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Anthracyclines are a widely used class of chemotherapy in pediatric

and adult cancers, however, their use is hampered by the development

of cardiotoxic side-effects and ensuing complications, primarily heart

failure. Clinically used imaging modalities to screen for cardiotoxicity are

mostly echocardiography and occasionally cardiac magnetic resonance

imaging. However, the assessment of diastolic and global or segmental

systolic function may not be sensitive to detect subclinical or early

stages of cardiotoxicity. Multiple studies have scrutinized molecular nuclear

imaging strategies to improve the detection of anthracycline-induced

cardiotoxicity. Anthracyclines can activate all forms of cell death in

cardiomyocytes. Injury mechanisms associated with anthracycline usage

include apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, reactive

oxygen species, mitochondrial dysfunction, as well as cardiac fibrosis and

perturbation in sympathetic drive and myocardial blood flow; some of

which have been targeted using nuclear probes. This review retraces

the pathobiology of anthracycline-induced cardiac injury, details the

evidence to date supporting a molecular nuclear imaging strategy, explores

disease mechanisms which have not yet been targeted, and proposes

a clinical strategy incorporating molecular imaging to improve patient

management.

KEYWORDS
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Introduction

Anthracyclines are one of the most commonly prescribed
chemotherapies and are used to treat a variety of cancers.
Although effective agents, their benefits are sometimes
compromised by acute and/or late-onset cardiotoxic side
effects. A study that compared adult survivors of pediatric
cancer with their siblings found that survivors (that had
been treated with anthracyclines and/or radiotherapy) had a
15-fold higher risk of developing heart failure (1). The risk
of subsequent heart failure in pediatric patients treated with
anthracyclines was demonstrated to be highly dose-dependent,
particularly in cumulative anthracycline doses ≥300 mg/m2,
and to increase over time (3.3% at 2 years, 4.5% at 10 years,
and 9.8% at 20 years after the first dose) (2, 3). Similarly, a
retrospective analysis of three phase III clinical trials with adult
patients indicated that treatment with a cumulative doxorubicin
dose of ≥400 mg/m2 led to a 5% incidence of heart failure,
rising to up to 26% at a cumulative dose of 550 mg/m2 (4).
It must be emphasized, however, that (i) no “safe dose” of
anthracyclines truly exists, (ii) late effects leading to heart
failure can occur and need to be monitored, and (iii) risk
assessment needs to be individualized with a particular focus
on pre-existing heart disease and/or cardiovascular risk factors
such as hypertension. Thus, given the wide individual variability
in patient risk of developing anthracycline-induced cardiac
injury, risk stratification must be done on a case-by-case basis.

In clinical practice, side effects of anthracyclines are
balanced by limiting the dosage while tightly monitoring for
clinical manifestations of cardiotoxicity. Typically, imaging
modalities such as echocardiography are used to monitor
for cardiotoxicity, commonly defined as a decline in LVEF
of ≥10% to a final value <50% (5). A recent International
Cardio-Oncology Society (IC-OS) consensus statement (6)
proposed a standardized and more nuanced definition of cancer
therapy-related cardiac dysfunction (CTRCD), applicable to
anthracyclines, as follows: (1) Asymptomatic CTRCD graded
as (i) mild (LVEF ≥50% and new decline in GLS >15%
from baseline, and/or new rise in troponin I/T, BNP, NT-
proBNP), (ii) moderate (new LVEF reduction by≥10 percentage
points to a LVEF 40–49%, or new LVEF reduction by <10

Abbreviations: AIC, anthracycline-induced cardiotoxicity; BNP, B-type
natriuretic peptide; CAD, coronary artery disease; CT, computerized
tomography; Dox, doxorubicin; 18F-FDG, 18F-fluorodeoxyglucose; GLS,
global longitudinal strain; H/M, heart-to-mediastinum; ID/g, injected
dose/g; LV, left ventricle; LVEF, left ventricular ejection fraction; MRI,
magnetic resonance imaging; MUGA, multigated acquisition; NLRP3,
nucleotide-binding oligomerization domain (NOD-), leucine-rich
repeat (LRR-), and pyrin domain (PYD)-containing protein 3; NT-
proBNP, N-terminal proBNP; PET, positron emission tomography;
PS, phosphatidylserine; ROS, reactive oxygen species; SPECT,
single-photon emission computed tomography; TUNEL, terminal
deoxynucleotidyltransferase-mediated dUTP nick-end labeling; WOR,
washout rate.

percentage points to a LVEF 40–49% and new decline in
GLS >15% from baseline, and/or new rise in troponin I/T,
BNP, NT-proBNP), and (iii) severe (new LVEF reduction to
<40%). (2) Symptomatic CTRCD with supportive LVEF and
diagnostic biomarkers, graded from mild to very severe based
on heart failure symptoms, requirement for intensification of
heart failure treatment, hospitalization, and/or inotropic or
mechanical circulatory support.

However, these prognostic/diagnostic tools have several
limitations, including their variability, lack of sensitivity, and
inadequate detection of toxicity at a subclinical level. One of
the main issues is that these parameters detect cardiotoxicity
when the myocardium is already damaged and/or cardiac
function impaired, which may hinder treatment options.
Indeed, histological biopsy samples of patients that underwent
doxorubicin treatment demonstrated that the myocardium
could incur significant injury despite patients having a
preserved/normal LVEF (7).

Therapeutic treatment for AIC remains limited. One of
the most well studied agents, dexrazoxane, has been shown
to significantly reduce cardiotoxicity in adults and pediatric
patients when concurrently prescribed with anthracyclines
(8–10). Recent studies have demonstrated the safety of
dexrazoxane as a cardioprotective agent and confirmed its lack
of interference with the anti-tumor action of anthracyclines.
Indeed, an analysis of three Children’s Oncology Group
(COG) trials that had randomized patients to doxorubicin
with or without dexrazoxane (dexrazoxane:doxorubicin dose
ratio 10:1, cumulative protocol-specified doxorubicin dose 100–
360 mg/m2) with a median follow-up of 12.6 years demonstrated
that dexrazoxane does not compromise long-term survival, and
is not associated with mortality from acute myeloid leukemia
or cardiovascular causes (11). This was followed by another
COG analysis of four trials with pediatric patients that similarly
were treated with doxorubicin with or without dexrazoxane
(other than one trial in which all patients were assigned to
dexrazoxane upfront), and with a median follow-up of close to
20 years, indicating that dexrazoxane does not negatively affect
long-term mortality or second cancer risk (12). Angiotensin-
converting enzyme inhibitors and beta-blockers have also been
studied. In a study of 201 patients with AIC, Cardinale et al.
observed that 64% of patients treated early (i.e., 1–2 months
after completion of chemotherapy) with enalapril/carvedilol
had complete LVEF recovery, while 0% of the patients treated
6 months post-chemotherapy had complete LVEF recovery
(13). Whereas these findings were not corroborated in the
prospective CECCY trial which randomized 200 HER2-negative
breast cancer patients to carvedilol vs. placebo synchronous
with anthracycline initiation (total 240 mg/m2 over 4 cycles),
a benefit of betablockade was noted on the development of
diastolic dysfunction (14).

