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Comparison to a Control Snack in Young Adults
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Davis, Davis ca, uSa; dDepartment of nutrition, university of california Davis, Davis, california, uSa; eobesity and metabolism research 
unit, uSDa‑agricultural research Service Western human nutrition research center, university of california Davis, Davis, california, uSa

ABSTRACT
Background and Aims: Almond consumption can improve cardiometabolic (CM) health. However, 
the mechanisms underlying those benefits are not well characterized. This study explored the 
effects of consuming a snack of almonds vs. crackers for 8 weeks on changes in metabolomic 
profiles in young adults (clinicaltrials.gov ID: NCT03084003).
Methods:  Participants (n = 73, age: 18–19 years, BMI: 18–41 kg/m2) were randomly assigned to 
consume either almonds (2 oz/d, n = 38) or an isocaloric control snack of graham crackers (325 kcal/d, 
n = 35) daily for 8 weeks. Blood samples were collected at baseline prior to and at 4 and 8 weeks 
after the intervention. Metabolite abundances in the serum were quantified by hydrophilic 
interaction chromatography quadrupole (Q) time-of-flight (TOF) mass spectrometry (MS/MS), gas 
chromatography (GC) TOF MS, CSH-ESI (electrospray) QTOF MS/MS, and targeted analyses for free 
PUFAs, total fatty acids, oxylipins and endocannabinoids. Linear mixed model analyses with 
baseline-adjustment were conducted, and those results were used for enrichment and network 
analyses. Microbial community pathway predictions from 16S rRNA sequencing of fecal samples 
was done using PICRUST2.
Results: Almond consumption enriched unsaturated triglycerides, unsaturated phosphatidylcholines, 
saturated and unsaturated lysophosphatidylcholines, tricarboxylic acids, and tocopherol clusters 
(p < 0.05). Targeted analyses reveal lower levels of omega-3 total fatty acids (TFAs) overall in the 
almond group compared to the cracker group (p < 0.05). Microbial amino acid biosynthesis, and 
amino sugar and nucleotide sugar metabolism pathways were also differentially enriched at the 
end of the intervention (p < 0.05).
Conclusions: The study demonstrates the differential effects of almonds on host tocopherol, lipid, 
and TCA cycle metabolism with potential changes in microbial metabolism, which may interact 
with host metabolism to facilitate the CM benefits.

Introduction

The complex interplay among the host genome, the gut micro-
flora, and environmental (diet, lifestyle, socioeconomic deter-
minants etc.) and behavioral factors modulates multiple 
metabolic pathways resulting in specific biological and phys-
iological effects (1) that ultimately influence health and disease. 
Metabolomic approaches that integrate large swaths of metab-
olism provide an experimental advantage by mapping metab-
olites in such a fashion that putative mechanisms can be 
elucidated as demonstrated in the SuGAR Project (2–4).

To date, nutritional metabolomics has focused more on the 
identification of biomarkers for foods and diet-related disease 
states (5). Over the past decade, potential biomarkers or metab-
olite signatures have been identified for several foods including 
red meat (6), coffee (7), citrus fruits (8), cruciferous vegetables 

(9), almonds (10), and other plant foods (11). However, there 
is limited research on the elucidation of molecular mecha-
nisms responsible for the effects of dietary interventions (5). 
The potential of identifying changes in metabolic pathways is 
improving with advancements in analytical chemistry tech-
niques, metabolite databases, and computational tools.

Another important consideration in nutritional metab-
olomics is the gut microbiome-host interactions (12). A 
considerable number of metabolomic features that are influ-
enced by dietary changes can also be modifiable by the 
gut microbiome. For example, the metabolomic signatures 
observed in human fecal donor samples were reproduced 
in the urine and feces of humanized mice (13). Changes to 
the diets fed to humanized mice altered those metabolomic 
signatures and mirrored changes in bacterial community 
 composition (13).
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Nut consumption is associated with reduced cardiovas-
cular disease mortality (14). Moreover, interventional studies 
demonstrate favorable effects of nut consumption on clinical 
lipid profiles, blood glucose, and endothelial function (14). 
Nut studies employing metabolomics have identified poten-
tial urinary biomarkers and signatures of walnut (15) and 
pistachio (16) as well as urinary (17) and plasma (18) bio-
markers of mixed nut consumption and erythrocyte signa-
tures of almond consumption (10). These metabolites 
collectively include markers of fatty acid metabolism, 
ellagitannin-derived microbial metabolites, microbial-derived 
phenolic metabolites, and intermediate tryptophan/serotonin 
pathway metabolites. There are limited -omics data that map 
the changes in metabolic pathways following the chronic 
consumption of nuts. The high unsaturated fat content and 
relatively low available carbohydrate content of almonds has 
the potential to change human carbohydrate and lipid 
metabolism.

We have previously demonstrated the effects of almond 
snacking for 8 weeks on cardiometabolic (19) and microbi-
ome profiles (20) in young adults. The unique nutrient 
profile of almonds improved postprandial glucoregulation 
(19) and alpha-diversity of the gut microbiome (20) com-
pared to cracker snacking at the end of the 8-week inter-
vention. Here, we use untargeted and targeted metabolomics 
to capture the alterations in serum metabolites involved in 
metabolic pathways with 8 weeks of almond snacking.

Methods

All procedures involving human subjects were approved by 
the University of California (UC) Merced Institutional 
Review Board. The study is registered on ClinicalTrials.gov 
(registration number: NCT03084003). The samples used in 
the present study were collected previously and presented 
separately here to provide the requisite focus on these 
results, which complement our previous studies (20)

Participants

Seventy-three (41 women and 32 men) young adults (18–
19 years old, BMI: 18–41 kg/m2) were recruited to partic-
ipate in an 8-week randomized, controlled, parallel-arm 
intervention examining the effects of almond vs. cracker 
snacking on cardiometabolic, microbiome, and metabolo-
mics outcomes. The eligibility criteria were as follows: (a) 
18–21 years of age, (b) newly enrolled, 1st-year college 
students with no nut allergies, (c) nonsmokers, and (d) 
no diagnosed cardiometabolic disorders. Participants were 
recruited via advertisements and those who met eligibility 
criteria provided written, informed consent before begin-
ning the study.

