedness): The function f : Rd → R̄ is level-

bounded if the level sets {x : f(x) ≤ α} are bounded for any α ∈ R.

If a function f : Ω×Rd → R̄ is such that f(ω, ·) is level bounded for all ω ∈ F ∈ F,

P (F ) = 1, then we say f is level bounded almost surely (a.s.).

Proof of Lemma 3.3.1. Note that Assumption 3.2.1 ensures that ζn is proper. In

addition, the compactness of Θ and the assumption that Qn(ω, θ) = ∞ a.s. for

θ /∈ Θ ensure that ζn is level-bounded almost surely. For each ω ∈ {ω : ζn is lsc},
we have

s(p, Θ̂n(t)) < u⇔ sup
θ∈Θ̂n(t)

〈p, θ〉 < u

⇔ 〈p, θ〉 < u, ∀θ ∈ Θ̂n(t)

⇔ Θ̂n(t) ⊆ Θ \Ku,p

⇔ Ku,p ∩Θ ⊆ Θ \ Θ̂n(t)

⇔ ζn(θ) > t, ∀θ ∈ Ku,p ∩Θ

⇔ inf
θ∈Ku,p∩Θ

ζn(θ) > t,
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where the second equivalence follows from the compactness of Θ̂n(t), which is

implied by the lower semicontinuity and the level-boundedness of ζn, and the last

equivalence follows from the properness and the lower semicontinuity of ζn and the

compactness of Ku,p ∩Θ.

Proof of Lemma 3.3.2. Note first that, under our assumptions, ζ̃n inherits the al-

most sure properness, lower semicontinuity, and level-boundedness from ζn. For

any 0 < ε < ε̄, let D∗n,ε := {(θ, λ) ∈ Ru,p : ζ̃n(θ, λ) < infRu,p ζ̃n(θ, λ) + ε} and

D∗ε := lim infn→∞D
∗
n,ε. By hypothesis, D∗ε is nonempty. For a given δ > 0, let D∗ε,δ

be an open δ-envelope of D∗ε defined by D∗ε,δ := {(θ, λ) : d((θ, λ), D∗ε ) < δ}.
For any δ > 0, Ru,p ∩D∗ε,δ 6= ∅ implies that there exists Nε ∈ N such that

Rn,u,p ∩ D∗ε,δ 6= ∅ for all n ≥ Nε as Rn,u,p → Ru,p in the Painlevé-Kuratowski

sense (Theorem 4.5, Rockafellar and Wets, 2005). For n ≥ Nε, let En,ε :=

arg minRn,u,p∩D∗ε,δ ζ̃n(θ, λ). Let Dn := arg minRn,u,p ζ̃n(θ, λ). As En 6= ∅, En,ε ⊆
D∗ε,δ, and En,ε ⊆ Dn, we have Dn ∩D∗ε,δ 6= ∅ for all n ≥ Nε and δ > 0.

Now suppose that the conclusion of the lemma does not hold. Then, there

exists a subsequence {(ζ̃nk , Rnk), k = 1, 2, · · · } such that

P

(∣∣∣∣ inf
Rnk,u,p

ζ̃nk(θ, λ)− inf
Ru,p

ζ̃nk(θ, λ)

∣∣∣∣ ≥ 2ε

)
> 0.

for all k. Then, along this subsequence, we have P (Dnk ∩ D∗nk,ε = ∅) > 0. This

implies Dnk ∩D∗ε,δ = ∅ for all k with positive probability, which is a contradiction.

Proof of Lemma 3.3.3. Let ε > 0 be arbitrary. For each (u, p) ∈ R × Sd−1, take

Lu,p to be a compact set such that D∗ε ⊆ Lu,p. This is possible by the equi-inf-

compactness. Now take R̃u,p = Ru,p ∩ Lu,p. Then, by construction,

P

(∣∣∣∣ inf
R̃u,p

ζ̃n(θ, λ)− inf
Ru,p

ζ̃n(θ, λ)

∣∣∣∣ ≥ ε

)
≤ ε (3.B.1)
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for sufficiently large n. Given the discussions preceding this lemma, we have

Zn(p, t) < u⇔ inf
Rn,u,p

ζn(θ + λ/a1/γ
n ) > t

⇔ inf
Rn,u,p

ζ̃n(θ, λ) > t.

Since this holds for any finite m-tuple {(uj, pj)}mj=1, we have

P (Zn(p1, t) < u1, · · · ,Zn(pm, t) < um)

= P

(
inf

Rn,u1,p1

ζ̃n(θ, λ) > t, · · · , inf
Rn,um,pm

ζ̃n(θ, λ) > t

)
. (3.B.2)

Note that

P

(
inf

R̃u1,p1

ζ̃n(θ, λ) > t+ ε, · · · , inf
R̃um,pm

ζ̃n(θ, λ) > t+ ε

)
≤ P

(
max

1≤j≤m

∣∣∣∣∣ inf
R̃uj,pj

ζ̃n(θ, λ)− inf
Ruj,pj

ζ̃n(θ, λ)

∣∣∣∣∣ ≥ ε/2

)

+ P

(
inf

Ru1,p1

ζ̃n(θ, λ) > t+ ε/2, · · · , inf
Rum,pm

ζ̃n(θ, λ) > t+ ε/2

)
≤ P

(
max

1≤j≤m

∣∣∣∣∣ inf
R̃uj,pj

ζ̃n(θ, λ)− inf
Ruj,pj

ζ̃n(θ, λ)

∣∣∣∣∣ ≥ ε/2

)
(3.B.3)

+ P

(
max

1≤j≤m

∣∣∣∣ inf
Ruj,pj

ζ̃n(θ, λ)− inf
Rn,uj,pj

ζ̃n(θ, λ)

∣∣∣∣ ≥ ε/2

)
+ P

(
inf

Rn,u1,p1

ζ̃n(θ, λ) > t, · · · , inf
Rn,um,pm

ζ̃n(θ, λ) > t

)
,

where we used the fact that, for any random vectors Yn, Xn : Ω → Rm, an open

set G ⊂ Rm, and its ε-contraction Gε := {x ∈ G : ρ(x,Gc) ≥ ε}, we have P (Yn ∈
Gε) ≤ P (ρ(Xn, Yn) ≥ ε)+P (Xn ∈ G). Specifically, we used the metric ρ(Xn, Yn) =

max1≤j≤m |Xj,n − Yj,n| and the open set G = (t,∞)m.

Lemma 3.3.2 and (3.B.1) ensure that the first two terms on the right hand
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side of (3.B.3) become arbitrarily small as n gets large. Therefore,

lim inf
n→∞

P

(
inf

R̃u1,p1

ζ̃n(θ, λ) > t+ ε, · · · , inf
R̃um,pm

ζ̃n(θ, λ) > t+ ε

)
≤ lim inf

n→∞
P

(
inf

Rn,u1,p1

ζ̃n(θ, λ) > t, · · · , inf
Rn,um,pm

ζ̃n(θ, λ) > t

)
.

By letting ε ↓ 0, we obtain

lim inf
n→∞

P

(
inf

R̃u1,p1

ζ̃n(θ, λ) > t, · · · , inf
R̃um,pm

ζ̃n(θ, λ) > t

)
≤ lim inf

n→∞
P

(
inf

Rn,u1,p1

ζ̃n(θ, λ) > t, · · · , inf
Rn,um,pm

ζ̃n(θ, λ) > t

)
= lim inf

n→∞
P (Zn(p1, t) < u1, · · · ,Zn(pm, t) < um),

where the last equality follows from Eq. (3.B.2).

3.B.3 Proof of Theorem 3.3.1 (i), (ii) and Auxiliary Lem-

mas

Our first goal in this sections is to show that the stochastic process Z(·, t)
given in Eq. (3.3.3) in Theorem 3.3.1 satisfies {ω : Z(p, t) < u} = {ω : infR̃u,p

ζ̃(θ, λ) > t} for any u, p ∈ R×Sd−1. For this, we need to show the almost sure upper

semicontinuity of the map g : θ 7→ s(p, Λ̂(t, θ)). In the following, we introduce a

regularity condition for the criterion function and two lemmas that are useful for

establishing the desired result. We then prove Theorem 3.3.1 (i) and (ii).