These clinical findings underscore the importance of early
disease detection and emphasize the need for additional
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TABLE 1 Radiotracer, mechanism of uptake, and application for nuclear imaging of anthracycline-induced cardiotoxicity.

Radiotracer Modality Target Cardiovascular application Preclinical studies Clinical studies

18F-FDG* PET Glucose transporters Glucose metabolism 32 34–36,38
11C-Acetate PET Monocarboxylate transporter Oxidative metabolism 43 45
11C-Acetoacetate PET Monocarboxylate transporter Ketone body metabolism 44
18F-DHMT PET Reactive oxygen species Cytotoxicity 59
99mTc-Sestamibi* SPECT Mitochondrial membrane potential Cytotoxicity/perfusion 51
68Ga-Galmydar PET Mitochondrial membrane potential Cytotoxicity/perfusion 52
18F-MitoPhos PET Mitochondrial membrane potential Cytotoxicity/perfusion 53
99mTc-Annexin V SPECT Externalized phosphatidylserine Apoptosis 76
18F-CP18 PET Caspase-3 activity Apoptosis 83
111In-Antimyosin* SPECT Exposed myosin Necrosis 85,86
123I-MIBG* SPECT Norepinephrine transporter Sympathetic nervous system 94 94–98
3H-CGP12177 PET Norepinephrine transporter Sympathetic nervous system 99
13N-Ammonia* PET Passive diffusion Perfusion 110
82Rb-Chloride* PET Na+/K+-ATPase Perfusion 105
99mTc-MUGA* SPECT Red blood cells Cardiac blood pool 4,102–104
68Ga-FAPI* PET Fibroblast activation Fibrosis 116,117

*U.S. Food and Drug Administration (FDA) approved radiotracer.
References of preclinical and clinical studies examining the role of radiotracers in the context of anthracycline-induced cardiotoxicity.

methods to diagnose subclinical AIC. A promising such
strategy is nuclear imaging that can map molecular processes
perturbed in AIC using radioactively labeled probes (Table 1).
Advancements in nuclear imaging have rendered imaging
of pathological processes such as mitochondrial dysfunction,
sympathetic innervation, and fibrosis, possible. With the
ongoing dissection of the pathobiology of AIC at the molecular
level, we predict these advances will permit the identification
of novel molecular imaging targets and posit a future role
for nuclear imaging that will be complementary to that of
echocardiography (and/or cardiac MRI). The present review
retraces the preclinical and clinical evidence supporting the use
of a nuclear molecular imaging strategy in AIC, and offers new
avenues for tracer development targeting injury pathways that
have not yet been explored.

Nuclear imaging targets

I. Metabolic dysfunction

Anthracyclines induce intracellular ROS through several
mechanisms. Fe3+ can react with the ketone and hydroxy
groups of anthracyclines to form free radicals through the
Fenton reaction (15). Anthracyclines also accumulate within the
mitochondrial inner membrane, in part due to their high affinity
to cardiolipin. In mitochondria, quinone and semiquinone
moieties of anthracycline undergo redox cycling, generating
large amounts of ROS (16). These events cause oxidative
damage to cellular proteins, lipids, and mitochondria, resulting

in mitochondrial membrane potential loss, mitochondrial
swelling, activation of the mitochondrial-permeability transition
pore (mPTP), and the release of cytochrome c (17). Formation
of the apoptosome, initiated by cytochrome c release from
mitochondria to the cytosol, leads to the cleavage and activation
of caspase 3 and cell death (Figure 1). Long-term mitochondrial
dysfunction also leads to a compensatory shift in cardiomyocyte
metabolism, which may be targeted for AIC imaging (18).

Glucose uptake

The most studied PET tracer for AIC imaging is 18F-
FDG. Anthracyclines impair mitochondrial phosphorylation
and the oxidation of all substrates – including fatty acids,
carbohydrates, and ketones – thus driving cardiac myocytes
to shift toward utilization of substrates with a more favorable
ATP production phosphate/oxygen ratio, such as glucose
(18, 19). Cardiomyocyte uptake of the glucose analog 18F-
FDG is mediated by glucose transporter (GLUT) −4 and
−1 (20). Whereas GLUT-1 is considered responsible for
basal intracellular glucose transport, GLUT-4 and to a
lesser extent GLUT-1 translocate to the plasma membrane
and increase intracellular glucose uptake in response to
stimuli such as insulin (21), ischemia (22, 23), anoxia
(24), and catecholamines (20). Upon cardiomyocyte
uptake, 18F-FDG is phosphorylated by hexokinase and
not metabolized further (25). Additionally, the reverse
reaction (dephosphorylation by glucose-6-phosphatase) is
minimal (25). Thus, phosphorylated 18F-FDG remains trapped

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2022.919719
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-919719 July 28, 2022 Time: 16:10 # 4

Jong et al. 10.3389/fcvm.2022.919719

FIGURE 1

Current nuclear molecular imaging strategies targeting pathways and cell injury mechanisms activated in anthracycline-induced cardiotoxicity.
Nuclear probes studied to date target anthracycline-mediated cardiomyocyte injury mechanisms such as apoptosis, necrosis, reactive oxygen
species, and mitochondrial dysfunction; downstream consequences such as cardiac fibrosis; and more global changes such as sympathetic
drive, myocardial blood flow, and left ventricular ejection fraction. Bax, Bcl2 associated X protein; Bak, Bcl2 antagonist/killer; Bcl2, B-cell
CLL/lymphoma 2; dsDNA, double-stranded DNA; GLUT1, glucose transporter 1; γ-H2AX, phosphorylated histone variant H2AX; MCT,
monocarboxylate transporter; 19M, mitochondrial membrane potential; mPTP, mitochondrial permeability transition pore; PS,
phosphatidylserine; ROS, reactive oxygen species; Top IIβ, topoisomerase IIβ.

within cardiomyocytes. To infer glucose metabolic rate from
18F-FDG metabolic rate, a “lumped constant” – initially
formulated by Sokoloff et al. (26) – or correction factor,
is used. The lumped constant is based on competitive
substrate kinetics between glucose and 18F-FDG, and
accounts for differences in transport and phosphorylation
rates (27). Importantly, the lumped constant for 18F-
FDG in the myocardium is dependent on fasting state
and serum insulin levels (28–31). The lumped constant
has not been evaluated in the setting of anthracycline
chemotherapy-induced cardiac injury.