Study design and protocol

The primary study design has been described previously 
(19). The sample size calculations for the primary study 

were based on glucoregulatory profiles at the end of the 
8-week intervention (19). Participants were randomized into 
one of two study arms: (1) almonds and (2) crackers. 
Participants in the almond group (n = 38) consumed 57 g/d 
(2 oz; 14% carbohydrate (8 g fiber), 74% fat, 13% protein) 
of whole, dry-roasted almonds. Participants in the cracker 
group (n = 35) served as the isocaloric control consuming 
5 sheets (77.5 g/d) of graham crackers (74% carbohydrate 
(2.5 g fiber, 20% fat, 6% protein). The cracker group was 
asked to avoid all nuts, seeds, and nut-containing products. 
Anthropometric, biochemical, dietary and microbiome data 
were collected and analyzed as described previously (19, 
20). Serum samples were collected at baseline prior to start-
ing the intervention and at 4 and 8 weeks as previously 
described (19) and stored at −80 °C.

Gas chromatography (GC) time-of-flight (TOF) mass 
spectrometry (MS) data acquisition and processing

S e r u m  a l i q u o t s  w e r e  t h a w e d ,  e x t r a c t e d , 
trimethylsilyl-derivatized, and the metabolite abundances 
quantified by GCTOF MS as previously described (21). 
Derivatized samples were analyzed on an Agilent 7890 A 
gas chromatograph (Santa Clara, CA) equipped with a 30 m 
x 0.25 mm i.d., 25 μm Rtx5Sil-MS column with an addi-
tional 10 m integrated guard column (Restek, Bellefonte 
PA) (22, 23). Mass spectrometry was performed using a 
Leco Pegasus IV time-of-flight mass spectrometer (St. 
Joseph, MI). Thirteen internal standards, C8–C30 fatty acid 
methyl esters, were added to samples for retention time 
alignment markers, quality control purposes and quantifi-
cation corrections.

Raw mass spectra were preprocessed using ChromaTOF 
vs. 4.0 and were further processed using the BinBase algo-
rithm and database for metabolite identification (24, 25). 
Quantification of metabolites are reported as peak heights.

All samples were analyzed in one batch, and data quality 
and instrument performance were constantly monitored 
using quality controls comprised of pooled serum samples 
and injected every 10 samples.

Hydrophilic interaction chromatography (HILIC) 
quadrupole (Q) time-of-flight (TOF) MS/MS data 
acquisition and processing

Serum aliquots were extracted as previously described (26). 
The bottom layer of the 2-phase solution was used for 
HILIC-MS. Extracts were analyzed on a Agilent 1290 Infinity 
II LC System (Santa Clara, CA) with a 150 mm long, 2.1 mm 
interdiameter (id), and 1.7 μm particles Waters Acquity 
UPLC BEH Amide column protected by a short guard col-
umn. Mass spectrometry was performed using a Sciex 6600 
TTOF mass spectrometer (Framingham, MA) with resolution 
R = 10,000 for positively charged polar compounds. Nineteen 
internal standards, optimized for HILIC-MS, were added to 
samples for retention time alignment markers, quality con-
trol purposes, and quantification corrections.
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Raw data were processed using MS-DIAL (version 3.2) 
(27). Quantification of metabolites are reported as peak 
heights. All samples were analyzed in one batch, and data 
quality and instrument performance were constantly mon-
itored using blanks and quality controls, which were com-
prised of pooled plasma samples (BioIVT) and injected 
every 10 samples.

Charged surface hybrid electrospray (CSH-ESI) QTOF 
MS/MS data acquisition and processing

Serum aliquots were extracted as previously described (26). 
The top layer of the 2-phase solution was used for lipidomic 
analyses. Extracts were analyzed on an Agilent 1290 Infinity 
II LC System (Santa Clara, CA) with a 100 mm long, 2.1 mm 
id, and 1.7 μm particles Waters Acquity UPLC CSH C18 
column protected by a short guard column. Mass spectrom-
etry was performed using an Agilent 6530 QTOF mass 
spectrometer with resolution R = 10,000 for positively charged 
lipids and an Agilent 6530 b QTOF mass spectrometer with 
resolution R = 20,000 for negatively charged lipids. 
Twenty-four internal standards, optimized for lipidomics, 
were added to samples for retention time alignment markers, 
quality control purposes, and quantification corrections.

Raw data were processed using MS-DIAL (version 2.8) 
(27). Quantification of metabolites are reported as peak 
heights. All samples were analyzed in one batch, and data 
quality and instrument performance were constantly mon-
itored using quality controls, which were comprised of 
pooled plasma samples (BioIVT) and injected every 10 
samples.

Targeted analyses of total fatty acids

Serum aliquots were extracted, derivatized, and analyzed as 
previously described (28, 29). Extracts in 8:1 methanol/
toluene were transformed into fatty acid methyl esters 
(FAMEs) by sequential incubation with methanolic sodium 
hydroxide and methanolic hydrochloric acid, isolated in 
hexane from neutralized solutions and quantified by GC-MS. 
Briefly, FAMEs were separated on a 30 m x 0.25 mm, 0.25 µm 
DB-225ms on a 6890 gas chromatogram interfaced with a 
5973 A mass selective detector (Agilent Technologies) and 
quantified against 6- to 8-point calibration curves. Data was 
acquired with Chemstation v E.02 and processed with 
MassHunter v. 3.0.2. Results were corrected for recoveries 
of perdeuterated palmitate introduced as a triglyceride prior 
to extraction.

Targeted analyses of free PUFAs, oxylipins, and 
endocannabinoids

Serum aliquots were extracted as previously described (2). 
Residues in isopropanol extracts were separated on a 
2.1 mm x 150 mm, 1.7 µm BEH C18 column (Waters, 
Milford, MA) and detected by electrospray ionization with 
multi reaction monitoring on a API 6500 QTRAP (Sciex; 

Redwood City, CA). Metabolites were quantified against 
7- to 9-point calibration curves of authentic standards and 
internal standard corrections using modifications as pre-
viously reported (2).

Univariate analyses of metabolomics data

Data were reported as quantitative ion peak heights and 
known metabolites were normalized using Systematic Error 
Removal Using Random Forest (SERRF) normalization (30). 
SERRF consistently produced the lowest cross-validated rel-
ative standard deviation (cvRSD) for QC samples compared 
to 14 other commonly used normalization methods (30). 
Metabolites with QC RSD > 50% were excluded from further 
analyses. For HILIC-MS, metabolite intensities in samples 
were also compared to blanks. Metabolites that showed no 
significant differences between sample and blank (i.e. 
Wilcoxon test p-value > 0.05) and those with a median 
sample to blank ratio < 1 were also excluded from further 
analyses. Data not meeting normality assumptions were 
transformed using Johnson’s family of transformations. 
However, only non-transformed data and means are pre-
sented for interpretation of biological significance.

