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Short Communication 

Revising mental representations of faces based on new 
diagnostic information 

Samuel A.W. Klein *, Ryan J. Hutchings , Andrew R. Todd * 

University of California, Davis, 1 Shields Avenue, Davis, CA 95616, United States of America   

A R T I C L E  I N F O   
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A B S T R A C T   

Extending evidence for the rapid revision of mental representations of what other people are like, we explored 
whether people also rapidly revise their representations of what others look like. After learning to ascribe positive 
or negative behavioral information to a target person and generating a visualization of their face in a reverse- 
correlation task, participants learned new information that was (a) counter-attitudinal and diagnostic about 
the person’s character or (b) neutral and non-diagnostic, and then they generated a second visualization. Ratings 
of these visualizations in separate samples of participants consistently revealed revision effects: Time 2 visual-
izations assimilated to the counter-attitudinal information. Weaker revision effects also emerged after learning 
neutral information, suggesting that the evaluative extremity of visualizations may dilute when encountering any 
additional information. These findings indicate that representations of others’ appearance may change upon 
learning more about them, particularly when this new information is counter-attitudinal and diagnostic.   

1. Introduction 

First impressions are lasting impressions (Asch, 1946)—or so it has 
been assumed, particularly for implicit (i.e., unintentional) impressions. 
Indeed, some dual-process theorizing has maintained that, although 
people readily revise their explicit impressions of others when encoun-
tering countervailing target information, implicit impression revision 
occurs more slowly, if at all (e.g., Rydell & McConnell, 2006). This claim 
was initially supported by research that failed to find implicit impression 
revision based on countervailing target information (e.g., Gregg, Seibt, 
& Banaji, 2006). Although the malleability of implicit impressions has 
long been recognized (Gawronski & Bodenhausen, 2006), an assumption 
guiding this literature has been that exposure to abundant counter-
vailing information is required for implicit impression revision. 

Counter to this assumption, accumulating evidence now indicates 
that people can rapidly revise their implicit impressions when encoun-
tering even a single piece of diagnostic information that contradicts their 
initial impression (Ferguson, Mann, Cone, & Shen, 2019). For example, 
participants who first learned positive behavioral information about a 
person fully reversed their initially favorable impression after learning 
about his child molestation conviction (Cone & Ferguson, 2015). Such 
updating generalizes beyond the context in which the impression was 
formed (Brannon & Gawronski, 2017) and is evident days later (Cone, 

Flaharty, & Ferguson, 2021), suggesting genuine revision. 
Notably, all documented instances of rapid impression revision have 

emerged in mental representations of the target person’s character, 
commonly assessed with sequential-priming tasks (e.g., affect misattri-
bution procedure [AMP]; Payne, Cheng, Govorun, & Stewart, 2005) and 
self-report measures. Although tracking impression revision with such 
measures provides insight into evaluative assumptions about the per-
son’s character, it is silent on how the person’s physical appearance is 
initially represented or potentially revised. 

Here, we explored the revision of facial appearance representations 
using reverse correlation (Mangini & Biederman, 2004), a data-driven 
approach for visualizing the features underlying face classifications. 
This technique imposes no pre-existing assumptions about these fea-
tures, thereby affording an unconstrained assessment of what another 
person looks like. The measurement outcomes of reverse-correlation 
tasks, unlike those of the AMP and other indirect measures of what a 
person is like, include conditionally variable features of physical 
appearance (Brinkman, Todorov, & Dotsch, 2017). Exactly how these 
features relate to measures that serve as proxies of character represen-
tations remains an open question (Dotsch, Wigboldus, & Van Knippen-
berg, 2013). 

Our investigation comprised an image-generation experiment and 
three image-assessment experiments. In the image-generation 
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experiment, participants visualized a target person twice: first after 
learning to ascribe positive or negative behaviors to him, and again after 
receiving new information that was (a) diagnostic, extreme, and con-
tradictory to the initial information or (b) neutral and non-diagnostic. 
This procedure produced classification images for each of 8 experi-
mental conditions. In three image-assessment experiments, with three 
distinct image-processing procedures, separate samples of participants 
rated these images on traits that are detectable in faces. Data for all 
experiments are available here: https://osf.io/7u6cd/ 

