
UC Irvine
ICS Technical Reports

Title
An analysis of test data selection criteria using the RELAY model of fault detection

Permalink
https://escholarship.org/uc/item/7sv5t4pc

Authors
Richardson, Debra J.
Thompson, Margaret C.

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sv5t4pc
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

An ftnalysis of Test Data Selection Criteria

Using the RELAY Model of Fault Detectio:r:!_

(Technical Report 92-38)

Debra J. Richardsofil
Margaret <f: Thomps0nt

April 1992

tlnformation and Computer Science Department
University of California
Irvine, California 92717

tComputer and Information Science Department
University of Massachusetts

Amherst, Massachusetts 01003

To appear in Transactions on Software Engineering.

(o f 1
e.,3
htl· f ;_ "3g
(~. 2;

Keywords: software testing, test data selection, fault-based testing, criteria evaluation

This material is based upon work sponsored by the National Science Foundation under grants DCR-
8404217, CCR-8704478, and CCR-8704311 with cooperation from the Defense Advanced Research Projects
Agency (ARPA Orders 6104 and 6108), the Defense Advanced Research Projects Agency under grants
MDA972-91-J-1009 and MDA972-91-J-1012 and the University of California MICRO program and Hughes
Aircraft Company under grant 91-131. The content does not necessarily reflect the position or the policy oí
the U.S. Government, and no official endorsement should be inferred.

Abstract

RELA Y is a model of faults and failures that defines failure conditions, which describe test
data for which execution will guarantee that a fault originales erroneous behavior that also
transfers through computations and information fiow until a failure is revealed. This model
of fault detection provides a framework within which other testing criteria's capabilities can
be evaluated. In this paper, we analyze three test data selection criteria that attempt to
detect faults in six fault classes. This analysis shows that none of these criteria is capable of
guaranteeing detection for these fault classes and points out two major weaknesses of these
criteria. The first weakness is that the criteria do not consider the potential unsatisfiability
of their rules; each criterion includes rules that are sufficient to cause potential failures for
some fault classes, yet when such rules are unsatisfiable, many faults may remain undetected.
Their second weakness is failure to integrate their proposed rules; although a criterion may
cause a subexpression to take 011 an erroneous value, there is no effort made to guarantee
that the intermediate values cause observable, erroneous behavior. This paper shows how the
RELA Y model overcomes these weaknesses.

1 Introduction

Testing is intended to reveal failures or to provide confidence tha.t failures do not occur,

where a fa.Hure is the observa.ble result of erroneous program beha.vior. This is typica.lly

done by selecting test da.ta, executing the program on tha.t data, a.nd comparing the results

to some test ora.ele, which determines whether the results are correct or erroneous. Ma.ny

te~. :tg criteria. [Bud81, DGK+ss, Fos80, Ha.m77, How86, Mor88, Wey81, Zei83] select test

da.ta focused on detecting failures ca.used by particular fault types, where a fault is a synta.ctic

defect in the source code. This "fault-ba.sed testing" a.pproa.ch is capa.ble of detecting ma.ny

of the subtle errors of commission that are revea.led only for very specific data, although it

can not, except by chance, detect errors of omission 1 .

In the context of certain assumptions, fault-based testing can guarantee tha.t particular

faults a.re detected or do not exist. This pa.per reports on a study tha.t a.nalyzes several fault

based testing criteria in terms of their a.bilities to actually reveal failures for particular fault

types. This a.na.lysis is based on the RELAY model of faults, failures, a.nd fault detection. The

RELA Y model defines how a fault origina tes a potential failure in a.n eva.luated expression

containing the fault a.nd how that potential failure must transfer through computa.tions to

produce a state failure a.nd through informa.tion fl.ow until it is revea.led as a.n external (or

observa.ble) failure. The model provides a mecha.nism for developing failure conditions tha.t

gua.ra.ntee fa.ult detection. We use these conditions to a.na.lyze the fa.ult detection ca.pa.bilities

of three fault-based testing criteria.; in particular, this pa.per examines the a.bility of these

criteria. to reveal sta.te failures a.t the statement containing a fa.ult.

Through this a.nalysis, we demonstra.te two ma.jor failings of these criteria.. First, in most

ca.ses, the "fault-specific rules" that comprise these criteria are merely sufficient (i.e., not

necessa.ry a.nd sufficient) to introduce a potential fa.Hure. When such a fault-specific rule is

unsa.tisfia.ble, a corresponding fault will not necessarily cause erroneous execution a.nd thus

ma.y rema.in undetected. Second, in a.11 ca.ses, the criteria do not consider the conditions

1In gonoral, a tosting critorion would havo to tako roquiromonts and/or sprcificat.ions into account t.o do so.

1

required to guarantee that erroneous behavior is observable and a failure is revealed. Instead,

the rules may introduce an erroneous intermediate value caused by a corresponding fault,

but do not guarantee that such a value affects the output or externa! environment (in fact,

we show that in most cases they do not even guarantee effect on the intermediate state of

the program variables). The erroneous intermediate values are often masked out by later

computations. This extremely common occurrence is coincidental correctness, which is the

bane of testing. Coincidental correctness occurs when no failure is detected, even though

a fault has been executed; thus the effort put into selecting the data and the associated

execution is for naught.

Section 2 surveys related works in fault-based testing and compares them to our work

on RE LAY. Section 3 defines terminology and presents notation used la.ter to describe the

RELA Y model and the analyzed testing criteria. Section 4 summarizes the RELA Y model and

developing failure conditions that guarantee fault detection. We present the detail necessary

to understand the analysis in this paper and only briefly describe other aspects of the model

(more detailed presentations appear in other papers [RT86c, RT88, Tho91]). Section 5 de

scribes an application of the model to develop fa.Hure conditions for fault classes and illustrates

that application for one fault class. The fa.Hure conditions for six fault classes are developed

in [RT86b] and provided in the appendix. In section 6, we use the model and these fa.Hure

conditions to analyze the fault detection capabilities of three fault-based test data selection

criteria for these six fault classes. In conclusion, we discuss the implications of the analysis

and our future plans for RELAY.

2

2 Related Fault-based Testing Work

Fault-based testing criteria consist, in some sense, of "fault-specific rules" intended to detect

particular fault types. Fault-based heuristics have been used by testers since the dawn of

programming. Such heuristics are employed by exa.mining the source code and selecting test

data sensitive to commonly occurring faults. Myers outlines many such heuristics [Mye79].

The attempts to formalize fault-based testing have a comrnon underlying theme: distin

guishing the test prograrn from alternatives in a set of related prograrns. This approach as

sumes the test progra.m is "almost correct" and differs from sorne hypothetical correct progra.m

by at most some definable faults (the competent programmer hypothesis [DLS78, DLS79]).

This near correctness might be determined by successfully passing some high-level functional

testing phase or by satisfying sorne structural testing criterion. In its various forms, this

assumption is taken to mean that the hypothetical correct program is in the "neighborhood"

of the test program. Budd and Angluin formalize the notion of "program correctness within

a neighborhood of alternate programs'' [BA80]; assuming the correct program is within the

neighborhood of the test program, then a test set that distinguishes the test program from

each alternate program in the neighborhood is reliable [How76, GG75] for the test program.

A fault-based testing criterion defines a neighborhood by the class of faults that it considers.

The broader the class of fauits considered, and hence the larger the neighborhood, the more

confidence we gain in the testing activity.

Formal fault-based testing criteria use one of two techniques: either they measure the

adequacy of pre-selected test data or they guide test data selection. In what follows, we first

discuss several fault-based test data measurement criteria and then describe several fault

based test data selection criteria. It is beyond the scope of this paper to fully compare these

criteria. We provide slightly more detail on those criteria that are most similar to the RELAY

model; more thorough surveys of fault-based testing and their relation to RELAY appear

elsewhere [RT86a, RT86c, Tho91].

3

The ea.rliest forma.lized fault-ba.sed testing criteria. were introduced independently by Ha.m

let a.nd by DeMillo, Lipton a.nd Sayward. Both criteria. seed particular types of faults into the

test progra.m a.nd mea.sure the a.dequacy of a set of test data. selected by some other mea.ns

in terms of its a.bility to detect the seeded faults. Ha.mlet 's testing with the aid of a compiler

[Ha.m77] seeds fa.ults a.s alterna.tive expressions that are "simpler" than the original expres

sion in the source code. An extended compiler instruments the code to compare the va.lues

computed by ea.ch alterna.te a.nd the corresponding original expression for the pre-selected

test da.ta. a.nd reports those alterna.tes tha.t are not distinguished. Mutation analysis [DLS78],

introduced by DeMillo, Lipton, a.nd Sa.ywa.rd, seeds simple, single-token fa.ults into the source

code to produce "muta.nt" progra.ms. The system then executes the original a.nd muta.nt

progra.ms on the pre-selected test da.ta. a.nd determines which muta.nts a.re "killed" - tha.t

is, which produce different output results from the original for a.t lea.st one test da.tum. For

botl~ these criteria., the tester a.ugments the test da.ta. set itera.tively to elimina.te the seeded

faults tha.t ha.ve not yet been distinguished and tha.t are determined not to be equivalent to

the original code. The underlying philosophy is that in the process of finding a.11 seeded fa.ults

a.11y actual, possibly more complex, faults in the source code will a.lso be eliminated (which is

founded on belief in the coupling effect [DLS78, DLS79]).

These two criteria. require explicit constructio11 a.nd execution (or a.t best pa.rtia.l inter

pretation) of ma.ny alterna.te programs. Two more recent fault-ba.sed measureme11t criteria.,

developed independently by Morell a.nd Zeil, a.re more ana.lytica.lly-ba.sed. Ra.ther tha.11 mea.

sure a. pre-selected test da.ta set through execution, both criteria. a.na.lyze the test da.ta. set

a.nd the program to determine faults tha.t could exist in the progra.m tha.t would rema.in un

detected by execution on the test da.ta.. Morell's criterion is ba.sed 011 a fault-based testing

model [Mor84] that introduces two concepts: "creation" of a.n initia.l erroneous sta.te a.fter

the sta.teme11t conta.i11i11g a. fault, a.11d its "propa.gation" to the output. Crea.tion a.nd prop

a.ga.tion conditions a.re described that a.re sufficient for a. fault to crea.te a.n erroneous state

tha.t propaga.tes to the output. Morell's model provided the ba.sis for our initial work 011 the

4

RELAY model2. In Symbolic fault-based testing [Mor88, Mor90], Morell uses his model to

symbolically represent faults that would not be detected by execution on a pre-selected test

data set. Zeil's criterion describes functional descriptions of "perturbations" that correspond

to fault cla.sses [Zei83J. Perturbation testing [Zei84, Zei89] thereby identifies faults of a par

ticular functional cla.ss that would not introduce an incorrect state and hence would not be

detected by the pre-selected test data set. Perturbation testing also determines if the output

is partially dependent on the perturbation, thus checking to see if it could produce a failure,

but <loes not explicitly describe this dependence.

Fault-based test data measurement <loes not provide much guidance as to how to select

test data to elimina.te the faults considered. Severa! fault-based testing criteria more directly

guide the test data selection process. Foster introduced the idea of conditions under which a

fault manifests itself a.s an erroneous value [Fos80]. Foster's error-sensitive test case analysis

consists of conditions sufficient to distinguish expressions that may contain a fault from the

correct expression for several fault classes. In weak mutation testing [How78J, more recently

called fault-based functional testing [How85], Howden refined these conditions and introduced

others. Wea.k mutation testing is applied to the low level "functions" (e.g., statements) in a

program. Functional testing [How85, How87] augments this low-level testing by test selection

rules applicable to the synthesis of functions from component functions, which ha.ve already

been tested.

Two extensions to mutation analysis are oriented toward test data selection to assist in

satisfying mutation testing. In his mutation testing suite, Budd included the Estima te compo

nent (for error-sensitive test monitoring) [Bud83], which has conditions that must minimally

be satisfied to detect sorne of the mutant classes in expressions containing them. Offutt

described constraint-based testing [DGK+ss¡ as a part of the MoTHRA mutation analysis

system. This criterion defines constraints on a test data set required for the set to be mu

tation adequate. There are three types of constraints: "reachability" conditions guarantee

2 Wo highlight tlw significa.nt difforoncos at tho ond of this survoy and in tho conclusion.

5

that a mutant is executed; "necessary" conditions guarantee that a mutant is detected at

the statement containing it; and "sufficiency" conditions guarantee that the mutant affects

the output. The MOTHRA system explicitly selects test data to satisfy the reachability and

necessary conditions. Program execution on such test data is compared with mutant program

execution to determine if the mutant has been killed; if it has not been killed, additional test

data is tried in an effort to also satisfy the sufficiency conditions. Offutt thus recognizes the

need to affect the output but provides no guidance in developing the sufficiency conditions or

selecting data to satisfy them.

These condition-based criteria have three major weaknesses. First and foremost, they are

not easily extensible; they provide specific rules rather than defining a general framework

within which test data selection rules can be defined for particular faults. Second, these

criteria focus only on introducing erroneous behavior, either at the fault location or at the

statement containing the fault; there is no guarantee that a failure will be observable. Third,

many of the rules that comprise these criteria are sufficient but not necessary to introduce

erroneous behavior; if a rule is unsatisfiable, therefore, faults of the associated class may not

be detected.

The RELAY model differs significantly from each of the fault-based testing criteria de

scribed here. The RELAY model is most similar to Morell's work [Mor88]. We introduce

concepts similar to Morell's creation and propagation; our origination and transfer3 refer to

the first erroneous evaluation and the persistence of that erroneous behavior, respectively. We

refine Morell's theory by more precisely defining origination and by differentiating between

the transfer of a potential failure through computations and its transfer through information

fiow. This refinement facilita.tes defining fault-based rules for test data selection, whereas

Morell's model is used for test data measurement. Moreover, RELAY considers information

3 Wo havo choson tlic torm "originato" ratlicr than "croat.o" or ''introduce", bccausc wc focl it bcttcr connotrs
tho first location at which an crroncous cvaluation occurs and <loes not imply thc mistakc a programmor makos
whilc coding. Wo havc choscn thc torm ''transfcr" ovcr ''propagatc" so as to avoid thc connotation of an
•'incrcaso in.numbors'' and instcad of ·'pC'rsist" so as not to confiict with Glass's notion [Gla81], whcrC' an C'rror
is porsistont if it escapos dctcction until lato in dcvclopmcnt.