We took a 2-step approach to the analyses. The first step 
focused on selecting the identified metabolites that showed 
a significant overall time effect in a linear, mixed model 
analysis with week (baseline, week 4, and week 8) as the 
factor. The time effect p-values for metabolites were cor-
rected for mult iple hypotheses test ing using 
Benjamini-Hochberg correction (false discovery rate (FDR) 
adjusted p-value). Metabolites that demonstrated a signifi-
cant (FDR < 0.05) time effect were selected for further 
analyses. The second step comprised of the selected metab-
olites undergoing a linear, mixed model analysis with week 
(week 4 and week 8), snack group, and a week-by-snack 
group interaction as factors where the analyses were adjusted 
for baseline values. When significant interaction effects were 
observed, simple effects for time and snack were carried 
out and pairwise comparisons were adjusted for multiple 
comparisons using Bonferroni correction. For any correlation 
analyses by groups, the significance of the difference between 
correlation coefficients was assessed using Fisher r to z 
transformation. Future analyses will explore the effects of 
BMI, sex, and metabolic risk factors which are outside the 
scope of this manuscript.

Chemical enrichment analysis

Chemical similarity enrichment analysis was conducted using 
ChemRICH, which is a software for metabolomic datasets 
that uses medical subject headings and Tanimoto substruc-
ture chemical similarity coefficients to cluster metabolites 
into non-overlapping chemical groups (31). The quantitative 
data set comprised of the baseline-adjusted overall snack 
effect p-values of all annotated metabolites. Statistically sig-
nificant p-values for clusters of metabolites were obtained 
by self-contained Kolmogorov–Smirnov tests and adjusted 
for FDR.
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Network analysis

Network analysis was used to explore differences between 
the almond and cracker groups within a biochemical and 
structural context. A biochemical and chemical similarity 
network was created for all measured metabolites with 
KEGG and PubChem CID identifiers using MetaMapR 
(32). Metabolites involved in biochemical transformations 
were connected based on product-precursor relationships 
defined in the KEGG RPAIR database. Metabolites shar-
ing structural properties defined in PubChem Substructure 
Fingerprints (33) were connected at a Tanimoto similarity 
threshold ≥ 0.7. The quantitative data set comprised of 
the overall effect size (Hedge’s g for almond vs cracker 
groups) and baseline-adjusted snack effect p-values. In 
cases of significant time x group effects, the larger mag-
nitude of effect size between week 4 or week 8 was 
presented. Since this was an exploratory analysis, the 
p-values were not FDR adjusted. The network was then 
visualized in Cytoscape 3.7.2 (34) using the yFiles organic 
layout and visual separation of clusters in the network 
was facilitated with the GLay community clustering algo-
rithm (36). Significant metabolites which did not have 
KEGG identifiers are included as independent nodes with 
manually annotated edges in their respective pathway 
clusters.

Microbial community metabolic potential

The functional potential of the microbial community was 
predicted from 16S rRNA using Phylogenetic Investigation 
of Communities by Reconstruction of Unobserved States 
(PICRUSt2) (36, 37), which uses hidden-state prediction 
algorithms to infer gene families (i.e. KEGG orthologs 
(KO) here) and MinPath for inference of pathway abun-
dances. The gene abundances were analyzed by construct-
ing a combined time x group factor and fitting the 
within-subject correlation in a linear model blocked on 
subject in the limma-voom pipeline in R (38, 39). 
Pre-planned contrasts were constructed from the model. 
KO enrichment of differentially expressed (p < 0.05 cor-
rected for multiple contrast testing) metabolic pathway 
genes for each contrast were conducted in MicrobiomeAnalyst 
(40) via hypergeometric tests to evaluate if specific meta-
bolic pathways are represented more often than expected 
by chance. P-values for pathway enrichment were adjusted 
for FDR.

We identified the serum metabolites potentially derived 
from gut microbial metabolism using the Annotation of 
Metabolite Origins via Networks (AMON) tool (41). 
Participants gut microbiomes were profiled previously via 
16S rRNA sequencing of stool samples (20). The input data-
set submitted to AMON comprised of microbiome KO iden-
tifiers, KO list of the human genome, and KEGG compound 
IDs of the metabolomics data. The metabolites produced or 
metabolized by gut microbiome are annotated in the net-
works (Figure 1). The contribution of the microbial com-
munity metabolism to the serum metabolite abundances was 
evaluated using MIMOSA2 (42, 43).

Results

Participant characteristics and findings from parent 
study

Participant demographic, clinical and dietary characteristics 
(19) and gut microbiome profiles (20) have been described 
in detail previously.

SERRF normalization reduced the cvRSD of QCs in the 
untargeted analyses

For GC-TOF MS, the cvRSD of QCs decreased from 23.7% 
(raw) to 12.7% (SERRF). For ESI (-) QTOF-MS, cvRSD of 
QCs decreased from 14% (raw) to 6.5% (SERRF). For ESI 
(+) QTOF-MS, cvRSD of QCs decreased from 17.9% (raw) 
to 4.5% (SERRF). For HILIC-MS, cvRSD of QCs decreased 
from 15% (raw) to 10% (SERRF).

Data quality of the targeted total fatty acid, oxylipin, 
endocannabinoid, and non-esterified PUFA analyses

Surrogate recoveries were between 28 − 108% for all oxylipin 
and endocannabinoid analytes and 54% for fatty acids. 
Analytical precision was assessed by duplicate analysis of a 
plasma pool control (UTAK) (n = 20) and was excellent with 
83% of oxylipin and endocannabinoid analytes with <30% 
RSD and 63% of fatty acids with <30% RSD for the UTAKs 
analyzed, respectively.

Metabolomic coverage

A total of 542 metabolites were quantified by GC-MS of 
which 150 had known PubChem identifiers, 2747 were quan-
tified by QTOF-MS of which 470 had known PubChem 
identifiers, and 2427 were quantified by HILIC-MS of which 
232 had known PubChem identifiers. The targeted analyses 
detected and quantified 23 total fatty acids, 29 oxylipins, 
10 endocannabinoids, and 5 non-esterified PUFAs above the 
limits of detection. In total, 692 metabolites were uniquely 
identified after removal of duplicates and quality checks.

Top metabolites

A total of 129 untargeted metabolites had significant (FDR 
< 0.05) overall time effect. The means of those untargeted 
metabolites that had baseline-adjusted snack and snack x 
time p-values <0.05 are shown in Table 1. Almond con-
sumption resulted in overall greater levels of alpha-tocopherol, 
erucic acid, indole-3-carboxaldehyde, lysophosphatidylcho-
lines (18:0), and oleamide, and lower levels of 
3-hydroxyisovaleroylcarnitine and CE (16:0) than cracker 
consumption (baseline-adjusted snack effect, p < 0.05).