2. Image-generation experiment 

2.1. Method 

2.1.1. Participants 
Prior research on implicit impression revision has revealed large 

effects (ηp
2s > 0.12; Cone & Ferguson, 2015); however, whether 

appearance representations shift comparably remains unknown. 
Rounding up to the nearest number divisible by 50, we thus set our 
target sample size near our smallest effect of interest (ηp

2 = 0.05; 90% 
power) in our 2 × 2 × 2 mixed design.1,2 After surpassing our target 
sample (250 participants), we continued data collection until the week’s 
end. In total, 338 undergraduates participated for course credit. We 
excluded data from 53 participants who pressed the same key for ≥95% 
of image-generation trials at Time 1 or Time 2. The final sample 
comprised 285 participants (see Table 1 for participant demographics in 
all experiments). Across experiments, participants provided informed 
consent prior to participating. 

2.1.2. Procedure 
Participants first learned to ascribe positive or negative behaviors to 

a target person, Robert (Cone & Ferguson, 2015). They read (in ran-
domized order) 64 behaviors (32 positive, 32 negative; Rydell & 
McConnell, 2006) and indicated whether each was characteristic or 
uncharacteristic of him, after which condition-specific feedback 
appeared for 2.5 s. In the positive-induction condition, a blue correct 
message appeared after classifying a positive (negative) behavior as 
characteristic (uncharacteristic), and a red incorrect message appeared 
after classifying a negative (positive) behavior as characteristic (un-
characteristic). Accompanying each message was a summary statement 
(e.g., “Giving flowers to his mother is characteristic of Robert”). In the 
negative-induction condition, these feedback contingencies were 
reversed. Participants then reported their impressions of Robert on 7 
traits that are important for person impressions (Oosterhof & Todorov, 
2008): trustworthy, attractive, dominant, caring, intelligent, aggressive, 
and mean (1 = not at all, 7 = extremely). 

Next, participants completed a reverse-correlation task (Brinkman 
et al., 2017). On each of 350 trials, they selected which of two side-by- 
side degraded face images looked more like Robert. Each pair of images 

comprised a random noise pattern3 and its inverse superimposed onto a 
base face image.4 This technique maximizes between-image contrast 
(Dotsch & Todorov, 2012). Responses <100 ms or >4000 ms after target 
onset prompted a message to respond more slowly or more quickly, 
respectively. 

Participants then received one new piece of information about 
Robert. In the counter-attitudinal condition, the information was diag-
nostic about his character and contradicted the valence of their Time 1 
induction (“Robert was recently convicted of child molestation” after a 
positive induction; “Robert donated one of his kidneys to a child in need 
he had never met before” after a negative induction). These behaviors 
were rated similarly in diagnosticity and valence extremity (see Cone & 
Ferguson, 2015). In the neutral condition, the information was neutral in 
valence (“Robert recently bought a soda”). Finally, participants again 
reported their impressions of Robert and completed the reverse- 
correlation task in a newly randomized order. 

Using the rcicr package (Dotsch, 2014), we created group classifi-
cation images by superimposing onto the base face the average noise 
patterns of the selected images across all participants in each condition. 
Group images reflect the average features visualized of Robert within 
that condition (Fig. 1).5 

2.2. Results 

All analyses were conducted via linear mixed-effects models 
(LMEMs), with each model containing fixed effects for Time, Time 1 
induction, Time 2 information, and all possible interactions. For each 
model, we began with its maximal random-effects structure (i.e., 
random intercepts and all appropriate random slopes for each source of 
variance; Barr, Levy, Scheepers, & Tily, 2013) and downsized to solve 
problems of non-convergence and singularity. The sources of variance 
were participants and traits in the image-generation experiment and 
image-assessment Experiment 1, and participants and stimuli in image- 
assessment Experiments 2A and 2B.6 

We reverse-scored responses for aggressive, dominant, and mean, 
ensuring that all traits were directionally consistent in valence, and 
considered the 7 traits as having been sampled from the population of 
positive traits on which impressions could be formed. Because the trait 
ratings were highly correlated (see the Supplementary Materials) and 
fitting separate models for each trait can inflate Type-I error (Herzog, 
Francis, & Clarke, 2019), we included random effects for traits.7 

This analysis revealed a significant three-way interaction, b = − 0.37, 
SE = 0.03, F(1, 280.97) = 206.33, p < .001 (Fig. 2). To explicate this 
interaction, we examined contrasts of the model’s Time × Time 2 in-
formation interactions separately in the positive-induction and 
negative-induction conditions. This interaction was significant in both 
the positive-induction condition, b = 2.27, SE = 0.15, t(281) = 15.68, p 

1 To our knowledge, no formal power analysis procedures exist for the image- 
generation phase in reverse-correlation paradigms (see also Brown-Iannuzzi, 
Cooley, Marshburn, McKee, & Lei, 2021).  