Preclinical studies have assessed the potential utility of 18F-
FDG in AIC. Bulten et al. observed a progressive increase in
18F-FDG uptake in mice treated with doxorubicin (15 mg/kg,
once every 3 weeks for up to four cycles) (32). They
further noted a significant correlation between myocardial
18F-FDG uptake and hypoxia-inducible factor (HIF)-1α, a
hypoxia-driven transcription factor that activates GLUTs and
glycolytic enzymes. In another study of doxorubicin treated
mice, increased 18F-FDG myocardial uptake had a direct
correlation with histologically determined myocardial redox
stress (33).

Several retrospective clinical studies have documented
higher 18F-FDG uptake in patients treated with anthracyclines.

Borde et al. observed in lymphoma patients treated with
doxorubicin-based chemotherapy a higher post-therapy 18F-
FDG uptake than before treatment (34). In a retrospective
study of 43 Hodgkin lymphoma patients that developed
AIC, Sarocchi et al. observed that a decrease in LVEF
several months to years following treatment was inversely
correlated with LV uptake of 18F-FDG during doxorubicin
containing chemotherapeutic treatment (R2 = 0.30, P < 0.01)
(35). Similarly, in a recent study of 121 consecutive breast
cancer patients undergoing treatment with anthracycline or
trastuzumab, Kim et al. found that patients who developed
cardiotoxicity had a higher 18F-FDG right ventricular uptake
than patients who did not (2.4 ± 1.1 vs. 1.6 ± 0.7, P = 0.012)
(36). Though it remains unclear whether the observed right
ventricular uptake preceded or was a result of LV dysfunction,
other have reported that left ventricular and right ventricular
global longitudinal strain are both similarly impaired during
trastuzumab treatment (37). Additional studies have suggested
that baseline LV 18F-FDG SUV may also be an indicator
of patient susceptibility to AIC. Bauckneht et al. observed
that among a cohort of 36 Hodgkin lymphoma patients
that had previously undergone doxorubicin treatment, the 11
patients that developed significant post treatment reduction
in ejection fraction had lower pre-treatment LV 18F-FDG
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uptake compared to the remaining 25 patients that didn’t
develop cardiac abnormalities (mean SUV = 1.53 ± 0.9 vs.
3.34 ± 2.54, P < 0.01) (38). Heckmann et al. (39) demonstrated
in a retrospective study (n = 337 consecutive patients) that
Hodgkin’s lymphoma (n = 52) was associated with a higher
cardiac 18F-FDG uptake (mean SUV = 3.5 ± 3.6, odds
ratio = 2.4, P < 0.01) whereas non-Hodgkin’s lymphoma
(n = 57) and non-lymphatic cancer (n = 228) were not.
Interestingly, the authors observed that the increase in cardiac
18F-FDG uptake in Hodgkin’s lymphoma was not determined
by prior chemotherapy and/or serum glucose levels, however,
with the caveat that patient preparations were not optimized
or standardized for cardiac 18F-FDG PET imaging, in addition
to the retrospective nature of the study (39). A significant
limitation of these retrospective studies is that protocols were
designed for cancer staging and not to measure cardiomyocyte
18F-FDG uptake per se, which were done post hoc in a
retrospective manner. In this setting, patients were only required
to fast a minimum of 6 h during which myocardial metabolic
patterns still have a high degree of variability (40). Furthermore,
the pattern of myocardial 18F-FDG uptake may also need
to be taken into consideration when determining physiologic
vs. pathologic signals (41). Whereas standardized protocols
incorporating adequate nutritional preparation are required
(42), these preliminary studies are promising and set the
stage for the prospective evaluation of cardiomyocyte 18F-
FDG uptake in AIC.

Oxidative metabolism

Acetate is utilized by cardiomyocytes in the tricarboxylic
acid (TCA) cycle and can thus serve as a metric to quantify
myocardial oxygen consumption. A preclinical model of
chronic doxorubicin treatment in rats (2 mg/kg IV weekly
for 6 weeks) observed that doxorubicin decreased myocardial
oxygen consumption reserve (2.3 ± 0.3 vs. 1.8 ± 0.4,
P = 0.02) (43). 11C- acetoacetate, a ketone body that utilizes
the same monocarboxylic acid transporter as acetate, exhibited
similar changes in an analogous rat model treated with
doxorubicin (44).

Nony et al. investigated 11C-acetate uptake to assess
myocardial oxidative metabolism and myocardial blood flow
in patients treated with anthracyclines (45). The resting
myocardial blood flow of 6 patients were serially measured
during a doxorubicin treatment course of 50 mg/m2 every
3 weeks for 15 weeks (cumulative dose of 300 mg/m2).
The investigators observed that compared to baseline,
there was no significant change in resting myocardial
blood flow during or after completion of doxorubicin
treatment. Similarly, no significant changes were noted
in Kmono, an index of myocardial oxygen consumption
(45, 46).

Fatty acid metabolism

Whereas 70 to 90% of cardiac ATP production is derived
from fatty acid β-oxidation under physiologic conditions,
fatty acid usage decreases significantly in heart failure and
cardiomyopathy models (47), thus making it a possible target
for AIC imaging. There are no preclinical or clinical studies
to date that have applied radiolabeled fatty acids to monitor
AIC. Potential candidates include 11C-palmitate, although its
clinical utility is hindered by a lack of kinetic data that models
and accounts for the redistribution of 11C metabolites within
various lipid pools (48). 18F-FTHA (14[R,S]-18F-fluoro-6-thia-
heptadecanoic acid) is another PET tracer that could circumvent
this limitation by utilizing a sulfur atom in its backbone that
prevents it from undergoing further β-oxidation (49).

