
UC Davis
UC Davis Previously Published Works

Title
Complex traits and candidate genes: estimation of genetic variance components across 
multiple genetic architectures.

Permalink
https://escholarship.org/uc/item/7sv6f8bd

Journal
G3: Genes, Genomes, Genetics, 13(9)

Authors
Covarrubias-Pazaran, Giovanny
Piepho, Hans-Peter
Feldmann, Mitchell

Publication Date
2023-08-30

DOI
10.1093/g3journal/jkad148
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sv6f8bd
https://escholarship.org
http://www.cdlib.org/


Complex traits and candidate genes: estimation of genetic 
variance components across multiple genetic architectures
Mitchell J. Feldmann,1,* Giovanny Covarrubias-Pazaran,2,3 Hans-Peter Piepho4

1Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA
2International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, El Batán, 56130 Texcoco, Edo. de México, México
3Present address: International Rice Research Institute, Los Baños, 4031 Laguna, Philippines
4Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart 70599, Germany

*Corresponding author: Department of Plant Science, University of California Davis, One Shields Ave, Davis, CA, 95616, USA. Email: mjfeldmann@ucdavis.edu

Abstract

Large-effect loci—those statistically significant loci discovered by genome-wide association studies or linkage mapping—associated 
with key traits segregate amidst a background of minor, often undetectable, genetic effects in wild and domesticated plants and animals. 
Accurately attributing mean differences and variance explained to the correct components in the linear mixed model analysis is vital for 
selecting superior progeny and parents in plant and animal breeding, gene therapy, and medical genetics in humans. Marker-assisted 
prediction and its successor, genomic prediction, have many advantages for selecting superior individuals and understanding disease 
risk. However, these two approaches are less often integrated to study complex traits with different genetic architectures. This simulation 
study demonstrates that the average semivariance can be applied to models incorporating Mendelian, oligogenic, and polygenic terms 
simultaneously and yields accurate estimates of the variance explained for all relevant variables. Our previous research focused on large- 
effect loci and polygenic variance separately. This work aims to synthesize and expand the average semivariance framework to various 
genetic architectures and the corresponding mixed models. This framework independently accounts for the effects of large-effect loci 
and the polygenic genetic background and is universally applicable to genetics studies in humans, plants, animals, and microbes.
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Introduction
Today, linear mixed models (LMMs) are routinely applied in plant 
breeding and quantitative genetics research. They are used for the 
prediction of genetic values in plants and animals (VanRaden 
2008; Heffner et al. 2010; Meuwissen et al. 2016), or polygenic risk 
scores (PRSs) in humans (de Los Campos et al. 2013; Wray et al. 
2019), to estimate the heritability of traits in target populations 
(Visscher et al. 2008; Legarra 2016), and to estimate ecological 
and evolutionary genetic parameters of behavioral traits 
(Ariyomo et al. 2013; Walsh and Lynch 2018). Genetic values are 
constructed from a combination of genetic effects; including 
Mendelian factors; which may have both additive and dominant 
sources of variance (Pincot et al. 2022), oligogenic factors consist
ing of few genetic factors and their epistatic interactions appropri
ate for marker-assisted prediction (MAP) (Tang et al. 2006), a 
polygenic term consisting of a dense genome-wide framework of 
markers assumed to have minor effects suitable for genomic pre
diction (GP); which may also account of additive and dominance 
sources of variance (Brandariz and Bernardo 2019), and a residual 
genetic term consisting of all genetic effects not accounted for by 
the previous genetic factors (Rutkoski et al. 2014; Rice and Lipka 
2019; DeWitt et al. 2021). The ultimate objective in breeding appli
cations is, typically, predicting the genotypic value, e.g. breeding 

value or genetic merit of a candidate individual (VanRaden 
2008). For loci to provide actionable gains or diagnoses, they 
must explain a significant proportion of phenotypic and genetic 
variation in a population with alleles in segregation at target loci.

Candidate gene discovery through genome-wide association 
studies (GWAS) and quantitative trait locus (QTL) mapping is pro
lific in plant and animal populations (Lander and Schork 1994; 
Visscher et al. 2012, 2017). Despite decades of directional selection 
in many plant populations, loci impacting traits of interest still seg
regate, even in advanced breeding materials. These genome-wide 
analyses have implicated numerous genes and genomic regions 
in controlling a wide variety of simple and complex traits 
(Anderson et al. 2007; Septiningsih et al. 2009; Han et al. 2018; 
Demmings et al. 2019; Xin et al. 2020). However, the utility of such 
marker–trait associations may not be fully realized (Bernardo 
2004, 2016). Large-effect and statistically significant loci typically 
only explain a fraction of the genetic and phenotypic variance in 
a population (Feldmann, Piepho, Bridges, et al. 2021), along with 
the polygenic fraction (Feldmann, Piepho, et al. 2022), except in ex
treme scenarios when Mendelian factors wholly control a trait.

Discovered loci rarely, if ever, explain 100% of the genetic vari
ance, and understanding the multiple sources of variation and 
how they relate can help breeders and research prioritize targets 
and mitigate risk (Bernardo 2004, 2014). Genes with significant 
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effects often dominate the “nonmissing heritability,” but they can 
mask or obscure the effects of other quantitatively acting genes 
and pleiotropically affect multiple quantitative phenotypes 
(Mackay 2001; Mackay et al. 2009; Eichler et al. 2010; De 
Villemereuil et al. 2018). For example, mutations in the BRCA2 
gene can have large effects but be incompletely penetrant, inter
act with other genes, and may be necessary but insufficient for 
predicting breast, ovarian, and other cancer risks in women 
(Gaudet et al. 2010). Accurately partitioning the Mendelian, oligo
genic, and polygenic sources of variance allows researchers to as
sess the value conferred by specific loci.

Here, we use simulations to show that the average semivariance 
(ASV) provides accurate variance component estimates (VCEs) and 
variance component ratios for all relevant genetic terms regardless 
of study design or population type, e.g. outbred or inbred. We sought 
to provide a synthesis and extension of the previously published 
works on the ASV (Piepho 2019; Feldmann, Piepho, Bridges, et al. 
2021; Feldmann, Piepho, et al. 2022) and to present a fully realized 
and efficient ASV approach for typical LMM analyses in human, 
plant, animal, and microbial genetics. We demonstrate how these 
models can be extended to handle more complex genetic structures, 
including adding multiple explanatory loci and marker–marker in
teractions, incorporating nonadditive dominance and epistasis vari
ance, partitioning marker variance into additive and dominance 
components, and performing fully efficient stagewise analysis. To 
accommodate the models proposed in this research, we enabled 
the flexibility to provide the weights into the mixed model machin
ery in the form of a matrix (diagonal or nondiagonal) instead of a vec
tor, which is now available in R/sommer >= v4.2.0. We provide 
examples of expressing the different models and extensions in the 
freely available R/sommer package (Covarrubias-Pazaran 2016). 
The ASV is a powerful tool for answering these questions regardless 
of the organism, population, or trait.

Methods & materials
Computer simulations model statements in 
R/sommer v4.2.0
We use computer simulations that follow the same style as in 
Feldmann, Piepho, Bridges, et al. (2021) and Feldmann, Piepho, et al. 
(2022) to demonstrate under fairly general conditions that ASV 
yields accurate estimates of variance components when (1) includ
ing main-effect loci alongside polygenic background, (2) partitioning 
additive and dominance sources of variance for single markers and 
polygene, and (3) performing fully efficient stagewise analyses.