2 Our planned analyses were conducted at the level of participants; however, 
based on editorial feedback, we shifted to analyses that account for other 
sources of variance (i.e., traits or stimuli, depending on the experiment). Thus, 
the reported a priori power analyses, conducted with G*Power (Faul, Erdfelder, 
Lang, & Buchner, 2007), only considered the number of participants, but not 
the number of traits or stimuli. 

3 The noise patterns comprised 4092 superimposed truncated sinusoid 
patches in all possible combinations of 2 cycles in 6 orientations (0◦, 30◦, 60◦, 
90◦, 120◦, 150◦) × 5 spatial frequencies (1, 2, 4, 8, 16 patches per image) × 2 
phases (0, π/2), with random contrasts.  

4 The base face, which Krosch and Amodio (2014) created by morphing 100 
White and 100 Black male faces, has been used in prior reverse-correlation 
research (e.g., Lei & Bodenhausen, 2017).  

5 We report in the Supplementary Materials additional measures collected in 
all experiments.  

6 See the Supplementary Materials for a detailed description of the random- 
effects structures for each mixed-effects model reported in the main text, and 
a discussion of how problems of non-convergence and singularity in the 
maximal models led to those reported in the main text.  

7 An alternative analytic approach entails using data-reduction techniques (e. 
g., exploratory factor analysis) to fit these models to latent factor(s). Because 
our focus was on testing for revision effects in representations of appearance, 
regardless of the trait, we do not report this approach in the main text (but see 
the Supplementary Materials for results using this alternative approach). 
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< .001, and the negative-induction condition, b = − 0.68, SE = 0.15, t 
(281) = − 4.66, p < .001, with significantly greater positive-to-negative 
than negative-to-positive revision, b = − 1.59, SE = 0.21, t(281) =
− 7.78, p < .001.8 

Next, we conducted pairwise comparisons in each induction condi-
tion. In the positive-induction condition, learning about Robert’s child 
molestation conviction prompted negative revision, b = 2.42, SE = 0.13, 
t(30.00) = 19.40, p < .001, but learning neutral information did not, b =
0.15, SE = 0.13, t(31.60) = 1.21, p = .235. In the negative-induction 
condition, learning about Robert’s kidney donation prompted positive 
revision, b = − 0.91, SE = 0.13, t(32.20) = − 7.17, p < .001, but learning 
neutral information did not, b = − 0.24, SE = 0.13, t(30.00) = − 1.88, p 
= .070.9 

These results replicate prior findings indicating that learning diag-
nostic counter-attitudinal target information prompts character repre-
sentation revision (Cone & Ferguson, 2015). As in this prior work, we 
also observed an asymmetry whereby positive-to-negative revision was 
stronger than negative-to-positive revision. 

3. Image-assessment experiments 

To examine whether learning countervailing diagnostic information 
prompts appearance representation revision, we conducted several 
image-assessment experiments. In Experiment 1, a new sample of par-
ticipants rated the 8 group images (Fig. 1) on the same traits from 
before. Experiments 2A and 2B used two alternative image-processing 
procedures (detailed below) and two new samples of raters to assess 
apparent trustworthiness. 

3.1. Experiment 1 

3.1.1. Method 

3.1.1.1. Participants. We again considered the large revision effects 
(ηp

2s > 0.12) in Cone and Ferguson (2015) but allowed for weaker ef-
fects. To detect a medium-sized three-way interaction (ηp

2 = 0.06) with 
80% power in a 2 × 2 × 2 within-participants design, we set our target 
sample size at 126. Amazon’s Mechanical Turk (MTurk) workers (N =
155) participated for pay. No data were excluded; thus, the final sample 
comprised 155 participants. 

3.1.1.2. Procedure. Participants rated the 8 group images on the same 7 
traits from the image-generation experiment. 

3.1.2. Results 
A LMEM revealed a significant three-way interaction, b = − 0.11, SE 

= 0.01, F(1, 8358) = 52.32, p < .001 (Fig. 3). We again examined 
contrasts of the model’s Time × Time 2 information interactions sepa-
rately in the two induction conditions. This interaction was significant in 
both the positive-induction condition, b = 0.65, SE = 0.08, t(8358) =

Table 1 
Participant demographics in each experiment.  