6

flow transfer through both data dependence and control dependence, whereas Morell's model

<loes not consider propagation through control dependence. In what follows, we outline the

RELAY model and describe its potential use for test data selection. In the conclusion, we

return to the features that distinguish RELAY from other fault-based testing criteria.

7

3 A Framework for Testing

A number of test data selection criteria have been proposed throughout the years. These cri

teria, however, ha.ve been defined imprecisely. Here, we outline a representation of programs,

execution, and testing, which provides a framework within which test data selection criteria

can be formally defined. This formality results in greater precision in defining the criteria as

well as a consistent base for evaluating and comparing the criteria. The full definition of this

framework is provided in [RT86a], a.long with the complete, formal definitions of the three

fault-ba.sed testing criteria defined and analyzed in section 6. This framework also serves as

the foundation for the RELAY model, which is described in section 4.

We consider the testing of a module, where a module is a procedure or function with a

single entry point. A module M implements some function FM, which maps an input vector

x in a doma.in XM to an output vector z = M(x) in a range ZM, FM : XM ---"* ZM. A

module implementation M can be represented by a control flow graph CM that describes

the possible flow of control through the module - CM= (N,E), where Nis a (finite) set

of nodes and E ~ N x N is the set of edges. N includes a unique start node n,•tart and a

unique final node n¡inal· Each other node in N represents a simple statement, a group of

simple statements, or the predica.te of a conditional statement in M. Associated with ea.ch

edge (nki n1) is a branch predica.te, BP(nki n1), which is the condition that must hold to allow

control to pass directly from node n1.: to node n1• If a node has a single successor node, then

the branch predicate associated with the edge leaving the node is sirnply true.

The control flow graph defines the paths within a module. A subpath in a control flow

graph CM = (N, E) is a finite, possibly empty, sequence of nodes p = [n¡1 , n¡2 , ... , n¡
1
P

1
] such

that for all i, 1 :::; i < IPI, (n¡i' n¡i+t) E E. An initial path pis a subpath whose first node

is n.,turt· For any node n E N, the set INIT(n) contains all initial paths in CM whose last

node is n. A path P 4 is an initial path whose last node is n¡inal· The set of ali paths in

4 Wlwre tite distinction between a subpath and a pat.h is important., we will use an upper case IC'ttcr (P) to
signify a path and a lower case !et.ter (p) for a subpath (or initial pat.h).

8

GM is denoted by PATHS(GM)i note that PATHS(GM) = INIT(n¡inal)· The graph GM is

well-formed if and only if every no de in N occurs along some path in PATHS(G M); in our

analysis, we consider only modules with well-formed control ftow graphs.

An initial path p of M may be executed on some input x; this execution is denoted p(x).

Associated with execution of an initial path p on input x is a state Sp(:r.), which defines the

state of the computation. Sp(:r.) is a vector of values for all variables and the value of the last

branch predicate (denoted by the dummy variable BP) after execution of p(x). When we are

not particular about what initial path was executed but only a state at node n, we denote

that state Sn(l:). When we are not concerned about a particular input, we denote tha.t sta.te

Sn.

Each node in the control ftow graph can be represented as a.n expression tree, where the

leaf no des represent data obj ects a.nd the internal no des represent operators. A subexpression

of a. statement is then represented by a subtree of the node's expression tree. To denote

a so urce code expression, E X P (upper ca.se) is used. An expression evalua.ted over the

module's state Sn is denoted exp (lower ca.se). The expression for an m-a.ry operator may

be represented OP (EXP1,EXP2, ... ,EXPm)i for convenience, a binary expression may be

written EX Pi OP EX P2.

A test datum t for a module M with control ftow graph GM = (N, E) is a sequence of

values input a.long some initial path - tha.t is, t = [t1 , .. .,(.]. The domain of an initial pa.th

p, denoted dom(p), is the set of test da.ta t for which p can be execu ted. For a.ny no de n in

G M, the set dom(n) 5 is the set of all test da.ta t for which n can be executed -

dom(n) = LJ dom(p).
p EINIT(n)

Note tha.t dom(nfinal) = XM. A test da.tum t ma.y be a complete sequence of input va.lues

- tha.t is, 3P E PATHS(GM), t E dom(P) - or incomplete - tha.t is, 'ef PE PATHS(GM),

5Wo ovorload tho tlom notation, but thoro should bo no confusion botwoon application to nodos and appli
cation to paths.

9

t ~ dom(P). A test datum t may be incomplete simply beca.use after executing some initial

path p, additional input is needed to complete execution of sorne path, or there may not be any

additional data to complete t, because the initial input t may cause the module to termina.te

abnormally (befo re n fiirnl) or possibly never to termina te. This allows for evaluation of testing

criteria that consider invalid inputs, which are not in the domain of M but for which M may

initiate execution. The test data domain DM for GM = (N, E) is the domain of inputs

from which test data can be selected, DM = {t l 3 n EN, t E dom(n)}. Note that Du is not

merely the domain of M, since neither invalid input values nor initial test data are in XM -

in fact, DM = dom(n3tnrt) 6.

Testing typically specifies sorne subset of the test data domain for execution. A test data

set Tu for a module M is a finite subset of the test data domain, Tu ~ DM. A test data

selection criterion, or simply a criterion, C is a relation between modules and test data

sets such that if (M, Tu) E C, then the T,u satisfies C for M. A criterion, then, is a set of

rules for determining whether a test data set satisfies selection requirements for a particular

module.

Execution of a module on test data does little good unless the resulting behavior is judged.

A test oracle [How78, HE78, Wey82] is a means ofrecognizing (un)acceptable, or (in)correct,

behavior of a module. More formally, an oracle O(Xo, Zo) is a relation on Xo x Zo,

O = { (x, z)} e X 0 x Zo 7 ; X o is the domain of the oracle and Zo is the range of the oracle.

When (x, z) E O, z represents acceptable behavior for x. Ideally, the oracle domain is the

module's test data domain so that for any possible test, the oracle will judge the module's

behavior8 . An "externa!" oracle verifies the module's externa! behavior, or output9, for input

6If thc run-timc systcm docs not disablc initiat.ion of a module on any invalid input, thcn thc test data
Jomain D.u is thc universo of ali possiblc input SC'qucnccs

7Notc that an orado rclation allows nondctcrminism, whcrc multiplc acccptablc out.pttt.s are spccificd for
an input, and a.Isa allows incomplckncss, whcrc ·'don't caro" cases can be spccificd.

8This allows thc oraclc to cvaluatc robu.stnc.ss (rcasonablc bchavior on nncxpcctcd inputs) as wcll as cor·
rcctnc.s.s (spccificd bchavior on valiJ inputs)

ºWc will oft.cn rcfcr to an output whcn wc mC'an a.ny externa! bchavior. Note also, t.liat an externa! oraclc
may rcquirc additional information. such as timing, to cnable it to vcrify corrcct bchavior.

10

da.ta.. Thus, for a.n externa.! ora.ele O, (x, z) E O mea.ns z is a.n a.ccepta.ble output for x. A test

ora.ele might specify a.ccepta.ble beha.vior by a. functiona.l representa.tion, correct version of the

module (a. "gold progra.m"), input/output pa.irs, simply a. tester who can a.ccura.tely eva.luate

the module's beha.vior, or be derived from a. formal specification [RA092]. A module M is

correct with respect to an ora.ele O if the module produces a.ccepta.ble beha.vior for a.ll va.lid

inputs -'</x E XM, (x,M(x)) E O.

A tester often has a. concept of the "correct" intermedia.te beha.vior in a.ddition to its

correct output. Ra.ther tha.n wa.iting until output is produced to judge beha.vior, the tester

might check the computation of the module at intermedia.te points, as one does when us

ing a. run-time debugger. This a.pproach to testing is supported by an ora.ele tha.t ineludes

information a.bout intermedia.te va.lues that should be computed by the module. Such infor

ma.tion might be derived from some correct module, a.n axioma.tic specification, self-checking

a.ssertions [LvH85], run-time traces [How78], or simply a. tester who evalua.tes intermedia.te

beha.vior. A state oracle Os is a. relation Os = {((t,p), Ap(t¡)}, tha.t relates a test daturn

a.nd a.n initia.l path (t, p) to one or more acceptance sta.tes Ap(t), whic specify an acceptable

vector of va.ria.ble va.lues and the last bra.nch predica.te value after execution of p(t). If for a.ny

test datum t, sa.tisfaction of the sta.te ora.ele for execution of a.11 initial pa.ths on t implies the

externa.! ora.ele is satisfied - '</t '</p: t E dom(p), ((t,p), Sp(t¡) E Os ::::} (t, M(t)) E O - then

the sta.te ora.ele and the externa.! ora.ele for a. module are consistent. Note tha.t the reverse

is not true - tha.t is, the external ora.ele ma.y be sa.tisfied while the sta.te ora.ele wa.s viola.ted

a.t some point a.long the pa.th.

11

4 RELA Y: A Model of Fault Detection

The RELAY model has two principal uses. First, it provides testing criteria. tha.t under certain

assumptions a.re ca.pable of guara.nteeing fault detection for chosen fa.ult classes. The RELAY

testing criteria can be used to select test data or to measure the adequacy of test data selected

by a.nother criterion to detect such faults. This use is described in [RT88], a.nd the underlying

assumptions are eva.luated in [TRC92J. Second, RELAY provides a mea.ns of analyzing test

data selection criteria.'s fa.ult detection capabilities. It is this second a.pplica.tion tha.t is the

focus of this paper. This section defines the RELAY model, but only to the extent required

for the a.na.lysis presented in sections that follow. More formal definitions of the model a.nd

its terminology can be found elsewhere [Tho91].

The failures considered within the RELAY modelare those caused by faults in the module's

source code. The fa.ult-based testing approach relies on two basic assumptions, as does RE LAY.

The first assumption is that the module being tested is "a.lrnost correct". This assumption

is similar to the competent programmer hypothesis [DLS78], which states that the module

being tested bears a strong resemblance to sorne hypothetica.1, correct module or differs from

the correct module by some sma.11 set of fa.ults. Such a module need not actua.lly exist, but

we assume that the tester is capa.ble of producing a correct module from the given module

and knowledge of the fa.ults detected. In the application described here, RELAY is limited

to faults that do not change the program schema although the model supports extensions

to more complex fa.ults. Second, we assume either that there is a single fault in the module

or that multiple faults do not interact to mask ea.ch other. This is called the non-masking

faults assumption and is similar to an assumption based on the coupling effect [DLS78], which

states tha.t detection of single, simple faults is sufficient to detect multiple or complex faults.

The RELAY model addresses faults independently in the formulation presented in this paper.

Although these assumptions may seem overly restrictive, the RELAY model allows us eva.luate

the implications of these assumptions and with further development may allow us to tone them

12

down a bit [Tho91, TRC92].

Development of the RELAY model was motivated by studying the problems of coincidental

correctness, where a node containing a fa.ult may be executed yet not reveal a failure; thus,

the module appears correct, but just by coincidence of the test data selected. It is also

possible that the tested module produces correct output for a.11 input (not just the selected

data) despite a discrepancy between it a.nd the hypothetica.1, correct module. In this ca.se, the

module is actually correct, not merely coincidenta.lly correct. Reca.11 that a fault is a synta.ctic

rl.efect in the source code and a fa.Hure is observable incorrect behavior. A potential failure

is an intermedia.te incorrect result (which ma.y potentially lead to a fa.Hure). For a fa.ult to

cause a fa.Hure, a potential fa.Hure must originate a.t the faulty node and transfer through

computa.tions and a.long information flow to a fa.Hure. Subsection 4.1 describes the RELAY

model of fa.ults and f ailures. One a.pplication of the RE LAY model is the construction of failure

conditions that guarantee fault detection; this application in outlined in subsection 4.2.

4.1 The RELAY Model

The RELAY model describes how a fault ca.uses a fa.Hure to occur on execution for some

test datum10. A fa.Hure occurs when execution of a module on sorne test datum causes an

observable incorrect behavior, which most commonly takes the form of incorrect output.

Revealing a fa.Hure by testing necessitates an ora.ele to verify the module's correct externally

observable behavior.

A failure is an unacceptable result of execution of M on some test datum t -
that is, M(t) such that (t, M(t)) ~ 0.11

A fa.Hure is caused by one or more fa.ults in a module. A fa.ult may be thought of as a

transformation applied to some expression in the source code that would correct the fa.ult a.nd

10In ali ddinitions t.lrnt follow, we use the notation introduccd in sed.ion 3: M is the givcn module hcing
tcstcd; G.u = (N,E) is t.lw control flow graph of M; M* is the hypothetical, corrcct module; t is a test tlatum.
while lvf(t) is thc cxccut.ion of M on t.

11 Wc assumc that if a module has not tcrminatcd aft.er some finito time pcriod, this is incorrcct bchavior for
which the orado rcvcals a failure. Thus, the oracle may requirc information other t.lian the oxpcctcd output
values.

13

produce a correct module.

A fault f is a transformed expression f (E X P) in M su ch that f (E X P) = E X P*,
where EX P* is the corresponding expression in the hypothetica{, correct module
M*, and execution of E X P reveals a failure for some test datum.

For a fault to cause a fa.Hure, execution must first introduce a potential fa.Hure, which is

later reflected in the execution state, and is eventually externally observable.

A potential failure is the incorrect evaluation exp of some expression EX P 12

in M on some test datum t when exp :j:. exp*, where EX P* is the corresponding
expression in M*.

In the context of a state oracle, a potential failure may be observed in the module's state,

which is termed a state failure.

A state (potential] failure is an incorrect state revealed when partía{ execution
of M on test datum t for initial path p is not accepted by the state oracle Os
((t,p), sp(t¡) rf. Os.

A state failure exists after execution of an initial path when a variable is assigned an incorrect

value or when the last branch predicate evaluates incorrectly.

The RELAY model describes the ways in which a potential fault manifests itself as a fa.Hure.

Consider first how a potential fa.Hure is introduced. Some fault transformations affect code

that cannot by itself be evaluated (such as an operator), thus we consider introduction of a

potential failure in the smallest valued expression that contains the fault. Introduction of the

first potential fa.Hure is termed origination.