Mitochondrial membrane potential

99mTc-sestamibi is a SPECT tracer clinically used to image
myocardial perfusion, though its utility as a lipophilic cation
has proven useful to detect disruptions in mitochondrial
membrane potential. The ability of these cations to accumulate
inside the mitochondria has been used as a proxy index
for mitochondrial membrane potential (19M) (50). Animal
studies conducted by Safee et al. indicated that rats treated
with a single dose of doxorubicin had lower levels of 99mTc-
sestamibi uptake in the myocardium, corresponding to a loss
in 19M . A significant 2.5-fold decrease in 99mTc-sestamibi
2 weeks post-treatment was detected only in rats treated
with the highest doxorubicin dose (10 mg/kg), which was
associated with a 7% and 9.5% drop in ejection fraction
and fractional shortening, respectively, that was also only
significant 2 weeks post-treatment (51). While promising,
usage of 99mTc-sestamibi is hindered by its pharmacokinetics
and the limited sensitivity inherent to most SPECT tracers.
In comparison, PET tracers such as the metalloprobe 68Ga-
galmydar have been developed for this same application (52).
In live-cell fluorescent imaging of H9c2 cells, Sivapackiam
et al. observed a dose- and time-dependent decrease in 68Ga-
galmydar that correlated with an increase of caspase-3 activation
(52). These findings were subsequently confirmed in in vivo
models, where the authors reported a nearly 2-fold decrease
in myocardial 68Ga-galmydar uptake 5 days following a single
doxorubicin dose of 15 mg/kg in rats, verified by post-imaging
quantitative biodistribution. Another PET lipophilic cation
that bears promise is [1-(2-18F-fluoroethyl),1H[1,2,3]triazole-4-
ethylene]triphenylphosphonium bromide (18F-MitoPhos) (53).
In a Langendorff perfusion heart model, 18F-MitoPhos exhibited
more than double cardiac retention compared to 99mTc-
sestamibi. Moreover, in vivo studies in an acute doxorubicin rat
model indicated a close to 50% decrease in the left ventricular
retention of 18F-MitoPhos compared to controls 48 h after
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treatment. While 68Ga-galmydar and 18F-MitoPhos represent
encouraging alternatives to 99mTc-sestamibi for measuring
19M , further studies are needed to corroborate these findings
with reference parameters such as ejection fraction and
fractional shortening.

An additional promising strategy for the scrutiny of
19M involves the radiolabeled lipophilic cation 18F-
tetraphenylphosphonium (18F-TPP+) (54). Using a pig
model, Alpert et al. demonstrated its in vivo myocardial
applicability via a novel method accounting for extracellular
space and employing kinetic analysis to estimate tracer volume
of distribution (55). Additionally, Pelletier-Galarneau et al.
demonstrated excellent agreement of in vivo measures of
myocardial 18F-TPP+ in healthy humans subjects with previous
in vitro assessments (56), paving the way for human studies
quantifying temporal changes in mitochondrial membrane
potential using this radiopharmaceutical in the context of
anthracycline-induced cardiotoxicity (57). These tracers
require prospective clinical trial evaluation to determine their
clinical utility.

Reactive oxygen species

[18F]6-{4-[(1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl)
methoxy]phenyl}-5-methyl-5,6-dihydrophenanthridine-3,8-
diamine (18F-DHMT), an analog of the superoxide indicator
dihydroethidium, has previously been identified as a
promising PET radiotracer of ROS generation (58). In a
chronic doxorubicin-induced cardiotoxicity rodent model,
Boutagy et al. described the significant increase in myocardial
18F-DHMT uptake 4 weeks post treatment which preceded
degradation in LVEF that was significant only 6 weeks post
treatment (P = 0.0012) (59). Correlation analysis suggested an
inverse correlation (r2 = 0.6; P = 0.01) between LV 18F-DHMT
uptake and LVEF as well as a direct correlation (r2 = 0.72;
P = 0.007) between LV 18F-DMHT and LV ESV. These results
suggest that 18F-DHMT may be a viable radiotracer for early
assessment of cardiotoxicity that precedes left ventricular
systolic dysfunction.

II. Cell death

Dox intercalates in the DNA and induces single- and double-
strand DNA breaks in target cells in a topoisomerase (Top)-
2-dependent manner (60). By producing temporary single- or
double-stranded DNA breaks, Top regulates topological changes
during DNA replication, transcription, or recombination (61).
Top-2α is overexpressed in tumors and is the molecular basis of
Dox anticancer activity (62, 63).

Adult cardiomyocytes express Top-2β but not Top-2α (62),
and Top-2β is also a Dox target, forming a Top-2β-Dox-DNA

ternary cleavage complex that induces DNA strand breaks
and ensuing cell death (64, 65). These DNA breaks rapidly
result in the phosphorylation of histone variant γ-H2AX,
a sensitive marker of the DNA damage response (66, 67)
(Figure 1). Subsequently, mediator of DNA damage checkpoint
protein (MDC)-1 binds to γ-H2AX (68) and facilitates DNA
damage repair protein recruitment (69, 70). Furthermore,
Dox/Top-2β bind to selective promoters, significantly affecting
the cardiomyocyte transcriptome (65, 71). Ensuingly, key
antioxidative enzymes are reduced, providing a mechanism
linking Dox-induced reactive oxygen species (ROS) production
in a Top-2β-dependent manner. For example, peroxisome
proliferator activated receptor-γ (PPAR-γ) coactivator –1-α and
-β, pivotal transcription factors implicated in mitochondrial
biogenesis, are decreased in the setting of Dox cardiotoxicity
(65, 71).

Anthracyclines triggers various cell death mechanisms
(Figures 1, 2), though the two most well characterized
pathways in AIC are apoptosis and necrosis, mediated in
part by Bax-induced mitochondrial damage (Figure 1). Bax
(Bcl-2 associated X protein) is a member of the Bcl-2
family. Under homeostatic conditions, Bax resides in an
inactive conformation in the cytosol (72). Upon anthracycline
treatment, Bax undergoes a conformational change that
results in its translocation to the mitochondrial membrane
(Figure 1). There, Bax mediates opening of the mitochondrial
permeability transition pore (mPTP) located in the inner
mitochondrial membrane (73). In turn, mPTP opening
leads to swelling of the mitochondrial intermembrane space
followed by rupture of the outer mitochondrial membrane,
release of intermembrane space proteins – including the
small soluble electron carrier cytochrome c – into the
cytosol, and cardiomyocyte necrosis (74) (Figure 1). Another
proposed mechanism of anthracycline-induced, Bax-mediated
cytochrome c release is the oligomerization of Bak and Bax
within the outer mitochondrial membrane, leading to its
permeabilization and activation of apoptotic pathways (72, 75).