Experiment Age Gender (%) Race/Ethnicity (%) 

M SD Male Female Nonbinary W B A L M 

IG 19.9 2.2 20.7 76.8 1.4 18.9 2.5 46.0 20.4 12.3 
IA 1 35.3 10.6 63.2 36.1 0.0 38.7 36.8 6.5 7.7 10.3 
IA 2A 38.5 12.6 48.2 50.0 0.0 76.3 6.1 6.1 1.8 9.6 
IA 2B 20.0 2.7 18.2 79.3 0.0 15.7 0.4 50.8 20.2 12.8 

Note. IG = image generation, IA = image assessment. Some participants did not report their gender or race/ethnicity. For race/ethnicity, W = White or European 
American, B = Black or African American, A = Asian American or Pacific Islander, L = Latinx or Hispanic, and M = reported other or more than one race/ethnicity. 

Positive Induction Negative Induction

Time 1 Time 2 Time 1 Time 2

Counter-
attitudinal

Neutral

Fig. 1. Group classification images by Time, Time 1 induction, and Time 2 information.  

8 This additional post-hoc test assessed the magnitude of revision, as reflected 
in the difference between the Time × Time 2 information contrast in the 
positive-induction condition and this same contrast in the negative-induction 
condition. Due to the opposing numerical directions of the contrasts, we first 
multiplied all ratings in the negative-induction condition by a constant of − 1, 
ensuring that the difference between the two contrasts reflects the magnitude of 
difference. We used this same approach in all three image-assessment 
experiments.  

9 For detailed information on the descriptive statistics for these and all other 
experiments, see the Supplementary Materials. 
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7.69, p < .001, and the negative-induction condition, b = − 0.21, SE =
0.08, t(8358) = − 2.54, p = .021, with significantly greater positive-to- 
negative than negative-to-positive revision, b = − 0.43, SE = 0.13, t 
(8358) = − 3.31, p = .001. 

Pairwise comparisons in each induction condition revealed that, in 
the positive-induction condition, learning about Robert’s child moles-
tation conviction prompted negative revision, b = 0.66, SE = 0.06, t 
(8358) = 11.16, p < .001, but learning neutral information did not, b =
0.02, SE = 0.06, t(8358) = 2.66, p = .790. In the negative-induction 
condition, learning about Robert’s kidney donation prompted positive 
revision, b = − 0.37, SE = 0.06, t(8358) = − 6.63, p < .001, but so did 
learning neutral information, b = − 0.16, SE = 0.06, t(8358) = − 2.69, p 
= .007, albeit to a lesser extent.10 

Visualizations of Robert’s appearance grew less favorable upon 
learning negative counter-attitudinal information and more favorable 
upon learning positive counter-attitudinal information. Notably, 
positive-to-negative revision was stronger than negative-to-positive, 
replicating findings from the image-generation experiment and else-
where (Cone & Ferguson, 2015). When learning neutral information, 
participants did not visualize Robert’s appearance differently if their 
initial visualization was positive; however, they did visualize him more 
favorably if their initial visualization was negative. Because the neutral 
information was non-diagnostic, revision here may reflect a dilution 
effect (Nisbett, Zukier, & Lemley, 1981), whereby highly negative initial 
visualizations become less extreme upon learning any additional 
information. 

3.2. Experiments 2A and 2B 

Image-assessment Experiment 1 relied exclusively on group images 
that were created by aggregating across the responses of all image 
generators per condition. This practice, though normative in reverse- 
correlation research (Brinkman et al., 2017), can artificially augment 
between-condition differences, thereby inflating Type-I error (Cone, 
Brown-Iannuzzi, Lei, & Dotsch, 2021). Image-assessment Experiments 
2A and 2B used alternative image-processing procedures—subgroup and 
individual classification images—that avoid this limitation (Cone, 

Brown-Iannuzzi, et al., 2021; Hutchings, Simpson, Sherman, & Todd, 
2021). Both experiments assessed apparent trustworthiness, given its 
centrality in face impressions (Oosterhof & Todorov, 2008). 