A potential failure originates for some test datum t executing a fault f in M in
the smallest evaluable expression EX P containing f at node n when exp :j:. exp*
over Sn(t), where f (EX P) = EX P* and EX P* is the corresponding expression
in M*.

The first potential failure, which occurs at origination, is termed the original potential failure.

Consider the module in Figure 1, for example. Suppose that the statement X := U* V

at node 1 contains a variable reference fault and should be X := B* V. A potential failure

12Recall tha.t upper case, EXP. is used here to denote thc sourcc-code cxpression, while lowcr case, e:cp,
denotes the cxpression eva.luatcd over thc module's sta.tc.

14

l:X :=U* V

2:U := V**2

3:Y :=(X+ 3)**Z

/al.se .----___.,__ __ ___,
4:if A< B

5:W :=Y* Z
7:W:=X*B

6:output X

8:output W

Figure 1: Module for Explanation of RELA Y

originates in the smallest evaluable expression containing the fault, which is the reference

to U, whenever the value of U differs from the value of B - u =f. b. On the other hand,

su ppose that no de 1 contains an ari thmetic operator fault and should be X := U+ V. Then,

the smallest evaluable expression is U* V (since * cannot be evaluated), which originates a

potential failure whenever the value of U* V differs from the value of U +V - U*V =f. u+v.

Once a potential failure originates, it must not be masked out by computations at the

faulty node so that it causes a state failure and also must not be masked out later before a

failure is revealed. When a potential failure in sorne expression is not masked out but rather

causes a "super"-expression that references it to evaluate incorrectly, we say the potential

failure transfers. The RELAY model defines three types of transfer: computational transfer,

data dependence transfer, and control dependence transfer.

Within a node, a potential failure must transfer through all parent operators in that node

to affect evaluation of the entire node.

15

A potential failure EX P in M for some test datum t computationally transfers
to a parent expression O P(... EX P ...) when op(... exp ...) :f. op(... exp* ...) over Sn(t),

where exp :f. exp* over Sn(t) and exp* is the corresponding expression in M*.

Ta.ke a.nother look a.t Figure l. If V holds the va.lue zero, the original potential fa.Hure

in U in no de 1 <loes not tra.nsfer to a.ffect the a.ssignment to X; the original potential failure

tra.nsfers, on the other ha.nd, whenever V is nonzero.

Incorrect evalua.tion of a. node requires computa.tiona.l tra.nsfer through a.11 pa.rent opera.tors

of the original potentia.l failure. This results in a sta.te failure, which may be reflected in a.

va.ria.ble with a.n incorrect va.lue or the incorrect selection of a bra.nch. The first sta.te failure,

which occurs when the node containing a. fault eva.lua.tes incorrectly, is termed the original

sta.te failure.

While it is true tha.t no failure ca.u be revea.led if a.n original sta.te failure is not first in

troduced, it is a.lso the ca.se tha.t a.u original sta.te fa.Hure ma.y be revealed only when a. sta.te

ora.ele of some sort is a.va.Ha.ble. If only a.n externa.! ora.ele is a.va.Ha.ble, the original sta.te failure

must tra.nsfer to a.ffect subsequent nodes until a. failure (incorrect output) is produced. In

formation flow transfer, whereby a. sta.te fa.Hure a.ffects a. subsequent node, is ba.sed on the

concept of informa.tion flow [DD77, FOW87, HPR88] a.nd the progra.m dependence relations

discussed in [Pod89, PC90]. Informa.tion flow tra.nsfer occurs when the sta.te fa.Hure, which is

reflected in the va.lue of sorne va.ria.ble, is used a.t a. subsequent node either 1) to incorrectly

define a. va.ria.ble (e.g., in a.n a.ssignment sta.tement) or to incorrectly defined the bra.nch pred

ica.te (e.g., in a. conditional predica.te sta.tement), or 2) to define a. va.ria.ble on a.n incorrectly

selected bra.nch differently tha.n if the correct bra.nch had been selected. These a.re termed

data dependence transfer a.nd control dependence transfer, respectively. For a. fa.ult

to ca.use a. failure, the original sta.te fa.Hure must tra.nsfer a.long some informa.tion flow chain(s)

from the fa.ulty node to a. fa.Hure node. An informa.tion flow cha.in is a. sequence of nodes such

16

fault

var-use

state/bp
failure

var-definition
incorrect branch

state/Var
fallure

Figure 2: RELAY Model of Fault Detection

reveal failure

that each node is either data dependent13 or control dependent14 on the previous node in the

chain. Thansfer along an information flow chain requires data or c.ontrol dependence transfer

at each link in the chain. Using the example of Figure 1 again, the potential failure in X

transfers through data dependence to a use, say at node 7, where it transfers through the

computations to produce a state failure in W, and then transfers to the output of W at node

8. The RELAY model of information flow transfer includes a framework within which the

components of data and control dependence transfer fit and which identifies the interaction

between multiple information flow chains. lt is beyond the scope of this paper to present

the full details of information fiow transfer; moreover, they are not critica! to the analysis

presented in this paper. Precise definitions of information flow transfer and that aspect of

the model may be found elsewhere [Tho91, TRC92].

Figure 2 illustrates the RELA Y model of fault detection and how this model provides for

the discovery of a fault. The conditions under which a fault is detected are (1) origination of.

13on a node n; when a variable V defined at n; is used at n; and there is a def-clear path with respect to V
from n; ton;.

u control dependent on a node n; if n; determines whether n; is executed.

17

poltot1ol
faúure

·illlillllllllllll-~O:,::R;!;.11.:.:.;¡\.:..· .:..:.' T.;.E_$. .. ·"'""'
..111111 ;;-----' - - - --

'
' ' '

,.
I

... ,,

1 information
l Bow trlJllfer

\

' '

faull

i!:f:.1-· -------~
STATE ORACLE

-- - ------·

computation&I
trusfer

',~ ~ . r~~··re
computation&I - i:n:t:: \
tra.n.sfer Bow tran1ferl

ezterr14/
/aúure

__ T_Es_T_o ... RA . .,....C_LE ___ _.....-_

- p
Figure 3: The Testing Relay

I
I

a potential failure in the smallest valued expression containing the fault; (2) computational

transfer of that potential failure through each operator in the node, thereby revealing a

original state failure by a state oracle; (3) information flow transfer of the state failure to an

assignment or branch predicate node on the path that references the incorrect state; either

(4) computational transfer through the assignment node producing a state failure variable, or

(5) computational transfer through the branch predicate node producing a state failure BP

and assigrnnent of a variable on the selected branch differently than on the correct branch

thereby producing a state failure variable; and (6) cycle through (3) and (4 or 5) until a

failure is revealed by an externa! oracle15•

16 Note that data dependence transfer is a sequence of var-use, repeated computational transfer, and var
definition (atan assignment) transitions, while control dependence transfer is a sequence of var-use, repeated
computational transfer, bp-definition, and var-definition (on the incorrect branch) transitions.

18

The RELAY view of fault detection has a.n illustra.tive a.na.logy in a. rela.y ra.ce, as shown in

Figure 3, hence the na.me of our model. The starting blocks correspond to the fault loca.tion.

The ta.ke off of the first runner, a.s the gun sounds the beginning of the ra.ce, is a.na.logous to

the origina.tion of a. potentia.l failure. A runner ca.rrying the ha.ton through one leg of the ra.ce

corresponds to the computa.tiona.l tra.nsfer of the failure through a. sta.tement. The successful

completion of a. leg of the ra.ce has a. pa.rallel in revea.ling a. state failure, a.nd the pa.ssing of

the ha.ton from one runner to the next is a.na.logous to informa.tion fiow tra.nsfer of the f ailure

from one sta.tement to a.nother. The ra.ce goes on untH the finish line is crossed, which is

a.nalogous to the test ora.ele revea.ling a. failure.

Our goal, of course, is to complete the rela.y ra.ce a.nd a.nalogously to detect fa.ults. To this

end, the RELAY model forms the ha.sis for conditions that define how to guara.ntee tha.t a. fa.ult

origina.tes a potentia.l fa.Hure a.nd tra.nsfer occurs until a. fa.Hure is revea.led. This a.pplication

of the RELAY model is outlined in the next subsection.

4.2 Failure Conditions

U sing the concepts of origina.tion a.nd tra.nsfer, RELA Y also models failure conditions tha.t are

necessa.ry a.nd sufficient to guarantee fa.ult detection - that is, sa.tisfa.ction of these conditions

for a. fault mea.ns tha.t a. potentia.l failure originates a.nd tra.nsfers untH a fa.Hure can be revealed

by the ora.ele. Sufficient mea.ns tha.t if the module is executed on da.ta. tha.t sa.tisfies the

conditions a.nd the node is fa.ulty, then a. failure is revealed. Necessary, on the other ha.nd,

mea.ns tha.t if a fa.Hure is revealed then the module must have been executed on da.ta. tha.t

sa.tisfies the condition a.nd the node is fa.ulty16 . Thus, the failure conditions a.re the unique

conditions to guara.ntee fa.ult detection.

The RELAY model describes how a particular fa.ult ca.uses a. fa.Hure a.nd is thus dependent

on knowledge of the fa.ult. Since this is unlikely (otherwise one would simply fix the fault),

applica.tion of RELAY hypothesizes tha.t a. node is fa.ulty a.nd considers how such a hypothetical

16This holds only in thc contcxt of a single fault

19

fault causes a failure, if indeed it is a fault.

A hypothetical fault f is a transformation to some expression EX P in M
such that f(EXP) = EXP', where EXP' is an alternative expression in the
hypothetically correct module M', which is identical to M except for E X P and is
corre et if f is a fa ult.

Note that we now talk of a hypothetically correct module, since we can easily describe this

module.

The failure condition to detect a hypothetical fault guarantees an original state failure

is introduced and is transferred a.long an information ftow cha.in to output. The analysis

presented in this paper is concerned only with guaranteeing original state failures, so we

focus on the original state failure condition, which consists of an origination condition and

computational transfer conditions.

The failure conditions are developed below for a hypothetical fault f independent of where

the faulty node n occurs in the module; the conditions are constraints on the module's state

before execution of n. To guarantee fault detection, the failure conditions must be true when

evaluated over this state. In conjunction with the doma.in of the faulty node (dom(n)), the

failure condition describes a test data set, where execution of any single test datum in the

set would execute the faulty node and reveal a failure 17 . Beca.use the failure conditions are

necessary, if the conditions are infeasible within dom(n), then no failure can be revealed

and the hypothetical fault is not a fault. Although, in general, the feasibility problem is

undecidable, in practice, it can often be solved.

The origination condition guarantees that the smallest valued expression containing a hy

pothetical fault originates a potential failure (hence that the hypothetically faulty expression

evaluates differently than the hypothetically correct one).

The origination condition for a hypothetical fault f in M in the smallest evalu
able expression EX P containing f at node n is [exp =!= exp'] evaluated over Sn,
where f(EXP) = EXP' and EX P' is the corresponding expression in M'.

17 A stato failuro would bo rovoalod for an original stato failuro condition, and an oxtornal failuro would bo
rovoalod if information ftow transfor conditions aro addod.

20

When the origination condition is infeasible, the hypothetically faulty expression is equivalent

to the alternate, and no such fault exists.

The original potential fa.Hure for a hypothetical fault must transfer to aJfect evaluation of

the entire node. A computational transfer condition guarantees that a potential failure in an

operand transfers through a parent operator so that the parent expression is a potential fa.Hure

(hence that the parent expression referencing the hypothetical fault evaluates differently than

the hypothetically correct parent expression).

The computational transfer condition for an expression OP(... , EX P, ...)
containing a potential failure exp in M at node n is [op(... exp ...) .¡:. op(... exp' ...)]
evaluated over Sn, where exp # exp1 over Sn and EX P' is the corresponding
expression in A11

•

When a computational transfer condition is infeasible, the potential failure cannot transfer

to affect the parent expression; as above, the hypothetically faulty expression is equivalent to

the alternate one and no such fault exists.

The conjunction of the computational transfer conditions for each ancestor operator in the

node of the originating expression guarantees transfer to aJfect the entire node and produce an

original state fa.Hure. To guarantee a fault's detection by revealing an original state failure,

the origination and the computational transfer conditions for all ancestor operators in the

node must be jointly satisfied.

The original state failure condition for a hypothetical fault f in M at nade n
is the conjunction of the origination condition for f and ali computational transfer
conditions for f and n.

Asan example of an original state failure condition, consider again the module in Figure l.

Hypothesize that staternent X := U* V at node 1 should be X := B *V, then the origination

condition is [u .¡:. b]. This original potential fa.Hure must transfer through the rnultiplication

by V; the corresponding cornputational transfer condition is (u * v # b * v), which simplifies

to (v # O). This value rnust then transfer through the assignment to X, which is trivial.

Thus, the original state fa.Hure condition resulting from this hypothetical fa.ult is [(u # b) and

(v #O)].

21

For the a.na.lysis presented in this pa.per, we consider only the original state fa.Hure con

ditions, beca.use, as we will show, most fault-based testing criteria do not even satisfy these.

Typically, however, testing is primarily concerned with revea.ling an output fa.Hure as the

manifestation of a fault (and not only incorrect intermedia.te values). To a.ddress this, the

RELAY model provides a fra.rnework for developing faHure conditions to guara.ntee tha.t asta.te

fa.Hure transfers to a.ffect module execution as a whole. It does so by extending the fa.Hure

condition to a.lso gua.rantee that the original state fa.Hure transfers a.long some information

flow chain(s) from the faulty node to a fa.Hure node. The information flow tra.nsfer conditions

guarantee that da.ta and/ or control dependen ce transfer occurs at ea.ch link in the informa.tion

flow chain(s). Consider again the hypothetical variable reference fa.ult at node 1 in Figure l.

One information flow cha.in from the fault loca.tion to an output consists of the definition of

X at node 1, followed by a use of X a.t node 7, where W is defined, followed by a use of W

in the output statement a.t no de 8. The potential failure in X tra.nsfers through informa.tion

flow to node 7 whenever the false bra.nch of the conditional at node 4 is taken. Reference to

the potential fa.Hure in X must transfer through the multiplication by B to the assignment

of W a.t node 7. Thus, for this information flow cha.in, the transfer condition is [(a;::: b) and

(b i= O)j. Reca.11 tha.t the original sta.te fa.Hure condition is [(u i= b) and (v i= O)], creating

a fa.Hure condition for this information flow cha.in of [(u i= b) a.nd (v i= O) and (a ;::: b) and

(b i= O)]. The development of information flow transfer conditions and failure conditions is

fully defined in [Tho91J, as a.re the deta.Hs of da.ta dependence tra.nsfer, control dependence

tra.nsfer, and complex computational transfer (in the context of interacting potential fa.H

ures). As mentioned, these are not required for the ana.lysis presented in this paper, so we

ha.ve merely provided a general description to portray the full na.ture of the RELAY model.