Annexin V

Annexin V is a well-established method of detecting
externalized phosphatidylserine (PS), a phospholipid that is
translocated from the inner to the outer leaflet of the
plasma membrane early in apoptosis. 99mTc-annexin-V was
scrutinized by Bennink et al. in an acute doxorubicin-induced
cardiotoxicity rat model. Doxorubicin treated rats displayed
a significant increase in myocardial 99mTc-annexin-V uptake,
with longer doxorubicin treatment regimens corresponding to
an even higher uptake (76). Furthermore, heart-to-body weight
ratio decreased in response to doxorubicin treatment, which
may have been an indication of cardiomyocyte death. These
findings correlated well with cardiotoxicity measured through
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FIGURE 2

Additional anthracycline cardiotoxicity mechanisms for the development of novel molecular nuclear probes. Highlighted mechanisms have not
yet been targeted using a nuclear imaging strategy, and certain key molecular or biochemical targets are presented for the potential
development of new SPECT/PET tracers. (A) Anthracyclines impair autophagy by compromising lysosomal acidification, increasing beclin-1
expression, inhibiting mTOR, and inhibiting transcription factor EB, thereby blocking autophagic flux and causing an accumulation of
autolysosomes that leads to increased ROS production. New probes may be developed to target molecules implicated in the accumulation of
undegraded autolysosomes. (B) Anthracycline-induced ferroptosis is caused by iron overload through upregulation of TfR, inactivation of
ferritin, inhibition of ABC-B8, and downregulation of GPX4, which may be targets for probe development. (C) Anthracycline induces pyroptosis
by upregulating TINCR, which increases the expression of NLRP3 and caspase 1 activation. Future probes may for example target NLRP3 or
caspase1. ABC-B8, ATP binding cassette subfamily B member 8; Dox, doxorubicin; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D;
IGF2BP1, insulin-like growth factor 2 mRNA binding protein 1; IL, interleukin; Lipid-OOH, lipid hydroperoxides; mTOR, mammalian target of
rapamycin; NLRP3, nucleotide-binding oligomerization domain (NOD-), leucine-rich repeat (LRR-), and pyrin domain (PYD)-containing protein
3; ROS, reactive oxygen species; TFEB, transcription factor EB; TfR, transferrin receptor; TINCR, terminal differentiation-induced non-coding
RNA.

immunohistochemistry and the TUNEL assay. Clinical studies
utilizing annexin V probes have been limited; 99mTc-HYNIC-
annexin-V, was tested in early clinical trials but its performance
in detecting apoptosis in head and neck carcinoma was limited
by moderate non-specific binding and slow clearance times (77).

Caspase

A more direct way of measuring apoptosis is by targeting
caspase activation. Caspases are intracellular enzymes that are
essential for executing apoptosis. Different initiator caspases
can be activated extrinsically or intrinsically, though both
pathways ultimately converge with caspase-3 and –7 activation.
Several analogs of 5-Dialkylaminosulfonylisatins, a potent non-
peptide inhibitor of caspase-3 and –7, have been adapted
as PET tracers. 18F-ICMT-11, 11C-WC-98, and 18F-WC-IV-
3 have demonstrated high caspase-3 affinity in vitro but
all exhibited poor specificity in vivo models, likely due
to the dicarbonyl moiety caspase binding region of isatin
being recognized by other proteases such as cathepsins (78–
80). A substrate-based probe, 18F-CP18, was designed to
improve specificity by taking advantage of caspase-3′s unique

substrate recognition motif for aspartic acid residues in the
P1 and P4 positions (75 - 81). In this probe, the caspase-3
substrate sequence Asp-Glu-Val-Asp connects a radioactively
labeled metabolite to a short polyethylene glycol (PEG) chain.
The hydrophilic PEG chain facilitates the probe’s transport
across the cell membrane and upon encountering activated
caspase-3 it is cleaved away, leaving the radioactively labeled
metabolite inside the cell. While initially developed for
visualization of apoptosis in tumors, this radiotracer has also
been adapted for AIC imaging (82). Su et al. (83) detected
increased accumulation of 18F-CP18 in the myocardium
starting at 3 weeks after doxorubicin treatment in mice,
which was histologically validated using a TUNEL assay.
The authors also observed that 18F-CP18 detects myocardial
apoptosis at a stage prior to significant changes in LVEF.
Clinical studies are required to further expand on these
promising results.

Necrosis

111In-antimyosin is a tracer that binds to the exposed
myosin of damaged cells, an indicator used to quantify regions
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of myocardial necrosis. Early clinical studies evaluated 111In-
antimyosin in AIC (84–86). Carrió et al. studied 30 sarcoma
patients who underwent serial 111In-antimyosin imaging prior
to chemotherapy and at intermediate (240–300 mg/m2) and
maximal (420–600 mg/m2) cumulative doxorubicin doses.
Whereas an abnormal heart-to-lung 111In-antimyosin uptake
ratio was observed with both doxorubicin dosages, maximal
exposure to doxorubicin led to a more pronounced 111In-
antimyosin uptake with a ratio of 2.02 ± 0.3 (P < 0.01)
and was associated with a significant ≥10% decrease in LVEF
(85). Furthermore, in a follow up study of patients that
had discontinued anthracycline treatment due to a decrease
in LV function leading to a LVEF <50%, Olmos et al.
demonstrated that patients with an 111In-antimyosin heart-
to-lung uptake ratio ≥1.87 experienced a persistent decline
in LVEF at 2–26 weeks follow-up, with 4 out of 11 of these
patients subsequently developing congestive heart failure (86).
In contrast, patients with a transient change in LVEF following
the discontinuation of anthracycline treatment had a mean
111In-antimyosin heart-to-lung uptake ratio of 1.52. Despite
these promising results, interest in 111In-antimyosin cardiac
imaging has waned and this tracer is not commonly used in
contemporary practice due to its detection of necrotic cell death
which occurs at more at more advanced stages of the disease
process and thereby limits options for clinical intervention.

III. Sympathetic innervation

The clinical signs of early myocardial cell injury are often
masked by a compensatory rise in sympathetic drive. Indeed,
an increase in chronotropy and inotropy preserve LVEF during
the early stages of AIC (87, 88). While initially beneficial, long
term cardiac sympathetic activation is detrimental, with cardiac
sympathetic dysinnervation occurring in cardiomyopathy and
heart failure (89). The main catecholamine released by
sympathetic postganglionic fibers is norepinephrine which
accounts for 70% of circulating levels, with the remainder
mainly released by the adrenal gland (90, 91). The majority
of clinical tracers that monitor sympathetic innervation are
radiolabeled analogs of norepinephrine.

123I-metaiodobenzylguanidine

123I-metaiodobenzylguanidine (123I-MIBG), a
norepinephrine analog that shares with it similar release and
uptake mechanisms, can be used to identify areas of abnormal
adrenergic innervation in the myocardium. Approximately 80–
90% of norepinephrine released at sympathetic nerve terminals
is taken up again via norepinephrine transporter uptake-1
(89). Reduction of norepinephrine uptake at these sites has
been documented in various cardiovascular diseases (92, 93).