Incorporating one target locus into GBLUP
LMM (1) is expressed as

mmer(fixed = Y ∼ 1,
random = ∼ M +

vsr(G, Gu = Kasv) +
GR,

rcov  = ∼ units,
data  = data)

where data is an n × 4 matrix containing the phenotypic observa
tions Y, levels of the marker genotypes, entries, and levels of the 
residual genetic term, i.e. entries. The variable units is inferred 
by R/sommer::mmer() and can be considered as a column with 
as many levels as rows in the data (Covarrubias-Pazaran 2016).

The version of this model with kM embedded is expressed as

mmer(fixed = Y ∼ 1,
random = ∼ vsr(M, Gu = KM) +

vsr(G, Gu = Kasv) +
GR,

rcov  = ∼ units,
data  = data)

where KM is the matrix KM = k−1
M InM . All other variables are the 

same as previously defined.
We generated 18 experiment designs with different population 

sizes of n = 500, 1,000, and 1,814, and number of clonal replicates 
per entry r = 1, 2, and 4 for outbred H = 0.38 and inbred H = 0.0 popu
lations. Clonal replicates are a particular case in plant genetics of 
hybrid (e.g. maize, rice, and sorghum) cropping systems and in clon
ally propagated species (e.g. strawberry, potato, and apple). In all ex
amples, 100 populations are genotyped at m = 5, 000 loci. These 
5,000 single nucleotide polymorphisms (SNPs) generated the purely 
additive polygenic background and one locus for the simple genetic 
effect. Marker genotypes, e.g. alleles, were drawn from a multivari
ate normal distribution to replicate the population structure of the 
1,814 mice from Valdar et al. (2006) using R/MASS::mvrnorm() and 
transformed such that the population was heterozygosity H = 0.38. 
We then estimated KASV and excluded the targeted locus from the 
calculation of KASV. We also simulated residual genetic and residual 
effects each from a normal distribution with μ = 0 and θASV

gR
=

���
50
√

and θASV
R =

���
40
√

using R/stats::rnorm(). A single explanatory lo
cus was simulated with a segregation ratio of approximately 1 : 2 : 1 
for AA:Aa:aa marker genotypes with μ = 0 and θASV

m =
���������
kM · 66

􏽰
using 

R/stats::rnorm(). We simulated marker effects for all m = 5, 000 
loci following a normal distribution μ = 0 and θASV

g =
���
66
√

, and each 
locus contributes equally. When multiplied by the centered marker 
genotypes and summed, the score is taken as each individual’s true 
additive genetic value g. For each simulated population we ex
pressed LMM (1) using R/sommer::mmer() (Covarrubias-Pazaran 
2016). In the second set of simulations, we used the same approach 
and the same mean and variance parameters. However, in this ex
ample, we simulated inbred lines in the background polygenic mar
kers (H = 0.0) and the foreground markers, e.g. 1 : 0 : 1 for AA:Aa:aa.

Incorporating multiple target loci into GBLUP
LMM (8) is expressed as

mmer(fixed = Y ∼ 1,
random = ∼ M1 + M2 + M3 +

M12 + M13 + M23 +
M123 +
vsr(G, Gu = Kasv) +
GR,

rcov  = ∼ units,
data  = data)

where data is an n × 10 matrix containing the phenotypic observa
tions Y, seven columns corresponding to the marker effects and in
teractions, a factor-coding entries G, and a factor-coding levels of gR.

Due to the similarities between our first set of experiments and 
this extension, we do not provide any additional simulations dem
onstrating the successes of this model extension. Feldmann, 
Piepho, Bridges, et al. (2021) demonstrated that multiple loci could 
be fit simultaneously with their interactions, and variance compo
nents can be estimated accurately. The same is true for models 
incorporating a polygenic genomic relationship matrix (GRM) as 
well. However, the user is encouraged to check that the higher or
der locus–locus interactions do not saturate the model and are not 
correlated with KASV.
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Partitioning marker variance into additive and dominance 
components
LMM (9) is expressed as

mmer(fixed = Y ∼ 1,
random = ∼ Ma + Md +

vs(G, Gu = Kasv) +
GR,

rcov  = ∼ units,
data  = data)

where data is an n × 5 matrix containing the phenotypic observa
tions Y, a factor-coding levels of mA, a factor-coding levels of mD, a 
factor-coding entries G, and a factor-coding levels of gR. The factor 
coding of mA has three levels corresponding to AA : Aa : aa, and a 
factor coding of mD has two groups corresponding to the genetic 
state—either homozygous or heterozygous.

We performed one set of simulations for this model extension 
that follows the exact parameters as the first simulation set 
(m = 5, 000, n = 500, H = 0.38). In this simulation, we estimate 
which portion of the variance explained by a marker is from addi
tive variance and which is from dominance variance. In this simu
lation, we estimate which portion of the additive genetic variance 
(θASV

g =
���
66
√

), the marker explained variance by additive 
(θASV

mA
=

���
20
√

) or dominance variance (θASV
mD

=
���
20
√

), the residual gen
etic variance (θASV

gR
=

���
50
√

), and the residual variance (on an entry- 
mean basis) (θASV

R =
���
40
√

). In our simulations, 50% of the variance 
explained by the focal marker is from additive variation and 
50% is dominance variation. The other parameters of the simula
tion are equal to the first set. We examined the accuracy of esti
mating each term as well as the accuracy of estimating the total 
variance explained by the focal marker.

Incorporating a genomic dominance relationship matrix into 
GBLUP
LMM (13) is expressed as

mmer(fixed = Y ∼ 1,
random = ∼ M +

vsr(Ga, Gu = Kasv) +
vsr(Gd, Gu = Kasv˙D) +
GR,

rcov  = ∼ units,
data  = data)

where data is an n × 5 matrix containing the phenotypic observa
tions Y, a factor-coding levels of the marker genotypes, and three 
equivalent factor-coding entries, to be used for the additive, dom
inance, and residual genetic terms.

We performed one set of simulations for this model extension 
that follows the exact parameters as the first simulation set 
(m = 5, 000, n = 500, H = 0.38). In this simulation, we estimate 
which portion of the polygenic variance is from additive 
(θASV

gA
=

���
33
√

) or dominance (θASV
gD

=
���
33
√

). In this simulation, the 
dominance polygenic variance is the same magnitude as the addi
tive polygenic variance, and the other simulation parameters are 
equal to the first set. We also controlled the residual genetic vari
ance (θASV

gR
=

���
50
√

) and the residual variance (on an entry-mean ba
sis) (θASV

R =
���
40
√

), as in all simulations. We examined the accuracy 
of estimating each term.

Incorporating stagewise meta-analysis into GBLUP
LMM (15) for stage 1 is expressed as

mmer(fixed = Y ∼ G,
random = ∼ Block,

rcov  = ∼ units,
data  = data)

where data is an n × 3 matrix containing the phenotypic observa
tions Y, one factor coding for the entry ID and one-factor coding 
for Blocks within the ne environment. Blocks and other within- 
location design elements can be incorporated as random effects 
using the random = syntax. In R/sommer, Σe is obtained from 
each location as the ‘VarBeta‘ matrix in the R/sommer::mmer() 
output. “VarBeta” is the name of the model estimated variance– 
covariance matrix among entry means in R/sommer. The Σes are 
then bound corner-to-corner, which is accomplished using R/ 
sommer::adiag1() to obtain Ω. We then take the inverse of Ω 
using R/base::solve().