The fa.Hure conditions describe what is required to gua.rantee that a fault produces a

fa.Hure. Thus, they define test data that nmst be executed to reveal a fa.Hure for a hypothetical

fa.ult. This mea.ns tha.t if a fa.Hure is not revea.led for da.ta in the doma.in of the hypothetically

fa.ulty node a.nd satisfying the failure condition, then the hypothetical fa.ult is not a fa.ult (for

22

any test data that could execute the node) and hence the hypothetically correct module is

not correct. On the other hand, revealing a failure for such data indicates that the module

contains the hypothetical fault. In the case of the original state failure condition, we only

know that a state failure has been produced, and the additional information flow transfer

conditions must be satisfied to reveal an external failure. Moreover, a failure condition that is

infeasible within the domain of the hypothetically faulty node implies that the hypothetically

faulty module and the hypothetically correct module are equivalent 18 .

One possible application of the RELAY model is to hypothesize faults in a module, actually

construct failure conditions that guarantee fault detection of the hypothesized faults, and

select test data to satisfy these failure conditions. Although this application provides a fault

based test data selection criterion, we are not suggesting that it is feasible or practical 19

Rather, our model shows what is required to guarantee fault detection and demonstrates the

complexity of the problem. The insight provided by the failure conditions, however, are useful

for analyzing the fault detection capabilities of test data selection criteria. This analysis is

the focus of section 6.

As currently defined, a failure condition is derived for any hypothesized fault indepen

dently, although many faults are similar and much of the transfer requirements are indepen

dent of a particular hypothetical fault. The application described in the next section leverages

this fact by grouping hypothetical faults into classes based on some common characteristic

of the transformation and defines original state failure conditions for all hypothetical faults

of a class. When these conditions are instantiated for a particular fault class, they provide

conditions that guarantee introducing a state failure caused by any fault of that class. In the

next section, we discuss the original state failure conditions for six fault classes. A simple

example of test data satisfying a specific original state failure condition is presented at the

18 An infoasible externa! failurc condition nwans the failure conditions must. be infC'asiblc for ali information
fiow chains; again this is described more completcly in [Tho91].

19It is wdl-known that. sclection of data to sat.isfy any condition is undecidable; it. is not our intention to
addrC'ss the N[ttivalence problcm with failurc conditions.

23

end of the next section. These conditions can be used to evaluate the ability of test data

selection criteria to guarantee detection of faults in chosen classes. RELA Y is applied in this

fashion to analyze three test data selection cri teria for the six fault classes in section 6.

24

5 Application of RELAY for Fault Classes

The previous section described the RELA Y model and how it defines a failure condition for a

hypothetical fault, which guarantees origination of a potential failure, computational transfer

to produce an original state failure at the faulty node, and information fiow transfer to a

failure node. Here, we describe how we can hypothesize many potential ways in which a

node might be faulty and develop failure condition sets that apply to a class of hypothetical

faults. This technique for applying the RELAY model takes advantage of two facts. First,

similar hypothetical faults (such as transformation to alternative arithmetic operators) have

similar origination conditions. Second, all hypothetical faults in a particular expression must

basically transfer through the same computations and information fiow to a failure. Thus,

although the origination conditions may differ, the transfer conditions are basically the same.

This section describes REL A Y 's application for fault classes, demonstrates the instantiation of

the original state failure conditions for one fault class, and illustrates by example what these

mean for test data.

Any syntactic expression in a module's source code may be faulty, but only in ways that

retain the module's semantic correctness (compilability). Thus, for any expression, we can

hypothesize limited classes of faults that might occur. By grouping these hypothetical faults

into classes based on sorne common characteristic of the transformation, we can define failure

conditions that guarantee origination of a potential failure for any hypothetical fault of that

class. Moreover, we can consider the ancestor operators that reference su ch an expression

and define the computational transfer conditions that apply to a fault class and are required

to transfer the original potential failure to produce an original state failure; and likewise for

information fiow transfer.

For an expression in a module, a hypothetical fault class determines a set of alternative

expressions, which must contain the correct expression if the original expression indeed con

tains a fault of that class. To guarantee origination of a potential failure for a class, the

25

hypothetically faulty expression must be distinguished from ea.ch expression in this alterna.te

set. For ea.ch alterna.ti ve expression, the RELAY model defines a.u origina.tion condition, which

guarantees origina.tion of a. potential failure if the corresponding alterna.te were indeed the

correct expression. For a.u expression a.nd fault class, we define the origination condition

set a.s the set of origina.tion conditions for each alterna.tive expression transformed by the

fault cla.ss. The origina.tion condition set guarantees that a. potential failure originates in that

expression if the expression contains a fa.ult of this class.

For each alternative expression, a potential failure tha.t originates must also transfer

through each operator in the node to reveal a state failure. The computational transfer

conditions, which are determined by these subsequent manipula.tions of the data, are inde

pendent of the particular alternate. Thus, for a fault class, a.u original state failure condition

is defined for each alternate, which is the conjunction of the origination condition and the

computa.tional transfer conditions. The original state failure condition set conta.ins a.n

original sta.te failure condition for each alternate in the alterna.te set. It is a necessary and

sufficient set of conditions to guarantee that a hypothetical fault of a particular class reveals

an original state failure.

Likewise, the original state fa.Hure for ea.ch a.lternate must transfer through information

flow to reveal an external failure. And, likewise, these transfer conditions are independent

of the alterna.te and can be conjoined to ea.ch original sta.te fa.Hure condition in the set. The

failure condition set contains a failure condition for each a.lternate and guarantees that a

hypothetical fa.ult of the class revea.Is a failure.

Once again, consider the module in Figure 1 and the statement X := U * V, but now

suppose tha.t the reference to U might be fa.ulty but we do not know what variable should

be referenced. To guarantee origination of a potential failure for a.u incorrect reference to

U, the va.lue of ea.ch al terna.ti ve va.ria.ble U2º must be distinguished from the value of U a.t

node l. The possible alterna.tes depend on wha.t other variables ma.y be substituted for U

2ºWc use tlw bar notation to denote an alternate.

26

without violating the language syntax. If we assume that all variables referenced in this

module are of the same type, then there are seven alternates and hence seven origination

conditions. The origination condition set is {[u i= u] 1 U E {A, B, V, W, X, Y, Z} }. Recall that

the computational transfer condition for node 1 is [v i= O]. For the information fiow chain

where X is used to define W at node 7 and W is output at node 8, recall that the transfer

condition is [(a;::: b) and (b i= O)]. Thus, the set {[(u i= u and (vi= O) and (a;::: b) and (b f:. O)]

1 U E {A, B, V, W, X, Y, Z}} is a sufficient transfer condition set for this hypothetical fault.

This set is sufficient but not necessary because ali information fiow chains are not considered.

Thus, the RELAY model can be applied for a chosen fault classification. Hypothesizing

a particular fault class, the origination and transfer conditions are insta.ntiated to provide

conditions specific to tha.t class. The next subsection summarizes the insta.ntia.tion of RELAY

for fault classes. The instantia.ted origina.tion a.nd transfer conditions can then be eva.lua.ted

for selected (applicable) locations in a module to provide the specific failure condition sets

that must be satisfied to gua.rantee the detection of a.ny fault in the chosen classification at the

selected locations. The specific tra.nsfer conditions for a module can be used to measure the

effectiveness of a pre-selected set of test data and/or to select test da.ta. A simple exa.mple of

constructing a.n original sta.te failure condition set a.nd of test data sa.tisfying it is presented at

the end of this section. The instantiated origina.tion and transfer conditions can also be used

to eva.luate the ability of test da.ta selection criteria. to gua.ra.ntee fault detection for chosen

fault classes. RELAY is applied in this fa.shion to analyze three test data selection criteria for

six fault classes in section 6. This analysis demonstrates the fiaws inherent in most criteria

and the a.dva.ntage of a complete model of faults a.nd failures.

5 .1 Instantiation of RELA Y

In this section, we discuss the instantiation of the RELA Y model for a fault class. The

a.pplication presented provides original state failure conditions for statements hypothetically

containing a fault in one of six cla.sses. The restriction to original state failures mea.ns that

27

only computational transfer need be considered at this time. Developing original state failure

conditions for a fault class consists of developing the origination conditions for the fault class

and also developing any applicable computational transfer conditions. This instantiation

process is illustrated for the class of relational operator faults. We derive the origination

conditions for this class and the computational transfer conditions through boolean operators

since a relational expression may be contained within boolean expressions.

RELA Y is instantiated for six fault classes in [RT86 b]. The six classes are constant refer

ence fault, variable reference fault, variable definition fault, boolean operator fault, relational

operator fault, arithmetic operator fault. These six classes were selected because of their rel

evance to a number of test data selection criteria, which include those criteria analyzed here.

Each of the six classes is a class of atomic faults, where a (hypothetical) fault f is atomic if

the node n differs from the hypothetically correct node n' by a single token.

To determine the original state failure conditions for a class of hypothetical faults, we

must instantiate the applicable computational transfer conditions as well as the origination

condition for the class. Thus, for the six fault classes, in [RT86b] we derive origination

conditions for each class as well as transfer conditions through all operators applicable to these

faults - that is, assignment operator, boolean operators, arithmetic operators, and relational

operators. The origination .conditions for the six fault classes along with the computational

transfer conditions through the four applicable operators are summarized in the appendix.

5.1.1 Origination Conditions for Relational Operator Faults

An origination condition guarantees that the smallest valued expression containing a hypo

thetical fault produces a potential failure. Thus, given the smallest evaluable expression EX P

containing a hypothetical fault andan alternative expression EX P, the origination condition

guarantees that exp # exp.

Consider the class of relational operator faults, where a potential failure may result when

a relational operator is mistakenly replaced with another relational operator. We consider

28

six relational operators: <, ~, =, 1', 2, >. G iven a relational expression (E X P1 RO P E X P2),

if the relational operator ROP is faulty, then the correct expression must be in a set of

alternates {(EX P1 ROP EX P2) 1 ROP is a relational operator other than ROP}.

As an example, let us construct the origination condition for the relational operator < and

an alternative operator =. We must determine the origination condition that distinguishes

(EX Pi < EX P2) from (EX Pi = EX P2). For any relational expression, there are three

possible relations for which test data may be selected - (expi < exp2), (expi = exp2),

(expi > exp2). The origination condition to distinguish between EX Pi < EX P2 and

EX Pi = EX P2 is [expi ~ exp2]. The original expression, (EX Pi < EX P2), and al

ternative expression, (EX Pi = EX P2), evaluate differently whenever either the relation

(expi < exp2) or the relation (expi = exp2) is satisfied; thus the condition (expi ~ exp2) is

sufficient for origination of a potential failure. When the third possible relation is satisfied,

(exp1 > exp2), the original and alternate expressions evaluate the same; hence, the condi

tion (exp1 ~ exp2) is also necessary for origination of a potential failure. The origination

conditions for the other alternative operators are derived similarly; this derivation is detailed

in [RT86b]. The origination conditions for all relational operator faults are summarized in

Table l. The origination condition set for a given relational operator and the relational oper

ator fault class is the set of all origination conditions that distinguish the given operator from

some alternate. Thus, for a hypothetically faulty , operator, the origination condition set

is {[expi = e;i:p2], [expi ~ exp2], [exp1 > exp2], [true], [exp1 1' exp2]]}. Often an origination

condition set can be reduced to a sufficient condition set due to the overlap between condi

tions. If this set is feasible, then it's satisfaction implies origination. On the other hand, if it

is infeasible, the more specific origination conditions in the full set must be considered. The

sufficient origination condition set for < is {[expi = exp2], [exp1 > exp2]}. Similar sufficient

condition sets are developed for the other fault classes in [RT86b].

29

opera.tors unsimplified origina.tion condition origina.tion condition
<,~ [exp1 = exp2] [exp1 = exp2]
<,= [(exp1 <exp2) or (exp1 = exp2)] [exp1 ~ exp2]
<)=f. [exp1>exp2] [exp1>exp2]
<,:'.'.'. [(exp1<exp2) or (exp1 = exp2) or (exp1>exp2)] [true]
<,> [(exp1 <exp2) or (exp1>exp2)] [exp1 =f. exp2]
<= _, [expi <exp2] [expi <exp2]

~'=f. [(expi = exp2) or (exp1>exp2)] [(exp1 :'.'.'. exp2]
~,;::: [(expi <exp2) or (exp1>exp2)] [exp1 =f. exp2]
~,> [(expi <exp2) or (exp1 = exp2) or (exp1>exp2)] [true]
=,=f. [(exp1 <exp2) or (exp1 = exp2) or (exp1>exp2)] [true]
=> ,_ [expi >exp2] [exp1>exp2]
=,> [(exp1 = exp2) or (exp1>exp2)] [expi :'.'.'. exp2]
:¡i:, :'.'.'. [(exp1 <exp2) or (exp1 = exp2)] [exp1 ~ exp2]
:¡i:,> [(exp1 <exp2)] [exp1 <exp2]
:'.'.'.,> [exp1 = exp2] [exp1 = exp2]

Ta.ble 1: Origina.tion Conclitions for Rela.tional Operator Fa.ults

5.1.2 Computational Transfer Conditions for Boolean Operators

A computa.tiona.l tra.nsfer condition gua.rantees tha.t a. potentia.l failure in a.n opera.nd of a.n

expression is not ma.sked out by the computa.tion of a. parent opera.tor. Thus, given a.n

expression OP(... , EX P, .. .), where a. potentia.l failure exists in EX P, the tra.nsfer con-

dition gua.ra.ntees tha.t op(. .. , exp, . ..) also produces a. potentia.l fa.Hure. More specifica.lly,

given EX P conta.ining a. hypothetical fault a.nd EX P a.n alterna.te, the existence of a. po

tentia.l failure in exp implies tha.t exp =f. exp, a.nd the tra.nsfer conclition guara.ntees tha.t

op(... , exp, .. .) =f. op(... , exp, .. .).