Several metabolites depicted significant snack and time 
interactions (baseline-adjusted snack x time effect, p < 0.05, 
Table 1). Contrasts depict that cracker consumption 
resulted in greater levels of isomaltose at week 8 compared 
to week 4 (p < 0.05). Almond consumption resulted in 
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greater levels of oxoproline, methyl O-D-galactopyranoside, 
and N2,N2-dimethylguanosine at week 4 compared to 
week 8 (p < 0.05).

The means of specific targeted metabolites that showed 
significant (p < 0.05) baseline-adjusted snack and snack x 
time effects are shown in Table 2. Almond consumption 

Figure 1. Biochemical network displaying differences between almond and cracker groups over 4 and 8 weeks. metabolites are connected based on biochemical 
relationships (orange, Kegg rPairS), measured structural similarity (blue, tanimoto coefficient ≥ 0.7), or manually annotated structural similarity (grey). metabolite 
size denotes the effect size (hedge’s g, almond vs cracker group). metabolite color represents the direction of the effect size i.e. blue, almond > cracker overall 
(P < 0.05); pink, almond < cracker overall (P < 0.05). numbers denote the time point at which the larger magnitude of effect size was observed for significant 
i.e. (P < 0.05) time x snack interactions i.e., 4, week 4; 8, week 8; no number represents significant overall snack effect. P‑values are derived from the 
baseline‑adjusted linear mixed model analysis. Shapes display primary metabolic pathways or structural superclass designations obtained via classyfire. 
metabolites potentially produced by the gut microbiome are highlighted with thick black borders. clusters of metabolites are circled. Significant metabolites 
which did not have Kegg identifiers are included as independent nodes with manually annotated edges in their respective pathway clusters. lPc, lysophos‑
photidylcholine; Pc, phosphotidylcholine; Sm, sphingomyelins; Dg, diglycerides; and tg, triglycerides.

Table 1. Baseline‑adjusted least square means of selected metabolites following almond and cracker consumption over 8 weeks.

almondb cracker

Snack effect 
P‑value  

(baseline‑ 
adjusted)c

time effect  
P‑value  

(baseline‑ 
adjusted)

Snack x  
time 
effect  

P‑value  
(baseline‑ 
adjusted)

metabolitesa
Baseline Week 4 Week 8 Baseline Week 4 Week 8 almond vs. 

cracker
Week 4 vs. 

week 8

(2 r)‑3‑hydroxyisovaleroylcarnitine  
(x 102)

41 ± 17 30 ± 19 27 ± 11 36 ± 15 32 ± 12 32 ± 10 0.001 0.084 0.104

alpha‑tocopherol (x 103) 31 ± 12 42 ± 12 39 ± 11 33 ± 11 36 ± 7.9 35 ± 11 0.005 0.147 0.64
ce (16:0) (x1 02) 46 ± 27 44 ± 24 46 ± 27 37 ± 24 54 ± 27 65 ± 37 0.015 0.241 0.648
erucic acid (x 102) 16 ± 51 20 ± 14 25 ± 23 17 ± 7 17 ± 7 17 ± 6 0.004 0.178 0.105
indole‑3‑carboxaldehyde  

(x 102)
5 ± 11 22 ± 58 9 ± 11 3 ± 3 7 ± 7.5 5 ± 3.1 0.002 0.162 0.901

isomaltose (x 101) 8 ± 32 9 ± 29 11 ± 42 9 ± 5 9 ± 6* 16 ± 22 0.605 <0.001 0.035
lPc (18:0) (x 104) 58 ± 14 58 ± 19 55 ± 19 54 ± 17 56 ± 18 45 ± 11 0.038 0.002 0.132
methyl o‑D‑ 

galactopyranoside (x 102)
27 ± 9 28 ± 10* 21 ± 8 25 ± 10 24 ± 9 24 ± 6 0.911 0.009 0.021

n2,n2‑dimethylguanosine  
(x 101)

93 ± 54 81 ± 28* 65 ± 18 81 ± 26 70 ± 17 71 ± 17 0.991 0.016 0.006

oleamide (x 103) 9.8 ± 6 27 ± 41 25 ± 29 9.2 ± 52 17 ± 17 14 ± 12 0.014 0.492 0.634
oxoproline (x 104) 56 ± 10 62 ± 14* 51 ± 8.6 56 ± 11 59 ± 11 54 ± 10 0.63 <0.001 0.044
ametabolites were selected based on overall time effect, fDr < 0.05.
buntransformed means ± standard deviation.
clinear mixed model analysis with baseline adjustment on transformed data.
*P‑value < 0.05 for week 4 vs. week 8 within same snack group.
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resulted in overall lower levels of NEFA and TFA fractions 
of alpha-linolenic acid (ALA) and eicosapentaenoic acid 
(EPA), and eicosatetraenoic acid (ETA) n3 TFA, and ALA 
metabolites, 9-HOTE, 15(16)-EpODE, and docosahexaenoic 
acid (DHEA) compared to cracker consumption 

(baseline-adjusted snack effect, p < 0.05). The omega-6:omega-3 
and DPA:EPA fatty acid ratios were higher, and Σ omega-3 
and palmitoleic acid:palmitic acid ratio were lower in 
response to almond consumption compared to cracker con-
sumption (baseline-adjusted snack effect, p < 0.05).

Table 2. Specific targeted metabolites and their ratios following almond and cracker consumption for 8 weeks.

almonda cracker

Snack  
effect  

P‑value  
(baseline‑ 
adjusted)b

time  
effect  

P‑value  
(baseline‑ 
adjusted)

Snack x  
time  
effect  

P‑value  
(baseline‑ 
adjusted)