The LMM for stage 2 (17) is expressed as
mmer(fixed = Y2 ∼ Env - 1,

random = ∼ vsr(M, Gu = KM) +
vsr(G, Gu = Kasv) +
G:Env + GR,

rcov = ∼ vsr(units,
Gti = matrix(invSigma2,1,1),
Gtc = matrix(3,1,1)),

nIters  = 25,
emWeight = rep(1,25),
W     = invOmega,
data   = data)

where data is an n × 5 matrix containing the adjusted entry means, 
or BLUEs, from stage 1 (Y2) a factor-coding levels of M, two equiva
lent factor-coding entries, e.g. G and gR, and factor-coding environ
ments Env. In this approach, we must fix the residual variance 
component equal to 1 so that all the scaling of the invOmega = Ω−1 

is unaffected by the model estimation process. Within the vsr() ar
gument, the Gti() and Gtc() arguments are used to set the initial 
value of the variance component equal to the inverse of the variance 
among adjusted entry means (invSigma2 = σ̂−2) and to constrain the 
variance component estimation to a fixed value by setting the first 
argument equal to 3 (Covarrubias-Pazaran 2023). In this example, 
we use 25 iterations of the 100% expectation-maximization (EM) al
gorithm; however, the EM and Newton-Raphson (NR) methods can 
be exchanged or averaged, i.e. average information, by changing 
the emWeight argument. This is not a general rule or recommenda
tion. The large number of iterations we used caused this analysis to 
be computationally expensive and inefficient.

We performed one set of simulations for this model extension 
following the exact parameters of the first simulation set 
(m = 5, 000, n = 500, H = 0.38). In this simulation, we estimate 
which portion of the additive genetic variance (θASV

g =
���
66
√

), the 
marker explained variance (θASV

m =
���
40
√

), the residual genetic vari
ance (θASV

gR
=

���
50
√

), the genotype-by-environment interaction vari
ance (θASV

GE =
���
90
√

), and the residual variance (on an entry-mean 
basis) (θASV

ϵ =
���
40
√

). In this simulation, the dominance polygenic 
variance is the same magnitude as the additive polygenic vari
ance, and the other simulation parameters are equal to the first 
set. We examined the accuracy of estimating each term.

Results and discussion
Candidate genes and complex traits
Bernardo (2014) was the first to propose an integration of MAP and 
GP. Since then, empirical studies have validated the methodology 
(Rutkoski et al. 2014; Spindel et al. 2016; Rice and Lipka 2019). In 
contrast, others have shown little-to-no improvement over GP 
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(Li et al. 2015; Galli et al. 2020), suggesting that modeling significant 
markers can improve prediction accuracy only when markers ex
plain a substantial portion of both genetic and phenotypic vari
ance (Galli et al. 2020). With the high densities of genome-wide 
markers commonly assayed in gene finding studies, investigators 
often identify DNA markers tightly linked to a candidate or known 
causal genes as exemplified by diverse real-world examples 
(Hayes and Goddard 2001; Hayes et al. 2010; Jensen et al. 2012; 
Visscher et al. 2012, 2017; Li et al. 2021). The candidate marker 
loci are nearly always initially identified by genome-wide searches 
using sequential (marker-by-marker) approaches such as GWAS 
and QTL analysis. Following the discovery of statistically signifi
cant marker–trait associations from a marker-by-marker 
genome-wide scan, the natural progression would be to analyze 
single locus or multilocus genetic models where the effects of 
the discovered loci are simultaneously corrected for the effects 
of other discovered loci, e.g. polygenic variation (Stroup et al. 
2018; Gbur et al. 2020).

A marker will not explain a large portion of variance if that 
marker does not have a large, detectable effect. Thus, markers 
that explain a large part of the genetic variance will be the most 
useful for MAP and other diagnostic techniques. For example, 
consider Fusarium race one wilt resistance in strawberry, which 
is conferred by a single dominant acting locus Fw1 (Pincot et al. 
2022). This locus explains nearly 100% of the phenotypic and gen
etic variance, and the mean differences delineate resistant vs. 
susceptible genotypes. Thus there is almost no added benefit of 
a genome-wide sample of markers over the single-marker assay 
(m) for product delivery and germplasm improvement. While 
the variance explained is directly linked to the effect size, it is 
not a direct substitute. However, the random effect machinery 
allows researchers to obtain variance component estimates, and 
effect sizes (e.g. best linear unbiased predictors, BLUPs) simultan
eously (Searle et al. 1992), eliminating the need for multiple statis
tical models to assess the variance explained and the effect size of 
a target locus. The BLUP procedure is directly applied in this mod
el, so it is natural to use the same statistical machinery to esti
mate genome-estimated breeding values (GEBVs) by genomic 
best linear unbiased prediction (GBLUP) and the genetic effect of 
a locus.

As a point of contrast, yield in maize (Zea mays) is heritable, but 
no single locus explains any appreciable amount of phenotypic or 
genotypic variance (Heffner et al. 2009, 2010). To improve yield in 
maize, GP is potentially a more valuable approach because the re
searcher, or breeder, can predict the polygenic value (g) without 
relying on any particular locus but instead capturing variation 
of a genome-wide sample of markers. The more challenging scen
ario is the intermediate case in which a trait is controlled by both 
loci that are discernible from the polygenic background and a 
quantitative polygenic effect.

The ratio between the variance explained by the oligogenic 
and polygenic terms with the total genetic or phenotypic vari
ance is likely a significant factor determining the cost–benefit 
of incorporating MAP, GP, or both into a breeding or diagnostic 
program. Modeling an individual locus can be advantageous 
when the proportion of the phenotypic and genetic variance ex
plained by the locus is reasonably large and not partially cap
tured by other markers in linkage disequilibrium (LD) with the 
target (Bernardo 2014; Rutkoski et al. 2014; Pincot et al. 2022). 
In this case, one could factor code a pseudomarker from mul
tiple markers bracketing a QTL to capture the variance ex
plained by that locus, assuming that SNPs used to define a 
QTL region are highly correlated and will not saturate a model’s 

effective degrees of freedom. Also, the targeted markers should 
not fit the marker effect size distribution assumptions used for 
the marker background, e.g. that all marker effects contribute 
equally to the genomic variance and are drawn from the same 
distribution (Habier et al. 2007; Endelman 2011; Morota and 
Gianola 2014) and should not be in high LD with a large number 
of other markers.