Definition 3.B.2 (Level-boundedness for parametric optimization): A func-

tion f : Rn × Rm → R̄ with values f(x, u) is level-bounded in x locally uniformly

in u if for each ū ∈ Rm and α ∈ R there is a neighborhood V ∈ N (ū) along with a

bounded set B ⊂ Rn such that {x|f(x, u) ≤ α} ⊂ B for all u ∈ V ; or equivalently,

there is a neighborhood V ∈ N (ū) such that the set {(x, u)|u ∈ V, f(x, u) ≤ α} is

bounded in Rn × Rm.
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Lemma 3.B.1: Consider

ψ(u) := inf
x
f(x, u)

in the case of a proper, lsc function f : Rn × Rm → R̄ such that f(x, u) is level

bounded in x locally uniformly in u. Then, the function ψ is proper and lsc on Rm.

Proof. See Theorem 1.17 in Rockafellar and Wets (2005)

Lemma 3.B.2: Suppose that ζ̃n(θ, λ) satisfies the conditions of Theorem

3.3.1. For each t ∈ R+ and p ∈ S, let g be a stochastic process defined by g : θ 7→
s
(
p, Λ̂(t, θ)

)
. Then, there is a representation of g, which is upper semicontinuous

(usc) almost surely.

Proof. First, let δA : Rd → R̄+ be the optimization theory indicator function that

takes 0 if x ∈ A and∞ otherwise. For each θ, let h(θ, λ) := −〈p, λ〉+δΛ̂(t,θ)(λ) and

g̃(θ) := infλ h(θ, λ). As g(θ) = −g̃(θ), it suffices to show the lower semicontinuity

of g̃(θ) for the conclusion of the lemma26. For establishing the lower semicontinuity

of g̃, we make use of Lemma 3.B.1 by taking ψ = g̃, f = h, and (x, u) = (θ, λ).

Below, we show that h is almost surely proper, lsc, and level bounded in λ locally

uniformly in θ.

By our hypothesis, Λ̂(t, θ) is nonempty a.s. for any θ ∈ ∂ΘI and t ∈ R+.

Therefore, δΛ̂(t,θ) is proper, which implies that h is proper. In the following, using

Skrokhod representation, we take a version of ζ̃n that is epiconverging almost

surely to a version of ζ̃ that are defined on some common probability space. This

is possible since the space of proper lsc functions equipped with a metric that

metrizes the topology of epiconvergence is complete and separable (cf. Rockafellar

and Wets, 2005). The almost sure epiconvergence of lsc functions {ζ̃n, n ≥ 1}
implies that ζ̃ is lsc a.s. (Attouch, 1984, Theorem 2.1). Therefore, the level set

Λ̂(t, θ) of the lsc function ζ̃(θ, ·) is closed a.s. Note that −〈p, λ〉 is continuous and

δΛ̂(t,θ) is lsc by the closedness of Λ̂(t, θ). So, h is lsc a.s.

For each p ∈ Sd−1 and θ̄ ∈ H(p,ΘI), let N (θ̄) be a collection of neighbor-

26We follow the convention that supx∈C f(x) = −∞ if C is an empty set.
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hoods at θ̄. Let α ∈ R. Take θ ∈ V ∈ N (θ̄). Define the set

C := {λ : ζ̃(θ, λ) ≤ t, 〈p, λ〉 ≥ −α}.

The fact that ζ̃n is equi-inf-compact implies that ζ̃ is level bounded (Exercise 7.32

(b) in Rockafellar and Wets (2005)), and therefore Λ̂(t, θ) is bounded a.s. As

C ⊆ Λ̂(t, θ), C is bounded a.s. Now, we can rewrite

C = {λ : δΛ(t,θ)(λ) = 0, −〈p, λ〉 ≤ α}

= {λ : h(θ, λ) ≤ α}.

Therefore, h(θ, λ) is level bounded in λ locally uniformly in θ. By Lemma 3.B.1,

g̃(θ) is lsc almost surely.

Given the results above, we fist prove the statement of Theorem 3.3.1 (ii).

Proof of Theorem 3.3.1 (ii). For each (u, p) ∈ R×Sd−1, take Lu,p to be a compact

set such that Λ̂(t, θ) ⊂ Lu,p a.s. For a given θ ∈ H(p,ΘI), it is straightforward to

show

s(p, Λ̂(t, θ)) < u⇔ inf
λ∈Ku,p∩Lu,p

ζ̃(θ, λ) > t, (3.B.4)

using an argument similar to the proof of Lemma 3.3.1. By the compactness of

H(p,ΘI) and Lemma 3.B.2,

Z(p, t) < u⇔ sup
θ∈H(p,ΘI)

s(p, Λ̂(t, θ)) < u

⇔ s(p, Λ̂(t, θ)) < u, ∀θ ∈ H(p,ΘI). (3.B.5)

Combining Eqs. (3.B.4) and (3.B.5), we obtain

Z(p, t) < u⇔ inf
(θ,λ)∈R̃u,p

ζ̃(θ, λ) > t,
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where R̃u,p = H(p,ΘI)×(Ku,p∩Lu,p). Therefore, for any finitem-tuple {(uj, pj)}mj=1,

{ω : Z(p1, t) < u1, · · · ,Z(pm, t) < um}

=

{
ω : inf

(θ,λ)∈R̃u1,p1

ζ̃(θ, λ) > t, · · · , inf
(θ,λ)∈R̃um,pm

ζ̃(θ, λ) > t

}
.

Take probability both sides. Then, the conclusion of Theorem 3.3.1 (ii) follows.

Proof of Theorem 3.3.1 (i). Consider a finite m-tuple {(uj, pj)}mj=1. Since ζ̃n
e.d.→ ζ̃,

for any {(uj, pj)}mj=1, we have

P

(
inf

(θ,λ)∈R̃u1,p1

ζ̃(θ, λ) > t, · · · , inf
(θ,λ)∈R̃um,pm

ζ̃(θ, λ) > t

)

≤ lim inf
n→∞

P

(
inf

(θ,λ)∈R̃u1,p1

ζ̃n(θ, λ) > t, · · · , inf
(θ,λ)∈R̃um,pm

ζ̃n(θ, λ) > t

)
.

This result, together with Lemma 3.3.3 and Theorem 3.3.1 (ii) proved above, im-

plies that

P (Z(p1, t) < u1, · · · ,Z(pm, t) < um)

≤ lim inf
n→∞

P (Zn(p1, t) < u1, · · · ,Zn(pm, t) < um) .

By the portmanteau theorem, the process Zn(·, t) weakly converges to

Z(·, t) in finite dimension. This completes the proof of part (i).

3.B.4 Proof of Theorem 3.3.1 (iii)

For establishing Zn(·, t) u.d.→ Z(·, t), we make use of the three lemmas be-

low. Lemmas 3.B.3 and 3.B.4 will be used to show the tightness of the sequence

{Zn(·, t), n = 1, 2, · · · }. Lemma 3.B.3 states that, for the tightness, it suffices

to show the stochastic equicontinuity of the process, and Lemma 3.B.4 gives a

sufficient condition for the stochastic equicontinuity.
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Lemma 3.B.3 (Tightness Characterization): Let E be a metric space. A

sequence of stochastic processes {ξn(x), n ≥ 1} is tight in (C(E), dC(E)) if and only

if ξn(x) = Op(1) for all x ∈ E and the stochastic equicontinuity holds. That is,

For every ε, η > 0 there exists random ∆n(ε, η) and a constant Nε,η such that for

n ≥ Nε,η, P (|∆n(ε, η)| > ε) < η and for each y ∈ E, there is an open set V (y, ε, η)

containing θ with

sup
x∈V (y,ε,η)

|ξn(x)− ξn(y)| ≤ ∆n(ε, η), n ≥ Nε,η.