metabolites Baseline Week 4 Week 8 Baseline Week 4 Week 8 almond vs.  
cracker

Week 4 vs. 
 week 8

oxylipins
9‑hote 0.61 ± 0.37 0.36 ± 0.11 0.39 ± 0.15 0.46 ± 0.14 0.44 ± 0.14 0.41 ± 0.13 0.009 0.814 0.139
15(16)‑epoDe 3.4 ± 2.4 2.5 ± 2.1 2.1 ± 1.4 3.4 ± 2.6 3.2 ± 3.0 3.2 ± 3.0 0.016 0.48 0.392
9_10‑e‑Diho 6.2 ± 2.3 5.6 ± 2.2 6.2 ± 3.6 7.5 ± 8.2 6.7 ± 4.3 6.9 ± 3.9 0.301 0.444 0.829
9_10‑epo 5.6 ± 3.2 6.0 ± 3.5 9.1 ± 8.9 12.7 ± 20.2 8.5 ± 8.8 6.2 ± 3.6 0.706 0.419 0.048
non‑esterified fatty acids
ala 20 ± 11 15 ± 9 13 ± 7 19 ± 8 18 ± 8 15 ± 7 0.014 0.168 0.554
ePa 39 ± 16 28 ± 17 31 ± 15 41 ± 21 36 ± 26 41 ± 21 0.018 0.015 0.718
Dha (x 101) 26 ± 12 19 ± 9 21 ± 8 28 ± 13 25 ± 18 26 ± 13 0.051 0.064 0.914
endocannabinoids
Dhea 1.4 ± 0.5 1.1 ± 0.4 1.2 ± 0.4 1.5 ± 0.6 1.4 ± 0.7 1.4 ± 0.5 0.035 0.159 0.986
alea 0.23 ± 0.11 0.17 ± 0.08 0.14 ± 0.06 0.21 ± 0.09 0.18 ± 0.08 0.18 ± 0.08 0.126 0.4 0.409
oea 3.6 ± 1.3 2.8 ± 1.0 3.0 ± 0.9 4.0 ± 1.9 3.0 ± 1.6 3.0 ± 0.8 0.913 0.257 0.799
1/2‑og (x 101) 31 ± 18 23 ± 11 45 ± 22 49 ± 74 27 ± 16 48 ± 31 0.79 <0.001 0.574
total fatty acids (tfa)
ala 78 ± 59 63 ± 45 64 ± 35 66 ± 32 76 ± 41 86 ± 78 0.004 0.361 0.58
ePa 28 ± 18 23 ± 19 24 ± 12 29 ± 22 29 ± 15 33 ± 22 0.007 0.169 0.79
Dha (x 101) 11 ± 4 10 ± 5 10 ± 4 12 ± 6 11 ± 5 11 ± 5 0.313 0.441 0.314
eta (n3) 3.4 ± 3.7 2.5 ± 2.2 3.4 ± 4.5 3.2 ± 2.9 4.1 ± 3.8 7.8 ± 11.3 0.012 0.223 0.561
Palmitoleic 

acid (x 101)
13 ± 7 10 ± 5 10 ± 7 13 ± 9 14 ± 7 13 ± 10 0.022 0.083 0.15

oleic acid (x 
102)

17 ± 6 17 ± 6 18 ± 7 17 ± 8 18 ± 5 17 ± 7 0.632 0.85 0.147

tfa aggregates and activity indices
Σ (n‑6): Σ(n‑3) 15 ± 3 16 ± 4 16 ± 3 15 ± 4 14 ± 3 14 ± 4 0.001 0.164 0.724
Σ (n‑3) Pufa (x 

101)
27 ± 10 23 ± 11 24 ± 9 27 ± 10 27 ± 9 29 ± 16 0.013 0.23 0.593

Palmitoleic 
acid/
Palmitic 
acid 
(c16:1n7/
c16:0)

0.072 ± 0.025 0.06 ± 0.021 0.057 ± 0.021 0.067 ± 0.023 0.073 ± 0.063 0.06 ± 0.02 0.004 0.014 0.219

elaidic acid/ 
Stearic acid 
(c18:1n9/
c18:0)

3.1 ± 0.9 3.3 ± 1.3 3.1 ± 0.7 3.0 ± 0.7 3.3 ± 0.9 3.3 ± 0.8 0.446 0.544 0.643

γ‑linolenic 
acid/linoleic 
acid 
(c18:3n6/
c18:2n6)

0.009 ± 0.006 0.009 ± 0.007 0.01 ± 0.006 0.011 ± 0.006 0.011 ± 0.007 0.011 ± 0.006 0.379 0.066 0.304

adrenic acid/
arachidonic 
acid 
(c22:4n6/
c20:4n6)

0.028 ± 0.008 0.029 ± 0.01 0.028 ± 0.009 0.029 ± 0.01 0.03 ± 0.01 0.028 ± 0.01 0.99 0.242 0.567

Dha/DPa 
(c22:6n3/
c22:5n3)

2.4 ± 0.8 2.7 ± 1.0 2.6 ± 0.9 2.7 ± 0.969 2.6 ± 0.9 2.8 ± 1.3 0.068 0.523 0.583

DPa/ePa 
(c22:5n3/
c20:5n3)

2.0 ± 0.7 2.1 ± 0.7 2.0 ± 0.8 2.0 ± 0.8 1.9 ± 0.9 1.8 ± 1.2 0.026 0.267 0.388

auntransformed means ± standard deviation.
blinear mixed model analysis with baseline‑adjustment on transformed data.
n3, omega 3.
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Chemical similarity enrichment analysis of metabolites 
indicates greater changes in unsaturated triglycerides 
and lysophosphatidylcholine metabolism with almond 
consumption

ChemRICH analysis,  which was conducted on 
baseline-adjusted metabolite values, mapped 625 of the iden-
tified (untargeted) metabolites to 58 non-overlapping chem-
ical classes. Seven clusters were significantly different 
between the almond and cracker groups (FDR-adjusted 
p-value < 0.05) overall. Almond consumption enriched 
unsaturated triglycerides, unsaturated phosphatidylcholines, 
saturated and unsaturated lysophosphatidylcholines, sphin-
gomyelins, and tricarboxylic acids clusters. The key metab-
olites in each of those clusters are depicted in Table 3. The 
tocopherol cluster was also influenced with almond con-
sumption overall (FDR-adjusted p-value <0.05) with 
gamma-tocopherol significantly lower (p < 0.05) and 
alpha-tocopherol higher (p < 0.05) compared with cracker 
consumption (Table 3).

Network analysis of metabolites depicts an alteration 
in compounds involved in lipid and tocopherol 
metabolism in response to almond consumption

Metabolites were clustered into groups based on biochemical 
and structural similarities. Network clusters were largely 
comprised of primary and intermediate metabolites involved 
in amino acid, carbohydrate, lipid, and nucleotide metabo-
lism (Figure 1). More specifically, clusters of amines/amides, 
TCA cycle metabolites, and carnitine and tocopherol metab-
olism were also identified (Figure 1).

Carbohydrate metabolism

The almond group had greater levels of metabolites involved 
in the TCA cycle such as citric acid, succinic, aconitic, and 
isocitric acids, and lower levels of hexitol compared to 
cracker consumption (Hedge’s g: 0.34–0.59, snack effect 
p < 0.05). Almond consumption resulted in greater levels of 
2-alpha-mannobiose (g=0.26), and citric acid primarily at 
week 4 (g = 0.84) and lower levels of raffinose (g = 0.26), 
isomaltose (g = 0.32), gluconic acid (g = 0.48), and methyl 
O-D-galactopyranoside (g = 0.41) at week 8 and lower levels 
of ribonic acid at week 4 (g = 0.24) compared to cracker 
consumption (time x snack effect, p < 0.05).