Let us now continue with our illustra.tion for rela.tiona.l opera.tor fa.ults. A rela.tiona.l

expression ma.y be conta.ined within a. boolea.n expression; thus, we must a.lso develop tra.nsfer

conditions through boolea.n opera.tors a.nd must consider both una.ry a.nd binary boolea.n

opera.tors.

Consider first tra.nsfer through a. una.ry boolea.n opera.tor. The unary boolea.n tra.nsfer

30

condition gua.rantees that not (EX Pi) is clistinguished from not (EX Pi), where EX P1 and

EX P1 a.re distinguished. No additional conditions are necessary for transfer of a potential

failure in a unary boolean expression because not (expi) :f. not (expt) if and only if exp1 :f.

expi.

The binary boolean transfer conditions guarantee both that (EX P1 BOP EX P2) is

distinguished from (EX P1 BOP EX P2) and that (EX P2 BOP EX Pi) is distinguished

from (EX P2 BOP EX P1), whenever EX Pi and EX Pi a.re distinguished. Since the bina.ry

boolean operators are commutative, we need not develop separately the transfer conditions

for a potential failure in the right operand. The binary boolean transfer conditions depend

u pon the boolean operator. For the boolean operator and, (exp1 andexp2) :f. (expi andexp2)

only when exp2 =true. Thus, exp2 must be true to gua.rantee that a potential failure in exp1

transfers through the boolean operator and. For the boolean operator or, (exp1 or exp2) :f.

(expi or exp2) only when exp2 = false. Hence, exp2 must be false to guarantee transfer of

the potential failure in exp1 through the boolean operator or. The transfer conditions for

boolean operators a.re summarized in Table 2.

operator expression transf er con di tion
not not(expt) :f. not(expt) true
and exp1 and exp2 :f. exp1 and exp2 exp2 =true
or exp1 or exp2 :f. exp1 or exp2 exp2 =false

Table 2: Transfer Conditions for Boolean Operators

5.2 Construction of Original State Failure Condition Sets

In this section, we illustrate the construction of an original state failure condition set for

the relational operator fault class on an example module fragment and show test data that

satisfies this condition set. The example module fragment is shown in Figure 4.

Hypothesize that the relational operator at statement 2 is hypothetically faulty. The

31

1 read X, Y, Z, B, C;
2 if (X* Y< Z or B) and C then

Figure 4: Module Fragment

origination condition set for < relational opera.tor fault is {[x * y = z], [x * y ::; z], [x * y >

z], [true], [x * y =f. z]}. In fact, the origination conditions [x *y = z] and [x *y > z] are

sufficient to satisfy the conditions for all alternates, so a sufficient origination condition set

is {[x * y = z], [x *y > z]}. A potential failure resulting from the < in node 2 must transfer

through the boolean opera.tors or and and. The computational tra.nsfer conditions are thus

(b =false) and (e= true).

The origination condition set combines with the computational transfer conditions to form

the following original state failure condition set

{ [(x *y= z) and (b =false) and (e= true)],
[(x * y>z) and (b =false) and (e= true)]}.

We are now in a position to examine test data set that guarantees that an original state

failure is introduced. To do so, data must not only satisfy the original state failure condition

but also must execute the node. Hence data that satisfies a failure condition must be a

member of the doma.in of the node. For simplicity, we are considering a node that is not

conditionally executed, a.nd hence dom(2) = DM. There are many possible test data sets

that satisfy the failure conditions developed for this exa.mple. One such set contains the

following two datum (1, 2, 2,false, true) and (1, 3, 2,false, true). The first datum satisfies the

first failure condition, and the second datum satisfies the second failure condition. If the <

opera.tor should ha.ve been sorne other relational operator, then execution for these two test

data will reveal an original state failure. If no original state failure is revealed, then the <

opera.tor is correct.

32

6 Analysis of Related Test Data Selection Criteria

RELAY provides a sound method for analyzing the fault detection capabilities of a test data

selection criterion in terms of its ability to guarantee detection of a failure for some chosen

fault class(es). A test data selection criterion is usually expressed as a set of rules that the

test data must satisfy. Our analysis approach evaluates a criterion in terms of the relationship

between its rules and the failure conditions defined by RELAY for the six fault classes. The

failure conditions are both necessary and sufficient to guarantee fault detection, so this is an

unbiased means of analysis. A rule or combination of rules is judged either to be insufficient

to reveal a failure, to be sufficient to reveal a failure, or to guarantee that a failure is revealed.

Moreover, this analysis is completely program independent.

In this section, we use the origination and transfer conditions for the six fault classes

(provided in the appendix) to analyze the fault detection capabilities of three fault-based test

data selection criteria - Budd's Error-Sensitive Test Monitoring [Bud81, Bud83], Howden's

Weak Mutation Testing [How78, How85], and Foster's Error-Sensitive Test Case Analysis

[Fos80, Fos83, Fos84, Fos85]. Each of these criteria was selected beca.use its author claims

that it is geared toward detection of faults of the six classes previously discussed.

As noted, the application of RELAY discussed in this paper is limited to revealing original

state failures. Thus, the fallure conditions discussed here are necessary for the detection

of a fault, but not sufficient, because the original state failure introduced by satisfaction of

these conditions may still be masked out by later computations on the path. To guarantee

fault detection for a particular class, the failure conditions must be augmented to include

information fiow transfer. The analysis to follow does not consider whether or not the criteria

consider these additional conditions (although in most cases, they do not). As we shall see,

however, this limitation of the analysis is of little consequence, since for the most part, the

criteria do not guarantee revealing an original state failure. Our analysis shows that none of

the criteria guarantees detection of the considered fault classes and points out two weaknesses

33

tha.t are common to a.11 three criteria.. We also discuss how the RELAY model rectifies these

common problems.

For ea.ch criterion, we first define it in the terminology provided in section 3. Next, we

examine the criterion's a.bility to sa.tisfy the origina.tion conditions for ea.ch fault class a.nd

a.lso its a.bility to sa.tisfy tra.nsfer conditions through a.pplica.ble a.ncestor opera.tors. Then, for

ea.ch fault class, we discuss the circumsta.nces in which the criterion will gua.ra.ntee revealing

a.u original sta.te f ailure, which requires tha.t a single test da.tum be selected to sa.tisfy both

a specific origina.tion condition a.nd the a.pplica.ble computa.tiona.l transfer conditions for the

node. Although a criterion ma.y include rules tha.t sa.tisfy the origina.tion conditions a.nd

the a.pplica.ble transfer conditions, if the criterion <loes not explicitly force all such tra.nsfer

conditions to be sa.tisfied by the sa.me da.ta tha.t sa.tisfies the origina.tion conditions for a

fa.ult class, detection is not guara.nteed for tha.t class. In the case where only origina.tion

is gua.ra.nteed, revea.ling a.u original sta.te fa.Hure is gua.ra.nteed only when the fa.ult is in

the outermost expression of the sta.tement or is contained only within expressions for which

tra.nsfer conditions are trivial (e.g., una.ry boolea.n). Furthermore, reca.11 tha.t the test da.ta

selected for a particular no de n must be in dom(n). If no su ch da.ta exists to sa.tisfy the

a.pplica.tion of a particular rule in a criterion, then the rule is unsatisfiable for n. When no

a.lterna.tive selection guidelines a.re proposed, we a.ssume tha.t no test da.ta is selected for a.n

unsa.tisfia.ble rule.

In the a.na.lysis of ea.ch criterion, we a.na.lyze a.ll a.pplica.ble rules for ea.ch fa.ult class but

do not bela.bor a.na.lysis of those tha.t clearly do not a.ddress the cla.ss. When it is obvious

tha.t a criterion guara.ntees origina.tion or tra.nsfer (e.g., a rule of a criterion is equiva.lent to

a.n origina.tion or tra.nsfer condition), we merely sta.te this fa.et. Sorne of the conditions a.re

trivially met by a.ny criterion tha.t sa.tisfies sta.tement covera.ge (e.g., origina.tion of a consta.nt

reference fa.ult a.nd tra.nsfer through a.ssignment opera.tor). Since ea.ch of the three criteria.

a.na.lyzed here direct their selection of test da.ta to ea.ch sta.tement in a module, we will merely

mention the sa.tisfa.ction of such trivial conditions. For the first criterion exa.mined, counter

34

examples are provided when a rule <loes not guarantee origination or tra.nsfer. Similar counter

examples for the subsequent criteria are are not provided but the similarity is noted. Complete

detailed analysis is provided in [RT86b].

The following is not intended to be a complete a.nalysis of the fault detection capabilities

of these criteria. Only those faults discussed in section 5 are included in the discussion. A

complete analysis must consider a more complete fault classification. The analysis presented

in this paper, however, provides insight into how our model of fault detection can be used to

analyze the strengths a.nd weaknesses of testing criteria.

6.1 Budd 's Estimate

Budd's Error-Sensítive Test Monítoríng (Estímate) [Bud81, Bud83] is the first stage of Budd's

Mutation Testing suite. For the most part, the testing suite is directed toward the evaluation

of a test data set but the first stage also provides a criterion that a.ids in the selection of test

data. A test data set satisfying Budd's Estímate executes components in the progra.m (e.g.,

variables, operators, statements, control flow structures) over a variety of inputs. The rules

below outline test data that must be selected to pass Estímate.

Rule 1 For each variable V, T contains test data t,i, tb, te, there exist sorne node na, nb, n,,
such that:

b. tb E dom(nb) and v < O;

c. t,, E dom(n,,) and v > O.

Rule 2 For each each assignment V := EX P at each node n, T contains a test datum ta E
dom (n) such that:

a. exp =/:- v.

Rule 3 For each binary logica.l expression, EX Pi BOP EX P2 at each node n, T contains
test data t,1 , tb E dom (n) such that:

a. exp1 = true and exp2 = false;

b. exp1 = false and exp2 = true.

35

Rule 4 For each edge (n,n') E E, where BP(n,n') is the branch predicate, T contains a test
daturn t,1 such that:

a. ta E dom(n) and bp(n, n') = true.

Rule 5 For each relational expression, EX P1 ROP EX P2, at each node n, T contains test
data ta, tb, te, td E dom(n) such that:

a. exp1 - exp2 = O;

b. exp1 - expz > O;

c. exp1 - exp2 < O;

d. exp1 - expz = -t or +t (where t is a "small" value).

Rule 6 For each binary arithmetic expression EX Pi AOP EX P2 at each node n, T contains
a test datum t,1 E dom (n) such that:

a. exp1 > 2 and expz > 2 .

Rule 7 For each binary arithmetic expression EX Pi AOP C (C AOP EX Pi), (where C is
a constant), at each node n, T contains a test datum t,1 E dom(n) such that:

a. exp1 > 2.

First, let us consider Estimate 's ability to originate potential failures for the six fault

classes. Clearly, rule 3 satisfies the origination conditions for boolean operator faults, and rule

5 satisfies the origination conditions for relational operator faults. Thus, Estimate guarantees

origination of a potential failure for boolean and relational operator faults.

Rule 1 appears to be concerned with forcing variables to take on a variety of values, which

is one requirement for detection of variable ref eren ce faults. Consider the following code

segment21 :

1 read A,B;
2 X:= 2*A;

21 For simplicity, wc assumc that all variables in this scct.ion's cxamplcs are dt.lwr boolcan or intcgcr.

36

The three test data (0,0), (3,3), and (-10,-10) satisfy rule 1, for variables A and B, but would

not distinguish a reference to A from a reference to B at node 2. Estimate is not sufficient,

therefore, to originate a potential failure for a variable reference fault.

Estímate 's rule 2 is directed toward the detection of variable definition faults. A test

datum that satisfies this rule fulfills the origination condition set. The origination condition

set, however, contains another condition, (v =f. v), that must be satisfied if (exp =f. v) is

infeasible. Estímate <loes not satisfy this other condition, and thus a potential failure caused

by a variable definition fault may remain undetected by Estimate. Consider the following:

1 read A, B, C;
2 if C = A+B then
3 C := A+B;

The condition (a+ b =f. e), which is the evaluation of (exp =f. v), is unsatisfiable at node

3. It is possible, in fact quite likely, however, that the definition at node 3 should be to a

variable other than C, such as to D. To detect such a variable definition fault, the val u es of

C and D must differ before execution of node 3, a condition not required by Estimate. Thus,

Estimate is sufficient to origina.te a potential failure for a variable definition fault, but it <loes

not guarantee origination for this fault class.

Rule 6 is specifically concerned with arithmetic operator faults. Budd notes that test data

satisfying this rule distinguishes between an arithmetic expression and an alternate formed by

replacing the arithmetic operator by another arithmetic operator except for an addition or a

subtraction operator replaced by a division operator (or vice versa). We agree that Estimate

origina.tes a potential failure for an arithmetic operator fault in all but the four exceptions just

cited. Estimate, however, is more stringent than necessary. When this rule is unsatisfiable

- that is, no test datum exists such that (exp1 > 2) and (exp2 > 2) - there may exist an

undetected potential failure due to an arithmetic operator fault. For instance, consider the

following:

37

1 read X, Y;
2 if X ::::; 2 and Y ::::; X then
3 A:= X*Y;

Note that at node 3, X and Y are restricted to va.lues less than or equal to 2. In this

case, Estimate 's rule is unsatisfiable, and no data must be selected to satisfy rule 6 for this

statement. The expression A := X+ Y is an a.lternate that is not equivalent; there are data

within the domain of the statement for which the two expressions eva.luate differently -

(e.g., x = 2 and y= 1). Thus, Estimate is only sufficient to origina.te a potentia.l failure for

arithmetic opera.tor faults except for the four noted exceptions, where Estimate is insufficient.

Estimate, however, <loes not guara.ntee origination of a potential failure for any arithmetic

opera.tor fault.

Let us now consider how Estimate <loes with transfer conditions. Note first that rule 3

fulfills and guara.ntees the tra.nsfer conditions through boolea.n opera.tors.