3.2.1. Method 

3.2.1.1. Participants. We considered the possibility that subgroup and 
(perhaps especially) individual images are noisier than group images, 
potentially producing smaller effects. To detect medium-sized three-way 
interactions (Experiment 2A: ηp

2 = 0.06; Experiment 2B: ηp
2 = 0.03) 

with 80% power, we set target sample sizes of 126 (Experiment 2A) and 
257 (Experiment 2B). In total, 125 MTurkers (Experiment 2A) and 259 
undergraduates (Experiment 2B) participated for pay and course credit, 
respectively. We excluded data from participants who gave the same 
response on ≥95% of ratings (Experiment 2A: n = 6; Experiment 2B: n =
5) or who did not finish the entire experiment (Experiment 2A: n = 5; 
Experiment 2B: n = 12). The final samples comprised 114 participants in 
Experiment 2A and 242 participants in Experiment 2B. 

3.2.1.2. Procedure. We used the rcicr package (Dotsch, 2014) to create 
subgroup and individual images. In Experiment 2A, we created sub-
group images by aggregating the noise patterns selected by 12 random 
subsets of image generators in each condition and superimposing them 
onto the base face (Cone, Brown-Iannuzzi, et al., 2021). The total 
stimulus set included 96 subgroup images, with each image comprising 
the average selected noise patterns from 5 to 7 image generators. Par-
ticipants rated all 96 subgroup images (order randomized). In Experi-
ment 2B, we created individual images by aggregating the noise patterns 
selected by each image generator, separately for each time point, and 
superimposing them onto the base face. The total stimulus set comprised 
570 images. To minimize fatigue, we had participants rate one of three 
sets of 95 randomized pairs of Time 1 and Time 2 images, totaling 190 
images. In both experiments, participants rated how trustworthy the 
person looked (1 = extremely untrustworthy, 7 = extremely trustworthy). 

3.2.2. Results 

3.2.2.1. Experiment 2A (Subgroup Images). A LMEM revealed a signifi-
cant three-way interaction, b = − 0.11, SE = 0.03, F(1, 45.27) = 10.67, p 
= .002 (Fig. 4). Next, we examined contrasts of the model’s Time × Time 
2 information interactions separately in the two induction conditions. 
This interaction was significant in the positive-induction condition, b =

Fig. 2. Estimated marginal means of trait impressions of Robert by Time, Time 1 induction, and Time 2 information in the image-generation experiment. Error bars 
represent 95% confidence intervals. The surrounding violin plots illustrate mirrored density distributions of image generators’ responses after a smoothing function 
was applied. 

10 A difference between counter-attitudinal and neutral information in the 
negative-induction condition is evidenced by the significant Time × Time 2 
contrast in the negative-induction condition reported above. 
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0.72, SE = 0.19, t(44.8) = 3.89, p < .001, but not in the negative- 
induction condition, b = − 0.14, SE = 0.19, t(44.8) = − 0.75, p = .456, 
with significantly greater positive-to-negative than negative-to-positive 
revision, b = − 0.58, SE = 0.26, t(44.3) = − 2.23, p = .031. 

Pairwise comparisons in each induction condition revealed that, in 
the positive-induction condition, learning about Robert’s child moles-
tation conviction prompted negative revision, b = 0.92, SE = 0.13, t 
(48.4) = 6.87, p < .001, but learning neutral information did not, b =
0.20, SE = 0.13, t(48.40) = 1.48, p = .145. In the negative-induction 
condition, learning about Robert’s kidney donation prompted positive 
revision, b = − 0.65, SE = 0.13, t(48.40) = − 4.90, p < 001, but so did 
learning neutral information, b = − 0.52, SE = 0.13, t(48.40) = − 3.86, p 
< 001. 

3.2.2.2. Experiment 2B (Individual Images). Once again, the three-way 
interaction was significant, b = − 0.03, SE = 0.01, F(1, 280.36) =
5.90, p = .016 (Fig. 5). As before, we examined contrasts of the model’s 

Time × Time 2 information interactions separately in the two induction 
conditions. This interaction was significant in the positive-induction 
condition, b = 0.20, SE = 0.08, t(281) = 2.55, p < .001, but not in the 
negative-induction condition, b = − 0.07, SE = 0.08, t(282) = − 0.89, p 
= .372, with no significant difference in the magnitude of positive-to- 
negative versus negative-to-positive revision, b = − 0.13, SE = 0.11, t 
(279) = − 1.17, p = .244. 