Amino acid metabolism

Almond consumption largely elicited lower levels of metab-
olites involved in amino acid metabolism such as cyclo 
(Leu-Pro), alpha-methyl-histidine, and pipecolinic acid 
(g = 0.31–0.65) and higher levels of phenylacetylglutamine 
(g = 0.27) and indole-3-carboxaldehyde (g = 0.56) compared 
to cracker consumption (snack effect, p < 0.05). Differential 
time x snack effects (p < 0.05) were noted as well with 
4-acetamidobutyric acid, alpha-keto-gamma-(methylthio) 
butyric acid, and oxoproline lower with almond consumption 

at week 8 (g = 0.27–0.39) but not at week 4. N-acetylglycine 
was greater in the almond group at week 4 (g = 0.61) and 
N.epsilon.-methyl-L-lysine was lower in the almond group 
at week 8 (g = 0.41).

Lipid metabolism

The alterations in lipid metabolites such as LPC, PC, TG, 
and SM, and fatty acids and their derivatives with almond 
consumption have been described in the previous sections. 
O t h e r  s i g n i f i c a n t  m e t a b o l i t e s  i n c l u d e 
3-hydroxyisovaleroylcarnitine (g = 0.36) which was lower and 
palmitoylcarnitine (g = 0.31), which was higher  in the almond 
group (snack effect, p < 0.05). Differential time x snack 
effects (p < 0.05) were noted for acetylcarnitine (g = 0.47) 
and glycerophosphocholine (g = 0.12), both being greater 
with almond consumption at week 4. LPC (20:0) and LPC 
(20:1) were greater in the almond group at week 8 (g = 0.72–
0.76, time x snack effect p < 0.05).

Metabolism of cofactors and vitamins

Almond consumption elicited greater levels of 
alpha-tocopherol (g = 0.49) and lower levels of 
gamma-tocopherol (g = 0.53) and trigonelline (g = 0.56) over-
all compared to cracker consumption (snack effect p < 0.05).

Nucleoside and nucleotide metabolism

Almond consumption elicited lower levels of 
7-methylguanosine overall (g = 0.37, snack effect p < 0.05) 
which were primarily driven by lower levels at week 8 (g 
= 0.69, time x snack effect p <0.05). Differential time x 
snack effects (p < 0.05) were also noted for 1-methyladenosine 
A and N2,N2-dimethylguanosine with greater levels at week 
4 (g = 0.29–0.45) and lower levels at week 8 for the almond 
group (g = 0.32).

Potential microbiome community-dependent 
metabolism

There were no significantly enriched pathways detected for 
the differentially expressed (almond vs. cracker) genes at 
baseline (FDR > 0.05, Supplemental Table 1). 
Overrepresentation analysis of the differentially expressed 
metabolic pathway genes at week 8 found significant enrich-
ment (FDR < 0.05, Supplemental Table 1) of biosynthesis 
of amino acids, amino sugar and nucleotide sugar metabo-
lism, starch and sucrose metabolism, and fructose and man-
nose metabolism.

AMON identified 94 metabolites in the serum as being 
potentially produced or metabolized by microbes isolated from 
16S sequencing of host stool samples, which are annotated in 
Figure 1. MIMOSA predicted the microbial community poten-
tial (CMP) of 81 metabolites out of which 67 overlapped with 
AMON results. The almond group at week 8 demonstrated a 
positive correlation of serum N-acetyl-D-mannosamine 
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(R-square: 0.14, p < 0.05) (Supplemental Figure 1), and a neg-
ative correlation of serum L-cysteine (R-square: 0.16, p < 0.05) 
with the CMP scores, which were significantly different from 
the cracker group (p < 0.05 for difference in correlation coef-
ficients between groups). The cracker group at week 8 only 
demonstrated a negative correlation of 5(S)-HETE (R-square: 
0.15, p < 0.05) with the CMP scores. The negative association 
between a metabolite’s levels and its CMP could potentially be 
due to missing reactions in the KEGG database or effects other 
than metabolism (43).

Discussion

The metabolomics analyses in our study demonstrated shifts 
in host metabolism with almond consumption particularly 
that of tocopherol, lipids, and the TCA cycle with some 
differential time effects noted as well. The study also 

suggests that changes in microbial metabolism could poten-
tially influence host metabolism.

Almond consumption for 8 weeks increased 
alpha-tocopherol and decreased gamma-tocopherol, which 
is supported by targeted studies (44). This could be due to 
the preferential uptake of alpha-tocopherol in the liver when 
dietary intake is increased and reduced retention of other 
tocopherol forms (45). Increased alpha-tocopherol is typi-
cally considered a biomarker for compliance with almond 
consumption. The increase in alpha-tocopherol was most 
prominent at week 4 and appeared to have plateaued at 
week 8 suggesting that levels may reach a saturable limit 
by week 4. Previous studies have demonstrated that in par-
ticipants with normal plasma alpha-tocopherol concentra-
tions of 25 µM, the plasma concentrations do not increase 
more than 2–3 fold even upon supplementation (45–47) 
further suggesting that levels of alpha-tocopherol are 

Table 3. chemical similarity enrichment analysis results of significant clusters of untargeted serum metabolites measured following almond and cracker con‑
sumption over 8 weeks.

cluster name
cluster 

size
P‑value 

(KS)
fDr adjusted 
P‑value (KS)

no. of altered 
metabolites in cluster metabolites

P‑value (almond 
vs. cracker)a

unsaturated 
phosphatidylcholines

90 <0.001 <0.001 increasedb: 17 Pc (p‑40:5) 0.004
Pc(40:7) 0.007
Pc(p‑38:4)/Pc(o‑38:5) a 0.009
Pc(38:7) 0.011
Pc(p‑36:1)/Pc(o‑36:2 0.012
Pc(p‑38:4)/Pc(o‑38:5) B 0.015
Pc(p‑40:4)/Pc(o‑40:5) 0.024
Pc(p‑36:4)/Pc(o‑36:5) 0.026
Pc(p‑36:2)/Pc(o‑36:3) 0.029
Pc(p‑38:5)/Pc(o‑38:6) 0.031
Pc(p‑44:4)/Pc(o‑44:5) 0.033
Pc(39:4) 0.036
Pc (p‑36:3) or Pc (o‑36:4) 0.036
Pc (p‑34:2) or Pc (o‑34:3) 0.041
Pc(p‑40:6)/Pc(o‑40:7) 0.041
Pc(p‑34:2)/Pc(o‑34:3) 0.048
Pc (p‑42:3) or Pc (o‑42:4) 0.049

unsaturated  
triglycerides

84 <0.001 <0.001 increased: 13 tg(56:4) 0.002
tg(58:8) 0.005
tg(18:1/18:2/20:3) 0.009
tg(54:3) 0.009
tg(54:4) 0.013
tg(58:9) 0.014
tg(56:5) 0.025
tg(56:3) 0.028
tg (53:5) 0.03
tg(56:7) 0.033
tg(18:2/20:3/22:6) 0.044
tg(18:1/18:2/19:1) 0.046
tg(56:6) 0.049