Estimate 's rule 5 is similar to one of the general sufficient transfer conditions shown in

the appendix, a.lthough Estimate <loes not consider the assumptions noted there. Even if

these assurnptions were taken into account, one of these sufficient conditions is not by itself

su:fficient to guara.ntee transfer through a rela.tional operator. Suppose X* Y should be X+ Y

in the following:

1 read X, Y;
2 if X* Y :2: 10 then

Test datum (11,1) would origina.te a potentia.l failure (since 11 + 1 -=f. 11 * 1) and sa.tisfies

rule 5 (since X* Y differs from 10 by a sma.ll a.mount). However, the potentia.1 failure is not

transferred through the rela.tiona.1 operators since both 11 + 1 and 11 * 1 are ~ 10. Thus,

Estimate is not sufficient to tra.nsfer through relational operators.

38

A test daturn satisfying Estimate's rule 6 satisfies transfer conditions through all arith-

metic operators but the exponentiation operators. Rule 6, however, is more restrictive than

necessary; when unsatisfiable, it does not guarantee absence of a fault. Assume a potential

failure origina.tes in x at node 3 in the following:

1 read X, Y;
2 if X ~ 2 and Y ~ X then
3 A:=X*Y;

No test datum satisfies rule 6 for this node; however, a test datum such that y f. O transfers

any potential failure in x. Thus, Estímate is sufficient to transfer through most but not all

arithmetic operators but <loes not guarantee transfer.

We are now in a position to determine the ability of Estímate to guarantee revealing an

original state failure for the six fault classes. In general, Estímate does not require data

that satisfy origination conditions to also satisfy transfer conditions, and thus transfer of an

originated potential failure is not guaranteed. This is beca.use Estímate <loes not prescribe

any integration of the application of its rules. When two or more rules are applicable to an

expression, Estímate <loes not dicta.te any way in which these two rules should interact. As

an exarnple, consider revealing an original state fa.Hure for a relational operator fault in the

expression (A< B) or Z in the following:

1 read A, B, Z;
2 if A< B or Z then

The test data shown in Table 3 satisfies Estímate 's rules 3, 4 and 5 for this expression. Test

data i, ii, and iii satisfy rule 5 for the relational expression containing the operator <. If

this relational operator should ha ve been any other relational operator, this test data would

origina te a potential failure; for these test data, however, z =true, which will not transfer

39

value of variable
datum a b z

i 1 3 true
¡¡ 3 1 true
iii 2 2 true
iv 1 2 false
V 2 1 true
vi 3 1 false

Table 3: Sample Test Data Selected by Estimate for (A< B) or Z

any potential failure. Test data iii and iv satisfy rule 3 for the outer boolean expression

containing or. Data v and vi satisfy rule 4 for the conditional statement. Test data iv and

vi are the only data that would transfer any potential f ailure originated in the relational

expression; these data alone, however, are insufficient to guarantee origination of a potential

failure for a relational operator fault. If, for example, the < should be ::=;, no selected datum

both originates and transfers a potential failure caused by this fault. Thus, Estimate <loes

not guarantee revealing an original state failure for this relational operator fault.

The prescription of rule integration is lacking even in the repeated use of a single rule,

as illustrated in the application of rule 3 to the boolean expression (X and Y) or Z in the

following:

1 read X, Y, Z;
2 if (X and Y) or Z then

The test data shown in Table 4 satisfies Estimate 's rule 3 for the conditional expression in

this example. Test data i and ii satisfy rule 3 for the inner boolean expression containing the

operator and. Test data iii and iv satisfy rule 3 for the outer boolean expression containing

or. If the inner operator should have been an or, test data i and ii would originate a potential

failure. For these test data, however, z =true, which will not transfer any potential failure.

40

value of variable
datum X y z

true false true
¡¡ false true true
iii true true false
iv false false true

Table 4: Sample Test Data Selected by Estímate for (X and Y) or Z

Test data iii and v are the only data that would transfer a potential failure originated at the

inner expression, but for these test data, the values x and y would not origina.te a potential

failure. Thus, Estímate <loes not guarantee revealing an original state failure for a boolean

opera.tor fault.

When origination of a potential failure is guaranteed for a fault class, revealing an original

state failure is guaranteed by Estímate only when the transfer conditions are trivial. In gen-

eral, this occurs when the smallest expression containing the fault is the outermost expression

in the node. The transfer conditions are always trivial for a variable definition fault. Since

Estímate is sufficient to originate a potential failure for this class, it is also sufficient to reveal

an original state failure. Recall, however, that Estímate <loes not guarantee origination for

this class.

6.2 Howden's Weak Mutation Testing

Howden's Weak Mutation Testíng (WMT) [How82, How85, How86] is a test data selection

criterion whereby test data is selected to distinguish between a component and alternative

components genera.ted by application of component transformations- e.g., substitution of one

variable for another. Howden considers six transformations, which may be applied to various

program components, a.nd includes test data selection rules geared toward the detection of

these tra.nsformations. Although Howden's transforma.tions are presented quite differently

41

than the six fault classes, ea.ch of these transforrnations results in one of the fault classes.

The rules below specify test data intended to clistinguish between a prograrn component and

alternatives generated by the transformations. These rules must be met by a test data set T

to satisfy Howden's weak mutation testing.

Rule 1 For ea.ch reference to a variable V at node n, T contains a single test datum t,1 E
dom (n) such that for ea.ch other variable V

a. V :f V 22 .

Rule 2 For ea.ch assigmnent V := EX P at node n, T contains a test datum t,. E dom (n)
such that:

a. v :f exp.

Rule 3 For ea.ch boolea.n expression BOP(EX Pi, EX P2, ... , EX P¡) atea.ch node n, T con-
tains test data ti, t2, ... , t2; E dom (n) su ch tha.t {ti, t2, ... , t2;} covers all possi ble combina-
tions of true and false values for the subexpressions EX Pi, EX P2, ... , EX Pn.

Rule 4 For ea.ch relationa.l expression EX Pi ROP EX P2, at ea.ch node n, T contains test
data t,., tb, t,, E dom (n) such tha.t:

a. expi - exp2 = -E (where -E is the negative difference of smallest satisfia.ble ma.gni
tude) ¡

b. expi - exp2 = O¡

c. expi - exp2 =+E (where E is the positive difference of smallest satisfia.ble magnitude).

Rule 5 For each arithmetic expression EX P at node n, T contains test data tn, tb E dom
(n) such that:

a. the expression is executed;

b. exp :f O.

Rule 6 For each arithmetic expression EX P, where k is a.u upper bound on the exponent
in the exp, a.t node n, T contains test da.ta ti, t2, ... tk+l E dom (n) such that {ti, t2, ... tk+d
is any casca.de set of degree k + 1 in dom (n).

22 Howdrn proposrs a moro rrstrictivo rulo that. is sprcifically concornod with array roforoncos. Sincr t.his rulo
is subsumod by rulo l. it doos not provido any additional failuro dotoction capabilitios and wo do not includo
it horo.

42

Howden's WMT guara.ntees origina.tion of a potential failure for boolea.n a.nd rela.tiona.l

opera.tor faults. Rule 3 sa.tisfies the origina.tion condition set for boolea.n opera.tor fault, a.nd

rule 4 sa.tisfies the origina.tion condition set for relational opera.tor fault.

Rule 1 is obviously directed toward detection of varia.ble reference faults, a.nd a test da.tum

that sa.tisfies this rule <loes sa.tisfy the origina.tion condition set. This rule, however, is more

restrictive tha.n required for this fault cla.ss; it requires a single test datum to distinguish

between the faulty variable reference and all other variable references. This rule ma.y not be

sa.tisfiable although the origination condition set is fea.sible. In this ca.se, a non-equivalent

alterna.te ma.y not be distinguished. Thus, WMT is sufficient to origina.te a potential failure,

therefore, but does not gua.ra.ntee origina.tion for varia.ble reference faults.

WMT's rule 2 is the same as Estimate 's rule 2, which is directed towa.rd detection of

variable definition faults. As noted in the discussion of Estimate, a test da.tum sa.tisfying

this rule will origina.te a potential failure for a varia.ble definition fault. This rule alone is

incomplete, however, since it <loes not gua.rantee absence of a fault when it is unsa.tisfia.ble.

Thus, WMT is sufficient but <loes not gua.ra.ntee origina.tion for this cla.ss.

Rules 5 and 6 a.re the only rules specifica.lly directed toward exercising arithmetic expres

sions. For a.n arithmetic opera.tor fault that excha.nges an a.ddition operator for a subtra.ction

opera.tor (a.nd vice versa), rule 5 will guarantee origination of a potential failure. For other

a.rithmetic opera.tor faults, this rule is insufficient. Rule 6 is insufficient to guarantee origina.

tion of a potential failure due to an arithmetic opera.tor fault. This is because such a fault

ma.y change the degree of the arithmetic expression. Consider the arithmetic expression in

node 2 of the following:

1 read X, Y;
2 A:= X+ Y;

Rule 6 requires a cascade set of degree 2 for this expression. One such set is {(O, O), (2, 2)}.

This set of test data, however, does not distinguish the expression X + Y from the alternate

43

X*Y.

Next, consider the a.bility of WMT to tra.nsfer a. potential fa.Hure. Rule 3 selects da.ta. tha.t

sa.tisfies the boolea.n tra.nsfer condition a.nd guara.ntees tra.nsfer through boolea.n opera.tors.

WMT's rule 4 is similar to the sufficient transfer conditions for rela.tiona.l opera.tors. For

these tra.nsfer conditions to be sufficient, the two assumptions noted in the ta.ble in the

a.ppendix must a.lso hold. WMT <loes not consider these a.ssumptions. Hence, even when

WMT's rule 4 is sa.tisfied, a. potentia.l fa.Hure ma.y not tra.nsfer through a. rela.tiona.l opera.tor.

Thus WMT is insufficient to tra.nsfer a. potential failure through a. relational opera.tor.

Rule 5 sa.tisfies the tra.nsfer conditions for a.11 arithmetic opera.tors but the exponentia.tion

operator. Rule 6 <loes not a.pply beca.use a. proper casca.de set ca.nnot be selected when the

degree of the expression is unknown. WMT, therefore, only pa.rtially guara.ntees tra.nsfer

through a.rithmetic opera.tors.

As with Estímate, WMT <loes not require tha.t a. rule tha.t sa.tisfies origina.tion be rela.ted to

a. rule tha.t sa.tisfies transfer. Thus, origina.tion a.nd tra.nsfer are not guara.nteed to be sa.tisfied

by the sa.me test da.tum, a.nd hence revealing a.n original sta.te fa.Hure is not guara.nteed. As

with Estímate, this ma.y ha.ppen both when the sa.me rule a.pplies for origina.tion as for tra.nsfer

a.nd when different rules a.pply. In sum, Howden's WMT guara.ntees revea.ling a.u original sta.te

fa.Hure when origina.tion of a. potentia.l fa.Hure is gua.ra.nteed for a. fa.ult cla.ss a.nd the tra.nsfer

conditions a.re trivial. Only for varia.ble definition fa.ult are the tra.nsfer conditions a.lwa.ys

trivial. WMT is sufficient to origina.te a. potentia.l failure for this cla.ss a.nd hence is sufficient

to revea.1 a.n original sta.te fa.Hure.

6.3 Foster's Error-Sensítíve Test Case Analysís

Foster's error-sensítive test case analysis {ESTCA) [Fos80, Fos83, Fos84, Fos85] a.da.pts ideas

a.nd techniques from hardware fa.Hure a.nalysis such a.s "stuck-a.t-one, stuck-a.t-zero" to soft

ware. He has presented his rules in a number of a.rticles. Where there is inconsistency, we

will evalua.te the most recently published a.pplica.ble rules. A test data. set T satisfies Foster's

44

ESTCA if the rules outlined below a.re sa.tisfied.

Rule 1 For ea.ch va.ria.ble V input a.t node nu, a.nd for ea.ch va.ria.ble W input a.t node nw, T
conta.ins test da.tum, t 11 E dom(n¡inal) such tha.t:

a. the va.lue input for V is not equa.l to the va.lue input for W.

Rule 2 For ea.ch varia.ble V input a.t node n a.nd some edge(n, n'), T contains test da.ta.
ta, tb E dom (n') such tha.t the va.lue input for V a.t node nis:

a. Vn >O;

b. Vb <O;

where v,. a.nd Vb ha.ve different ma.gnitude (if v is restricted to only positive or :nega.tive va.lues,
v,i a.nd Vb need only be of different ma.gnitude).

Rule 3 For ea.ch logica.l unit L 23 of ea.ch boolea.n expression EXP =(... L ...) a.t node n,
let EX P' = (... •L ...), T conta.ins test da.ta. t,i, tb E dom (n) such tha.t:

a. l = true a.nd exp' = •exp 24 ;

b. l = false a.nd exp' = •exp.

Rule 4 For ea.ch rela.tiona.l expression EX Pi ROP EX P2 a.t ea.ch node n, T conta.ins test
da.ta tn, tb, t,_, E dom (n) such that:

a. exp1 - exp2 = -t: (where -t: is the nega.tive number of sma.llest ma.gnitude repre
sentable for the type of exp1 - exp2);

b. exp1 - exp2 = O;

c. e:i;p1 - exp2 = +t: (where t: is the positive number of smallest ma.gnitude representa.ble
for the type of exp1 - exp2).

Rule 5 For ea.ch a.ssignment V := EX P a.t node n and for ea.ch varia.ble W referenced in
EX P, T conta.ins a. test da.tum tn E dom (n) such tha.t:

a. w has a. measurable effect on the sign a.nd ma.gnitude of exp.

Foster's ESTCA contain no rules tha.t a.pproa.ch the origina.tion conditions for either a

variable reference fault or a variable definition fault.

Foster's ESTCA gua.rantees origination of a boolean operator fault. Rule 3 considers a

boolean expression in terms oflogical units. A logical unit is a variable or relational expression

23 A logical unit is r.ithl'r a logical variable', a rdational C'XprC'ssion or tlw compknwnt. of a logical unit.
24 that is, subst.itut.ing ...,1 in EXP compll'nwnts tlw valuC' of EXP.

45

tha.t is one of the opera.nds or is a. subexpression of one of the opera.nds of a boolea.n expression

(EX Pi BOP EX P2). ESTCA requires selection of test da.ta. such that ea.ch such logica.l unit

ta.kes on the value true (a.nd the val u e false) a.nd complementing the logica.l unit complements

the entire boolea.n expression. This rule sa.tisfies the origina.tion condition sets for boolean

operator faults. To see this, notice tha.t for a.ny boolean expression EX Pi BOP EX P2 , three

test da.ta. a.re selected, (expi,exp2) = (T,F), (F,T), and (T,T) if BOP is and, or (F,F) if

BOP is or. This test da.ta. sa.tisfies origination conditions for a boolean operator fault. Thus,

ESTCA gua.rantees origination of a potential fa.Hure for the class of boolea.n opera.tor faults.