Pairwise comparisons in each induction condition revealed that, in 
the positive-induction condition, learning about Robert’s child moles-
tation conviction prompted negative revision, b = 0.39, SE = 0.06, t 
(303) = 6.88, p < .001. Learning neutral information also prompted 
negative revision, b = 0.19, SE = 0.06, t(303) = 3.24, p = .001, albeit to 
a lesser extent. In the negative-induction condition, learning about 
Robert’s kidney donation prompted positive revision, b = − 0.26, SE =
0.06, t(293) = − 4.43, p < 001, but so did learning neutral information, b 
= − 0.19, SE = 0.13, t(294) = − 3.29, p < 001. 

Fig. 3. Estimated marginal means of trustworthiness impressions of group classification images by Time, Time 1 induction, and Time 2 information in image- 
assessment Experiment 1. Error bars represent 95% confidence intervals. The surrounding violin plots illustrate mirrored density distributions of image raters’ 
responses after a smoothing function was applied. 

Fig. 4. Estimated marginal means of trustworthiness impressions of subgroup classification images by Time, Time 1 induction, and Time 2 information in image- 
assessment Experiment 2A. Error bars represent 95% confidence intervals. The surrounding violin plots illustrate mirrored density distributions of image raters’ 
responses after a smoothing function was applied. 
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4. Discussion 

Using a reverse-correlation paradigm, we found that visualizations of 
a target person’s face consistently assimilated to new information that 
was extreme, diagnostic, and contradictory to the initial information 
learned about him. Initially positive visualizations were revised to 
appear less trustworthy after learning about his child molestation 
conviction. The opposite pattern emerged when participants with 
negative initial visualizations learned about his kidney donation, albeit 
sometimes to no greater extent than the revision prompted by learning 
neutral information.11 These results complement other evidence of rapid 
revision in mental representations of what others are like under similar 
conditions (Ferguson et al., 2019). We also found a valence asymmetry, 
whereby greater positive-to-negative (vs. negative-to-positive) revision 
emerged in most cases (cf. Cone & Ferguson, 2015). 

Some evidence of revision also emerged, albeit more weakly, when 
learning new neutral information about the person. We suspect that 
revision here might reflect a dilution effect, whereby new non- 
diagnostic information diluted the extremity of the initial visualiza-
tions (Nisbett et al., 1981). If so, one implication of this finding is that 
extreme appearance representations may dissipate over time upon 
learning any additional target information. 

A strength of this work is its use of group, subgroup, and individual 
classification images, with the latter two procedures reducing concerns 
about Type-I error inflation (Cone, Brown-Iannuzzi, et al., 2021). 
Because subgroup aggregation is a new technique, future work should 
explore optimal points at which subgroup images minimize noise but 
preserve image-generator variability. Furthermore, although some re-
sults (e.g., revision after neutral information) varied across experiments, 
the key effect (i.e., stronger revision after counter-attitudinal vs. neutral 
information) emerged consistently. Such convergence helps bolster our 
conclusions. Future work should identify boundary conditions of these 
effects. For example, if the information initially learned about a person 
(e.g., broke into his neighbor’s house) is reinterpreted based on new 
information (e.g., the house was on fire and children were inside), do we 
revise our representations of their appearance accordingly (Mann & 
Ferguson, 2015)? 

Notably, we found a sizable correlation between image generators’ 
trustworthiness ratings of Robert in the image-generation experiment 
and image raters’ trustworthiness ratings of individual images of Robert 
in image-assessment Experiment 2B, r(568) = 0.51, p < .001, suggesting 
a correspondence between revision in (explicit) character representa-
tions and revision in appearance representations, at least when the new 
information learned about the person is diagnostic, extreme, and (pre-
sumably) believable (see Ferguson et al., 2019). What remains for future 
research is determining whether similar correspondence emerges if one 
of these elements is missing or under conditions in which corresponding 
revisions in implicit and explicit character representations have not 
materialized in prior work (e.g., Gregg et al., 2006). Future research 
should also explore whether revisions in character representations pre-
cede (and/or cause) changes in appearance representations. Answering 
these questions promises a richer understanding of how various com-
ponents of person impressions are integrated. 

The current findings indicate that mental representations of others’ 
appearance are far from static. As we learn new information about 
someone, not only do we revise our representations of what they are 
like; we also revise our representations of what they look like. 
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