Proof. See Newey (1991).

Lemma 3.B.4: Let h : [0,∞) → [0,∞) be a function such that h(0) = 0

and h is continuous at 0. There is Bn such that Bn = Op(1). If for all x, y ∈ E,

|ξn(x)− ξn(y)| ≤ Bnh(‖x− y‖), then {ξn} is stochastically equicontinuous.

Proof. The result immediately follows from Assumption 3A and Corollary 2.2 in

Newey (1991).

The lemmas above imply that showing that {Zn(·, t), n ≥ 1} satisfies the

regularity conditions in Lemma 3.B.4 suffices for the desired result. For this, we

make use of the following definition and the lemma.

Definition 3.B.3 (Strict Continuity): Let S ⊆ Rd. A function f : S → R
is strictly continuous at x̄ ∈ S if x̄ ∈ So and if the Lipshitz modulus, lipf(x̄) :=

lim supx,x′→x̄
x 6=x′

|f(x′)−f(x)|
‖x′−x‖ , is finite. A function is strictly continuous on S if it is

strictly continuous at every point in S.

We say a function f : Ω× S → R̄ is strictly continuous on S almost surely

(a.s.) if f(ω, ·) is strictly continuous for all ω ∈ F ∈ F, P (F ) = 1. For single-valued

mappings, the strict continuity is equivalent to local Lipschitz property, i.e., the

function is Lipschitz on a neighborhood of each point (Rockafellar and Wets, 2005).

Lemma 3.B.5 (Extended Mean Value Theorem): Suppose f is convex and

strictly continuous on an open convex set O ⊂ Rd, and let x0 and x1 be points of
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O. Then there exist xτ = (1− τ)x0 + τx1, τ ∈ (0, 1) and v ∈ Rd satisfying

f(x1)− f(x0) = 〈v, x1 − x0〉, v ∈ ∂f(xτ ),

where ∂f(x) is the subdifferential of f at x, defined by

∂f(x) := {v ∈ Rd : f(y) ≥ f(x) + 〈v, y − x〉, ∀y ∈ Rd}.

Proof. See Rockafellar and Wets (2005), Theorem 10.48.

Proof of Theorem 3.3.1 (iii). We first show the required conditions for Lemma

3.B.4 using an expansion of the support function based on Lemma 3.B.5. In the

following, we take ω ∈ F ∈ F, P (F ) = 1, for which ζ̃n(ω, θ, λ) is lsc and convex.

Under our assumptions, ΘI is a compact convex set, and Θ̂n(t) is a compact convex

set almost surely. For each bounded closed set, its support function is Lipschitz

(Theorem F.1. in Molchanov (2005)). This implies that s(p,ΘI) is strictly contin-

uous, and s(p, Θ̂n(t)) is strictly continuous a.s. Furthermore, the support function

of a compact set is sublinear, and therefore it is convex (Molchanov, 2005, p.421).

This further implies that s(p,ΘI) is convex, and s(p, Θ̂n(t)) is convex a.s.

Now, take an open convex set O such that Sd−1 ⊂ O. Let p, q ∈ Sd−1. Then,

by Lemma 3.B.5, for some p̄n and p̄ on the line segment that connects p and q,

there exist v̂n ∈ ∂s(p̄n, Θ̂n(t)) and w ∈ ∂s(p̄,ΘI) such that

s(p, Θ̂n(t))− s(q, Θ̂n(t)) = 〈v̂n, p− q〉 (3.B.6)

s(p,ΘI)− s(q,ΘI) = 〈w, p− q〉 (3.B.7)

For any compact convex set F , the subdifferential ∂s(p, F ) of the support func-

tion at p coincides with its support set H(p, F ). Therefore, ∂s(p̄n, Θ̂n(t)) =

H(p̄n, Θ̂n(t)) and ∂s(p̄,ΘI) = H(p̄,ΘI). So, we can write

Zn(p, t)−Zn(q, t) = a1/γ
n 〈v̂n − w, p− q〉 (3.B.8)

for some v̂n ∈ H(p̄n, Θ̂n(t)) and w ∈ H(p̄,ΘI).
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Note that, Assumption 3.2.3 (ii) implies Zn(p, t) = Op(1) for any p ∈ Sd−1.

Therefore a
1/γ
n 〈v̂n − w, p − q〉 = Zn(p, t) − Zn(q, t) = Op(1) for any p, q ∈ Sd−1.

Since this holds for any p and q, each component of a
1/γ
n (v̂n − w) must be Op(1).

Therefore, a
1/γ
n ‖v̂n − w‖ = Op(1).

Applying the Cauchy-Schwartz inequality to (3.B.8), we obtain

|Zn(p, t)−Zn(q, t))| ≤ a1/γ
n ‖v̂n − w‖‖p− q‖.

Now, we apply Lemma 3.B.4 with Bn = a
1/γ
n ‖v̂n − w‖ and h(x) = x. Then,

{Zn(·, t), n ≥ 1} is stochastically equicontinuous. Further, we apply Lemma 3.B.3

to conclude that {Zn(·, t), n ≥ 1} is tight. Note that a tight sequence that is

weakly converging in finite dimension weakly converges in the uniform metric (van

der Vaart and Wellner, 2000). Thus, we obtain Zn(·, t) u.d.→ Z(·, t).
Since ζn is convex a.s. in a neighborhood of ΘI , its lower contour sets (in the

neighborhood of ΘI) are convex almost surely. Thus the Hörmander’s embedding

theorem implies

a1/γ
n dH(Θ̂n(t),ΘI) = ‖Zn(·, t)‖C(S).

By the continuous mapping theorem, we get a
1/γ
n dH(Θ̂n(t),ΘI)

d→ ‖Z(·, t)‖C(S).

Similarly, by Theorem 3.2.3, the directed Hausdorff distance satisfies a
1/γ
n
~dH(ΘI ,

Θ̂n(t)) = supp∈Sd−1{−Zn(p, t)}+. The continuous mapping theorem implies a
1/γ
n

~dH(ΘI , Θ̂n(t))
d→ supp∈Sd−1{−Z(p, t)}+

3.B.5 Proof of Theorems and Corollaries in Section 3.3.2

Proof of Theorem 3.3.2. By Theorem 3.2.2, a
1/γ
n dH(Θ̂n(t),ΘI) = a

1/γ
n ‖s(·, Θ̂n(t))−

s(·,ΘI)‖C(Sd−1). Here, s(·, Θ̂n(t)) is a random element that takes values in a normed

linear space (C(Sd−1), ‖ · ‖C(Sd−1)). Let Fn(x, t) be the cdf of a
1/γ
n dH(Θ̂n(t),ΘI).

Note that Theorem 3.3.1 ensures Fn converges weakly to F . Now apply Politis,

Romano, and Wolf’s (1999) Theorem 2.5.2. with τn = a
1/γ
n , θ̂n = s(·, Θ̂n(t)), and

θ(P ) = s(·,ΘI). Then, all the results follow.
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Proof of Corollary 3.3.1. (i) First, the consistency of ĉn,b,1−α(t) follows from The-

orem 3.3.2 and Lemma 11.2.1 in Lehmann and Romano (2005). Under the null

hypothesis, Tn(t) converges in distribution to F (x, t), and by the result above,

ĉn,b,1−α(t) = c1−α(t) + op(1). Then, by Corollary 11.2.3 in Lehmann and Romano

(2005), limn→∞ P (Tn(t) ≤ ĉn,b,1−α(t)) = F (c1−α(t), t) = 1− α.

(ii) The proof of part (ii) is very similar to the proof of Theorem 2.2 in

BM.