The entry mean, not the observation, is the 
“phenotype”
We believe the “phenotype” is the entry mean for a given subdiv
ision of environments, not the individual observations that consti
tute that entry mean. Our discussion here is primarily predicated 
on plants, but does not necessarily exclude other organisms, 
where replicate observations may be available per entry. In the 
words of Dr. Rex Bernardo, “…the main focus of quantitative gen
etics is on identifying candidates with the best genotypic value for 
a target population of environments” (Bernardo 2020). However, 
fine- or broad-scaled any subdivision is of a target population of 
environments or market segment, we argue that several environ
ments must be sampled from each subdivision. Ultimately, an 
average across those environments will be used to communicate 
the value of an entry to a specific subdivision of target environ
ments or to all target environments, if appropriate. These subdivi
sions may be defined by market segments, maturity zones, 
patterns of G × E, management strategies, geopolitics, and other 
elements of interest to a breeding or research program. The 
granularity of the entry mean is important since not all environ
ments, micro or macro, or market segments can be considered 
equal, and severe genotype-by-environment interactions (G × E) 
may limit the information contained in the entry mean (Heslot 
et al. 2013; González-Barrios et al. 2019). Conceptualizing the 
phenotype as the entry mean should pose little practical conse
quence as stagewise analyses, common in GWAS and GP, explicit
ly express this idea (Dias et al. 2020; Pincot et al. 2020; Endelman 
2022) and variance component ratios, such as the broad sense her
itability (H2), are often reported on an entry-mean basis (Bernardo 
2020). This concept is also concordant with single-stage analyses 
incorporating all entries and subdivisions as main effects and the 
interaction, such as in product placement and other late-stage 
trials (Buntaran et al. 2020). Below, we show that ASV can be accur
ately applied in single-stage and stagewise analyses.

LMM analysis and the ASV
The ASV estimator of total variance (Piepho 2019) and the vari
ance of single markers and marker–marker interactions 
(Feldmann, Piepho, Bridges, et al. 2021) is half the average total 
pairwise variance of a difference between entries and can be de
composed into independent sources of variance, e.g. genetic and 
residual. In this article, we assume that researchers can replicate 
entries independently—as in clonally propagated or inbred crop 
species—or can collect repeated measures on entries (e.g. indivi
duals, families, or strains)—as in humans and animals—and 
then estimate the least square means (LSMs), best linear unbiased 
estimators (BLUEs), or other adjusted entry means in the first 
stage of a stagewise analysis (Piepho et al. 2012; Damesa et al. 
2017, 2019). For simplicity, we assume that the residual vari
ance–covariance matrix, which can take many forms (Piepho 
2019), is R = Inσ2

ϵ , where n is the number of entries (e.g. individuals, 
accessions, genotypes, lines, or animals). In stagewise analysis, R 
is estimated in the first stage and therefore does not need to be re- 
estimated in the second stage. Instead, it is forwarded to the se
cond stage by proper weighting.

4 | G3, 2023, Vol. 13, No. 9



The form of the LMM for this analysis assuming only one ex
planatory marker is

y̅ = 1μ + Zmm + Ig + IgR + ϵ̅ (1) 

where y̅ is the vector of LSMs with y ∼ N (1μ, V), μ is the population 
mean and the only fixed effect, Zm is the design matrix linking en
try means to marker genotypes, m is the vector of random effects 

of the main-effects locus with m ∼ N (0, Iσ2
m), g is the vector of ran

dom additive genetic effects associated with the genome-wide 

framework of marker excluding m with g ∼ N (0, KASVσ2
g), gR is 

the vector of random residual genetic term—the portion of the to

tal genetic effect not accounted for by m or g—with gR ∼ N (0, Iσ2
gR

), 

and ̅ϵ is the random residual term with ̅ϵ ∼ N (0, R). We use a pooled 

estimate of σ2
ϵ̅ obtained from the first stage, so this term is known.

We then calculated KASV as

KASV =
X̅X̅T

(n − 1)−1 tr(X̅X̅T
)

(2) 

where X̅ = PX is the mean-centered marker matrix, X is the mark

er matrix coded [−1,0,1] for [aa,Aa,AA] genotypes, K̅ = X̅X̅T 
is the 

realized genomic relationship or kinship matrix, P = I − n−11n1T
n 

is the idempotent mean-centering matrix, and tr(·) is the trace.
The ASV definition of total variance from LMM (1) is

θASV
y̅ = (n − 1)−1 tr(VP)

= θASV
m + θASV

g + θASV
gR

+ θASV
ϵ̅

(3) 

where θASV
y̅ is the total phenotypic variance, V is the variance–co

variance among LSMs, θASV
m is the average semivariance of the sim

ple genetic term, θASV
g is the average semivariance of the polygenic 

term, θASV
gR 

is the average semivariance of the residual genetic 

term, and θASV
ϵ̅ is the average semivariance of the residuals.

The ASV definition of genomic variance is

θASV
g = (n − 1)−1σ2

g tr(XXTP)

=
tr(K̅)
n − 1

􏼔 􏼕

σ2
g

(4) 

In general, we replace the unknown parameter values (σ2
g) with 

their REML estimates (σ̂2
g) to obtain the ASV estimates (θ̂ASV

g ). 

Following this form, it is possible to extend LMM (1) to include 
dominance and epistatic sources of variance (see below).

The ASV definition of marker-associated genetic variance is

θASV
m = (n − 1)−1σ2

m tr(ZmZT
mPm)

=
(n − n−1 􏽐nm

h=1 n2
g : mh

)

n − 1

􏼢 􏼣

σ2
m

= kmσ̂2
m

(5) 

where Pm = I − nm
−11nm 1T

nm 
is the idempotent mean-centering 

marker genotype design matrix, nm is the number of marker gen
otypes, and ng : mh is the number of entries nested in the hth marker 

genotype. We are factor-coding marker genotypes in these ana
lyses and the marker genotypes are treated as discrete categorical 
values instead of continuous values (dosage). It is possible to 

extend this using the approach for multilocus models as in 
Equation (8), with and without marker–marker interactions, de
scribed in Feldmann, Piepho, Bridges, et al. (2021). Specifically, 

θASV
m is the total variance explained by a marker and is analogous 

to the total genetic variance used to calculate broad sense herit
ability, not the additive genetic variance.

It is important to consider the relationship between the main 
effect of markers and marker–marker interactions and KASV. 
When markers are highly correlated—due to linkage disequilib
rium (LD) or selection bias—the LMM framework will fail to accur
ately partition variance between two main effects, even if an 
estimator is “unbiased.” One possible strategy here is to create 
multilocus genotypes, e.g. AA.AA, AA.AB,…, BB.AB, BB.BB, from 
several SNPs defining a target QTL region. If LD is high in the re
gion, there should be far fewer levels of the multilocus genotype 
than possible combinations. The same is true if the marker geno
types are highly correlated with the geometry of the KASV—the 
LMM framework will fail to accurately partition the variance be
tween the oligogenic foreground and the polygenic background. 
One way to assess this is to examine the correlation between the 
first few eigenvectors of KASV and the main-effect marker geno
types. If the correlation is large in magnitude, regardless of direc
tion, the LMM will likely struggle to partition the variance 
components between the two terms accurately.