Sphingomyelins 24 <0.001 <0.001 increased: 5 Sm(d38:1) 0.021
Sm(d40:1) 0.024
Sm (d37:1) 0.027
Sm(d42:1) 0.033
Sm(d40:2) 0.041

unsaturated 
lysophosphatidylcholines

14 <0.001 0.004 increased: 3 lPc (16:1) 0.029
lPc (17:1) 0.032
lPc (20:1) 0.041

Saturated 
lysophosphatidylcholines

6 <0.001 <0.001 increased: 2 lPc (18:0) 0.038
lPc (16:0) 0.011

tricarboxylic acids 3 <0.001 0.001 increased: 3 citric acid 0.004
aconitic acid 0.046
isocitric acid 0.015

tocopherols 3 0.006 0.046 increased: 1 Decreasedc: 
1

alpha‑tocopherol 0.005
gamma‑tocopherol 0.005

aBaseline‑adjusted overall snack effect.
bhigher in almond group.
clower in almond group. KS, Kolmogorov–Smirnov test; lPc, lysophosphotidylcholine; Pc, phosphatidylcholine; Sm, sphingomyelin; tg, triglycerides.
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saturable. In a dose-dependent almond study, 10% of energy 
intake from almonds resulted in a 13.7% increase, and 20% 
in a 18.7% increase in plasma alpha-tocopherol over 4 weeks 
(44). In our study, the decrease in the magnitude of 
alpha-tocopherol concentration change (over 8 weeks) as 
baseline concentrations increase also suggests the presence 
of a saturable pool (Supplemental Figure 2). Our dietary 
recall data also indicates an increase in alpha-tocopherol 
over 4 weeks with no further change beyond week 4 with 
almond consumption (19). Given the differential response 
in alpha- and gamma-tocopherol to almond consumption, 
we propose that the ratio may serve as a robust marker of 
dietary compliance when the intervention may be of a lesser 
quantity and/or duration to not reach saturable levels in 
circulation.

Almond consumption was also associated with greater 
levels of phosphatidylcholines, and its derivative LPC species, 
which have been reported to influence diverse cell types 
such as endothelial cells, adipocytes, hepatocytes, and 
immune cells (48). Due to the complexity of its metabolism, 
the role of LPCs in disease causality is controversial (48). 
In a recent review (48), while in vitro studies implicated 
LPCs in apoptosis and pro-inflammatory conditions, clinical 
studies demonstrated that circulating LPCs were inversely 
associated with cardiovascular diseases. Other studies showed 
lower levels of diverse LPC species with obesity (49) and 
negative associations with inflammatory markers and insulin 
resistance (49, 50) suggesting that LPCs may protect against 
metabolic disorders. Analyses conducted on a subset of 
participants in the current study demonstrated significant 
(p < 0.05) correlations of LPCs with inflammatory markers. 
Moreover, almond consumption for 8 weeks elicited positive 
correlations (r = 0.30–0.55) of IL-6 with various LPC species 
including LPC (20:1), LPC (18:0), and LPC (18:1), and IL-10 
with LPC (22:4) whereas negative correlations (r = 0.2–0.41) 
were identified in the cracker group (p < 0.05 for group 
comparisons). IL-10 is an anti-inflammatory cytokine while 
IL-6 can be either inflammatory or anti-inflammatory (51). 
These relationships suggest that LPCs and inflammatory 
markers in relatively healthy adults are mediated by dietary 
conditions and that chronic almond consumption may have 
a role to play in immune health through the maintenance 
or increase in LPCs. However, other considerations for inter-
pretation of LPC effects across diet studies should include 
examination of tissues and/or cell types, and comparisons 
between healthy and diseased states and/or saturated and 
unsaturated species.

Almond consumption generally increased unsaturated 
triglycerides over 8 weeks. More specifically, the almond 
group had higher levels of oleamide, which is a fatty acid 
amide of oleic acid. Surprisingly, the targeted analyses did 
not detect a difference in oleic acid TFA between groups 
even though it is the most predominant fatty acid in 
almonds. However, this inconsistency has been documented 
previously. For example, in a dose-dependent study, half-dose 
almonds (37 ± 2 g/d) increased oleic acid in NEFA and TAG 
fractions; however, the full dose (75 ± 3 g/d) did not demon-
strate an increase in NEFA fraction (52). Our dietary data 

indicates greater oleic acid intake in the almond group com-
pared to the cracker group. The bioaccessibility of lipids 
from whole almonds during mastication and digestion may 
limit the amount of fat absorbed through the gastrointestinal 
tract (53), hence contributing to the incongruency between 
dietary intake and serum NEFA levels. However, since serum 
NEFA levels are predominately regulated by adipose tri-
glyceride hydrolysis (54), these results suggest that almond 
consumption did not alter adipose composition or the rates 
of adipose lipolysis. Alternatively, because increased oleic 
acid can stimulate complete fatty acid oxidation (55), the 
increased intake with almond consumption may have 
increased oxidation including the oxidation of oleic acid 
itself to mask the potential to detect an increase in circu-
lating levels. The greater levels of acetylcarnitine particularly 
at week 4 in the almond group suggests that beta-oxidation 
of fatty acids was increased and substantiates the data in 
the literature that increased oleic acid promotes beta oxi-
dations of FFA. Nonetheless, our results suggest that in a 
free-living study, serum oleic acid may not be a viable bio-
marker of compliance with almond consumption.

Almond consumption also lowered the palmitoleic acid: 
palmitic acid ratio. A greater ratio is considered a diagnostic 
marker for early onset nonalcoholic steatohepatitis (56) and 
associated with the presence of impaired glucose tolerance 
and T2D (57) suggesting that the lower ratio with almond 
consumption may be indicative of a protective effect against 
metabolic disorders.