Like norepinephrine, reuptake of 123I-MIBG is mediated by
norepinephrine transporters along myocardial sympathetic
nerve terminals. Given 123I-MIBG is not metabolized, its
retention can be used as an indicator for neuronal integrity.

123I-metaiodobenzylguanidine uptake is reduced in
preclinical models of AIC. In a chronic doxorubicin rat model
(2 mg/kg IV weekly for 1, 2, 3, 4, 5 and 8 weeks), a significant
decrease in cardiac 123I-MIBG uptake was detected at week 4,
which correlated with histologically examined myocardial tissue
damage (94). A comparative study of 123I-MIBG with 18F-FDG
in a chronic doxorubicin-induced cardiotoxicity rat model
(15 mg/kg cumulative dose) indicated that 18F-FDG uptake
decreased significantly in doxorubicin treated groups at weeks
4 and 6 (4.2 ± 0.5%ID/g vs. 9.2 ± 0.8%ID/g at week 6), which
correlated with LVEF (r = 0.49, P = 0.002) (95). In contrast,
a significant decrease in 123I-MIBG heart-to-mediastinum
(H/M) ratio between groups was detected earlier at week 2
(∼1.9% vs. ∼1.4%, P < 0.05), maintained at weeks 4 and 6,
but was not correlated with LVEF decrease at week 6 (r = 0.24,
P = 0.15). While promising, a limiting point of these preclinical
studies is the large variability in anthracycline doses and
temporal administration patterns which may lead to systemic
toxicity in animals.

Early and late H/M ratios of 123I-MIBG uptake were
proposed as an index for stratifying prognosis and risk in
patients with chronic heart failure (96). Carrió et al. (96)
observed a significant 1.5-fold decrease in cardiac 123I-
MIBG uptake in sarcoma patients undergoing maximal
cumulative doxorubicin treatment (420–600 mg/m2), which
also corresponded with a significant (≥10%) reduction in
LVEF. A similar reduction in ejection fraction was not detected
in patients at intermediate cumulative doxorubicin doses
(240–300 mg/m2), though 25% of patients exhibited slight
decreases in 123I-MIBG uptake that were not significant
compared to baseline. A study by Laursen et al. (97) further
reinforced that 123I-MIBG imaging is only applicable in
patients undergoing high cumulative doxorubicin doses.
Moreover, the authors observed that patients undergoing
intermediate cumulative doses of doxorubicin had a
non-significant increase post therapy on both background-
corrected WOR – which reflects norepinephrine retention
in adrenergic neurons, closely connected to sympathetic
tone (18.6% vs. 23.4%, P = 0.09), and H/Mearly – a measure
of the anatomical distribution of functioning myocardial
adrenergic neurons (2.7% vs. 2.9%, P = 0.4). No association
was observed between follow-up decreases in LVEF and
WOR (P = 0.5). Moreover, in a study of asymptomatic
patients who had completed anthracycline treatment
≥2 years prior, 123I-MIBG uptake did not differ between
anthracycline treated patients (cumulative anthracycline
dose 257.6 ± 117.1 g/m2) and control patients, as assessed
either by mean H/Mlate – which reflects overall neuronal
functioning, i.e., the product of norepinephrine uptake,
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storage, and release (2.24% vs. 2.26%, P = 0.5) – or WOR
(10.32% vs. 9.64%, P = 0.8) (98). These results suggest that
the myocardial adrenergic activation initially detected by
123I-MIBG during treatment is reversible upon discontinuation
of anthracycline treatment. Overall, 123I-MIBG adrenergic
imaging is not presently a clinically applicable strategy for the
early detection of AIC, though further clinical studies may
be warranted to investigate its sensitivity at lower cumulative
anthracycline doses.

Additional tracers

Other PET radiotracers for cardiac sympathetic innervation
have been studied in animal models. Ex vivo biodistribution
studies 3 weeks after chronic doxorubicin treatment in rats
found no change in cardiac uptake of the norepinephrine
analog 11C-meta-hydroxyephedrine (11C-HED) or the
phosphodiesterase-4 inhibitor (R)-11C-rolipram (which
provides an index of myocardial cyclic AMP activity,
downstream of norepinephrine) (99). On the other hand,
the authors noted a decreased uptake of the β-adrenergic
antagonist 3H-CGP12177 3 weeks post treatment while there
was no change in ejection fraction or heart-to-weight ratio.
Similarly, Kizaki et al. also reported that β-adrenergic receptor
gene expression decreases following doxorubicin treatment in
rats (100).

IV. Myocardial function, perfusion, and
blood flow

99mTc-MUGA imaging is an accurate method to assess
ventricular contraction. While generally avoided in pediatric
patients due to radiation concerns, 99mTc-MUGA may be
used to monitor cardiotoxicity in adult patients due to its
high accuracy and low inter-observer variability (101–103). In
a prospective study of 28 non-Hodgkin lymphoma patients
undergoing doxorubicin treatment, Nousiainen et al. observed
that a decrease of ≥4% in LVEF quantified by 99mTc-MUGA
following a cumulative doxorubicin dose of 200 mg/m2

predicted AIC with 90% sensitivity and 72% specificity (104).
However, these findings were not supported by a large-scale
retrospective study of 630 patients grouped according to
increasing doxorubicin doses or placebo (4). Overall, assessment
of LVEF – even if done accurately by 99mTc-MUGA – is not a
favored approach to assess AIC as it only provides a global and
often delayed assessment of cardiac mechanical abnormalities
following injury.

Microvascular dysfunction is a possible complication of
AIC (105). The SPECT myocardial perfusion imaging tracer
99mTc-sestamibi was assessed in AIC in a prospective study
of breast cancer patients undergoing radiation therapy and

doxorubicin treatment (106). Hardenbergh et al. observed that
7 out of 10 patients developed new visible perfusion defects
6 months post-radiation. More recently, PET tracers such as
13N-ammonia and 82Rb-chloride have become more common
for myocardial perfusion assessment due to their superior
diagnostic accuracy compared to SPECT (107–109). In a small
prospective study (n = 10) using 13N-ammonia, Nehmeh et al.
reported decreased MFR 1-year post-radiation in 50% of breast
cancer patients (n = 4) receiving radiotherapy and anthracycline
(110). However, these findings are suggested by a small dataset
only, and it is unknown if the observed cardiotoxic effects
were caused by the anthracycline treatment or the radiation.
PET myocardial perfusion tracers are amenable to myocardial
blood flow quantitation, an integrated measure of epicardial
and microvascular coronary artery disease (109). 82Rb-chloride
assessment of myocardial blood flow in lymphoma patients by
Laursen et al. revealed a mild reduction in myocardial flow
reserve (MFR: 2.69 vs. 2.51, P = 0.03) – calculated as the
stress/rest ratio of myocardial blood flow – 3 days after initial
doxorubicin treatment, with 13 out of 54 patients exhibiting
low cardiotoxicity threshold (>20% decline in MFR) (105).
Importantly, the MFR decline was independent of perfusion
defects determined using the summed stress score and summed
difference score. Stratifying patient risk of developing AIC in
this manner is relevantly new, and additional studies are needed
to determine whether an acute reduction in MFR shortly after
anthracycline administration may identify patients at higher
cardiotoxicity risk. Furthermore, the PET tracers 13N-ammonia
(110), 15O-water (111) and 18F-flurpiridaz (112, 113) should also
be considered to assess myocardial blood flow changes in AIC
given their higher myocardial extraction fractions (108).