The ASV definition of the residual genetic variance is

θASV
gR

= (n − 1)−1σ2
gR

tr(InIT
nP)

= σ2
gR

(6) 

Importantly, all terms are estimated on the same scale as the re

sidual variance θASV
ϵ on an entry-mean basis. As with the marker 

variance, the residual genetic variance will not be accurately par
titioned from the polygenic background as KASV → I. While KASV 

needs to have similar global features—n−1 tr(K) = 1 and 

n−2 􏽐
i
􏽐

j Kij = 0—it is important that KASV ≠ I.
The ASV definition of the residual variance is

θASV
ϵ̅ = (n − 1)−1σ2

ϵ tr(InIT
nP)

= σ2
ϵ̅

(7) 

The residual variance σ2
ϵ̅ is estimated in the first stage and the es

timate is carried forward to the second stage.
Two crucial results from Piepho (2019) and Feldmann, Piepho, 

Bridges, et al. (2021) are that (1) the ASV variance component esti
mates for the total genetic variance from a simple model are 
equivalent to the REML variance components and (2) for REML es
timates that are not ASV equivalent there are simple constants 
that can be applied post hoc to obtain ASV variance component 
estimates. Feldmann, Piepho, et al. (2022), and this article shows 
that some ASV variance components (e.g. additive genetic vari
ance, a single marker variance) can conveniently be obtained by 
scaling the variance–covariance matrices for the specific random 
effects in the model directly.

Simulations confirm that ASV yields accurate 
estimates of all genetic variance components and 
ratios
As shown in previous studies (Piepho 2019; Feldmann, Piepho, 
Bridges, et al. 2021; Feldmann, Piepho, et al. 2022), ASV is ideal 
for estimating the variance explained by both single loci and 
GRMs. In our simulations, we included variation in population 
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size, e.g. n = 500, 1,000, and 1,814, and replication of entries, e.g. 
r = 1, 2, and 4 for both outbred (Fig. 1) and inbred populations 
(Fig. 2). We can see that the same pattern has emerged as in pre
vious studies; the ASV approach yields accurate and consistent 
estimates of variance components and variance component ratios 
from LMM analyses regardless of the constitution of the popula
tion or the study design. Even when there is only one replicate 
per entry (r = 1), all explanatory genetic terms are accurately par
titioned from the total variance. As n increased from 500 to 1,814, 
the precision of estimates increased dramatically (the sampling 
variance decreased). Increasing r from 1 to 4 did not affect the pre
cision or accuracy of genomic and marker-associated variances. 
However, increased numbers of replicates did improve the preci
sion of residual variance components. This is because entries 
are replicated among plots (n · r), but markers and other genetic 
components are replicated among entries (n). Our simulations, 
in conjunction with our previous results (Piepho 2019; 
Feldmann, Piepho, Bridges, et al. 2021; Feldmann, Piepho, et al. 
2022), demonstrate that in most populations—human, animal, 
plant, or microbe—the ASV will yield accurate and easily inter
preted estimates of different variance components.

LMM extensions incorporating the ASV
While an important model, LMM (1), only covers a narrow scope of 
the possible genetic models and experiments, we want to provide re
searchers with a clear strategy for expanding this approach to more 
complex systems. This section demonstrates how to partition the 
additive and dominance variance from a single marker, incorporate 
multiple explanatory loci, their interactions into the model, and 

nonadditive polygenic terms, and achieve fully efficient stagewise 
analysis. Depending on the population, trait, environment, etc., 
the unique components of the models demonstrated here can be 
combined to accurately and holistically decompose the multitude 
of potential sources of genetic variation. The code to execute these 
models using the R/sommer > = v4.2.0 (Covarrubias-Pazaran 2016) 
is provided in the Methods & Materials section.

Extension #1: Incorporating multiple target loci and 
locus–locus interactions
It is common for multiple QTL to be implicated from genetic stud
ies (Rutkoski et al. 2014; Lopdell et al. 2019; Rice and Lipka 2019), 
the utility of which is not always certain (Bernardo 2001, 2004). 
While the simulations in this paper rely exclusively on LMM (1), 
this model can be easily expanded to include multiple explana
tory loci and their interactions or statistical epistasis 
(Álvarez-Castro and Carlborg 2007), as demonstrated by 
Feldmann, Piepho, Bridges, et al. (2021). For example, the LMM 
with three main-effect loci is

y̅ = 1nμ +
􏽘3

i = 1

Zmi
mi +

􏽘2

i=1

􏽘3

j=i+1

Zmij
mij

+ Zm123 m123 + Ig + IgR + ϵ̅

(8) 

where mi is the random effect of the ith main-effect marker, mij is 

the random effect of the two-way interaction between the ith and 
jth markers, and m123 is the random effect of the three-way inter
action between the three main-effect loci. Zmi

, Zmij
, and Zm123 are 

n = 500 n = 1,000 n = 1,814

r = 1
r = 2

r = 4
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2 ŝGR

2
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Fig. 1. Effect of n and r on the relative bias of variance components and ratios in simulated outbred populations. Phenotypic observations were simulated 
for 100 samples with n = 500, 1,000, and 1,814 (left to right) genotyped for m = 5, 000 SNPs and the average heterozygosity H = 0.38. The relative bias of 
marker heritability, genomic heritability estimates (ĥ2

g), broad sense heritability, genomic variance, marker variance, residual genetic variance, and 
residual variance heritability when the number of replicates of each entry (r) =1 (upper panel), 2 (middle panel), and 4 (lower panel). Each box’s upper and 
lower halves correspond to the first and third quartiles (the 25th and 75th percentiles). The notch corresponds to the median (the 50th percentile). The 
upper whisker extends from the box to the highest value within 1.5 × IQR of the third quartile, where IQR is the inter-quartile range or distance between 
the first and third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5 × IQR of the quartile. The dashed line in each 
plot is the true value from simulations.
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design matrices that link levels of the explanatory marker and in
teractions to LSMs in y. The rest of the terms have the same defi
nitions. LMM (8) follows directly from Equation (1) and the results 
from Feldmann, Piepho, Bridges, et al. (2021), specifically the two 
and three loci examples.

Since we are factor-coding marker genotypes in these models, 
that is we are thinking of the marker genotypes as discrete cat
egorical values instead of continuous values (dosage), it is possible 
to fully saturate the multilocus interaction with more levels than 
are observed in a given data set. Hence, it is important to consider 
the number of interaction terms evaluated. In this situation, 
packages such as lme4::lmer() will report an error that the 
“number of levels of each grouping factor must be < number of 
[LSMs]” (Bates et al. 2015). Further, these models assume that ran
dom effects are independent, so we do not advise incorporating 
main effects from the SNPs used to define a target QTL region. 
Instead, it is possible to factor code a pseudohaplotype from the 
best markers bracketing a QTL to capture the variance explained 
by that locus, which can be more informative than a single SNP. 
This approach assumes that SNPs used to define a QTL region 
are not independent and do not fully saturate the model.

Extension #2: Partitioning θASV
m into additive (θASV

mA
) and 

dominance (θASV
mD

) components
The factor-coding of the Mendelian and oligogenic markers is a 
different approach than is standard in GWAS. In GWAS, markers 
are typically treated as fixed and coded as continuous values, e.g. 
the dosage model. Assuming that a researcher is working with an 
outbred species and the heterozygosity (H) ≠ 0, the dominance 

variance can be significant, and partitioning the additive and 
dominance sources of variance from significant markers can be 
useful in hybrid crop breeding and disease risk prognoses. Our 
goal is to partition θASV

m , the variance explained by a focal locus, 
into its additive (θASV

mA
) and dominance (θASV

mD
) components.