Proof of Theorem 3.3.3. The first part follows from the equivalence

ΘI ∈ X̂n,b,1−α(t) ⇔ a1/γ
n dH(Θ̂n(t),ΘI) ≤ ĉn,b,1−α(t).

and Theorem 3.3.2 (iii). Note that for any compact convex set K ∈ Kc and ε > 0,

we have

K ⊕Bε = Kε,

where Bε is a closed ball of radius ε centered at the origin, and Kε is a closed

ε-envelope of K. The rest of the proof is very similar to the proof of Theorem 2.4

in BM.

(iii) Note that, for any t ∈ R+, ΘI ∈ X̂n,b,1−α(t) implies ΘI ⊆ Ψ̂n,b,1−α(t),

but the converse is not necessarily true. Therefore, by part (i),

lim
n→∞

P
(

ΘI ⊆ Ψ̂n,b,1−α(t)
)
≥ lim

n→∞
P
(

ΘI ∈ X̂n,b,1−α(t)
)

= 1− α.

By part (ii), Ψ̂n,b,1−α(t) = Θ̂
ε̂n,b,1−α(t)
n (t). Now, the conclusion follows.

Proof of Theorem 3.3.4. Let U→n,b(x, t) := N−1
n,b

∑Nn,b
k=1 1n

a
1/b
b

~dH(ΘI ,Θ̂n,b,k(t))≤x
o for each

t ∈ R+. Suppose, for any ε > 0,

a
1/γ
b
~dH(Θ̂n(t), Θ̂n,b,k(t)) = a

1/γ
b sup

p∈Sd−1

{
s(p, Θ̂n(t))− s(p, Θ̂n,b,k(t))

}
+
≤ x
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and

a
1/γ
b dH(Θ̂n(t),ΘI) = a

1/γ
b sup

p∈Sd−1

∣∣∣s(p, Θ̂n(t))− s(p,ΘI)
∣∣∣ ≤ ε.

Then, a
1/γ
b (s(p,ΘI)− s(p, Θ̂n,b,k(t))) ≤ x+ ε for all p ∈ Sd−1. This further implies

a
1/γ
b
~dH(ΘI , Θ̂n,b,k(t)) = a

1/γ
b sup

p∈Sd−1

{
s(p,ΘI)− s(p, Θ̂n,b,k(t))

}
+
≤ x+ ε.

Let En,b(t, ε) := {ω : a
1/γ
b dH(Θ̂n(t),ΘI) ≤ ε}. Then, the arguments above ensure

F̂→n,b(x, t)1{En,b(t,ε)} ≤ U→n,b(x+ ε, t). (3.B.9)

Now, suppose

a
1/γ
b
~dH(ΘI , Θ̂n,b,k(t)) ≤ x− ε

and

a
1/γ
b dH(Θ̂n(t),ΘI) ≤ ε.

Then, we have

x ≥ a
1/γ
b dH(Θ̂n(t),ΘI) + a

1/γ
b
~dH(ΘI , Θ̂n,b,k(t))

≥ a
1/γ
b
~dH(Θ̂n(t),ΘI) + a

1/γ
b
~dH(ΘI , Θ̂n,b,k(t))

≥ a
1/γ
b
~dH(Θ̂n(t), Θ̂n,b,k(t)).

Therefore, we obtain

U→n,b(x− ε, t)1{En,b(t,ε)} ≤ F̂→n,b(x, t)1{En,b(t,ε)}. (3.B.10)

Since (3.B.9) and (3.B.10) hold for any ε > 0 and En,b has probability tending to
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one, we have

U→n,b(x− ε, t) ≤ F̂→n,b(x, t) ≤ U→n,b(x+ ε, t), (3.B.11)

with probability tending to 1 for any ε > 0.

Now it is straightforward to show U→n,b(x− ε, t) = F→(x, t) + op(1) for each

continuity point x of F→(·, t) by an argument similar to the proof of Theorem 2.2.1

(i) in Politis, Romano, and Wolf (1999). Therefore,

F→(x− ε, t)− ε ≤ F̂→n,b(x, t) ≤ F→(x+ ε, t) + ε,

with probability tending to 1 for any ε > 0. Now, let ε ↓ 0 so that x ± ε are

continuity points of F→(·, P ). Then, the conclusion follows.

The proofs of (ii) and (iii) are very similar to those of Theorem 2.2.1 (ii)

and (iii) in Politis, Romano, and Wolf (1999).

Proof of Corollary 3.3.2. (i) As before, the consistency of ĉ→n,b,1−α(t) follows from

Lemma 11.2.1 in Lehmann and Romano (2005). Under the null, we have T→n (t) ≤
a

1/γ
n
~dH(ΘI , Θ̂n(t)), and ~dH(ΘI , Θ̂n(t)) converges in distribution to F→(x, t). By the

results above and by Corollary 11.2.3 in Lehmann and Romano (2005), we have

lim sup
n→∞

P (T→n (t) > ĉ→n,b,1−α(t)) ≤ lim
n→∞

P (a1/γ
n
~dH(ΘI , Θ̂n(t)) > ĉ→n,b,1−α(t))

= 1− F (c→1−α(t), t) = α.

The proof of part (ii) is similar to the proof of Corollary 3.3.1 (ii).

Proof of Theorem 3.3.5. The first part follows from the equivalence

ΘI ∈ X̂→n,b,1−α(t) ⇔ a1/γ
n
~dH(ΘI , Θ̂n(t)) ≤ ĉ→n,b,1−α(t).

and Theorem 3.3.4 (iii). The proof of (ii) is similar to the proof of Theorem 3.3.3

(ii). The proof of (iii) is similar to the proof of Proposition 2.7 in BM.

Proof of Lemma 3.3.4. First, c→1−α(t∗1−α) = 0 follows from the definition of t∗1−α.
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For the conclusion of the lemma, it suffices to show that P (supp∈Sd−1{−Z(p, t)}+

≤ x) is non-decreasing in t for each x. As this is a distributoinal property of the

process Z(p, t), it suffices to show that the statement above holds for the following

representation:

−Z(p, t) = − sup
θ∈H(p,ΘI)

sup
λ∈{λ:ζ̃(θ,λ)≤t}

〈p, λ〉.

As {λ : ζ̃(θ, λ) ≤ t} ⊆ {λ : ζ̃(θ, λ) ≤ t′} for any 0 ≤ t < t′ ≤ t∗1−α and for each

p ∈ Sd−1, −Z(p, t) is non-increasing in t. This implies that supp∈Sd−1{−Z(p, t)}+

is non-increasing in t for any ω. Thus, P
(
supp∈Sd−1{−Z(p, t)}+ ≤ x

)
is non-

decreasing in t ∈ [0, t∗1−α] for each x.

We use the following lemma to prove Theorem 3.3.6.

Lemma 3.B.6: Suppose the conditions of Theorem 3.3.6 hold. Then, for

any α ∈ (0, 1) and 0 ≤ t < t′ ≤ t∗1−α, c→1−α(t)− c→1−α(t′) = µ(t′)− µ(t).

Proof of Lemma 3.B.6. First, c→1−α(t) can be written as

c→1−α(t) = inf

{
x : P

(
sup
p∈Sd−1

{−Z(p, t)}+ ≤ x

)
≥ 1− α

}

= inf

{
x : P

(
sup
p∈Sd−1

{µ(t′)− µ(t)− µ(t′)−Z∗(p)}+ ≤ x

)
≥ 1− α

}
.

(3.B.12)

Let ∆(t, t′) := µ(t′)− µ(t). Then, for any x ≥ ∆(t, t′), we have

P

(
sup
p∈Sd−1

{µ(t′)− µ(t)− µ(t′)−Z∗(p)}+ ≤ x

)

= P

(
sup
p∈Sd−1

{∆(t, t′)−Z(p, t′)}+ ≤ x

)

= P

(
sup
p∈Sd−1

{−Z(p, t′)}+ ≤ x−∆(t, t′)

)
. (3.B.13)
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Substituting Eq. (3.B.13) into Eq. (3.B.12) yields

c→1−α(t) = inf

{
x : P

(
sup
p∈Sd−1

{−Z(p, t′)}+ ≤ x−∆(t, t′)

)
≥ 1− α

}
= c→1−α(t′) + ∆(t, t′).