V. Cardiac fibrosis

Myocardial fibrosis (114) may occur as a result of
AIC. While the exact role cardiac fibroblasts play in AIC
remains underexplored, doxorubicin was recently reported
to induce fibroblast differentiation (115). 68Ga-fibroblast
activation protein inhibitor (FAPI) is a robust fibroblast PET
tracer that was initially developed to detect high FAP-expressing,
cancer-associated fibroblasts. In a retrospective study of n = 32
patients, Siebermair et al. evaluated the cardiac uptake of 68Ga-
FAPI in a heterogenous population of cancer patients treated
with various anticancer therapies (116). While only 3 patients
with FAPI uptake had been treated with anthracyclines, the
authors observed a significant association of myocardial FAPI
uptake with CAD and LVEF. Using modeling (n = 185) and
confirmatory (n = 44) consecutive cohorts of patients with
cancer metastasis who had FAPI-positive PET scans, Heckmann
et al. (117) did not observe an association of focal myocardial
FAPI uptake with anthracycline treatment, however, noted a
correlation of high signal intensities with cardiovascular risk
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factors and metabolic disease. Additional studies are warranted
to investigate cardiac fibroblast FAP expression patterns in the
context of AIC (116).

Additional anthracycline
cardiotoxicity mechanisms for
future development of candidate
molecular targets

Several AIC mechanisms have not been targeted to date
using a nuclear imaging strategy. Anthracycline-induced cardiac
injury is multi-factorial and -genic, with no single mechanism
fully explaining all aspects of the injury process. Importantly,
anthracyclines induce all forms of cell death (118, 119). We
highlight below three additional injury pathways that may
lead to the development of new radiotracers for nuclear
molecular imaging in AIC.

Autophagy

Autophagy is a homeostatic process in which cells
utilize lysosomes to remove unnecessary or damaged cellular
components (75). Anthracyclines block cardiomyocyte
autophagic flux by impairing lysosomal acidification – critical
for lysosomal hydrolytic enzyme activity and lysosomal
maturation (120) – leading to the accumulation of undegraded
autolysosomes (121) (Figure 2A). Another mechanism of
anthracycline interference with autophagic flux is the inhibition
of transcription factor EB expression which is a regulator of
lysosomal proteolysis mediated primarily by cathepsin B activity
(122). Furthermore, phosphoinositide 3-kinase γ (PI3Kγ) is
induced downstream of Toll-like receptor 9 by cardiomyocytes
following anthracycline treatment (123). PI3Kγ leads to Akt
phosphorylation and inactivation of mTOR (mammalian target
of rapamycin) targets, thus causing autophagy inhibition
and a reduced ability to remove damaged organelles such
as mitochondria (123). Expression of beclin-1, a mediator
of autophagy initiation, increases following doxorubicin
treatment in mice (121). Furthermore, Li et al. indicated that
haploinsufficiency of beclin-1 diminishes autophagy initiation,
leading to fewer unprocessed autolysosomes and decreased
ROS production. Conversely, doxorubicin-induced cardiac
injury is accentuated in mice with beclin-1 overexpression.
Taken together, these mechanisms indicate the contribution of
autophagy perturbation to AIC-induced cardiomyocyte death,
cardiac remodeling, and failure (124).

Ferroptosis

Ferroptosis is a type of cell death characterized by the
iron-related accumulation of lipid peroxides (75). Iron plays a

significant role in AIC injury (125) (Figure 2B). Heart biopsies
of patients who experienced anthracycline-related heart failure
demonstrated excessive mitochondrial iron accumulation (126).
This excessive iron load in the mitochondria can be explained by
doxorubicin downregulation of ATP-binding cassette protein-
B8 (ABC-B8), which mitigates iron transport out of the
mitochondria (126). Doxorubicin also downregulates the key
anti-ferroptosis protein glutathione peroxidase-4, resulting in
lipid peroxidation. Additionally, doxorubicin can interact with
the iron response elements of ferritin, reducing cytosolic ferritin
and increasing labile iron (127).

Pyroptosis

Pyroptosis is a cell death mechanism characterized by
increased proinflammatory signaling and activation of caspase-
1, –4, –5, and –11, leading to plasma membrane rupture
mediated by gasdermin D (GSDMD) (75). Previous research has
determined that doxorubicin induces pyroptosis via induction
of terminal differentiation-induced non-coding RNA (TINCR)
and activation of the NLRP-3-caspase-1 pathway (128–130).
Specifically, doxorubicin upregulation of TINCR leads to
recruitment of the adapter protein IGF2BP1 (insulin-like
growth factor 2 mRNA-binding protein 1) and stabilization
of NLRP3 mRNA (128). This increases NLRP3 expression
and activates caspase-1, thereby leading to GSDMD cleavage,
plasma membrane rupture, and interleukin (IL)-1β and IL-18
release (Figure 2C).

Need for improved cardiac
imaging approaches in the context
of contemporary anthracycline
use

While cancer affects more than one in three people over
their lifetime, improved long-term cancer survival has led to an
increase in the incidence of adverse cardiac side-effects of cancer
treatments (131). The U.S. National Cancer Institute estimates
that in 2022 there will be ∼ 18 million cancer survivors which
mounts to >5% of the U.S. population (132). Anthracyclines
are a cornerstone of chemotherapy in various cancers (133),
however, their use is complicated by anthracycline-induced
cardiotoxicity (134, 135) which has been appreciated for decades
(4, 136–138).