Here, we demonstrate an LMM that can partition the main- 
effect marker’s additive and dominance sources of variance by 
transforming the marker genotypes into two factors. The form 
of the linear mixed model (LMM) for this analysis assuming only 
one explanatory marker is

y̅ = 1μ + ZmA mA + ZmD mD + Ig + IgR + ϵ̅ (9) 

where mA is the random additive effect of the main-effect locus 

with mA ∼ N (0, Iσ2
mA

) and mD is the random dominance effect of 

the main-effect locus with mD ∼ N (0, Iσ2
mD

). ZmA is an n × 3 design 

matrix linking marker genotypes to LSMs and ZmD is an n × 2 de
sign matrix linking genotypic state, either homozygous (AA and 
aa) or heterozygous (Aa), to LSMs. For example, the ZmA and ZmD 

design matrices for five individuals (rows) with marker genotypes 
at a focal locus of [AA, Aa, Aa, aa, aa] = [1, 0, 0, − 1, − 1] are

ZmA =

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

, ZmD =

1 0
0 1
0 1
1 0
1 0

⎡

⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎦

(10) 

Other terms are defined in LMM (1). This extension is a partition 
of Equation (1). So we expect that Equations (1) and (9) are 
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2 ŝg
2 ŝm
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Fig. 2. Effect of n and r on the relative bias of variance components and ratios in simulated inbred populations. Phenotypic observations were simulated 
for 100 samples with n = 500, 1,000, and 1,814 (left to right) genotyped for m = 5, 000 SNPs and the average heterozygosity H = 0. The relative bias of marker 
heritability, genomic heritability estimates (ĥ2

g), broad sense heritability, genomic variance, marker variance, residual genetic variance, and residual 
variance heritability when the number of replicates of each entry (r) =1 (upper panel), 2 (middle panel), and 4 (lower panel). Each box’s upper and lower 
halves correspond to the first and third quartiles (the 25th and 75th percentiles). The notch corresponds to the median (the 50th percentile). The upper 
whisker extends from the box to the highest value within 1.5 × IQR of the third quartile, where IQR is the inter-quartile range or distance between the first 
and third quartiles. The lower whisker extends from the first quartile to the lowest value within 1.5 × IQR of the quartile. The dashed line in each plot is the 
true value from simulations.
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equivalent, except that Equation (9) will yield a variance compo
nent for each of the additive and dominance terms, while 
Equation (1) only yield the total genetic variance.

The ASV estimate of the additive variance explained by a locus 
is obtained as in Equation (5) by

θ̂ASV
mA

= (n − 1)−1σ̂2
mA

tr(ZmA ZT
mA

PmA )

=
n − n−1 􏽐nmD

h=1 n2
g : mAh

n − 1

⎡

⎣

⎤

⎦σ̂2
mA

(11) 

where PmA = I − n−1
mA

1nmA
1T

nmA
, nmA are the number of levels coding 

the marker additive effects, ng : mAh 
is the number of entries nested 

in the hth marker genotype (Feldmann, Piepho, Bridges, et al. 
2021). The average semivariance estimate of the dominance vari
ance explained by a locus is obtained by

θ̂ASV
mD

= (n − 1)−1σ̂2
mD

tr(ZmD ZT
mD

PmD )

=
n − n−1 􏽐nmD

j=1 n2
g : mD j

n − 1

⎡

⎣

⎤

⎦σ̂2
mD

(12) 

where PmD = I − n−1
mD

1nmD
1T

nmD
, nmD are the number of levels coding 

the genetic status, e.g. homozygous or heterozygous, ng : mDi 
is 

the number of entries nested in the jth genetic state. The sum of 

[kmA σ̂2
mA

+ kmD σ̂2
mD

] = [θ̂ASV
mA

+ θ̂ASV
mD

] = θ̂ASV
m and 

[θ̂ASV
mA

+ θ̂ASV
mD

] − θ̂ASV
m = 2.21 × 10−5. θ̂ASV

m is an accurate and consist

ent estimate of the variance explained by a marker (Feldmann, 
Piepho, Bridges, et al. 2021). The likelihood ratio (LR) between 
LMM (1) and (9) was LR ≈ 0. It was not significant in any simulated 
populations (PLR > 0.2), suggesting that there is no appreciable dif
ference between the model likelihood of Equations (1) and (9). For 

each term, θ̂ASV
mA 

and θ̂ASV
mD

, the average bias’ across the 100 simu

lated populations was 1.06% and −1.24%, respectively.

Extension #3: Incorporating additional polygenic terms for 
genome-wide dominance (gD)
LMM (1) can also be extended to include both additive (gA) and 
dominance (gD) sources of genomic variance (Vitezica et al. 2013, 
2017; Zhang et al. 2021). The form of the LMM for analysis with 
both gA and gD assuming only one explanatory marker M is

y̅ = 1μ + Zmm + IgA + IgD + IgR + ϵ̅ (13) 

where gA and gD are random effect vectors for the additive and dom

inance polygenic effects, respectively, with gA ∼ N (0, KASVσ2
gA

) and 

gD ∼ N (0, KD
ASVσ2

gD
). The ASV dominance kernel is

KD
ASV =

W̅W̅T

(n − 1)−1 tr(W̅W̅T
)

(14) 

where W = 1 − |X|, assuming X is coded [ − 1, 0, 1], and W̅ = PW. 
This is a feasible approach to improve genetic performance in cross
bred populations with large dominance genetic variation (Nishio 
and Satoh 2014; Vitezica et al. 2017; Xiang et al. 2018). Both KASV 

and KD
ASV have the matrix properties proposed by Speed and 

Balding (2015); i.e. n−1 tr(K) = 1 and n−2 􏽐
i
􏽐

j Kij = 0. The dominance 

variance estimated with KD
ASV was accurate, and the relative bias 

from 100 simulated populations was −3.32%. Interestingly, KD
ASV is 

substantively different than both of the matrices proposed by 
Nishio and Satoh (2014) and Su et al. (2012).

Feldmann, Piepho, et al. (2022) showed that, regardless of popu
lation quality, a GRM with an average diagonal value of 1 and an 
average element value of 0 will produce consistent variance com
ponent estimates of the genomic variance. A matrix with the same 
properties calculated from a dominance coding will produce simi
larly unbiased parameter estimates. The dominance GRM pro
posed by Su et al. (2012) has an average diagonal value of 1, but 
the average element value is >0, leading to a systematic under
estimating since the covariances are overestimated. The domin
ance GRM proposed by Nishio and Satoh (2014) has an average 
element value of 0, but the average element value is <1, leading 
to a systematic overestimating since the variances (diagonals) 
are underestimated. This is true for a wide range of population 
heterozygosities.

Extension #4: Stagewise LMM analysis for 
multienvironment trials (METs) and meta-analysis
Stagewise analyses are common in plant breeding trials in aca
demic studies and the seed industry (Damesa et al. 2017, 2019). 
One reason for this is that plant breeders are often not interested 
in the performance per se of a line or hybrid within a specific loca
tion unless the presence of cross-over (e.g. rank change) G × E is 
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Fig. 3. Comparison of VCEs estimated from single-stage and stagewise 
analyses of 500 entries replicated in four environments with block effects. 
The relative bias of genomic variance (σ̂2

g), marker variance (σ̂2
m), residual 

genetic variance (σ̂2
gR

), genotype-by-environment interaction variance 
(σ̂2

G×E), and residual variance (σ̂2
R) analyzed in a single stage (upper panel) 

or stagewise stages (lower panel). Each box’s upper and lower halves 
correspond to the first and third quartiles (the 25th and 75th percentiles). 
The notch corresponds to the median (the 50th percentile). The upper 
whisker extends from the box to the highest value within 1.5 × IQR of the 
third quartile, where IQR is the inter-quartile range or distance between 
the first and third quartiles. The lower whisker extends from the first 
quartile to the lowest value within 1.5 × IQR of the quartile. The dashed 
line in each plot is the true value from simulations.
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large enough to make data from one target environment unin
formative in another set of target environments. Instead, plant 
breeders are often more interested in the performance of entries 
across environments (Bernardo 2020). It is common then to fit a 
first model that accounts for the variation of random design ele
ments, e.g. locations, years, blocks, and fixed genotype effects, 
to obtain the phenotype—estimated marginal means (EMMs) or 
best linear unbiased estimators (BLUEs)—for use in subsequent 
analyses. In subsequent stages, these entry-means within envir
onments in a subdivision are used as the response variable.