Proof of Theorem 3.3.6. By Theorem 3.2.2,

a1/γ
n dH(Θ̂

ε̂→n,b,1−α(t)
n (t),Θ̂n(t∗1−α))

= a1/γ
n sup

p∈Sd−1

|s(p, Θ̂ε̂→n,b,1−α(t)
n (t))− s(p, Θ̂n(t∗1−α))|

= a1/γ
n sup

p∈Sd−1

|s(p, Θ̂n(t)) + ε̂→n,b,1−α(t)− s(p, Θ̂n(t∗1−α))|

= sup
p∈Sd−1

|a1/γ
n [s(p, Θ̂n(t))− s(p, Θ̂n(t∗1−α))] + ĉ→n,b,1−α(t)|

= sup
p∈Sd−1

|a1/γ
n [s(p, Θ̂n(t))− s(p,ΘI)]

− a1/γ
n [s(p, Θ̂n(t∗1−α))− s(p,ΘI)] + ĉ→n,b,1−α(t)|

= sup
p∈Sd−1

|Zn(p, t)−Zn(p, t∗1−α) + c→1−α(t) + op(1)|

(1)
= sup

p∈Sd−1

|µ(t)− µ(t∗1−α)− (c→1−α(t∗1−α)− c→1−α(t)) + op(1)|

= op(1),

where we used the fact that c→1−α(t∗1−α) = 0 in equality (1), and the last equality

follows from Lemma 3.B.6.

Proof of Corollary 3.3.3. The result immediately follows from Theorem 3.3.6 and

the triangle inequality:

dH

(
Θ̂
ε̂→n,b,1−α(t)
n (t), Θ̂

ε̂→n,b,1−α(t′)
n (t′))

)
≤

dH

(
Θ̂
ε̂→n,b,1−α(t)
n (t), Θ̂n(t∗1−α))

)
+ dH

(
Θ̂
ε̂→n,b,1−α(t′)
n (t′), Θ̂n(t∗1−α))

)
.

Proof of Theorem 3.3.7. Let l be the smallest random index for which there is a
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false rejection. Then, there is Θ0 ∈ Scl ∩ KcI such that

a1/γ
n
~dH(Θ0, Θ̂n(tl)) > ĉ→n,b,1−α(tl).

As Θ0 ⊆ ΘI , this implies

a1/γ
n
~dH(ΘI , Θ̂n(tl)) > ĉ→n,b,1−α(tl)

⇒ a1/γ
n
~dH(ΘI , Θ̂

ĉ→n,b,1−α(tl)/a
1/γ
n

n (tl)) > 0

⇒ a1/γ
n
~dH(ΘI , Θ̂n(t∗1−α)) + op(1) > 0,

where the last result follows from Theorem 3.3.6. Therefore,

lim
n→∞

FWER ≤ P
(
a1/γ
n
~dH(ΘI , Θ̂n(t∗1−α)) + op(1) > 0

)
= α.

3.B.6 Proofs for Theorems and Corollaries in Section 3.3.4

The following result immediately follows from the main theorem.

Lemma 3.B.7: Suppose conditions of Theorem 3.1 hold. Suppose that p0

uniquely maximizes 〈p, θ0〉 − s(p,ΘI). Then, for each t ∈ R+,

(i) if θ0 ∈ ∂ΘI , T
→
n,θ0

(t)
d→ {−Z(p0, t)}+;

(ii) if θ0 ∈ Θo
I , T

→
n,θ0

(t)
p→ 0;

(iii) if θ0 /∈ ΘI , T
→
n,θ0

(t)
p→ +∞.

Proof of Lemma 3.B.7. The proof is similar to that of Proposition 16 in Bon-

temps, Magnac, and Maurin (2007). First, note that Sd−1 is compact, p0 uniquely

maximizes = 〈p, θ0〉 − s(p,ΘI), p̂n maximizes 〈p, θ0〉 − s(p, Θ̂n(t)), and [〈p, θ0〉 −
s(p,ΘI)] − [〈p, θ0〉 − s(p, Θ̂n)]

p→ 0 uniformly over Sd−1. Therefore, p̂n
p→ p0. Let

An(p, t) := a
1/γ
n [〈p, θ0〉−s(p, Θ̂n(t))] and A(p, t) := a

1/γ
n [〈p, θ0〉−s(p,ΘI)]. First, we

show that An(p̂n, t)−An(p0, t) = op(1). Note that An(p̂n, t)−An(p0, t) is bounded
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from below by 0, as p̂n maximizes An(·, t). From above, we have

0 ≤ An(p̂n, t)−An(p0, t)

= An(p̂n, t)−A(p̂n, t) +A(p̂n, t)−A(p0, t) +A(p0, t)−An(p0, t)

= −Zn(p̂n, t) +A(p̂n, t)−A(p0, t) + Zn(p0, t)

≤ Zn(p0, t)−Zn(p̂n, t) = op(1),

where the second inequality holds because A(p̂n, t) − A(p0, t) ≤ 0 by the con-

struction of p0 and the last equality follows from the stochastic equicontinuity of

{Zn(·, t)}.
(i) Suppose θ0 ∈ ∂ΘI , then 〈p0, θ0〉 = s(p0,ΘI). Therefore, An(p0, t) =

−Zn(p0, t). Now,

Tn,θ0(t) = {An(p̂n, t)}+

= {An(p0, t)}+ + op(1)

= {−Zn(p0, t)}+ + op(1).

By Theorem 3.3.1 (i) and the continuous mapping theorem, Tn,θ0(t)
d→ {−Z(p0, t)}+.

(ii) Suppose θ ∈ Θo
I , then Tn,θ0(t) = {−Zn(p0, t)+a

1/γ
n [〈p0, θ0〉−s(p0,ΘI)]}++op(1)

and a
1/γ
n [〈p0, θ0〉 − s(p0,ΘI)] → −∞. Therefore, Tn,θ0(t)

p→ 0. (iii) Suppose

θ /∈ ΘI , then Tn,θ0(t) = {−Zn(p0, t) + a
1/γ
n [〈p0, θ0〉 − s(p0,ΘI)]}+ + op(1) and

a
1/γ
n [〈p0, θ0〉 − s(p0,ΘI)]→∞. Therefore, Tn,θ0(t)

p→∞.

Proof of Theorem 3.3.8. The proof is very similar to the proof of Theorem 3.3.4,

and therefore it is omitted.

Proof of Corollary 3.3.4. (i) First ĉ→n,b,1−α(p̂n, t) = ĉ→n,b,1−α(p0, t) + op(1). Then, the

consistency of ĉ→n,b,1−α(p̂n, t) follows by applying Lemma 11.2.1 in Lehmann and

Romano (2005). If θ0 ∈ ∂ΘI , T
→
n,θ0

(t) converges in distribution to F→(x, p, t) by

Lemma 3.B.7 (i), and by the result above, ĉ→n,b,1−α(p̂n, t) = c→1−α(p0, t) + op(1).

Then, by Corollary 11.2.3 in Lehmann and Romano (2005), limn→∞ P (T→n,θ0(t) ≤
ĉ→n,b,1−α(p̂n, t)) = F→(c→1−α(p0, t), t) = 1−α. If θ ∈ Θo

I , T
→
n,θ0

(t)
p→ 0 by Lemma 3.B.7
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(ii), and therefore limn→∞ P (T→n,θ0(t) ≤ ĉ→n,b,1−α(p̂n, t)) ≥ limn→∞ P ({−Zn(p̂n, t)}+ ≤
ĉ→n,b,1−α(p̂n, t)) = F→(c→1−α(p0, t), t) = 1− α.

(ii) The proof of part (ii) is a direct consequence of Lemma 3.B.7 (iii) and

ĉn,b,1−α(p̂n, t) = Op(1).