Consider now the class of rela.tional operator faults. When sa.tisfiable, ESTCA 's rule 4

results in da.ta such that expi > exp2, expi = exp2, exp1 < exp2. Thus, test data. sa.tisfying

this rule will origina.te a potentia.l failure for relationa.l opera.tor faults. This rule, however,

is more stringent tha.n required a.nd ma.y be unsatisfia.ble while the origina.tion condition set

is fea.sible. Thus, ESTCA is sufficient to origina.te a. potential failure for rela.tional opera.tor

faults but <loes not guarantee origination of a potential failure for relational opera.tor faults.

In a.n a.ttempt to detect faults in arithmetic expressions, ESTCA 's rule 5 requires selection

of test da.ta such that varia.bles in a.rithmetic expressions ha.ve a measura.ble effect on the sign

a.nd ma.gnitude of the result. Although the mea.ning of this rule is a.mbiguous, it clea.rly

<loes not imply the origina.tion of a. potential failure for a.n a.rithmetic opera.tor fault. It is

possible for va.ria.bles in a.n arithmetic expression to ha.ve a mea.sura.ble effect on the sign a.nd

ma.gnitude of the result yet still evaluate the sa.me for alterna.te a.rithmetic opera.tors in the

expression. ESTCA <loes not, we conclude, guarantee origination of a. potential fa.Hure for

a.rithmetic opera.tor faults.

Let us now consider the sa.tisfa.ction of transfer conditions. ESTCA 's rule 3 sa.tisfies

tra.nsfer conditions through boolean opera.tors. The requirement tha.t complementing the

logica.l unit complements the entire expression is equiva.lent to selecting test da.ta. tha.t sa.tisfies

the tra.nsfer conditions.

46

Rule 4 is similar to the general sufficient transfer conditions through relational operators.

Like Howden, however, Foster does not consider the assumptions that must hold for these

conditions to be sufficient for transfer. Moreover, ra.ther than specifying t: to be the smallest

satisfiable difference, Foster fixes t: at the smallest representable magnitude. As a result, the

ability of ESTCA to tra.nsfer a potential failure through a relational operator is further limited.

Thus, ESTCA is insufficient to transfer a potential failure through a relational operator.

Rule 5 attempts to disallow the effect of a variable or subexpression to be masked out

by other opera.tions in the statement. While the specifics of how this rule is applied are

unclear, one might interpret this as requiring transfer of a potential failure through arithmetic

opera.tors. U nder the broadest interpretation, therefore, ESTCA guara.ntees transfer through

arithmetic operators.

As with the other criteria, Foster fails to prescribe integration between ESTCA rules that

satisfy origination and those that satisfy transfer. Rule 3, however, does guarantee revealing

an original state failure for boolean operator faults. As seen above, this rule satisfies the

origination and tra.nsfer conditions for relational operator faults. In addition, when applied

to the outermost boolean expression, this rule selects a single datum for each nested binary

boolean expression that originates a potential failure due to a fault in the associated boolean

operator and tra.nsfers that potential failure to the outermost expression. To see this, consider

any expression EX P = EX Pi BOP EX P2. Sorne test datum selected for logical units within

E X Pi fulfills the origination condition for boolean operator faults in E X Pi. Complementing

a test datum selected for a logical unit that is a subexpression of EX Pi must complement

the value exp. To force this, if bop = and then exp2 =true, or if bop = or then exp2 =false.

Thus, for any test datum selected for a logical unit that is a subexpression of EXP1, EXP2

will take on a value that will transfer any potential failure originated within EX Pi to the

outer expression EX P. Therefore, ESTCA 's boolean operator rule satisfies origination as

well as transfer conditions simultaneously and hence guarantees revealing an original state

failure for boolean operator faults.

47

6.4 Summary of Analysis

Table 5 summarizes the analysis of the three test data selection criteria. The entry insufficient

means that the criterion does not include a rule that satisfies the condition. The entry

sufficient means that the criterion includes a rule that when satisfiable fulfills the condition.

The entry partially sufficient means that the criterion includes a rule that is sufficient to

distinguish many but not all of the alternates or transfer through many but not all of the

operators. The entry guarantees mea.ns that the criterion includes a rule that satisfies the

conditions when the conditions are feasible, while partially guarantees mea.ns the criterion

includes a rule that sa.tisfies many but not all of the conditions when feasible.

Budd's Estimate Howden's WMT Foster's ESTCA
Origination
l. Constant Reference Fault guarantees guarantees guarantees
2. Variable Reference Fault insufficient sufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault guarantees guarantees guarantees
5. Relational Operator Fault guara.ntees guarantees sufficient
6. Arithmetic Operator Fault partially partia.lly insufficient

sufficient guarantees
Transfer
l. Assig:nment Operator gua.rantees guarantees guarantees
2. Boolean Operator guarantees guarantees guarantees
3. Relational Operator insufficient insufficient insufficient
4. Arithmetic Operator partially partia.lly guarantees

sufficient guarantees
Revelation
l. Constant Reference Fault insufficient insufficient insufficient
2. Variable Reference Fault insufficient insufficient insufficient
3. Variable Definition Fault sufficient sufficient insufficient
4. Boolean Operator Fault insufficient insufficient guara.ntees
5. Relationa.l Operator Fault insufficient insufficient insufficient
6. Arithmetic Operator Fault insufficient insufficient insufficient

Table 5: Analysis Summary

48

7 Conclusion

In this paper, we have described the RELAY model, which rigorously defines how a fault in

a module causes a failure. The model includes origination, computational transfer, and data

and control dependence transfer. This paper focuses 011 using the RELAYmodel to evaluate

the fault detection capabilities of testing criteria. This analysis demonstrates how the rules

of a test data selection criterion must be carefully designed and tightly integrated to reveal a

failure for any fault. Without this precise modeling, it is easy to arrive at test data selection

rules that do not guarantee the detection of a fault and may not even be sufficient to do so.

U sing RELA Y, we ha ve evaluated where previous criteria ha ve failed in this regard.

This paper demonstrates four points that distinguish RELAY from other work:

1. RELA Y distinguishes between origination of a potential failure in the smallest expression
that contains a hypothetical fault and the computational transfer of that potential
failure to parent expressions;

2. RELAY provides a detailed model of the transfer of a state failure from the faulty node
through information flow until it is externally revealed and further considers both data
and control dependence tra.nsfer;

3. RELAY provides a mechanism for developing conditions tha.t must be sa.tisfied to guar
antee fault detection;

4. RELAY provides a specific framework in which ali these components fit.

Let us a.ddress the significa.nce of ea.ch of these points in turn.

First, RELAY determines origination conditions for the smallest expression conta.ining a

fault. It then considers a.dditional computational transfer conditions necessary to revea.l a

potentia.l failure in pa.rent expressions. Some researchers, such as Foster [Fos80], ha.ve pre

sented criteria that are ca.pable of origina.ting a potentia.l failure in the sma.llest expression,

but have not considered the additiona.l conditions necessa.ry to ca.use a la.rger expression to

eva.lua.te incorrectly. Other researchers, such as Budd [Bud81], have recognized the need for a

la.rger expression conta.ining a fault to evaluate incorrectly. They, however, ha.ve not deta.iled

specifica.lly the conditions necessa.ry to ca.use such tra.nsfer, nor ha.ve they defined the rela.-

49

tionship of origination to transfer. RELAY specifically defines such a relationship and details

general transfer rules. Other researchers, such as Howden [How86], have examined conditions

required to reveal faults in larger expression. The problem here is that the rules developed

are specific for certain classes of expressions, e.g., constant reference fault in polynomial ex

pressions. As a result, although a constant reference fault can occur in a variety of types of

expressions, the rule is not generally applicable. Further, RELAY's separation of origination

and transfer conditions provides a framework for fault detection that is easily extended. When

a new fault class is considered, RELA Y requires that the origination condition set for the class

be developed. Applicable transfer conditions from other classes are applied independently,

however, and thus require no changes. Criteria that consider larger expressions rnust develop

the "failure" condition for that entire expression class. We feel that proving properties about

origination conditions of a new fault class is less complicated than proving properties about

the revealing conditions for expression classes.

A second major contribution of RELAY is its consideration of information flow transfer.

While some criteria that consider hypothetical fault classes in larger expressions may select

test data that is capable of producing a state failure, they do not (for the most part) consider

what is required for a state failure to transfer to output. Hence, these criteria do not guarantee

revealing a failure. Criteria that are directed toward the detection of faults in larger expres

sions effectively achieve information flow transfer by applying their rules to [partial] path

expressions developed through symbolic evaluation. This approach, however, is only applica

ble to faults on paths that produce particular expression classes; this limitation is discussed

above. The concept of "sufficiency" in Offutt's constraint-based testing [DGK+ss, D091] is

similar to transfer, but Offutt <loes not provide any details on the nature of these conditions.

The concept of "propagation" in Morell's symbolic fault-based testing [Mor88, Mor90] is sim

ilar to data dependence transfer, but <loes not consider control dependence transfer. The

distinct contributions of RELAY's information flow transfer model are considered further in

[Tho91, TRC92], where information flow transfer is fully defined.

50

Another distinction is tha.t RELAY provides a. mea.ns of developing conditions tha.t are

both necessa.ry a.nd sufficient to revea.l a fa.Hure. As shown by the a.na.lysis, most fa.ult-ba.sed

testing criteria. select test da.ta tha.t a.re sufficient to origina.te a potentia.l fa.Hure for some

fa.ult classes. When these criteria. a.re not sa.tisfia.ble, however, a.n undetected fa.ult in the

cla.ss ma.y rema.in. Hence, these criteria do not gua.ra.ntee detection of these fa.ults. Beca.use

RELA Y considers both the necessa.ry a.nd sufficient conditions, it does gua.ra.ntee detection.

When a revea.ling condition for a. fa.ult class is not sa.tisfia.ble, in the RELAY model, we know

tha.t a hypothetica.l fa.ult in the cla.ss is not a. fa.ult but ra.ther is a.n "equivalent discrepa.ncy".

Other models of fa.ult-ba.sed testing (such as Morell's [Mor90]) do not direct how to construct

specific conditions or to select da.ta to guara.ntee fa.ult detection.

The final significa.nt contribution of RELA Y is tha.t it provides a general yet a.pplica.ble

fra.mework tha.t describes how a. hypothetica.l fa.ult origina.tes a. potentia.l fa.Hure a.nd then

how it can transfer through a module. We believe tha.t RELAY provides a. cleaner, clea.rer

view of fa.ult-based testing tha.n other approa.ches to da.te a.nd tha.t it is a. sufficiently more

powerful a.pproa.ch. This is clea.rly demonstra.ted in our a.nalysis, which indica.tes tha.t none

of the exa.mined criteria. is capa.ble of gua.ra.nteeing detection of an original sta.te fa.ilure for

the selected fa.ult classes. The precision of the RELAY model is wha.t ena.bled this a.na.lysis.

We plan to do similar a.nalysis of criteria's a.bility to tra.nsfer a potential fa.ilure through the

model of informa.tion fiow tra.nsfer; such a prelimina.ry ana.lysis a.ppea.rs in [TRC92]. Neither

ana.lysis could be a.ccomplished without the formal model of fa.ults a.nd fa.ilures.

We continue to evalua.te the RELAY model's ca.pa.bilities by insta.ntia.ting it for other fa.ult

classes. Thus far, we ha.ve only considered simple fa.ults in a single node. It is not clear tha.t

these a.re the most common fa.ult types. We believe, however, that our general fra.mework is

applica.ble to la.rger, more complex fa.ults a.nd are working on extending the a.pplication to

more complex fa.ult cla.sses. We are a.lso working on a.pplying the model to specifica.tions in

a.u a.ttempt to detect fa.ults introduced ea.rly in the software lifecycle [ROT89].

In addition, we a.re a.pplying this ana.lysis method to other testing criteria.. One direction

51

of future research is to analyze the fault detection capabilities of fallure-based (rather than

fault-based) testing criteria, such as Cohen 's and White's doma.in testing [WC80, CHR82],

and path selection criteria, such as the variety of data flow path selection criteria [RW85,

Nta.84, LK83, CPRZ86]. We expect that this will provide us with further insight into the

relationship of faults and failures in programs and address the strengths and weaknesses of

these two very different approaches to testing. As mentioned, we are also investigating the

power of the model of information flow transfer in analyzing test criteria.

Finally, the RELAY model enables us to analyze the implications of many assumptions

made by testing researchers (such as the competent programmer hypothesis, the coupling

effect, and disallowed coincidental correctness, which is assumed by sorne path-based criteria);

sorne of these assumptions are analyzed in in [TRC92]. Such analysis may allow us to elimina.te

or tone clown some of these assumptions. The analytical perspective provided by RELAY

also suggests empirical studies that must be done to balance analytical evaluation and thus

consider the impact of these assumptions.

52

Appendix

A.1 Origination Conditions 25

constant referenced origination condition set
e true

Table A-1: Origination Condition Set for Constant Reference Fault

variable referenced origination condition set
V { [v # v 1 V is a variable other than V

that is type-compatible with V]}

Table A-2: Origination Condition Set for Variable Reference Fault

assignment origination condition set
V:= EXP {[(v # v) or (exp # v) 1 V is a variable other than V

that is type-compatible with V]}.

Table A-3: Origination Condition Set for Variable Definition Fault

operator origination condition set
not { [true] }
null { [true] }
and {[exp1 # exp2]}
or {[exp1 # exp2]}

Table A-4: Origination Condition Sets for Boolean Operator Faults

25 0rigination conditions for the a.JternatC's for a particular potential fault class are grouped and roported
herC' as origination condition sets.