In general, the single-stage analysis, when performed correctly, 
should be considered the “gold standard.” However, there are ex
perimental conditions where the stagewise analysis may be sim
pler to execute and functionally equivalent to the single-stage 
analysis when performed correctly (Fig. 3), and, given the fre
quency of naive stagewise analyses—those that fail to incorporate 
the variance–covariance matrix of entry means, or even appropri
ate weights, from stage 1 into the second stage—we felt it prudent 
to highlight the simplicity of these approaches to a general audi
ence. The purpose here is not to convince the reader that multi
stage analyses are superior (they are not), nor to provide a 
one-size-fits-all solution for every experiment (that is impossible), 
but to provide a path for users to accomplish fully efficient, multi
stage analyses using free, open-source software. Generally, the 
stagewise analysis should be considered a possible backup to 
the single-stage analysis, not the standard (Schulz-Streeck et al. 
2013; Gogel et al. 2018; Damesa et al. 2019; Buntaran et al. 2020).

The LMM for stage one is

ye = Xeg∗e + Zeue + ϵe (15) 

where Xe is the fixed effect design matrix linking observations to 
entries, and g∗e are the fixed effects (e.g. BLUEs) for the entries in 

the eth environment, Ze is the random effect design matrix for de
sign (e.g. blocks) elements within each environment (e.g. years 
and locations), and ϵe are the residuals and ϵe ∼ N (0, Re), where 
Re is the residual variance–covariance matrix estimated in the 
eth environment. This model is fit within each environment 
independently.

From these models, we obtain the adjusted entry means y̅ and 
the variance–covariance matrices of the entry means Σe from 
each of ne environments, where ne are the number of environ
ments. We can then construct the nge × nge block-diagonal stage 
one Ω matrix as in Equation (16).

Ωnge =
Σ1 · · · 0

..

. . .
. ..

.

0 · · · Σne

⎡

⎢
⎣

⎤

⎥
⎦ (16) 

where nge is the number of entries nested in environments; for ex

ample, if there are 500 entries in four environments, nge = 2, 000. 

This method allows us to carry the full Ωnge over from stage one 

to stage two of the analysis.
The second stage can take several forms with varying complex

ities, more complete approximations of Ωnge or Ω−1
nge

, and software 
accessibility. Briefly: 

1) In a naive stagewise analysis, the residual matrix is given as 
the identity matrix multiplied by a scalar 

(Ω̃ = Inge ω−1 = Inge σ2), where ω is a scalar (σ−2) estimated by 

the second stage LMM, assuming that the variances for entry 
means are identical with 0 covariances (independent); IID. 

This approach is very common in plant sciences because it 
is simple but problematic outside a specific set of unrealistic 
conditions, i.e. IID entry means. It is simple because it does 
not require any information on precision from stage 1. It is 
problematic because the residual and genotype-by- 
environment variances are confounded. The naive approach 
does not require additional arguments for LMM software 
and can be executed in any LMM software.

2) In a weighted stagewise analysis, the Ω̃ = D(ω)−1
nge 

matrix is diag

onal, but each diagonal element may differ based on data- 
driven weight (D(ω)nge

), where D(ω)nge 
is an nge-dimension di

agonal matrix, estimated in the first stage of the analysis. 
Importantly, these weights are derived as one of many pos
sible diagonal approximations of Ωnge (Móhring and Piepho 

2009) or its inverse, e.g. Ω−1
nge

, from the first stage of the ana

lysis (Smith et al. 2001). The weighted approach may take 
multiple forms that may or may not neglect the covariances 
among entry mean, leading to discrepancies between the 
single-stage and stagewise analyses (Smith et al. 2001, 
2005; Móhring and Piepho 2009). This approach requires an 
additional argument in LMM software, typically “weights,” 
which is input as a vector corresponding to entry means 
and internally transformed into a diagonal matrix, and can 
be executed in several free or paid software (Inc. 2013; 
Covarrubias-Pazaran 2016; Butler 2021).

3) In a fully efficient stagewise analysis, entry means are allowed 

to have nondiagonal covariance structures with Ω̃ = Ωnge , 

where Ωnge is the full variance–covariance matrix of entry 

means from the different environments [defined in 
Equation (16)]. This approach is the most general solution 
for implementing stagewise meta-analyses, maintaining 
all variances and covariances without approximation, but 
it is the most limited in terms of software implementations. 
The full variance–covariance matrix of the entry means will 
be nondiagonal in most cases, and a diagonal matrix 
(weighted or unweighted) is almost invariably an approxi
mation as the random main effects of the environment, or 
block, will induce a positive covariance among all entry 
means. Incorporating the full variance–covariance matrix 
requires a lot of additional data and significantly reduces 
the computational efficiency of the LMM, which may out
weigh potential practice benefits. This approach requires 

the inverse of the full variance–covariance matrix, Ω−1
nge

, as an 

input argument and can now be executed in R/sommer > = 
v4.2.0 (Covarrubias-Pazaran 2016).

The LMM for stage two is then:

y̅ = 1μ + Xe + Zmm + Zgg + ZgR gR + ZGEgGE + ϵ̅ (17) 

where y̅ are the adjusted entry means from stage one, μ is the 
population mean, X is the fixed effect design matrix linking envir
onments to adjusted entry means, e are the fixed environmental 
main effects, g is the random additive genetic effect associated 
with the genome-wide framework of marker excluding m with 

g ∼ N (0, KASVσ2
g), gR is the random residual genetic term—the por

tion of the total genetic effect not accounted for by m or g—with 

gR ∼ N (0, Inσ2
gR

), gGE is the genotype-by-environment interaction 

term with gGE ∼ N (0, Inge σ2
gGE

), and ϵ̅ is the structured residual 

term from stage one with ̅ϵ ∼ N (0, Ω) With this model, we can es
timate the breeding values across environments with marker 
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information (K) as in GBLUP and can perform GWAS by adding an 

iterative term for single marker regression, such as 
􏽐 j

i=1 βixi where 

j is the number of markers, βi is the linear regression coefficient of 
the ith marker, and xi is the numeric coding of the ith markers gen
otypes, e.g. [ − 1, 0, 1].