Proof of Theorem 3.3.9. The result simply follows from the equivalence

θ0 ∈ Ψ̃→n,b,1−α(t) ⇔ T→n,θ0 ≤ ĉ→n,b,1−α(p̂n, t).

and Corollary 3.3.4 (i).

Proof of Theorem 3.3.10. First, we can rewrite the local power as

πn,b,t(θn) = P
(
a1/γ
n {〈p̂n, θn〉 − s(p̂n, Θ̂n(t))}+ > ĉn,b,1−α(p̂n, t)

)
= P

(
a1/γ
n {s(p̂n,ΘI)− s(p̂n, Θ̂n(t)) + 〈p̂n, λ〉/a1/γ

n }+ > ĉn,b,1−α(p̂n, t)
)

= P ({−Zn(p̂n, t) + 〈p̂n, λ〉}+ > ĉn,b,1−α(p̂n, t)) .

By the fact that 〈p̂n, λ〉 = 〈p0, λ〉+ op(1) = h+ op(1) and the stochastic equiconti-

nuity of Z(·, t) and ĉn,b,1−α(·, t), we obtain

πn,b,t(θn) = P ({−Zn(p0, t) + h+ op(1)}+ > c→1−α(p0, t) + op(1)).

Note that limn→∞ πn,b,t(θn) ≥ P ({−Z(p0, t)}+ > c→1−α(p0, t)) = α. So, the test has

the asymptotic local unbiasedness. Furthermore, using the fact that {−x}+ > ε⇔
x < −ε for any ε ≥ 0, we can write

πn,b,t(θn) = P (Zn(p0, t) < h− c→1−α(p0, t)) + o(1).
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By the second duality (Lemma 3.3.3) and the weak epiconvergence

lim inf
n→∞

P (Zn(p0, t) < h− c→1−α(p0, t)) ≥ lim inf
n→∞

P

(
inf

R̃h−c→1−α(p0,t),p0

ζ̃n(θ, λ) > t

)

≥ P

(
inf

R̃h−c→1−α(p0,t),p0

ζ̃(θ, λ) > t

)
,

where R̃h−c→1−α(p0,t),p0 = {θ0}× (Kh−c→1−α(p0,t),p0 ∩Lh−c→1−α(p0,t),p0) with Lh−c→1−α(p0,t),p0

properly chosen.

Proof of Corollary 3.3.5. The proof of part (i) is very similar to the proof of Corol-

lary 3.3.2 (i). For part (ii), we make use of the reverse triangle inequality:

~dH({θ0},ΘI)− ~dH(ΘI , Θ̂n(t)) ≤ ~dH({θ0}, Θ̂n(t)).

Scaling both sides by a
1/γ
n and taking infΘ0 both sides give

a1/γ
n

(
inf
θ0∈Θ0

~dH({θ0},ΘI)− ~dH(ΘI , Θ̂n(t))

)
≤ inf

θ0∈Θ0

T→n,θ0(t). (3.B.14)

Since ĉ→n,b,1−α(t) = c→1−α(t) + op(1) and ~dH(ΘI , Θ̂n(t)) = op(1), we have

lim
n→∞

P

(
ĉ→n,b,1−α(t) < a1/γ

n

(
inf
θ0∈Θ0

~dH({θ0},ΘI)− ~dH(ΘI , Θ̂n(t))

))
= lim

n→∞
P

(
c→1−α(t) + op(1)

a
1/γ
n

< inf
θ0∈Θ0

~dH({θ0},ΘI) + op(1)

)
= 1,

since infθ0∈Θ0
~dH({θ0},ΘI) > 0 under the alternative. By the inequality 3.B.14,

the conclusion follows.

3.B.7 Proof of Theorems and Corollaries in Section 3.4

Knight (1999) provides a result that links the weak finite dimensional limit

and the weak epilimit, which we summarize below as a lemma. For this result, we

introduce the following definition.
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Definition 3.B.4 (Stochastic Equi-lowersemicontinuity): A sequence of

random lsc functions {ξn, n ≥ 1} on Rd is stochastically equi-lowersemicontinuous

(e-lsc) if for each bounded set B, ε > 0 and δ > 0, there exist x1, · · · , xm ∈ B and

open neighborhoods V (x1), · · · , V (xm) of x1, · · · , xm such that

B ⊂
m⋃
i=1

V (xi)

and

lim sup
n→∞

P

(
m⋃
i=1

{
inf

y∈V (xi)
ξn(y) ≤ min{ε−1, ξn(xi)− ε}

})
< δ.

Lemma 3.B.8 (Knight, 1999, Theorem 2): Let {ξn, n ≥ 1} be a stochasti-

cally e-lsc sequence of functions and ξ be a random lsc function. Then ξn
f.d.→ ξ if

and only if ξn
e.d.→ ξ.

Proof of Theorem 3.4.1. Assumption 3.2.1 immediately follows from Assumption

3.4.1. Assumption 3.2.2 immediately follows from Assumption 3.4.2. For the

consistency of the level set estimator with the choice of finite nonnegative constant

t, we additionally need to show Assumptions 3.2.3 (i), (ii), and 3.2.4 (i).
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By Assumption 3.4.3 (i-a,b), we can write

P

(
sup

Θ

∣∣∣ϕ(Ên(mj,θ, Ŵn(θ))− ϕ(E(mj,θ),W (θ))
∣∣∣ > ε

)
≤ P

(
sup

Θ

∣∣∣ϕ(Ên(mj,θ, Ŵn(θ))− ϕ(E(mj,θ), Ŵn(θ))
∣∣∣

+ sup
Θ

∣∣∣ϕ(E(mj,θ), Ŵn(θ))− ϕ(E(mj,θ),W (θ))
∣∣∣ > ε

)
≤ P

(
sup

Θ

∣∣∣ϕ(Ên(mj,θ, Ŵn(θ))− ϕ(E(mj,θ), Ŵn(θ))
∣∣∣ > ε/2

)
+ P

(
sup

Θ

∣∣∣ϕ(E(mj,θ), Ŵn(θ))− ϕ(E(mj,θ),W (θ))
∣∣∣ > ε/2

)
≤ P

(
sup

Θ
L1h1

(∥∥∥Ên(mj,θ)− E(mj,θ)
∥∥∥) > ε/2

)
+ P

(
sup

Θ
L2h2

(
max
i,j

∣∣∣Ŵn,ij(θ)−Wij(θ)
∣∣∣) > ε/2

)
≤ P

(
sup

Θ

∥∥∥Ên(mj,θ)− E(mj,θ)
∥∥∥ > L−1

1 h−1
1 (ε/2)

)
+ P

(
sup

Θ
max
i,j

∣∣∣Ŵn,ij(θ)−Wij(θ)
∣∣∣ > L−1

2 h−1
2 (ε/2)

)
≤ ε

for n sufficiently large. Therefore, Assumptions 3.2.3 (i) holds. In the following,

we take an = nγ/2. First, this choice of an and the P -donsker property ensure that

supΘI
anQn(θ) = Op(1). Therefore, Assumptions 3.2.3 (ii) holds. Now, let η > 0

be such that supΘI
maxi,j Ŵn,ij(θ) ≤ η <∞, wp→ 1. We can write

nγ/2Qn(θ) ≤ ϕ(Gn(mθ) +
√
nE(mθ), Ŵn(θ))

≤ ϕ

(
Gn(mθ) +

√
nE(mθ), sup

ΘI

max
i,j
|Ŵn,ij(θ)|IJ

)
≤ ϕ

(
Op(1)−

√
nC3 min{d(θ,Θ \ΘI), ε̄}, ηIJ

)
uniformly over ΘI wp → 1 by Assumption 3.4.3 (ii-d). We thus have Qn(θ) = 0

on Θ−εnI with εn = Op(1/
√
n), and this ensures Assumption 3.2.4 (i).