53

operator origination condition set sufficient condition set

< {[exp1 = exp2], [exp1 > exp2], {[exp1 = exp2], [expi > exp2]}
[exp1 ::; exp2], [exp¡ # exp2]}

< {[expi = exp2], [exp1 < exp2], {[exp1 < exp2], [exp1 = exp2]}
[exp1 2: exp2], [exp1 # exp2]}

{[exp1 > exp2], [expi ;::: exp2], {[exp1 < exp2], [expi > exp2]}
[expi ::; exp2], [exp1 < exp2]}

= {[exp1 ::; exp2], [exp1 < exp2], {[exp1 < exp2], [exp1 > exp2]}
[exp1 > exp2], [exp1 2: exp2]}

> {[exp1 =I= exp2], [exp1 > exp2], {[exp1 = exp2], [exp1 > exp2]}
[expi ::; exp2], [exp1 = exp2]}

> {[ex pi =I= exp2], [exp1 ;::: exp2], {[exp1 < exp2], [expi = exp2]}
[expi < exp2], [exp1 = exp2]}

Table A-5: Origination Condition Sets for Relational Operator Faults

operator origination condition set

+ {[(exp1 + exp2) =I= (exp1 op exp2)]
1 op=, *,/,div,**}

- {[(expi - exp2) =I= (exp1 op exp2)]
1 op = +,*,/, div,**}

* {[(expi * exp2) =I= (exp1 op exp2)]
1 op= +,-,/,div,**}

/ { [(expi/ exp2) =I= (exp1 op exp2)]
1 op=+,-,*,div,**}

div {[(exp1 div exp2) =I= (exp1 op exp2)[
1 op= +,-,*,/,**}

** {[(exp1**exp2) =I= (exp1 op exp2)]
1 op = +, - , *, /, di V}

Table A-6: Origination Condition Sets for Arithmetic Operator Fault

54

A.2 Transfer Conditions

operator expression transfer condition
V:= EXP =/=V:= EXP true

Table A-7: Transfer Condition Through Assignment Operator

operator expression transfer condition

not not(expi) =!= not(expD true
and exp1 and exp2 =!= exp1 and exp2 exp2 =true
or exp1 or exp2 =!= exp1 or exp2 exp2 =false

Table A-8: Transfer Condition Through Boolean Operators

operator expression transfer conditions

+ ea:p1 + exp2 =!= exp1 + exp2 true
- exp1 - exp2 =!= exp1 - exp2 true
- e;rp2 - exp1 =!= exp2 - exp1 true

* exp1 * exp2 =!= exp1 * exp2 exp2 =!=O

/ exp1 / exp2 =!= exptf exp2 exp2 =!=O

/ exp2/ exp1 =!= exp2/ exp1 exp2 =!=O

** exp1**exp2 =!= exp1**exp2 (exp2 =!=O) and (e;rp1 =!= -exp1 or e;rp2 mod2 =!=O)

** exp2**exp1 =!= exp2**exp1 (exp2 =!=O) and (exp2 =!= 1)
and (exp2 =!= -1 or ex pi mod 2 =!= exp1 mod 2)

Table A-9: Transfer Conditions Through Arithmetic Operators

55

operator expression transfer conditions
< exp1 <exp2 # exp1 <exp2) (exp1 <exp2 and exp12exp2) or

(exp12exp2 and exp1 <exp2)
< expi ~exp2 # exp1 S,exp2) (exp1~exp2 and exp1>exp2) or -

(exp1>exp2 and exp1S,exp2)

= exp1 =exp2 # exp1 =exp2) (exp1 = exp2 and exp¡ # exp2) or
(exp1 # exp2 and exp1 = exp2)

exp1 #exp2 # exp1 -=f.exp2) (exp1 # exp2 and exp¡ = exp2) or
(exp1 = exp2 and expi # exp2)

> exp1 >exp2 # expi >exp2) (exp1>exp2 and exp1~exp2) or
(exp1~exp2 and exp1>exp2)

> exp12exp2 # exp12exp2) (exp12exp2 and exp¡ <exp2) or -
(exp1 <exp2 and exp12exp2)

Table A-10: Transfer Conditions Through Relational Operators

operators sufficient transfer conditions
<,~,=,#,>,2 exp2 - exp¡ = t:,

exp2 - exp1 = -t:,

exp2 - exp1 = O

Table A-11: General Suffi.cient26 Transfer Conditions Through Relational

Operators

26 For sufficient transfor condit.ions through rclational operators, € is tlw smallest magnitude positive diffor
rnce between cxp2 and cxp1 and -€is the smallest magnitude negative difference; note that. +€ and -€ may be
of differrnt magnitude. In addition, these conditions are only sufficient under the assumption that the rclation
between c:rp1 and c:rp1 is the same for each of the three test dat.a sclected to satisfy ali three €-conditions
listed in the table. In addition, these conditions are not sufficient unlrss € is the smallest positive difforencc
brtwcen cxp1 and c:rp2 and is no greater than the smallest positive difference between cxp¡ and cxp2. If
any of t.hese €- conditions is infoasible, absence of a fault is not guaranteed by satisfaction of the remaining
€-conditions.

56

References

[BASO] Timothy A. Budd and Dana Angluin. Two Notions of Correctness and Their
Relation to Testing. Teclmical Report TR 80-19, University of Arizona, 1980.

[Bud81] Timothy A. Budd. Mutation Analysis: Ideas, Examples, Problems, and Prospects.
In B. Chandrasekaran and S. Radicchi, editors, Computer Program Testing, pages
129-148. North-Holland, 1981.

[Bud83J Timothy A. Budd. The Portable Mutation Testing Suite. Technical Report TR
83-8, University of Arizona, March 1983.

[CHR82] Lori A. Clarke, Johnette Hassell, and Debra J. Richardson. A Close Look at
Domain Testing. IEEE Transactions on Software Engineering, SE-8(4), July 1982.

[CPRZ86] Lori Clarke, Andy Podgurski, Debra Richardson, and Steven Zeil. An Investiga
tion of Data Flow Path Selection Criteria. Proceedings of the Second Workshop
on Software Testing, Verification, and Ana/ysis, pages 23-32, July 1986.

[DD77] D. E. Denning and P.J. Denning. Certification of Programs for Secure Information
Flow. Communications of the ACM, 20(7):504-513, July 1977.

[DGK+88] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. Offutt. An
Extended Overview of the Mothra Software Testing Environment. In Proceedings
of the Second Workshop on Software Testing, Verification, and Analysis, pages
142-151, Banff, July 1988. IEEE.

[DLS78] Richard DeMillo, R.J. Lipton, and F.G. Sayward. Hints On Test Data Selection:
Help For The Practicing Programmer. Computer, 4(11), April 1978.

[DLS79] Richard DeMillo, R.J. Lipton, and F.G. Sayward. Program Mutation: A New
Approach to Progra.m Testing. Technical Report v. 2, Infotech International,
1979.

[D091] R. A. DeMillo a.nd A. J. Offutt. Constra.int-Based Automa.tic Test Da.ta Gen
eration. IEEE Transactions on Software Engineering, 17(9):900-910, September
1991.

[Fos80] Kenneth A. Foster. Error Sensitive Test Ca.se Analysis (ESTCA). IEEE Trans
actions on Software Engineering, SE-6(3):258-264, May 1980.

[Fos83] Kenneth A. Foster. Comment on the Applica.tion of Error-Sensitive Testing Stra.te
gies to Debugging. ACM Software Engineering Notes, 8(5):40-42, October 1983.

[Fos84] Kenneth A. Foster. Sensitive Test Da.ta. for Logical Expressions. A CM Software
Engineering Notes, 9(3), July 1984.

57

[Fos85] Kenneth A. Foster. Revision of an Error Sensitive Test Rule. ACM Software
Engineering Notes, 10(1), January 1985.

[FOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The Program Dependence Graph
and its Use in Optimization. ACM Transactions on Programming Languages and
Systems, 9(5):319-349, July 1987.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a Theory of Test Data
Selection. IEEE Transactions on Software Engineering, SE-1(2):156-173, June
1975.

[Gla81] Robert L. Glass. Persistent Software Errors. IEEE Transactions on Software
Engineering, SE-7(2):162-168, March 1981.

[Ham77] Richard G. Hamlet. Testing Programs with the Aid of a Compiler. IEEE Trans
actions on Software Engineering, SE-3(4):279-290, July 1977.

[HE78] William E. Howden and Peter Eichhorst. Proving Properties of Progra.ms from
Progra.m Traces. In Edward Miller and William E. Howden, editors, Tutorial:
Software Testing and Validation Techniques, pages 16-19. IEEE, New York, 1978.

[How76] William E. Howden. Reliability of the path analysis testing strategy. IEEE Trans
actions on Software Engineering, SE-2(3), September 1976.

[How78] William E. Howden. Introduction to the Theory of Testing. In Edward Miller
and Willia.m E. Howden, editors, Tutorial: Software Testing and Validation Tech
niques, pages 16-19. IEEE, New York, 1978.

[How82] William E. Howden. Weak Mutation Testing and Completeness of Test Sets. IEEE
Transactions on Software Engineering, SE-8(2):371-379, July 1982.

[How85] William E. Howden. The Theory and Practice of Functional Testing. IEEE
Software, 2(5):6-17, September 1985.

[How86] William E. Howden. A Functional Approach to Program Testing and Analysis.
IEEE Transactions on Software Engineering, SE-12(10):997-1005, October 1986.

[How87] William E. Howden. Functional Program Testing and Analysis. Series in Software
Engineering and Technology. McGraw-Hill, 1987.

[HPR88] S. Horwitz, J. Prins, and T. Reps. On the Adequacy of Program Dependence
Gra.phs for Representing Programs. In Proceedings of the ACM Symposium on
Principies of Programming Languages, pages 146-157, 1988.

[LK83] Janusz W. La.ski and Bogdan Korel. A Data Flow Oriented Program Testing
Strategy. IEEE Transactions on Software Engineering, SE-9(3):347-354, May
1983.

58

[LvH85] David C. Luckham and Friedrich W. von Henke. An Overview of ANN A, a Specifi
cation Language for Ada. IEEE Transactions on Software Engineering, 2(2):9-22,
March 1985.

[Mor84] Larry J. Morell. A Theory of Error-Based Testing. PhD thesis, University of
Maryland, April 1984.

[Mor88] Larry J. Morell. Theoretical Insights in to Fault-Based Testing. In Proceedings
of the Second Workshop on Software Testing, Verification, and Analysis, pages
45-62, Banff, July 1988.

[Mor90] Larry J. Morell. A Theory of Fault-Based Testing. IEEE Transactions on Software
Engineering, 16(8):844-857, August 1990.

[Mye79] Glenford J. Myers. The Art of Software Testing. Wiley Series in Business Data
Processing. John Wiley & Sons, 1979.

[Nta.84] Simeon C. Ntafos. On Required Element Testing. IEEE Transactions on Software
Engineering, SE-10(6):795-803, November 1984.

[PC90] Andy Podgurski and Lori A. Cla.rke. A formal model of program dependences
and its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering, 16(9):965-979, September 1990.

[Pod89] H. Andy Podgurski. The Significance of Program Dependences far Software Test
ing, Debugging, and Maintenance. PhD thesis, Depa.rtment of Computer and
Information Science, University of Massachusetts, Amherst, September 1989.

[RA092] Debra. J. Richa.rdson, Stephanie Leif Aha, and T. Owen O'Malley. Specification
based Test Ora.eles for Reactive Systems. In Proceedings of the Fourteenth Inter
nation Conference on Software Engineering, Melbourne, Australia, May 1992.

[ROT89] Debra. J. Richa.rdson, Owen O'Malley, and Cindy Tittle. Approaches to
Specification-Based Testing. In Proceedings of the ACM SIGSOFT '89 Third
Symposium on Software Testing, Analysis, and Verification {TAV3), pages 86-96,
Key West, Florida, December 1989. ACM SIGSOFT.

[RT86a] Debra J. Richardson and Margaret C. Thompson. A Formal Fra.mework for Test
Da.ta Selection Criteria.. Technica.l Report 86-56, Computer a.nd Information Sci
ence, University of Massa.chusetts, Amherst, November 1986.

[RT86b] Debra. J. Richa.rdson a.nd Marga.ret C. Thompson. An Analysis of Test Data
Selection Criteria U sing the RELA Y Model of Error Detection. Technica.l Report
86-65, Computer a.nd Information Science, University of Massa.chusetts, Amherst,
December 1986.

59

[RT86c] Debra J. Richardson a.nd Margaret C. Thompson. RELAY: A New Model of Error
Detection. Technica.l Report 86-64, Computer a.nd Information Science, University
of Ma.ssa.chusetts, Amherst, December 1986.

[RT88] Debra. J. Richardson a.nd Margaret C. Thompson. The RELAY Model of Error
Detection and Its Application. In Proceedings of the Second Workshop on Software
Testing, Verification, and Analysis, Ba.nff, July 1988. ACM/SIGSOFT a.nd IEEE
CS Software Engineering Technica.l Committee.

[RW85] Sa.ndra. Ra.pps and Ela.ine J. Weyuker. Selecting Software Test Data Using Data
Flow Informa.tion. IEEE Transactions on Software Engineering, 11 (4) :367-375,
April 1985.

[Tho91] Margaret C. Thompson. An Investigation of Fault-Based Testing using the RELAY
Model. PhD thesis, Department of Computer and lnformation Science, University
of Ma.ssachusetts, Amherst, Ma.y 1991.

[TRC92] Margaret C. Thompson, Debra J. Richardson, and Lori A. Clarke. Information
Flow Tra.nsfer in the RELA Y Model. Technica.l Report TR-92-39, Department of
Information and Computer Science, University of California., Ma.y 1992.

[WC80] Lee J. White a.nd Edward l. Cohen. A Doma.in Strategy for Computer Program
Testing. IEEE Transactions on Software Engineering, SE-6(3):247-257, May 1980.

[Wey81] Elaine J. Weyuker. An Error-based Testing Strategy. Technica.l Report 027, Com
puter Science, Institute of Mathematical Sciences, New York University, Janua.ry
1981.

[Wey82] Elaine J. Weyuker. On Testing Nontestable Programs. The Computer Journal,
25(4), 1982.

[Zei83] Steven J. Zeil. Testing for Perturbations of Program Statements. IEEE Transac
tions on Software Engineering, SE-9(3):335-346, May 1983.

[Zei84] Steven J. Zeil. Perturbation Testing for Computation Errors. In Proceedings of
the Seventh International Conference on Software Engineering, March 1984.

[Zei89] Steven J. Zeil. Perturbation Techniques for Detecting Doma.in Errors. IEEE
Transactions on Software Engineering, 15(6):737-746, June 1989.

60