We created 1,000 simulated populations with 1,000 entries and 
5,000 markers using a similar approach to the other simulations in 
this experiment. However, we included Environmental and Block 
within Environment effects in this experiment. We estimate the 
variance explained by the polygenic background, a large-effect lo
cus, the residual genetic variance, the genotype-by-environment 
interaction variance, and the nongenetic residual. The single 
stage analysis yielded relative biases of −1.55%, −3.04%, −0.45%, 
−0.12%, and 0.03% for the marker variance (σ̂2

m), genomic variance 
(σ̂2

g), residual genetic variance (σ̂2
gR

), genotype-by-environment 
interaction variance (σ̂2

gGE
), and residual variance (σ̂2

ϵ̅ ), respectively 
(Fig. 3). The two stage analysis yielded relative biases of −1.39%, 
−3.09%, 0.48%, −0.21%, and 0.03% for the marker variance (σ̂2

m), 
genomic variance (σ̂2

g), residual genetic variance (σ̂2
gR

), 
genotype-by-environment interaction variance (σ̂2

gGE
), and residual 

variance (σ̂2
ϵ̅ ), respectively (Fig. 3).

Extension #5: Incorporating kM directly into LMM analyses
Feldmann, Piepho, Bridges, et al. (2021) introduced kM (5) as a post 
hoc adjustment of the REML estimated variance explained by a 
marker to obtain ASV equivalent VCEs. This led to Feldmann, 
Piepho, et al. (2022), who showed that ASV estimates of the genom
ic variance could be obtained by scaling the genomic relationship 
before or after the LMM analysis and introduced KASV, eliminating 
the need for any post hoc adjustment. Scaling variance compo
nents a priori is not novel and is routine in genomic evaluation 
across species (VanRaden 2008; Astle and Balding 2009; Yang 
et al. 2010; Endelman and Jannink 2012; Legarra 2016; Vitezica 
et al. 2017). LMMs can directly scale the variance–covariance ma
trix for large-effect loci M by kM.

Instead, if we define:

KM = k−1
M InM (18) 

where KM is nM × nM and nM is the number of marker genotypes at a 
given locus, we can essentially think of KM as a genomic relation
ship matrix, e.g. KASV, except that we apply KM to the levels of the 
marker genotype instead of entries.

The form of the LMM for this analysis assuming only one ex
planatory marker is the same as Equation (1), but where m is 
the random effect of the main-effect locus with m ∼ N (0, KMσ2

m). 
With this approach, we maintain the levels of the factor come 
from the same variance and zero covariance, but our scaling fac
tor is embedded directly in the model eliminating the need for ad
justment. Embedding kM in the LMM analysis using KM is 
equivalent to the post hoc adjustment that was proposed in 
Feldmann, Piepho, Bridges, et al. (2021), and so it is up to the 
user to determine which approach they prefer.

Conclusions
ASV is a strategy that can be used for estimating and partitioning 
the total variance into components (Piepho 2019), such as the vari
ance explained by loci and locus–locus (Feldmann, Piepho, 
Bridges, et al. 2021) and the genomic variance (Feldmann, 
Piepho, et al. 2022). The approach we are suggesting shares some 
common threads with the current thinking in quantitative 

genetics, particularly as it relates to genomic relatedness, genom
ic heritability, and GP (VanRaden 2008; Kang et al. 2010; Yang et al. 
2010; Habier et al. 2013) but it also deviates from the classic quan
titative genetic model conceptually in that it assumes that marker 
effects are random variables (Falconer and Mackay 1996; Lynch 
and Walsh 1998). Despite the conceptual deviation, this approach 
has been demonstrated to have statistically valid assumptions 
and applied in several studies (Verbyla et al. 2012; Schreck et al. 
2019; Taylor et al. 2023).

ASV has several beneficial elements, making it a viable option 
for quantitative genetics. More importantly, it is appropriate for 
any quantitative discipline where variance components are of 
interest, from plant and microbial biology to psychology and in
fant research. Namely: 

1) The definitions of the variance components using ASV are additive 
and sum to the phenotypic variance. Consequently, the LMM can 
be extended to incorporate many explanatory components, 
e.g. dominance, epistasis, and transcriptomic, and will yield 
accurate VCEs for all terms. They will sum to the total vari
ance. This is not necessarily true for all definitions of vari
ance components, such as the Average Marginal Variance 
(Piepho 2019; Feldmann, Piepho, Bridges, et al. 2021).

2) ASV is well suited for stagewise analyses. At the center of ASV is 
the idea that the “entry mean” is the phenotype per se, and 
not the observations directly. One interpretation is that indi
viduals, not observations, are the primary source of vari
ation or at least the primary source of interest. This 
concept can be easily extracted from single-stage analyses 
but seems at the heart of stagewise analyses (Piepho et al. 
2012). Specifically, a single-stage analysis based on plot 
data can be shown to be equivalent to a stagewise analysis 
in which entry means and their associated variance–covari
ance matrix is carried forward to the second stage, in which 
BLUPs are computed for the genetic effects (Piepho et al. 
2012). ASV yields accurate estimates of the genetic and gen
omic variance components in unreplicated or partially repli
cated designs common in humans, plants, and animals. ASV 
also yields accurate VCEs in fully efficient multistage 
approaches.

3) ASV does not impact the BLUPs or breeding value predictions in 
Genomic (G)-BLUP. ASV is only used to obtain accurate VCEs. 
It has been demonstrated that marker coding and different 
strategies for scaling and centering Z and K do not impact 
BLUPs or prediction accuracy (Strandén and Christensen 
2011; Legarra 2016; Feldmann, Piepho, et al. 2022) and be
cause ASV essentially works through a set of scalar coeffi
cients determined by the experiment and population to 
obtain the expected features for the genomic relationship 
matrix. Practically, ASV does not change the information 
embedded in the LMM or data, only the scaling of the VCEs.

4) ASV works under many model assumptions in GLMM analyses. 
Beyond the often-assumed variance–covariance structure 

in this study, e.g. R = Iσ2
ϵ , many structures will lead to non

zero covariance between entry means. ASV can be applied 
to designs accounting for spatial structures with auto- 
regressive correlations or spline-models (Rodríguez-Álvarez 
et al. 2018; Selle et al. 2019). ASV can also be applied to data 
sets where the observational units lead to nonnormality of 
residuals, i.e. ordinal disease scores and proportion scores 
(Piepho 2019).

As substantiated by our simulations in this study and the con
text of our previous studies, ASV with REML estimation of the 

10 | G3, 2023, Vol. 13, No. 9



underlying variance components yields accurate estimates for 
oligo- and polygenic effect, both individually and collectively, 
and BLUPs of the additive and dominance effects of marker loci 
(Piepho 2019; Feldmann, Piepho, Bridges, et al. 2021; Feldmann, 
Piepho, et al. 2022). ASV directly yields accurate estimates of gen
omic heritability in the observed population and can be used to 
adjust deviations that arise from other commonly used methods 
for calculating genomic relationships regardless of the population 
constitution, such as inbred lines and F1 hybrids, unstructured 
GWAS populations, or animal herds and flocks. We believe that 
KASV provides a powerful approach for directly estimating genom
ic heritability for the observed population regardless of study or
ganism or experiment design (Visscher et al. 2006, 2008, 2010). In 
conclusion, we recommend that genetics researchers studying 
humans, microbes, or (un)domesticated plants and animals con
sider the ASV approach.

Data availability
Code and output for simulations are provided in the publicly avail
able Zenodo repository (https://doi.org/10.5281/zenodo.6981359) 
(Feldmann, Covarrubias-Pazaran, et al. 2022).
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