For the rate of convergence of the set estimator, we additionally need to
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show Assumptions 3.2.3 (iii) and 3.2.4 (ii). For this, we closely follow CHT’s proof

of Theorem 4.2. Take η′ > 0 such that infΘI mini,j |Ŵn,ij(θ)| ≥ η′, wp→ 1. First,

we write

nγ/2Qn(θ) = ϕ(Gn(mθ) +
√
nE(mθ), Ŵn(θ))

≥ C2‖Gn(mθ) +
√
nE(mθ)‖γ+

≥ C2‖
√
nE(mθ)‖γ+

‖Gn(mθ) +
√
nE(mθ)‖γ+

‖
√
nE(mθ)‖γ+

.

Now, by Assumption 3.4.3 (ii-b), we have ‖
√
nE(mθ)‖γ+ ≥ C1n

γ/2 min{d(θ,ΘI), δ}γ

on Θ for some C1 > 0 and δ > 0. Therefore, for any ε > 0, we can choose (κε, nε)

so that for any n ≥ nε with probability at least 1− ε,

nγ/2Qn(θ) ≥ C2C1n
γ/2 min{d(θ,ΘI), δ}γ,

uniformly over {θ ∈ Θ : d(θ,ΘI) ≥ (κε/n
γ/2)1/γ}, which follows by ‖y+x‖+/‖x‖+ →

1 as ‖x‖+ →∞ for any y ∈ RJ and by supΘI
‖Gn(mθ)‖ = Op(1) by the P -Donsker

property.

Note that the lower semicontinuity ζ̃n follows the continuity in θ of ϕ,m,

and W . The convexity of Qn(θ) in a neighborhood of ΘI directly follows from

Assumption 3.4.4 (ii). Now, we show the weak epiconvergence of ζ̃n. First,

Gnmθ
u.d.→ G(θ) implies Gn(mθ)

f.d.→ G(θ). Together with Assumption 3.4.4 (i-a,b),

this implies Mn(θ, λ)
f.d.→ M(θ, λ). We also have Ŵn(θ + λ/a

1/γ
n )

p→ W (θ). There-

fore, by the continuous mapping theorem, ζ̃n = ϕ(Mn(θ, λ), Ŵn(θ + λ/a
1/γ
n ))

f.d.→
ϕ(M(θ, λ),W (θ)) = ζ̃. Now by Assumption 3.4.4 (iii), we can apply Lemma 3.B.8

to conclude that ζ̃n
e.d.→ ζ̃.

Proof of Corollary 3.4.1. By Theorem 3.4.1, the conditions required for Theorem

3.3.1 hold. The weak convergence results immediately follow from Theorem 3.3.1,

and the representation result follows from the fact that ζ̃(θ, λ) = ϕ(G(θ)+Π(θ)λ+

ς(θ)).

Proof of Corollary 3.4.2. Let s : ∂Θ × Rd → RJ(θ) be a vector-valued mapping

whose j-th component is sj(θ, λ) = 1{Gj(θ) + 〈Πj(θ), λ〉 > 0}. As the linear con-



188

straint qualification is satisfied, the solution λ∗ to the minimization problem (3.4.3)

satisfies the following Karush-Kuhn-Tucker (KKT) conditions with probability 127:

p = 2µΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)

t ≥ ‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2

0 ≤ µ

0 = µ(‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2 − t),

where µ is the Lagrange multiplier associated with the constraint in Eq. (3.4.3).

By Assumption 3.4.5 (ii), the constraint in (3.4.3) binds, and the conditions above

simplify to

p = 2µΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗) (3.B.15)

t = ‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2 (3.B.16)

µ > 0. (3.B.17)

We can solve (3.B.15) to obtain

(
W

1/2
J (θ)(θ)ΠJ (θ)(θ)ΠJ (θ)(θ)

′W
1/2
J (θ)(θ)

)−1
W

1/2
J (θ)(θ)ΠJ (θ)(θ)p

= 2µW
1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗).
(3.B.18)

Let R(p, θ) be the left hand side of the equation above. Take squared norms both

sides to obtain

‖R(p, θ)‖2 = |2µ|2‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2

= |2µ|2t,

27The constraint is non-differentiable only at finite number of points, and the probability of
G(θ) taking these values is 0.
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where the second equality follows from (3.B.16). So, we obtain

2µ = ‖R(p, θ)‖t−1/2. (3.B.19)

Plugging this into (3.B.18) gives

W
1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗) =
R(p, θ)

‖R(p, θ)‖
t1/2. (3.B.20)

Substituting (3.B.19) and (3.B.20) into (3.B.15) yields

p = Π′J (θ)W
1/2
J (θ)R(p, θ). (3.B.21)

Now, we can use this result to obtain

V(p, θ, t) = 〈p, λ∗〉

=
〈

Π′J (θ)W
1/2
J (θ)R(p, θ), λ∗

〉
=
〈
R(p, θ),W

1/2
J (θ)ΠJ (θ)λ

∗
〉

=
〈
R(p, θ),W

1/2
J (θ)(ΠJ (θ)λ

∗ ◦ s(θ, λ∗))
〉

=

〈
R(p, θ),

R(p, θ)

‖R(p, θ)‖
t1/2 −W 1/2

J (θ)(θ)(GJ (θ) ◦ s(θ, λ∗))
〉

= ‖R(p, θ)‖ t1/2 −
〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)

〉
,

where the fourth equality follows from the fact that R(p, θ) = R(p, θ) ◦ s(θ, λ∗),
and the fifth equality follows from (3.B.20).

If W (θ) satisfies WJ (θ)(θ) = (ΠJ (θ)(θ)ΠJ (θ)(θ)
′)−1 for any θ ∈ ∂ΘI , then

‖R(p, θ)‖2 = p′ΠJ (θ)(θ)
′(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p.

Note that Eq. (3.B.21) implies that

p′p = p′ΠJ (θ)(θ)
′(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p.

As p is in the unit sphere, p′p = ‖p‖2 = 1. Combining the results above establishes
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‖R(p, θ)‖ = 1. Therefore, the limiting process takes the form Z(p, t) := µ(t) +

Z∗(p) with µ(t) = t1/2 and

Z∗(p) = sup
θ∈H(p,ΘI)

−〈R(p, θ),W
1/2
J (θ)(θ)GJ (θ)(θ)〉

= sup
θ∈H(p,ΘI)

−〈(ΠJ (θ)(θ)ΠJ (θ)(θ)
′)−1ΠJ (θ)(θ)p,GJ (θ)(θ)〉.

For Theorem 3.4.2, we require the following regularity conditions.

Assumption 3.B.1 (Local Process Regularity for QLR Statistic): (i) For

any finite sets U ⊂ R and S ⊂ Sd−1, (supR−u,p ζ̃n, (u, p) ∈ U×S)
d→ (supR−u,p ζ̃ , (u, p) ∈

U × S). (ii) For any 0 < ε, there exists δ > 0 such that

lim
n→∞

P

(
sup
‖p−q‖<δ

∣∣∣∣∣sup
R−u,p

ζ̃n(θ, λ)− sup
R−u,q

ζ̃n(θ, λ)

∣∣∣∣∣ ≥ ε

)
≤ ε,

where R−u,p := H(p,ΘI)×K−u,p.

Assumption 3.B.1 (i) requires that the finite dimensional distribution of

the supremum of ζ̃n over a class of compact sets converges to that of ζ̃. This is

analogous to weak epiconvergence. We call this version “weak supconvergence” as

it is close in spirit to Condition S.2 of CHT.

Proof of Theorem 3.4.2. First, by the hypothesis that ζ̃n weakly supconverges to

ζ̃, Ln(·, u)
f.d.→ L(·, u) where

L(p, u) := sup
θ∈H(p,ΘI)

sup
λ∈K−u,p

‖W 1/2(θ)(G(θ) + Π(θ))‖2
+.

The tightness of {Ln(·, u)} follows from the assumption of the corollary, and these

results imply Ln(·, u)
u.d.→ L(·, u) for each u.