Despite the continued discovery of alternative
chemotherapeutic strategies, and their known cardiotoxic
side-effects, anthracyclines remain a mainstay of many cancer
treatments (139, 140). Indeed, anthracyclines are used in
30–35% of breast cancer patients (141–143) and 60–70% of
elderly lymphoma patients (144, 145). Moreover, 50–60% of
childhood cancer survivors were treated with a chemotherapy
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FIGURE 3

Potential clinical applications of nuclear molecular imaging in predicting and reclassifying cardiotoxicity in cancer patients undergoing
anthracycline treatment. Different clinical algorithms may be followed according to the mechanistic pathway targeted for imaging – whether
expression of cardiac injury related proteins, or alternatively activation of cardioprotective pathways – and the presence or absence of abnormal
echocardiographic features suggestive of cardiotoxicity. (A) Molecular imaging may be used to predict the risk of developing cardiotoxicity
during and/or following anthracycline treatment in patients with a normal echocardiogram. (B) In patients with an abnormal echocardiogram
suggesting a new impairment in cardiac function, molecular imaging may be able to finetune the cardiotoxicity diagnosis with implications on
the duration of anthracycline-induced cardiac dysfunction, or to reclassify the echocardiographic diagnosis, thereby providing oncologists and
cardiologists greater diagnostic certainty with ensuing clinical implications.

regimen containing anthracyclines (146, 147). In parallel,
continued advances in cancer therapy have increased the
survival rate of childhood cancer to ∼ 80% (132). Furthermore,
long-term follow-up of childhood cancer survivors indicate that
up to 30% of patients treated with anthracyclines have signs
of cardiac dysfunction in adulthood that are unmasked when
more sensitive detection techniques are used (148), indicating
significant under-estimation of long-term complications. These
observations highlight the need for additional and improved
imaging strategies in the context of AIC.

While echocardiography continues to be the most widely
used tool for AIC monitoring, it is important to consider
the limitations and advantages of each modality when
selecting the proper screening exam for an individual patient.
Echocardiography enjoys attractive features such as wide
availability, rapid interpretation, lack of ionizing radiation
exposure and relatively low cost which have firmly established
it as the staple of AIC monitoring (6). However, the quality
of the study is highly dependent on patient anatomy, acoustic
windows, technician skill, and interobserver variability to a
greater degree than other available methods (149–151).

In contrast, automated segmentation and ventricular
volume algorithms offer precise and accurate evaluations of
chamber function in cardiac MRI and multi-detector gated
cardiac CT. However, cardiac MRI is more expensive and less

widely available at many clinical centers. It is also a time-
consuming exam that requires significant patient cooperation
and can be undermined by rapid heart rates, arrhythmias, or
by the presence of intrathoracic hardware such as implantable
pacemakers or defibrillators that can introduce excessive signal
artifact (152, 153).

Cardiac CT is also challenged by susceptibility to
gating artifacts with rapid or irregular heart rhythms,
need for iodinated contrast which is limiting in patients
with kidney disease, as well as less robust data on the
assessment of muscle strain or mechanics that can indicate
early toxicity as compared to echocardiography or cardiac
MRI (154).

Lastly, although largely fallen in clinical desuetude,
patients with poor echocardiographic acoustic windows and
contraindications to MRI or CT imaging may be referred
for a radionuclide MUGA scan. This modality has proven
to be a viable alternative to cardiac MRI or CT in patients
where the precision or accuracy of echocardiographic
measurements are in question, and thus remains a clinical
option when choosing a strategy to monitor for AIC
(155, 156). However, the advent of unique and specific
markers in the growing field of nuclear molecular imaging
may offer an additional toolset to detect and treat early
manifestations of AIC.
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Whereas the utility of perfusion-based imaging and
myocardial blood flow quantitation for the detection of sub-
clinical or early AIC has been studied in several small
trials, additional research is needed to bring the evidence
to the level of routine clinical utility. In particular, PET-
derived myocardial blood flow has been examined as a
potential marker of patients who may be at increased risk
for AIC (157, 158). Whether changes in myocardial blood
flow metrics are a sign of early cardiac stress or indicative
of irreversible toxicity in response to anthracyclines require
further scrutiny (157). If the value of myocardial flow
reserve assessment in AIC can be further demonstrated in
large-scale clinical studies, it could be added as an early
evaluation strategy in company of echo-derived left ventricular
global longitudinal strain or biomarkers such as plasma
troponin levels.

Similarly, although no societal guidelines exist for routine
myocardial perfusion imaging of patients undergoing
anthracycline based chemotherapy regimens, the high
correlation of CAD and subsequent acute coronary syndromes
in cancer patients often prompts clinicians to screen patients
with intermediate or high risk of CAD prior to initiation of
therapy. In one retrospective analysis of 6.5 million cases of
acute coronary syndromes, 9% of the patients had a diagnosis
of cancer, either active or in remission, suggesting that pre-
chemotherapy evaluation and revascularization, if indicated,
may be appropriate in this patient group (159).

Several of the probes discussed in this review such as
18F-FDG and 68Ga-FAPI are used for cancer staging or
progression evaluation. Retrospective analyses of these clinical
studies suggest abnormal myocardial uptake in certain patients,
paving the way for dedicated cardiac studies to detect and
monitor AIC. There is also an opportunity to investigate
these probes for oncologic and cardiac assessment in tandem.
Doing so, however, will require patients to have a standardized
preparation and clinicians to follow a more rigid imaging
protocol that adheres to both oncologic and cardiac quality
control requirements.

Echocardiography, including the segmental assessment
of myocardial function by strain or displacement vectors,
remains the first imaging modality of choice for AIC
screening. Therefore, we posit a complementary role –
dependent on the imaging targets – for the clinical utilization
of nuclear molecular imaging applications in cardio-
oncology, that we separate into two aims: 1) improving
the prediction of AIC development in the setting of a normal
echocardiogram, and 2) improving AIC reclassification in
the setting of an abnormal echocardiogram (Figure 3).
The clinical adoption of nuclear molecular imaging
approaches remains limited at present, however, is poised
to significantly affect current imaging strategies that have
limitations in both sensitivity and specificity to screen
and monitor AIC.

Conclusion

Anthracycline-induced cardiotoxicity involves a
broad range of pathophysiological pathways that lead to
cardiomyocyte injury and that may be further complicated by
cardiomyopathy and heart failure. Mechanisms implicated in
the disease process, as well as molecular responses thereto, can
be probed for nuclear imaging, e.g., metabolic dysfunction,
cardiomyocyte death, sympathetic innervation, and changes in
myocardial blood flow. Detecting these AIC-induced processes
at a subclinical level, prior to the onset of irreversible cardiac
impairment, may provide clinicians with valuable information
permitting changes in chemotherapeutic strategies and/or
timely initiation of cardioprotective strategies.
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