The targeted analysis reveals lower levels of omega-3 total 
fatty acids (TFAs) in the almond group. More specifically, 
almond consumption had lower levels of ALA, EPA (mea-
sured in NEFA and TFA fractions), ALA oxylipins (9-HOTE 
and 15(16)-EpODE), and DHEA, the acylethanolamide of 
the omega-3 derivative of DHA. Interestingly, our 24-hour 
dietary recall data revealed greater intake of EPA in the 
almond group compared to the cracker group and no dif-
ferences in ALA intake by group suggesting that the esti-
mated dietary intake of these fatty acids are not indicative 
of the actual changes in circulating levels. These discrepan-
cies could be due to the low reproducibility of food omega-3 
fatty acids by ASA24 (58). Furthermore, the complex metab-
olism of omega-3 fatty acids involves a series of enzymatic 
desaturation and elongation processes, interconversions 
between FAs, and translocation between different cellular 
compartments (59) that cannot be captured by estimating 
dietary intake.

The increases in aconitic, citric, isocitric, and succinic 
acids suggests that almond consumption stimulated the TCA 
cycle. The TCA cycle is a central metabolic pathway where 
key byproducts of nutrient digestion such as glucose, fatty 
acids, and some amino acids converge for energy production 
(60). The increased activity in the TCA cycle could be due 
to the higher dietary intake of MUFAs and PUFAs in the 
almond group. Higher fat intake has been found to elevate 
TCA cycle intermediates in rats (61) suggesting that 
increased availability of unsaturated FAs may increase the 
substrates for TCA cycle activity and in essence, feed the 
system. While in a recent human study, baseline levels of 
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specific TCA cycle metabolites including isocitrate were 
associated with greater relative risk of T2D, the Mediterranean 
diet, a diet high in unsaturated fats, appeared to alleviate 
this risk (62). As mentioned previously, almond consumption 
increased acetylcarnitine, which is significant here because 
it is involved in the movement of acetyl-CoA into the mito-
chondria during beta-oxidation, thereby providing the raw 
materials for TCA cycle (63). Thus, the increase in TCA 
cycle activity may be facilitated by increased acetylcarnitine. 
These data provide a mechanism by which increased dietary 
MUFA (oleic acid) (and potentially PUFAs) can improve 
glucose metabolism (via enhanced TCA cycle activity). In 
the same subjects studied here, almond consumption 
improved glucose tolerance (19) and several other studies 
have demonstrated improvements in glucoregulation with 
almond consumption as well (64–68).

Another carnitine derivative, 3-hydroxyisovaleroylcarnitine, 
which is a degradation byproduct of ketogenic amino acids, 
was lower in the almond group. This may suggest that biotin 
intake was increased. Increased circulating levels of 
3-hydroxyisovaleroylcarnitine is associated with impaired 
leucine catabolism due to reduced activity of 
3-methylcrotonyl-CoA carboxylase,  which is a 
biotin-dependent enzyme, in asymptomatic, marginally bio-
tin deficient adults (69, 70). Although ASA24 data does not 
report biotin values, nuts are considered good sources of 
biotin (71) and the dietary results suggest that the con-
sumption of biotin-rich foods (red meat and eggs) was also 
increased in the almond group.

We have previously documented increased alpha-diversity 
of the gut microbiome with almond consumption (). The 
present analysis shows an enrichment of amino acid bio-
synthesis and carbohydrate metabolism such as amino 
sugar and nucleotide sugar metabolism in the almond 
group at week 8. Our analyses revealed differential snack 
effects on the microbial community potential of several 
MIMOSA2-predicted amino acids such as glutamate, glu-
tamine, tryptophan, phenylalanine, and proline 
(Supplemental Table 2). However, the predicted microbial 
metabolism data are most useful when associated with the 
metabolomics data. The only compound that was positively 
predicted at the end of the intervention was 
N-acetyl-D-mannosamine (ManNAc), which is an acylami-
nosugar. The microbial community in the almond group 
at week 8 explained 14% of the variation in serum ManNAc. 
Although serum ManNAc itself was not significantly dif-
ferent between the almond and cracker groups, we spec-
ulate that metabolomics and meta-transcriptomics of stool 
samples might reveal other interesting relationships such 
as changes in sialic acid metabolism (72) associated with 
almond consumption.

Other potential products of microbial metabolism that were 
differentially influenced by diet included cyclo (Leu-Pro), 
indole-3-carboxaldehyde, phenylacetylglutamine, and pipecolic 
acid. Phenylacetylglutamine, which is a conjugate of glutamine 
and phenylacetate, the latter being derived from microbial 
metabolism of phenylalanine (73, 74), was greater in the 
almond group. Studies have documented the positive associa-
tion of phenylacetylglutamine with alpha-diversity (73), which 

is supported by our study as well (data not shown). Pipecolic 
acid, which was lower in the almond group, could arise from 
food intake or produced by gut bacteria on lysine degradation 
(75). Although, cyclo (Leu-Pro) is a bacterium-derived dipep-
tide whose functional role isn’t well known, literature suggests 
that cyclodipeptides and their derivatives such as diketopiper-
azines, contribute to bacterial signaling systems (76–78). 
Almond consumption also resulted in greater indole-3-carbox-
aldehyde, which is a tryptophan metabolite that acts as a ligand 
for the aryl hydrocarbon receptor (AhR) in the intestinal 
immune cells that stimulate IL-22 production when activated. 
This activation is important for maintaining gut immunity 
(79), providing another potential benefit of almond consump-
tion on gut health in addition to promoting alpha-diversity.

We used comprehensive analyses to study the serum 
metabolome of almond versus cracker consumers. The 
changes in microbial metabolism provide complementary 
insight into the metabolomics data. However, since we used 
prediction models for assessing microbial metabolism and 
community potential, the results should be interpreted with 
caution and in the context of the exploratory nature of the 
analyses. Moreover, more than half of the metabolites in 
our dataset could not be annotated owing to the nature of 
untargeted metabolomics, and biochemical relationships for 
most lipid mediators could not be defined due to the inher-
ent limitations of KEGG database for lipidomic datasets. 
Nonetheless, these data provide significant insights on the 
effects of chronic almond consumption on metabolic path-
ways not previously explored. Future analyses will explore 
effects of factors such as BMI, sex, and metabolic risk on 
these outcomes.

Our results provide a deeper understanding of host TCA 
cycle and lipid metabolism with almond consumption in 
relatively healthy young adults. In addition, the findings 
also shed light into the interconnections between circulating 
metabolites and microbial metabolism in the context of an 
almond intervention. More generally, these findings provide 
further evidence for the potential impacts of dietary changes 
on host substrate metabolism and associated changes in gut 
microbe metabolism. Whether the changes in the gut 
microbe or metabolites influence host metabolism or vice 
versa remains to be elucidated but these data provide evi-
dence for an association between gut microbe metabolism 
and host cellular metabolism.
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