Now we derive the representation of L given in the theorem. Below, we fix

p ∈ Sd−1 and θ ∈ ∂ΘI . As θ ∈ ∂ΘI , the components of M(θ, λ) for j ∈ J c(θ)

are irrelevant. To obtain a closed form for L, consider the following optimization
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problem

C(θ, p, u) := sup
λ
‖W 1/2

J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ)‖2
+ (3.B.22)

s.t.〈p, λ〉 ≤ u.

Similar to the proof of Corollary 3.4.2, the solution λ∗ of the problem above satisfies

the following KKT conditions with probability 1.

νp = 2ΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)

〈p, λ∗〉 ≤ u

0 ≤ ν

0 = ν(u− 〈p, λ∗〉),

where ν is the Lagrange multiplier associated with the constraint in (3.B.22). By

Assumption 3.4.5 (ii), the constraint in (3.B.22) binds, and the conditions above

simplify to

νp = 2ΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗) (3.B.23)

〈p, λ∗〉 = u (3.B.24)

0 < ν.

We can solve (3.B.23) to obtain

νR(p, θ) = 2W
1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗). (3.B.25)

Taking squared norms both sides, we obtain

ν2‖R(p, θ)‖2 = 4‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2 (3.B.26)

= 4C(θ, p, u).
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Plugging in ν = 2C(θ, p, u)1/2/‖R(p, θ)‖ back to (3.B.23), we obtain

p = ‖R(p, θ)‖C(θ, p, u)−1/2ΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗).

Now, substitute this into (3.B.24),

u = ‖R(p, θ)‖C(θ, p, u)−1/2

×
〈
ΠJ (θ)(θ)

′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ
∗) ◦ s(θ, λ∗), λ∗

〉
= ‖R(p, θ)‖C(θ, p, u)−1/2

×
〈
W

1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗),W 1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉

= ‖R(p, θ)‖C(θ, p, u)−1/2
〈ν

2
R(p, θ),W

1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉

=
〈
R(p, θ),W

1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉
,

where the second equality follows from (3.B.25). Using (3.B.25) and the result

above, the right hand side of (3.B.26) can be alternatively written as

2ν
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+
〈
R(p, θ),W

1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉)

= 2ν
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)
.

Therefore, from (3.B.26), we obtain

ν = 2‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)

= 2‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)

+
,

where the second equality follows from the fact ν > 0. As C(θ, p, u) = ‖R(p, θ)‖ν2/4,

we have

C(θ, p, u) = ‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)2

+
.

Take the supremum over H(p,ΘI). The result follows.

Proof of Corollary 3.4.3. We first analyze the Wald statistic supp∈Sd−1{−Zn(p, t)+
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t1/2}2
+. By Corollary 3.4.2, the distributional limit supp∈Sd−1{−Z(p, t) + t1/2}2

+ of

this statistic can be represented as

sup
p∈Sd−1

{
− sup

θ∈H(p,ΘI)

−
〈
(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p,GJ (θ)(θ)
〉}2

+

= sup
p∈Sd−1

{
inf

θ∈H(p,ΘI)

〈
(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p,GJ (θ)(θ)
〉}2

+

= sup
p∈Sd−1

〈(
ΠJ (θI(p))(θI(p))ΠJ (θI(p))(θI(p))

′)−1
ΠJ (θI(p))(θI(p))p,GJ (θI(p))(θI(p))

〉2

+

= Z,

where we used H(p,ΘI) = {θI(p)} to obtain the third equality. For the QLR

statistic,

sup
θ∈ΘI

nQn(θ)
d→ sup

p∈Sd−1

L(p, 0)

by Theorem 3.4.2 and the continuous mapping theorem. By Theorem 3.4.2, this

limit can be represented as

sup
p∈Sd−1

sup
θ∈H(p,ΘI)

(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉)2

+

= sup
p∈Sd−1

〈(
ΠJ (θI(p))(θI(p))ΠJ (θI(p))(θI(p))

′)−1
ΠJ (θI(p))(θI(p))p,GJ (θI(p))(θI(p))

〉2

+

= Z.

For the second part, note that τ ∗1−α is the 1−α quantile of Z. Therefore, it suffices

to show that t∗1−α is also the 1− α quantile of Z under our hypotheses. For that,
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we can write

t∗1−α = inf

{
t : P

(
sup
p∈Sd−1

{−Z(p, t)}+ ≤ 0

)
≥ 1− α

}

= inf

{
t : P

(
sup
p∈Sd−1

{−t1/2 −Z∗(p)}+ ≤ 0

)
≥ 1− α

}

= inf

{
t : P

(
sup
p∈Sd−1

{−Z∗(p)}+ ≤ t1/2

)
≥ 1− α

}

= inf

{
t : P

(
sup
p∈Sd−1

{−Z∗(p)}2
+ ≤ t

)
≥ 1− α

}
= inf {t : P (Z ≤ t) ≥ 1− α} ,

where the third equality follows from the fact that for any x ≥ 0 and a continuous

function f , supp∈Sd−1{−x+ f(p)}+ ≤ 0⇔ supp{f(p)}+ ≤ x.

3.B.8 Proof of Theorems in Section 3.5

The following lemma is often useful to identify the weak epilimit of a se-

quence of stochastic processes.

Lemma 3.B.9: Let Γ(Rd) be the space of convex lsc functions on Rd that

are proper and have effective domains with nonempty interiors (or equivalently are

finite on an open set). Suppose that {ξn, n ≥ 1} is a sequence in Γ(Rd) and let Q
be a countable dense subset of Rd. If ξn

f.d.→ ξ on Q where P (ξ ∈ Γ(Rd)) = 1, then

ξn
e.d.→ ξ.

Proof. See Lemma 3.1. in Geyer (2003).

Proof of Theorem 3.5.1. Let

ζ̃n(θ, λ) = nQn(θ + λ/
√
n)

= (
√
n(Ên(X1i)− θ1)− λ+

√
n(θ1 − θ))2

+

+ (
√
n(θ − θ2) + λ−

√
n(Ên(X2i)− θ2))2

+ +∞× 1θ/∈Θ.
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This function is convex in (θ, λ), lsc, and has an effective domain with nonempty

interior. Under our hypothesis, the finite dimensional limit of ζ̃n(θ, λ) is

ζ̃(θ, λ) = (Z1 − λ+ ς1(θ))2
+ + (ς2(θ) + λ− Z2)2

+,

where (Z1, Z2)′ ∼ N(0,Ω) and

ς1(θ) =


∞ θ < θ1

0 θ = θ1

−∞ θ > θ1

, ς2(θ) =


∞ θ > θ2

0 θ = θ2

−∞ θ < θ2

.

This function is convex and lsc, and finite on an open interval (θ1, θ2), and ζ̃n(θ, λ)
f.d.→

ζ̃(θ, λ). Therefore, Lemma 3.B.9 is applicable. Thus, the weak epi-limit coincides

with the finite dimensional limit.

Using the representation result in Corollary 3.4.2, we can derive a closed

form for Z. For example, when p = −1 and θ ∈ H(−1, θ) = {θ1}, we have

J (θ1) = 1, R(−1, θ) = 1. Therefore,

Z(−1, t) = t1/2 − Z1.

Similarly,

Z(1, t) = t1/2 + Z2.

Therefore, the limiting process Z(p, t) has mean t1/2ι and covariance E[(Z(−1, t)−
t1/2)(Z(−1, t)−t1/2)] = Ω11, E[(Z(1, t)−t1/2)(Z(1, t)−t1/2)] = Ω22, and E[(Z(−1, t)−
t1/2)(Z(1, t)− t1/2)] = −Ω12. By Corollary 3.4.1,

√
ndH(Θ̂n(t),ΘI)

d→ max{|Z(−1, t)|, |Z(1, t)|}
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and

√
n~dH(ΘI , Θ̂n(t))

d→ max{−Z(−1, t)+,−Z(1, t)+}.

Proof of Theorem 3.5.1. The result for Wn follows directly from Theorem 3.5.1.

The results for QLRn and W̃n are due to Chernozhukov, Hong, and Tamer (2004)

and BM respectively.
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